TW497225B - Method for preventing polysilicon stringer in memory device - Google Patents
Method for preventing polysilicon stringer in memory device Download PDFInfo
- Publication number
- TW497225B TW497225B TW090116715A TW90116715A TW497225B TW 497225 B TW497225 B TW 497225B TW 090116715 A TW090116715 A TW 090116715A TW 90116715 A TW90116715 A TW 90116715A TW 497225 B TW497225 B TW 497225B
- Authority
- TW
- Taiwan
- Prior art keywords
- layer
- conductor
- forming
- polycrystalline silicon
- photoresist
- Prior art date
Links
- 229910021420 polycrystalline silicon Inorganic materials 0.000 title claims abstract description 95
- 238000000034 method Methods 0.000 title claims abstract description 72
- 229920005591 polysilicon Polymers 0.000 title claims abstract description 12
- 230000003647 oxidation Effects 0.000 claims abstract description 70
- 238000007254 oxidation reaction Methods 0.000 claims abstract description 70
- 238000005530 etching Methods 0.000 claims abstract description 35
- 230000008569 process Effects 0.000 claims abstract description 34
- 230000015572 biosynthetic process Effects 0.000 claims abstract description 17
- 239000004020 conductor Substances 0.000 claims description 91
- 229920002120 photoresistant polymer Polymers 0.000 claims description 25
- 239000000758 substrate Substances 0.000 claims description 24
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical group [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 11
- 239000013078 crystal Substances 0.000 claims description 5
- 239000004575 stone Substances 0.000 claims description 5
- 229910021417 amorphous silicon Inorganic materials 0.000 claims description 4
- 229910052710 silicon Inorganic materials 0.000 claims description 4
- 239000010703 silicon Substances 0.000 claims description 4
- 239000012535 impurity Substances 0.000 claims description 3
- 238000004886 process control Methods 0.000 claims description 2
- 230000000903 blocking effect Effects 0.000 claims 1
- 238000005260 corrosion Methods 0.000 claims 1
- 230000007797 corrosion Effects 0.000 claims 1
- 230000005611 electricity Effects 0.000 claims 1
- 230000017105 transposition Effects 0.000 claims 1
- 238000007667 floating Methods 0.000 abstract description 67
- 239000010410 layer Substances 0.000 description 147
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 16
- 238000010586 diagram Methods 0.000 description 8
- 229910052814 silicon oxide Inorganic materials 0.000 description 7
- 238000002955 isolation Methods 0.000 description 4
- 239000004065 semiconductor Substances 0.000 description 4
- 235000012239 silicon dioxide Nutrition 0.000 description 4
- 239000000377 silicon dioxide Substances 0.000 description 4
- 229910052581 Si3N4 Inorganic materials 0.000 description 3
- 239000002019 doping agent Substances 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 3
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 229910021419 crystalline silicon Inorganic materials 0.000 description 2
- 238000013500 data storage Methods 0.000 description 2
- 238000004518 low pressure chemical vapour deposition Methods 0.000 description 2
- 241000238631 Hexapoda Species 0.000 description 1
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 1
- XYFCBTPGUUZFHI-UHFFFAOYSA-N Phosphine Chemical compound P XYFCBTPGUUZFHI-UHFFFAOYSA-N 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- 238000005468 ion implantation Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000007517 polishing process Methods 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Landscapes
- Semiconductor Memories (AREA)
- Non-Volatile Memory (AREA)
Abstract
Description
497225 五、發明說明(1) 5-1發明領域: 本發明係有關於一種避免於記憶體元件形成多晶矽縱 樑的方法,特別是一種有關於形成具多重氧化速率之浮動 閘結構,以避免於平坦化記憶體記憶單元形成多晶矽縱樑 的方法。 5 - 2發明背景: 在資料處理系統中,記憶體元件對資料的儲存具有很 大的重要性。而眾所週知的記憶體元件例如包括,隨機存 取記憶體(RAM),唯讀記憶體(ROM),及其他記憶體元件。 其中非揮發性的記憶體元件,特別是一般通稱的 ''快閃〃 (f 1 ash)記憶體元件在資料儲存的應用上越來越廣泛。通 常快閃記憶體晶胞陣列是以一連串的列和行排列形成於半 導體底材上,且經由所謂的字元線及位元線的導體來存取 資料。第一圖所示為部份記憶陣列1 0的俯視圖。而第二圖 為沿第一圖切線2 - 2所得之橫切面圖。一般的快閃記憶體 陣列佈局如第一圖所示,且快閃記憶體晶胞1 0 0結構的橫 切面多如第二圖所示。 參考第一圖和第二圖,每個記憶晶胞1 0 0形成於半導 體底材1 0 1上的方法例如以下所述。形成源極11 0和汲極區497225 V. Description of the invention (1) 5-1 Field of the invention: The present invention relates to a method for avoiding the formation of polycrystalline silicon longitudinal beams on a memory element, in particular to a method for forming a floating gate structure with multiple oxidation rates to avoid A method for planarizing a memory cell to form a polycrystalline silicon stringer. 5-2 Background of the Invention: In data processing systems, memory components are of great importance for data storage. The well-known memory elements include, for example, random access memory (RAM), read-only memory (ROM), and other memory elements. Among them, non-volatile memory elements, especially commonly known as "flash memory (f 1 ash)" memory elements, are increasingly used in data storage applications. Generally, a flash memory cell array is formed on a semiconductor substrate in a series of columns and rows, and data is accessed via conductors of so-called word lines and bit lines. The first figure shows a top view of a part of the memory array 10. The second figure is a cross-sectional view taken along line 2-2 of the first figure. The general flash memory array layout is shown in the first figure, and the cross-section of the flash memory cell 100 structure is mostly shown in the second figure. Referring to the first and second figures, a method for forming each memory cell 100 on the semiconductor substrate 100 is as follows. Form source 110 and drain regions
497225 五、發明說明(2) 域1 1 2,且有一通道位於源極1 1 0和汲極1 1 2區域之間。一 通道氧化層1 1 4或閘極介電層(未顯示於第一圖)形成於底 材1 0 1上,用以將第一多晶矽層1 1 6或浮動閘極層與源極 I 1 0和汲極1 1 2區域分隔開來。個別晶胞的控制閘極1 2 0以 橫向列方式結合晶胞列,共享一條共同字元線(WL) 1 2 0。 換句話說,第二多晶矽層1 2 0或控制閘層形成於浮動閘層 II 6上,且由例如氧化矽/氮化矽/氧化矽(ΟΝΟ )之内多晶矽 介電層11 8 (未示於第一圖)所隔開。而沿著字元線的相鄰 記憶體元件是由場氧化區域1 0 2所隔離。此外,為了達到 改善搞合比(c 〇 u ρ 1 i n g r a t i 〇 )的目的,可形成一額外的多 晶矽層1 2 4於浮動閘層Π 6和多晶矽内介電層1 1 8之間,以 加大浮動閘極Π 6的表面積,且利用介電層1 2 2做為浮動閘 層11 6之間的隔離,如第三Α圖所示。 第三A圖為具改良式浮動閘結構之晶胞的橫切面圖, 其類似於沿第一圖切線3- 3之橫切面圖。亦即,於製造類 似於第一圖之快閃記憶體晶胞時,多加了一層多晶矽層於 浮動閘極層上。條狀的第一多晶矽層1 1 6 (或為第一浮動閘 層)形成於底材1 0 1之兩場氧化區域間,且與底材1 0 1間隔 著通道氧化層1 1 4。而為簡化圖示,場氧化區域並未顯示 於圖上。然後,進行氧化製程,形成介電層1 2 2將條狀相 鄰的第一多晶矽層11 6隔離。第二多晶矽層1 2 4 (第二浮動 閘層)形成於第一多晶矽層1 1 6上。接著,形成内多晶矽介 電層1 1 8及控制閘層1 2 0,以完成記憶晶胞的製作。眾所週497225 V. Description of the invention (2) Domain 1 12 and a channel between the source 1 10 and the drain 1 12 region. A channel oxide layer 1 1 4 or a gate dielectric layer (not shown in the first figure) is formed on the substrate 1 01 to connect the first polycrystalline silicon layer 1 16 or the floating gate layer to the source electrode. The I 1 0 and drain 1 12 regions are separated. The control gates 1 2 0 of individual cells are combined with the cell columns in a horizontal column manner to share a common word line (WL) 1 2 0. In other words, the second polycrystalline silicon layer 12 or the control gate layer is formed on the floating gate layer II 6 and is made of, for example, a silicon oxide / silicon nitride / silicon oxide (ONO) polysilicon dielectric layer 11 8 ( (Not shown in the first figure). Adjacent memory elements along the word lines are isolated by field oxide regions 102. In addition, for the purpose of improving the coupling ratio (c 0u ρ 1 ingrati 〇), an additional polycrystalline silicon layer 12 can be formed between the floating gate layer Π 6 and the polycrystalline silicon inner dielectric layer 1 1 8 to add The surface area of the large floating gate electrode 6 and the dielectric layer 1 2 2 are used as the isolation between the floating gate layers 116, as shown in FIG. 3A. FIG. 3A is a cross-sectional view of a unit cell with an improved floating gate structure, which is similar to the cross-sectional view taken along the tangent line 3-3 of the first figure. That is, when manufacturing a flash memory cell similar to the first figure, an extra layer of polycrystalline silicon is added to the floating gate layer. A strip-shaped first polycrystalline silicon layer 1 1 6 (or a first floating gate layer) is formed between the two field oxidation regions of the substrate 1 0 1 and is separated from the substrate 1 0 1 by a channel oxide layer 1 1 4 . In order to simplify the illustration, the field oxidation regions are not shown in the figure. Then, an oxidation process is performed to form a dielectric layer 1 2 2 to isolate the first polycrystalline silicon layers 116 adjacent to each other in a stripe shape. A second polycrystalline silicon layer 1 2 4 (a second floating gate layer) is formed on the first polycrystalline silicon layer 1 1 6. Next, an inner polycrystalline silicon dielectric layer 118 and a control gate layer 120 are formed to complete the fabrication of the memory cell. Public week
第7頁 497225 五、發明說明(3) 知,在製造半導體元件時,要達到完美的垂直輪廓控制是 非常困難的,尤其是經過後續多次的氧化製程垂直輪廓的 控制就更加難以控制。因為,在氧化製程中,接近表面的 多晶矽較遠離表面的多晶矽通常有較快的氧化速率。因此 ,由於第一浮動閘層11 6的非等向性蝕刻製程並不完全產 生理想的非等向性輪廓,使得條狀的第一浮動閘層1 1 6的 垂直輪廓只控制在近似於理想狀態。再者,經過後續形成 介電層1 2 2和形成如ΟΝΟ層的多晶矽内介電層1 1 8的氧化製 程後,浮動閘層1 1 6的傾斜側壁就再也無法被忽視。於形 成類似第一圖的陣列佈局時,複雜的氧化製程和非理想化 的垂直輪廓會產生多晶矽縱樑的問題。因為,如果浮動閘 層的垂直輪廊是不完美的’當沿者字元線定義出記憶晶胞 時,在蝕刻浮動閘層時就會產生多晶矽縱樑。進而因非理 想化的垂直輪廓的形成而降低製程的容錯度,造成可靠度 的問題,亦即,產生良率的損失。 當部份的控制閘層1 2 0進行非等向性蝕刻以形成記憶 體元件中的各條字元線時,位於兩相鄰字元線間的浮動閘 層(約如第一圖源極區域11 0的位置),也同時進行非等向 性蝕刻以避免造成相鄰字元線間的短路。然而,非等向性 蝕刻無法重複性的提供理想化的非等向性輪廓,又因為後 續的氧化製程,使得對具有傾斜側壁的浮動閘層的非等向 性輪廓的控制亦發困難。非理想化的非等向性蝕刻輪廓造 成多晶矽閘層1 1 6的殘留,亦即多晶矽縱樑1 2 6,如第三ΒPage 7 497225 5. Description of the invention (3) It is known that it is very difficult to achieve perfect vertical contour control when manufacturing semiconductor components, especially the control of vertical contour after subsequent multiple oxidation processes is even more difficult to control. Because in the oxidation process, polycrystalline silicon near the surface usually has a faster oxidation rate than polycrystalline silicon far from the surface. Therefore, since the anisotropic etching process of the first floating gate layer 116 does not completely produce an ideal anisotropic profile, the vertical contour of the strip-shaped first floating gate layer 1 1 6 is controlled only to be approximately ideal status. Furthermore, after the subsequent oxidation process of forming the dielectric layer 12 2 and forming the polycrystalline silicon inner dielectric layer 1 18 such as the ONO layer, the inclined sidewalls of the floating gate layer 116 can no longer be ignored. When forming an array layout similar to the first figure, complex oxidation processes and non-idealized vertical contours can cause problems with polycrystalline silicon stringers. Because if the vertical perimeter of the floating gate is imperfect, when a memory cell is defined along the character line, a polycrystalline silicon stringer will be generated when the floating gate is etched. Furthermore, due to the formation of undesired vertical contours, the fault tolerance of the process is reduced, causing reliability problems, that is, loss of yield. When a part of the control gate layer 120 is anisotropically etched to form each character line in the memory element, a floating gate layer (about as shown in the first figure) Area 110), anisotropic etching is also performed at the same time to avoid short circuits between adjacent word lines. However, anisotropic etching cannot provide idealized anisotropic contours repeatedly, and the subsequent oxidation process makes it difficult to control the anisotropic contours of floating gates with inclined sidewalls. The non-idealized anisotropic etching contour results in the residue of the polycrystalline silicon gate layer 1 16, that is, the polycrystalline silicon stringer 1 2 6, such as the third B
第8頁 497225 五、發明說明(4) 圖所示。也就是說,當依序蝕刻到浮動閘層1 1 6時,其傾 斜的側壁被介電層1 2 2保護住,結果多晶矽縱樑1 2 6就產生 了。如第四圖所示,其為兩條位元線間之下半部份蝕刻區 域的透視圖。由圖中可清楚得知,在蝕刻區域產生的多晶 矽縱樑1 2 6會使得字元線分別因區域1 2 8及1 3 0的部份而產 生短路,造成可靠度的問題。也就是蝕刻區域於區域1 2 8 及1 3 0處並未完全的將字元線彼此間加以隔離,反而因介 電層的庇護形成多晶矽縱樑1 2 6橋接蝕刻區域,造成閘極 間的短路問題。 近來,形成倒三角的多晶矽浮動閘層的方法曾被提出 。然而,形成倒三角的多晶矽浮動閘層的蝕刻製程非常的 複雜又難以控制,且不易經由適當線上檢查步驟進行除錯 。而當應用額外多晶矽層以增加浮動閘層的表面積的技術 時,在倒三角的浮動閘層間形成隔離用的介電層又面臨了 介電層溝填的問題。因此,避免於記憶體元件形成多晶矽 縱樑,降低因字元線短路而造成的可靠度問題是非常必要 的0 5 - 3發明目的及概述: 鑒於上述之發明背景中,傳統形成記憶體元件時產生 多晶矽縱樑的諸多缺點,本發明的目的為提供一種避免於Page 8 497225 V. Description of the invention (4) Figure. That is, when the floating gate layer 1 16 is sequentially etched, the inclined sidewalls are protected by the dielectric layer 1 2 2, and as a result, the polycrystalline silicon longitudinal beam 1 2 6 is generated. As shown in the fourth figure, it is a perspective view of the lower half of the etched area between the two bit lines. It can be clearly seen from the figure that the polycrystalline silicon stringer 1 2 6 generated in the etched area will cause the word lines to be short-circuited by the portions 1 2 8 and 1 3 0 respectively, causing reliability problems. That is, the etched areas do not completely isolate the word lines from each other at the areas 1 2 and 130. Instead, the polycrystalline silicon stringers 1 2 6 are bridged by the dielectric layer to protect the etched areas, which results in a gate-to-gate gap. Short circuit problem. Recently, a method of forming an inverted triangle polycrystalline silicon floating gate has been proposed. However, the etching process for forming the inverted polysilicon floating gate layer is very complicated and difficult to control, and it is not easy to debug through an appropriate online inspection step. However, when the technology of additional polycrystalline silicon layer is used to increase the surface area of the floating gate layer, the formation of a dielectric layer for isolation between the floating gate layers of the inverted triangle faces the problem of dielectric layer trench filling. Therefore, it is very necessary to avoid the formation of polycrystalline silicon stringers in the memory element and reduce the reliability problem caused by the shorting of the word lines. 0 5-3 Purpose and summary of the invention: In view of the above background of the invention, when traditionally forming a memory element Many shortcomings of the polycrystalline silicon stringer arise, and the object of the present invention is to provide a method for avoiding
第9頁 497225 五、發明說明(5) 記憶體元件形成多晶矽縱樑的方法。本發明的重點是形成 具有多重氧化速率的浮動閘結構,其中浮動閘結構越底部 份,氧化速率越高。例如,形成一浮動閘結構其具有兩層 不同摻雜濃度的多晶矽層,或兩種不同結晶性的多晶矽層 ,且越底層多晶矽層其摻雜濃度越高,或者,越底層多晶 矽層其結晶性越高。因此,在後續的氧化製程中,浮動閘 結構就此形成蝕刻製程時所需的輪廓,亦即,形成由浮動 閘結構底部往上寬度遞增的輪廓。浮動閘結構的輪廓越上 部份越寬,越底部份越窄。因此,於隔離字元線的非等向 性蝕刻製程時,可保持理想的輪廓控制,而將蝕刻區域中 g 會造成字元線短路的多晶矽縱樑消除。 本發明的另一目的,在提供一種形成具寬度遞增之輪 廓的多晶矽結構的方法,亦即,多晶矽結構的越上部份越 寬,越底部份越窄。 本發明的再一目的,在提供一種多層次多晶石夕沉積方 法,以利控制多晶矽層蝕刻製程的垂直輪廓。 根據以上所述之目的,於一較佳實施例中,本發明提 供了一種避免於記憶體元件形成多晶矽縱樑的方法。本發 明方法其步驟至少包含,形成一具一垂直輪廓之導體結構 於一底材上,其中導體結構至少包含兩層各具有不同氧化 速率之導體層,這些導體層依據氧化速率由大到小的順序Page 9 497225 V. Description of the invention (5) A method for forming a polycrystalline silicon stringer from a memory element. The main point of the present invention is to form a floating gate structure with multiple oxidation rates. The lower the floating gate structure, the higher the oxidation rate. For example, a floating gate structure is formed which has two polycrystalline silicon layers with different doping concentrations, or two polycrystalline silicon layers with different crystallinity, and the lower the polycrystalline silicon layer, the higher the doping concentration, or the lower polycrystalline silicon layer, the more its crystallinity. The higher. Therefore, in the subsequent oxidation process, the floating gate structure thus forms the contour required during the etching process, that is, a contour with an increasing width from the bottom of the floating gate structure is formed. The upper part of the floating gate structure is wider, and the lower part is narrower. Therefore, during the isotropic etching process of isolating the character lines, ideal contour control can be maintained, and the polycrystalline silicon stringers in the etched area that would cause the character line to short-circuit can be eliminated. Another object of the present invention is to provide a method for forming a polycrystalline silicon structure having a profile with increasing width, that is, the upper part of the polycrystalline silicon structure is wider and the lower part is narrower. It is still another object of the present invention to provide a multi-layered polycrystalline stone deposition method for controlling the vertical profile of a polycrystalline silicon layer etching process. According to the above-mentioned purpose, in a preferred embodiment, the present invention provides a method for avoiding the formation of polycrystalline silicon stringers in a memory device. The steps of the method of the present invention include at least forming a conductor structure with a vertical profile on a substrate, wherein the conductor structure includes at least two conductor layers each having a different oxidation rate, and these conductor layers vary from large to small according to the oxidation rate. order
第10頁 497225 五、發明說明(6) 由底部往上排列於底材上。然後,執行例如熱氧化製程之 氧化製程於部份導體結構,以致導體結構之垂直輪廓轉變 為由底部往上一寬度遞增之輪廓,其中導體結構之寬度遞 增之輪廓有助於蝕刻製程控制。其中上述形成具垂直輪廓 之導體結構之步驟至少包含,形成具第一氧化速率之第一 導體層於底材上。然後,形成具第二氧化速率之第二導體 層於第一導體層上,其中第一氧化速率大於第二氧化速率 。接著,形成一圖案轉移之光阻於第二導體層上,其中圖 案轉移之光阻定義出導體結構。之後,利用圖案轉移之光 阻為罩幕,非等向性蝕刻第二導體層及第一導體層,以形 成具垂直輪廓之導體結構,及去除圖案轉移之光阻。第一 導體層是具第一摻雜濃度之第一多晶矽層,且第二導體層 是具第二摻雜濃度之第二多晶矽層,其中第一摻雜濃度大 於第二摻雜濃度。第一導體層是多晶矽層,且第二導體層 是非結晶矽層。本發明方法更包含,蝕刻具寬度遞增之導 體結構,形成複數個電性隔離區域因此避免導體縱樑的形 成0 5 - 4發明詳細說明: 本發明的一些實施例會詳細描述如下。然而,除了詳 細描述外,本發明還可以廣泛地在其他的實施例施行,且 本發明的範圍不受限定,其以之後的專利範圍為準。Page 10 497225 V. Description of the invention (6) Arranged from the bottom up on the substrate. Then, an oxidation process such as a thermal oxidation process is performed on a part of the conductor structure, so that the vertical profile of the conductor structure is changed to a profile with an increasing width from the bottom to the top. The increasing profile of the conductor structure is helpful for the etching process control. The step of forming a conductor structure with a vertical profile at least includes forming a first conductor layer having a first oxidation rate on a substrate. Then, a second conductor layer having a second oxidation rate is formed on the first conductor layer, wherein the first oxidation rate is greater than the second oxidation rate. Next, a pattern-transferred photoresist is formed on the second conductor layer, and the pattern-transferred photoresist defines a conductor structure. Then, the photoresist of the pattern transfer is used as a mask, and the second conductor layer and the first conductor layer are anisotropically etched to form a conductor structure with a vertical outline, and the photoresist of the pattern transfer is removed. The first conductor layer is a first polycrystalline silicon layer having a first doping concentration, and the second conductor layer is a second polycrystalline silicon layer having a second doping concentration, wherein the first doping concentration is greater than the second doping concentration. concentration. The first conductor layer is a polycrystalline silicon layer, and the second conductor layer is an amorphous silicon layer. The method of the present invention further includes etching the conductor structure with increasing width to form a plurality of electrically isolated regions, thereby avoiding the formation of a conductor stringer. Detailed description of the invention: Some embodiments of the present invention will be described in detail as follows. However, in addition to the detailed description, the present invention can also be widely implemented in other embodiments, and the scope of the present invention is not limited, which is subject to the scope of subsequent patents.
第11頁 497225 五、發明說明(7) 於一實 形成多 著摻雜 率越快 重氧化 晶性的 疊之浮 的輪廓 由下向 元線時 域會使 晶^夕 濃度 ,或 速率 多晶 動閘 。也 上寬 ,可 字元 施例中 縱樑的 或結晶 者結晶 的多晶 矽層, 結構, 就是說 度遞增 維持理 線短路 ,本發明 方法。眾 性而有所 性越南’ 矽結構, 依氧化速 經由後續 ,本發明 之輪廊以 想的I虫刻 的多晶矽 提供了一 所週知多 不同,換 氧化速率 Ϊ列士 σ , 兩 率由大到 的氧化製 提供一種 利於非等 結果,因 縱樑去除 種避免 晶矽層 雜濃度 越快。 層不同 小依序 程後可 浮動閘 向性I虫 此,而 於記憶 的氧化 越南’ 因此, 摻雜濃 由底部 形成I虫 結構, 刻製程 將位於 體元件 速率因 氧化速 具有多 度或結 向上堆 刻所需 其具有 定義字 I虫刻區 依據本發明方法之重點,將配合第五Α圖到第五F圖加 以描述。而顯示於第五A圖到第五F圖之橫切面圖與第三圖 之切線方向相似。形成類似於第三圖之快閃記憶晶胞,起 始於形成場氧化區域於如矽底材之半導體底材上。而場氧 化區域的形成方法可利用區域氧化法(LOCOS)或淺溝渠隔 離法(ST I )。參考第五A圖,形成場氧化區域後(圖上未顯 示),利用熱氧化製程形成一層薄薄的通道氧化層2 1 0於矽 底材2 0 1上。然後,即是本發明的主要重點,形成具多重 氧化速率之浮動閘結構,以利後續之字元線隔離蝕刻製程Page 11 497225 V. Description of the invention (7) The formation of a superimposed floating profile that re-oxidizes the crystallinity as soon as the doping rate is increased from the bottom line to the time domain will make the crystal concentration or the rate of polycrystalline Brake. It is also wide, and may be a polycrystalline silicon layer of a stringer or crystal in the embodiment of the character. The structure, that is, the degree is maintained to maintain a short circuit, the method of the present invention. Vietnam ’s silicon structure depends on the rate of oxidation. Through the follow-up, the wheel corridor of the present invention provides a well-known difference in the polycrystalline silicon engraved with the desired I. The oxidation rate is changed to a rate of σ. The obtained oxidation system provides a favorable result, and the faster the impurity concentration of the crystalline silicon layer is avoided due to the removal of seeds by the stringer. After different layers in a small order, the gate can float in the direction of the worm, and the memory of the oxidized Vietnam '. Therefore, the doping concentration forms the worm structure from the bottom, and the engraving process will be located at the body element rate due to the oxidation rate. The key points for the upward engraving which have the definition word I and the insect engraving area according to the method of the present invention will be described in conjunction with the fifth A to F charts. The cross-sectional views shown in Figs. 5A to 5F are similar to the tangential directions of the third picture. The formation of a flash memory cell similar to the third picture begins with the formation of field oxide regions on a semiconductor substrate such as a silicon substrate. The field oxidation region can be formed by using a region oxidation method (LOCOS) or a shallow trench isolation method (ST I). Referring to FIG. 5A, after forming a field oxidation region (not shown in the figure), a thin channel oxide layer 2 1 0 is formed on a silicon substrate 201 by a thermal oxidation process. Then, it is the main focus of the present invention to form a floating gate structure with multiple oxidation rates to facilitate the subsequent zigzag line isolation etching process.
第12頁 497225 五、發明說明(8) 形成具第一氧化速率之第一導體層21 2於通道氧化層 2 1 0上。然後,形成具第二氧化速率之第二導體層2 1 4於第 一導體層21 2上,其中第一氧化速率大於第二氧化速率。 如多晶矽層2 1 2,2 1 4之導體層可利用低壓化學氣相沉積( LPCVD)法形成,且利用如擴散摻雜或離子植入摻雜技術, 產生不同的摻雜濃度或結晶性。例如,於一實施例中,第 一導體層是具第一摻雜濃度之第一多晶矽層212,而第二 導體層是具第二摻雜濃度之第二多晶矽層214,其中第一 摻雜濃度大於第二摻雜濃度。亦即,於形成第一多晶矽層 時加入如磷化氫(PH 3)之氣體摻雜質,然後關閉摻雜質氣 體以形成未摻雜之第二多晶矽層2 1 4。此外,於另一實施 例中,第一導體層是一多晶矽層(polycrystalline silicon layer) 212,且第二導體層是一非結晶石夕層 ( amorphous silicon layer) 214。例如,於較高的溫度形 成多晶矽層2 1 2,然後於較低的溫度形成結晶性較低的非 多晶矽層2 1 4。 接著在形成多晶矽層2 1 2及2 1 4後,利用趨於理想化的 非等向性蝕刻這兩層多晶矽層,以形成電性隔離區域2 1 8 ( 第一浮動閘層或導體結構),如第五B圖所示。蝕刻這兩層 > 導體層的步驟是利用所形成之第一圖案轉移之光阻2 1 6定 義導體結構2 1 8且做為蝕刻罩幕,蝕刻完成後去除第一圖 案轉移之光阻2 1 6。於又一實施例中,形成第一浮動閘層( 導體結構)2 1 8之步驟至少包含,形成一多晶矽層,然後植Page 12 497225 V. Description of the invention (8) A first conductor layer 21 2 having a first oxidation rate is formed on the channel oxide layer 2 1 0. Then, a second conductor layer 2 1 4 having a second oxidation rate is formed on the first conductor layer 21 2, wherein the first oxidation rate is greater than the second oxidation rate. For example, the conductor layers of the polycrystalline silicon layers 2 1 2 and 2 1 4 can be formed by using a low pressure chemical vapor deposition (LPCVD) method, and different diffusion doping or ion implantation doping techniques are used to generate different doping concentrations or crystallinity. For example, in one embodiment, the first conductor layer is a first polycrystalline silicon layer 212 having a first doping concentration, and the second conductor layer is a second polycrystalline silicon layer 214 having a second doping concentration, wherein The first doping concentration is greater than the second doping concentration. That is, when a first polycrystalline silicon layer is formed, a gas dopant such as phosphine (PH 3) is added, and then the dopant gas is turned off to form an undoped second polycrystalline silicon layer 2 1 4. In addition, in another embodiment, the first conductor layer is a polycrystalline silicon layer 212, and the second conductor layer is an amorphous silicon layer 214. For example, a polycrystalline silicon layer 2 1 2 is formed at a higher temperature, and a non-crystalline non-crystalline silicon layer 2 1 4 is formed at a lower temperature. After forming the polycrystalline silicon layers 2 1 2 and 2 1 4, the two polycrystalline silicon layers are etched with an idealized anisotropy to form an electrically isolated region 2 1 8 (a first floating gate layer or a conductor structure). As shown in Figure 5B. The step of etching these two layers of conductor layers is to use the formed first pattern transfer photoresist 2 1 6 to define the conductor structure 2 1 8 and use it as an etching mask. After the etching is completed, the first pattern transfer photoresist 2 is removed. 1 6. In another embodiment, the step of forming the first floating gate layer (conductor structure) 2 1 8 includes at least forming a polycrystalline silicon layer, and then
第13頁 497225 五、發明說明(9) 入第一摻雜濃度。執行驅入(d r i v e - i η )製程,將摻雜質驅 入多晶矽層之較底層。然後再對多晶矽層進行第二次摻雜 質植入,且其濃度低於第一摻雜濃度。然後經由圖案轉移 的製程,及形成了具多重氧化速率之浮動閘結構,且其越 底部份氧化速率越南。 然後,執行例如熱氧化製程之氧化製程以形成襯氧化 層2 2 0於導體結構2 1 8上,因此,此雙層多晶矽結構2 1 8 (第 一浮動閘層)之垂直輪廓轉變為由底部往上一寬度遞增之 輪廓(如火把形狀),換句話說,由於氧化速率的不同,第 一多晶矽層2 1 2的橫向氧化較第二多晶矽層2 1 4為快,結果 第二多晶矽層2 1 4的寬度較第一多晶矽層2 1 2為寬。接著, 形成如二氧化矽之絕緣層2 2 2於矽底材2 0 1上,用以電性隔 離兩相鄰之第一浮動閘層如第五C圖所示。形成二氧化矽 層2 2 2之方法,例如,高密度電漿氧化法,及低壓TEOS ( tetra-ethyl orthosilicate )法或低壓 O3(ozone)-TEO S 法 。然後,平坦化二氧化矽層2 2 2以暴露第一浮動閘層2 1 8, 如第五D圖所示。而平坦化的步驟可藉由如化學機械研磨 製程,或回蝕刻製程。 參考第五E圖,為增加耦合率,形成如第三多晶矽層 之第三導體層2 2 4於具隔離多晶矽結構2 1 8之二氧化矽層 2 2 2上,以增加浮動閘的表面積。然後,銀刻第三多晶石夕 層2 2 4以形成電性隔離的區域(第二浮動閘層)2 2 4,且其覆Page 13 497225 V. Description of the invention (9) Enter the first doping concentration. A driver (d r i v e-i η) process is performed to drive the dopants into the lower layer of the polycrystalline silicon layer. Then, a second doping implantation is performed on the polycrystalline silicon layer, and the concentration is lower than the first doping concentration. Then through the pattern transfer process, a floating gate structure with multiple oxidation rates is formed, and the bottom part has an oxidation rate of Vietnam. Then, an oxidation process such as a thermal oxidation process is performed to form a lining oxide layer 2 2 0 on the conductor structure 2 18. Therefore, the vertical profile of the double-layered polycrystalline silicon structure 2 1 8 (the first floating gate layer) is changed from the bottom The profile (such as the shape of a torch) that increases in width to the previous one. In other words, due to the different oxidation rates, the lateral oxidation of the first polycrystalline silicon layer 2 1 2 is faster than the second polycrystalline silicon layer 2 1 4. The width of the second polycrystalline silicon layer 2 1 4 is wider than that of the first polycrystalline silicon layer 2 1 2. Next, an insulating layer 2 2 2 such as silicon dioxide is formed on the silicon substrate 201 to electrically isolate two adjacent first floating gate layers as shown in FIG. 5C. The method for forming the silicon dioxide layer 2 2 2 is, for example, a high-density plasma oxidation method, and a low-pressure TEOS (tetra-ethyl orthosilicate) method or a low-pressure O3 (ozone) -TEO S method. Then, the silicon dioxide layer 2 2 2 is planarized to expose the first floating gate layer 2 1 8, as shown in the fifth D diagram. The planarization step may be performed by, for example, a chemical mechanical polishing process or an etch-back process. Referring to the fifth figure E, in order to increase the coupling ratio, a third conductor layer 2 2 4 such as a third polycrystalline silicon layer is formed on the silicon dioxide layer 2 2 2 with an isolated polycrystalline silicon structure 2 1 2 to increase the floating gate. Surface area. Then, the third polycrystalline silicon layer 2 2 4 is etched with silver to form an electrically isolated region (second floating gate layer) 2 2 4 and
第14頁 497225 五、發明說明(ίο) 蓋住了隔離之雙層多晶矽結構2 1 8。蝕刻第三多晶矽層的 步驟是利用所形成之第二圖案轉移之光阻(未顯示)定義第 二浮動閘層2 2 4且做為蝕刻罩幕,蝕刻完成後去除第二圖 案轉移之光阻。因此,形成了具有寬度遞增之輪廓之浮動 閘結構2 2 6,其包含增進表面積之多晶矽層2 2 4和雙層多晶 石夕結構(第一浮動閘層)2 1 8。然後,形成一内多晶石夕介電 層2 2 8於第三多晶矽層2 2 4上。内多晶矽介電層2 2 8通常是 全面覆蓋於底材201上之氧化矽/氮化矽/氧化矽(ΟΝΟ)層。 之後,形成如第四多晶矽層之控制閘層2 3 0於氧化矽/氮化 矽/氧化矽(0Ν0)層上,以完成快閃記憶晶包的堆疊。 控制閘層2 3 0形成後,由於多晶矽層和氧化矽層間的 高蝕刻選擇比,利用自行對準蝕刻(SAE)製程定義記憶晶 胞的複數的字元線。蝕刻控制閘層2 3 0的步驟是利用所形 成之第三圖案轉移之光阻(未顯示)定義字元線且做為蝕刻 阻障層,蝕刻完成後去除第三圖案轉移之光阻。位於相鄰 字元線間的浮動閘結構2 2 6亦同時於蝕刻時以非等向性蝕 刻去除。而在非等向性蝕刻隔離字元線製程時,由於第一 浮動閘層2 1 8的寬度遞增輪廓,可利用第二多晶矽層2 1 4其 較寬的寬度來控制蝕刻參數,以產生理想的蝕刻結果,如 第五F圖所示。換句話說,因為具有多重氧化速率之浮動 閘結構所產生的寬度遞增之輪廓,可將位於蝕刻區域會使 字元線短路的多晶矽縱樑消除。Page 14 497225 V. Description of the invention (ίο) Covers the isolated double-layered polycrystalline silicon structure 2 1 8. The step of etching the third polycrystalline silicon layer is to use the formed second pattern transfer photoresist (not shown) to define the second floating gate layer 2 2 4 as an etching mask. After the etching is completed, the second pattern transfer layer is removed. Photoresist. Therefore, a floating gate structure 2 2 6 having a profile with increasing width is formed, which includes a polycrystalline silicon layer 2 2 4 with an increased surface area and a double-layered polycrystalline silicon structure (first floating gate layer) 2 1 8. Then, an inner polycrystalline silicon dielectric layer 2 2 8 is formed on the third polycrystalline silicon layer 2 2 4. The inner polycrystalline silicon dielectric layer 2 2 8 is usually a silicon oxide / silicon nitride / silicon oxide (ONO) layer that completely covers the substrate 201. After that, a control gate layer 230 such as a fourth polycrystalline silicon layer is formed on the silicon oxide / silicon nitride / silicon oxide (ON0) layer to complete the stacking of the flash memory crystal package. After the formation of the control gate layer 230, due to the high etching selection ratio between the polycrystalline silicon layer and the silicon oxide layer, a self-aligned etching (SAE) process is used to define a plurality of word lines of the memory cell. The step of etching the control gate layer 230 is to use the formed third pattern transfer photoresist (not shown) to define the word line and use it as an etching barrier layer. After the etching is completed, the third pattern transfer photoresist is removed. The floating gate structures 2 2 6 located between adjacent word lines are also removed by anisotropic etching during etching. In the process of anisotropic etching of isolated word lines, since the width of the first floating gate layer 2 1 8 is increased in outline, the wider width of the second poly silicon layer 2 1 4 can be used to control the etching parameters to Produces ideal etching results, as shown in the fifth F diagram. In other words, the polysilicon stringers located in the etched areas that short the word lines can be eliminated because of the increasing width profile produced by the floating gate structure with multiple oxidation rates.
第15頁 497225 五、發明說明(11) 以上所述僅為本發明之較佳實施例而已,並非用以限 定本發明之申請專利範圍;凡其它未脫離本發明所揭示之 精神下所完成之等效改變或修飾,均應包含在下述之申請 專利範圍内。Page 15 497225 V. Description of the invention (11) The above description is only a preferred embodiment of the present invention, and is not intended to limit the scope of the patent application for the present invention; all others that are completed without departing from the spirit disclosed by the present invention Equivalent changes or modifications should be included in the scope of patent application described below.
第16頁 497225 圖式簡單說明 本發明的目的、特性和優點從下列的詳細敘述和附圖 說明可明顯看出: 第一圖係部份記憶體陣列之俯視圖; 第二圖係沿第一圖切線2 - 2之晶胞之橫切面圖; 第三A圖係傳統形成字元線時,具改良式浮動閘結構 之記憶晶胞沿類似第一圖3 - 3切線之橫切面圖; 第三B圖係傳統形成字元線產生多晶矽縱樑時,具改 良式浮動閘結構之記憶晶胞沿類似第一圖3 - 3切線之橫切 面圖 ; 第四圖係傳統相兩鄰字元線間之蝕刻區域下半部份之 俯視圖,其顯示因多晶矽縱樑的產生使得字元線短路; 第五A圖係本發明形成快閃記憶晶胞具改良式浮動閘 時,第一圖案轉移光阻定義多層次浮動閘之橫切面圖; 第五B圖係本發明形成快閃記憶晶胞具改良式浮動閘 日夺,形成具多重氧化速率之多層次浮動閘結構之橫切面圖Page 497225 Brief description of the objects, features and advantages of the present invention can be clearly seen from the following detailed description and description of the drawings: The first diagram is a top view of a part of a memory array; the second diagram is along the first diagram A cross-sectional view of the unit cell of tangent line 2-2; Figure A is a cross-sectional view of a memory cell with an improved floating gate structure along the tangent line of the first figure 3-3 when the character line is traditionally formed; Figure B is a cross-sectional view of a memory cell with an improved floating gate structure along a tangent line similar to the first figure 3-3 when a polycrystalline silicon stringer is traditionally formed by a character line. The fourth figure is between two adjacent character lines of the traditional phase. Top view of the lower half of the etched area, which shows that the word lines are short-circuited due to the generation of polycrystalline silicon stringers; Figure 5A is the first pattern transfer photoresist when the flash memory cell of the present invention is formed with an improved floating gate A cross-sectional view of a multi-level floating gate is defined; FIG. 5B is a cross-sectional view of the present invention for forming a flash memory cell with an improved floating gate and forming a multi-level floating gate structure with multiple oxidation rates
第17頁 497225 圖式簡單說明 第五c圖係本發明形成快閃記憶晶胞具改良式浮動閘 時,多層次浮動閘結構進行氧化製程之橫切面圖; 第五D圖係本發明形成快閃記憶晶胞具改良式浮動閘 時,平坦化多層次浮動閘結構之橫切面圖; 第五E圖係本發明形成快閃記憶晶胞具改良式浮動閘 時,形成第三導體層後之橫切面圖; 第五F圖係本發明形成快閃記憶晶胞具改良式浮動閘 時,定義字元線蝕刻第三導體層間蝕刻區域完成後之橫切 面圖 。 主要部份之代表符號·· 1 0記憶體陣列 1 0 0晶胞 1 0 1底材 1 0 2場氧化區域 1 1 0源極 1 1 2汲極 1 1 4通道氧化層 1 1 6浮動閘層 1 1 8内多晶矽介電層 1 2 0控制閘層Page 497225 Brief description of the fifth diagram c is a cross-sectional view of the multi-level floating gate structure oxidation process when the present invention forms a flash memory cell with an improved floating gate; the fifth D diagram is a rapid formation of the present invention. A cross-sectional view of a flash memory cell with an improved floating gate to flatten a multi-level floating gate structure; FIG. 5E is a diagram illustrating the formation of a flash memory cell with an improved floating gate after forming a third conductive layer Cross-sectional view; FIG. 5F is a cross-sectional view of the flash memory cell with the improved floating gate of the present invention, which defines the character line etching of the third conductor interlayer etching area after completion. Symbols of the main part ... 1 0 memory array 1 0 0 cell 1 0 1 substrate 1 0 2 field oxidation area 1 1 0 source 1 1 2 drain 1 1 4 channel oxide layer 1 1 6 floating gate Layer 1 1 8 polycrystalline silicon dielectric layer 1 2 0 control gate layer
第18頁 497225 圖式簡單說明 1 22介電層 1 2 4額外多晶矽層 1 2 6多晶矽縱樑 1 2 8縱樑產生之蝕刻區域 1 30縱樑產生之蝕刻區域 2 0 1底材 2 1 0通道氧化層 212第一氧化速率之第一導體層 214第二氧化速率之第二導體層 2 1 6第一圖案轉移之光阻 2 1 8第一浮動閘層 2 2 0襯氧化層 2 2 2絕緣層 2 2 4第二浮動閘層 2 2 6浮動閘結構 2 2 8内多晶矽介電層 2 3 0控制閘層Page 18 497225 Brief description of the drawings 1 22 Dielectric layer 1 2 4 Extra polycrystalline silicon layer 1 2 6 Polycrystalline silicon longitudinal beam 1 2 8 Etched area generated by the longitudinal beam 1 30 Etched area generated by the longitudinal beam 2 0 1 Substrate 2 1 0 Channel oxide layer 212 First conductor layer at first oxidation rate 214 Second conductor layer at second oxidation rate 2 1 6 Photoresist of first pattern transfer 2 1 8 First floating gate layer 2 2 0 Liner oxide layer 2 2 2 Insulating layer 2 2 4 Second floating gate layer 2 2 6 Floating gate structure 2 2 8 Polycrystalline silicon dielectric layer 2 3 0 Control gate layer
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW090116715A TW497225B (en) | 2001-07-09 | 2001-07-09 | Method for preventing polysilicon stringer in memory device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW090116715A TW497225B (en) | 2001-07-09 | 2001-07-09 | Method for preventing polysilicon stringer in memory device |
Publications (1)
Publication Number | Publication Date |
---|---|
TW497225B true TW497225B (en) | 2002-08-01 |
Family
ID=21678728
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW090116715A TW497225B (en) | 2001-07-09 | 2001-07-09 | Method for preventing polysilicon stringer in memory device |
Country Status (1)
Country | Link |
---|---|
TW (1) | TW497225B (en) |
-
2001
- 2001-07-09 TW TW090116715A patent/TW497225B/en not_active IP Right Cessation
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4307664B2 (en) | Semiconductor device | |
US7692235B2 (en) | Nonvolatile semiconductor memory device including memory cells formed to have double-layered gate electrodes | |
US8294236B2 (en) | Semiconductor device having dual-STI and manufacturing method thereof | |
KR100399350B1 (en) | Non volatile memory having floating trap type device and method of forming the same | |
JP4388266B2 (en) | Method for forming a semiconductor array of floating gate memory cells having a strap region and a peripheral logic device region | |
US20060118855A1 (en) | Method of manufacturing a semiconductor integrated circuit using a selective disposable spacer technique and semiconductor integrated circuit manufactured thereby | |
CN1351382A (en) | Self alignment of semiconductor memory array having floating gate memory units with control gate isolating sheets | |
JP2009026802A (en) | Semiconductor device manufacturing method and semiconductor device | |
TWI582841B (en) | Method for manufacturing transistor gate and semiconductor device including transistor gate | |
JP2006286720A (en) | Semiconductor device and its manufacturing method | |
JP2013051415A (en) | Semiconductor element and method of manufacturing the same | |
US20050253189A1 (en) | Silicon-oxide-nitride-oxide-silicon (SONOS) memory devices having recessed channels and methods of fabricating the same | |
JP4864756B2 (en) | NAND type nonvolatile semiconductor memory device | |
JP2006344809A (en) | Semiconductor device and manufacturing method thereof | |
CN113841239B (en) | Three-dimensional NAND memory and method of manufacturing the same | |
JP2006303009A (en) | Semiconductor device and manufacturing method thereof | |
US7696555B2 (en) | Semiconductor device and its manufacture method | |
JP4822792B2 (en) | Semiconductor device and manufacturing method thereof | |
KR100404682B1 (en) | Method for manufacturing a silicide layer of flat cell memory device | |
JP2010109019A (en) | Semiconductor apparatus and method of manufacturing the same | |
TW497225B (en) | Method for preventing polysilicon stringer in memory device | |
US20120153374A1 (en) | Semiconductor device and method of manufacturing the same | |
CN112635482A (en) | Nonvolatile memory device and method of manufacturing the same | |
CN1260806C (en) | Method for Avoiding Forming Polysilicon Stringers in Memory Devices | |
JP2001284557A (en) | Producing method for non-volatile semiconductor memory device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
GD4A | Issue of patent certificate for granted invention patent | ||
MK4A | Expiration of patent term of an invention patent |