TW459351B - CMOS semiconductor devices and method of formation - Google Patents
CMOS semiconductor devices and method of formation Download PDFInfo
- Publication number
- TW459351B TW459351B TW88110328A TW88110328A TW459351B TW 459351 B TW459351 B TW 459351B TW 88110328 A TW88110328 A TW 88110328A TW 88110328 A TW88110328 A TW 88110328A TW 459351 B TW459351 B TW 459351B
- Authority
- TW
- Taiwan
- Prior art keywords
- layer
- region
- conductive
- nitride layer
- gate
- Prior art date
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 29
- 238000000034 method Methods 0.000 title claims description 16
- 230000015572 biosynthetic process Effects 0.000 title 1
- 150000004767 nitrides Chemical class 0.000 claims abstract description 42
- 229910052751 metal Inorganic materials 0.000 claims abstract description 22
- 239000002184 metal Substances 0.000 claims abstract description 22
- 239000000758 substrate Substances 0.000 claims abstract description 16
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 30
- 229910052757 nitrogen Inorganic materials 0.000 claims description 17
- MZLGASXMSKOWSE-UHFFFAOYSA-N tantalum nitride Chemical compound [Ta]#N MZLGASXMSKOWSE-UHFFFAOYSA-N 0.000 claims description 5
- 238000000059 patterning Methods 0.000 claims 2
- 230000000873 masking effect Effects 0.000 abstract description 6
- 239000010410 layer Substances 0.000 description 111
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 21
- 229910052581 Si3N4 Inorganic materials 0.000 description 13
- -1 Nitrogen ion Chemical class 0.000 description 7
- 229910021332 silicide Inorganic materials 0.000 description 7
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 description 7
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical group [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 6
- 229910052710 silicon Inorganic materials 0.000 description 6
- 239000010703 silicon Substances 0.000 description 6
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 6
- 229910052721 tungsten Inorganic materials 0.000 description 6
- 239000010937 tungsten Substances 0.000 description 6
- 230000000694 effects Effects 0.000 description 5
- 229910044991 metal oxide Inorganic materials 0.000 description 5
- 150000004706 metal oxides Chemical class 0.000 description 5
- 229920005591 polysilicon Polymers 0.000 description 5
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 5
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 4
- 239000003989 dielectric material Substances 0.000 description 4
- 230000005684 electric field Effects 0.000 description 4
- 238000009413 insulation Methods 0.000 description 4
- 125000006850 spacer group Chemical group 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 238000007740 vapor deposition Methods 0.000 description 4
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 3
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 3
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 3
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 description 3
- YXTPWUNVHCYOSP-UHFFFAOYSA-N bis($l^{2}-silanylidene)molybdenum Chemical compound [Si]=[Mo]=[Si] YXTPWUNVHCYOSP-UHFFFAOYSA-N 0.000 description 3
- 229910052804 chromium Inorganic materials 0.000 description 3
- 239000011651 chromium Substances 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000005530 etching Methods 0.000 description 3
- 229910052735 hafnium Inorganic materials 0.000 description 3
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 description 3
- 229910052750 molybdenum Inorganic materials 0.000 description 3
- 239000011733 molybdenum Substances 0.000 description 3
- 229910021344 molybdenum silicide Inorganic materials 0.000 description 3
- 229910052758 niobium Inorganic materials 0.000 description 3
- 239000010955 niobium Substances 0.000 description 3
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 3
- 230000003647 oxidation Effects 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- 229920002120 photoresistant polymer Polymers 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 229910052719 titanium Inorganic materials 0.000 description 3
- 239000010936 titanium Substances 0.000 description 3
- 229910021341 titanium silicide Inorganic materials 0.000 description 3
- WQJQOUPTWCFRMM-UHFFFAOYSA-N tungsten disilicide Chemical compound [Si]#[W]#[Si] WQJQOUPTWCFRMM-UHFFFAOYSA-N 0.000 description 3
- 229910021342 tungsten silicide Inorganic materials 0.000 description 3
- 229910052720 vanadium Inorganic materials 0.000 description 3
- GPPXJZIENCGNKB-UHFFFAOYSA-N vanadium Chemical compound [V]#[V] GPPXJZIENCGNKB-UHFFFAOYSA-N 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- UGACIEPFGXRWCH-UHFFFAOYSA-N [Si].[Ti] Chemical compound [Si].[Ti] UGACIEPFGXRWCH-UHFFFAOYSA-N 0.000 description 2
- 229910021529 ammonia Inorganic materials 0.000 description 2
- 238000000137 annealing Methods 0.000 description 2
- SJKRCWUQJZIWQB-UHFFFAOYSA-N azane;chromium Chemical compound N.[Cr] SJKRCWUQJZIWQB-UHFFFAOYSA-N 0.000 description 2
- CFJRGWXELQQLSA-UHFFFAOYSA-N azanylidyneniobium Chemical compound [Nb]#N CFJRGWXELQQLSA-UHFFFAOYSA-N 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 230000000295 complement effect Effects 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 239000002019 doping agent Substances 0.000 description 2
- 238000002309 gasification Methods 0.000 description 2
- 210000004209 hair Anatomy 0.000 description 2
- 239000012212 insulator Substances 0.000 description 2
- GALOTNBSUVEISR-UHFFFAOYSA-N molybdenum;silicon Chemical compound [Mo]#[Si] GALOTNBSUVEISR-UHFFFAOYSA-N 0.000 description 2
- HWEYZGSCHQNNEH-UHFFFAOYSA-N silicon tantalum Chemical compound [Si].[Ta] HWEYZGSCHQNNEH-UHFFFAOYSA-N 0.000 description 2
- WNUPENMBHHEARK-UHFFFAOYSA-N silicon tungsten Chemical compound [Si].[W] WNUPENMBHHEARK-UHFFFAOYSA-N 0.000 description 2
- 229910000577 Silicon-germanium Inorganic materials 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- LEVVHYCKPQWKOP-UHFFFAOYSA-N [Si].[Ge] Chemical compound [Si].[Ge] LEVVHYCKPQWKOP-UHFFFAOYSA-N 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 229910021419 crystalline silicon Inorganic materials 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 210000004709 eyebrow Anatomy 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 238000007521 mechanical polishing technique Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 238000004151 rapid thermal annealing Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000012925 reference material Substances 0.000 description 1
- 229910052702 rhenium Inorganic materials 0.000 description 1
- WUAPFZMCVAUBPE-UHFFFAOYSA-N rhenium atom Chemical compound [Re] WUAPFZMCVAUBPE-UHFFFAOYSA-N 0.000 description 1
- 229910052594 sapphire Inorganic materials 0.000 description 1
- 239000010980 sapphire Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Landscapes
- Electrodes Of Semiconductors (AREA)
- Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
Abstract
Description
459351 _案號88110328 夕〇年/月$曰 修正_ 五、發明說明(1) 先前申請案參考資料 在美國此申請案已於1 9 9 8年6月3 0日登記為專利申請案 第 0 9 / 1 0 7 , 9 6 3 號。 發明範圍 本發明有關半導體元件,特別是有關互補金屬氧化物半 導體元件與其形成方法。 發明背景 就高性能半導體而言,朝向使用金屬閘極以克服多晶矽 耗盡之問題。多晶矽閘極之半導電性質造成該閘極中彎曲 帶或是電勢阱。載波局限在與其波長相當之尺寸上。該多 晶矽層中之對應電荷分佈造成閘極電容(CP)有限偏差依存 性質,出現該多晶矽耗盡效果。當閘極氧化物變薄時,同 時使用互補金屬氧化物半導體(CMOS)技術,提高閘極氧化 物電容(CQX)使CQX相當於接近該裝置臨界電壓閘極偏差範圍 之多晶石夕閘極電容。此致使整體閘極電容(c G)不必要地全 面降低。 在一種操作逆轉模式中操作時,該半導體元件此效果甚 至更為嚴苛,而且若該多晶矽閘極之載波密度低於1 02°/立 方厘米時可能皮整體電容降低約3 0 %。過多播雜劑(諸如P + 極用之摻雜劑)可能提高CP,造成臨界電壓(Vt)不安定。 已習知使用金屬閘極可以消除多晶矽耗盡效果。亦已習 知多晶矽閘極具有高度電阻係數,造成對於矽化該閘極以 降低整體電阻係數之需求。某些設計環境中,不可能或是 必須矽化所有閘極(諸如因為需要佘屬互連層之故並非所 有部分均經矽化之SRAMs,多晶矽閘極之高度電阻係數是459351 _Case No. 88110328 Year / Month $ Amendment_ V. Description of the Invention (1) Reference materials of previous applications in the United States This application was registered as the 0th in the patent application on June 30, 1998 9/1 0 7, 9 6 3. Scope of the invention The present invention relates to semiconductor devices, and more particularly to complementary metal oxide semiconductor devices and methods of forming the same. BACKGROUND OF THE INVENTION In the context of high-performance semiconductors, there is a trend toward using metal gates to overcome the problem of polysilicon depletion. The semi-conductive nature of polycrystalline silicon gates causes curved bands or potential wells in the gates. The carrier is limited to a size equivalent to its wavelength. The corresponding charge distribution in the polycrystalline silicon layer causes the finite deviation dependence of the gate capacitance (CP), and the polycrystalline silicon depletion effect occurs. When the gate oxide becomes thinner, the complementary metal oxide semiconductor (CMOS) technology is used at the same time to increase the gate oxide capacitance (CQX) so that CQX is equivalent to a polycrystalline silicon gate close to the device's threshold voltage gate deviation capacitance. This results in an unnecessary overall reduction in the overall gate capacitance (c G). When operating in an operation reversal mode, the effect of the semiconductor device is even more severe, and if the carrier density of the polysilicon gate is less than 102 ° / cm3, the overall skin capacitance may be reduced by about 30%. Excessive dopants (such as dopants for P + electrodes) may increase CP and cause unstable threshold voltage (Vt). It is known to use a metal gate to eliminate the depletion effect of polycrystalline silicon. It is also known that polycrystalline silicon gates have a high resistivity, resulting in the need to silicide the gate to reduce the overall resistivity. In some design environments, it is not possible or necessary to silicide all gates (such as SRAMs where not all parts are silicided because of the need for a metal interconnect layer). The polysilicon gate has a high resistivity of
O:\59\59047.ptc 第6頁O: \ 59 \ 59047.ptc Page 6
459 351 __案號 88110328 五、發明說明⑵ 城p紋完全耗盡技術(FDSOI ) 一缺點。此外,使用絕緣體 多晶矽閘極達到最適Vt 時,無法經由使用實際SOI厚高度電容率(高k值)金屬 ’ s。此外,多晶矽閘極之^用佶^常大於3. 9)用途不一致 氧化物閘極介電體(其中高k =該金屬氧化物反應而造成污 時’存在來自該多晶矽之矽^此性,因而影響其高k值特 染金屬氧化物閘極介電體之°犯 性。 $石夕與Ρ+多晶矽分別作為 在CMOS技術當中’使用=曰砂诳P+多晶石夕相當於N+多 NM0S與PM0S裝置之閘極。W,:操作功能。電流裝置尺寸 晶矽4· 1 eV與P+多晶矽5. 2 e 雜劑以避免短頻路效 需要大於1E17/立方厘米之碎頻 金屬之操作功能。習 果。取代雙摻雜矽閘極,,」/此 有可允許NM〇s與”〇3 知方法之一已選擇該金屬,如此六' 十,ft ^ ^ ^ ^ 裝置二者對稱vtS之_等間隙操作功能。^ ^ M 4111 需求必須避免短頻路效果之故,造成Vts之中等間隙金眉 對於低電壓、低功率、高性能裝置而言相當大。因此,需 要具有對於NM0S與PM0S裝置二者提供低Vts之方法。 本發明目的之一在於提供一可應用於NM0S與PM0S裝置之 低臨界電壓(V t s )。本發明包括一結構及一方法◊本發明 之結構為一半導體元件,其具有一半導體基板、一第一閘 極及一第二 一區域及一 該第一區域 功能值。該 化物層,且 問極。該半 第二導電型 之一第一金 第二閘極包 特徵在於具 導體基板具 之一第二區 屬氮化物層 括覆蓋該第 有一第二功 有一第一導 域。第一閘 ,且特徵在 二區域之一 能值。第二 電型之一第 極具有覆蓋 於具有第一 第二金屬氮 功能值小於459 351 __Case No. 88110328 V. Description of the invention One disadvantage of the FDSOI technology. In addition, when the optimum Vt is reached using an insulator polycrystalline silicon gate, the actual SOI thickness and high permittivity (high k value) metal cannot be used. In addition, polysilicon gates are often used more than 3.9.) Inconsistent uses of oxide gate dielectrics (where high k = the metal oxide reacts to cause contamination when there is silicon from the polysilicon). Therefore, it affects the high-k value of specially dyed metal oxide gate dielectrics. Shishi and P + polycrystalline silicon are used in CMOS technology, respectively. And PM0S device gate. W ,: operating function. Current device size crystalline silicon 4 · 1 eV and P + polycrystalline silicon 5. 2 e hybrid agent to avoid short-frequency path effect. Needs more than 1E17 / cubic centimeter of broken frequency metal operation function. . Xiguo. Instead of the double-doped silicon gate, "/ this has allowed the NM0s and" 〇3 known methods have chosen this metal, so six 'ten, ft ^ ^ ^ ^ ^ device symmetrical vtS _ Equal-gap operation function. ^ ^ M 4111 The need to avoid short-frequency effects causes the equal-gap golden eyebrows in Vts to be quite large for low-voltage, low-power, high-performance devices. Therefore, it is necessary to have Both PMOS devices provide a method for low Vts. One object of the present invention is to Provides a low threshold voltage (V ts) that can be applied to NMOS and PMOS devices. The present invention includes a structure and a method. The structure of the present invention is a semiconductor device having a semiconductor substrate, a first gate and a first gate. The function values of the two and one regions and the first region. The compound layer and the interrogation electrode. The first gold second gate package of the semi-second conductivity type is characterized by a conductive substrate and a second region which is a nitride. The layer includes a first conduction region and a first conduction region. The first gate is characterized by an energy value in two regions. One of the second electrical types has a first pole covered with a first second metal nitrogen function value less than
4 59 35 1 _案號88110328 夕φ 年/ 月9曰__ 五、發明說明(3) 第一功能值。 本發明之方法藉由實施下列步驟來獲得一半導體元件。 提供一半導體基板,其具有一第一導電型之一第一區域及 一第二導電型之一第二區域。形成一覆蓋該半導體基板之 導電層,其具有覆蓋該第一區域之一第一部份及覆蓋該第 二區域之一第二部份。氮化該導電層之第一部份,以便在 該第一區域上形成一導電氮化層。圖樣化該導電氮化物 層,以在該第一區域上形成一第一閘極。圖樣化該導電 層,以在該第二區域上形成一第二閘極。 本發明之方法及結構可應用於NMOS及PMOS,以完成低的 臨界電壓(Vts)。 圖 圖 述- -圖 至 至 簡1 8面 式圖。圖剖 圖圖驟 面 剖 驟 步 之 件 元 體 導 半 明 發 本 成 形 以 用 示 顯 步 之 體 導 半 TMMJ 實 體 具 他 其 明 發 本 成 形 以 用 示 顯 明 說 號 符 件3 元 5 W 5 8 2 4 A 11 1—- ΟΛ- 06 份 汝口 之 構層層 結電電 置介介 域裝極極 極 區體閘閘層閘 一導一二罩一 第半第第面第 構 結 區置 子層 域緣裝 離化 區絕體層氮II 二場導電植電 第電半導佈導 O:\59\59047.ptc 第8頁 2001.01.09. 008 459 35 修正 物區層物體體 隔極罩化晶晶 層間及面氮電電 蓋壁極二電一二 覆側源第導第第 6 8 0 0 2 8 0 2 2 3 4 4 4 5 案號 88110328 五、發明說明(4) 25 第二閘極 27 第一電晶體 29 第二電晶體 34 源極汲極區 4 1 氮離子 4 7 閘極 4 9 問極 較佳具體實施例詳述 圖1所示係根據本發明具體實例之一的半導體元件結構 部分1 0。該半導體元件結構包括具有第一導電型之第一區 3、第二導電型之第二區5、電場絕緣區12 、第一閘極介電 層1 4與第二閘極介電層1 6之半導體基板。一具體實例中, 該半導體基板係單晶矽基板。或者該半導體基板可為絕緣 體上矽基板、一種鍺基板 '一種矽-鍺基板、一種藍寶石 上矽等。 一具體實例中,電場絕緣區1 2係使用習用蝕刻作用與化 學機械拋光技術形成之溝槽絕緣區。或者,電場絕緣區1 2 可為電場氧化物區,其係使用習用技術形成,諸如局部矽 氧化作用(LOCOS)、聚缓衝LOCOS(PBL)、多晶矽密封局部 氧化作用(PEL0X)等。在一具體實例中,閘極介電層1 4與 閘極介電層1 6係熱二氧化矽層,其係分別熱氧化一部分第 一區3與第二區5形成•或者,閘極介電層14與閘極介電層 1 6可為一層氮化矽、一層氧氮化矽、一層化學蒸氣沉積二 氧化$夕、一氮化氧化物層、一高k值介電材料,諸如一種4 59 35 1 _Case No. 88110328 eve φ year / month 9 __ V. Description of the invention (3) First function value. The method of the present invention obtains a semiconductor device by performing the following steps. A semiconductor substrate is provided having a first region of a first conductivity type and a second region of a second conductivity type. A conductive layer covering the semiconductor substrate is formed, which has a first portion covering one of the first regions and a second portion covering one of the second regions. A first portion of the conductive layer is nitrided to form a conductive nitride layer on the first region. The conductive nitride layer is patterned to form a first gate electrode on the first region. The conductive layer is patterned to form a second gate electrode on the second region. The method and structure of the present invention can be applied to NMOS and PMOS to achieve a low threshold voltage (Vts). Figures Legends--Figures to to Jane 18 8-sided drawing. Figure cut-out view cut-out step-by-step parts of the body guide semi-finished hair form to use the display of the step of the TMMJ entity to display other parts of the hair form to show the sign symbol 3 yuan 5 W 5 8 2 4 A 11 1—- ΟΛ- 06 copies of Rukou ’s layered structure, electrical placement, dielectric field, polar region, gate gate, gate gate Layered boundary edge ionization zone insulation layer Nitrogen II Second-field conductive plant electricity Conductive semiconducting conductor O: \ 59 \ 59047.ptc Page 8 2001.01.09. 008 459 35 Correction layer layer object body isolation Intercrystalline and interlayer and surface nitrogen electric cover wall electrode two electric one two cover side source guide No. 6 8 0 0 2 8 0 2 2 3 4 4 4 5 Case No. 88110328 V. Description of the invention (4) 25 Second gate 27 First transistor 29 Second transistor 34 Source-drain region 4 1 Nitrogen ion 4 7 Gate 4 9 Interrogation of the preferred embodiment Detailed description of the semiconductor device shown in FIG. 1 is one of the specific examples of the present invention Structure part 1 0. The semiconductor device structure includes a first region 3 having a first conductivity type, a second region 5 having a second conductivity type, an electric field insulation region 12, a first gate dielectric layer 14 and a second gate dielectric layer 16. Semiconductor substrate. In a specific example, the semiconductor substrate is a single crystal silicon substrate. Alternatively, the semiconductor substrate may be a silicon-on-insulator substrate, a germanium substrate, a silicon-germanium substrate, a silicon-on-sapphire substrate, and the like. In a specific example, the electric field insulation region 12 is a trench insulation region formed using conventional etching and chemical mechanical polishing techniques. Alternatively, the electric field insulating region 12 may be an electric field oxide region, which is formed using conventional techniques, such as local silicon oxidation (LOCOS), poly-buffered LOCOS (PBL), polycrystalline silicon sealed local oxidation (PELOX), and the like. In a specific example, the gate dielectric layer 14 and the gate dielectric layer 16 are thermal silicon dioxide layers, which are formed by thermally oxidizing a portion of the first region 3 and the second region 5 respectively. The electrical layer 14 and the gate dielectric layer 16 may be a layer of silicon nitride, a layer of silicon oxynitride, a layer of chemical vapor deposition, a nitride oxide layer, a high-k dielectric material, such as a kind of
O:\59\59047.ptc 第9頁 459 35 i 案號88110328 &年广月7曰 修正O: \ 59 \ 59047.ptc Page 9 459 35 i Case No. 88110328 & Year 7
......- . . - - . __ · -- - .....II 五、發明說明(5) 金屬氧化物,或是其組合物。必須明白可以同時形成閘極 介電層14與閘極介電層16。或者,可以不同時以及與不同 閘極介電材料形成閘極介電層1 4與閘極介電層1 6。 圖2中,在第一區3與第二區5上覆蓋形成導電層18。具 體實例之一中,導電層1 8係一金屬層*諸如钽、鎢、鉬、 鍅、銘、釩、鉻、鈮、鈦等。或者,導電層18可為一種金 屬矽化物層,諸如矽化鈕、矽化鎢、矽化鉬、矽化鈦等。 可以使用習用化學蒸氣沉積技術或是濺鍍技術形成導電層 18。 圖3中,在導電層18上覆蓋形成遮罩層20。具體實例之 一當中,遮罩層2 0係使用迅速熱化學蒸氣沉積作用沉積之 氮化矽層。或者,遮罩層20可為一種光阻層或是多晶矽 層。 圖4中,對遮罩層20形成佈線圖型,以曝露導電層18第 一部分,並留下覆蓋導電層1 8第二部分之遮罩層2 0部分。 然後氮化該導電層18之曝露部分以形成覆蓋第一區3之導 電氮化物層2 4。具體實例之一當中,將氮離子2 2植入導電 層1 8曝露部分形成導電性氮化物層2 4。必須明白遮罩層2 0 殘留部分避免氮離子植入導電層1 8之第二部分。植入氮之 後,該半導體元件結構退火形成導電性氮化物層2 4。可使 用習用爐或是迅速熱退火系統使該半導體元件結構退火。 必須明白若使用光阻形成遮罩層2 0,必須於退火之前去除 彼。或者,可以在氮環境(諸如氨)下退火導電層18之曝露 部分或是將導電層18之曝露部分曝於包括氮之電漿當中形 成導電氮化物層2 4。注意,若導電層1 8係鈕、鎢、鉬、......-..--. __ ·--..... II V. Description of the Invention (5) Metal oxide or its composition. It must be understood that the gate dielectric layer 14 and the gate dielectric layer 16 may be formed at the same time. Alternatively, the gate dielectric layer 14 and the gate dielectric layer 16 may not be formed at the same time and with different gate dielectric materials. In FIG. 2, the first region 3 and the second region 5 are covered to form a conductive layer 18. In one specific example, the conductive layer 18 is a metal layer * such as tantalum, tungsten, molybdenum, hafnium, indium, vanadium, chromium, niobium, titanium, and the like. Alternatively, the conductive layer 18 may be a metal silicide layer, such as a silicide button, tungsten silicide, molybdenum silicide, titanium silicide, and the like. The conductive layer 18 may be formed using conventional chemical vapor deposition techniques or sputtering techniques. In FIG. 3, a mask layer 20 is formed by covering the conductive layer 18. In one specific example, the mask layer 20 is a silicon nitride layer deposited using rapid thermochemical vapor deposition. Alternatively, the masking layer 20 may be a photoresist layer or a polycrystalline silicon layer. In FIG. 4, a wiring pattern is formed for the mask layer 20 to expose the first portion of the conductive layer 18 and leave a portion of the mask layer 20 covering the second portion of the conductive layer 18. The exposed portion of the conductive layer 18 is then nitrided to form a conductive nitride layer 24 covering the first region 3. In one specific example, nitrogen ions 2 2 are implanted in the exposed portion of the conductive layer 18 to form a conductive nitride layer 24. It must be understood that the remaining portion of the masking layer 20 prevents nitrogen ions from implanting into the second portion of the conductive layer 18. After implanting nitrogen, the semiconductor device structure is annealed to form a conductive nitride layer 24. The semiconductor device structure may be annealed using a conventional furnace or a rapid thermal annealing system. It must be understood that if a photoresist is used to form the mask layer 20, it must be removed before annealing. Alternatively, the exposed portion of the conductive layer 18 may be annealed in a nitrogen environment (such as ammonia) or the exposed portion of the conductive layer 18 may be exposed to a plasma including nitrogen to form the conductive nitride layer 24. Note that if the conductive layer 18 series button, tungsten, molybdenum,
O:\59\59047.ptc 第10頁 459351 _案號88110328 十年/月7日__ 五、發明說明(6) 锆、铪、釩、鉻、鈮或鈦層,則導電氮化物層2 4分別是氮 化姐、氣化鎢、氮化翻、氣化錯、氮化給、氣化訊、氮化 鉻、氮化鈮或氮化鈦層。同樣地,若導電層1 8係矽化鈕、 矽化鎢、矽化鉬或是矽化鈦,導電氮化層2 4分別是矽氮化 钽、矽氮化鎢、矽氮化鉬或矽氮化鈦。 圊5當中,在導電氮化物層2 4與導電層1 8殘留部分形成 覆蓋層2 6。具體實例之一當中,覆蓋層2 6係使用迅速熱化 學蒸氣沉積作用沉積之矽氮化物層。或者,覆蓋層2 6可為 亦使用迅速熱化學沉積作用沉積之多晶矽層。注意,若使 用多晶矽形成覆蓋層2 6 ,然後可在該多晶矽與下層導電氮 化物層2 4以及導電層1 8之間形成一阻礙層(諸如氮化鈦), 以避免多晶矽層與下層導電金屬層18以及導電氮化物層24 間之矽化作用。亦必須瞭解使用覆蓋層2 6避免隨後處理期 間導電氮化物層2 4與導電層1 8殘留部分之氧化作用。 圖6當争,對於導電氮化物層2 4形成佈線圖型以形成覆 蓋第一區3之第一閘極2 3 ,並對於導電層1 8殘留部分形成 佈線圖型以形成覆蓋第二區5之第二閘極2 5。如圖6所示, 留下一部分覆蓋層2 6覆蓋第一閘極2 3以及覆蓋第二閘極 2 5。必須注意使用習用蝕刻技術同時或是在個別步驟中對 於導電氮化物層2 4與導電層1 8殘留部分形成佈線圖型。 圖7當中,沿著第一閘極2 3與第二閘極2 5側壁形成側壁 間隔物2 8。具體實例之一當中,側壁間隔物2 8係矽氮化物 侧壁間隔物,其係使用迅速熱化學蒸氣沉積作用與習用蝕 刻技術形成。必須明白侧壁間隔物2 8避免第一閘極2 3與第 二閘極2 5於隨後處理步驟期間氧化。此外,在第一區3當O: \ 59 \ 59047.ptc Page 10 459351 _ Case No. 88110328 Decade / Month 7__ V. Description of the invention (6) Zirconium, hafnium, vanadium, chromium, niobium or titanium layer, then the conductive nitride layer 2 4 are respectively nitrided nitride, gasified tungsten, nitrided turn, gasification fault, nitrided to, gasification information, chromium nitride, niobium nitride or titanium nitride layer. Similarly, if the conductive layer 18 is a silicon silicide button, tungsten silicide, molybdenum silicide, or titanium silicide, the conductive nitride layers 24 are tantalum silicon nitride, tungsten silicon nitride, molybdenum silicon nitride, or titanium silicon nitride. In 圊 5, a cover layer 26 is formed on the conductive nitride layer 24 and the remaining portion of the conductive layer 18. In one specific example, the capping layer 26 is a silicon nitride layer deposited using rapid thermochemical vapor deposition. Alternatively, the capping layer 26 may be a polycrystalline silicon layer that is also deposited using rapid thermochemical deposition. Note that if polycrystalline silicon is used to form the cover layer 26, a barrier layer (such as titanium nitride) can be formed between the polycrystalline silicon and the underlying conductive nitride layer 24 and the conductive layer 18 to avoid the polycrystalline silicon layer and the underlying conductive metal. Silicide between the layer 18 and the conductive nitride layer 24. It is also necessary to understand the use of the cover layer 26 to avoid oxidation of the conductive nitride layer 24 and the remaining portions of the conductive layer 18 during subsequent processing. In FIG. 6, a wiring pattern is formed for the conductive nitride layer 24 to form the first gate electrode 2 3 covering the first region 3, and a wiring pattern is formed for the remaining portion of the conductive layer 18 to form the second region 5. Of the second gate electrode 2 5. As shown in FIG. 6, a part of the covering layer 26 is left to cover the first gate electrode 23 and the second gate electrode 25 is left. Care must be taken to form wiring patterns for the remaining portions of conductive nitride layer 24 and conductive layer 18 using conventional etching techniques at the same time or in separate steps. In FIG. 7, sidewall spacers 28 are formed along the sidewalls of the first gate electrode 23 and the second gate electrode 25. In one of the specific examples, the sidewall spacer 28 is a silicon nitride sidewall spacer, which is formed using a rapid thermochemical vapor deposition and a conventional etching technique. It must be understood that the side wall spacers 28 prevent the first and second gates 23 and 25 from being oxidized during subsequent processing steps. In addition, in the first zone 3
O:\59\59047.ptc 第U頁 4 59 35 1 修正 案號 88110328 五、發明說明(7) 中形成具有第二導電型之源極汲極區3 0 ,在第二區5内形 成具有第一導電型之源極汲極區3 4,以在第一區3 0中形成 第一電晶.體27以及在第·一區5内形成第二電晶體29 。必須 明瞭閘極2 3具有與閘極2 5不同之操作功能。例如,若第一 區3具有N-型導電係數而第二區5具有P-型導電係數,閘極 2 3之操作功能會大於閘極2 5之操作功能。 圖8所示係本發明另一具體實例,其中形成導電氮化物 層24之後去除示於圖4之遮罩層20。然後,在導電氮化物 層24上形成第二遮罩層40以曝露導電層18殘留部分。具體 實例之一當中,遮罩層4 0是使用迅速熱化學蒸氣沉積作用 沉積之矽氮化物層。或者,遮罩層40可為一層光阻或是一 層多晶矽。形成遮罩層4 0之後,然後氮化導電層1 8之殘留 部分以形成導電氮化物層4 2。具體實例之一當中,將氮離 子4 1植入導電層1 8之殘留部分,然後使該半導體結構1 5退 火形成導電氮化物層42。或者,可以在氮環境(諸如氨)下 退火,或是使導電層18之殘留部分曝於包括氮之電漿以形 成導電氮化物層4 2。注意,若導電層1 8係鈕、鎢、鉬、 錯、铪、釩、鉻、鈮或鈦層,則導電氮化物層4 2分別是氮 化li、SL化鶴、氮化la、氮化錯、氣化給、氮化飢、氮化 鉻、氮化鈮或氮化鈦層。同樣地,砮導電層1 8係矽化鈕、 矽化鎢、矽化鉬或是矽化鈦,導電氮化層4 2分別是矽氮化 钽、矽氮化鎢、矽氮化鉬或矽氮化鈦。 圖9當中,去除遮罩層40並如先前圖5-8所述繼續處理 之。此形成覆蓋第一區3之第一電晶體48與覆蓋第二區5之 第二電晶體50。必須注意電晶體48之閘極47包括一部分導O: \ 59 \ 59047.ptc Page U 4 59 35 1 Amendment No. 88110328 5. In the description of the invention (7), a source drain region 3 0 having a second conductivity type is formed, and in the second region 5 is formed The source-drain region 34 of the first conductivity type forms a first transistor 27 in the first region 30 and a second transistor 29 in the first region 5. It must be understood that gate 23 has a different operating function than gate 25. For example, if the first region 3 has an N-type conductivity and the second region 5 has a P-type conductivity, the operation function of the gate electrode 23 will be greater than that of the gate electrode 25. Fig. 8 shows another embodiment of the present invention, in which the masking layer 20 shown in Fig. 4 is removed after the conductive nitride layer 24 is formed. Then, a second mask layer 40 is formed on the conductive nitride layer 24 to expose the remaining portion of the conductive layer 18. In one specific example, the mask layer 40 is a silicon nitride layer deposited using rapid thermochemical vapor deposition. Alternatively, the masking layer 40 may be a layer of photoresist or a layer of polycrystalline silicon. After the mask layer 40 is formed, the remaining portion of the conductive layer 18 is then nitrided to form a conductive nitride layer 42. In one specific example, a nitrogen ion 41 is implanted into the remaining portion of the conductive layer 18, and then the semiconductor structure 15 is annealed to form a conductive nitride layer 42. Alternatively, the conductive nitride layer 42 may be formed by annealing in a nitrogen environment such as ammonia, or exposing the remaining portion of the conductive layer 18 to a plasma including nitrogen. Note that if the conductive layer 18 is a layer of tungsten, tungsten, molybdenum, tungsten, hafnium, vanadium, chromium, niobium, or titanium, the conductive nitride layer 42 is a nitride nitride, a SL chemical, a nitride nitride, or a nitride nitride. Wrong, gasified, nitrided, chromium nitride, niobium nitride or titanium nitride layer. Similarly, the rhenium conductive layer 18 is a silicon silicide button, tungsten silicide, molybdenum silicide, or titanium silicide, and the conductive nitride layer 42 is tantalum silicon nitride, tungsten silicon nitride, molybdenum silicon nitride, or titanium silicon nitride. In Fig. 9, the mask layer 40 is removed and processing is continued as described previously in Figs. 5-8. This forms a first transistor 48 covering the first region 3 and a second transistor 50 covering the second region 5. It must be noted that the gate 47 of the transistor 48 includes a part of the
O:\59\59047.ptc 第12頁 4 5 9 35 案號 88110328 修正 五、發明說明(8) 電氮化物層2 4 而且 極49包括一部分導電 值。例如,可以形成 晶體48以及具有第二 更特別的是,若第一 P -型導電係數,第一 於電晶體5 0氮化钽閘 極之操作功能隨著氮 不同氮濃度之導電氮 極。尤其是,因為一 氮濃度較小之故,其 前述敛述與此處包 是,已揭示使用具有 能之CMOS裝置結構。 因此,很明顯地, 與優點之CMOS裝置。 本發明,但是本發明 知本技藝者將會明瞭 與變化。因此,本發 當中之變化與改良。 體5 0之閘 操作功能 閘極之電 晶體5 0。 二區5具有 功能值大 氮化物閘 形成具有 能之閘 氮化物之 氣化物。 點。特別 化裝置性 具有第一操作功能值,電晶 氮化物層42 ,而且具有第二 具有第一操作功能值氮化钽 操作功能值氮化钽閘極之電 區3具有N-型導電係數,第-電晶體4 8之氮化組閘極操作 極操作功能值。注意,導電 濃度提高。因此,可以藉由 化物層形成具有不同操作功 種非化學當量富含金屬導電 操作功能低於化學當量導電 含之舉例說明本發明諸多優 不同操作功能之閘極以最適 本發明已提出一種完全符合前述需求 雖然已參考特定具體實例描述與說明 並不受限於此等範例性具體實例。熟 在不違背本發明精神下可以製得改良 明包括所有此等在附錄申請專利範圍O: \ 59 \ 59047.ptc Page 12 4 5 9 35 Case No. 88110328 Amendment V. Description of the invention (8) The electro-nitride layer 2 4 and the electrode 49 include a part of the conductivity value. For example, crystal 48 may be formed and have a second P-type conductivity coefficient, and the first operation function of the transistor 50 tantalum nitride gate will be a conductive nitrogen electrode with different nitrogen concentrations. In particular, because the concentration of one nitrogen is small, the foregoing condensed description is inclusive of this, and it has been disclosed to use a capable CMOS device structure. Therefore, it is clear that CMOS devices have advantages. The present invention, but the present invention will be understood and changed by those skilled in the art. Therefore, the changes and improvements in this issue. Gate of body 50 0 Operation function Gate electrode of crystal 50. The second region 5 has a large functional gate nitride gate to form a gas gate having a gate gate nitride. point. The special device has a first operating function value, the transistor nitride layer 42, and the electric region 3 having a second operating function value tantalum nitride operating function value tantalum nitride gate electrode has an N-type conductivity, The functional value of the gate operating electrode of the nitride group of the transistor No. 48. Note that the conductivity is increased. Therefore, a non-chemical equivalent metal-rich metal conductive operation function with a lower operating function than a chemical equivalent conductive layer can be formed by forming a compound layer to illustrate the advantages of the present invention. Although the foregoing requirements have been described and illustrated with reference to specific specific examples, they are not limited to these exemplary specific examples. Modifications can be made without departing from the spirit of the invention, including all such patent applications in the appendix.
O:\59\59047.ptc 第13頁O: \ 59 \ 59047.ptc Page 13
Claims (1)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/107,963 US6027961A (en) | 1998-06-30 | 1998-06-30 | CMOS semiconductor devices and method of formation |
Publications (1)
Publication Number | Publication Date |
---|---|
TW459351B true TW459351B (en) | 2001-10-11 |
Family
ID=22319440
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW88110328A TW459351B (en) | 1998-06-30 | 1999-06-21 | CMOS semiconductor devices and method of formation |
Country Status (1)
Country | Link |
---|---|
TW (1) | TW459351B (en) |
-
1999
- 1999-06-21 TW TW88110328A patent/TW459351B/en not_active IP Right Cessation
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4226149B2 (en) | CMOS semiconductor device and method for forming the same | |
EP1872407B1 (en) | Using metal/metal nitride bilayers as gate electrodes in self-aligned aggressively scaled cmos devices | |
TWI329926B (en) | Semiconductor devices and methods of manufacture thereof | |
US7141858B2 (en) | Dual work function CMOS gate technology based on metal interdiffusion | |
US7863126B2 (en) | Fabrication of a CMOS structure with a high-k dielectric layer oxidizing an aluminum layer in PFET region | |
TWI476822B (en) | Bimetal and double dielectric integration of metal high dielectric constant field effect transistors | |
CN1710718B (en) | Semiconductor device and method of manufacture thereof | |
US8525263B2 (en) | Programmable high-k/metal gate memory device | |
US7629212B2 (en) | Doped WGe to form dual metal gates | |
CN101233611A (en) | Metal-gate MOSFETs transitioned through an all-semiconducting metal alloy | |
CN1797769B (en) | Method for fabricating semiconductor device with multiple gate dielectric layers | |
WO2010146641A1 (en) | Semiconductor device and process for manufacture thereof | |
TW200926398A (en) | High performance metal gate CMOS with high-k gate dielectric | |
JP5444176B2 (en) | Semiconductor device | |
US7666774B2 (en) | CMOS structure including dual metal containing composite gates | |
TW459351B (en) | CMOS semiconductor devices and method of formation | |
JPH0582777A (en) | Mos type field effect transistor and its manufacture | |
JP4639000B2 (en) | MIS type semiconductor device and manufacturing method thereof | |
JP2005093815A (en) | Semiconductor device manufacturing method | |
US20060273410A1 (en) | Thermally stable fully silicided Hf silicide metal gate electrode |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
GD4A | Issue of patent certificate for granted invention patent | ||
MK4A | Expiration of patent term of an invention patent |