[go: up one dir, main page]

TW565992B - On-line parameter estimation method of induction motor - Google Patents

On-line parameter estimation method of induction motor Download PDF

Info

Publication number
TW565992B
TW565992B TW90129731A TW90129731A TW565992B TW 565992 B TW565992 B TW 565992B TW 90129731 A TW90129731 A TW 90129731A TW 90129731 A TW90129731 A TW 90129731A TW 565992 B TW565992 B TW 565992B
Authority
TW
Taiwan
Prior art keywords
motor
rotor
resistance
parameter estimation
stator
Prior art date
Application number
TW90129731A
Other languages
Chinese (zh)
Inventor
Shr-Shing Peng
Chian-Mau Jan
Original Assignee
Shr-Shing Peng
Chian-Mau Jan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shr-Shing Peng, Chian-Mau Jan filed Critical Shr-Shing Peng
Priority to TW90129731A priority Critical patent/TW565992B/en
Application granted granted Critical
Publication of TW565992B publication Critical patent/TW565992B/en

Links

Landscapes

  • Control Of Ac Motors In General (AREA)

Abstract

The present invention is an on-line parameter estimation method of induction motor. The proposed resistor estimation architecture can estimate the resistances of motor stator and rotor on-line in real time. The estimated resistor can adjust the on-line parameters of the magnetic flux model in the system, which reduces the system response error and instability resulted from the temperature rise caused by motor parameter variation during the loaded or long-term operation of motor. Thus, the accuracy of motor speed control, especially the speed response during the low rotational speed, is increased, so that the driving system of induction motor can still maintain stability and accurate rotational speed even if the load varies.

Description

565992 A7 B7 五、發明説明(1 ) (1)發明背景: 本發明係一種感應電機線上參數估測法,尤指針對一感應馬達向 量控制變頻器驅動系統,所提出之線上定子電阻與轉子電阻參數估測 法。 傳統可變速感應馬達之變頻器驅動系統,一般採用泛用型開迴路 變頻器;係以定電壓/頻率(V/f)比之控制方式驅動控制馬達’能很容 易的驅動感應馬達改變轉速,目前被廣泛的應用於工業上’它具有體 積小、價位低及不須加裝速度感測器等優點。然而它存在下列幾個問 題:(1)起動轉矩受到限制;(2)響應速度較慢;(3)無法精確的控制馬 達轉速,因此僅適用於機械運動性能要求不高的場合。 採向量控制法的閉迴路變頻器,可改善上述開迴路變頻器的缺 點,達到高性能的速度控制要求。向量控制法的基本觀念是利用座標 轉換,將馬達的電流訊號變換到同步轉速座標系統,再經由解耦控 制,使成兩個等效且互相垂直之電'流分量;其一相當於磁場電流,另 一個則相當於轉矩電流,使感應馬達之性能達到類似於直流分激電動 機之控制效果。 馬達閉迴路向量控制變頻器,其向量控制法則之計算能否準確, 直接受馬達的電氣參數之影響。一般馬達的電氣參數是在離線 (off-line)時量測,雖可獲得精確之電氣參數値,但當馬達再加載或長 時間運轉時溫度上昇,將造成馬達電阻參數的變動,若無法在線上 (on-line)做馬達電阻參數調適,將使閉迴路向量控制變頻器的精確度 及穩定性變差。 有鑑於上述之情形,本案之發明人乃發展出本新型發明;感應電 機線上參數估測法。 本紙張尺度適用中國國家標準(CNS ) A4規格(210x297公釐〉 (請先閲讀背面之注意事項再填寫本頁) 訂 經濟部智慧財產局員工消費合作社印製 565992 A7 __ ___B7 __ 五、發明説明(2 ) (2)發明槪述: 本發明之主要目的,係在提出一種感應電機線上參數估測法。使 其於一感應馬達基本向量控制架構下,在線上即時估測出感應馬達定 子及轉子電阻參數以供變頻器做線上參數調適,使感應馬達向量控制 變頻器不受馬達溫昇之影響。 緣是,爲達上述之目的,本案所提感應電機線上參數估測法,其 方法步驟包括:(a)提供一馬達;(b)提供一馬達基本向量控制架構, 其係用以作爲執行控制該馬達轉速之向量控制法則;(c)另具正弦調 變(SPWM)功能之一變頻器以作爲該所驅動馬達電源供應;(d)使該座 標運算方塊A用以將該馬達之一定子量測値轉換成一轉子磁場座標 系統(d-q)軸之一兩軸分量;(e)使該座標運算方塊B用以將該轉子磁 場座標系統之一 d軸定子電壓標的値與一 q軸定子電壓標的値轉換 成輸入一正弦波寬調變(SPWM)變頻器之一三相輸入之電壓標的 値;⑴使轉子磁通模型能正確估測出感應馬達轉子磁通大小及轉速 差以供系統使用;(g)使電阻估測器能正確估測出感應馬達轉子電阻 以供轉子磁通模型使用。 本發明之特徵、目的及優點。將因下面參照附圖對本發明之各種 實施例所做之詳細說明得一具體淸晰之瞭解。 (圖面之簡述) 第一圖所示係爲具線上參數即時估測法之感應馬達驅動系統架 構圖。 第二圖所示係爲定子及轉子電阻估測器方塊圖。 第三圖所示係爲第一圖之電腦模擬所得之馬達轉速、轉子電阻、 同步座標之d-q軸轉子磁通及馬達轉矩之波形圖 第四圖所示係爲第一圖之實際硬體製作所量測之馬達轉速、轉子 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) (請先閲讀背面之注意事項再填寫本頁) 訂 經濟部智慧財產局員工消費合作社印製 565992 A7 B7 五、發明説明(3 ) 電阻、A相電流及同步座標之d-q軸定子電流之波形圖。 (3)發明之詳細說明: 請參考第一圖,此圖係爲具線上參數即時估測法之感應馬達驅動 系統架構圖;採用場導向量控制。由圖中可了解本架構中一感應馬達 (1)係由一電壓型弦波脈寬調變(SPWM)的變頻器(2)所驅動,整個控 制法則在經由一座標轉換方塊A(3)及一座標轉換方塊B(4)轉換處理 後,使馬達向量控制系統在轉子磁場導向(r〇tor-flux-oriented)同步轉 速參考座標下執行運算。該控制法則包括:用以估測轉子磁通大小及 轉速差之轉子磁通模型(5)、可使磁通(心軸)與轉速控制迴路(q-軸)得 以分開獨立控制之解耦控制器(6)、使q軸電流響應達到規格要求之q 軸電流控制器(7)、使d軸電流響應達到規格要求之d軸電流控制器 (8)、使轉子磁通響應達到規格要求之磁通控制器(9)、使轉速達到規 格要求之轉速控制器(1〇)、使該感應馬達能在基速(4極爲ISOOrpm) 以下用定轉矩運轉,在基速以上用定功率運轉之弱磁控制器(Π)、能 正確估測出馬達之定子電阻與轉子電阻參數之電阻估測器(12);其 中,除了該速度控制器(1〇)之參數的調適與馬達機械負載參數有關之 外,其餘各控制器之參數均依該感應馬達之電氣參數而定。 當然,其中該馬達係爲一感應馬達(Ι·Μ·)。 當然,其中該向量變頻器控制法則係以場導(field orientation) 原理爲基礎的向量控制法則。 當然,其中該變頻器內具一中央處理單元(CPU),該中央處理單 元可完成所有馬達估測器運算工作,不需外加量測儀器或個人電腦執 行。 當然,其中該電阻估測器,採用參考模型適應系統法(MRAS)估 測出馬達定子電阻及轉子電阻,參考模型使用轉子磁場座標上之定子 本紙張尺度適用中國國家標準((:叫八视^ ( 210\297公爱) ~ * (請先閲讀背面之注意事項再填寫本頁)565992 A7 B7 V. Description of the invention (1) (1) Background of the invention: The present invention is an online parameter estimation method for induction motors, especially a vector control inverter drive system for an induction motor. The proposed on-line stator resistance and rotor resistance Parameter estimation method. The inverter drive system of the traditional variable-speed induction motor generally uses a general-purpose open-loop inverter; it drives the control motor with a constant voltage / frequency (V / f) ratio control method. 'It can easily drive the induction motor to change the speed. At present, it is widely used in industry. It has the advantages of small size, low price, and no need to install a speed sensor. However, it has the following problems: (1) the starting torque is limited; (2) the response speed is slow; (3) the motor speed cannot be accurately controlled, so it is only suitable for occasions with low mechanical performance requirements. The closed-loop inverter adopting the vector control method can improve the shortcomings of the open-loop inverter mentioned above and meet the high-performance speed control requirements. The basic concept of the vector control method is to use coordinate conversion to transform the motor's current signal to a synchronous speed coordinate system, and then through decoupling control, two equivalent and perpendicular electric current components are formed; one is equivalent to the magnetic field current The other is equivalent to the torque current, so that the performance of the induction motor is similar to the control effect of a DC split-motor. Whether the closed-loop vector control inverter of a motor can calculate the vector control rules is directly affected by the electrical parameters of the motor. Generally, the electrical parameters of the motor are measured off-line. Although accurate electrical parameters can be obtained, when the motor is reloaded or run for a long time, the temperature will increase, which will cause the motor resistance parameters to change. Adjusting the motor resistance parameters on-line will make the accuracy and stability of the closed-loop vector control inverter worse. In view of the above circumstances, the inventor of this case has developed the new invention; an online parameter estimation method for induction motors. This paper size applies to China National Standard (CNS) A4 (210x297 mm) (Please read the precautions on the back before filling this page) Order printed by the Intellectual Property Bureau of the Ministry of Economic Affairs, Consumer Cooperatives 565992 A7 __ ___B7 __ V. Description of the invention (2) (2) Description of the invention: The main object of the present invention is to propose an online parameter estimation method for induction motors, which enables the induction motor stator and The rotor resistance parameter is used by the inverter for online parameter adjustment, so that the induction motor vector control inverter is not affected by the temperature rise of the motor. The reason is that in order to achieve the above-mentioned purpose, the method for estimating the on-line parameter of the induction motor proposed in this case, its method steps Including: (a) providing a motor; (b) providing a basic vector control architecture of the motor, which is used as a vector control rule for controlling the speed of the motor; (c) another frequency conversion with sinusoidal modulation (SPWM) function (D) The coordinate calculation block A is used to convert a stator measurement of the motor into a rotor magnetic field coordinate system. (dq) one of the two axis components; (e) the coordinate calculation block B is used to convert the 値 of a d-axis stator voltage scale of the rotor magnetic field coordinate system and the 値 of a q-axis stator voltage scale into an input sine wave width One of the three-phase input voltage targets of a modulation (SPWM) inverter; ⑴ enables the rotor flux model to correctly estimate the magnitude and speed difference of the rotor flux of an induction motor for system use; (g) enables a resistance estimator The rotor resistance of an induction motor can be accurately estimated for use in a rotor magnetic flux model. Features, objects, and advantages of the present invention. A detailed understanding of various embodiments of the present invention will be made clear below with reference to the drawings. (Brief description of the drawing) The first diagram shows the architecture of an induction motor drive system with online parameter real-time estimation method. The second diagram shows the block diagram of the stator and rotor resistance estimator. The third diagram Shown are the waveform diagrams of the motor speed, rotor resistance, dq-axis rotor flux, and motor torque of the synchronous coordinates obtained from the computer simulation of the first diagram. The fourth diagram is measured by the actual hardware manufacturing institute of the first diagram. Motor Speed, rotor This paper size applies Chinese National Standard (CNS) A4 specification (210X297 mm) (Please read the notes on the back before filling out this page) Order printed by the Intellectual Property Bureau of the Ministry of Economic Affairs, Consumer Cooperatives 565992 A7 B7 V. Invention Explanation (3) Waveform diagram of dq-axis stator current of resistance, phase A current and synchronous coordinate. (3) Detailed description of the invention: Please refer to the first figure, which is an induction motor drive with online parameter real-time estimation method System architecture diagram; field-guided vector control is used. It can be understood from the figure that an induction motor (1) in this architecture is driven by a voltage-type sine wave pulse width modulation (SPWM) inverter (2). The entire control law After conversion processing by one standard conversion block A (3) and one standard conversion block B (4), the motor vector control system is caused to perform operations under a rotor magnetic field-oriented (rotor-flux-oriented) synchronous speed reference coordinate. The control law includes: a rotor magnetic flux model (5) used to estimate the magnitude of the rotor magnetic flux and the speed difference, and a decoupling control that allows the magnetic flux (mandrel) and the speed control loop (q-axis) to be controlled independently. (6), q-axis current controller (7) to make the q-axis current response meet the specifications, d-axis current controller (8) to make the d-axis current response meet the specifications, and make the rotor magnetic flux response to the specifications The magnetic flux controller (9), the speed controller (10) that makes the speed meet the specifications, so that the induction motor can run at a constant torque below the base speed (4 poles ISOOrpm), and run at a constant power above the base speed. Magnetic field weakening controller (Π), resistance estimator (12) that can correctly estimate the stator resistance and rotor resistance parameters of the motor; among them, except for the adjustment of the parameters of the speed controller (10) and the mechanical load of the motor In addition to the parameters, the parameters of the remaining controllers are determined by the electrical parameters of the induction motor. Of course, the motor is an induction motor (I · M ·). Of course, the vector inverter control law is a vector control law based on the field orientation principle. Of course, the inverter has a central processing unit (CPU), which can complete all motor estimator calculations without the need for additional measuring instruments or personal computers. Of course, the resistance estimator uses the reference model adaptation system method (MRAS) to estimate the motor stator resistance and rotor resistance. The reference model uses the stator on the rotor magnetic field coordinates. The paper size is applicable to Chinese national standards ((: called eight-vision) ^ (210 \ 297 public love) ~ * (Please read the notes on the back before filling this page)

、1T 線参丨 經濟部智慧財產局員工消費合作社印製 565992 Α7 Β7 五、發明説明(4 ) 電流、轉子電感、互感、同步轉速、磁極數及轉子磁場計算出馬達之 氣隙功率,可調模型使用轉子磁場座標上之定子電流、電壓命令値及 定子電阻計算出馬達之氣隙功率。定子電阻之估測値乘上轉子與定子 電阻之初値比可得轉子電阻之估測値。 請參考第二圖,此圖係本案之電阻估測器方塊圖;採用參考模型 適應系統法(MRAS)估測出馬達定子電阻與轉子電阻,參考本圖可知 本案之估測過程如下_· 1.圖中之參考模型(201),使用轉子磁場座標上之使用轉子電感 4(204)、互感 Lw(205)、磁極數 Ρ(206)、同步轉速%(207)、d 軸轉子磁通;^(208)及q軸電流値‘(209),可依下列方程式直 接計算出馬達之氣隙功率。、 1T line reference 丨 Printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs 565992 Α7 Β7 V. Description of the invention (4) Calculate the air-gap power of the motor with current, rotor inductance, mutual inductance, synchronous speed, number of magnetic poles and rotor magnetic field, adjustable The model uses the stator current, voltage command, and stator resistance on the rotor's magnetic field coordinates to calculate the air-gap power of the motor. The estimated stator resistance is multiplied by the initial ratio of rotor and stator resistance to obtain the estimated rotor resistance. Please refer to the second figure, this figure is the block diagram of the resistance estimator in this case; the motor stator resistance and rotor resistance are estimated by using the reference model adaptive system method (MRAS). With reference to this figure, the estimation process of this case is as follows _ · 1 . The reference model (201) in the figure, using the rotor magnetic field coordinates using the rotor inductance 4 (204), mutual inductance Lw (205), the number of magnetic poles P (206), synchronous speed% (207), d-axis rotor magnetic flux; ^ (208) and q-axis current 値 '(209), the air gap power of the motor can be directly calculated according to the following equation.

(請先閲讀背面之注意事項再填寫本頁) 、1Τ 經濟部智慧財產局員工消費合作社印製 2.圖中之可調模型(202),使用轉子磁場座標上之q軸電流値 ^(209)、d軸電流値4(210)、d軸電壓命令値v^;(211)、q軸電 壓命令値</(212)及定子電阻之估測値及(313),可依下列方程 式計算出馬達之氣隙功率。 3·將圖中之參考模型(2〇1)及可調模型(2〇2)之輸出誤差値 4-1,用以驅動一 PI控制器(203)可得估測之定子電阻 及(213>,此定子電阻又送回可調模型改變氣隙功率Λ,>,使可 調模型(202)之輸出之肩近於參考模型(201)之輸出4,則定子 電阻之估測値式趨近於實際値。 -線 本紙張尺度適用中國國家標準(CNS ) Α4洗格(210X297公釐) 565992 A7 B7 經濟部智慧財產局員工消費合作社印製 五、發明説明(5 ) 4.馬達之定子電阻與轉子電阻對溫度之靈敏度可視爲相同,將 定子電阻之估測値及(213)乘上轉子與定子電阻之初値比 ^(214),可得轉子電阻之估測値反(215) 〇 又,第三圖所示爲第一圖之電腦模擬所得之馬達轉速、轉子電 阻、同步座標之d-q軸轉子磁通及馬達轉矩之波形圖。馬達在〇.3sec· 時由靜止啓動運轉,轉速命令爲rpm,在0.5sec·時加入6NT_m 的負載轉矩,假設馬達電阻在3sec·時有100%的步級(step)變化量。 感應馬達驅動系統之電阻參數初値設定爲正確値之5〇%,參數估測 器在l.Ssec·時開始估測馬達電阻參數,並對轉子磁通模型進行電阻 線上參數調適。由模擬波形顯示所估測之馬達轉子電阻估測値約在 2sec.時收斂至正確値,在3Sec·馬達電阻有步級變化量後,估測値約 在3.5sec·時收斂至正確値。 又,第四圖所示爲第一圖之實際硬體製作所測量得之馬達轉速、 轉子電阻、A相電流及同步座標之d-q軸定子電流之波形圖。馬達系 統在〇.3sec·時由靜止啓動運轉,轉速命令爲500 rpm,感應馬達驅動 系統之電阻參數初値設定爲正確値之50%,參數估測器在1.5sec·時 開始估測馬達電阻參數,並對轉子磁通模型進行電阻線上參數調適。 所估測之馬達轉子電阻估測値約在3sec·時收斂至正確値。由模擬及 實測結果顯示,本案所提具線上參數即時估測法之感應馬達驅動系 統,能正確估測出電阻,再對轉子磁通模型之參數做線上調適,使系 統不受溫度靈敏參數之影響獲得更精確及穩健之特性,印證了本案所 提理論的正確及可行性。 綜上所述,本案所提出之線上參數估測法,與其他估測法比較具 有以下特點:(1)本案所提出之電阻估測器之估測工作實現簡單,可 (請先閲讀背面之注意事項再填寫本頁) 、11 # 線 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) 565992 A7 ___B7五、發明説明(6) 由原變頻器之中央處理單元(CPU)完成,不需外加量測儀器或個人電 腦;(2)感應馬達電阻估測器,使用之電氣參數爲轉子電感A與互感 ,使估測器不受馬達溫昇之影響;(3)可在線上即時估測出感應馬 達電阻參數以供變頻器做線上參數調適,使感應馬達向量控制變頻器 不受馬達溫昇之影響,使系統更爲精確及穩健。 惟,上述本發明所揭露之圖式說明,僅爲本發明之可行實施例, 大凡熟悉本案技藝之人士’其所沿依本案精神範疇,所做之等效變化 或修飾,皆應涵蓋在以下本案之申請專利範圍。 (請先閲讀背面之注意事項再填寫本頁) 訂 % 經濟部智慧財產局員工消費合作社印製 本紙張尺度適用中國國家榡準(CNS ) A4規格(210X 297公釐)(Please read the precautions on the back before filling out this page) 、 Printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs 2. The adjustable model (202) in the figure uses the q-axis current on the rotor magnetic field coordinates 値 ^ (209 ), D-axis current 値 4 (210), d-axis voltage command 値 v ^; (211), q-axis voltage command 値 < / (212) and estimation of stator resistance 値 and (313), according to the following equations Calculate the air gap power of the motor. 3. The output error 値 4-1 of the reference model (201) and the adjustable model (202) in the figure is used to drive a PI controller (203) to obtain the estimated stator resistance and (213 &gt);, This stator resistance is sent back to the adjustable model to change the air gap power Λ, > so that the shoulder of the output of the adjustable model (202) is close to the output 4 of the reference model (201), then the estimation formula of the stator resistance is It is closer to the real world. -The standard paper size is applicable to the Chinese National Standard (CNS) Α4 Washing (210X297 mm) 565992 A7 B7 Printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs 5. Description of the invention (5) 4. The sensitivity of the stator resistance and the rotor resistance to temperature can be regarded as the same. Multiplying the estimated resistance of the stator and (213) by the initial ratio of the resistance of the rotor and the stator ^ (214), we can get the estimated resistance of the rotor resistance (215) 〇 In addition, the third figure shows the waveforms of the motor speed, rotor resistance, dq-axis rotor magnetic flux, and motor torque obtained from the computer simulation of the first figure. The motor starts from standstill at 0.3sec · , The speed command is rpm, add 6NT_m load torque at 0.5sec ·, assuming The resistance value has a 100% step change at 3sec ·. The resistance parameter of the induction motor drive system is initially set to 50% of the correct value. The parameter estimator starts to estimate the motor resistance at l.Ssec · Parameters, and adjust the parameters on the resistance flux line of the rotor magnetic flux model. The estimated motor rotor resistance estimated by the analog waveform display converges to about 2 seconds. After 3Sec · motor resistance has a step change, It is estimated that the convergence will be correct at about 3.5 sec. Also, the fourth figure shows the motor speed, rotor resistance, A-phase current, and dq-axis stator current of the synchronous coordinates measured by the actual hardware manufacturing of the first figure. Waveform diagram. The motor system is started from standstill at 0.3 sec ·, the speed command is 500 rpm, the resistance parameter of the induction motor drive system is initially set to 50% of the correct value, and the parameter estimator starts to evaluate at 1.5 sec · Measure the motor resistance parameters and adjust the parameters of the rotor flux model on the resistance line. The estimated motor rotor resistance estimation (about 3sec · converges to the correct value). The simulation and actual measurement results show that the proposed The induction motor drive system based on the above-mentioned parameter real-time estimation method can correctly estimate the resistance, and then adjust the parameters of the rotor flux model online, so that the system is not affected by temperature-sensitive parameters to obtain more accurate and robust characteristics, which proves that The correctness and feasibility of the theory proposed in this case. In summary, the online parameter estimation method proposed in this case has the following characteristics compared with other estimation methods: (1) the estimation work of the resistance estimator proposed in this case It is easy to implement, please (please read the precautions on the back before filling this page), 11 # The size of the paper is applicable to the Chinese National Standard (CNS) A4 specification (210X297 mm) 565992 A7 ___B7 V. Description of the invention (6) The central processing unit (CPU) of the inverter is completed without additional measuring instruments or personal computers. (2) Inductive motor resistance estimator. The electrical parameters used are rotor inductance A and mutual inductance, so that the estimator is not affected by the motor temperature. (3) The resistance parameter of the induction motor can be estimated online for the inverter to adjust the parameters online, so that the vector control inverter of the induction motor is not affected by the temperature rise of the motor To make the system more accurate and robust. However, the above-mentioned schematic illustrations disclosed in the present invention are only feasible embodiments of the present invention. Anyone who is familiar with the skills of the present case, 'equivalent changes or modifications made in accordance with the spirit of the case, should be covered in the following. The scope of patent application in this case. (Please read the notes on the back before filling this page) Order% Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs This paper size applies to China National Standard (CNS) A4 (210X 297 mm)

Claims (1)

565992 經4部智慧时工消費合作社印製 Λ8 B8 C8 D8 六、申請專利範圍 1· 一種感應電機線上參數即時估測法,其方法步驟包括: a) 提供一馬達; b) 提供一馬達基本向量控制架構,其係用以作爲執行控制該馬達 轉速之向量控制法則; c) 另具正弦調變(SPWM)功能之一變頻器以作爲該所驅動馬達 電源供應; d) 使該座標運算方塊A用以將該馬達之一定子量測値轉換成一 轉子磁場座標系統(d-q)軸之一兩軸分量; e) 使該座標運算方塊B用以將該轉子磁場座標系統之一 d軸定 子電壓標的値與一 q軸定子電壓標的値轉換成輸入一正弦波 寬調變(SPWM)變頻器之一三相輸入之電壓標的値; f) 使電阻估測器能正確估測出感應馬達轉子電阻以供轉子磁通 模型使用。 2·如申請專利第1項所述之感應電機線上參數即時估測法,其中該 馬達係爲一感應馬達(I.M.)。 3·如申請專利第1項所述之感應電機線上參數即時估測法,其中該 向量變頻器控制法則係以場導(field orientation)原理爲基礎的 向量控制法則。 4·如申請專利第1項所述之感應電機線上參數估測法,其中該變頻器內 具一中央處理單元(CPU),該中央處理單元可完成所有馬達估測器運算工 作,不需外加量測儀器或個人電腦執行。 5·如申請專利第1項所述之感應電機線上參數估測法,其中該電阻 估測器,採用參考模型適應系統法(MRAS)估測出馬達定子電阻 及轉子電阻,參考模型使用轉子磁場座標上之定子電流、轉子電 本紙張尺度適用中國國家榡準(CNS ) A4規格(2ΐ〇χ297公釐) (清先間讀背而之注意事項再續寫本頁) 訂 線一565992 Printed by 4 smart time consumer cooperatives Λ8 B8 C8 D8 VI. Patent application scope 1. A method for online parameter estimation of induction motors. The method steps include: a) providing a motor; b) providing a basic vector of the motor The control structure is used as a vector control rule for controlling the rotation speed of the motor; c) an inverter with another sinusoidal modulation (SPWM) function is used as the power supply of the driven motor; d) the coordinate calculation block A It is used to convert a stator measurement of one of the motors into a two-axis component of a rotor magnetic field coordinate system (dq) axis; e) The coordinate calculation block B is used to calculate a d-axis stator voltage scale of one of the rotor magnetic field coordinate systems.値 and q of a q-axis stator voltage standard are converted into input 一 of a three-phase input voltage standard of a sine wave wide modulation (SPWM) inverter; f) The resistance estimator can correctly estimate the rotor resistance of the induction motor to For use with rotor flux models. 2. The on-line parameter estimation method for an induction motor according to item 1 of the patent application, wherein the motor is an induction motor (I.M.). 3. The on-line parameter estimation method for induction motors as described in the first item of the patent application, wherein the vector frequency converter control law is a vector control law based on the field orientation principle. 4. The online parameter estimation method for induction motors as described in the first item of the patent application, wherein the inverter has a central processing unit (CPU), which can complete all motor estimator calculations without additional Measuring instrument or personal computer. 5. The online parameter estimation method for induction motors as described in the first item of the patent application, wherein the resistance estimator uses the reference model adaptation system method (MRAS) to estimate the motor stator resistance and rotor resistance, and the reference model uses the rotor magnetic field. The paper size of the stator current and rotor electricity on the coordinates is applicable to the Chinese National Standard (CNS) A4 specification (2ΐ〇χ297 mm).
TW90129731A 2001-11-30 2001-11-30 On-line parameter estimation method of induction motor TW565992B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW90129731A TW565992B (en) 2001-11-30 2001-11-30 On-line parameter estimation method of induction motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW90129731A TW565992B (en) 2001-11-30 2001-11-30 On-line parameter estimation method of induction motor

Publications (1)

Publication Number Publication Date
TW565992B true TW565992B (en) 2003-12-11

Family

ID=32502207

Family Applications (1)

Application Number Title Priority Date Filing Date
TW90129731A TW565992B (en) 2001-11-30 2001-11-30 On-line parameter estimation method of induction motor

Country Status (1)

Country Link
TW (1) TW565992B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI423047B (en) * 2010-03-05 2014-01-11 Iner Aec Executive Yuan Method for estimating parameters of induction machine by time-varied parameters

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI423047B (en) * 2010-03-05 2014-01-11 Iner Aec Executive Yuan Method for estimating parameters of induction machine by time-varied parameters

Similar Documents

Publication Publication Date Title
CN101951211B (en) Brushless direct current motor electromagnetic torque observation method based on self-adapting slipform observer
CN107943121B (en) Permanent magnet synchronous motor simulator considering nonlinear characteristics and control method thereof
CN109839830B (en) Power level analog control method and device of three-phase alternating current motor
CN105680754B (en) A kind of rectangular axis current phasor composite controller of permagnetic synchronous motor
WO2010116815A1 (en) Ac motor control device and ac motor driving system
CN107276476A (en) A kind of method of the asynchronous machine low speed control based on MRAS
CN101383585A (en) A vector control method without speed sensor for AC asynchronous motor
CN105991071B (en) Constant torque control method of ECM motor
CN101650390A (en) Method of measuring inductance parameters of stator of surface AC permanent magnet synchronous motor on line
CN110635738B (en) A real-time identification method of permanent magnet synchronous motor stator resistance and motor temperature
CN106982017A (en) A kind of induction machine Current Sensorless direct predictive control method
CN106602953B (en) The verification method of induction electromotor rotor time constant based on field orientation accuracy
JP4207810B2 (en) PM motor evaluation test equipment
TW201710924A (en) Method for estimating parameters of the induction machine by the polynomial regression
CN107465374A (en) A kind of full rank adaptive observation method of induction machine using back-emf as state
CN102170262B (en) Non-speed sensor control method of direct-drive permanent-magnet synchronous wind turbine
KR101551676B1 (en) Method for estimating rotor resistance of induction motor and apparatus for estimating rotor resistance of induction motor
CN106160613A (en) A kind of method for designing of discrete domain rheonome
TW565992B (en) On-line parameter estimation method of induction motor
CN106169895B (en) A kind of permanent magnet linear synchronous motor measurement of electric parameter method
WO2025007617A1 (en) Method for measuring and calculating inductance of permanent magnet synchronous motor, and test bench, computer and storage medium
CN104808148B (en) A kind of method of testing of multiphase multiple-unit magneto temperature rise
CN108718165B (en) Induction motor zero-frequency stability control method based on error compensation
TW441161B (en) Apparatus and methods with on-line parameters adaption for sensorless speed control of induction motors
CN107124129B (en) A kind of method of on-line identification induction machine population parameter

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent
MM4A Annulment or lapse of patent due to non-payment of fees