556314 A7 ___B7 五、發明説明(,) 發明範圍 本發明係關於製備用於積體電路(I C )和磁性記錄 介質的貴金屬(Ru、Rh、Pd、Ag、Re 、〇s 、 I r、P t )層之方法。 相關技術之描沭 釕金屬被視爲用於動態隨機存取記憶體(D R A Μ ) (其具有,如:Ta2〇5和/或(Ba ,Sr)Ti〇3 (BST),介電物)之電容器電極之最有希望的材料之 一。釕也是一種用於非揮發性鐵電記憶體的潛在電極材料 。雖然鉑曾被廣泛用來作爲電極材料,但其有許多缺點存 在。例如,非常難藉蝕刻法在鉑層上形成圖案且鉑催化〇2 解離成氧原子的解離反應。其形成的氧擴散進入下方屏障 ,其被氧化並形成電阻層。反之,釕膜可藉蝕刻無困難地 形成圖案且藉由形成導電性良好的R u〇2而防止氧擴散。 此外,因爲其功含數高,R u是用於未來CMO S電晶體 (S i〇2被高k介電物所取代)之令人感興趣的電極材料 。雖然就氧擴散屏障性質而言,R u ( I r ,就相同原因 )是用於前述應用的最佳候選物,其他貴金屬(如:P t 和P d )仍被視爲可資利用的候選物。參考貴金屬之定義 ,Ε η c y c 1 ο p e d i a B r i t a 11 n i c a陳述貴金屬是數種即使於高溫仍 具有優良抗氧化性之金屬化學元素中的任何者;未嚴格定 義此分類,但通常視爲包括鍊、釕、鍺、鈀、銀、餓、銥 、鉑和金;即,元素週期表第二和三過渡系列的V I I b (請先閲讀背面之注意事項再填寫本頁) 訂 經濟部智慧財產局員工消費合作社印製 本紙張尺度適用中國國家標準(CNS )八4規格(210X297公釐) -4- 556314 A7 B7 五、發明説明(2 ) 、V I I I和I b金屬。 (請先閲讀背面之注意事項再填寫本頁) 除了電極應用以外,薄R u膜在未來於磁性記錄技術 (其中,對於讀和寫頭的儲存密度要求提高)和記錄介質 方面有潛在用途(Ε·Ε· Fullerton, Solid State Technology,200 1年9月,87頁)。抗鐵磁偶合記錄介質中( 舉例言之),使用三個原子層厚Ru膜分離兩個鐵磁層。 預料垂直記錄系統(磁性化作用垂直於膜平面)將取代目 前的同平面或縱向介質。欲創造磁性化作用垂直於膜平面 的高效記錄介質,提出由超薄(基本上低於5個原子層厚 )磁性和非磁性層組成的多層結構。此處,R u和P d ( 例如)可以作爲非磁性材料。這些磁性記錄介質應用的一 個顯著挑戰是如何將膜厚度控制於一個原子層程度均勻地 覆於大底質區域上。 經濟部智慧財產局員工消费合作社印製 目前,積體電路的金屬化技術基於電鍍銅。但成功的 電澱積法須要適當晶種層位於擴散阻擋材料上。基本上, 銅本身最常藉物理蒸鍍法澱積,其作爲晶種層材料。化學 方法(如:化學蒸鍍法和原子層澱積法)提供較佳的銅晶 重層的逐步覆蓋情況,但有著銅與擴散屏障黏合性欠佳的 問題。此外,與銅晶種有關的一般問題在於它們容易氧化 ,此使得電澱積法初期須有一個還原步驟。貴金屬表面不 易氧化,他們可以作爲銅電澱積法的良好晶種層。 目前,R u膜藉噴濺或藉化學蒸鍍法(C V D )澱積 。雖然藉A L D澱積的薄膜特性,特別是極佳的逐步覆蓋 性(一致性)、準確和簡單厚度控制及大面積均勻度,是 -5- 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) 556314 A7 _B7_ 五、發明説明(3 ) 在前述應用中非常有用的特性,但用以澱積R u的A L D 法未曾被報導。 (請先閲讀背面之注意事項再填寫本頁) 因爲可用於A L D的金屬先質基本上是其中的金屬處 於較高氧化態的化合物,使得藉A L D澱積金屬的工作發 展的主要問題在於缺乏有效還原劑(M.Ritala and M.Leskela,Atomic Layer Deposition (原子層殿積), Mod H.S.Nalwa編輯,Academic556314 A7 ___B7 V. Description of the invention (,) Scope of the invention The present invention relates to the preparation of precious metals (Ru, Rh, Pd, Ag, Re, 0s, Ir, Pt) for integrated circuits (IC) and magnetic recording media. ) Layer method. Description of the Related Art: Ruthenium metal is considered to be used in dynamic random access memory (DRA M) (which has, for example: Ta205 and / or (Ba, Sr) Ti03 (BST), dielectric) One of the most promising materials for capacitor electrodes. Ruthenium is also a potential electrode material for non-volatile ferroelectric memory. Although platinum has been widely used as an electrode material, it has many disadvantages. For example, it is very difficult to form a pattern on the platinum layer by etching and platinum catalyzes the dissociation reaction of O2 to oxygen atoms. The oxygen it forms diffuses into the underlying barrier, which is oxidized and forms a resistive layer. On the other hand, the ruthenium film can be patterned without difficulty by etching, and oxygen diffusion can be prevented by forming Ru 2 with good conductivity. In addition, because of its high work content, Ru is an interesting electrode material for future CMO S transistors (Sio2 is replaced by high-k dielectrics). Although Ru (I r, for the same reason) is the best candidate for the aforementioned applications in terms of oxygen diffusion barrier properties, other precious metals (eg, P t and P d) are still considered as available candidates Thing. With reference to the definition of precious metals, E η cyc 1 ο pedia B rita 11 nica states that precious metals are any of several metal chemical elements that have excellent oxidation resistance even at high temperatures; this classification is not strictly defined, but is generally considered to include chains , Ruthenium, germanium, palladium, silver, starvation, iridium, platinum and gold; that is, VII b of the second and third transition series of the periodic table of the elements (please read the notes on the back before filling this page) The paper size printed by the employee consumer cooperative is applicable to the Chinese National Standard (CNS) 8-4 specifications (210X297 mm) -4- 556314 A7 B7 5. Invention Description (2), VIII, and I b metal. (Please read the precautions on the back before filling out this page) In addition to electrode applications, thin Ru films have potential uses in magnetic recording technology (where the storage density of read and write heads is required to increase) and recording media ( E.E. Fullerton, Solid State Technology, September 2001, p. 87). In an antiferromagnetic coupling recording medium (for example), two atomic layers are separated using a Ru film with three atomic layers. It is expected that perpendicular recording systems (magnetization perpendicular to the film plane) will replace current coplanar or longitudinal media. To create an efficient recording medium with magnetization perpendicular to the film plane, a multi-layer structure composed of ultra-thin (basically less than 5 atomic layer thickness) magnetic and non-magnetic layers is proposed. Here, Ru and P d (for example) can be used as non-magnetic materials. A significant challenge in the application of these magnetic recording media is how to control the thickness of the film to an atomic level to cover the large substrate area uniformly. Printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs At present, the metallization technology of integrated circuits is based on electroplated copper. However, successful electrodeposition requires a proper seed layer on the diffusion barrier material. Basically, copper itself is most often deposited by physical evaporation as a seed layer material. Chemical methods (such as chemical vapor deposition and atomic layer deposition) provide better gradual coverage of copper crystals, but have the problem of poor adhesion of copper to the diffusion barrier. In addition, a general problem associated with copper seeds is that they are susceptible to oxidation, which requires a reduction step in the early stages of electrodeposition. Precious metals are not easily oxidized and they can be used as good seed layers for copper electrodeposition. Currently, Ru films are deposited by sputtering or by chemical vapor deposition (C V D). Although the characteristics of the thin film deposited by ALD, especially the excellent gradual coverage (consistency), accurate and simple thickness control and large area uniformity, are -5- this paper size applies to the Chinese National Standard (CNS) A4 specification ( 210X297 mm) 556314 A7 _B7_ 5. Description of the invention (3) Very useful features in the aforementioned applications, but the ALD method used to deposit Ru has not been reported. (Please read the precautions on the back before filling this page) Because the metal precursors that can be used for ALD are basically compounds in which the metal is in a higher oxidation state, the main problem in the development of metal deposition by ALD is the lack of effective Reducing agent (M.Ritala and M.Leskela, Atomic Layer Deposition, edited by Mod HSNalwa, Academic
Press,San Diego(2001),第 1 卷第 2章 103頁)。一個一般對策 是尋找除了使金屬還原以外亦能完整移除金屬化合物之配 位基(基本上處於質子化形式)的還原劑。最簡單的反應 是使用氫基作爲還原劑(A.Sherman,美國專利案第 5,916,365 號)° M L n (g) — M L η · X (經化學吸收),X = 0 …η -1 MLn-x(經化學吸收)+ (m) H(g) — M(s) + (n-;〇HL(g) 曾被硏究用於A L D的其他還原劑包括二矽烷、二硼 烷、氫、甲醛和元素態鋅。後者中,鋅移除揮發性鹵化鋅 形式的鹵化物配位基,如:Z n C 1 2。 經濟部智慧財產局員工消費合作社印製 A 〇 y a m a 等人(Jρn·J·Aρpl·Phys.38(1999)pp·2194-2199) 發展 出一種 CVD 法用 以澱積用於電 容器電極的釘 薄膜。它們使用雙(環戊二烯基)釕(R U ( C P ) 2 )作 爲釕先質和〇2作爲反應性氣體以分解R U ( C P 2 )氣體 。成長溫度由2 3 0至3 1 5°C,於3 1 5 °C的成長速率 是2 5奈米/分鐘。但碳和氫是源積膜中的有害雜質’其 會提高膜的電阻性。此外,C V D法的一般限制,如:與 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) 556314 A7 B7 五、發明説明(4 ) 獲致良好大面積均勻性和準確厚度控制有關的問題,仍然 存在。此外’難同時得到良好逐步覆蓋率和高度膜純度。 發明槪沭 本發明的目是要消除以前技術的問提及提供藉A L D 製造金屬薄膜的新方法。 特別地’本發明的一個目的是要提出藉原子層澱積法 在底質上製造導電性貴金屬薄膜的方法。 本發明的第三個目的是要提出一種製造超高密度磁性 記錄裝置的方法。 由下列說明會瞭解本發明的這些和其他目的及其優於 已知方法之處,以下面所述者達成這些和其他目的。 吾等發展出一種用以藉A L D澱積金屬薄膜的新方法 。通常,本發明適用以澱積貴金屬薄膜,如:釕、铑、鈀 、銀、鍊、餓、銥和鉑。 所得A L D成長金屬薄膜用於I C,如:作爲電容器 電極、作爲控制電極及作爲用於銅金屬化作用的晶種層, 及作爲用以隔離鐵磁層的磁性介質中之非磁性層。 根據本發明,蒸汽化的貴金屬先質被規律地輸至反應 槽中,其與置於反應槽中的底質表面接觸而在底質上形成 金屬先質分子層,此反應槽經滌氣以移除過量蒸汽化的金 屬先質。令人訝異地,吾等現發現到氧(特別是分子形式 的氧)能夠將貴金屬化合物還原至其元素態。可以藉由利 用金屬先質和氧之間的反應而澱積出高品質金屬薄膜。因 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) (請先閲讀背面之注意事項再填寫本頁) 訂 經濟部智慧財產局員工消費合作社印製 556314 Α7 Β7 五、發明説明(5 ) (請先閲讀背面之注意事項再填寫本頁) 爲氧通常被視爲是A L D中的氧化力來源化合物且甚至認 爲於在低於5 0 0 t的溫度下,其反應性通常不高,所以 此令人訝異。顯然,本發明中的還原機構與先前檢視的 A L D金屬法(此時,配位子被完整移除)不同。本發明 中,氧將配位基燃燒成碳氧化物和水,令人訝異地,使金 屬還原而非形成金屬氧化物,即使已經知道這些金屬(如 :R u )具穩定氧化物亦然。例如,被化學吸收於底質表 面上的釕和鉑化合物可以因爲使用氧或因爲將含氧先質( 如:Η 2 0 2 )分解成氧而提供氧進入反應槽而被還原成元 素態金屬。因爲釕和鉑是相當鈍性金屬,能夠推論也能夠 將被化學吸收的其他貴金屬先質轉變成元素形式。當然, 對於相對於氫電極的正電位比貴金屬來得低的金屬而言, 因爲這些金屬能形成比貴金屬更爲穩定的氧化物,所以預 期不會發生這樣的機構。 本發明亦可用以形成積體電路之電容器結構中之包含 貴金屬的電極層。其亦可用以製造極薄的貴金屬膜,其作 爲超高密度磁性記錄裝置中的非磁性隔離層。 經濟部智慧財產局員工消費合作社印製 更特定言之,用以在底質上製造導電性貴金屬薄膜之 根據本發明之方法的特徵在於如申請專利範圍第1項中所 述特徵部分。 用以製造電容器構造的方法之特徵在於如申請專利範 圍第1 9項中所述特徵部分,用以製造超高密度磁性記錄 裝置的方法之特徵在於如申請專利範圍第2 4項中所述特 徵部分。 -8- 本紙張尺度適用中國國家標準(CNS ) Α4規格(210X297公釐) 556314 A7 五、發明説明(6 ) 藉本發明之助而得到數個顯著優點。用以澱積金屬薄 膜,可獲致A L D的習知優點(準確簡單地控制膜厚度、 極佳的逐步覆蓋性(即,一致性)和大面積均勻度)。本 發明提出一種製造逐步覆蓋率極佳之高品質導電薄膜的方 法。本發明在製造其構造中具縱橫比高的通道和溝槽、局 部區域高或其他類似表面結構而使得表面粗糙之導電層方 面特別有利。本蒸汽相法容易與用以製造積體電路(I C )或磁性記錄介質的設備成一體。 針對高導電度膜而言,存在於根據本發明澱積的金屬 膜中的雜質量低。Η、C和N雜質量基本上約〇 · 1至 〇· 3%。殘留氧量基本上在〇 . 3至0 . 5%範圍內。 令人訝異地,使/用具羥基的底質表面時,膜的均勻度 和方法的再現性獲得改善。使用Η 2〇和/或Η 2〇2作爲 氧來源,藉A L D,這樣的富含羥基表面(促進成核作用 )容易澱積超薄金屬氧化物(如:A 1 2〇3或T i〇2) 層。 附圖簡述 附圖1所示者是釕薄膜的成長速率和電阻値與釕先質 蒸發溫度之間的關係圖。 附圖2所示者是釕薄膜的成長速率和電阻値與成長溫 度之間的關係圖。 附圖3是形成導電器腳之前,D R A Μ電容器結構側 視圖。 (請先閲讀背面之注意事項再填寫本頁) 、1Τ 經濟部智慧財產局員工消費合作社印製 本紙張尺度適用中國國家標準(CNS ) A4規格(210X 297公釐) -9 - 556314 A7 ___B7 _五、發明説明(7 ) 附圖4是形成導電器腳及澱積電容器薄膜之後, D R A Μ電容器結構側視圖。 附圖5是形成電容器凹槽之前,DRAM電容器結構 側視圖。 附圖6是形成電容器凹槽和澱積電容器薄膜之後, D R A Μ電容器結構側視圖。 附圖7是D R A Μ溝槽電容器結構側視圖。 附圖8是磁性記錄板側視圖,其用以顯示非磁性隔離 經濟部智慧財產局員工消費合作社印製 膜的位置。 符號說明 3 〇 矽底質 3 2 電場氧化物 3 4 經摻雜區域 3 6 絕緣層 3 8 電阻層 4 〇 開口 5 〇 導電器材料 5 2 屏障層 5 4 金屬 5 6 電容器絕緣器 5 8 上方電極 7 0 第二個絕緣層 7 2 電阻物 本紙張尺度適用中國國家標準(CNS ) Α4規格(21〇Χ297公釐) -10 - (請先閲讀背面之注意事項再填寫本頁) 訂 556314 A7 B7 五、發明説明(8 7 4 7 6 9 0 9 2 9 4 9 6 1 1〇 112 114 116 118 12 0 12 2 12 4 15 0 1 5 2 15 4 15 6 開口 屏障 下方金屬電極 局k介電層 上方金屬電極 電容器凹槽 矽底質 多層薄膜 屏障層 第一個金屬電極層 高k層 第二個金屬電極層 屏障薄膜 多元石夕 底質 部分 非磁性層 部分 (請先閲讀背面之注意事項再填寫本頁) 經濟部智慧財產局員工消費合作社印製 發明詳沭 本發明係關於藉原子層澱積程序(A L D )製造薄膜 的方法,根據此方法,將具表面的底質置於反應槽中,底 質於較低壓力受熱至適當澱積溫度,第一種反應物以氣相 脈衝(下文中亦爲”氣態反應物被規律輸送”)導至反應 本紙張尺度適用中國國家標準(CNS ) A4規格(210乂297公釐) -11 - 556314 A7 B7 五、發明説明(9 ) (請先閱讀背面之注意事項再填寫本頁) 槽中並與底質表面接觸以使得反應物結合於表面上,過量 的第一種反應物以蒸汽或氣體被滌出反應槽,第二種氣態 反應物被規律輸送至底質上,以發生第二種反應物和結合 於表面上的第一種反應物之表面反應,過量的第二種反應 物和表面反應的氣態副產物被滌出反應槽,以所示順序重 覆脈衝和滌氣步驟直到達到所欲澱積薄膜厚度。此方法基 於先質化學品之經控制的表面反應。藉由交替地將反應物 引至反應槽中而防止氣相反應。利用抽真空步驟和/或惰 性氣體脈衝(如:氮或氬),蒸汽相反應物在反應槽中彼 此隔離。 根據本發明,用以在底質表面上製造貴金屬薄膜的方 法至少包含下列步驟: - 將具表面的底質置於反應槽中, ~ 將已蒸汽化的貴金屬先質規律輸送至反應槽中, 以在底質上形成金屬先質的分子層, - 反應槽滌氣以移除過量之已蒸汽化的貴金屬先質 , 經濟部智慧財產局員工消費合作社印製 - 將含氧氣的脈衝供應於底質上, - 反應槽滌汽以移除過量含氧氣體和在底質上的金 屬先質層與氧之間之反應形成的氣態副產物,及 - 重覆脈衝和滌氣步驟,直到達到所欲澱積薄膜厚 度。 根據本發明的另一實施例,最終金屬結構可以由二或 更多不同貴金屬層位於彼此上方而構成。例如,成長可由 -12- 本紙張尺度適用中國國家標準(CNS ) A4規格(210X:297公釐) 556314 A7 B7__— — 五、發明説明(10) 鉑澱積開始,最終爲釕金屬澱積。 (請先閱讀背面之注意事項再填寫本頁) 此底質可爲各種材料類型。製造積體電路時’底質可 由數種化學和物理性質不同的薄膜構成。底質表面可爲介 電層,如:Ta2〇5或(Ba ,Sr)Ti〇3。此外’ 底質表面可以形成圖案,因此可含括縱橫比非常高(約2 :1高至1 5 0 ·· 1且甚至更高)的小(低於1微米)節 點、通道和/和溝槽。 因此,在製造積體電路電容器構造的方法中’貴金屬 層澱積於包含,如:金屬氮化物,的屏障層上。此方法包 含: 一 備妥具已摻雜區域的矽底質,其形成電晶體的活 性部分; - 使第一個絕緣層澱積於底質上; - 使導電材料與矽底質接觸,以使得其穿透絕緣層 而形成外露表面; 一 澱積屏障層,其基本上覆蓋導電材料的外露表面 j 經濟部智慧財產局員工消費合作社印製 - 藉原子層澱積法使包含貴金屬的第一個電極層澱 積於屏障層上; - 使第二個絕緣層澱積於第一個電極層上;及 - 藉原子層澱積法使包含貴金屬的第二個電極層澱 積於第二個絕緣層上。 如同在製造超高密度磁性記錄裝置之方法中一般,此 底質層亦可包含鐵磁層,其中,第一和第二個鐵磁記錄層 -13- 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) 556314 A7 B7 經濟部智慧財產局員工消費合作社印製 五、發明説明(u) 形成於底質上,第二個與第一個隔離,隔離層包含非磁性 的貴金屬層,其藉A L D澱積於第一和第二個鐵磁層之間 〇 本發明中所用金屬先質可以是固態、液態或氣態材料 ,只要金屬先質爲蒸汽相或在進入反應槽中及與底質表面 接觸而使得先質結合於底質上之前被蒸發即可。規律地輸 送已蒸汽化的先質意謂先質蒸汽於有限時間內導至槽中。 基本上,脈衝時間由0 · 0 5至1 〇秒鐘。但視底質類型 和其表面積而定,此脈衝時間甚至可超過1 〇秒鐘。 本發明之方法中,適當之用以澱積導電性貴金屬層的 金屬先質特別是二茂金屬化合物和金屬的Θ -二酮酸鹽化 合物,通常是金屬結合或配位於氧或碳上的金屬化合物。 澱積釕薄膜時,較佳金屬先質是雙(環戊二烯基)釕和參 (2,2,6,6 —四甲基—3,5 —庚二酮)釕( I I I )及它們的衍生物,如:雙(五甲基環戊二烯基) 釕和雙(2,2 ,6,6 —四甲基—3,5 -庚二酮)( 1 ,5 —環辛二烯基)釕(I I )。澱積鉑膜時,較佳金 屬先質是(三甲基)甲基環戊二烯基鉑(IV)、乙醯丙 酮鉑(II)、雙(2,2,6,6 — 四甲基—3,5 — 庚二酮)鉑(I I )及它們的衍生物。 反應槽滌氣是指以真空幫浦抽除槽中的氣態先質和/ 或先質之間反應形成的副產物和/或以惰性氣體(如:氬 或氮)取代反應器內部的氣體而滌除。典型滌氣時間由 0 ·◦ 5至2 0秒鐘。 (請先閱讀背面之注意事項再填寫本頁)Press, San Diego (2001), Vol. 1, Chapter 2, p. 103). A general countermeasure is to find reducing agents that, in addition to reducing the metal, can completely remove the ligands of the metal compound (essentially in protonated form). The simplest reaction is to use a hydrogen group as a reducing agent (A. Sherman, US Patent No. 5,916,365) ° ML n (g) — ML η · X (chemically absorbed), X = 0… η- 1 MLn-x (chemically absorbed) + (m) H (g) — M (s) + (n-; 〇HL (g) Other reducing agents that have been studied for ALD include disilane, diborane , Hydrogen, formaldehyde, and elemental zinc. In the latter, zinc removes halide ligands in the form of volatile zinc halides, such as: Z n C 1 2. Printed by A Oyama et al. (Jρn · J · Aρpl · Phys. 38 (1999) pp · 2194-2199) Developed a CVD method to deposit nail films for capacitor electrodes. They use bis (cyclopentadienyl) ruthenium (RU ( CP) 2) as ruthenium precursor and 〇2 as reactive gas to decompose RU (CP 2) gas. The growth temperature is from 2 30 to 3 1 5 ° C, and the growth rate at 3 1 5 ° C is 2 5 Na M / min. But carbon and hydrogen are harmful impurities in the source film, which will increase the resistance of the film. In addition, the general limitations of the CVD method, such as: the application of the Chinese National Standard (CNS) with this paper standard A 4 specifications (210X297 mm) 556314 A7 B7 5. Description of the invention (4) The problems related to obtaining good large area uniformity and accurate thickness control still exist. In addition, it is difficult to obtain good step coverage and high film purity at the same time. Invention 槪的 The purpose of the present invention is to eliminate the problems of the prior art, and to provide a new method for manufacturing metal thin films by ALD. In particular, an object of the present invention is to propose the production of conductive precious metal thin films on a substrate by atomic layer deposition The third object of the present invention is to propose a method for manufacturing an ultra-high density magnetic recording device. These and other objects of the present invention and its advantages over known methods will be understood from the following description, as described below. These and other objectives have been achieved. We have developed a new method for depositing metal thin films by ALD. Generally, the present invention is suitable for depositing noble metal thin films such as: ruthenium, rhodium, palladium, silver, chain, star, iridium The resulting ALD-grown metal thin film is used in ICs, such as: as a capacitor electrode, as a control electrode, and as a seed layer for copper metallization. And as a non-magnetic layer in a magnetic medium used to isolate the ferromagnetic layer. According to the present invention, the vaporized noble metal precursor is regularly fed into the reaction tank, which is in contact with the surface of the substrate placed in the reaction tank and A metal precursor molecular layer is formed on the substrate. This reaction tank is scrubbed to remove excess vaporized metal precursor. Surprisingly, we have now discovered that oxygen (especially molecular oxygen) can convert precious metals The compound is reduced to its elemental state. High-quality metal films can be deposited by utilizing the reaction between metal precursors and oxygen. Because this paper size applies the Chinese National Standard (CNS) A4 specification (210X297 mm) (Please read the precautions on the back before filling out this page). Order printed by the Intellectual Property Bureau Staff Consumer Cooperatives of the Ministry of Economy 556314 Α7 Β7 V. Description of the invention ( 5) (Please read the notes on the back before filling out this page) Oxygen is generally considered to be an oxidizing source compound in ALD and even considered to be less reactive at temperatures below 50 0 t High, so this is amazing. Obviously, the reduction mechanism in the present invention is different from the A L D metal method (in this case, the ligand is completely removed) previously examined. In the present invention, oxygen burns ligands to carbon oxides and water. Surprisingly, the metal is reduced instead of forming a metal oxide, even if it is known that these metals (such as Ru) have stable oxides. . For example, ruthenium and platinum compounds that are chemically absorbed on the surface of the substrate can be reduced to elemental metals by using oxygen or by decomposing oxygen-containing precursors (such as: Η 2 0 2) into the reaction tank. . Because ruthenium and platinum are fairly passive metals, it can be inferred that other precious metal precursors that are chemically absorbed can also be converted into elemental forms. Of course, for metals with a positive potential lower than that of the noble metal relative to the hydrogen electrode, since these metals can form more stable oxides than the noble metal, such a mechanism is not expected to occur. The present invention can also be used to form an electrode layer containing a noble metal in a capacitor structure of an integrated circuit. It can also be used to make extremely thin noble metal films, which are used as non-magnetic separation layers in ultra-high density magnetic recording devices. Printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economy More specifically, the method according to the present invention for producing a conductive noble metal film on a substrate is characterized by a characteristic part as described in item 1 of the scope of patent application. The method for manufacturing a capacitor structure is characterized by the features described in item 19 of the scope of the patent application, and the method for manufacturing an ultra-high density magnetic recording device is characterized by the features described in the scope of the patent application 24 section. -8- This paper size applies the Chinese National Standard (CNS) A4 specification (210X297 mm) 556314 A7 5. Description of the invention (6) With the help of the present invention, several significant advantages are obtained. For depositing metal thin films, the conventional advantages of A L D (accurate and simple control of film thickness, excellent step coverage (ie, uniformity), and large area uniformity) are obtained. A method for manufacturing a high-quality conductive film with excellent progressive coverage is provided. The present invention is particularly advantageous in manufacturing conductive layers having high aspect ratio channels and trenches, high local areas, or other similar surface structures that make the surface rough. This vapor phase method is easily integrated with a device for manufacturing an integrated circuit (IC) or a magnetic recording medium. For a highly conductive film, the amount of impurities present in the metal film deposited according to the present invention is low. The erbium, C, and N heterogeneous masses are substantially about 0.1 to 0.3%. The amount of residual oxygen is basically in the range of 0.3 to 0.5%. Surprisingly, the uniformity of the membrane and the reproducibility of the method were improved when the substrate surface of the hydroxyl group was used. Using Η 2〇 and / or Η 2 02 as the oxygen source, by ALD, such a hydroxyl-rich surface (promotes nucleation) is easy to deposit ultra-thin metal oxides (such as: A 1 203 or T i. 2 layer. Brief Description of the Drawings Figure 1 shows the relationship between the growth rate of ruthenium thin film and the resistance rhenium and the evaporation temperature of the ruthenium precursor. Fig. 2 is a graph showing the relationship between the growth rate of ruthenium films, the resistance 値, and the growth temperature. Figure 3 is a side view of the D R AM capacitor structure before the conductor feet are formed. (Please read the precautions on the back before filling out this page) 、 The paper size printed by the 1T Intellectual Property Bureau Employee Consumer Cooperatives of the Ministry of Economic Affairs applies the Chinese National Standard (CNS) A4 specification (210X 297 mm) -9-556314 A7 ___B7 _ 5. Description of the invention (7) FIG. 4 is a side view of the structure of the DRA M capacitor after the conductor pins are formed and the capacitor film is deposited. Figure 5 is a side view of the structure of a DRAM capacitor before the capacitor groove is formed. FIG. 6 is a side view of the DRAM capacitor structure after the capacitor groove is formed and the capacitor film is deposited. FIG. 7 is a side view of the structure of the D R AM trench capacitor. Figure 8 is a side view of a magnetic recording board, which is used to show the location of the film printed by the non-magnetic isolation employee consumer cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs. DESCRIPTION OF SYMBOLS 3 〇 Silicon substrate 3 2 Electric field oxide 3 4 Doped region 3 6 Insulating layer 3 8 Resistive layer 4 〇 Opening 5 〇 Conductor material 5 2 Barrier layer 5 4 Metal 5 6 Capacitor insulator 5 8 Upper electrode 7 0 Second insulation layer 7 2 Resistive material This paper size applies Chinese National Standard (CNS) A4 specification (21〇297mm) -10-(Please read the precautions on the back before filling this page) Order 556314 A7 B7 V. Description of the invention (8 7 4 7 6 9 0 9 2 9 4 9 6 1 1012 114 116 118 12 0 12 2 12 4 15 0 1 5 2 15 4 15 6 Upper metal electrode capacitor groove silicon substrate multilayer film barrier layer first metal electrode layer high-k layer second metal electrode layer barrier film polylithium substrate layer non-magnetic layer portion (please read the precautions on the back before filling (This page) Details of the invention printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economics. This invention relates to a method for manufacturing a thin film by the atomic layer deposition process (ALD). According to this method, a substrate with a surface is placed in a reaction tank. bottom Heated at a lower pressure to an appropriate deposition temperature, the first reactant is led to the reaction by a gas phase pulse (hereinafter also referred to as "gaseous reactant is transported regularly"). The paper size is applicable to the Chinese National Standard (CNS) A4 specification ( 210 乂 297mm) -11-556314 A7 B7 V. Description of the invention (9) (Please read the precautions on the back before filling this page) In the tank and contact with the substrate surface to allow the reactants to bind to the surface, excess The first reactant is purged out of the reaction tank with steam or gas, and the second gaseous reactant is regularly transported to the substrate to generate the second reactant and the surface of the first reactant bound to the surface. The reaction, excess second reactant and gaseous by-products from the surface reaction are washed out of the reaction tank, and the pulse and scrubbing steps are repeated in the order shown until the desired film thickness is reached. This method is based on the precursor chemical Controlled surface reactions. Prevent gas-phase reactions by alternately directing the reactants into the reaction tank. Using a vacuum step and / or inert gas pulses (such as nitrogen or argon), vapor phase reactants in the reaction tank According to the present invention, the method for manufacturing a thin film of precious metal on the surface of the substrate includes at least the following steps:-placing the substrate with the surface in a reaction tank, ~ transferring the vaporized precious metal precursor to the reaction regularly In the tank, a molecular layer of metal precursors is formed on the substrate.-The reaction tank is scrubbed to remove excess vaporized precious metal precursors. Printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs.-Pulses containing oxygen. Supplied to the substrate,-removing gas from the reaction tank to remove excess oxygen-containing gas and gaseous by-products formed by the reaction between the metal precursor layer on the substrate and oxygen, and-repeating the pulse and scrubbing steps, Until the desired film thickness is reached. According to another embodiment of the present invention, the final metal structure may be composed of two or more different noble metal layers located above each other. For example, the growth can be from -12- this paper size applies the Chinese National Standard (CNS) A4 specification (210X: 297 mm) 556314 A7 B7__ — — V. Description of the invention (10) Platinum deposition begins, and finally ruthenium metal deposition. (Please read the notes on the back before filling this page) This background can be of various material types. When manufacturing integrated circuits, the substrate can be composed of several thin films with different chemical and physical properties. The surface of the substrate may be a dielectric layer, such as: Ta205 or (Ba, Sr) Ti03. In addition, the substrate surface can be patterned, so it can include small (less than 1 micron) nodes, channels, and / or grooves with very high aspect ratios (about 2: 1 up to 15 0 ·· 1 and even higher). groove. Therefore, in the method of manufacturing the integrated circuit capacitor structure, a 'noble metal layer is deposited on a barrier layer containing, for example, a metal nitride. The method includes: preparing a silicon substrate with a doped region, which forms an active portion of a transistor;-depositing a first insulating layer on the substrate;-contacting a conductive material with the silicon substrate to Make it penetrate the insulating layer to form an exposed surface; a deposition barrier layer that basically covers the exposed surface of the conductive material; printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs-using atomic layer deposition to make the first Electrode layers are deposited on the barrier layer;-a second insulating layer is deposited on the first electrode layer; and-a second electrode layer containing a precious metal is deposited on the second electrode layer by an atomic layer deposition method On the insulation. As in the method of manufacturing an ultra-high-density magnetic recording device, this substrate layer may also include a ferromagnetic layer. Among them, the first and second ferromagnetic recording layers-13- This paper is applicable to the Chinese National Standard (CNS) A4 specifications (210X297 mm) 556314 A7 B7 Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs 5. Description of the invention (u) Formed on the substrate, the second is isolated from the first, and the isolation layer contains a nonmagnetic precious metal It is deposited between the first and second ferromagnetic layers by ALD. The metal precursor used in the present invention can be a solid, liquid or gaseous material, as long as the metal precursor is in the vapor phase or in the reaction tank and with The surface of the substrate can be contacted so that the precursor can be evaporated before binding to the substrate. Regular delivery of the vaporized precursor means that the precursor steam is directed into the tank for a limited time. Basically, the pulse time ranges from 0.5 to 10 seconds. But depending on the type of substrate and its surface area, this pulse time can even exceed 10 seconds. In the method of the present invention, a suitable metal precursor for depositing a conductive noble metal layer, especially a metallocene compound and a metal Θ-diketonate compound, is usually a metal bonded or coordinated with oxygen or carbon. Compound. When depositing a ruthenium film, the preferred metal precursors are bis (cyclopentadienyl) ruthenium and ginseng (2,2,6,6-tetramethyl-3,5-heptanedione) ruthenium (III) and their Derivatives such as: bis (pentamethylcyclopentadienyl) ruthenium and bis (2,2,6,6-tetramethyl-3,5-heptanedione) (1,5-cyclooctadiene) Group) ruthenium (II). When depositing a platinum film, the preferred metal precursors are (trimethyl) methylcyclopentadienyl platinum (IV), acetoacetone platinum (II), and bis (2,2,6,6 — tetramethyl —3,5 —heptanedione) platinum (II) and their derivatives. The scrubbing gas in the reaction tank refers to the removal of gaseous precursors and / or by-products between the precursors in a vacuum pumping tank and / or replacing the gas inside the reactor with an inert gas (such as argon or nitrogen) eliminate. Typical scrubbing time ranges from 0 · ◦ 5 to 20 seconds. (Please read the notes on the back before filling this page)
、1T - 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) -14- 556314 A7 ____B7 五、發明説明(12) (請先閲讀背面之注意事項再填寫本頁) 根據本發明之方法,可以藉由將氧或氧和其他氣體之 混合物規律輸送至反應槽或者藉由使含氧的化學品(如: Η 2 0 2、N 2〇和/或有機過氧化物)分解而提供含氧脈 衝。例如’將Η 2〇2之蒸汽化的氣態溶液脈衝引至反應器 中及將脈衝導至反應器內的催化表面之後進入反應槽而催 化性地形成含氧脈衝。例如,催化表面是鉑或鈀片。 氧脈衝是一種含氧分子的氣體脈衝,因此可由氧和惰 性氣體(如:氮或氬)之混合物構成。含氧氣體的較佳氧 含量是1 〇至2 5%。因此,一個較佳氧來源是空氣。在 底質相當小(如:不超過4英吋晶元)的例子中,含氧氣 體的物質流率以介於1和2 5 s c c m之間爲佳,介於1 和8 s c c m之間更佳。底質較大時,提高含氧氣體的物 質流率。 反應空間中的壓力基本上介於〇 · 〇 1和2 0毫巴之 間’以介於1和1 0毫巴之間爲佳。、 1T-This paper size applies Chinese National Standard (CNS) A4 specification (210X297 mm) -14- 556314 A7 ____B7 V. Description of the invention (12) (Please read the precautions on the back before filling this page) According to the invention The method can be provided by regularly transporting oxygen or a mixture of oxygen and other gases to the reaction tank or by decomposing an oxygen-containing chemical (such as: 2 、 2 0, N 2 0 and / or organic peroxide) Oxygen pulse. For example, the pulse of the vaporized gaseous solution of Η202 is introduced into the reactor and the pulse is guided to the catalytic surface in the reactor and then enters the reaction tank to form an oxygen-containing pulse catalytically. For example, the catalytic surface is a platinum or palladium sheet. An oxygen pulse is a gas pulse containing oxygen molecules and therefore can be composed of a mixture of oxygen and an inert gas such as nitrogen or argon. The preferred oxygen content of the oxygen-containing gas is 10 to 25%. Therefore, a preferred source of oxygen is air. In cases where the substrate is quite small (eg, no more than 4 inches of wafers), the oxygen-containing gas flow rate is preferably between 1 and 25 sccm, and more preferably between 1 and 8 sccm . When the substrate is large, the mass flow rate of the oxygen-containing gas is increased. The pressure in the reaction space is substantially between 0. 0 1 and 20 mbar ', preferably between 1 and 10 mbar.
膜開始澱積之前,底質加熱至適當成長溫度。根據本 發明,金屬薄膜的成長溫度約2 0 0至5 0 0 ,對R U 經濟部智慧財產局員工消費合作杜印製 而言,以300至360 t爲佳,對P t而言,以250 至4 0 0 t:爲佳。 處理時間視欲製得的層厚度和膜的成長速率而定。 A L D中,薄膜成長速率依每次循環的增加厚度而定。一 次循環包含先質的脈衝和滌除步驟,一次循環期間基本上 介於0 · 2和3 0秒鐘之間。 根據本發明,用以澱積薄膜之反應器的適當配置例是 -15- 本紙張尺度適用中國國家榇準(CNS ) A4規格(2IOX297公釐) 556314 A7 ____B7_ 五、發明説明(13) ,如,市售 ALD 設備,如:ASM Microchemistry Ltd·製造 的F — 1 2 0和Pulsar反應器。除了這些A L D反應器以外 ’許多可用於A L D薄膜成長的其他類型反應器包括配備 有適當設備和用以規律輸送先質的CVD反應器,其可用 以實施本發明之方法。成長程序可以在籠形工具中進行, 此處,底質來自先前處理步驟,在底質上製得金屬膜,之 後將底質運至下一處理步驟。在籠形工具中,反應空間的 溫度可以維持穩定,相較於在每一次處理之前,底質在反 應器中加熱至處理溫度的情況,此顯然改善輸出率。 單一反應器可以備有載物鎖定裝置(load-lock)。此時 ,在每次處理之間,不須將反應空間予以冷卻。 本發明可用以澱積電容器電極。有具經摻雜區域3 4 (此爲電晶體的活性部分)的矽底質3 0。電場氧化物 3 2隔開各個電晶體。絕緣層3 6 (如:S i〇2 )在底質 上成長。絕緣物被平面化。在絕緣層3 6上形成電阻層 3 8並形成圖案以形成開口 4 0。通道被蝕刻至絕緣器, 通道中塡滿導電材料5 0 ,如:多元矽。多元矽層形成圖 案及被鈾刻,使得通道充塡物和充塡物上方的齒狀物延伸 至留在結構上的塡充物。此多元矽齒狀物儘可能減少用於 下方電極所須之昂貴金屬量。蝕刻步驟之後,多元矽的外 露表面可能非常粗糙,使得多元矽表面積儘可能增大。藉 ,如:原子層澱積法(A L D ),屏障層5 2 C如:氮化 鉅矽T a X S i y N z )澱積於底質上。屏障層形成圖案並 經蝕刻使得只有在接近多元矽表面處和其上留下屏障層。 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) -16 - (請先閲讀背面之注意事項再填寫本頁) 、π 經濟部智慧財產局員工消費合作社印製 556314 A7 B7 五、發明説明(14) 根據本發明’貴金屬(如:p t或Ru)藉ALD成 長h底質上’之後’金屬層形成圖案並經蝕刻,使得只有 在接近屏障層5 2處和其上留下金屬5 4。之後,電容器 絕緣器5 6澱積於底質上。電容器絕緣器5 6的介電常數 咼,,其爲咼k材料。鋇—緦(b S T )和氧化鉅 T a 2〇5是適當局k材料的例子。此高k層視情況地經初 化,以提高層的結晶度和介電常數。最後,較上方電極 5 8 C如·· R u或P t )澱積於高k材料5 6上,形成圖 案並經蝕刻,使得電容器可被利用(可用於電力方面)。 構築電容器的另一方法是在多元矽澱積之後,使底質 表面平面化,及之後在多元矽上形成金屬點。但多元矽塡 充物上須要相當厚的金屬層以提高電容器有效區域。此處 ,藉A L D澱積的金屬(如:P t或R u )構成”齒狀物 ”的一部分,其延伸於絕緣器3 6平面上。 另一提高電容器有效區域的方法是在表面上蝕刻出一 個凹槽及在凹槽壁和底部上形成電容器構造。如附圖5所 示者,多元矽塡充物5 0延伸通過第一個絕緣層3 6。第 二個絕緣層7 0 (如:S i〇2 )澱積於第一個絕緣層和多 元矽塡充物上。電阻物7 2位於第二個絕緣器7 0表面上 ,形成圖案,以於多元矽塡充物5 0上形成開口 7 4。參 考附圖6 ,第二個絕緣器經蝕刻直到形成電容器凹槽9 6 。移除殘留電阻物。之後’屏障層(如:T a X S i y N z )澱積於底質上並形成圖案,使得僅有多元矽塡充物頂部 表面被屏障物7 6所覆蓋。根據本發明,下方的金屬電極 (請先閱讀背面之注意事項再填寫本頁) 訂 經濟部智慧財產局員工消費合作社印製 本紙張尺皮適用中國國家標準(CNS ) A4規格(2丨〇><297公釐) -17- 556314 A7 B7 五、發明説明(15) (请先閱讀背面之注意事項再填寫本頁) (如:P t或R u )藉A L D法澱積於底質上,形成圖案 並經蝕刻,使得僅有凹槽底部和壁被下方金屬電極9 0所 覆蓋。高k介電層92 (如:BST)藉,如:ALD法 ,成長於底質上。選用的鍛鍊步驟用以提高介電層9 2的 結晶度和介電常數。最後,上方金屬電極9 4 (如:P t 或R u )藉A L D法澱積於根據本發明的高k薄膜9 2上 〇 另一提高D R A Μ電容器有效區域並維持最小保留底 質面積的方式是將電容器構造置於在矽底質上蝕刻的深凹 槽中。將此構造稱爲溝槽電容器。附圖7顯示沒有定位線 和半導體活性組件的凹槽電容器。矽底質1 1 〇上有一個 溝槽,其表面覆以多層薄膜1 1 2。此澱積作用以形成屏 障層1 1 4 (如:T a x S i y Ν ζ )作爲起點,須有此屏 障層介於矽和鉑族金屬或釕之間以形成金屬矽化物。在屏 障層1 1 4上,第一個金屬電極1 1 6 (如:P t或R u 經濟部智慧財產局員工消费合作社印製 )根據本發明地藉A L D成長。在第一個金屬電極層 116上,藉ALD成長高k層(如:BST)。在高k 層1 1 8上,根據本發明地藉ALD成長第二個金屬電極 層1 2 0 (如:P t或R u )。在溝槽塡滿多元矽1 2 4 時’必須以第二個金屬電極層1 2 0保護屏障薄膜1 2 2 (如:T a X S i y N z )。 金屬電極厚度可選自約1奈米高至約2 Ο 0奈米或更 高’此視應用而定。 視情況地,可以藉由提供具羥基的底質表面引發成長 -18- 本紙張尺度適用中國國家標準(CNS ) Α4規格(210X297公釐〉 556314 A7 B7 五、發明説明(16) (請先閲讀背面之注意事項再填寫本頁} 而促進澱積法,例如,在金屬膜成長之前,先澱積金屬氧 化物(如:A 1 2〇3或T i〇2 )初始薄層。附著於表面 上的氨裂片(即,一 NH2和=NH基團)亦可以作爲金屬 澱積作用的成核點。1 0至2 0埃氧化物層有助於改善金 屬澱積法,即,此方法具再現性且膜變得比無此初始層時 更爲均勻。若藉介電澱積法進行金屬澱積程序5 8 (例如 ,CMOS電晶體中的DRAM或Z r〇2或H f〇2情況 中的(Ba,Sr)Ti〇3 56),此方法會留下覆有 羥基的介電表面,不須隔離羥基化反應的步驟。這樣的介 電澱積法的例子皆是以水爲主的A L D氧化物法。此外, 缺乏羥基的表面可利用反應性化合物(如:過氧化氫 Η 2〇2 )再度羥基化。此情況不須要在澱積本發明之金屬 之前成長絕緣層,有其優點存在。 經濟部智慧財產局員工消費合作社印製 超高密度磁性記錄例中,以使用非磁性層1 5 4 (如 :R u )將底質1 5 0上的鐵磁性記錄層分成兩個部分 1 5 2和1 5 6爲佳。其結果是,強化了在表面上之非常 小的磁性片的磁性極化狀態穩定性且防止磁性極化狀態自 發性地不規則跳動。R u膜1 5 4有助於根據本發明地澱 積形成抗鐵磁性偶合介質。 根據本發明的另一實施例,本發明用以形成晶種層, 此晶種層可用於通道和溝槽之銅金屬化作用的雙重結構。 此應用中,溝槽和通道經擴散屏障塗覆的底質被用於反應 槽中。根據本發明之方法,自金屬來源化學品和氧來源化 學品(藉真空步驟和/或惰性氣體(如:氮或氬)脈衝地 -19- 本紙張尺度適用中國國家標準(CNS ) Α4規格(210X297公釐) 556314 A7 B7 五、發明説明(17) (請先閱讀背面之注意事項再填寫本頁) 使此二者彼此分隔)的交替蒸汽相脈衝,成長選自R u、 Rh、Pd、Ag、Re、〇s、 Ir和Pt中之至少一 種金屬的晶種層。所得晶種層厚度由約1奈米高至3 0奈 米或甚至更高,此視溝槽和通道的尺寸而定。此晶種層有 用地作爲藉電鍍或C V D法使銅澱積的起始層。 以下列非限制例更詳細地說明本發明。 實例1 釕薄膜在流動型F— 1 2 0 ALD反應器(ASM Microchemistry )中澱積。使用雙(環戊二烯基)釕( R u ( C p ) 2 )和空氣(脈衝期間內的流率是8 s c c m )作爲先質。釕膜澱積於5 X 5平方公分覆有A 1 2〇3薄 膜的硼矽酸鹽玻璃底質上。成長溫度是3 5 0 °C。 經濟部智慧財產局員工消費合作社印製 A 1 2 0 3膜有利於得到均勻釕膜和有再現性的方法。 本發明者認爲這是因爲在A 1 2〇3膜上的反應位址(如: 羥基(一〇Η ))的密度高所致。在藉a L D澱積之 A 1 2〇3薄膜的新表面上,這樣的反應性位址密度高。此 實驗中,用以引發R u膜適當成長之A 1 2〇3薄膜係藉 ALD使用A 1 C 13和H2〇或H2〇2作爲先質地製得。 使用4 0次循環得到的A 1 2〇3。 釕先質用量效果隨著蒸發溫度變化而改變。因此,反 應器內部蒸發開口容器溫度變化由4 5至7 〇它。硏究膜 的成長速率和品質。 蒸發的釕先質脈衝長度是〇 · 5秒鐘,之後滌氣 -20- 本紙張尺度適用中國國家橾準(CNS ) A4規格(210X297公嫠〉 556314 A7 B7 五、發明説明(18) (請先閲讀背面之注意事項再填寫本頁) 0 · 5秒鐘。空氣脈衝長度是〇 . 2秒鐘,之後滌氣 0 _ 5秒鐘。共循環3 0 0 0次。附圖1所示結果顯示·· 在改變蒸汽壓並伴隨改變蒸發溫度的情況下,澱積速率與 R u C p 2用量無關。此證實膜成長以自身限制方式進行, 此爲A L D的一個特徵。因此,能夠利用所有有利的 A L D特性。 實例2 釕薄膜在流動型F — 1 2 0 ALD反應器(ASM Microchemistry )中澱積。使用雙(環戊二烯基)釕( R u C C p ) 2 )和空氣(脈衝期間內的流率是8 s c c m )作爲先質。R u ( C p ) 2於5 0 °C自反應器內部的開口 容器蒸發。釕膜澱積於5 X 5平方公分覆有A 1 2〇3薄膜 的硼矽酸鹽玻璃底質上。成長溫度是3 5 0 °C。 釕先質用量效果隨著蒸發的先質脈衝長度由〇 · 2秒 鐘改變至1 · 2秒鐘而改變。硏究膜的成長速率和品質。 經濟部智慧財產局員工消費合作社印製 釕脈衝之後滌氣0 · 5秒鐘。空氣脈衝長度是〇 · 2 秒鐘,之後滌氣0 · 5秒鐘。共循環3 0 0 0次。 附表1所示結果顯示:在脈衝長度超過〇 . 2秒鐘時 ,改變脈衝長度長度,澱積速率與R u C ρ 2用量無關。此 證實膜成長以自身限制方式進行,此爲A L D的一個特徵 -21 - 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) 556314 A7 B7 五、發明説明(19) 附表1· RuCp2 -脈衝長度之影響 R u C p 2 -脈衝長度 電阻値 成長速率 厚度 (微歐姆公分) (埃/循環) (埃) 0.2秒鐘 17.9 0.20 400 0.5秒鐘 14.4 0.43 860 0.5秒鐘 15.0 0.44 870 0.7秒鐘 14.9 0.47 940 1.0秒鐘 14.1 0.47 940 1.2秒鐘 13.9 0.48 960 (請先閲讀背面之注意事項再填寫本頁} 經濟部智慧財產局員工消費合作社印製 實例3 釕薄膜在流動型F - 1 2 0 A L D反應器(ASM Microchemistry )中澱積。使用雙(環戊二烯基)釕(Before the film begins to deposit, the substrate is heated to a suitable growth temperature. According to the present invention, the growth temperature of the metal thin film is about 200 to 500, which is preferably 300 to 360 t for consumer cooperation printing by the Intellectual Property Bureau of the Ministry of Economic Affairs of the RU, and 250 for P t To 4 0 0 t: better. The processing time depends on the thickness of the layer to be produced and the growth rate of the film. In A L D, the growth rate of the film depends on the increase in thickness per cycle. One cycle consists of the pulse and erasure steps of the precursor, and the duration of one cycle is basically between 0.2 seconds and 30 seconds. According to the present invention, a suitable configuration example of a reactor for depositing a thin film is -15- This paper size is applicable to the Chinese National Standard (CNS) A4 specification (2IOX297 mm) 556314 A7 ____B7_ V. Description of the invention (13), such as Commercially available ALD equipment, such as F-12 and Pulsar reactors manufactured by ASM Microchemistry Ltd. In addition to these A L D reactors, 'many other types of reactors which can be used for A L D thin film growth include CVD reactors equipped with appropriate equipment and regular transport of precursors, which can be used to implement the method of the present invention. The growth process can be performed in a cage tool, where the substrate comes from a previous processing step, a metal film is made on the substrate, and the substrate is then transported to the next processing step. In the cage tool, the temperature of the reaction space can be maintained stable, which obviously improves the output rate compared to the case where the substrate is heated to the processing temperature in the reactor before each treatment. A single reactor may be equipped with a load-lock. At this time, it is not necessary to cool the reaction space between each treatment. The invention can be used to deposit capacitor electrodes. There is a silicon substrate 30 with a doped region 3 4 (this is the active part of the transistor). The electric field oxide 32 separates each transistor. The insulating layer 36 (such as Si02) grows on the substrate. The insulator is planarized. A resistive layer 38 is formed on the insulating layer 36 and patterned to form an opening 40. The channel is etched to the insulator, and the channel is filled with conductive material 50, such as polysilicon. The multiple silicon layer forms a pattern and is engraved with uranium, so that the channel charge and the teeth above the charge extend to the charge remaining on the structure. This polysilicon tooth minimizes the amount of expensive metal required for the lower electrode. After the etching step, the exposed surface of polysilicon may be very rough, so that the surface area of polysilicon is as large as possible. By means of, for example, atomic layer deposition (Al D D), the barrier layer 5 2 C (eg, nitrided giant silicon T a X S i y N z) is deposited on the substrate. The barrier layer is patterned and etched so that the barrier layer is left only near and on the surface of the polysilicon. This paper size applies Chinese National Standard (CNS) A4 specification (210X297 mm) -16-(Please read the precautions on the back before filling this page), π Printed by the Intellectual Property Bureau Employee Consumer Cooperatives of the Ministry of Economic Affairs 556314 A7 B7 V. Description of the invention (14) According to the present invention, 'the precious metal (such as: pt or Ru) is grown on the substrate by ALD' and the metal layer is patterned and etched so that only metal is left near and above the barrier layer 52. 5 4. Thereafter, a capacitor insulator 56 is deposited on the substrate. The dielectric constant 咼 of the capacitor insulator 56 is a 咼 k material. Barium-gadolinium (b S T) and oxidized giant T a 2 05 are examples of suitable local k materials. This high-k layer is optionally initialized to improve the crystallinity and dielectric constant of the layer. Finally, the upper electrode 5 8 C (such as Ru or P t) is deposited on the high-k material 5 6 to form a pattern and etched, so that the capacitor can be used (can be used for power). Another method of constructing a capacitor is to planarize the substrate surface after polysilicon deposition, and then to form metal dots on the polysilicon. However, a relatively thick metal layer is required on the polysilicon charge to increase the effective area of the capacitor. Here, a metal (such as: P t or Ru) deposited by A L D constitutes a part of the "tooth", which extends on the plane of the insulator 36. Another way to increase the effective area of a capacitor is to etch a groove in the surface and form a capacitor structure on the groove wall and bottom. As shown in FIG. 5, the polysilicon filling material 50 extends through the first insulating layer 36. A second insulating layer 70 (such as Si02) is deposited on the first insulating layer and the multi-layered silicon substrate. The resistor 72 is located on the surface of the second insulator 70 and forms a pattern to form an opening 74 in the polysilicon filling 50. Referring to FIG. 6, the second insulator is etched until a capacitor recess 9 6 is formed. Remove any remaining resistors. After that, a barrier layer (such as: T a X S y Nz) is deposited on the substrate and forms a pattern, so that only the top surface of the polysilicon filling is covered by the barrier 76. According to the present invention, the lower metal electrode (please read the precautions on the back before filling out this page) Order the paper printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs and apply the Chinese national standard (CNS) A4 specification (2 丨 〇 > < 297 mm) -17- 556314 A7 B7 V. Description of the invention (15) (Please read the notes on the back before filling this page) (eg: P t or Ru) deposited on the substrate by ALD method On top, a pattern is formed and etched so that only the bottom and walls of the groove are covered by the underlying metal electrode 90. The high-k dielectric layer 92 (eg, BST) is grown on the substrate by, for example, the ALD method. The selected exercise steps are used to increase the crystallinity and dielectric constant of the dielectric layer 92. Finally, the upper metal electrode 9 4 (such as: P t or Ru) is deposited on the high-k thin film 9 2 according to the present invention by ALD. Another way to improve the effective area of the DRA M capacitor and maintain the minimum substrate area The capacitor structure is placed in a deep groove etched on a silicon substrate. This structure is called a trench capacitor. Figure 7 shows a recessed capacitor without alignment lines and semiconductor active components. The silicon substrate 1 10 has a groove on its surface and is covered with a multilayer film 1 12. This deposition starts with the formation of a barrier layer 1 1 4 (eg, T ax S i y Ν ζ), and the barrier layer must be between silicon and a platinum group metal or ruthenium to form a metal silicide. On the barrier layer 1 1 4, the first metal electrode 1 1 6 (eg, Pt or Ru printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs) grows by A L D according to the present invention. On the first metal electrode layer 116, a high-k layer (eg, BST) is grown by ALD. On the high-k layer 1 1 8, a second metal electrode layer 1 2 0 (for example, P t or Ru) is grown by ALD according to the present invention. When the trench is filled with polysilicon 1 2 4 ′, the second metal electrode layer 12 2 must be used to protect the barrier film 1 2 2 (eg, T a X S i y N z). The metal electrode thickness may be selected from about 1 nm to about 200 nm or more 'depending on the application. Depending on the situation, growth can be initiated by providing a substrate surface with hydroxyl groups. -18- This paper size applies Chinese National Standard (CNS) A4 specifications (210X297 mm> 556314 A7 B7. V. Description of the invention (16) (Please read first Note on the back side, please fill out this page} to promote the deposition method. For example, before the metal film grows, deposit an initial thin layer of metal oxide (such as: A 1 2 03 or T 2 0). Attach to the surface Ammonia lobes (ie, NH2 and = NH groups) can also serve as nucleation sites for metal deposition. A 10 to 20 angstrom oxide layer helps to improve the metal deposition process, that is, this method has Reproducibility and the film becomes more uniform than without this initial layer. If the metal deposition process is performed by a dielectric deposition method 5 8 (for example, DRAM or Zr02 or Hf02 in a CMOS transistor) (Ba, Sr) Ti〇3 56), this method will leave a dielectric surface covered with hydroxyl groups without isolating the hydroxylation step. Examples of such dielectric deposition methods are mainly water ALD oxide method. In addition, hydroxyl-deficient surfaces can use reactive compounds (such as: Hydrogen Peroxide 2 〇2) It is again hydroxylated. In this case, it is not necessary to grow an insulating layer before depositing the metal of the present invention, which has its advantages. In the case of ultrahigh density magnetic records printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs, non-magnetic The layer 15 (eg Ru) divides the ferromagnetic recording layer on the substrate 150 into two parts 15 2 and 15 6 as a result. As a result, a very small magnetism on the surface is strengthened The magnetic polarization state of the sheet is stable and prevents the magnetic polarization state from spontaneously jumping irregularly. The Ru film 1 5 4 helps to deposit according to the present invention to form an antiferromagnetic coupling medium. Another implementation according to the present invention For example, the present invention is used to form a seed layer, which can be used for the dual structure of copper metallization of channels and trenches. In this application, the substrate coated with the diffusion barrier of the trenches and channels is used for the reaction In the tank, according to the method of the present invention, from metal source chemicals and oxygen source chemicals (by means of a vacuum step and / or an inert gas (such as nitrogen or argon)) -19- This paper size applies Chinese National Standards (CNS) Α4 specifications (210X297 mm) 556314 A7 B7 V. Description of the invention (17) (please read the notes on the back before filling this page) to separate the two from each other) alternate vapor phase pulses, growing from Ru, Rh, Pd, Ag, Re, A seed layer of at least one of os, Ir, and Pt. The thickness of the seed layer obtained is from about 1 nm to 30 nm or even higher, depending on the size of the trenches and channels. This crystal The seed layer is useful as a starting layer for depositing copper by electroplating or CVD. The present invention is explained in more detail by the following non-limiting examples. Example 1 A Ruthenium film in a flow-type F—120 ALD reactor (ASM Microchemistry) Medium deposition. As precursors, bis (cyclopentadienyl) ruthenium (R u (C p) 2) and air (the flow rate during the pulse period was 8 s c c m) were used. A ruthenium film was deposited on a 5 x 5 cm2 borosilicate glass substrate covered with a thin film of A 1203. The growth temperature is 3 5 0 ° C. Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs A 1 2 0 3 film is beneficial to obtain a uniform ruthenium film and a reproducible method. The inventors believe that this is due to the high density of the reaction sites (such as hydroxyl (10Η)) on the A 1 203 film. Such a reactive site density is high on the new surface of the A 1 203 thin film deposited by a L D. In this experiment, the A 1 2 0 3 film used to induce the proper growth of the Ru film was prepared by using ALD using A 1 C 13 and H 2 0 or H 2 0 2 as the precursor. A 1 203 obtained from 40 cycles was used. The effect of the amount of ruthenium precursor changes with the change of evaporation temperature. Therefore, the temperature of the evaporation opening container inside the reactor varies from 45 to 70%. Investigate the growth rate and quality of the film. The pulse length of the evaporated ruthenium precursor is 0.5 seconds, and then the cleaning gas is -20- This paper size is applicable to China National Standard (CNS) A4 (210X297) 556314 A7 B7 V. Description of the invention (18) (please Read the notes on the back before filling in this page) 0 · 5 seconds. The air pulse length is 0.2 seconds, and then the scrubbing time is 0 _ 5 seconds. A total of 3 0 0 cycles. The results shown in Figure 1 Shows that when the vapor pressure is changed and the evaporation temperature is changed, the deposition rate has nothing to do with the amount of Ru C p 2. This confirms that the film growth proceeds in a self-limiting manner, which is a feature of ALD. Therefore, it is possible to use all Favorable ALD properties. Example 2 Deposition of a ruthenium film in a flow-type F — 1 2 0 ALD reactor (ASM Microchemistry). Use of bis (cyclopentadienyl) ruthenium (R u CC p) 2) and air (pulsed The flow rate during the period was 8 sccm) as a precursor. R u (C p) 2 evaporates from the open vessel inside the reactor at 50 ° C. A ruthenium film was deposited on a 5 x 5 cm 2 borosilicate glass substrate covered with a thin film of A 1 2 03. The growth temperature is 3 5 0 ° C. The effect of the amount of ruthenium precursor changes as the pulse length of the evaporated precursor changes from 0.2 seconds to 1.2 seconds. Investigate the growth rate and quality of the film. Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs, after the ruthenium pulse was purged for 0.5 seconds. The air pulse length was 0 · 2 seconds, followed by scrubbing 0 · 5 seconds. A total of 3 0 0 cycles. The results shown in Table 1 show that when the pulse length exceeds 0.2 seconds, the pulse length is changed, and the deposition rate is independent of the amount of Ru C ρ 2 used. This confirms that the film growth is carried out in a self-limiting manner, which is a feature of ALD-21-This paper size applies the Chinese National Standard (CNS) A4 specification (210X297 mm) 556314 A7 B7 V. Description of the invention (19) Schedule 1 · RuCp2-Effect of pulse length Ru C p 2-Pulse length Resistance 値 Growth rate thickness (microohm centimeters) (Angstroms / cycle) (Angstroms) 0.2 seconds 17.9 0.20 400 0.5 seconds 14.4 0.43 860 0.5 seconds 15.0 0.44 870 0.7 sec. 14.9 0.47 940 1.0 sec. 14.1 0.47 940 1.2 sec. 13.9 0.48 960 (Please read the notes on the back before filling out this page} Example of printing by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs 3 Ruthenium film in mobile type F- 1 2 0 ALD reactor (ASM Microchemistry). Bis (cyclopentadienyl) ruthenium (
Ru (Cp)‘2)和空氣作爲先質。RU (Cp)2&5〇 °C自反應器內部的開口容器蒸發。釕膜澱積於5 x 5平方 公分覆有A 1 2 0 3薄膜的硼矽酸鹽玻璃底質上。成長溫度 是 3 5 0。。。 蒸發的釕先質脈衝長度是0 . 5秒鐘,之後滌氣 0 · 5秒鐘。空氣脈衝長度是〇 . 2秒鐘,之後滌氣 〇· 5秒鐘。共循環2〇〇〇次。 改變空氣流率(由0至1 4 s c c m )地測試氧用量 影響。硏究膜的成長速率和品質。附表2所示結果顯示: 空氣流率高於4 s c c m時,澱積速率與其無關。此證實 膜成長以自身限制方式進行,此爲A L D的一個特徵。此 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) -22- 556314 A7 B7 五、發明説明(20 ) 外,無空氣時’膜未成長,此證實成長並非因RU C P2激 積而是因爲R u C p 2和氧之間的反應所致。 附表2.空氣流率之影響 空氣流率 電阻値 成長速率 厚度 (微歐姆公分) (埃/循環) (埃) 1 4 s c c m 12.1 0.35 700 8 s c c m 15.0 0.44 870 8 s c c m 14.4 0.43 860 4 s c c m 14.4 0.43 860 2 s c c m 12.3 0.34 680 1 s c c m 12.4 0.31 610 0 s c c m " 無膜 (請先閲讀背面之注意事項再填寫本頁) 訂 經濟部智慧財產局員工消費合作社印製 實例4 釕薄膜在流動型F — 1 2 0 A L D反應器(ASM Microchemistry )中澱積。使用雙(環戊二烯基)釕( R u ( C p ) 2 )和空氣(脈衝期間內的流率是1 s c c m )作爲先質。Ru (Cp) 2於50 t:自反應器內部的開口 容器蒸發。釕膜澱積於5 X 5平方公分覆有A 1 2〇3薄膜 的硼矽酸鹽玻璃底質上。測試的成長溫度是3 5 0 °C。 蒸發的釕先質脈衝長度是0 . 5秒鐘,之後滌氣 0 · 5秒鐘。改變空氣脈衝長度,之後滌氣0 · 5秒鐘。 共循環2 0 0 0次。 改變空氣脈衝長度(由0 . 2至2 . 〇秒鐘)地測試 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) -23- 556314 A7 B7 五、發明説明(21) 氧用量影響。氧流率是1 s c c m。硏究膜的成長速率和 品質。附表3所示結果顯示:空氣脈衝高於丨秒鐘時,激 積速率與其無關。此證實膜成長以自身限制方式進行,此 爲A L D的一個特徵。 世表3·空氣脈衝長度之影饗 空氣脈衝長度 電阻値 成長速率 厚度 (微歐姆公分) (埃/循環) (埃) 0.2秒鐘 12.4 」 0.31 610 0.5秒鐘 13.1 0.32 640 0.7秒鐘 12.4 0.38 760 1.0秒鐘 12.4 0.39 780 1.0秒鐘 12.5 0.43 860 1.5秒鐘 12.0 0.44 880 2.0秒鐘 11.7 0.45 890 實例5 釕薄膜在流動型F - 1 2 0 ALD反應器(ASM Mici'ochemistry )中澱積。使用雙(環戊二烯基)釕( R u ( C p ) 2 )和空氣(脈衝期間內的流率是8 s c c m )作爲先質。R u ( C p ) 2於5 0 °C自反應器內部的開口 容器蒸發。釕膜澱積於5 X 5平方公分覆有A 1 2〇3薄膜 的硼矽酸鹽玻璃底質上。測試的成長溫度是3 5 0 °C。 蒸發的釕先質脈衝長度是0 . 5秒鐘,之後滌氣 0 · 5秒鐘。空氣脈衝長度是〇 . 2秒鐘,改變之後的滌 本紙張尺度適用中國國家橾準(CNS〉A4規格(210X297公釐) (請先閲讀背面之注意事項再填寫本頁)Ru (Cp) '2) and air are the precursors. RU (Cp) 2 & 50 ° C evaporates from the open container inside the reactor. A ruthenium film was deposited on a 5 x 5 cm2 borosilicate glass substrate covered with a thin film of A 1 2 0 3. The growth temperature is 3 50. . . The pulse length of the evaporated ruthenium precursor is 0.5 seconds, and then the scrubbing is 0.5 seconds. The air pulse length was 0.2 seconds, and then the scrubbing was 0.5 seconds. A total of 2,000 cycles were performed. The effect of oxygen consumption was tested by changing the air flow rate (from 0 to 1 4 s c c m). Investigate the growth rate and quality of the film. The results shown in Table 2 show that: When the air flow rate is higher than 4 s c cm, the deposition rate has nothing to do with it. This confirms that membrane growth proceeds in a self-limiting manner, which is a feature of A L D. This paper size is in accordance with Chinese National Standard (CNS) A4 (210X297 mm) -22- 556314 A7 B7 V. Description of the invention (20) In addition, when there is no air, the film has not grown, which confirms that the growth is not caused by RU C P2. The product is due to the reaction between Ru C p 2 and oxygen. Attached Table 2. Influence of Air Flow Rate Air Flow Rate Resistance 値 Growth Rate Thickness (microohm centimeters) (Angstroms / cycle) (Angstroms) 1 4 sccm 12.1 0.35 700 8 sccm 15.0 0.44 870 8 sccm 14.4 0.43 860 4 sccm 14.4 0.43 860 2 sccm 12.3 0.34 680 1 sccm 12.4 0.31 610 0 sccm " No film (please read the precautions on the back before filling this page) Order the printed example of the employee's consumer cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs 4 Ruthenium film in mobile type F — Deposited in a 1 2 0 ALD reactor (ASM Microchemistry). As precursors, bis (cyclopentadienyl) ruthenium (R u (C p) 2) and air (the flow rate during the pulse period was 1 s c c m) were used. Ru (Cp) 2 at 50 t: Evaporates from the open vessel inside the reactor. A ruthenium film was deposited on a 5 x 5 cm 2 borosilicate glass substrate covered with a thin film of A 1 2 03. The test growth temperature is 3 50 ° C. The pulse length of the evaporated ruthenium precursor is 0.5 seconds, and then the scrubbing is 0.5 seconds. After changing the air pulse length, the air was purged for 0.5 seconds. A total of 2 0 0 cycles. Change the air pulse length (from 0.2 to 2.0 seconds) to test the size of this paper. Applicable to China National Standard (CNS) A4 (210X297 mm) -23- 556314 A7 B7 V. Description of the invention (21) Oxygen consumption influences. The oxygen flow rate is 1 s c c m. Investigate the growth rate and quality of the film. The results shown in Table 3 show that when the air pulse is higher than 丨 seconds, the accretion rate has nothing to do with it. This confirms that membrane growth proceeds in a self-limiting manner, which is a characteristic of A L D. Table 3 · Shadow of air pulse length 飨 Air pulse length resistance 値 Growth rate thickness (micro-ohm centimeters) (Angstroms / cycle) (Angstroms) 0.2 seconds 12.4 "0.31 610 0.5 seconds 13.1 0.32 640 0.7 seconds 12.4 0.38 760 1.0 seconds 12.4 0.39 780 1.0 seconds 12.5 0.43 860 1.5 seconds 12.0 0.44 880 2.0 seconds 11.7 0.45 890 Example 5 A ruthenium film was deposited in a flow-type F-1 2 0 ALD reactor (ASM Mici'ochemistry). As precursors, bis (cyclopentadienyl) ruthenium (R u (C p) 2) and air (the flow rate during the pulse period was 8 s c c m) were used. R u (C p) 2 evaporates from the open vessel inside the reactor at 50 ° C. A ruthenium film was deposited on a 5 x 5 cm 2 borosilicate glass substrate covered with a thin film of A 1 2 03. The test growth temperature is 3 50 ° C. The pulse length of the evaporated ruthenium precursor is 0.5 seconds, and then the scrubbing is 0.5 seconds. The air pulse length is 0.2 seconds. The size of the paper after the change applies to the Chinese national standard (CNS> A4 size (210X297 mm) (Please read the precautions on the back before filling in this page)
、1T 經濟部智慧財產局員工消费合作社印製 -24 - 556314 A7 ___B7 五、發明説明(22 ) 氣長度。共循環2 0 0 0次。 (請先閱讀背面之注意事項再填寫本頁) 改變滌氣長度C由0 · 2至1 · 0秒鐘),以得知空 氣脈衝之後的滌氣長度之影響。硏究膜的成長速率和品質 。附表4所示結果顯示:其與滌氣時間無關,藉此得知先 質脈衝被良好隔離。 附表4.空氣脈衝之後的滌氣長度之影響 空氣脈衝長度 電阻値 成長速率 厚度 (微歐姆公分) (埃/循環) (埃) 0.2秒鐘 12.1 0.41 810 0.5秒鐘 14.4 0.43 860 0.5秒鐘 15.0 0.44 870 1.0秒鐘 13.1 0.40 800 實例6 釕薄膜在流動型F — 1 2 0 ALD反應器(ASM Microchemistry )中澱積。使用雙(環戊二烯基)釕( 經濟部智慧財產局員工消费合作社印製 R u ( C p ) 2 )和空氣(脈衝期間內的流率是8 s c c m )作爲先質。R u ( C p ) 2於5 0 °C自反應器內部的開口 谷益蒸發。釕膜潑積於5 X 5平方公分覆有A 1 2〇3薄膜 的硼矽酸鹽玻璃底質上。再次發現到:要得到平滑且具再 現性的釕膜,須要A 1 2〇3膜。測試的生長溫度是3 5 0 °C。 蒸發的釕先質脈衝長度是〇 · 5秒鐘,改變之後的滌 氣時間。空氣脈衝長度是〇 · 2秒鐘,之後滌氣0 · 5秒 本紙張尺度適用中國國家標準(CNS )八4規格(210X297公嫠)_ 9c .—一 ' 556314 B7 五、發明説明(23) 鐘。共循環2 0 0 0次。 改變滌氣長度(由0 · 2至1 · 0秒鐘)地沏f言式 R u ( C ρ ) 2脈衝之後的滌氣長度之影響。硏究膜的成長 速率和品質。附表5所不結果顯不其與滌氣時間無關,藉 此證實先質脈衝被良好地隔開。 附表5. RuCpa脈衝之後的滌氣長度之影響Printed by 1T Consumer Cooperatives, Intellectual Property Bureau, Ministry of Economic Affairs -24-556314 A7 ___B7 V. Description of Invention (22) Gas length. A total of 2 0 0 cycles. (Please read the precautions on the back before filling this page) Change the scrubbing length C from 0 · 2 to 1 · 0 seconds) to know the effect of scrubbing length after air pulse. Investigate the growth rate and quality of the film. The results shown in Table 4 show that it has nothing to do with the scrubbing time, thereby knowing that the precursor pulse is well isolated. Attached Table 4. Effect of scrubbing length after air pulse Air pulse length Resistance 値 Growth rate thickness (microohm centimeter) (Angstroms / cycle) (Angstrom) 0.2 seconds 12.1 0.41 810 0.5 seconds 14.4 0.43 860 0.5 seconds 15.0 0.44 870 1.0 seconds 13.1 0.40 800 Example 6 A ruthenium film was deposited in a flow-type F—120 ALD reactor (ASM Microchemistry). Bis (cyclopentadienyl) ruthenium (R u (C p) 2 printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs) and air (the flow rate during the pulse period is 8 s c cm) were used as precursors. R u (C p) 2 evaporates from the opening Gu Yi in the reactor at 50 ° C. A ruthenium film was deposited on a 5 X 5 cm 2 borosilicate glass substrate covered with a thin film of A 1 2 03. It was found again that to obtain a smooth and reproducible ruthenium film, an A 1 203 film was required. The growth temperature tested was 3 50 ° C. The pulse length of the evaporated ruthenium precursor is 0.5 seconds, and the scrub time after that is changed. The length of the air pulse is 0.2 seconds, and then the scrubbing time is 0.5 seconds. The paper size is applicable to the Chinese National Standard (CNS) 8 4 specifications (210X297 cm) _ 9c .— 一 '556314 B7 V. Description of the invention (23) bell. A total of 2 0 0 cycles. The effect of the length of scrubbing after changing the scrubbing length (from 0.2 to 1.0 seconds) after the pulse R f (C ρ) 2 pulses. Investigate the growth rate and quality of the film. The results in Table 5 show that it has nothing to do with the scrubbing time, thereby confirming that the precursor pulses are well separated. Schedule 5. Effect of scrubbing length after RuCpa pulse
Ru(Cp)2之後的滌氣長度 電阻値 成長速率 厚度 (微歐姆公分) (埃/循環) (埃) 0.2秒鐘 13.3 0.40 790 0.5秒鐘 14.4 043 860 0.5秒鐘 15.0 0.44 870 1.0秒鐘 12.9 0.38 750 實例7 釕薄膜在流動型F — 1 2 0 ALD反應器(ASM Microchemistry )中澱積。使用雙(環戊二烯基)釕( R u ( C ρ ) 2 )和空氣(脈衝期間內的流率是8 s c c m )作爲先質。R u ( C ρ ) 2於5 0 °C自反應器內部的開口 容器蒸發。釕膜澱積於5 X 5平方公分覆有A 1 2〇3薄膜 的硼矽酸鹽玻璃底質上。測試的生長溫度是3 5 0和 3 0 0 °C。 測試循環總數之影響。硏究膜的成長速率和品質° 附表6和7顯示:如A L D之特徵,得以藉施用澱積 循環數簡便地控制膜厚度。但膜成長之初有一些成長速率 (請先閱讀背面之注意事項再填寫本頁) 訂 經濟部智慧財產局員工消費合作社印製 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公嫠) -26- 556314 Α7 Β7 五、發明説明(24 ) 經濟部智慧財產局員工消費合作社印製 較低的引發期間。此可歸因於氧化物表面的初成核作用。 附表6·成長溫度爲350°C時,循環次數之影響 循環次數 電阻値 成長速率 厚度 (微歐姆公分) (埃/循環) (埃) 1000 17.5 0.39 390 1000 15.1 0.35 350 2000 14.4 0.43 860 2000 15.0 0.44 870 3000 12.9 0.41 1240 3000 13.3 0.39 1170 4000 11.7 0.41 1620 4000 12.6 0.44 1740 7.成長溫度爲300°C時,循環次數之 循環 次數 電阻値 (微歐姆公分) 成長速率 (埃/循環) 厚度 (埃) 註 1000 257 0.09 90 不均勻薄膜,導電性 欠佳 2000 19.0 0.18 350 有金屬光澤的不均勻 膜 3000 14.7 0.27 810 有金屬光澤的不均勻 膜 4000 12.5 0.29 1150 有金屬光澤的不均勻 膜 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公嫠) - (請先閱讀背面之注意事項再填寫本頁) *?τ 556314 A7 B7 五、發明説明(25 ) 實例8 (請先閲讀背面之注意事項再填寫本頁) 釕薄膜在流動型F — 1 2 0 A L D反應器(ASM Microchemistry )中澱積。使用雙(環戊二烯基)釕( R u ( C p ) 2 )和空氣(脈衝期間內的流率是8 s c c m )作爲先質。Ru ( Cp ) 2於5 0°C自反應器內部的開口 容器蒸發。釕膜澱積於5 X 5平方公分覆有A 1 2〇3薄膜 的硼矽酸鹽玻璃底質上。再次發現到:要得到平滑且具再 現性的釕膜,須要A 1 2 ◦ 3膜。澱積的T i ◦ 2亦具此有 利效果。 此實驗中,A 1 2〇3膜用以促進成核作用並藉由使用 A 1 C 1 3和H 2〇或Η 2〇2作爲先質地藉A L D澱積法製 得。使用4 0次循環得到的A 1 2〇3。於R u膜開始澱積 之前施用於底質表面上。 測試澱積溫度對於膜的成長和品質之影響。測試的成 長溫度由2 5 0至4 5 0 °C,其示於附圖2。以飛行時間 回彈偵測分析(T〇F — E R D A )測定於3 0 0、 經濟部智慧財產局員工消費合作社印製 3 5 0和4 0 0 °C成長的膜的釕、氧、碳、氮和氫含量, 其結果示於附表8。 蒸發的釕先質脈衝長度是0 . 5秒鐘,之後滌氣 0 · 5秒鐘。空氣脈衝長度是〇 . 2秒鐘,之後滌氣 0 · 5秒鐘。共循環3 0 0 0次。附表8所示結果顯示: 在2 7 5 - 4 0 0 °C之寬廣的溫度範圍內,製得電阻値低 的R u膜。由成長速率和膜純度觀點,所用澱積溫度以 -28- 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) 556314 Α7 Β7 五、發明説明(26 ) 3 5 0至4 Ο Ο Ό較有利。但於3 0 〇 °C時,膜純度已引 人注目。 附表8·藉TOF-ERDA得到的釕薄膜之組成 __ 成長溫度(°c ) Ru % 0% C% N% H% 400 〜100 <0.5 <0.3 <0.1 <0.2 350 〜100 <0.4 <0.2 <0.1 <0.2 300 〜100 <1.5 <0.3 <0.1 <0.4 經濟部智慧財產局員工消費合作社印製 實例9 釕薄膜在流動型F - 1 20 ALD反應器(ASM Microchemistry )中澱積。使用雙(環戊二烯基)釕(二茂 釕,R u ( C p ) 2 )和3 0 %過氧化氫溶液作爲先質。 Ru (Cp) 2於75 °C自反應器內部的開口容器蒸發。過 氧化氫溶液維持於室溫並經由針和電磁閥引至反應器中。 釕膜澱積於5 X 5平方公分覆有A 1 2〇3薄膜的硼矽酸鹽 玻璃底質上。發現A 1 2 ◦ 3膜有助於得到均勻的釕膜和有 再現性的方法。 根據AL D法’將R u ( C p ) 2和H2〇2交替地規 律輸至反應器中地進行釕膜澱積。Η 2〇2脈衝通過鉑片上 方以將Η2〇2分解成O^Ru (Cp) 2脈衝長度介於 0 · 2和1 · 0秒鐘之間,Η 2 0 2脈衝長度介於〇 · 5和 2 · 0秒鐘之間。在R u ( C ρ ) 2脈衝之後,滌氣脈衝維 持0 ‘ 5秒鐘,在Η 2〇2脈衝之後,滌氣脈衝維持1 · 5 秒鐘。 (請先閲讀背面之注意事項再填寫本頁) 訂 參· 本紙張尺度適用中國國家橾準(CNS ) Α4規格(210X297公釐) -29- 556314 A7 ____B7_ 五、發明説明(27 ) 膜於3 5 0 °C成長。當R U ( C p ) 2脈衝長度介於 (請先閲讀背面之注意事項再填寫本頁) 0 . 2和1 · 〇秒鐘之間且Η 2〇2脈衝長度是2 . 0秒鐘 時,澱積率介於〇 · 4 1和0 · 4 4埃/循環之間。 R u ( C ρ ) 2脈衝長度維持穩定(〇 · 5秒鐘)和 Η 2〇2脈衝長度介於〇 · 5和2 · 0秒鐘之間時,澱積速 率分別提高至由0 · 3 5至0 · 4 4埃/循環。根據 X R D測量,膜是多晶狀釕金屬。膜的電阻値介於i 〇和 1 5微歐姆公分之間。此電阻値係以四點探針法測得。 實例1 0 釕薄膜在流動型F — 1 2 0 A L D反應器(ASM Microchemistry )中澱積。使用雙(2 ,2 ,6 ,6 —四甲 基—3,5 —庚二酮)釕(I I ) ( R u ( t h d ) 2 )和 空氣(脈衝期間內的流率是2 5 s c c m )作爲先質。 經濟部智慧財產局員工消費合作社印製 R u ( t h d ) 2於1 0 〇 °C自反應器內部的開口容器蒸發 。釕膜澱積於5 X 5平方公分覆有A 1 2〇3薄膜的硼矽酸 鹽玻璃底質上。澱積溫度是3 5 0或4 0 0 °C,成長速率 分別是0 . 4 0和0 . 3 5埃/循環。這些成長速率與使 用R u ( C p ) 2所得者相仿。電阻値是1 7 - 1 8微歐姆 公分。根據X R D測量,得知此膜是多晶狀釕金屬。 實例1 1 釕薄膜在流動型F — 1 2 0 A L D反應器(ASM Mici.ochemistry)中源積。使用雙(2 ,2 ’ 6 ’ 6 —四甲 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) _ 30 - 556314 A7 B7 五、發明説明(28 ) 基一 3,5 —庚二酮)釕(I I ) ( R u ( t h d ) 2 )和 (請先閲讀背面之注意事項再填寫本頁) 3〇%過氧化氫水溶液作爲先質。r u ( t h d ) 2於 1 2 0 C自反應器內部的開口容器蒸發。過氧化氫溶液維 持於室溫並經由針和電磁閥引至反應器中。釕膜澱積於5 X. 5平方公分覆有A 1 2〇3薄膜的硼矽酸鹽玻璃底質上。 澱積溫度介於4 0 0和5 0 0 °C之間。此膜的成長速率與 自R u ( C p ) 2澱積者相仿。根據X r d測量,得知此膜 是多晶狀釕金屬。 實例1 2 鉑薄膜在流動型F— 1 2 0 ALD反應器(ASM Microchemistry )中澱積。使用(三甲基)甲基環戊二烯基 舶(P t T M C p )和空氣(脈衝期間內的流率是 25 s c cm)作爲先質。P tTMCp於21°C自反應 器內部的開口容器蒸發。此鉑膜澱積於5 X 5平方公分覆 有A 1 2 ◦ 3薄膜的硼矽酸鹽玻璃底質上。成長溫度是 3 0 0 °C。此外,亦測試P t膜於2 5 0 °C之成長。 經濟部智慧財產局員工消費合作社印製 鉑先質脈衝長度是0 · 5秒鐘,鉑先質脈衝之後的滌 氣時間是1 · 0秒鐘。空氣脈衝長度是0 · 5至2 · 0秒 鐘,之後滌氣2 · 0秒鐘。共循環1 5 0 0次。 發現空氣脈衝是0 . 5秒鐘時,鉑膜裸露地成長。但 空氣脈衝僅1 · 0秒鐘會以0 · 3 5埃/循環的成長速率 得到均勻的膜。測定膜的電阻値。其結果示於附表9。 -31 - 本紙張尺度適用中國國家樣準(CNS ) A4規格(210X297公釐) 556314 A7 B7 五、發明説明(29 ) 附表9.空氣脈衝長度對於鉑薄膜的電阻値和成長速率之影 響 空氣脈衝長度(秒鐘) 電阻値 成長速率 厚度 (微歐姆公分) (埃/循環) (奈米) 1.0 13.9 0.35 52 1.5 12.4 0.43 65 2.0 12.6 0.45 68 經濟部智慧財產局員工消費合作社印製 可忽略在底質上的膜厚度變化。厚度變化超過4公分 者在施用測定法的準確度範圍之內(即,± 1奈米)° 實例1 3 實例1 2中所述鉑膜於3 0 0 °C澱積。鉑先質脈衝長 度是0 · 5秒鐘,之後滌氣1 · 0秒鐘。空氣脈衝長度是 1 · 0秒鐘,之後滌氣2 · 0秒鐘。以1 5 0 0、 2250和3000次循環測試循環總數對於成長速率之 0 〇 之影響 影響。 測定膜的電阻値和厚度。其結果示於附表1 附表10.循環數對於鉑薄膜的電阻値扯座 循環次數 電阻値 (微歐姆公分) 成長速率 (埃/循環) 厚度 (奈米) 1500 13.9 0.35 52 2250 12.4 0.39 78 3000 11.5 0.35 106 (請先閱讀背面之注意事項再填寫本頁) 訂 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) -32 -Polyester length resistance after Ru (Cp) 2 値 Growth rate thickness (microohm centimeters) (Angstroms / cycle) (Angstroms) 0.2 seconds 13.3 0.40 790 0.5 seconds 14.4 043 860 0.5 seconds 15.0 0.44 870 1.0 seconds 12.9 0.38 750 Example 7 A ruthenium film was deposited in a flow-type F—120 ALD reactor (ASM Microchemistry). As precursors, bis (cyclopentadienyl) ruthenium (R u (C ρ) 2) and air (the flow rate during the pulse period was 8 s c c m) were used. R u (C ρ) 2 evaporates from the open vessel inside the reactor at 50 ° C. A ruthenium film was deposited on a 5 x 5 cm 2 borosilicate glass substrate covered with a thin film of A 1 2 03. The growth temperatures tested were 3 50 and 300 ° C. The effect of the total number of test cycles. Investigate the growth rate and quality of the film ° Tables 6 and 7 show that characteristics such as A L D make it possible to easily control the film thickness by applying the number of deposition cycles. However, there are some growth rates at the beginning of film growth (please read the precautions on the back before filling this page). Order printed by the Intellectual Property Bureau Employee Consumer Cooperative of the Ministry of Economic Affairs. The paper size is applicable to China National Standard (CNS) A4 (210X297). -26- 556314 Α7 Β7 V. Description of the invention (24) The consumer property cooperative of the Intellectual Property Bureau of the Ministry of Economy printed a lower trigger period. This can be attributed to the primary nucleation of the oxide surface. Attached Table 6: When the growth temperature is 350 ° C, the effect of the number of cycles. The number of cycles. Resistance 値 Growth rate thickness (microohm centimeters) (Angstroms / cycle) (Angstroms) 1000 17.5 0.39 390 1000 15.1 0.35 350 2000 14.4 0.43 860 2000 15.0 0.44 870 3000 12.9 0.41 1240 3000 13.3 0.39 1170 4000 11.7 0.41 1620 4000 12.6 0.44 1740 7. Cycle number of cycles at 300 ° C Resistance ° (microohm centimeters) Growth rate (Angstroms / cycle) Thickness (Angstroms) ) Note 1000 257 0.09 90 Non-uniform film with poor conductivity 2000 19.0 0.18 350 Non-uniform film with metallic luster 3000 14.7 0.27 810 Non-uniform film with metallic luster 4000 12.5 0.29 1150 Non-uniform film with metallic luster Paper size Applicable to China National Standard (CNS) A4 specification (210X297 cm)-(Please read the precautions on the back before filling this page) *? Τ 556314 A7 B7 V. Description of the invention (25) Example 8 (Please read the precautions on the back first Please fill in this page again.) Ruthenium thin film is deposited in a flow-type F 1 2 0 ALD reactor (ASM Microchemistry). As precursors, bis (cyclopentadienyl) ruthenium (R u (C p) 2) and air (the flow rate during the pulse period was 8 s c c m) were used. Ru (Cp) 2 evaporates from the open vessel inside the reactor at 50 ° C. A ruthenium film was deposited on a 5 x 5 cm 2 borosilicate glass substrate covered with a thin film of A 1 2 03. It was found again that to obtain a smooth and reproducible ruthenium film, an A 1 2 ◦ 3 film was required. The deposited Ti i 2 also has this beneficial effect. In this experiment, A 1 203 film was used to promote nucleation and was prepared by A L D deposition method using A 1 C 1 3 and H 2 0 or Η 2 02 as precursors. A 1 203 obtained from 40 cycles was used. It is applied to the substrate surface before Ru film deposition begins. The effect of deposition temperature on film growth and quality was tested. The test growth temperature was from 250 to 450 ° C, which is shown in Figure 2 of the accompanying drawings. Time-of-flight rebound detection analysis (TOF-ERDA) was used to determine ruthenium, oxygen, carbon, The results of nitrogen and hydrogen contents are shown in Table 8. The pulse length of the evaporated ruthenium precursor is 0.5 seconds, and then the scrubbing is 0.5 seconds. The air pulse length was 0.2 seconds, followed by scrubbing for 0.5 seconds. A total of 3 0 0 cycles. The results shown in the attached table 8 show that a Ru film with low resistance can be obtained in a wide temperature range of 275-400 ° C. From the point of view of growth rate and film purity, the deposition temperature used is -28- This paper size applies the Chinese National Standard (CNS) A4 specification (210X297 mm) 556314 Α7 Β7 V. Description of the invention (26) 3 5 0 to 4 Ο Ο Ό is more favorable. But at 300 ° C, the purity of the membrane has been noticeable. Table 8 · Composition of ruthenium thin film obtained by TOF-ERDA __ Growth temperature (° c) Ru% 0% C% N% H% 400 ~ 100 < 0.5 < 0.3 < 0.1 < 0.2 350 ~ 100 < 0.4 < 0.2 < 0.1 < 0.2 300 ~ 100 < 1.5 < 0.3 < 0.1 < 0.4 Printed Example of Employees' Cooperatives in the Intellectual Property Bureau of the Ministry of Economic Affairs 9 Ruthenium Film in Flowing F-1 20 ALD Reaction Deposition in an ASM Microchemistry. As precursors, bis (cyclopentadienyl) ruthenium (ruthenocene, Ru (Cp) 2) and a 30% hydrogen peroxide solution were used. Ru (Cp) 2 evaporates from the open container inside the reactor at 75 ° C. The hydrogen peroxide solution was maintained at room temperature and introduced into the reactor via a needle and a solenoid valve. A ruthenium film was deposited on a 5 x 5 cm2 borosilicate glass substrate covered with a thin film of A 1 2 03. It was found that the A 1 2 ◦ 3 film helped to obtain a uniform ruthenium film and a reproducible method. Ru (Cp) 2 and H2O2 were alternately and regularly fed into the reactor according to the ALD method 'to perform ruthenium film deposition. The pulse of Η202 passes through the platinum sheet to decompose Η2 into O ^ Ru (Cp). The pulse length is between 0.2 seconds and 1.0 seconds, and the pulse length of Η202 is between 0.5. And 2 · 0 seconds. After the R u (C ρ) 2 pulse, the scrubbing pulse was maintained at 0 ′ 5 seconds, and after the Η 2202 pulse, the scrubbing pulse was maintained for 1.5 seconds. (Please read the precautions on the back before filling in this page) Ordering · This paper size applies to China National Standard (CNS) A4 specification (210X297 mm) -29- 556314 A7 ____B7_ V. Description of the invention (27) Film on 3 5 0 ° C growth. When the pulse length of RU (C p) 2 is between (Please read the precautions on the back before filling this page) between 0.2 and 1.0 seconds and the pulse length of 2.02 is 2.0 seconds, The deposition rate is between 0.41 and 0.44 Angstroms / cycle. When the pulse length of R u (C ρ) 2 remains stable (0.5 seconds) and the pulse length of Η 2 02 is between 0.5 and 2.0 seconds, the deposition rate is increased from 0 · 3 respectively. 5 to 0 · 4 4 Angstroms / cycle. According to X R D measurement, the film was polycrystalline ruthenium metal. The resistance 値 of the film is between i 0 and 15 micro-ohm centimeters. This resistance is measured by the four-point probe method. Example 10 A ruthenium film was deposited in a flow-type F—120 A L D reactor (ASM Microchemistry). Use bis (2,2,6,6-tetramethyl-3,5-heptanedione) ruthenium (II) (R u (thd) 2) and air (the flow rate during the pulse period is 2 5 sccm) as Precursor. Printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs, R u (t h d) 2 evaporates from the open container inside the reactor at 100 ° C. A ruthenium film was deposited on a 5 x 5 cm2 borosilicate glass substrate covered with a thin film of A 1 2 03. The deposition temperature was 350 or 400 ° C, and the growth rates were 0.40 and 0.35 angstroms / cycle, respectively. These growth rates are similar to those obtained using Ru (Cp) 2. The resistance 値 is 17-18 micro-ohm centimeters. According to X R D measurement, it was found that the film was polycrystalline ruthenium metal. Example 1 1 A source product of a ruthenium film in a flow-type F—120 A L D reactor (ASM Mici.ochemistry). Use double (2, 2 '6' 6-four-size paper) This paper size is applicable to the Chinese National Standard (CNS) A4 specification (210X297 mm) _ 30-556314 A7 B7 V. Description of the invention (28) Basis 3, 5-G Diketone) Ruthenium (II) (R u (thd) 2) and (Please read the notes on the back before filling this page) 30% hydrogen peroxide solution as precursor. r u (t h d) 2 evaporated from the open container inside the reactor at 120 ° C. The hydrogen peroxide solution was maintained at room temperature and introduced into the reactor via a needle and a solenoid valve. A ruthenium film was deposited on a borosilicate glass substrate with a thickness of 5 × 5 cm 2 and a thin film of A 1 2 03. The deposition temperature is between 400 and 500 ° C. The growth rate of this film is similar to that of deposits from Ru (Cp) 2. According to X r d measurement, it was found that the film was a polycrystalline ruthenium metal. Example 1 2 A platinum film was deposited in a flow-type F—120 ALD reactor (ASM Microchemistry). (Trimethyl) methylcyclopentadienyl (P t T M C p) and air (flow rate during pulse period is 25 s c cm) were used as precursors. PtTMCp evaporates from the open container inside the reactor at 21 ° C. This platinum film was deposited on a 5 x 5 cm2 borosilicate glass substrate covered with a thin film of A 1 2 ◦ 3. The growth temperature is 300 ° C. In addition, the growth of Pt film at 250 ° C was also tested. Printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs. The length of the platinum precursor pulse is 0.5 seconds, and the scrub time after the platinum precursor pulse is 1.0 seconds. The air pulse length is 0 · 5 to 2 · 0 seconds, followed by scrubbing for 2 · 0 seconds. A total of 1 500 cycles. It was found that when the air pulse was 0.5 seconds, the platinum film grew barely. But an air pulse of only 1.0 seconds results in a uniform film at a growth rate of 0.35 Angstroms / cycle. The resistance of the film was measured. The results are shown in Schedule 9. -31-This paper size applies to China National Standard (CNS) A4 (210X297 mm) 556314 A7 B7 V. Description of the invention (29) Attached Table 9. The effect of air pulse length on the resistance and growth rate of platinum film Air Pulse length (seconds) Resistance / growth rate thickness (micro-ohm centimeters) (Angstroms / cycle) (nanometers) 1.0 13.9 0.35 52 1.5 12.4 0.43 65 2.0 12.6 0.45 68 Variation in film thickness on the substrate. Changes in thickness exceeding 4 cm are within the accuracy of the application assay (ie, ± 1 nm) ° Example 1 3 The platinum film described in Example 12 was deposited at 300 ° C. The length of the platinum precursor pulse was 0 · 5 seconds, and then the scrubbing was 1 · 0 seconds. The air pulse length is 1.0 seconds, followed by scrubbing 2.0 seconds. The effect of the total number of test cycles on the growth rate of 0,500, 2,250 and 3000 cycles was tested. The resistance and thickness of the film were measured. The results are shown in Table 1 and Table 10. The number of cycles for the resistance of the platinum film, the number of cycles of the holder, the resistance, (micro-ohm centimeters), the growth rate (angstroms / cycle), and the thickness (nanometer). 1500 13.9 0.35 52 2250 12.4 0.39 78 3000 11.5 0.35 106 (Please read the notes on the back before filling out this page) The size of the paper used for this edition applies to China National Standard (CNS) A4 (210X297 mm) -32-