[go: up one dir, main page]

TW461164B - A semiconductor laser device - Google Patents

A semiconductor laser device Download PDF

Info

Publication number
TW461164B
TW461164B TW088121986A TW88121986A TW461164B TW 461164 B TW461164 B TW 461164B TW 088121986 A TW088121986 A TW 088121986A TW 88121986 A TW88121986 A TW 88121986A TW 461164 B TW461164 B TW 461164B
Authority
TW
Taiwan
Prior art keywords
layer
semiconductor device
patent application
item
electron reflection
Prior art date
Application number
TW088121986A
Other languages
Chinese (zh)
Inventor
Stephen Peter Najda
Original Assignee
Sharp Kk
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Kk filed Critical Sharp Kk
Application granted granted Critical
Publication of TW461164B publication Critical patent/TW461164B/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/2004Confining in the direction perpendicular to the layer structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/2004Confining in the direction perpendicular to the layer structure
    • H01S5/2009Confining in the direction perpendicular to the layer structure by using electron barrier layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/2004Confining in the direction perpendicular to the layer structure
    • H01S5/2009Confining in the direction perpendicular to the layer structure by using electron barrier layers
    • H01S5/2013MQW barrier reflection layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/3415Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers containing details related to carrier capture times into wells or barriers

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nanotechnology (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Geometry (AREA)
  • Semiconductor Lasers (AREA)

Abstract

An optical semiconductor device comprising, an active region; and a p-doped cladding region disposed on one side of the active region; wherein an electron-reflecting barrier is provided on the p-side of the active region for reflecting both Γ-electrons and X-electrons, the electron-reflecting barrier providing a greater potential barrier to Γ-electrons than the p-doped cladding region.

Description

修正Amend

(> 4 6 116 4 案號 88121986 五、發明說明〇) 技術範疇 本發明與光學半導體裝置有關,特別是但不完全是與發 古波長範圍630 nm至680 ηηι之間可見光的半導體雷射裝置 f關’此雷射裝置可為邊緣發射或表面發射型。 貪景技藝 以P型(A1、Ga、In)材料製造,會發射出63〇 nm_6g〇 nm f ^ ^圍可見光的雷射裝置或雷射二極體(LD)已經是專業 性產品日益重要的重要元件,例如:可以預見的數 音光碟(DVD)將會運用可產生30㈣輸 度 、波長 6 35 n„_6 5 0 nm 的^。下 $ 二= 射需要更高的最大功率輸出’更高的操作、、s 乂 j 田 〇c )。 俯n皿度(例如7 〇 (. P 型的意思是其合成物家族都有一般公式 (A y I nyp,其中的x和丫都介於〇與1之間。此 系統的一種特定優點是,當銦莫耳分數「y」等於半導體 時’其會與GaAs基底晶格匹配。 ;· 48 目前(A 1、Ga、I n ) P雷射二極體的理論限制是复 的指定操作溫度上無法長時間運作(或是有相f Λ在較高 電流)’一般,相信這是因為電子從裝置的活性區^的臨界· 周圍光學導區並且之後流入Ρ型包覆區所弓丨起^織漏出至 有一種雷射裝置為分離限制異質結構雷射,此 圖1和2說明可產生630-680 nm可見光的分離陴4刻將參考, 之通用結構。 制雷射結構( 圖 1 的曲線(a)說明(AlxGahhwIno.uP 與Ga〇 52ln ' 電帶能量之間的差異,用來當成四元合金内^ /48Ρ的Γ導 旲爾分數的(> 4 6 116 4 Case No. 88121986 V. Description of the invention 0) Technical scope The present invention relates to optical semiconductor devices, especially, but not exclusively, semiconductor laser devices that emit visible light between the ancient wavelength range of 630 nm to 680 ηηι. f Off 'This laser device can be edge-emitting or surface-emitting. Greedy technology is made of P-type (A1, Ga, In) materials, and laser devices or laser diodes (LDs) that emit about 63nm_6nm f ^^ visible light have become increasingly important for professional products. Important components, such as: foreseeable digital audio discs (DVD) will use ^ which can produce 30㈣ input, wavelength 6 35 n „_6 5 0 nm. The next $ 2 = radiation requires higher maximum power output 'higher The operation, s 乂 j 田 〇c). The degree of n (such as 7 〇 (. P type means that its family of compounds have a general formula (A y I nyp, where x and y are both between 〇 Between 1. A particular advantage of this system is that when the indium mole fraction "y" is equal to the semiconductor, it will match the lattice of the GaAs substrate.; · 48 Current (A 1, Ga, I n) P laser The theoretical limit of the diode is that it cannot operate for a long time at a specified operating temperature (or there is a phase f Λ at a higher current). In general, it is believed that this is because of the criticality of the active region of the electron slave device and the surrounding optical conduction region. And then it flows into the P-shaped cladding area and weaves it out and leaks until there is a laser device to limit the heterojunction for separation Laser, Figures 1 and 2 illustrate the general structure that can produce visible light with a wavelength of 630-680 nm, which will be referred to in 4 sec. The general structure of laser fabrication (the curve (a) of Figure 1 illustrates (AlxGahhwIno.uP and Ga〇52ln ' The difference between the energy of the electric band is used as the Γ guide fraction of ^ / 48P in the quaternary alloy.

461164 r--年月日 “__ 五、發明說明(2) f數。圖1的曲線(b)和(C)分別顯示X導帶能量與Γ導帶能 置之間的^異’圖1假設(Al、Ga)InP與GalnP之間的帶隙 差異會在導帶偏移與價帶偏移之間分離成7 0 : 3 0的比例。 由此可見(A 1、Ga、I n ) P導帶内的最小能量為鋁含量的 函數’在銘濃度大約是〇 · 5 5時從最小Γ帶到最小X帶形成 一個交叉。 在此1":與Χ帶這兩個詞彙用來當成布里淵(Brillouin) 區内的對稱點,+並且是固態物理學内的標準詞彙,請參閱 一 R. A. Smith所著「半導體(Semic〇nduct〇rs)」(劍橋大學 出版部,1 9 78 )二最小r( r_minimun)和最小 :X(X-minimum)這兩個詞彙分別為Γ帶與X帶的最小能量等 級。 圖2為在(Al、Ga、ιη)ρ系統内製造而成的分離限制雷射 結構之圖解帶結構,其包含η摻雜(A1q 7Ga。3)fl 52lnfl 48ρ區域 1、(AluGauh.wIn。48ρ 光學導引區域2、4、沈積於(A1。ja ο·5 )〇.521 no.48P光學導弓丨區域内的Gal nP量子電位井活性區域 3,以及口摻雜(人1。.7〇&()_3 )()52 1 11() 48 ?包覆區域。由(;311^量子 電位井活性區域内Γ電子所引起的光學轉移,會激發雷射 .二極體量子電位井活性區域3内的雷射動作。 電子洩漏電流包含具有足夠熱能量可以越過圖2右手邊 電位阻擋層’並且進入P摻雜包覆區域5的電子分數》吾人 可看見僅利用在與P摻雜包覆區域的介面上大約90 me V的 電位阻擋層就可將Γ電子限制於光學導引區域(光波導引 區域)内,這相當小的阻擋層高度允許足夠比例的電子逃 脫。再者,價帶内的電洞僅受限於大約50 meV的電位阻擋461164 r--year, month and day "__ V. Description of the invention (2) f-number. The curves (b) and (C) in Figure 1 show the difference between the energy of the X conduction band and the energy of the Γ conduction band, respectively. Figure 1 Assume that the band gap difference between (Al, Ga) InP and GalnP will be separated into a ratio of 7 0: 3 0 between the conduction band offset and the valence band offset. This shows that (A 1, Ga, I n) The minimum energy in the P-conducting band is a function of the aluminum content. At a concentration of about 0.55, an intersection is formed from the minimum Γ band to the minimum X-band. Here, the two terms "1" and "X-band" are used as The point of symmetry in the Brillouin region, + is a standard vocabulary in solid state physics, please refer to "Semiconductors" by RA Smith (Cambridge University Press, 1 78) The two minimum terms r (r_minimun) and minimum: X (X-minimum) are the minimum energy levels of the Γ band and the X band, respectively. FIG. 2 is a schematic band structure of a separation-limited laser structure manufactured in an (Al, Ga, ιη) ρ system, which includes an η-doped (A1q 7Ga. 3) fl 52lnfl 48ρ region 1, and (AluGauh.wIn). 48ρ optical guide region 2,4, Gal nP quantum potential well active region 3 deposited in (A1.ja ο · 5) .521 no.48P optical guide bow region, and mouth doping (person 1.) 7〇 & () _ 3) () 52 1 11 () 48? Covered region. Optical transfer caused by Γ electrons in (; 311 ^ quantum potential well active region) will excite laser. Diode quantum potential Laser action in the active region of the well 3. The electron leakage current contains an electronic fraction with sufficient thermal energy to pass through the potential blocking layer on the right-hand side of FIG. 2 and enter the P-doped cladding region 5. We can see that only the A potential blocking layer of approximately 90 me V on the interface of the hetero-cladding region can confine the Γ electrons to the optical guiding region (light guiding region). This relatively small barrier layer height allows a sufficient proportion of electrons to escape. The holes in the valence band are limited only by a potential barrier of approximately 50 meV

O:\61\61877.ptc 第5頁 461164 ___案號88121986 生 月 日修正 __ 五、發明說明(3) 層’這低阻擋層高度也允許足量的載流子逃脫。更進一 步’P摻雜包覆區域5内的X導帶是低於光波導引區域2、4 内Γ導帶的50 me V,這可允許電子從光波導引區域2、4逃 脫穿過p摻雜包覆區域内的久態。因此圖2内說明的雷射具 有高洩漏電流’所以在高溫時就會有不佳的效能。 P. M. Smowton 等人在「.Appli.ed Physics Letters」第 67冊1265-1267頁(1995)内表示,電子的重要洩漏機構可 經由分離限制異質結構雷射的p側導引和包覆區域内導帶 之X谷,其中的雷射擁有兩個由阻擋層分隔的Gafl 41inQ 59p量 子電位井,或設定在(AlyGai_y)fl51In().4gP (其中y可為0.3、 0.4和0.5)的光學導引區域内,並且包覆以 (A 1 〇 7Ga0 3 )〇 521 nQ 48P包覆區域,在p侧上摻雜Zn以及在η侧上 摻雜S i。然而’並沒有作出缓和電子經由此機構流失所導 致的問題之提案。 已經有許多提案提供可改善在(Al、Ga、In)P系統内製 造的雷射裝置之高溫效能。 T,T a k a g i 等人在「I E E E J 〇 u r n a 1 〇 f Q u a n t u m Electronics」第27冊第6號第1511頁(1991)提議在包覆區 域内導入多量子電位井阻擋層。 在英國第9526631. 8號專利申請案中,提議在SCH雷射二 極體的p摻雜包覆區域内插入5摻雜p型層,這樣具有增加 異質連接處P侧上帶彎曲的效果,如此可增加用於電子熱 洩漏的電位阻擋層。 G. H a t a k 〇 s h i 等人在「I E E E J 〇 u r n a 1 〇 f Q u a n t u m Electronics」第27冊第1476頁(1991)上提議增加P摻雜包O: \ 61 \ 61877.ptc Page 5 461164 ___ Case No. 88121986 Birth Month Day Amendment __ V. Description of the Invention (3) Layer ’This low barrier height also allows a sufficient number of carriers to escape. Furthermore, the X conduction band in the P-doped cladding region 5 is 50 me V lower than the Γ conduction band in the light wave guiding regions 2 and 4, which allows electrons to escape from the light wave guiding regions 2 and 4 to pass through p. Permanent states in doped cladding regions. Therefore, the laser device illustrated in Fig. 2 has a high leakage current 'and therefore has poor performance at high temperatures. PM Smowton et al., In ".Appli.ed Physics Letters", Volume 67, 1265-1267 (1995), show that the important leakage mechanism of electrons can be separated to limit the p-side guidance of the heterostructure laser and the inner guidance of the coating area. The X Valley of the belt, where the laser has two Gafl 41inQ 59p quantum potential wells separated by a barrier layer, or an optical guide set at (AlyGai_y) fl51In (). 4gP (where y can be 0.3, 0.4, and 0.5) The region is covered with (A 1 〇7Ga0 3) 0521 nQ 48P, and the region is doped with Zn on the p-side and Si on the η-side. However, ‘has not made a proposal to alleviate the problems caused by the loss of electronics through this agency. Many proposals have been made to improve the high temperature performance of laser devices manufactured in (Al, Ga, In) P systems. T, T a k a g i, et al., In "I E E E J 〇 r n a 1 f f q u n t um electronics" Vol. 27 No. 6 p. 1511 (1991) proposed the introduction of a multiple quantum potential well barrier layer in the cladding region. In British Patent No. 9526631.8, it is proposed to insert a 5 doped p-type layer in the p-doped cladding region of the SCH laser diode, which has the effect of increasing the bending on the P side of the heterojunction, This can increase the potential blocking layer for electron heat leakage. G. H a t a k 〇 s h i et al. Proposed the addition of a P-doped packet in "I E E E J 〇 u r n a 1 〇 f Q u an t um Electronics", Volume 27, page 1476 (1991)

O:\61\61877.ptc 第6頁 461164 ----案號 88121986__年月日__修正___ ' 五、發明說明(4) 覆區域的摻雜程度,以增加光波導引區域與P摻雜包覆區 域之間的電位阻擋層。英國第9 62 6 644. 〇號專利申請案内 公佈一種納入電子反射層,避免X電子逃脫進入P掺雜包覆 區域的半導體雷射。英國第9 6 2 6 6 5 7. 2號專利申請案内公 佈使用電子捕捉層來捕捉電子,並將電子傳送至活性區域 内的Γ限制能量電平内。但是,目前這些方法改善(Αι、 Ga、In)P雷射裝置的溫度特性效果並不清楚。 多重量子電位井阻擋層(MQB)的操作原理是將MQB納入 SCH雷射裝置的p型包覆區域内。MQB包含另外一種非常薄 的(In、Ga)P 和(A1、Ga、In)P(用於(A1 、Ga、In)P 雷射) 層。具有足夠能量可從SCH結構内逃脫出來的電子會在MQB 的兩個介面上以機械反射量子,若將層厚度選擇為厚度的 又/ 4 ’其中;I為電子波長,然後能量帶可規劃成電子會以 1的機率反射。電子的唯一反射幾乎可規劃到傳統阻擋層 高度以上的現有電位井上。理論上來說,MQB藉由與傳統 阻擋層高度比較起來高至2的因素,來增加阻檔層高度的 效果。 K. Kishino 等人在「Applied Physics Letters」第 58 冊 1822-1824 頁(1991)以及 H. Hamada 等人在 「Electronics Letters」第28 冊1 834- 1 83 6 頁( 1 9 92 )内提 供證據顯示’藉由使用這類反射裝置可改善短波長雷射的 臨界電流不受溫度影響。但是反射裝置的效果是從LD操作 特性推測而來’而不是從阻擋層高度的增加直接測量而 來,因此與由於較佳處理或較佳材料品質所獲得的任何 處比較起來,报難訂出使用MQB獲致什麼好處。更進一O: \ 61 \ 61877.ptc Page 6 461164 ---- Case No 88121986__Year Month Day__Amendment ___ 'V. Description of the invention (4) The degree of doping of the cover area to increase the light guide area and A potential blocking layer between P-doped cladding regions. British Patent No. 9 62 6 644. 0 discloses a semiconductor laser incorporating an electron reflection layer to prevent X electrons from escaping into the P-doped cladding region. British Patent No. 9 6 2 6 6 5 7. 2 discloses the use of an electron capture layer to capture electrons and transfer them to the Γ-limited energy level in the active region. However, the effects of these methods on improving the temperature characteristics of (Al, Ga, In) P laser devices are currently unknown. The operating principle of the multiple quantum potential well barrier (MQB) is to incorporate the MQB into the p-type cladding region of the SCH laser device. MQB contains another very thin (In, Ga) P and (A1, Ga, In) P (for (A1, Ga, In) P laser) layers. The electrons with sufficient energy to escape from the SCH structure will mechanically reflect the quantum on the two interfaces of the MQB. If the layer thickness is chosen to be the thickness of / 4 'where; I is the electron wavelength, and then the energy band can be planned as The electrons will reflect with a probability of 1. The only reflection of the electrons can be planned almost to an existing potential well above the height of a conventional barrier. Theoretically, MQB increases the effect of the barrier height by a factor as high as 2 compared to the traditional barrier height. K. Kishino et al. Provide evidence in "Applied Physics Letters" volume 58 1822-1824 (1991) and H. Hamada et al. In "Electronics Letters" volume 28 1 834-1 83 6 (1 9 92) It is shown that the critical current of short-wavelength lasers can be improved by using such a reflection device without being affected by temperature. However, the effect of the reflection device is inferred from the operating characteristics of the LD, rather than directly measured from the increase in the height of the barrier layer, so it is difficult to order compared with any place obtained due to better processing or better material quality. What are the benefits of using MQB. Go one step further

461164 ___案號 88121986 五、發明說明(5)461164 ___ Case No. 88121986 V. Description of the invention (5)

步,請注意到只有在電子的連 的效果。任何會摧毁這連貫性 顯著減少反射特性。 貫長度很長時才能實現叫3 的事情(像是介面散開)都會Please note that the effect is only in the electronic connection. Anything that destroys this coherence significantly reduces reflection characteristics. When the length is very long, something called 3 (such as the interface spreading out) will

換Ϊ : ί雜程度會增加光波導引區域4與P 摻雜包覆區域5之間的電位阻擋層, ρ Ιη)Ρ或(A1、Ιη)Ρ包覆區域的?摻^一疋合內典入Ga、 制。這特別適用於MOCVD成長材料' *用z又M實際的限 約胃cml雜質濃度,In other words: The degree of impurity will increase the potential blocking layer between the light guide region 4 and the P-doped cladding region 5, ρ Ιη) P or (A1, Ιη) P cladding region? Doped into a mixture of Ga and y. This is especially applicable to MOCVD growth materials. * The practical limit of z and M is about the gastric cml impurity concentration,

Journal of Quantum Electr〇nics」第3〇 冊第593_6〇6頁 (1 9 9 4 )内有提出14類範例然而使用此技術進一步增加摻 雜物濃度會導致摻雜物擴散進入裝置的活性區域,因此會 降低其效能。 為了增加光波導引區域4與ρ摻雜包覆區域5之間的電位 阻播層’可增加包覆層5的鋁含量,藉以增加r電子與價 帶孔限制。圖3内說明此方法,其說明類似於圖2内所示的 SCH雷射結構’但是其包覆區域1、5由Α1ΙηΡ製成。此時光 學導引區域4與ρ摻雜包覆區域5之間的電位阻擋層為2 5 0 m e V,而電位阻擋層限制的價帶孔為1 〇 〇 ^ e V。因此圖3内 顯示的雷射結,構與圖2内顯示的結構比較.起來已經改.善了 阻擋層的限制。 發明總結 本發明的第一領域提供一種光學半導體裝置,包含:一 個活性區域以及一個沈積於活性區域一侧上的ρ摻雜包覆 區域,其中活性區域的P側上有一個電子反射阻擋層,用 來反射Γ電子和X電子,電子反射阻擋層提供給Γ電子的There are 14 types of examples in the Journal of Quantum Electronics, Volume 30, pages 593-6606 (1 994). However, using this technique to further increase the dopant concentration will cause the dopants to diffuse into the active area of the device. As a result, its effectiveness is reduced. In order to increase the potential between the light-wave guiding region 4 and the p-doped cladding region 5, the so-called blocking layer 'can increase the aluminum content of the cladding layer 5 so as to increase the r electron and valence band hole limitation. This method is illustrated in FIG. 3, which illustrates similar to the SCH laser structure ' shown in FIG. 2 except that its cladding regions 1, 5 are made of A11nP. At this time, the potential blocking layer between the optical guiding region 4 and the ρ-doped cladding region 5 is 250 m e V, and the valence band hole limited by the potential blocking layer is 100 ^ e V. Therefore, the structure of the laser junction shown in Fig. 3 has been improved compared with the structure shown in Fig. 2. The limitation of the barrier layer has been improved. Summary of the Invention A first field of the present invention provides an optical semiconductor device including: an active region and a p-doped cladding region deposited on one side of the active region, wherein an electron reflection blocking layer is provided on the P side of the active region, Used to reflect Γ electrons and X electrons.

O:\6lV6l877.ptc 第8頁O: \ 6lV6l877.ptc Page 8

O:\61\61877.pt 第9頁 2001.06.13. 009 461164 案號 88121986 年^月〇曰 修正 月 修- Λι 五、發明說明(7) 態流失載流子的問題,或至少顯著降低此問題,這是因為 電子反射層反射了X電子以及Γ電子。 電子反射層包含用於反射Γ電子的第一電子反射層,以 及用於反射X電子的第二電子反射層,這是提供阻擋層給 Γ電子和X電子最方便的方法。 至少有一個電子反射層為應變層,在某些情況下,應變 的半導體層有一個禁止帶隙,其大於大量半導體材料的禁 止帶隙,並使用這類應變層當成電子反射層可增加對於電 子以及電洞洩漏的電位阻擋層。 一個電子反射層可能處於壓縮應變狀態,而其他電子反 射層可處於伸張應變狀態,如此兩個電子反射層將形成一( 個應變補償阻擋層。經過報導應變補償阻擋層可製作成比 個別層的臨界厚度的總和還厚,而不會將缺陷導入層内。 這表示應變補償的電子反射阻擋層可做得厚一點不會有缺 陷,並且較厚的阻擋層會將更多的電子反射回活性區域, 藉以增進電子的限制。 此裝置可為發光二極體或者雷射裝置,雷射裝置可為分 離限制異質結構雷射裝置,包含一個光學導引區域、沈積 於光學導引區域内的活性區域。Γ電子反射層可沈積於光 學導引區域與X電子反射層之間,光學導引區域的Γ導帶 大體上會隨著Γ電子反射層的X導帶而惡化。這確保Γ電1 子反射層不會產生X電子的量子電位井。 另外,Γ電子反射層沈積於X電子反射層與Ρ摻雜包覆區 域之間。在此配置方式内,在Γ電子反射層内形成X電子, 的量子電位井並不會導致嚴重的問題,因為能到達Γ電子O: \ 61 \ 61877.pt Page 9 2001.06.13. 009 461164 Case No. 8812 1986 ^ Month 〇 Revised month repair-Λι V. Description of the invention (7) The problem of state loss carrier, or at least significantly reduce this The problem is that the X-electron and Γ-electron are reflected by the electron reflection layer. The electron reflection layer includes a first electron reflection layer for reflecting Γ electrons, and a second electron reflection layer for reflecting X electrons. This is the most convenient way to provide a blocking layer to the Γ electrons and X electrons. At least one electron reflecting layer is a strained layer. In some cases, the strained semiconductor layer has a forbidden band gap, which is greater than the forbidden band gap of a large number of semiconductor materials. Using such a strained layer as an electron reflecting layer can increase the And potential blocking layer for hole leakage. One electron reflecting layer may be in a compressive strain state, while the other electron reflecting layers may be in a tensile strain state, so the two electron reflecting layers will form a strain compensation barrier layer. It is reported that the strain compensation barrier layer can be made better than the individual layers. The sum of the critical thickness is also thick without introducing defects into the layer. This means that the strain-compensated electron reflection blocking layer can be made a little thicker without defects, and a thicker barrier layer will reflect more electrons back to activity This device can be used to increase the electron limit. This device can be a light-emitting diode or a laser device. The laser device can be a separate-limiting heterostructure laser device. It includes an optical guide area and the activity deposited in the optical guide area. Region. The Γ electron reflection layer can be deposited between the optical guidance region and the X electron reflection layer. The Γ conduction band of the optical guidance region generally deteriorates with the X conduction band of the Γ electron reflection layer. This ensures that Γ electric 1 The sub-reflection layer does not generate a quantum potential well for X electrons. In addition, the Γ electron reflection layer is deposited between the X electron reflection layer and the P-doped cladding region. Here Built-in manner, electrons in the Γ X formed electronically reflective layer, a quantum well potential does not cause a serious problem, because they can reach the electron Γ

O:\61\61877.ptc 第10頁 2001.06.13.010 461164 _索號 88121986_年月日_ϊ±£-_ 五、發明說明(8) 反射層的電子非常少,因此這種配置的光學導引區域允許 使用許多種材質。 電子反射層包含許多用於反射Γ電子的第一電子反射 層,以及許多用於反射X電子的第二電子反射層。電子反 射阻擋層可為超結晶格子結構,因為電子阻擋層為應變補 償的,所以才有可能形成此結構。 此裝置可在(A1、Ga、Ιη)Ρ系統内製作,Γ電子反射層 可為Α1Ρ或GaP,而X電子反射層可為InP,這提供一種方便 減少(A 1、G a、I η ) Ρ雷射内洩漏電流的方法。 Γ電子反射層可為Α1Ρ並且光學導引區域可為 (AluGa^h.^In。.^,這讓光學導引區域的Γ導帶大體上會 隨著Γ電子反射層的X導帶而惡化,這在Γ電子反射層沈 積於光學導引區域與X電子反射層之間是最好的。 每個電子反射層的厚度大約是16A或以下,此厚度低於 臨界厚度,應變層在此臨界厚度上會形成不合的混亂而變 成能量過剩。 至少要有一個電子反射層是P摻雜,若電子反射層的P摻 雜過重會造成導帶彎曲,這會增加電位阻擋層的高度,阻 擋傳輸進入P包覆區域的電子。P摻雜也會降低將電洞傳輸 進入光學導引區域的阻擋層高度。 第一電子反射層或至少一個第一反射層(若有多個反射 層的話)可包含銦。將銦導入A1P或GaP應變層會降低層内 的應變程度,因此增加層的臨界厚度。Γ電子反射層可藉 此做得厚一點,這可降低電子穿越層的可能性。 電子反射阻擋層可沈積於光學導引區域與P摻雜包覆區O: \ 61 \ 61877.ptc Page 10, 2001.06.13.010 461164 _ cable number 88121986_ year month day _ϊ ± £ -_ V. Description of the invention (8) The reflective layer has very few electrons, so the optical guide of this configuration is very light. Leading areas allow the use of many materials. The electron reflection layer includes a plurality of first electron reflection layers for reflecting Γ electrons, and a plurality of second electron reflection layers for reflecting X electrons. The electron reflection blocking layer may have a supercrystalline lattice structure, and it is possible to form this structure because the electron blocking layer is strain-compensated. This device can be made in the (A1, Ga, Iη) P system, the Γ electron reflection layer can be A1P or GaP, and the X electron reflection layer can be InP, which provides a convenient reduction (A 1, G a, I η) Method of leakage current in a laser. The Γ electron reflection layer may be A1P and the optical guidance region may be (AluGa ^ h. ^ In .. ^, which makes the Γ conduction band of the optical guidance region generally deteriorate with the X conduction band of the Γ electron reflection layer. This is the best when the Γ electron reflection layer is deposited between the optical guide area and the X electron reflection layer. The thickness of each electron reflection layer is about 16A or less, this thickness is lower than the critical thickness, and the strained layer is critical here. Uneven chaos will be formed in the thickness and excess energy will be formed. At least one electron reflection layer is P doped. If the electron reflection layer is heavily doped, the conduction band will be bent, which will increase the height of the potential barrier layer and prevent transmission. Electrons in the P-cladding region. P-doping will also reduce the height of the barrier layer transmitting holes into the optical guiding region. The first electron reflection layer or at least one first reflection layer (if there are multiple reflection layers) may include Indium. The introduction of indium into the A1P or GaP strain layer will reduce the strain in the layer and therefore increase the critical thickness of the layer. The Γ electron reflection layer can be made thicker by this, which reduces the possibility of electrons passing through the layer. Electron reflection resistance The optical guide layer may be deposited on cladding region and P-doped region

O:\61\61877.ptc 第11頁 461164 _案號88121986_年月曰 修正_ 五、發明說明(9) 域之間。 本發明的第二領域提供一種光學半導體裝置,包含:一 個光學導引區域、一個具有至少一能量電位井的活性區 域,該活性區域沈積於該光學導引區域内,以及沈積於光 學導引區域另一側的η摻雜和p摻雜包覆區域,其中用於反 射Γ電子的電子反射層沈積於活性區域的ρ侧上,並且其 中光學導引區域的Γ導帶大體上會隨著電子反射層的X導 帶惡化。 本發明的這個領域指出一個問題,說明上述參考S '. J. Chang等人以及美國第5 5 0 9 0 2 4號專利内說明的雷射裝 置。在此領域内,選擇電子反射層的X導帶讓它大體上隨 著光學導引區域的Γ導帶惡化,這可避免在Γ電子反射層 内形成X電子的量子電位井。利用大約選擇一下光學光波 導引區域的合成物就可達成此目的。 WO 97/40560 公佈一種(A1、Ga、In)P發光二極體,A1P 阻擋層沈積於LED的活性區域與ρ型包覆區域之間,但是此 阻擋層會增加Γ電子的限制,在X導帶内形成量子電位 井。此量子電位井的深度大約是0.4 eV,並且如上所解釋 的,導入此量子電位井會惡化經由LED ρ摻雜包覆區域内X 態的電子流失問題。 (AluGao.^ojInusP可形成光學導引區域,並且A1P可形 〔 成電子反射層。這是一種方便將本發明第二領域投入現實 (A 1 、G a、I n ) P系統内的方法。 電子反射層可為Ρ摻雜型。 電子反射層可配置於光學導引區域及Ρ摻雜包覆區域之O: \ 61 \ 61877.ptc Page 11 461164 _Case No. 88121986_ Year Month Amendment _ V. Description of Invention (9) Between domains. A second aspect of the present invention provides an optical semiconductor device including: an optical guiding region, an active region having at least one energy potential well, the active region being deposited in the optical guiding region, and being deposited in the optical guiding region On the other side of the η-doped and p-doped cladding regions, an electron reflecting layer for reflecting Γ electrons is deposited on the ρ side of the active region, and the Γ conduction band of the optical guiding region generally follows the electrons. The X-conducting band of the reflective layer deteriorates. This field of the invention points to a problem that illustrates the laser device described in the aforementioned reference S '. J. Chang et al. And U.S. Patent No. 5,095,024. In this field, the X-conducting band of the electron reflection layer is selected so that it generally deteriorates with the Γ-conducting band of the optical guiding region, which can prevent the formation of a quantum potential well for X-electrons in the Γ-electron reflecting layer. This can be achieved with a selection of the composition of the optical light guide area. WO 97/40560 discloses an (A1, Ga, In) P light-emitting diode. An A1P barrier layer is deposited between the active area of the LED and the p-type cladding region. However, this barrier layer will increase the limit of Γ electrons. A quantum potential well is formed in the conduction band. The depth of this quantum potential well is about 0.4 eV, and as explained above, the introduction of this quantum potential well will exacerbate the electron loss problem of the X-state via the LED p-doped cladding region. (AluGao. ^ OjInusP can form an optical guidance area, and A1P can form an electron reflection layer. This is a method that facilitates putting the second field of the present invention into a realistic (A 1, Ga, In) P system. The electron reflection layer may be a P-doped type. The electron reflection layer may be disposed in the optical guiding region and the P-doped cladding region.

O:\61\61877.ptc 第12頁 461164 案號88121986 年月 日 修正 置 裝 射 fr9 構 結 質 異 制 限 離 分 為 (10)可 置 明 說 裝 明。匕 發 泣 、-間 五 佳 較 的 明 發 本 明 說 細 詳 例 範 解 圖 的 圖 附 考 明參 說由 單藉 簡將 之釗 式 圖 刻 此 實#,J體i中I .,J ,子彭彰愚J ο 运 1 2 邀 344 5 167891 體圖量圖導圖其圖圖圖圖電圖圖圖圖圖 具 變半是 帶解之 2 由 ] c 1 圖 發 圖、成A圖於層参 ,j a當C之 覆 列C來用射似包4 {示來使 類包根 施“用I雷U的M ..顯 為t為,為 質數分 異分的 )ρ爾作 In摩製 '、的統 ΤΓ a金系.,C G S 、合)p圖的 A1之Iη構示 :/(位、結顯 有)ρ四Ga帶内 式[11鋁、解 的 内 度 高 層 擋 阻 構 結 質 異 制 Β-νί 難 第 明 圖 構 結 帶 解 ΤΓ 圖 C S 之 的 射.,♦ 雷成施 CH形實 ;體 一具 但 解 圖 份 部 之 射 雷 域 區 覆 包 型 及 構 構 體 結結 具 帶 帶 步 解 解一 ., 圖圖 進 構.,及 份 份 I 及明 結圖以 部 部 域發 帶構., 的 的 區本 的結構 例 例 引照 過帶結·,施 施 導依 改的帶圖實 實 學含 修過解視體 體 光包 例改圖份具 具 的置 施修的部他 他 置裝;實步過之其 其 裝射層體一改帶明 明 射雷撞具進修導發 發 雷的阻556的本 本 圖圖圖 CH中射 -5示 示 sil、l明明示圖肩 J. 為其.說說顯為| ^ /(V I t 圖 圖 之 例 施 實 以 式 模 佳 最 的 明 發 本 · 行圖 執 第 明 發 本 為 說 解 圖 份 部 之 構 結 帶 的 例 施 實 體 具O: \ 61 \ 61877.ptc Page 12 461164 Case No. 8812 1986 Modification of installation shot fr9 Structured quality limit limit separation score is (10) configurable description installation description. Dagger weeping, -Jian Wujia's Mingfa, Benming, detailed illustrations, examples of diagrams, diagrams attached, reference explanations, referenced by a single borrowing, Jane's, and zhao-style drawings carved this reality #, J 体 i 中 I., J, Zi Peng Zhangyu J ο Yun 1 2 Invite 344 5 167891 Volume map map map map map map map map map half map with solution 2 by] c 1 map map, A map into layer parameters , Ja when C overwrites C to use a shot-like package 4 (shown to make the class package root "use M, I. U .. t is, for the prime number is differentiated) ρ 尔 作 In Mo system ' The system of T1 a gold system, CGS, A) I1 structure of A1 p diagram: / (position, junction obviously) ρ four Ga in-band formula [11 aluminum, solution of internal high-level barrier structure Variation B-νί The shot of the solution of the difficult-to-understand image structure band ΤΓ graph CS., Lei Chengshi CH-shaped solid; the body has a covering pattern of the laser domain and the structure knot of the solution part A solution with a band step solution, the graph diagram is structured, and the part I and the clear structure diagram are structured by the regional structure example. Changed band diagram The practice includes repairing the solution of the volume of the body and the case of the light, and the modification of the equipment. The other parts are installed; the actual shooting layer is changed with a bright laser striker. The figure of the resistance of 556 is shown in the figure. CH-5 shows sil, l clearly shows the shoulder J. It is said. It is obvious that | ^ / (VI t The example of the figure shows the best example of the formula This book is an example of the entity that explains the structure of the map.

O:\61\61877.ptc 第13頁 ^ 461164 [―案號88121986_年」_曰 修是 五、發明說明(11) 明,其顯示SCH雷射裝置的光學導引區域1〇(或光波導弓丨區 域)及p摻雜包覆區域11的帶結構。光學導引區域10沈積^ P型包覆區域11與η型包覆區域(圖4内未顯示)之間。一具、 有至少一能量電位井以提供雷射振盪的活性區域(未顯^ ) 沈積於光學導引區域10内》 圖4的具體實施例由(A1、Ga、Ιη)Ρ系統製成,光學導弓丨 區域1 0由(A l〇.3Ga。7)〇 521 nD.«P所形成,包覆區域由 (AlxGaH)。52In“8P所形成,其中〇.5<xS1.0。在圖4的具體 實施例内,X選為1讓包覆區域1 1由A 1Q 521 n〇.48P形成,並且 圖4内顯示的帶能量為a1q 52inQ 48p p型包覆區域。由Αίρ所 形成的電子反射層12沈積於光學導引區域10與p摻雜包覆 區域1 1之間。 Α1Ρ的晶格常數為5. 467 A,然而光學導引區域1 0的晶格 常數為5. 653A » (如同上面提及的,具有0.48的銦摩爾分 數的(Al、Ga、ln)p會晶格配對至GaAs,如此光學導引區 域的晶格常數會等於GaAs的格狀常數。)包覆區域丨丨的晶 格常數也是5. 653A,因為包覆區域擁有0.48的銦摩爾分 數’因此電子反射層1 2與光學導引區域1 0之間的晶格不匹 配大約是3 . 4 % » 一般來說’混亂會發生在具有3.4%格狀不匹配之兩個半 導體材料之間的介面上,這在本範例中不希望看到,因為 這些差排和缺陷會惡化雷射裝置的特性。 吾人知道若重疊層與成長中上層之間的晶格不匹配相當 + ’則會應變沈積的第一原子層配合重疊層的晶格常數, 如此1會形成黏著介面。然而當成長中上層的厚度增加,同O: \ 61 \ 61877.ptc Page 13 ^ 461164 [―Case No. 88121986_Year ”_ Yue Xiu 5. Description of the Invention (11) It shows that the optical guide area of the SCH laser device 10 (or light Waveguide bow region) and the band structure of the p-doped cladding region 11. The optical guiding region 10 is deposited between the P-type cladding region 11 and the n-type cladding region (not shown in FIG. 4). An active region (not shown) having at least one energy potential well to provide laser oscillation is deposited in the optical guiding region 10. The specific embodiment of FIG. 4 is made of the (A1, Ga, Iη) P system, The optical guide 丨 area 10 is formed by (A 10.3 Ga. 7) 0521 nD. «P, and the cladding area is (AlxGaH). 52In "8P, where 0.5 < xS1.0. In the specific embodiment of Fig. 4, X is selected as 1 so that the cladding region 1 1 is formed by A 1Q 521 n0. 48P, and shown in Fig. 4 With energy a1q 52inQ 48p p-type cladding region. An electron reflection layer 12 formed by Αίρ is deposited between the optical guiding region 10 and the p-doped cladding region 1 1. The lattice constant of Α1Ρ is 5. 467 A However, the lattice constant of the optical guide region 10 is 5. 653A »(As mentioned above, (Al, Ga, ln) p with a mole fraction of indium of 0.48 (Al, Ga, ln) p will be lattice-paired to GaAs, so optically guided The lattice constant of the region will be equal to the lattice constant of GaAs.) The lattice constant of the cladding region is also 5.653A, because the cladding region has a mole fraction of indium of 0.48, so the electron reflection layer 12 and the optical guiding region The lattice mismatch between 1 and 10 is approximately 3.4% »In general, 'chaos will occur at the interface between two semiconductor materials with a 3.4% lattice mismatch, which is undesirable in this example. It is because these differences and defects will deteriorate the characteristics of the laser device. I know that if overlapping layers and growing Lattice mismatch between the layers rather + 'of the first atomic layer deposition occurs with the lattice constant of the strain of overlapping layers, so the formation of an adhesive interface. However, when grown in the thickness of the upper layer increases, with

O:\61\6l877.ptc 第14頁 461164 銮號 88121986 多正 五、發明說明(12) 質應變能量會增加直到到達臨界厚度’在此厚度會變成導 入不適合差排的能量過剩。此臨界厚度存在首先由j ηO: \ 61 \ 6l877.ptc Page 14 461164 銮 88121986 Duo Zheng V. Description of the invention (12) Mass strain energy will increase until it reaches the critical thickness ’, where the thickness will lead to excess energy that is not suitable for differential discharge. This critical thickness exists first by j η

Van der Merwe 公佈於「Journal of Applied Physics」 第34冊第123頁(1962)内。電子反射層12的厚度最好小於 此臨界厚度,避免差排發生。在此情況下,電子反射層處 於應變狀態。在此具體實施例中’將處於伸張應變狀態, 因為A1P具有比光波導引區域10還低的晶格常數。 一 就3 · 4%的晶格不匹配而言,會發生不適合差排的臨界厚 度估計為16A,請參閱R.People等人所著「Applied Physics Letters」第47冊第3 號第 32 2 - 3 2 4 頁(1 9 8 5 )。因 此在圖4的具體實施例内,電子反射層12的厚度最好是16 A或以下》 在體A1P内,Γ-Γ帶隙為3.6 eV,而Γ-Χ帶隙為2.5 eV。但是在圖4的具體實施例内,A1P層12處於伸張應變狀 態下,這會讓帶隙從3. 6 eV體值降低下來。帶隙會降低至 3. 2 9 5 eV用於輕電洞,以及3. 5 eV用於重電洞價帶。 Chin-Yu Yeh 等人著的「Physical Review B」第50冊第4 號第2 7 1 5 - 2 7 1 8頁(1 9 9 4 )内說明應變層帶隙的減少。假設 7 0:30的帶偏移,因此A1P電子反射層會導入0.801 eV阻擋 層,將Γ電子傳輸進入p摻雜包覆區域ιι(此計算使用輕電 洞帶隙)。光學導引區域10内的X帶高於Γ帶〇. 15 eV ’如 此光學導引區域内的大多數電子都會位於Γ帶内,這些Γ 電子會由電子反射層12反射回活性區域。有一種電子傳輸 過矩形阻擋層的簡單計算是只有大約6 %的Γ電子可穿越厚 度為1 6 A的0. 8 0 1 e V電位阻擋層之底部(此計算假設Γ電Van der Merwe is published in Journal of Applied Physics, Volume 34, page 123 (1962). The thickness of the electron reflecting layer 12 is preferably smaller than this critical thickness to avoid the occurrence of the difference. In this case, the electron reflection layer is in a strained state. In this specific embodiment, 'will be in a stretched strain state, because A1P has a lower lattice constant than the light wave guide region 10. As far as the lattice mismatch of 3.4% is concerned, the critical thickness at which unsuitable differential rows occur is estimated to be 16A, please refer to "Applied Physics Letters", Volume 47, No. 3, 32 by R. People, et al. 2- 3 2 4 pages (1 9 8 5). Therefore, in the specific embodiment of FIG. 4, the thickness of the electron reflection layer 12 is preferably 16 A or less. In the body A1P, the Γ-Γ band gap is 3.6 eV, and the Γ-X band gap is 2.5 eV. However, in the specific embodiment of FIG. 4, the A1P layer 12 is in a state of tensile strain, which will reduce the band gap from the 3.6 eV volume. The band gap is reduced to 3. 2 9 5 eV for light holes and 3.5 eV for heavy hole valence bands. Chin-Yu Yeh et al. "Physical Review B" Vol. 50 No. 4 No. 2 7 1 5-2 7 1 8 (19 9 4) illustrates the reduction of the band gap of the strained layer. Assuming a band offset of 7:30, the A1P electron reflective layer will introduce a 0.801 eV blocking layer and transport Γ electrons into the p-doped cladding region (this calculation uses the light hole band gap). The X-band in the optical guiding region 10 is higher than the Γ-band 0.15 eV ′. Thus, most of the electrons in the optical guiding region will be located in the Γ-band, and these Γ-electrons will be reflected back to the active region by the electron reflection layer 12. There is a simple calculation that electrons pass through a rectangular barrier layer. Only about 6% of the Γ electrons can pass through the bottom of the 0.8 A e V potential barrier layer with a thickness of 16 A (this calculation assumes that Γ

O:\61\61877.ptc 第15頁 461164 案號 88121986 _Ά 曰 修正 五、發明說明(13) 子的有效質量為mo = 0.15)。事實上,通過圖4内電子反 射層的電子可能低於6%,這是因為p摻雜包覆區域11沒有 相鄰在電子反射層旁邊。p摻雜包覆區域由(AlxGahh.^Ino. 48P所形成,其中〇.5<x$l.〇,並且具有最高至2.7 eV的Γ -Γ帶隙。當能量隨著包覆區域内的r帶惡化時,傳輸過 A1P層的電子會增加至大約13%。 輕電洞與A 1 P層1 2内的重電洞價帶比較起來能量有所降 低’這是因為此層處於伸張應變狀態。導帶輕電洞帶隙為 3_294 eV ’這會給予電位阻擋層0.178 eV的輕電洞,這大 約是2 6 %的電洞貫穿此阻擋層進入光學導引區域1 〇。 A1P層12内的導帶重電洞帶隙為3.497 eV,其產生0.239 e V的阻擋層給重電洞(圖4内未顯示重孔阻擋層)。 (請注意到A1P内Γ - Γ帶隙的數值可能大於(4. 4 eV)上 面給予的數值,如同Chin-Yu Yeh等人所建議的,並且壓 縮應變層的帶偏移可能是85 : 15而不是70 : 3 0,如D. Dawson 等人在「Applied Physics Letters」第 64(7)冊第 8 9 2頁( 1 9 94 )内建議的,這些偏移都用來增加圖4内設定的 電位阻擋層。) 在圖4的具體實施例内,光學光波導引區域内的鋁濃度 是經過選擇的’如此光學導引區域1〇内的Γ帶會隨A 1P層 12内的X帶而劣化。這可避免在A1P層内形成X電子的量子 電位井,如此克服了上面Chang等人以及美國第5 509 024 號專利内提出的裝置之問題。 更進一步,對於A ΙΙηΡ包覆區域而言,圖4内p摻雜包覆 區域的X帶底A1P層12内的X帶高出〇.〇6 eV(當包覆區域有O: \ 61 \ 61877.ptc Page 15 461164 Case No. 88121986 _Ά said Amendment V. Description of the invention (13) The effective mass of the son is mo = 0.15). In fact, the electrons passing through the electron reflection layer in FIG. 4 may be lower than 6%, because the p-doped cladding region 11 is not adjacent to the electron reflection layer. The p-doped cladding region is formed by (AlxGahh. ^ Ino. 48P, where 0.5 < x $ l.〇, and has a Γ-Γ band gap of up to 2.7 eV. When the r-band deteriorates, the electrons transmitted through the A1P layer increase to about 13%. The light hole has a lower energy compared to the heavy hole valence band in the A 1 P layer 12 because this layer is under tensile strain The band gap of the conduction band light hole is 3_294 eV 'This will give a light hole with a potential blocking layer of 0.178 eV, which is approximately 26% of the holes penetrating this blocking layer and entering the optical guiding area 10. A1P layer 12 The conduction band heavy hole has a band gap of 3.497 eV, which generates a blocking layer of 0.239 e V for heavy holes (the heavy hole blocking layer is not shown in Figure 4). (Please note that the value of the Γ-Γ band gap in A1P may be Greater than (4. 4 eV), as suggested by Chin-Yu Yeh et al., And the band offset of the compressive strain layer may be 85:15 instead of 70:30, as D. Dawson et al. At These offsets are suggested in "Applied Physics Letters", Vol. 64 (7), page 8 92 (1 9 94). These offsets are used to increase the potential barrier set in Figure 4. In the specific embodiment of FIG. 4, the aluminum concentration in the optical light guiding area is selected so that the Γ band in the optical guiding area 10 will deteriorate with the X band in the A 1P layer 12. This It is possible to avoid the formation of X-electron quantum potential wells in the A1P layer, thus overcoming the problems of the device proposed by Chang et al. And U.S. Patent No. 5,509,024. Furthermore, for the A Ιηη coated area, Figure 4 The X-band in the X-band bottom of the inner p-doped cladding region is higher by 0.06 eV (when the cladding region has

O:\6l\61877.ptc 第16頁 修正O: \ 6l \ 61877.ptc page 16 correction

Li-' !> 案號 88121986 年&月 461164 五、發明說明(14) 較低的鋁莫爾分數,X帶的電位就會比較低)。因此光學導 引區域10内有一些電子會面對0.06 eV的電位阻擋層,以 傳輸進入P摻雜包覆區域,這會將它們限制在光波導引區 域内。因此吾人可了解到圖4内說明的結構提供用於Γ電 子和X電子的阻擋層,A1P層12比p摻雜包覆層11提供更大 的電位阻擋層給Γ電子。 比較起來,圖3說明的傳統結構内,p摻雜包覆區域内的 X導帶要低於光學導引區域内的X帶。因此在傳統結構内, X電子從光學導引區域傳遞進入包覆區域並沒有電位阻擋 層存在。 圖5内說明本發明的進一步具體實施例,此圖再次顯示’ 用(Al、Ga、In)P系統製造並且晶格匹配至GaAs的SCH雷射 裝置之帶隙結構。P形包覆區域11由(AlxGahhjIna.^P所形 成,其中0.5<xS1.0,並且最好是〇.7<χ$1.〇。在圖5顯 示的具體實施例内X選為1 . 〇,並且圖5和9内顯示的帶能量 與AlQ.52Infl.48P包覆層有關。圖5内以圖解方式顯示雷射裝置 的活性區域16以及η型包覆區域17。活性區域16和η型包覆 區域1 7的精確性以及合成物與本發明無關,所以不做進一 步說明。 在此具體實施例内,應變補償阻擋層1 4置於光波導引區 域與Ρ摻雜包覆區域之間的介面上。應變補償阻擋層14包 含Α1Ρ層12以及InP層13,阻擋層14提供用於Γ電子和X電 子的電位阻檔層。 Α1Ρ層12與InP層13都經過選擇其厚度小於臨界厚度,避_ 免發生不適合差排。因此A1P層12和InP層13都處於應變狀Li-'! ≫ Case No. 8812 1986 & month 461164 V. Description of the invention (14) The lower the Al Moore fraction, the lower the X-band potential). Therefore, some electrons in the optical guiding region 10 will face a potential blocking layer of 0.06 eV to transmit into the P-doped cladding region, which will limit them to the light guiding region. Therefore, I can understand that the structure illustrated in FIG. 4 provides a blocking layer for Γ electrons and X electrons. The A1P layer 12 provides a larger potential blocking layer for Γ electrons than the p-doped cladding layer 11. In comparison, in the conventional structure illustrated in FIG. 3, the X conduction band in the p-doped cladding region is lower than the X band in the optical guidance region. Therefore, in the conventional structure, the X-electron is transmitted from the optical guiding region into the cladding region, and no potential blocking layer exists. FIG. 5 illustrates a further specific embodiment of the present invention. This figure again shows a band gap structure of a SCH laser device manufactured using a (Al, Ga, In) P system and lattice-matched to GaAs. The P-shaped cladding region 11 is formed by (AlxGahhjIna. ^ P, where 0.5 < xS1.0, and preferably 0.7 < χ $ 1.〇. In the embodiment shown in FIG. 5, X is selected as 1. 〇, and the band energy shown in Figs. 5 and 9 is related to the AlQ.52Infl.48P cladding layer. Fig. 5 shows the active area 16 and n-type cladding area 17 of the laser device graphically. The active areas 16 and η The accuracy and composition of the type cladding region 17 is not relevant to the present invention, so it will not be described further. In this specific embodiment, the strain compensation barrier layer 14 is placed between the light guide region and the P-doped cladding region. The strain compensation barrier layer 14 includes an A1P layer 12 and an InP layer 13. The barrier layer 14 provides a potential barrier layer for Γ electrons and X electrons. Both the A1P layer 12 and the InP layer 13 are selected to have a thickness less than a critical thickness. Thickness, to avoid the occurrence of unsuitable differential rows. Therefore, the A1P layer 12 and the InP layer 13 are in a strained state.

O:\6l\61877.ptc 第17頁 2001. 06.13.017 修正O: \ 6l \ 61877.ptc Page 17 2001.06.13.017 Correction

案號 88121986 4 611^4 五、發明說明(15) 態下。如同上面提及的,與圖4連接起來,A 1 Ρ層1 2處於伸 張應變狀態,因為其晶格常數大約是3. 4%,低於光學導引 區域1 0(其與GaAs晶格匹配,所以具有5. 6 5 3 A的晶格常 數)的晶格常數。但是I nP層處於壓縮應變狀態,因為其晶 格常數大約是3 . 8 %,高於光學導引區域1 0的晶格常數。 在層處於壓縮應變狀態的情況下,Γ帶隙會增加而X帶 隙會減少。在重孔帶的能量低於輕電洞帶時,價帶的惡化 會分離。 如同上面提及的並且參考圖4,A1P層12在光學導引區域 10内提供0.801 eV的電位阻擋層給Γ電子。 I η P層的厚度經過選擇,如此I n P層内的第一限制狀態會 位於Ρ摻雜包覆區域11内X帶之上,也位於人丨?層12内X帶之 上。因此InP層用來當成額外的電子反射層’管理通過Α1Ρ 層的電子,其提供〇. 2 7 5 eV電位阻擔層給光學導引區域10 内的X電子。因此InP層13可避免電子從光學導引區域10經 過包覆區域11内的X態而流失β 光學導引區域10的鋁濃度最好經過選擇,如此光學導引 區域10内的Γ帶會隨著Α1Ρ層12内的X帶而惡化’以避免在 Α1Ρ層12内形成X電子的量子電位井。欲達成此目的,光學 導引區域最好由(Alo.sGao.Jo.^I η〇·48Ρ所形成。 圖9說明圖5結構的光學導引區域與Ρ型包覆區域之導 帶0 Γ電子具有能量Ε〇,也就是光學導引區域1〇的導帶能量 會遇到厚度16Α具有0.801 eV的電位阻播層。如同上面提 及的並且參考圖4,只有大約6%的Γ電子可穿過這類阻擋Case No. 88121986 4 611 ^ 4 V. Description of invention (15). As mentioned above, connected to FIG. 4, the A 1 P layer 12 is in a tensile strain state because its lattice constant is about 3.4%, which is lower than the optical guide region 10 (which matches the GaAs lattice). , So it has a lattice constant of 5. 6 5 3 A). However, the I nP layer is in a compressive strain state because its lattice constant is about 3.8%, which is higher than the lattice constant of the optical guide region 10. In the case where the layer is in a compressive strain state, the Γ band gap increases and the X band gap decreases. When the energy of the heavy hole zone is lower than that of the light hole zone, the deterioration of the valence band is separated. As mentioned above and referring to Fig. 4, the A1P layer 12 provides a potential blocking layer of 0.801 eV to the? Electrons in the optical guiding region 10. The thickness of the I η P layer is selected so that the first constrained state in the I n P layer will be above the X-band in the P-doped cladding region 11 and also on the human side? Above the X-band in layer 12. Therefore, the InP layer is used as an additional electron reflecting layer to manage the electrons passing through the A1P layer, which provides a 0.27 eV potential resistive layer to the X electrons in the optical guiding region 10. Therefore, the InP layer 13 can prevent electrons from being lost from the optical guiding region 10 through the X-state in the cladding region 11. The aluminum concentration of the optical guiding region 10 is preferably selected, so that the Γ band in the optical guiding region 10 will follow Deteriorating toward the X-band in the A1P layer 12 'to avoid the formation of a quantum potential well for X electrons in the A1P layer 12. To achieve this, the optical guide area is preferably formed by (Alo.sGao.Jo. ^ I η〇 · 48P. FIG. 9 illustrates the conduction band 0 Γ of the optical guide area and the P-type cladding area of the structure of FIG. 5. The electrons have energy E0, that is, the conduction band energy of the optical guiding region 10 will encounter a potential blocking layer with a thickness of 16A and 0.801 eV. As mentioned above and referring to FIG. 4, only about 6% of the Γ electrons are available Cross this barrier

O:\61\61877.ptc 第18頁 2001.06.13.018 461164 _-案號 88121986_年月日_修正_ _ 五、發明說明(16) 層的底部(假設有效質量為mQ = 〇. 1 5 )。(在現實上,由於 缺乏厚的p摻雜包覆區域11,所以光學導引區域的導帶能 量上幾乎不會損失Γ電子 具有能量EQ的X電子會面對inP層14提供的0.275 eV電位 阻撲層’大約6 %具有能量Efl的X電子會穿過此阻擋層,假 設有效質量mfl = 0.45。 圖9内顯示的能量Ei等於p型包覆區域的Γ帶。在傳統 SCH雷射結構内,像是圖2内所顯示的,光學導引區域内具 有能量Ei的電子並不受限制。這些電子從光學導引區域1〇 傳輸進入p型包覆區域11的可能性是一致的,並且這些電 子會損失掉。但是在本發明内,具有Ει能量的Γ電子要面i 對0. 5 2 6 eV的電位阻擋層,這是Alp層12的結果^大約87% 具有能量£!的電子會被a 1P層12反射回光波導引區域1〇, 並且只有13 %的電子會逃脫光學導引區域1〇進入p型包覆區 域11 ’這改良過的限制增進雷射二極體的效能和高溫操作 性。 . ,本發明的進一步優點是阻擋層丨4為應變補償的,因為其 形成一個處於伸張應變狀態的層,以及一個處於壓縮應變 狀態的層。因為阻擋層丨4為應變補償的,所以它可提供兩 個或多個阻擋層,如此進—步改善了光學導引區域1〇内電 子的限制。它也可提供A i P /丨np超晶格阻擋層。圖i 〇顯示, 圖5具體實施例的修正’其中阻擋層14由兩個41?層12和兩^ 個I η P層1 3所形成,而圖1 1顯示圖5的其他修正,其中阻擋 層14為四個Α1Ρ層12和四個ΙηΡ層13的超格狀結構。 使用應變補償阻擋層1 4還有其他進一步優點。如同上面O: \ 61 \ 61877.ptc Page 18, 2001.06.13.018 461164 _-Case No. 88121986_Year_Month_Revision_ _ V. Description of the invention (16) The bottom of the layer (assuming the effective mass is mQ = 〇. 1 5) . (In reality, due to the lack of a thick p-doped cladding region 11, the conduction band energy of the optical guiding region is hardly lost. Γ electrons with energy EQ X electrons will face the 0.275 eV potential provided by the inP layer 14. The blocking layer 'approximately 6% of X electrons with energy Efl will pass through this blocking layer, assuming effective mass mfl = 0.45. The energy Ei shown in Figure 9 is equal to the Γ band of the p-type cladding region. In the traditional SCH laser structure Here, as shown in Fig. 2, the electrons with energy Ei in the optical guiding area are not restricted. The possibility of these electrons transmitting from the optical guiding area 10 into the p-type cladding area 11 is the same, And these electrons will be lost. However, in the present invention, the Γ electrons with Ei energy have a potential blocking layer i to 0.5 2 6 eV, which is the result of the Alp layer 12 ^ about 87% has energy £! The electrons will be reflected back to the light guide region 10 by the a 1P layer 12, and only 13% of the electrons will escape the optical guide region 10 and enter the p-type cladding region 11 '. This improved limitation improves the laser diode's Efficiency and high-temperature operability ..., further advantages of the present invention The barrier layer 4 is strain-compensated because it forms a layer in a stretched strain state and a layer in a compressive strain state. Because the barrier layer 4 is strain-compensated, it can provide two or more barriers This step further improves the electron limitation in the optical guiding area 10. It can also provide an A i P / np superlattice blocking layer. Figure i 0 shows that the modification of the specific embodiment of FIG. 5 'which blocks The layer 14 is formed by two 41? Layers 12 and two ^ I η P layers 1 3, and FIG. 11 shows other modifications of FIG. 5, where the blocking layer 14 is a layer of four A1P layers 12 and four InP layers 13. Ultra-lattice structure. The use of strain-compensated barrier layers 14 has other further advantages. As above

O:\61\61877.ptc 第19頁 461164 _案號 88121986 年 月 曰 五、發明說明(17) 提及的,具有超過臨界厚度的應變層會發生不人 但是之前有報告過,應變補償阻擋層的厚度二 „ 夂3比每個層的 臨界厚度總和還要厚,而不會將缺陷導入層内。 β 度比Α1Ρ和InP臨界厚度總和還要厚的應變補償 擋層還可再成長,而不會形成誤配。若較厚的電子^ 1 阻 擋層可以成長而不會導入缺陷’則可將更多的電子反射回 光學導引區域,如此改善了電子的限制》 _ ' 圖6内說明本發明的進一步具體實施例,除了Inp層14是 位於光學導引區域10與A1P層12之間以外,這跟的具^ 實施例很類似。如同圖4和5的具體實施例,圖6内顯示的 帶此量用於A 1 〇.521 η〇· 48P包覆區域内’不過依照原理'型包 覆區域為(八1^{631_3£)(^ 52 1 110.48 ?’其中0.5<又$1.〇。圖6内未顯 示活性區域和η型包覆區域。 在此具體實施例内,I ηρ層1 3製作的非常薄,如此第一 限制狀態位於形成於Γ帶内的電位井頂端上。 在此具體實施例内,光學導引區域1 〇内的χ電子要面對 InP層呈現的0.27 5 eV電位阻擋層。如同上面提及的並且 與圖9連接在一起,只有大約6%的又電子可穿越這類阻擋 ,。結果可能在A1P層12内形成X電子的量子電位井就不再 是那f重要了 ’因此就不需要選擇光學導引區域丨〇的合成 這樣其Γ帶也會隨著人^層^内的X帶而惡化,這在設 計LD結構方面提供較大的自由。事實上,光學導引區域1〇 的紹含量χ可增加至大約〇. 5的數值。 在圖6說明的具體實施例内,光學導引區域1〇 *(A1。4Ga 〇.6)〇.521〜.48?所形成。結果,Γ電子的電位阻擋層為〇 . 75O: \ 61 \ 61877.ptc Page 19 461164 _ Case No. 8812 January 5, 1986 Fifth, the description of the invention (17) As mentioned, the strain layer with a thickness exceeding the critical thickness will not occur, but it has been reported before that the strain compensation block Layer thickness 2 二 „3 is thicker than the sum of the critical thickness of each layer, and does not introduce defects into the layer. The strain compensation barrier with β degrees thicker than the sum of the critical thicknesses of A1P and InP can grow again. No mismatch will be formed. If a thicker electron ^ 1 barrier layer can grow without introducing defects ', more electrons can be reflected back to the optical guidance area, thus improving the limitation of the electrons "_' Figure 6 Explaining a further specific embodiment of the present invention, except that the Inp layer 14 is located between the optical guiding region 10 and the A1P layer 12, this is similar to the specific embodiment. Like the specific embodiments of FIGS. 4 and 5, FIG. 6 The amount shown inside is used for A 1 〇.521 η〇 · 48P coating area 'but according to the principle' type coating area is (eight 1 ^ {631_3 £) (^ 52 1 110.48? 'Where 0.5 < Another $ 1.0. The active region and the n-type coating region are not shown in FIG. 6. Specifically, here In the embodiment, the I ηρ layer 13 is made very thin, so that the first restricted state is located on the top of the potential well formed in the Γ band. In this specific embodiment, the x-electron main plane in the optical guiding region 10 0.27 5 eV potential barrier to the InP layer. As mentioned above and connected to Figure 9, only about 6% of the electrons can pass through this type of barrier. As a result, an X-electron may form in the A1P layer 12. Quantum potential wells are no longer that important, so there is no need to choose the synthesis of the optical guidance region, so that the Γ band will also deteriorate with the X band in the human layer. This is in terms of designing the LD structure. Provides greater freedom. In fact, the content χ of the optical guide region 10 can be increased to a value of about 0.5. In the specific embodiment illustrated in FIG. 6, the optical guide region 10 * (A1. 4Ga 〇.6) 〇.521 ~ .48? Formed. As a result, the potential barrier layer of Γ electrons was 0.75

O:\61\61877.ptc 第20頁O: \ 61 \ 61877.ptc Page 20

旅不I 案號 88121986 461164 修正 -¾ 五、發明說明(18) 圖6具體實施例的進一步倦乳 A ^ F ++· U ,/S /n S 4* ^ 憂點是在阻擔層14的P摻雜包覆 區域上沒有傾向於要捕捉雷、、H h L . ^Lu Bu I Case No. 88121986 461164 Amendment-¾ V. Description of the invention (18) Figure 6 shows further fatigue of the specific embodiment A ^ F ++ · U, / S / n S 4 * ^ The worry is in the barrier layer 14 There is no tendency to capture thunder, H h L on the P-doped cladding region. ^

ain A 电/冋的量子電位井,穿透過A1P :12所呈現電:阻:層的電 3 所形成的量子電位井並且進 圖7内顯示本發明的進一牛b ^ ^ 1C.T n«,〇 , 步具體實施例GaP層15 ’ GaP層 1 5和I nP層1 3形成此具體實雜 λα性此直决、彳τ D ^ %例内的阻擋層1 4。圖7内顯示 的帶月b量為A 1 〇. 52 I η0. 42 Ρ Ρ型包濟「# !】曰七;S I® U β1 Λ ι復區域11,但是在原理上’ρ 型包覆區域可由(AlxGalx)n τ 1 π (ΐΐ7 λι # 4 as +、+ w· ·52 1 0.48 Ρ 層形成,其中 0. 5<χ $ 1.0。圖7内並未顯不活性區域和η型包覆區域。 塊狀G a Ρ有2 . 9 e V的Γ - Γ帶隙以及2 · 3 e V的Γ - X帶隙, GaP有5.451 eV的晶格常數,與(;^5比較起來給予大約 3.7%的晶格不匹配。因此圖8内的GaP層15將會處於伸張應 變狀態,此狀態會將G a P層1 5的Γ - Γ帶隙減少至低於塊狀 GaP之值,但會增加Γ-Χ帶隙。 與先前的具體實施例比較起來,GaP層1 5的厚度必須低 於會發生不合適差排的臨界厚度,此臨界厚度一樣大約是 1 6 A。 使用GaP代替A1 P的優點是價帶内的孔要面對較低的電位 阻擋層。圖7顯示電洞的電位阻擋層為〇 . 1 2 4 e V,相較於 圖5和6内的0.178 eV。電洞穿透擁有厚度16A的0.124 eV: 阻擋層之可能性大約3 3 %。 圖7結構可能的缺點是,光學導引區域1 〇内r電子的電 位阻擋層低於圖5内的阻擋層。如圖7内所示,若使用GaP _ 層’ Γ電子的電位阻擋層為0.465 eV,相較於A1P層的ain A electric / 冋 quantum potential well, penetrates the quantum potential well formed by electricity: resistance: layer of electricity 3 as shown by A1P: 12 and shows in FIG. 7 a further aspect of the present invention b ^ 1C.T n « In the specific embodiment, the GaP layer 15 ′, the GaP layer 15 and the InP layer 13 form the specific layer λα, which is the decisive barrier layer 14 in the example. The amount of band b shown in Fig. 7 is A 1 〇.52 I η0. 42 Ρ P type package "#!" Yue Qi; SI® U β1 Λ complex area 11, but in principle 'ρ type coating The region can be formed by (AlxGalx) n τ 1 π (ΐΐ7 λι # 4 as +, + w ·· 52 1 0.48 ρ layer, where 0.5 < χ $ 1.0. The inactive region and η-type package are not shown in Fig. 7 The covered area is a bulk G a P with a Γ-Γ band gap of 2. 9 e V and a Γ-X band gap of 2 · 3 e V. GaP has a lattice constant of 5.451 eV, which is given in comparison with (; ^ 5 The lattice mismatch of about 3.7%. Therefore, the GaP layer 15 in FIG. 8 will be in a tensile strain state, which will reduce the Γ-Γ band gap of the Ga P layer 15 to a value lower than the bulk GaP. However, it will increase the Γ-X band gap. Compared with the previous specific embodiment, the thickness of the GaP layer 15 must be lower than the critical thickness where improper differential discharge will occur. This critical thickness is also about 16 A. Use GaP instead The advantage of A1 P is that the holes in the valence band face a lower potential blocking layer. Figure 7 shows that the potential blocking layer of the hole is 0.1 2 4 e V, compared to 0.178 eV in Figures 5 and 6. Hole penetration has a thickness of 16A 0.124 eV: the probability of the blocking layer is about 33%. The possible disadvantage of the structure in Figure 7 is that the potential blocking layer of r electrons in the optical guiding region 10 is lower than the blocking layer in Figure 5. As shown in Figure 7 If the GaP _ layer 'Γ electron's potential blocking layer is 0.465 eV, compared to the A1P layer's

O:\61\61877.ptc 第21頁 2001.06.13.021 461164 _案號88121986__年月日 修正__ 五、發明說明(19) 0.801 eV。厚度16A的0.465 eV電位阻檔層大約有11%的 穿透可能性,假設有效質量為mQ = 〇. 1 5。但是如上面所 提及的,Γ電子穿透P摻雜包覆區域的可能性會顯著低於 此計算值,因為具有最高至2_7 evr-Γ帶隙的厚 (AlGa)InP層相鄰於阻擋層14。 光波導引區域10内能量會隨著包覆區域11的Γ帶惡化之 電子,具有大約18%可從阻擋層14穿透進入包覆區域11的 可能性。 在此具體實施例内,最好要選擇光學導引區域1 〇的鋁合 成物,如此其Γ帶會隨著GaP層内的X帶惡化,避免形成會 捕捉X電子的量子電位井。在圖7的具體實施例内,選擇光 學導引區域10的銘摩爾分數X,讓x = 〇. 4便可達成此目的。 圖8内說明本發明的進一步具體實施例,此例子類似於 圖7的例子,但是InP層13位於GaP層15與光學導引區域1〇 之間。因此,此具體實施例對應至圖6的具體實施例,但 是GaP層1 5取代了圖6的A1P層12。圖7内顯示的帶能量用於 A U·52〗 nQ.48P p型包覆區域1 1。但是在原理上,p型包覆區域 可由(八13^31_3£)。.52111。.48?層形成,其中〇.5<;^$1.〇。圖8内並 未顯示活性區域和η型包覆區域。 為了上述理由請參考圖6’光學導引區域丨〇内的r帶並 不需要隨著GaP層15内的X帶惡化。這表示可比圖7具體實 施例内光學導引區域1 0的鋁濃度更自由的選擇光學導引區 域的鋁濃度。在圖8的具體實施例内,光學導引區域可由 (AlQ.4GaQ.6)Q 52InG.48P形成。對於具有此合成物的光學導引區 域而言,大多數電子都位於Γ帶内,並且在傳輸進入p掺O: \ 61 \ 61877.ptc Page 21 2001.06.13.021 461164 _Case No. 88121986__ Year Month Day Amendment __ 5. Description of the invention (19) 0.801 eV. A 0.465 eV potential barrier layer with a thickness of 16A has approximately 11% probability of penetration, assuming an effective mass of mQ = 0.15. But as mentioned above, the probability of Γ electrons penetrating the P-doped cladding region is significantly lower than this calculated value, because a thick (AlGa) InP layer with up to 2_7 evr-Γ band gap is adjacent to the barrier Layer 14. The electrons in the light-guiding region 10 will deteriorate with the Γ band of the cladding region 11, and there is a possibility that approximately 18% of the electrons can penetrate the cladding region 11 from the barrier layer 14. In this specific embodiment, it is best to choose an aluminum composite with an optical guiding area of 10, so that its Γ band will deteriorate with the X band in the GaP layer, avoiding the formation of a quantum potential well that will trap X electrons. In the specific embodiment of FIG. 7, the mole fraction X of the optical guiding region 10 is selected, and x = 0.4 can achieve this purpose. FIG. 8 illustrates a further specific embodiment of the present invention. This example is similar to the example of FIG. 7, but the InP layer 13 is located between the GaP layer 15 and the optical guide region 10. Therefore, this specific embodiment corresponds to the specific embodiment of FIG. 6, but the GaP layer 15 replaces the A1P layer 12 of FIG. The band energy shown in FIG. 7 is used for A U · 52 〖nQ.48P p-type cladding area 1 1. However, in principle, the p-type cladding region can be (eight 13 ^ 31_3 £). .52111. A .48? Layer was formed, in which 0.5 < ^ $ 1.〇. The active region and the n-type cladding region are not shown in FIG. 8. For the above reasons, please refer to FIG. 6 '. The r-band in the optical guiding area does not need to deteriorate with the X-band in the GaP layer 15. This means that the aluminum concentration in the optical guide region can be selected more freely than the aluminum concentration in the optical guide region 10 in the specific embodiment of FIG. 7. In the specific embodiment of FIG. 8, the optical guide region may be formed of (AlQ.4GaQ.6) Q 52InG.48P. For an optically guided region with this composition, most of the electrons are located in the Γ band and enter the p-dopant during transmission.

O:\61\61877.ptc 第22頁O: \ 61 \ 61877.ptc Page 22

年匕月ί子日 /16 1 1 6 4 α 1 案號 88121986 五、發明說明(20) 雜包覆區域11時要面對0.465 eV的電位阻擋層。由於缺乏 InP層,所以光學導引區域10内的X電子將會面對0.29 eV 電位阻擋層。價帶内至電洞注射的電位阻擋層為〇 . 1 2 4 . e V。如同圖6的具體實施例,克服由G a P層1 5形成的電位阻 擋層之電洞可能會置換進入光波導引區域1 〇内,並會「射 , 穿」I nP層1 3所形成的價帶内之量子電位井。 在上述的具體實施例内,電子反射層12、13和15並未受 到摻雜,但是這些層有可能是重p摻雜。摻雜電子反射層 會導致帶彎曲,並且此帶彎曲會增加讓電子從光學導引區 域10運送至p型包覆區域11的電位阻擋層高度,摻雜P型阻/ 擋層也會減少傳送進入光學導引區域内孔的阻擋層高度。^ 本發明將參考(A1、G a、I n) P合金系統進行說明,但是 本發明並不受限於此特定合金系統。專精於半導體實物技 藝以及電子材料的人士將會對本發明讚賞有加,因為本發 明可應用於任何異質結構雷射裝置,其構造有類似於圖1 内顯示的導帶。 在上述的具體實施例内,電子反射層1 2、1 3和1 5位於光 -學導引區域1 0與Ρ摻雜包覆區域11之間,但是電子反射層 是否確實位於光學導引區域與Ρ摻雜包覆區域之間的介面 ‘ 上並不是很重要。在原理上,電子反射層可沈積在光學導 引區域1 0内,以及光學導引區域的Ρ側内。再者,在原理(' 上電子反射阻擋層可位於Ρ摻雜包覆區域内,但是這比較 不好,因為一旦電子穿透進入ρ摻雜包覆區域内,即使包 覆區域的Γ帶内有電位阻播層,電子還是會經由包覆區域 内的X態而流失。Year of the dagger month / 16 1 1 6 4 α 1 Case No. 88121986 V. Description of the invention (20) When the hetero-coated region 11 faces a potential blocking layer of 0.465 eV. Due to the lack of the InP layer, the X electrons in the optical guiding region 10 will face the 0.29 eV potential blocking layer. The potential blocking layer in the valence band to the hole injection is 0.124.eV. As in the specific embodiment of FIG. 6, the holes in the potential blocking layer formed by the Ga P layer 15 may be replaced into the light wave guiding region 10 and will be “radiated and penetrated” by the I nP layer 13. Quantum potential well in the valence band. In the specific embodiment described above, the electron reflecting layers 12, 13 and 15 are not doped, but these layers may be heavily p-doped. Doping the electron-reflecting layer will cause the band to bend, and this band bending will increase the height of the potential blocking layer that allows electrons to be transported from the optical guiding region 10 to the p-type cladding region 11, and the doped P-type blocking / blocking layer will also reduce the transmission The height of the barrier layer entering the hole in the optical guide area. ^ The present invention will be described with reference to the (A1, Ga, In) P alloy system, but the present invention is not limited to this specific alloy system. Those skilled in the semiconductor physical technology and electronic materials will appreciate the present invention because the present invention can be applied to any heterostructure laser device having a conduction band similar to that shown in FIG. 1. In the above specific embodiment, the electron reflection layers 12, 13, and 15 are located between the optical-guide area 10 and the P-doped cladding area 11, but is the electron reflection layer actually located in the optical guide area? The interface to the P-doped cladding region is not very important. In principle, the electron reflection layer can be deposited in the optical guide region 10 and in the P-side of the optical guide region. Furthermore, in principle, the electron reflection blocking layer can be located in the P-doped cladding region, but this is not good because once electrons penetrate into the ρ-doped cladding region, even if it is within the Γ band of the cladding region With the potential blocking layer, electrons will still be lost through the X state in the cladding region.

O:\61\61877.ptc 第23頁 2001.06.13. 023 ^461164 _案號88121986_年月日_修正 _ 五、發明說明(21) 雖然已經參考上面的SCH雷射裝置來說明本發明,但是 本發明並不受限於SCH雷射裝置,而可適用於其他光學半 導體裝置,例如可應用於其他雷射裝置,像是垂直凹孔雷 射裝置,或像是共振凹穴LED這類發光二極體。 工業應用可能性 依照本發明上面所公佈的,本發明提供一種可避免Γ電 子和X電子洩漏的阻擋層,也避免了經由P摻雜包覆區域内 X態損失載流子的問題,或至少顯著減少,因為電子反射 阻擔層會反射X電子以及Γ電子。 依照本發明上面所公佈的,電子反射層的X導帶要經過 選擇使其大體上會隨著光學導引區域的Γ導帶惡化,這可 避免在Γ電子反射層内形成X電子的量子電位井,選擇合 適的光學導引區域合成物就可達成此目的。O: \ 61 \ 61877.ptc Page 23 2001.06.13. 023 ^ 461164 _Case No. 88121986_Year Month_Revision_ V. Description of the Invention (21) Although the present invention has been described with reference to the above SCH laser device, However, the present invention is not limited to the SCH laser device, but can be applied to other optical semiconductor devices, for example, it can be applied to other laser devices, such as a vertical cavity laser device, or a light emitting device such as a resonant cavity LED. Diode. INDUSTRIAL APPLICABILITY According to the above disclosure of the present invention, the present invention provides a barrier layer that can prevent the leakage of Γ electrons and X electrons, and also avoids the problem of loss of carriers through the X state in the P-doped cladding region, or at least Significant reduction because X-electrons and Γ electrons are reflected by the electron-reflective barrier layer. According to the above disclosure of the present invention, the X conduction band of the electron reflection layer is selected so that it will generally deteriorate with the Γ conduction band of the optical guide region, which can prevent the formation of X-electron quantum potential in the Γ electron reflection layer. Well, choosing the right optical guide area composition can achieve this goal.

O:\61\61877.ptc 第24頁O: \ 61 \ 61877.ptc Page 24

Claims (1)

號 881219iNumber 881219i 修正 461164^ t、申請專利範圍 1. 一種光學半導體裝置,包含: 一活性區域;以及 一 P摻雜包覆區域,位於活性區域的一側上; 其中活性區域的p側上提供有一電子反射阻擋層,用於 反射Γ電子與X電子,該電子反射阻擋層提供給Γ電子的 阻擋層大於提供給X電子的阻擋層。 2. 如申請專利範圍第1項之光學半導體裝置,其中電子 反射阻擔層包含一用於反射Γ電子的第一電子反射層,以 及用於反射X電子的第二電子反射層。 3. 如申請專利範圍第1項之光學半導體裝置,其中至少 一電子反射層為應變層。 4. 如申請專利範圍第3項之光學半導體裝置,其中一電 子反射層處於壓縮應變狀態,另一電子反射層處於伸張應 變狀態。 5. 如申請專利範圍第1項之光學半導體裝置,其中該裝 極體 置為一發 6. 如申請專利範圍第1項之光學半導體裝置,其中該裝 置為一雷射裝置。 7. 如申請專利範圍第6項之光學半導體裝置,其中該裝 置為一分離限制異質結構雷射裝置,包含一光學導引區 域、以及沈積於光學導引區域内的活性區域。 8. 如申請專利範圍第2項之光學半導體裝置,其中Γ電 子反射層位於光學導引區域與X電子反射層之間。 9. 如申請專利範圍第8項之光學半導體裝置,其中光學Correction 461164 ^ t, patent application scope 1. An optical semiconductor device comprising: an active region; and a P-doped cladding region located on one side of the active region; wherein an electron reflection barrier is provided on the p side of the active region A layer for reflecting Γ electrons and X electrons. The electron reflection blocking layer provides a blocking layer for Γ electrons that is larger than a blocking layer for X electrons. 2. The optical semiconductor device according to item 1 of the patent application scope, wherein the electron reflection resistive layer includes a first electron reflection layer for reflecting Γ electrons, and a second electron reflection layer for reflecting X electrons. 3. For the optical semiconductor device according to item 1 of the patent application, wherein at least one of the electron reflecting layers is a strained layer. 4. For an optical semiconductor device according to item 3 of the patent application, one of the electronic reflective layers is in a compressive strain state and the other electronic reflective layer is in a tensile strain state. 5. The optical semiconductor device according to item 1 of the patent application scope, wherein the device is a shot. 6. The optical semiconductor device according to item 1 of the patent application scope, wherein the device is a laser device. 7. The optical semiconductor device according to item 6 of the patent application, wherein the device is a separation-restricted heterostructure laser device including an optical guiding area and an active area deposited in the optical guiding area. 8. The optical semiconductor device according to item 2 of the patent application, wherein the Γ electron reflection layer is located between the optical guide region and the X electron reflection layer. 9. For an optical semiconductor device according to item 8 of the patent application, wherein the optical O:\61\61877.ptc 第1頁 2001.09. 03. 026 461164 _案號88121986 _年月日___ 六、申請專利範圍 導引區域的Γ導帶大體上會隨著Γ電子反射層的X導帶而 惡化。 10. 如申請專利範圍第2項之光學半導體裝置,其中Γ電 子反射層位於X電子反射層與P摻雜包覆區域之間。 11. 如申請專利範圍第1項之光學半導體裝置,其中電子 反射阻擋層包含許多用於反射Γ電子的第一電子反射層, 以及許多用於反射X電子的第一電子反射層。 1 2.如申請專利範圍第1 1項之光學半導體裝置,其中該 電子反射阻擋層為一超晶格結構。 1 3.如申請專利範圍第2項之光學半導體裝置,其中該裝 置以(Al、Ga、In)P系統製成,Γ電子反射層從包含A1P和 GaP的群組中選取材料來製成,X電子反射層由InP所製 成。 14. 如申請專利範圍第11項之光學半導體裝置,其中該 裝置以(A1、Ga、In)P系統製成,每個Γ電子反射層從包 含A 1P和GaP的群組中選取材料來製成,每個X電子反射層 由I η P所製成。 15. 如申請專利範圍第9項之光學半導體裝置,其中Γ電 子反射層為八1?並且光學導引區域為(八1().3〇8().7)。.52111。.48?。 1 6 .如申請專利範圍第1 3項之光學半導體裝置,其中每 個電子反射層的厚度為16Α或以下。 1 7.如申請專利範圍第1項之光學半導體裝置,其中至少 一電子反射層為Ρ摻雜型。 1 8.如申請專利範圍第1 3項之光學半導體裝置,其中第O: \ 61 \ 61877.ptc Page 1 2001.09. 03. 026 461164 _ Case No. 88121986 _ Month and Day ___ 6. The Γ conduction band in the guidance area of the patent application will generally follow the X of the Γ electron reflection layer The conduction band deteriorates. 10. The optical semiconductor device according to item 2 of the patent application, wherein the Γ electron reflection layer is located between the X electron reflection layer and the P-doped cladding region. 11. The optical semiconductor device according to item 1 of the patent application, wherein the electron reflection blocking layer includes a plurality of first electron reflection layers for reflecting Γ electrons, and a plurality of first electron reflection layers for reflecting X electrons. 1 2. The optical semiconductor device according to item 11 of the application, wherein the electron reflection blocking layer has a superlattice structure. 1 3. The optical semiconductor device according to item 2 of the patent application scope, wherein the device is made of (Al, Ga, In) P system, and the Γ electron reflection layer is made of materials selected from the group consisting of A1P and GaP, The X-electron reflection layer is made of InP. 14. The optical semiconductor device according to item 11 of the scope of patent application, wherein the device is made of (A1, Ga, In) P system, and each Γ electron reflection layer is made of a material selected from the group consisting of A 1P and GaP Therefore, each X-electron reflection layer is made of I η P. 15. The optical semiconductor device according to item 9 of the patent application scope, wherein the Γ electron reflection layer is 8 1? And the optical guiding area is (8 1 (). 308 (). 7). .52111. .48 ?. 16. The optical semiconductor device according to item 13 of the patent application scope, wherein the thickness of each electron reflection layer is 16A or less. 1 7. The optical semiconductor device according to item 1 of the patent application scope, wherein at least one of the electron reflecting layers is a P-doped type. 1 8. The optical semiconductor device according to item 13 of the patent application scope, wherein the O:\61\61877.ptc 第2頁 2001.08.16. 027 ^461164 _案號88121986_年月曰 修正_ 六、申請專利範圍 一電子反射層包含銦。 1 9.如申請專利範圍第7項之光學半導體裝置,其中電子 反射層沈積於該光學導引區域與該P摻雜包覆區域之間。 20. —種光學半導體裝置,包含: 一光學導引區域; 一具有至少一能量電位井的活性區域,該活性區域沈積 在該光學導引區域内;以及 沈積在光學導引區域另外一面的η摻雜以及p摻雜包覆區 域; 其中活性區域的ρ側上提供一反射Γ電子的電子反射 層;以及 其中光學導引區域的Γ導帶大體上會隨著電子反射層的 X導帶而惡化。 2 1 .如申請專利範圍第2 0項之光學半導體裝置,其中 (ΑΙα./Βο.Λ.^Ιπο.^Ρ形成光學導引區域,並且由Α1Ρ形成電 子反射層。 22.如申請專利範圍第20項之光學半導體裝置,其中電 子反射層為ρ摻雜型。 2 3.如申請專利範圍第2 0項之光學半導體裝置,其中電 子反射層沈積於該光學導引區域與該Ρ摻雜包覆區域之 間。 2 4 .如申請專利範圍第2 0項之光學半導體裝置,其中該 裝置為一分離限制異質結構雷射裝置。 ’O: \ 61 \ 61877.ptc Page 2 2001.08.16. 027 ^ 461164 _ Case No. 88121986_ Month and year Amendment _ 6. Scope of patent application An electron reflection layer contains indium. 19. The optical semiconductor device according to item 7 of the application, wherein an electron reflective layer is deposited between the optical guiding region and the P-doped cladding region. 20. An optical semiconductor device comprising: an optical guiding region; an active region having at least one energy potential well, the active region being deposited in the optical guiding region; and η deposited on the other side of the optical guiding region Doped and p-doped cladding regions; wherein an electron reflection layer reflecting Γ electrons is provided on the p-side of the active region; and the Γ conduction band of the optical guiding region generally follows the X conduction band of the electron reflection layer deterioration. 2 1. The optical semiconductor device according to item 20 of the scope of patent application, wherein (ΑΙα. / Βο.Λ. ^ Ιπο. ^ P forms an optical guiding region, and an electron reflection layer is formed by A1P. 22. If the scope of patent application is The optical semiconductor device of item 20, wherein the electron reflection layer is of a p-doped type. 2 3. The optical semiconductor device of item 20 of the patent application scope, wherein the electron reflection layer is deposited on the optical guiding region and the p-doped Between the cladding regions. 2 4. The optical semiconductor device according to item 20 of the patent application scope, wherein the device is a separation-limiting heterostructure laser device. O:\61\61877.ptc 第3頁 2001.08.16.028O: \ 61 \ 61877.ptc Page 3 2001.08.16.028
TW088121986A 1998-12-15 1999-12-15 A semiconductor laser device TW461164B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
GB9827492A GB2344932A (en) 1998-12-15 1998-12-15 Semiconductor Laser with gamma and X electron barriers

Publications (1)

Publication Number Publication Date
TW461164B true TW461164B (en) 2001-10-21

Family

ID=10844188

Family Applications (1)

Application Number Title Priority Date Filing Date
TW088121986A TW461164B (en) 1998-12-15 1999-12-15 A semiconductor laser device

Country Status (8)

Country Link
US (1) US6785311B1 (en)
EP (1) EP1147584B1 (en)
JP (1) JP2002532908A (en)
KR (1) KR100463972B1 (en)
DE (1) DE69933396T2 (en)
GB (1) GB2344932A (en)
TW (1) TW461164B (en)
WO (1) WO2000036719A1 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6628694B2 (en) * 2001-04-23 2003-09-30 Agilent Technologies, Inc. Reliability-enhancing layers for vertical cavity surface emitting lasers
US6901096B2 (en) * 2002-12-20 2005-05-31 Finisar Corporation Material system for Bragg reflectors in long wavelength VCSELs
US6931044B2 (en) * 2003-02-18 2005-08-16 Agilent Technologies, Inc. Method and apparatus for improving temperature performance for GaAsSb/GaAs devices
KR20050073740A (en) * 2004-01-10 2005-07-18 삼성전자주식회사 Semiconductor device including quantum well structure provided with dual barrier layers, semiconductor laser employing for the same and method for manufacturing the same
JP3863177B2 (en) * 2004-04-16 2006-12-27 ナイトライド・セミコンダクター株式会社 Gallium nitride light emitting device
JP4943052B2 (en) * 2006-04-27 2012-05-30 株式会社リコー Surface emitting laser element, surface emitting laser array, optical scanning device, image forming apparatus, and optical communication system
US8890113B2 (en) * 2011-06-08 2014-11-18 Nikolay Ledentsov Optoelectronic device with a wide bandgap and method of making same
DE102012107795B4 (en) * 2012-08-23 2022-02-03 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Optoelectronic semiconductor body and optoelectronic semiconductor chip
JP7334727B2 (en) * 2018-03-28 2023-08-29 ソニーグループ株式会社 Vertical cavity surface emitting laser device and electronic device
US11228160B2 (en) * 2018-11-15 2022-01-18 Sharp Kabushiki Kaisha AlGaInPAs-based semiconductor laser device and method for producing same
CN113948967B (en) * 2021-12-21 2022-03-15 苏州长光华芯光电技术股份有限公司 Semiconductor structure and preparation method thereof

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0728080B2 (en) * 1984-09-25 1995-03-29 日本電気株式会社 Semiconductor superlattice structure
JPH0666519B2 (en) * 1986-08-14 1994-08-24 東京工業大学長 Superlattice structure
JPH057051A (en) * 1990-11-09 1993-01-14 Furukawa Electric Co Ltd:The Quantum barrier semiconductor optical element
JP3135960B2 (en) * 1991-12-20 2001-02-19 シャープ株式会社 Semiconductor laser device
JPH05243676A (en) * 1992-02-28 1993-09-21 Mitsubishi Electric Corp Semiconductor laser device
JPH06326406A (en) * 1993-03-18 1994-11-25 Fuji Xerox Co Ltd Semiconductor laser device
JPH07147449A (en) * 1993-11-25 1995-06-06 Mitsubishi Electric Corp Multiquantum barrier structure and visible light semiconductor laser diode
US5509024A (en) * 1994-11-28 1996-04-16 Xerox Corporation Diode laser with tunnel barrier layer
US5557627A (en) * 1995-05-19 1996-09-17 Sandia Corporation Visible-wavelength semiconductor lasers and arrays
WO1997040560A2 (en) * 1996-04-24 1997-10-30 Philips Electronics N.V. Radiation-emitting semiconductor diode, and method of manufacturing same
GB2320609A (en) * 1996-12-21 1998-06-24 Sharp Kk Semiconductor laser device
GB2320610A (en) * 1996-12-21 1998-06-24 Sharp Kk laser device
GB2353899A (en) * 1999-09-01 2001-03-07 Sharp Kk A quantum well semiconductor device with strained barrier layer

Also Published As

Publication number Publication date
US6785311B1 (en) 2004-08-31
EP1147584B1 (en) 2006-09-27
WO2000036719A1 (en) 2000-06-22
DE69933396T2 (en) 2007-08-23
GB9827492D0 (en) 1999-02-10
KR100463972B1 (en) 2005-01-03
GB2344932A (en) 2000-06-21
DE69933396D1 (en) 2006-11-09
EP1147584A1 (en) 2001-10-24
JP2002532908A (en) 2002-10-02
KR20010082349A (en) 2001-08-29

Similar Documents

Publication Publication Date Title
Zhang et al. Key temperature-dependent characteristics of AlGaN-based UV-C laser diode and demonstration of room-temperature continuous-wave lasing
TW461164B (en) A semiconductor laser device
US6389051B1 (en) Structure and method for asymmetric waveguide nitride laser diode
TW201112552A (en) MQW laser structure comprising plural MQW regions
CN105590999A (en) Deep ultraviolet light emitting diode
US8513643B2 (en) Mixed alloy defect redirection region and devices including same
TW201220628A (en) Group III nitride-based green-laser diodes and waveguide structures thereof
CN111937261B (en) Semiconductor light-emitting element
TW201251245A (en) Nitride semiconductor laser and epitaxial substrate
TW546849B (en) A semiconductor device
TW201251108A (en) Strain balanced laser diode
JP2000277855A (en) Semiconductor light emitting element
TWI251973B (en) Semiconductor light-emitting element and method for manufacturing the same
US6541292B2 (en) Method for forming an asymmetric nitride laser diode
JP4837012B2 (en) Light emitting element
US8581236B2 (en) Electrically pumped optoelectronic semiconductor chip
JPH11261170A (en) Semiconductor laser and semiconductor light emitting device
JP4836382B2 (en) Light emitting element
WO2001009996A1 (en) Semiconductor structures using a group iii-nitride quaternary material system
JPH11103127A (en) Laser device
JP5800815B2 (en) Edge-emitting semiconductor laser
JP7291357B1 (en) Ultraviolet light-emitting element and electrical equipment provided with the same
US10439362B2 (en) AlInGaN alloy based laser diode
Chang et al. AlGaInP yellow-green light-emitting diodes with a tensile strain barrier cladding layer
Lee et al. MOCVD growth of asymmetric 980 nm InGaAs/InGaAsP broad-waveguide diode lasers for high power applications

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent
MM4A Annulment or lapse of patent due to non-payment of fees