[go: up one dir, main page]

TWI227417B - Digital resource recommendation system, method and machine-readable medium using semantic comparison of query sentence - Google Patents

Digital resource recommendation system, method and machine-readable medium using semantic comparison of query sentence Download PDF

Info

Publication number
TWI227417B
TWI227417B TW92133813A TW92133813A TWI227417B TW I227417 B TWI227417 B TW I227417B TW 92133813 A TW92133813 A TW 92133813A TW 92133813 A TW92133813 A TW 92133813A TW I227417 B TWI227417 B TW I227417B
Authority
TW
Taiwan
Prior art keywords
semantic
query
word
sentence
comparison
Prior art date
Application number
TW92133813A
Other languages
Chinese (zh)
Other versions
TW200519644A (en
Inventor
Han-Kuan Yu
Tse-Ming Tsai
Yung-Fang Yang
Shih-Chun Chou
Original Assignee
Inst Information Industry
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inst Information Industry filed Critical Inst Information Industry
Priority to TW92133813A priority Critical patent/TWI227417B/en
Application granted granted Critical
Publication of TWI227417B publication Critical patent/TWI227417B/en
Publication of TW200519644A publication Critical patent/TW200519644A/en

Links

Landscapes

  • Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
  • Machine Translation (AREA)

Abstract

The present invention is related to a digital resource recommendation system and a method using semantic comparison of query sentence. The invented system includes a storage device and an analysis module. The storage device stores an ontology and a plurality of historical records of query sentence. The analysis module is used to enter a new query sentence and look up a historical query sentence from the historical records of query sentence. A first vocabulary is produced from the new query sentence. A second vocabulary is produced from the historical query sentence. The ontology is used to search for a first semantic mark corresponding to the first vocabulary, and a second semantic mark corresponding to the second vocabulary, in order to calculate a semantic distance of the ontology corresponding to the first semantic mark and the second semantic mark. Subsequently, the digital resource ID codes are displayed in an ascending order according to the degree of similarity based on the semantic distances.

Description

1227417 日月⑴ ' "------ 發明所屬之技術領域 士五立此發明是一種推薦系統及方法,特別是一種查詢語向 =思比對之電子資源推薦系統及方法。 先前技術 服之為了讓使用者得到需要的電子資源,包括網頁、網路 務、文件等’應用系統通常會將這些資源,彙整到一 人不、;;°構上。之後,使用者則可依據此目錄結構來取得適 曰的資源。 k 除了可將電子資源彙整到一個目錄結構外,應用系絲 ^可提供一個搜尋引擎(例如,龍捲風、Google或蕃薯藤、 1 依據使用者所輸入的關鍵字或詞句,使用一搜尋演 鼻法比對電子資源内容(例如,網頁内容或文件内容)戈 ^電子資源的描述(例如,網路服務描述),列出相似产鲈 鬲的電子資源,供使用者挑選。 ^ 近來,越來越多的應用系統會提供推薦分析引擎, 據=似背景使用者的使用紀錄(access log),來進行電又 子,源推薦,例如,亞馬遜網路書店(Amaz〇n· c〇m)的好蚩 推薦。除此之外,推薦分析引擎亦可搭配搜尋引擎,搜I 使用者輸入的查詢關鍵字或詞句,以及者潠 結果,進行電子資源推薦分析。 的挑選 、對於使用詞句比對來進行電子資源推薦之分析方法, 通韦會將使用者所新輸入的詞句,使用關鍵字比較方 比對過去所蒐集的詞句,找出較近似的詞句,#配過 挑選結果進行推薦。雖然此為有效的推薦方法之一1227417 Sun and Moon ⑴ "" ------ Technical Field to which the Invention belongs This invention of Shi Wuli is a recommendation system and method, especially an electronic resource recommendation system and method for query direction = thinking comparison. In the prior art, in order to allow users to obtain the required electronic resources, including web pages, network services, documents, etc., application systems usually aggregate these resources into one person; After that, users can obtain the appropriate resources based on this directory structure. In addition to consolidating electronic resources into a directory structure, the application system can provide a search engine (for example, tornado, Google or sweet potato vine, 1 according to the keywords or phrases entered by the user, using a search to perform a nose The law compares the content of electronic resources (for example, the content of web pages or files) with the description of electronic resources (for example, the description of Internet services), and lists similar electronic resources that produce sea bass for users to choose. ^ Recently, more and more More and more application systems will provide a recommendation analysis engine, according to the user's background (access log), to perform electricity and source recommendation, for example, the Amazon Internet Bookstore (Amaz〇n · comm) Anyway, in addition, the recommendation analysis engine can also cooperate with the search engine to search the query keywords or words entered by the user and the results, and perform electronic resource recommendation analysis. For the analysis method of electronic resource recommendation, Tongwei will compare the words and phrases newly entered by the user with the keywords to compare the words and phrases collected in the past to find out Like words, # allocated over the selection of the recommended results. Although this is a valid one recommended method

1227417 五、發明說明(2) 為查詢語句通常相當簡短,因此,很難克服一義多詞、詞 句長短差異,所造成精確度不佳的情形。 因此,需要一系統與方法解決關鍵字比對之缺點,用 以4加比對的精確度,更有效地使用詞句比對來進行電子 資源推薦。 發明内容 有鑑於此,本發明之目的為提供一種查詢語句語意比 之電子資源推薦系統與方法,可藉由語意標註及比對技 街解决傳統採用關鍵字比對技術所無法克服一義多詞、 詞句長短差異之問題。 依據上述目的,本發明之查詢語句語意比對之電子資 ,推薦系統及方法,首先設置一儲存裝置、一中央處理 器、一記憶體、顯示裝置、輸入裝置,並使用匯流排將其 連、、々再起。儲存裝置儲存本體庫(ontology)以及查詢語 句歷史紀錄。記憶體中含有一含有程式指令碼之分析模組 以及回饋模組。中央處理器用以載入記憶體所包含之分析 模組以及回饋模組,並根據程式指令以及使用者藉由輸入 裝置所輸入之資料,執行查詢語句語意比對以及電子資源 推薦功能,並將執行後之結果顯示到顯示裝置上。 ^ 本體庫是一種描述物與物之間關聯的概念架構。查詢 ,句歷史紀錄共有兩個攔位,查詢語句以及工作流程編 旒。每一筆紀錄儲存過去使用者輸入之查詢語句以及其所 挑選並執行之工作流程。查詢語句攔位用以儲存使用者過 去所輸入之查詢語句,工作流程編號欄位則儲存其所挑選1227417 V. Description of the invention (2) The query sentence is usually quite short. Therefore, it is difficult to overcome the situation that the polysemy and the difference in the length of the sentence cause poor accuracy. Therefore, a system and method are needed to resolve the shortcomings of keyword comparison. With the accuracy of 4 plus the comparison, it is more effective to use word and sentence comparison for electronic resource recommendation. SUMMARY OF THE INVENTION In view of this, an object of the present invention is to provide an electronic resource recommendation system and method for query sentence semantic ratio, which can solve semantic problems that cannot be overcome by traditional keyword comparison technology through semantic tagging and comparison techniques. The problem of word length difference. According to the above purpose, the present invention recommends a system and method for electronic data comparison of query sentences semantically. First, a storage device, a central processing unit, a memory, a display device, and an input device are provided, and a bus is used to connect them. , 々 re-emergence. The storage device stores an ontology and a query history record. The memory contains an analysis module containing program instructions and a feedback module. The central processing unit is used to load the analysis module and the feedback module contained in the memory, and execute the query sentence semantic comparison and electronic resource recommendation function according to the program instructions and the data input by the user through the input device, and execute The subsequent results are displayed on a display device. ^ Ontology library is a conceptual architecture describing the relationship between things. There are two stops for query and sentence history, query sentence and work flow compilation. Each record stores the query statements entered by the user in the past and the workflow selected and executed by the user. The query block is used to store the query entered by the user in the past, and the workflow number field stores the selected

12274171227417

並執行之工作流程。 本發明之電子資源推薦分為兩階段,分析以及結果回 饋,分=透過分析模組以及回饋模組來實行。And execute the workflow. The electronic resource recommendation of the present invention is divided into two stages, analysis and result feedback, and the point = is implemented through the analysis module and the feedback module.

在分析,段,分析模組首先接收使用者透過輸入裝置 所輸入之查询語句。再分別針對新輸入之查詢語句以及查 詢語句歷史紀錄中之歷史查詢語句進行中文斷詞,且會忽 略語句中含有時間之字詞,各自解析出”主詞(subject) — 動詞(verb) -受詞(ob ject)"的句型序列。接下來,從解析 後之"主詞-動詞-受詞”的句型序列中,分別為主詞、動 詞、文㈣’標註相應於本體庫中之部門、文件以及會議概 念樹中的概念、屬性以及實體。 分析模組根據新輸入查詢語句之語意標註,--比對In the analysis section, the analysis module first receives the query sentence input by the user through the input device. Then perform Chinese word segmentation on the newly entered query sentence and the historical query sentence in the historical record of the query sentence, and the words containing time in the sentence are ignored, and the "subject" — verb (verb)-subject (Ob ject) " sentence pattern sequence. Next, from the parsed " subject-verb-acceptor " Departments, documents, and concepts in the concept tree, attributes, and entities. Analysis module according to the semantic labeling of the newly input query sentence, comparison

查詢語句歷史紀錄中,所有紀錄之語意標註,計算其語意 距離。語意距離計算分成兩個階段,概念距離計算以及實 體距離計算。概念距離計算包含(1)主詞概念間的語意距 離,(2)動詞屬性間的語意距離以及(3)受詞概念間的語意 距離。而實體距離計算是更深入的針對句子間的實體進行 計算,包含(1)主詞實體間的語意距離以及(2)受詞實體間 的語意距離,由於動詞屬性間的語意距離在概念比對中已 經計算過,所以在實體比對不再納入計算。最後,分析模 組根據计鼻後的概念語意距離以及實體語意距離,進行工 作流程推薦。在進行工作流程推薦時,必須依據語意距離 大小,由小至大進行推薦(語意距離越小代表語句間之語 意相似度越南)。其推薦方法有一 ’(1)概念語意距離加上In the query history records, the semantic meaning of all records is calculated, and the semantic distance is calculated. Semantic distance calculation is divided into two stages, conceptual distance calculation and physical distance calculation. The concept distance calculation includes (1) the semantic distance between subject concepts, (2) the semantic distance between verb attributes, and (3) the semantic distance between subject concepts. The calculation of entity distance is a more in-depth calculation of entities between sentences, including (1) the semantic distance between the entity of the subject and (2) the semantic distance between the entities of the subject, because the semantic distance between the verb attributes is in the concept comparison It has been calculated, so the comparison in the entity is no longer included in the calculation. Finally, the analysis module recommends the workflow based on the conceptual semantic distance and entity semantic distance after nose counting. When making a workflow recommendation, you must make recommendations from small to large according to the size of the semantic distance (the smaller the semantic distance, the smaller the semantic similarity between sentences in Vietnam). The recommended method is ‘(1) Conceptual semantic distance plus

3SS 1227417 五、發明說明(4) 實體語意距離後,由 意距離,若遇Μ 4 ^ 薦’(2)先比對概念語 ^ 丨丨概念語意距離相同的情形,爯h钭與浐古丑 意距離,由小至大進行推薦。 再比對貫體扣 在結果回饋階段,回饋單元會將使用 作流程以及新輪人杰% a 者最後執仃之工 中。 新輪入之查询语句’加入到查詢歷史語句紀錄 實施方式 之電Γ資圖:推表麄示依據本發明實施例之查詢語句語意比對 查詢語“發明實施例之 1 1 _ Φ . ^ ^ W電子貝源推薦糸統1 0包括一儲存裝置 甏15並# :二器12、一記憶體13、顯示裝置14、輸入裝 ί二將其連結再一起。任何熟悉此項技 ί 子裝置11、中央處理器12、記憶體13、 顯不虞置14以及輸入裝置15,可以形成一部大型電腦 (mainframe)、個人電腦、工作站、筆記型電腦或其他電 腦设備。儲存裝置11儲存本體庫(〇nt〇1〇gy)ln以及查詢 語句歷史紀錄112。記憶體13中含有一含有程式指令碼之 分析模組131以及回饋模組丨32。中央處理器12用以載入記 憶體13所包含之分析模組131以及回饋模組132,並根據程 式扣令以及使用者藉由輸入裝置15所輸入之資料,執行查 詢語句語意比對以及電子資源推薦功能,並將執行後之結 果顯示到顯示裝置1 4上。 本體庫是一種描述詞與詞之間關聯的概念架構,在其 中’共包含二個各自獨立的概念樹(c〇ncept tree),部門3SS 1227417 V. Description of the invention (4) After the actual semantic distance, the meaning distance, if M 4 ^ recommended '(2) first compare the concept language ^ 丨 丨 the concept of semantic distance is the same, 爯 h 钭 and 浐 ancient ugly Recommended distance from small to large. Re-matching the body buckle In the result feedback stage, the feedback unit will use the working process and the final job of the new talents. The newly-involved query sentence 'is added to the query history record implementation of the electric data map: Push table shows the query sentence semantic comparison query query phrase "Invention Embodiment 1 1 _ Φ. ^ ^ According to the embodiment of the present invention. ^ ^ W electronic source recommends that the system 10 includes a storage device 15 and #: two devices 12, a memory 13, a display device 14, an input device to connect them together. Anyone who is familiar with the technology 11 , CPU 12, memory 13, display 14 and input device 15 can form a mainframe, personal computer, workstation, notebook computer or other computer equipment. The storage device 11 stores the body library ( 〇nt〇1〇gy) ln and query history 112. Memory 13 contains an analysis module 131 containing program instructions and a feedback module 丨 32. The central processing unit 12 is used to load the memory 13 Analysis module 131 and feedback module 132, according to the program deduction order and the data input by the user through the input device 15, perform query semantic comparison and electronic resource recommendation function, Displayed on the display device 14. Ontology is a descriptive conceptual architecture of association between words, in which the 'contains two separate concept tree (Tree c〇ncept), sector

0213-A40050TWF(Nl);A2BA3133;snowball.ptd 第 9 頁 1227417 五、發明說明(5) ---------- 2 1、文件2 2以及會議2 3。繁9闰在主一 之部門概冬榭¥構干音m a圖係表不依據本發明實施例 ',Η 1 ; - . ^ (instance)。六個屬性中,,,檢二以及兩個實體 召開"214為操作的屬性,其檢运"213以及” 為同義的操作屬性。兩個實:八=及”檢送"213 子商務技術實驗室"21 6。 刀’止刟至2 1 5以及π電 第2b圖係表不依據本發明實施例之 =,文件概錢22中只有—個概念H木構不 包含三個子概念,其中又各 概心中 記錄π 222包含實體”創新針a 個實體。子概念’,會議 ^ ^ 瞻計晝會議紀錄,1 2 2 5 ;早槪冬,, ^義^知^23包含實體’’科專會議通知,,226 ;子概念”期\ ,,二艮告224包含實體”創新前瞻計晝期末執行報‘ 苐2 c圖係表示依據本取本 意圖,會議概念樹23中有二個二:” · “義概念樹架構示 兩個實體(—e) 1個=念議”231,其中包含 "咖及"科專期末審查:議實^ 第3圖係表示依據本發明奢& ,ρ Λ. ^ θ ^ ^明實轭例之轭例查詢語句歷史 ==意圖。查詢語句歷史紀錄112共有兩個_,^ 以及工作流程、編號312,其巾包含321至324共四筆 2。母-筆紀錄儲存過去使用者輸人之查詢語句以及复 =選並執行之工作流程。查詢語句攔位311用以儲存使 過去所輸入之查詢語句,工作流程編號3丨2攔位則儲0213-A40050TWF (Nl); A2BA3133; snowball.ptd Page 9 1227417 V. Description of the invention (5) ---------- 2 1. Document 2 2 and meeting 2 3.繁 9 闰 is in the department of the main one. The structure of the dry sound m a is not according to the embodiment of the present invention, Η 1;-. ^ (Instance). Among the six attributes, the second inspection and the two entities hold "214" as the operation attributes, and their inspections " 213 and "are synonymous operation attributes. Two realities: eight = and" Send "" 213 children Business Technology Lab " 21 6. Knife's stop to 2 1 5 and π electric figure 2b are not according to the embodiment of the present invention = only one concept in the document profile 22 H wooden structure does not contain three sub-concepts, of which π is recorded in each profile 222 contains entities "innovation needle a entity. Sub-concepts", meeting ^ ^ Prospective day meeting minutes, 1 2 2 5; early morning winter, ^ meaning ^ know ^ 23 contains entities '' scientific and technical meeting notice, 226 The sub-concept "period", the second report 224 contains the entity "Innovation Prospective Day End-of-Day Execution Report '图 2c Figure shows that according to the original intention, there are two two in the conference concept tree 23:" The tree structure shows two entities (—e) 1 = Nianyi "231, which includes the final review of " coffee " science and technology: Negotiation ^ Figure 3 shows the luxury according to the present invention, ρ Λ. ^ θ ^ ^ Clear example yoke example query sentence history == intent. The query history record 112 has two _, ^, and the workflow, number 312, and its towel contains a total of four strokes 321 to 324 2. The master-pen record stores the past user input query sentences and the workflow of reselection and execution. The query sentence block 311 is used to store the query sentence input in the past, and the work flow number 3 丨 2 block is stored

1227417 五 發明說明(6) 存其所挑選並執行之工作流程。任何熟悉此項技藝者,在 =脫,本發明之精神和範圍内,都可增加紀錄中之攔位, 或者疋使用不同的欄位命名,除此之外,此紀錄並不限定 ,儲存工作流程編號,亦可以儲存文件編號、網頁網址, 或其他可連結之電子資源。 本發明之電子資源推薦分為兩階段,分析以及結果回 饋,分別透過分析模組131以及回饋模組132來實行,以下 將詳細介紹此兩階段實施方法。 F置皆段左分析模組131首先接收使用者透過輸人 裝置15所輸入之查詢語句"企劃室檢送九十二 ,計晝期末執行報告"。第4圖係表示依據本發明月1 範例語意標註示意圖。第41至44彳+ ^ «ζι + 之 if 112 t M i.321 ^324 Λ V Λ ^ ^ ^ ^ ^ ^ 入之查詢語句分析。 “分析,而第45行為新輸 分析模組131分別針對新輸入之 句歷史紀錄H2中之歷史查詢語句進^句及查詢語 略語句中含有時間之字詞,“解析出”主^ ’且會忽 動詞(verb)-受詞(object)"的句型序歹出H=bJect)一 攔所示。例如,查詢語句”企劃室檢' 鮮析t果如第4 7 瞻計晝期末執行報告”會被解析企^^…十二年度創新前 計畫期末執行報告”之句型,而查詢止纽"彳至〜檢送—創新前瞻 錄3 2 1之查詢語句’’企劃室檢送九十一”"句歷史紀錄11 2中紀 議紀錄"會被解析為”企劃室—檢、关—了年度創新前瞻計晝會 ,,之句型。 、4新前瞻計晝會議紀錄 0213-A40050TWF(Nl);A2BA3133;snowball.ptd 第11頁 1227417 ----—________ 五、發明說明(7) *------ 中=下來,從解析後之”主詞-動詞-受詞”的句型序列 立刀別為主詞、動詞、受詞,標註相應於本體庫1 1 1中 2 3門4二文件22以及會議23概念樹中的概念、屬性以及 二二’ ^注結果如第48欄所示。例如,新輸入語句之”企 f至^檢送-創新前瞻計晝期末執行報告,,被標註為,,部門概 1部門屬性—期末執行報告概念,,,而查詢語句歷史紀錄 中、?錄3 21之”企劃室〜檢送—創新前瞻計畫會議紀錄,,被 標註部門概念—屬性—會議記錄概念”。 分析模組131根據新輪入查詢語句之語意標註,-- =對查詢語句歷史紀錄11 2中,所有紀錄之語意標註,計 二八扣思距離。語意距離計算分成兩個階段,概念距離計 算,^實體距離計算。概念距離計算包含(丨)主詞概念間 的语意距離,(2)動詞屬性間的語意距離以及(3)受詞概念 ,的語意距離。而實體距離計算是更深入的針對句子間的 實體進行計算,包含(1)主詞實體間的語意距離以及(2)受 词貫體間的語意距離,由於動詞屬性間的語意距離在概念 比對中已經計算過,所以在實體比對不再納入計算。其 中’語意距離代表句子間語意標註間的相似程度,在概念 樹中的距離愈大代表相似性愈低(距確為〇即表相同之語意 標註),反之則相似度愈高。語意距離定義為概念或實體 間在概念樹上的最短路徑,即從概念A關連至概念B的最短 路徑,或實體所屬·概念間的關聯最短路徑。第5圖係表示 依據本發明實施例之範例語意相似度計算示意圖。在本範 例中,查詢語句歷史紀錄11 2中紀錄3 2 1與新輸入查詢語句1227417 V Description of the invention (6) Store the work flow selected and executed by him. Anyone who is familiar with this skill can increase the number of stops in the record or use different fields to name it within the spirit and scope of the present invention. In addition, this record is not limited. Process ID, you can also store the document ID, web page URL, or other electronic resources that can be linked. The electronic resource recommendation of the present invention is divided into two stages. Analysis and result feedback are implemented through the analysis module 131 and the feedback module 132, respectively. The implementation method of these two stages will be described in detail below. The first left analysis module 131 in F is the query sentence entered by the user through the input device 15 and the "planning office sends 92", and the end-of-day execution report ". FIG. 4 is a schematic diagram of an example semantic labeling according to the month 1 of the present invention. 41 to 44 查询 + ^ «ζι + of if 112 t M i.321 ^ 324 Λ V Λ ^ ^ ^ ^ ^ ^ "Analyze, and the 45th line new input analysis module 131" parses out "the main word ^ for historical query sentences in the newly entered sentence history record H2 and the query abbreviation sentence containing time, and The verb (verb) -subject (object) " will be shown in the block sequence of H = bJect). For example, the query sentence "Planning Room Inspection" is freshly analyzed, and the results are as shown in Section 4 7 The execution report "will be analyzed by the enterprise ^^ ... 12-year pre-innovation plan end-of-year execution report" sentence pattern, and the query "" to ~ delivery-the query of innovation prospects 3 2 1 query" planning room The report of "Sixty-one" historical record 11 2 Disciplinary Record "will be interpreted as" planning room-inspection, customs-the annual meeting of the day-to-day innovation forward-looking plan. " 、 4 Prospective day meeting minutes 0213-A40050TWF (Nl); A2BA3133; snowball.ptd Page 11 1227417 ----——________ V. Description of the invention (7) * ------ Medium = down, from the analysis The subsequent "subject-verb-acceptor" sentence sequence sequence is the main word, verb, and acceptor, marked with concepts corresponding to the ontology library 1 1 1 2 3 3 4 4 documents 22 and conference 23 concept tree , Attributes, and two two '^ Note results are shown in column 48. For example, the newly-entered "enter f to ^ submission-innovation forward-looking day-end execution report," is marked as, department general 1 department attribute-the concept of period-end execution report, and query history records,? 3 21 of the "Planning room ~ submission-meeting plan of innovative forward-looking plan, marked department concept-attribute-meeting record concept". Analysis module 131 according to the semantic meaning of the new rotation query,-= for the query In historical record 112, the semantic meanings of all records are counted as two or eight distances. The calculation of semantic distance is divided into two stages, the conceptual distance calculation and the ^ physical distance calculation. The conceptual distance calculation includes (丨) the semantic distance between subject concepts, (2) the semantic distance between verb attributes and (3) the semantic distance of the concept of the word. The entity distance calculation is a more in-depth calculation of the entities between sentences, including (1) the semantic distance between the entity of the subject and (2) ) Semantic distance between subjective bodies, because the semantic distance between the verb attributes has been calculated in the concept comparison, so it is no longer included in the physical comparison. Distance represents the degree of similarity between semantic annotations between sentences. The larger the distance in the concept tree, the lower the similarity (the distance is 0, meaning the same semantic annotations), otherwise the similarity is higher. Semantic distance is defined as a concept or The shortest path on the concept tree between entities, that is, the shortest path related from concept A to concept B, or the shortest path between the entities that belong to the concept. Figure 5 is a schematic diagram of an example semantic similarity calculation according to an embodiment of the present invention. In this example, the query history record 11 2 records 3 2 1 and the newly entered query statement.

0213-A40050TWF(Nl);A2BA3133;snowball.ptd 第12頁 I2274170213-A40050TWF (Nl); A2BA3133; snowball.ptd Page 12 I227417

的主詞與動詞的概念皆相同,但受詞的關連距離為2(會議 ^錄—文件—期末執行報告),所以其概念距離為 曰° + 2 = 2。而查詢語句歷史紀錄丨12中紀錄321以及3 22與新 ^入查詢語句的實體距離分別為4以及6。由於紀錄3 2 3或 4之文詞語意標註與新輸入查詢語句之受詞語意標註分 =同的概念樹,因此其概念距離與實體距離無法比較與The concepts of the subject and the verb are the same, but the related distance of the subject is 2 (Meeting ^ Record—File—End-of-term executive report), so the conceptual distance is ° + 2 = 2. The query history records 12 and 321 and 3 22 in the historical record 12 and the entity distance of the new query are 4 and 6 respectively. Because the meaning of the words in the record 3 2 3 or 4 is the same as the concept tree in the newly input query sentence, the conceptual distance and the physical distance cannot be compared with

每最後’分析模組1 3 1根據計算後的概念語意距離以及 二體語意距離,進行工作流程推薦。在進行卫作流程推蔑 ϋ必須依據語意距離大小,由小至大進行推薦(語意距 二,、小代表語句間之語意相似度越高)。其推薦方法有 疒,(/)概念語意距離加上實體語意距離後,由小至大進 2推薦,(2 )先比對概念語意距離,若遇到概念語意距離 同的if开y,再比對貫體語意距離,由小至大進行推薦。 回饋階段,回饋單元132會將使用者最後執行之工 广《•程以及新輸入之查詢語句’加入到查詢歷史語句紀箱 丄1 Z中。Each last ’analysis module 1 3 1 makes a workflow recommendation based on the calculated conceptual semantic distance and two-body semantic distance. In the process of defamation, we must recommend according to the size of the semantic distance, from small to large (semantic distance 2, the higher the semantic similarity between small representative sentences). The recommended methods are as follows: (/) Conceptual semantic distance plus entity semantic distance, recommended from small to large 2 (2) First, compare the conceptual semantic distance. If you encounter if the conceptual semantic distance is the same as if, open y, then Compare body-to-body semantic distance and recommend it from small to large. In the feedback stage, the feedback unit 132 adds the last job “• process” and the newly entered query sentence by the user to the query history sentence box 丄 1 Z.

第6圖係表示依據本發明實施例之查詢語句語意比對 電子資源推薦方法之方法流程圖,此方法由程式碼所舜 成,並可被中央處理器栽入並執行。 首先’如步驟S611,輸入—新查詢語句,如,,企劃室 ::九十一年度創新前瞻計畫期末執行報告,,。接下來, ::驟S6 1 2 ’輸入查詢歷史語句紀錄i} 2。參考第第3圖, 一洵π句歷史紀錄1丨2共有兩個攔位,查詢語句3 1】以及〕FIG. 6 is a flow chart showing a method for semantically comparing query sentences to an electronic resource recommendation method according to an embodiment of the present invention. This method is implemented by code and can be loaded and executed by a central processing unit. First, as in step S611, enter a new query sentence, such as, the planning office :: the 91-year-old innovation forward-looking plan end-of-year execution report. Next, :: step S6 1 2 ′ enter the query history statement record i} 2. Referring to FIG. 3, there are two stops in the history record 1 丨 2 of a π sentence. The query sentence 3 1] and]

393 1227417 五、發明說明(9) 作流程編號312。 如步驟S621,將步驟S6 11所輸入之新查詢語句以及由 步驟S612所輸入查詢語句歷史紀錄112中之每一歷史杳古旬 語句進行中文斷詞,並解析出,’主詞-動詞-受詞"之句型序 列,解析結果第4圖中之襴位47所示。接下來,如步驟 S622,將新查詢語句以及每一歷史查詢語句之句型序列, 分別為主詞、動詞、受詞,標註相應於本體庫1 11中之部 門21、文件22以及會議23概念樹中的概念、屬性以及實 體,標註結果如第4圖中之欄位4 8所示。 '393 1227417 V. Description of the invention (9) Process number 312. In step S621, the new query sentence input in step S6 11 and each historical sentence in the historical sentence 112 of the query sentence history record 112 input in step S612 are Chinese-segmented, and parsed out, 'subject-verb-acceptor' The sequence of the sentence pattern is shown in position 47 in Figure 4. Next, in step S622, the new query sentence and the sentence pattern sequence of each historical query sentence are respectively marked as the main word, verb, and subject, and marked with the concepts of department 21, file 22, and meeting 23 in the ontology library 1 11 For the concepts, attributes and entities in the tree, the labeling results are shown in column 4 8 in Figure 4. '

如步驟S631所示,將新輸入查詢語句之語意標註,— 一比對查詢語句歷史紀錄11 2中,所有紀錄之語意標註, 計算其語意距離。語意距離計算分成兩個階段,概念距離 計算以及實體距離計算。概念距離計算包含(丨)主詞概念 間的語意距離,(2 )動詞屬性間的語意距離以及(3 )受詞概 念間的語意距離。而實體距離計算是更深入的針對句子間 的實體進行計算,包含(1 )主詞實體間的語意距離以及(2 ) 受詞實體間的語意距離,由於動詞屬性間的語意距離在概 念比對中已經計算過,所以在實體比對不再納入計算。概 念距離以及實體距離之計算結果分別如第5圖中之欄位52 以及5 3所示。 如步驟S641,根據計算後的概念語意距離以及實體語 意距離,進行工作流程推薦。在進行工作流程推薦時,必 須依據語意距離大小,由小至大進行推薦(語意距離越小 代表語句間之語意相似度越高)。其推薦方法有二,(丨)概As shown in step S631, the semantic meanings of the newly input query sentence are compared with one another. The semantic meanings of all records in the historical record 112 of the query sentence are compared to calculate the semantic distance. Semantic distance calculation is divided into two stages, conceptual distance calculation and physical distance calculation. The conceptual distance calculation includes (丨) the semantic distance between the subject concepts, (2) the semantic distance between the verb attributes, and (3) the semantic distance between the subject concepts. The calculation of entity distance is a more in-depth calculation of the entities between sentences, including (1) the semantic distance between the entity of the subject and (2) the semantic distance between the entities of the subject, because the semantic distance between the verb attributes is in the concept comparison It has been calculated, so the comparison in the entity is no longer included in the calculation. The calculation results of the conceptual distance and the physical distance are shown as columns 52 and 53 in Fig. 5, respectively. In step S641, a workflow recommendation is performed according to the calculated conceptual semantic distance and entity semantic distance. When making a workflow recommendation, you must make a recommendation from small to large according to the size of the semantic distance (the smaller the semantic distance, the higher the semantic similarity between sentences). There are two recommended methods. (丨)

0213 - A40050TW( N1); A2BA3133; snowba 11. p td 第14頁 394 1227417 五、發明說明(10) 念語意距離加上實體語意距離後,由小至大進行推薦; (2 )先比對概念語意距離,若遇到概念語意距離相同的情 形’再比對實體語意距離,由小至大進行推薦。 最後,如步驟S651,將使用者最後執行之 及新輸入之查詢語句,加入到查詢歷史語句紀錄丨丨2中 再者,本發明提出一種電腦可讀取儲存媒體,用以儲 存一電腦程式,上述電腦程式用以實現具語意理解功能之 垃圾郵件過濾方法,此方法會執行如上所述之步驟。 第7圖係表示依據本發明實施例之查詢語句語音比 原Ϊ薦:Ϊ之電腦可讀取儲存媒體示意圖'此儲 存媒體70,用以儲存一電腦程式72〇, 語意比對之電子資源推薦方法。其電貫現查詢語句 輯,分別為輸入新查詢語句邏輯7 2!、壬工匕含七個邏 紀錄邏輯722、產生,,主詞—動詞—受、π =入查詢歷史語句 標註語意標記邏輯724、計算查詢誶向句型序列邏輯72 3、 725、產生電子資源推薦清單邏 "間之語意距離邏輯 727。 興儲存執行結果邏輯 因此,藉由本發明所提供之查珣技 資源推薦系統及方法,解決關鍵^ 1 δσ句語意比對之電子 比對的精確度,更有效地使用詞 L對之缺點,用以增加 薦。 σ纟對來進行電子資源推 雖然本發明之實施例只進行工 用以限定本發明,任何熟悉此項技】^裎推薦,然其並非 句語意比對方法,應用到網頁、、:者,亦可將此查詢語 件、網路服務或其0213-A40050TW (N1); A2BA3133; snowba 11. p td p.14 394 1227417 V. Description of the invention (10) After the semantic distance is added to the physical semantic distance, it is recommended from small to large; (2) Compare the concepts first Semantic distance. If you encounter a situation where the conceptual semantic distance is the same, then compare the actual semantic distance and recommend it from small to large. Finally, in step S651, the last query executed by the user and the newly entered query statement are added to the query history statement record. Furthermore, the present invention proposes a computer-readable storage medium for storing a computer program. The above computer program is used to implement a spam filtering method with semantic understanding function. This method will perform the steps described above. FIG. 7 is a diagram showing a voice comparison of a query sentence according to an embodiment of the present invention. The following is a schematic diagram of a computer-readable storage medium: 'This storage medium 70 is used to store a computer program 72. The electronic resource recommendation for semantic comparison is recommended. method. The series of electric current query sentences is inputting new query logic 7 2 !, and onggong contains seven logical record logics 722, generating, subject — verb — accept, π = entering query history sentence marking semantic mark logic 724 Calculate the query logic sequence sequence logic 72 3, 725, and generate the semantic distance logic 727 of the electronic resource recommendation list logic. Therefore, by using the search technology resource recommendation system and method provided by the present invention, the accuracy of the electronic comparison of the key ^ 1 δσ sentence-to-sense comparison is more effectively used, and the disadvantage of the word L pair is used more effectively. To increase recommendation. σ 纟 pairing to push electronic resources Although the embodiment of the present invention is only used to limit the present invention, anyone familiar with this technology] ^ 裎 recommends, but it is not a sentence-to-sense comparison method, which is applied to web pages,:, This query file, web service, or

1227417 五、發明說明(11) 他電子資源之推薦。此外,在不脫離本發明之精神和範圍 内,當可做些許更動與潤飾,因此本發明之保護範圍當視 後附之申請專利範圍所界定者為準。1227417 V. Description of invention (11) Recommendation of other electronic resources. In addition, without departing from the spirit and scope of the present invention, some modifications and retouching can be done, so the protection scope of the present invention shall be determined by the scope of the appended patent application.

0213-A40050TWF(N1);A2BA3133;s nowba11.p t d 第16頁 1227417 圖式簡單說明 為使本發明之上述目的、特徵和優點能更明顯易懂, 下文特舉實施例,並配合所附圖示,進行詳細說明如下: 第1圖係表示依據本發明實施例之查詢語句語意比對 之電子資源推薦系統之系統架構圖; 第2a圖係表示依據本發明實施例之部門概念樹架構示 意圖, 第2b圖係表示依據本發明實施例之文件概念樹架構示 意圖; 第2c圖係表示依據本發明實施例之會議概念樹架構示 意圖; 第3圖係表示依據本發明實施例之範例查詢語句歷史 紀錄示意圖; 第4圖係表示依據本發明實施例之範例語意標註示意 圖, 第5圖係表示依據本發明實施例之範例語意相似度計 算示意圖; 第6圖係表不依據本發明實施例之查詢語句語意比對 之電子負源推薦方法之方法流程圖; 第係表不依據本發明實施例之查詢語句語意比對 之電子資源推薦方法之電腦可讀取儲存媒體示意圖。 符號說明 10〜電子資源推薦系統; 1卜儲存裝置; 1 2〜中央處理器;0213-A40050TWF (N1); A2BA3133; s nowba11.ptd page 16 1227417 The diagram is briefly explained in order to make the above-mentioned objects, features and advantages of the present invention more comprehensible. The following examples are given in conjunction with the accompanying drawings Detailed description is as follows: FIG. 1 is a system architecture diagram of an electronic resource recommendation system for semantic comparison of query sentences according to an embodiment of the present invention; FIG. 2a is a schematic diagram of a department concept tree architecture according to an embodiment of the present invention. Figure 2b is a schematic diagram of a document concept tree architecture according to an embodiment of the present invention; Figure 2c is a schematic diagram of a conference concept tree architecture according to an embodiment of the present invention; Figure 3 is a schematic query history record of an example query sentence according to an embodiment of the present invention Figure 4 is a schematic diagram of an exemplary semantic tagging according to an embodiment of the present invention, Figure 5 is a schematic diagram of an exemplary semantic similarity calculation according to an embodiment of the present invention; Figure 6 is a diagram illustrating the semantic meaning of a query sentence according to an embodiment of the present invention Method flow chart of the comparison method of the electron negative source recommendation method; the first table shows the semantic meaning of the query sentence according to the embodiment of the present invention. The computer-readable storage medium diagram of the recommended electronic resource comparison method. Explanation of symbols 10 ~ electronic resource recommendation system; 1 storage device; 1 2 ~ central processing unit;

0213-A40050TWF(Nl);A2BA3133;snowball.Ptd 1227417 圖式簡單說明 1 3〜記憶體; 1 4〜顯示裝置; 15〜輸入裝置; I 6〜匯流排; 111〜本體庫; II 2〜查詢語句歷史紀錄; 1 3 1〜分析模組; 1 3 2〜回饋模組; 2卜部門概念樹; 2 1卜丨,部門丨丨概念; 2 1 2〜’’檢附’’屬性; 213〜π檢送”屬性; 214丨丨召開丨丨屬性; 2 1 5〜’’企劃室π實體; 2 1 6〜π電子商務技術實驗室’’實體; 2 2〜文件概念樹; 221〜π文件π 概念; 2 2 2〜丨丨會議記錄,丨子概念; 223〜丨,會議通知,丨子概念; 224〜丨,期末執行報告丨丨子概念; 225〜丨丨創新前瞻計晝會議紀錄丨丨實體; 2 2 6〜π科專會議通知π實體; 227〜π創新前瞻計畫期末執行報告”實體; 2 3〜會議概念樹;0213-A40050TWF (Nl); A2BA3133; snowball.Ptd 1227417 Schematic description 1 3 ~ Memory; 1 4 ~ Display device; 15 ~ Input device; I 6 ~ Bus bus; 111 ~ Ontology library; II 2 ~ Query statement Historical records; 1 3 1 ~ analysis module; 1 3 2 ~ return module; 2 department concept tree; 2 1 Bu 丨, department 丨 丨 concept; 2 1 2 ~ `` attachment '' attribute; 213 ~ π Check-in "attributes; 214 丨 丨 convention 丨 丨 attributes; 2 1 5 ~ '' Planning room π entity; 2 1 6 ~ π e-commerce technology laboratory '' entity; 2 2 ~ file concept tree; 221 ~ π fileπ Concepts; 2 2 2 ~ 丨 丨 Meetings, 丨 Sub-concepts; 223 ~ 丨, Meeting notifications, 丨 Sub-concepts; 224 ~ 丨, Final execution report 丨 丨 Sub-concepts; 225 ~ 丨 丨 Innovative Prospective Day Meeting Records 丨 丨Entity; 2 2 6 ~ π scientific meeting to notify π entity; 227 ~ π innovation forward-looking plan end-of-term execution report "entity; 2 3 ~ conference concept tree;

0213-A40050TWF(Nl);A2BA3133;snowball.ptd 第18頁 1227417 圖式簡單說明 23卜丨丨會議丨丨概念; 232〜丨f創新前瞻會議丨丨實體; 233〜丨丨科專期末審查會議"實體; 3 11、4 6、5 1〜查詢語句欄位; 3 1 2〜工作流程編號欄位; 41、42、…、45、51、52、…、54〜紀錄 4 7〜句型序列 48〜語意標記 5 2〜概念距離 5 3〜實體距離 7 0〜儲存媒體; 7 2 0〜查詢語句語意比對之電子資源推薦電腦程式 721〜輸入新查詢語句邏輯; 722〜輸入查詢歷史語句紀錄邏輯; 723〜產生π主詞-動詞-受詞π句型序列邏輯; 7 2 4〜標註語意標記邏輯; 7 2 5〜計算查詢語句間之語意距離邏輯; 726〜產生電子資源推薦清單邏輯; 727〜儲存執行結果邏輯。0213-A40050TWF (Nl); A2BA3133; snowball.ptd Page 18 1227417 Schematic description of 23 丨 丨 Conference 丨 丨 Concepts; 232 ~ 丨 f Innovation Preview Conference 丨 丨 Entity; 233 ~ 丨 丨 Final Review Conference "Entity; 3 11, 4 6, 5 1 ~ query sentence field; 3 1 2 ~ workflow number field; 41, 42, ..., 45, 51, 52, ..., 54 ~ record 4 7 ~ sentence pattern sequence 48 ~ Semantic mark 5 2 ~ Concept distance 5 3 ~ Entity distance 7 0 ~ Storage media; 7 2 0 ~ Electronic resource recommendation computer program for semantic comparison of query sentence 721 ~ Input new query sentence logic; 722 ~ Enter history query sentence record Logic; 723 ~ generating π subject-verb-acceptor π sentence sequence logic; 7 2 4 ~ tagging semantic tagging logic; 7 2 5 ~ calculating semantic distance logic between query sentences; 726 ~ generating electronic resource recommendation list logic; 727 ~ Store execution result logic.

第19頁 0213-A40050TWF(Nl);A2BA3133;snowball.ptdPage 19 0213-A40050TWF (Nl); A2BA3133; snowball.ptd

OQQOQQ

Claims (1)

1227417 六 申請專利範圍 括 #查沟-句語意比對之電子資源推薦系統,包 一儲存裝置,用 史紀錄,上述太辨庙儲存—本體庫以及複數查詢語句歷 詢語句歷史紀錄儲存之間的關聯架上述查 子資源識別碼;以及乂 一歷史查詢語句以及相應之一電 一分析模組用以輪一 歷史紀錄之上述歷史ΐ查詢語句以及上述查詢語句 第一詞,由上#麻士 Γ 句,由上述新查詢語句產生一 組由上述本體庫檢索相應 $第—Ί ’丨34刀析权 記,計算ΪΚίίίΐ應於上述第二詞之一第二語意標 上述本體庫之一狂Γ忍標記與上述第二語意標記之相應於 史查%在々 /a忍距離,上述分析模組將相應於上述歷 近二二,“ Ϊ電子資源識別’’依據上述語意距離之 又 近至运排列,顯示於顯示裝置上。 電子2資:Πί:範圍第1項所述之查詢語句語意比對之 德户=ΐ推4 其中更包括—回饋模㉟’輕接於上述 虹:二,將使用者執行之上述電子資源識別碼以及上述 新查詢語句儲存至上述查詢語句歷史紀錄中。 3·如申請專利範圍第1項所述之查詢語句語意比對之 電子資源推薦系統,其中上述第一詞之詞性為主詞、動詞 或文詞,其中上述第二詞之詞性為主詞、動詞或受詞。 4·如申請專利範圍第3項所述之查詢語句語意比對之 電子資源推薦系統,其中上述第一同以及上述第二詞不包1227417 The scope of the six patent applications includes the # Chagou-sentence-comparison electronic resource recommendation system, including a storage device, historical records, the above Taiyuan Temple storage-ontology library, and plural query statements, historical statement storage, and historical record storage. Relevant identifiers of the above-mentioned search sub-resources; and a history query sentence and a corresponding history query query sentence and the first word of the query sentence used by an electric analysis module to turn a history record, from # 麻 士 Γ Sentence, from the above new query statement to generate a set of the corresponding $ first-3434 knife analysis of the above ontology library to calculate ΪΚίίίΐ should be one of the second words above the second semantic mark of one of the above ontology library The correspondence between the mark and the above second semantic mark corresponds to the historical search percentage at the 々 / a tolerance distance. The above analysis module will correspond to the above history. The "Ϊ electronic resource identification" is arranged according to the nearest semantic distance of the above semantic distance. , Displayed on the display device. Electronic 2 Assets: Πί: The query semantic meaning comparison described in the first item of the scope of Deto = ΐ 推 4 which includes-feedback mode ㉟ ' Tap on the above rainbow: Second, store the above-mentioned electronic resource identification code and the new query sentence executed by the user into the history record of the query sentence. 3. Compare the semantic meaning of the query sentence as described in item 1 of the scope of patent application. Electronic resource recommendation system, in which the part of speech of the first word is a main word, verb, or text, and the part of speech of the second word is a main word, verb, or subject. Electronic resource recommendation system for semantic comparison, wherein the first word and the second word are not included 48Q 122741748Q 1227417 六、申請專利範圍 --- 含時間之描述。 5 ·如申請專利範圍第1項所述之查詢語句誶咅 電子資源推薦系統,其中上述電子資源識別“ t對之Sixth, the scope of patent application --- including the description of time. 5 · The query sentence as described in item 1 of the scope of patent application 谇 咅 electronic resource recommendation system, wherein the electronic resource identification "t pairs of 0213-A40050TWF(Nl);A2BA3133;snowball.ptd 第21頁 12274170213-A40050TWF (Nl); A2BA3133; snowball.ptd Page 21 1227417 此 如申請專利範圍第9項所述之查詢語句語意比對系 、、’ ’,、中上述第一詞以及上述第二詞不包含時間之描述。 如申請專利範圍第8項所述之查詢語句語意比對系 ^ ’八中上述語意距離為概念語意距離、屬性語意距離 實體語意距離。 一 1 3 ·種查詢語句語意比對之電子資源推薦方法,被 一具有一中央處理器之電子裝置執行,其方法包括下列步 輸入一新查詢語句; 、由一查詢語句歷史紀錄輸入一歷史查詢語句,其中上 述查詢語句歷史紀錄儲存至少一歷史查詢語句以及相應之 一電子資源識別碼; 由上述新查詢語句產生一第一詞; 由上述歷史查詢語句產生一第二詞; 由一本體庫檢索相應於上述第一詞之一第一語意標 記’其中上述本體庫儲存詞與詞之間的關聯架構; 由上述本體庫檢索相應於上述第二詞之一第二語意根 記; 〜不 計算上述第一語意標記與上述第二語意標記相應於上 述本體庫之一語意距離;以及 將相應於上述歷史查詢語句之上述電子資源識別碼, 依據上述語意距離之近似程度由近至遠排列,顯示於顯示 裝置上。 》 1 4·如申請專利範圍第丨3項所述之查詢語句語意比對Therefore, the semantic meaning comparison system of the query sentence described in item 9 of the scope of the patent application does not include the description of time in the first word and the second word in the above. According to the query semantic comparison system described in item 8 of the scope of the patent application, the above semantic distances in ^ 'eight are conceptual semantic distances, attribute semantic distances, and physical semantic distances. -13. An electronic resource recommendation method for query sentence semantic comparison, which is executed by an electronic device with a central processing unit. The method includes the following steps to input a new query sentence; input a historical query from a query history record; Statement, wherein the history of the query sentence stores at least one historical query sentence and a corresponding electronic resource identifier; a first word is generated from the new query sentence; a second word is generated from the historical query sentence; retrieved by an ontology database Corresponding to the first semantic tag of one of the first words above, wherein the ontology library stores the association structure between words and words; the second ontological root corresponding to one of the second words is retrieved by the ontology library; ~ the above is not calculated The first semantic mark and the second semantic mark correspond to a semantic distance of the ontology library; and the electronic resource identification codes corresponding to the historical query sentence are arranged from near to far according to the approximate degree of the semantic distance, and are displayed in Display device. 》 1 4 · The semantic comparison of the query sentence as described in item 丨 3 of the scope of patent application 12274171227417 =^子資源推薦方法,更包括〆步驟,將使用者執行之 二二子資源識別碼以及上述查詢語句儲存至上 句歷史紀錄中。 < 一峋语 1 5、如申請專利範圍第1 3項所述之查詢語句語意比對 古司,Γ資源推薦方法,其中上述第一詞之詞性為主詞、動 #或文詞,其中上述第二詞之詞性為主詞、動詞或受詞。 1 6 ·如申請專利範圍第1 5項所述之查詢語句語意比對 之電子資源推薦方法,其中上述第一詞以及上述第二、 包含時間之描述。 不 1 7·如申請專利範圍第1 3項所述之查詢語句語意比對 之電子資源推薦方法,其中上述電子資源識別碼代表一網 路服務、一網頁、一電子工作流程或一電子文件。 1 8·如申請專利範圍第1 3項所述之查詢語句語意比對 之電子資源推薦方法,其中上述電子資源識別碼代表一網 路服務、一網頁、一電子工作流程或一電子文件。 1 9 ·如申請專利範圍第1 3項所述之查詢語句語意比對 之電子資源推薦方法,其中上述語意距離為概念語意距 離、屬性語意距離或實體語意距離。 2 0 · —種查詢語句語意比對方法,被一具有一中央處 理器之電子裝置執行,其方法包括下列步驟: 輸入一第一查詢語句; 輸入一第二查詢語句; 由上述第一查詢語句產生一第一詞; 由上述第二查詢語句產生一第二詞;The = ^ sub-resource recommendation method further includes a step of storing the two or two sub-resource identifiers executed by the user and the above query into the previous sentence history. < A slang term 15. The query sentence semantic comparison to Gu Si, Γ resource recommendation method as described in item 13 of the scope of patent application, wherein the first part of speech is part of speech, verb # or text, where the above The part of speech of the second word is the main word, verb, or subject. 16 · The electronic resource recommendation method for the semantic comparison of query sentences as described in item 15 of the scope of patent application, wherein the first word and the second, including the description of time. No 17. The method for recommending electronic resources according to the semantic comparison of query sentences described in item 13 of the scope of patent application, wherein the electronic resource identification code represents a network service, a web page, an electronic workflow or an electronic file. 18. The method for recommending electronic resources for semantic comparison of query sentences as described in item 13 of the scope of patent application, wherein the electronic resource identification code represents a network service, a web page, an electronic workflow or an electronic file. 19 · The electronic resource recommendation method for the semantic comparison of query sentences as described in Item 13 of the scope of patent application, wherein the above semantic distance is the conceptual semantic distance, the attribute semantic distance or the entity semantic distance. 2 0 — A query semantic comparison method executed by an electronic device with a central processing unit. The method includes the following steps: inputting a first query; inputting a second query; from the first query Generate a first word; generate a second word from the second query; 0213-A40050TWF(N1);A2BA3133;snowbal1.ptd 第23頁 1227417 六、申請專利範圍 由一本體庫檢索相應於上述第/詞之一第一語意標 記’其中上述本體庫儲存詞與詞之間的關聯架構; 由上述本體庫檢索相應於上述第二詞之一第二語意標 記;以及 计鼻上述第一語意標記與上述第二语意標$己相應於上 述本體庫之一語意距離。 2 1 ·如申請專利範圍第2 〇項所述之查詢語句語意比對 方法,其中上述第一詞之詞性為主詞、動詞或受詞,其中 上述第二詞之詞性為主詞、動詞或受詞。 2 2 ·如申請專利範圍第2 1項所述之查詢語句語意比對 方法’其中上述第一詞以及上述第二詞不包含時間之描 述° 2 3 ·如申請專利範圍第2 〇項所述之查詢語句語意比對 方法’其中上述語意距離為概念語意距離、屬性語意距離 或實體語意距離。 24· —種電腦可讀取儲存媒體,用以儲存一電腦程 式,該電腦程式用以載入至一電腦系統中並且使得該電腦 系統執行如申請專利範圍第丨3至丨9項中任一者所述之方 法。 25· —種電腦可讀取儲存媒體,用以儲存一電腦程 式’邊電腦程式用以載入至一電腦系統中並且使得該電腦 系統執行如申請專利範圍第2〇至23項中任一者所述之方 法。0213-A40050TWF (N1); A2BA3133; snowbal1.ptd page 23 1227417 6. The scope of patent application is retrieved by an ontology library corresponding to the first semantic mark corresponding to one of the above / words, where the above ontology library stores the words between words Relevant architecture; searching the second semantic mark corresponding to one of the second words by the ontology library; and calculating the semantic distance between the first semantic mark and the second semantic mark $ corresponding to one of the ontology libraries. 2 1 · The semantic comparison method of a query sentence as described in Item 20 of the scope of patent application, wherein the part of speech of the first word is the main word, verb, or acceptor, and the part of speech of the second word is the main word, verb, or Subject to words. 2 2 · The method of semantic comparison of query sentences as described in item 21 of the scope of patent application, where the first word and the second word do not include the description of time ° 2 3 · As described in the scope of patent application No. 20 The query semantic comparison method 'where the above semantic distance is conceptual semantic distance, attribute semantic distance or entity semantic distance. 24 · —A kind of computer-readable storage medium for storing a computer program for loading into a computer system and causing the computer system to execute any one of the scope of patent applications No. 丨 3 to 丨 9 The method described. 25 · —A kind of computer-readable storage medium for storing a computer program. The computer program is used to load into a computer system and make the computer system execute any one of the patent application scopes 20 to 23. The method described.
TW92133813A 2003-12-02 2003-12-02 Digital resource recommendation system, method and machine-readable medium using semantic comparison of query sentence TWI227417B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW92133813A TWI227417B (en) 2003-12-02 2003-12-02 Digital resource recommendation system, method and machine-readable medium using semantic comparison of query sentence

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW92133813A TWI227417B (en) 2003-12-02 2003-12-02 Digital resource recommendation system, method and machine-readable medium using semantic comparison of query sentence

Publications (2)

Publication Number Publication Date
TWI227417B true TWI227417B (en) 2005-02-01
TW200519644A TW200519644A (en) 2005-06-16

Family

ID=35696368

Family Applications (1)

Application Number Title Priority Date Filing Date
TW92133813A TWI227417B (en) 2003-12-02 2003-12-02 Digital resource recommendation system, method and machine-readable medium using semantic comparison of query sentence

Country Status (1)

Country Link
TW (1) TWI227417B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI480742B (en) * 2011-03-18 2015-04-11 Ind Tech Res Inst Recommendation method and recommender system using dynamic language model
TWI582619B (en) * 2011-05-26 2017-05-11 Alibaba Group Holding Ltd Method and apparatus for providing referral words
TWI863703B (en) * 2023-11-15 2024-11-21 華碩電腦股份有限公司 Electronic device and device function search method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108509409A (en) * 2017-02-27 2018-09-07 芋头科技(杭州)有限公司 A method of automatically generating semantic similarity sentence sample

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI480742B (en) * 2011-03-18 2015-04-11 Ind Tech Res Inst Recommendation method and recommender system using dynamic language model
TWI582619B (en) * 2011-05-26 2017-05-11 Alibaba Group Holding Ltd Method and apparatus for providing referral words
TWI863703B (en) * 2023-11-15 2024-11-21 華碩電腦股份有限公司 Electronic device and device function search method thereof

Also Published As

Publication number Publication date
TW200519644A (en) 2005-06-16

Similar Documents

Publication Publication Date Title
Liu et al. Learning to spot and refactor inconsistent method names
CN104090907B (en) A kind of method and apparatus for providing a user with information
Walter et al. Evaluation of a layered approach to question answering over linked data
CN112231494A (en) Information extraction method and device, electronic equipment and storage medium
Zadgaonkar et al. An approach for analyzing unstructured text data using topic modeling techniques for efficient information extraction
Kanapala et al. Passage-based text summarization for legal information retrieval
KR20190052980A (en) Device and method of processing recruitment information
CN118779439A (en) Question answering method, device, equipment and storage medium based on retrieval enhancement
Piroi et al. Multilingual patent text retrieval evaluation: CLEF–IP
Hu et al. BIM oriented intelligent data mining and representation
Manias et al. SemAI: A novel approach for achieving enhanced semantic interoperability in public policies
KR102687103B1 (en) Apparatus, method and computer program for processing inquiry
Al-Shawakfa A rule-based approach to understand questions in Arabic question answering
TWI227417B (en) Digital resource recommendation system, method and machine-readable medium using semantic comparison of query sentence
Rana et al. A textual description based approach to process matching
Liu et al. Effective method for making Chinese word vector dynamic
Song et al. Research on the construction of sentiment dictionary based on Word2vec
Tran et al. Simplified effective method for identifying semantic relations from a knowledge graph
Han et al. A natural language interface concordant with a knowledge base
Francois et al. How to extract knowledge from professional e-mails
Nawab et al. Comparing Medline citations using modified N-grams
Kim et al. Wikification of concept mentions within spoken dialogues using domain constraints from Wikipedia
Shakhovska et al. The method of automatic summarization from different sources
Bourahouat et al. Enhancing Arabic text summarisation using Arabic bidirectional encoder representations from transformers-based models together with POS
Ai et al. Recognizing emotions in chinese text using dictionary and ensemble of classifiers

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees