TW454340B - Method for manufacturing PMOS transistor with ultra-shallow junction - Google Patents
Method for manufacturing PMOS transistor with ultra-shallow junction Download PDFInfo
- Publication number
- TW454340B TW454340B TW89109231A TW89109231A TW454340B TW 454340 B TW454340 B TW 454340B TW 89109231 A TW89109231 A TW 89109231A TW 89109231 A TW89109231 A TW 89109231A TW 454340 B TW454340 B TW 454340B
- Authority
- TW
- Taiwan
- Prior art keywords
- gate
- patent application
- manufacturing
- substrate
- ion
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 48
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 17
- 150000002500 ions Chemical class 0.000 claims abstract description 24
- 239000000758 substrate Substances 0.000 claims abstract description 22
- 239000004065 semiconductor Substances 0.000 claims abstract description 9
- 238000005496 tempering Methods 0.000 claims description 18
- 229910052796 boron Inorganic materials 0.000 claims description 11
- -1 phosphorus ion Chemical class 0.000 claims description 11
- 238000005530 etching Methods 0.000 claims description 8
- 238000000151 deposition Methods 0.000 claims description 4
- 238000009413 insulation Methods 0.000 claims description 4
- 238000007254 oxidation reaction Methods 0.000 claims description 4
- 230000003647 oxidation Effects 0.000 claims description 3
- 229910052698 phosphorus Inorganic materials 0.000 claims description 2
- 239000011574 phosphorus Substances 0.000 claims description 2
- 229910015900 BF3 Inorganic materials 0.000 claims 1
- 229910052581 Si3N4 Inorganic materials 0.000 claims 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical group O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims 1
- HAYXDMNJJFVXCI-UHFFFAOYSA-N arsenic(5+) Chemical compound [As+5] HAYXDMNJJFVXCI-UHFFFAOYSA-N 0.000 claims 1
- WTEOIRVLGSZEPR-UHFFFAOYSA-N boron trifluoride Chemical compound FB(F)F WTEOIRVLGSZEPR-UHFFFAOYSA-N 0.000 claims 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims 1
- 229910052814 silicon oxide Inorganic materials 0.000 claims 1
- 125000006850 spacer group Chemical group 0.000 abstract description 2
- 238000000137 annealing Methods 0.000 abstract 1
- 238000004151 rapid thermal annealing Methods 0.000 abstract 1
- 238000009792 diffusion process Methods 0.000 description 15
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 7
- 238000005516 engineering process Methods 0.000 description 6
- 230000001052 transient effect Effects 0.000 description 6
- 230000000694 effects Effects 0.000 description 5
- 239000007943 implant Substances 0.000 description 5
- 238000005468 ion implantation Methods 0.000 description 5
- 238000004518 low pressure chemical vapour deposition Methods 0.000 description 5
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 5
- 238000002513 implantation Methods 0.000 description 4
- 229910052785 arsenic Inorganic materials 0.000 description 3
- OKZIUSOJQLYFSE-UHFFFAOYSA-N difluoroboron Chemical compound F[B]F OKZIUSOJQLYFSE-UHFFFAOYSA-N 0.000 description 3
- 229910021332 silicide Inorganic materials 0.000 description 3
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 description 3
- XYFCBTPGUUZFHI-UHFFFAOYSA-N Phosphine Chemical compound P XYFCBTPGUUZFHI-UHFFFAOYSA-N 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- XPDWGBQVDMORPB-UHFFFAOYSA-N Fluoroform Chemical compound FC(F)F XPDWGBQVDMORPB-UHFFFAOYSA-N 0.000 description 1
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- RBFQJDQYXXHULB-UHFFFAOYSA-N arsane Chemical compound [AsH3] RBFQJDQYXXHULB-UHFFFAOYSA-N 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000007429 general method Methods 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 238000001459 lithography Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 150000002825 nitriles Chemical class 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910000073 phosphorus hydride Inorganic materials 0.000 description 1
- 229920002120 photoresistant polymer Polymers 0.000 description 1
- 238000001020 plasma etching Methods 0.000 description 1
- 238000011165 process development Methods 0.000 description 1
- 229910052716 thallium Inorganic materials 0.000 description 1
- WQJQOUPTWCFRMM-UHFFFAOYSA-N tungsten disilicide Chemical compound [Si]#[W]#[Si] WQJQOUPTWCFRMM-UHFFFAOYSA-N 0.000 description 1
- 229910021342 tungsten silicide Inorganic materials 0.000 description 1
Landscapes
- Insulated Gate Type Field-Effect Transistor (AREA)
Abstract
Description
464340 五、發明說明(i) [發明領域】 本發明是有關於半導體製程技術,且是有關於一種在 半導體基底上製作出具有極淺接面(ultra-shallow junction)之PM0S電晶體的方法,該方法特別適用於〇. j 8 微米以下之製程。 【發明背景】 為了提高積體電路的密度與速度,元件的通道長度必 須僅可能縮小’但隨著元件微縮,在通道區之摻雜濃度分 佈及源極/汲極區必須配合變淺,以避免短通道效應 (short channel effects) °在以往,元件在大尺寸時 代’其接面深度大約是在1~3微米左右,但在現今先進之 超大型積體電路技術,此接面深度(junct i〇I1 depth)已降 至0. 2微米以下。例如對〇. 1 8微米的元件,其所需源極/汲 極區接合面深度可能只有〇 07微米。為了製作出極淺接面 的半導體元件,如何能準確地控制佈植後的輪廓深度 (profile),以避免影響M0S的有效通道長度及接面深度, 便成為製程發展上的重要課題。 在P型金氧半電晶體(M〇S transistor)的製作過程 中,通常以B+或BF/等離子源,對pm〇s進行源極與汲極的 植入。由於硎離子的擴散速度遠超過砷離子,會產生嚴重 的暫態加速擴散現象(TED ; Transient Enhance464340 V. Description of the Invention (i) [Field of the Invention] The present invention relates to a semiconductor process technology, and relates to a method for fabricating a PM0S transistor with an ultra-shallow junction on a semiconductor substrate. This method is particularly suitable for processes below 0. 8 microns. [Background of the Invention] In order to improve the density and speed of integrated circuits, the channel length of the device must only be possible to reduce. However, as the device shrinks, the distribution of doping concentration in the channel region and the source / drain region must become shallower, so that Avoid short channel effects ° In the past, in the era of large-size components, the junction depth was about 1 to 3 microns, but in today's advanced ultra-large integrated circuit technology, this junction depth (junct I〇I1 Depth) has been reduced to below 0.2 microns. For example, for a 0.18 micron device, the required depth of the source / drain junction may be only 0.07 micron. In order to fabricate semiconductor devices with very shallow junctions, how to accurately control the profile depth after implantation to avoid affecting the effective channel length and junction depth of the MOS has become an important issue in process development. In the manufacturing process of the P-type metal-oxide semiconductor (MOS transistor), a source and a drain are usually implanted into the pMOS using a B + or BF / plasma source. Since the diffusion rate of thallium ions is much faster than arsenic ions, serious transient accelerated diffusion (TED; Transient Enhancement) occurs.
Diffusion),因此PM0S比題⑽更難製作出淺接面。 為了避免暫態加速擴散現象增加接面深度,目前在〇. 25微米以下的製程,普遍係在輕摻雜源極/汲極區(ldd ;Diffusion), so PM0S is more difficult to make shallow junctions than title. In order to avoid transient accelerated diffusion and increase junction depth, current processes below 0.25 microns are generally based on lightly doped source / drain regions (ldd;
454340 五、發明說明(2)454340 V. Description of the invention (2)
Lightly Doped Drain)的佈植後,進行一道快速熱回火將 摻雜離子活化,以保持陡峭的掺雜輪廓、減少短通道效 應。請參照第1圖,目前既有技術之PM0S電晶體部分製程 如下:植入N型離子形成袋狀摻雜區—植入P型離子形成輕 推雜源極/汲極區—快速熱回火製程—沈積作為閘極侧壁 層之絕緣層。 根據上述,為了減少暫態加速擴散現象,目前普遍的 方式’是在沈積側壁絕緣層(spacer)之前,進行一道快速 熱回火’以期得到較淺的接合面。然而,這樣的方式並不 適用在形成極淺接面(ultra-shallow junction),有必要 作進一步的修正。 【發明概述】 有鑑於此*本發明的主要目的就是提供一種可形成極 淺接面之PM0S電晶體的方法。 為達上述目的’在本發明之方法中,係特意省略輕摻 雜源極/没極區的快速熱回火製程,亦即,在佈植輕推雜 源極/汲極區後,不以任何回火程序對淡摻雜源極/汲極區 之佈植離子進行活化。 雖然這樣的做法與目前既有的觀念背道而馳,但實驗 結果顯示’本發明的方法不僅可得到較淺的接合深度,而 且在短通道效應與CQV(重疊電容)上均有顯著的改進。由此 推論’在0· 18微来以下的製程中,硼加迷擴散現象(BED ; boron enhanced diffusion)應比暫態加速擴散現象(TED) 更佔主導地位(dominant),而本發明的特意省略輕摻雜源After implantation of Lightly Doped Drain, a rapid thermal tempering is performed to activate the doped ions to maintain a steep doping profile and reduce short channel effects. Please refer to Figure 1. The part of the PM0S transistor in the existing technology is as follows: implant N-type ions to form a pocket-shaped doped region-implant P-type ions to form a nudge source / drain region-rapid thermal tempering Process—Deposition an insulating layer as a gate sidewall layer. According to the above, in order to reduce the phenomenon of transient accelerated diffusion, the current general method 'is to perform a rapid thermal tempering before depositing the sidewall spacer, in order to obtain a shallower joint surface. However, this method is not suitable for forming an ultra-shallow junction, and further correction is necessary. [Summary of the Invention] In view of this, the main object of the present invention is to provide a method for forming a PMOS transistor with a very shallow junction. In order to achieve the above-mentioned purpose, in the method of the present invention, the rapid thermal tempering process of the lightly doped source / dead regions is deliberately omitted, that is, after implanting the lightly doped source / drain regions, Any tempering procedure activates lightly doped source / drain region implant ions. Although this approach runs counter to existing concepts, experimental results show that the method of the present invention can not only obtain a shallower joint depth, but also have significant improvements in the short channel effect and CQV (overlapping capacitance). It is inferred from this that in the process below 0.18 micron, boron enhanced diffusion (BED; boron enhanced diffusion) should be more dominant than transient accelerated diffusion (TED), and the intention of the present invention Omit lightly doped source
Hi 第6頁Hi Page 6
454340 五、發明說明454340 V. Description of the invention
=及極區的快速熱回火製程’正可避免造 現象,反而有利於極淺接面的形成。 ^ ^ 根據上述’本發明提供一箱可裉 曰® ^ 種了形成極淺接面之PM0S電 曰曰體的方法,其主要步驟包括:(〇提供一半導體其 ^^::極^⑻細型離子’在靠“極邊 =⑷佈植P型離子,在閘極兩側的基底中ϋ程 源極/没極區,但不對其進行任何回火程序;(6)於^ 侧壁絕緣層;以及⑴佈植ρ型離子,在閉 的基底中形成一重摻雜源極/汲極區,完成一具 面之PM0S電晶體。 ^位夜接 為讓本發明之上述和其他目的、特徵、和優點能更明 具易It,下文特舉出較佳實施例,並配合所附, 細說明如下: 作5早 【圖式之簡單說明】 第1圖為根據習知技術之PM0S電晶體局部製造流程 第2圖為根據本發明之PM〇s電晶體局部製造流程圖。 第3Α〜3Ε圖係根據本發明實施例之pMOS電晶體之製程 剖面示意圖。 第4圖續·示硼離子佈植在經過rtA處理後與沒有經過 RTA處理的濃度縱深圖。 第5圖繪示一通道長度與起始電壓的關係圖,其中.口 係按照第1圖之習知流程所製作之PM0S,△則是按照第2圖= And the rapid thermal tempering process of the polar region 'can avoid the phenomenon, but is conducive to the formation of very shallow junctions. ^ ^ According to the above, the present invention provides a box of ® ® ® ^ A method for forming a PMOS electric body with a very shallow junction, the main steps include: (0 provide a semiconductor ^ ^ :: pole ^ ⑻ thin type The ions are planted with P-type ions on the pole edge = ,, and the source / non-polar region is processed in the substrate on both sides of the gate, but no tempering process is performed thereon; (6) on the sidewall insulation layer ; And implanting p-type ions, forming a heavily doped source / drain region in the closed substrate, and completing a faceted PMOS transistor. ^ Positioning for the above and other purposes, features, and characteristics of the present invention, The advantages and advantages can be more easily understood. The following is a description of the preferred embodiment and the accompanying details. The details are as follows: 5 days [Simplified description of the diagram] Figure 1 is a part of the PM0S transistor according to the conventional technology. Figure 2 of the manufacturing process is a partial manufacturing flow chart of the PMOS transistor according to the present invention. Figures 3A to 3E are schematic cross-sectional views of the manufacturing process of the pMOS transistor according to the embodiment of the present invention. Figure 4 continued to show the boron ion implantation Concentration depth maps after rtA treatment and without RTA treatment. Figure 5 shows a FIG path length relationship with the starting voltage, wherein. PM0S port lines produced according to the flow chart of the first conventional 1, △ 2 is in accordance with FIG.
454340 五、發明說明(4) 之本發明流程所製作tPM0S。 【符號說明】 100~半導體基底;102〜閘極氧化層;〜閘極導電 層;106〜遮蔽氧化層〜袋狀摻雜區;p_〜p型離子輕掺 雜區域;P+〜P型離子重摻雜區域;11〇〜侧壁層。 【實施例】 以下將配合第2圖、第3 A〜3 E圖對本發明之較佳實施例 作一詳細執述如下,在本實施例中是在N型半導體基底1 Q 〇 上形成PMOS元件。 首先如第3A圖所示,在基底100上形成—閘極結構, 包括閘極氧化層102與閘極導電層104。閘極氧化層1〇2通 常是以乾式或濕式熱氧化法在7 0 0〜1 〇 〇 〇 X:下缓慢形成,厚 度約在10〜90 A之間。閘極導電層104可為摻雜的複晶;ε夕層 或複晶矽化金屬層(ρο 1 yc i de)。舉例而言,複晶矽閘極可 藉由低壓化學氣相沈積法(LPCVD)先形成厚約1〇〇〇〜3〇〇〇 A 的複晶矽層,再以磷離子或砷離子進行佈植形成;或者, 亦可在沈積複晶破的過程中加入鱗化氫(phosphine)或砰 化三氫(arsine) ’臨場(in-situ)進行摻雜。另外,當字 元線需要較低的電阻時,可形成複晶矽化金屬閘極,舉例 而言’可以低壓化學氣相沈積法先形成摻雜的複晶矽層, 厚約1 0 0 0〜2000 A,然後同樣以低壓化學氣相沈積法再沈 積一矽化金屬層,例如矽化鎢,厚約1 〇 〇 〇〜2 〇 〇 0 A。當形 成閘極氧化層與閘極導電層之後’便以傳統的微影成像與 兹刻技術,利用含氣的蝕刻源,將之定義成第3A圖所示的454340 V. Description of invention (4) tPM0S produced by the process of the present invention. [Symbol description] 100 ~ semiconductor substrate; 102 ~ gate oxide layer; ~ gate conductive layer; 106 ~ shielding oxide layer ~ bag-shaped doped region; p_ ~ p-type ion lightly doped region; P + ~ P-type ion heavy Doped region; 110 ~ sidewall layer. [Embodiment] The following describes a preferred embodiment of the present invention in detail with reference to FIGS. 2 and 3A to 3E as follows. In this embodiment, a PMOS element is formed on an N-type semiconductor substrate 1 Q 〇 . First, as shown in FIG. 3A, a gate structure is formed on the substrate 100 and includes a gate oxide layer 102 and a gate conductive layer 104. The gate oxide layer 102 is usually formed slowly by using a dry or wet thermal oxidation method at a temperature of 700 to 100 ×, and the thickness is about 10 to 90 A. The gate conductive layer 104 may be a doped complex crystal; an epsilon layer or a polycrystalline silicon silicide layer (ρο 1 yc i de). For example, a polycrystalline silicon gate can be formed by a low-pressure chemical vapor deposition (LPCVD) method to form a layer of polycrystalline silicon with a thickness of about 10,000 to 3,000 A, and then use phosphorous ions or arsenic ions. Plant formation; or, doping can be performed by adding phosphine or arsine 'in-situ' during the process of breaking the sedimentary complex. In addition, when the word line requires a lower resistance, a polycrystalline silicon silicide gate can be formed. For example, a low-voltage chemical vapor deposition method can be used to form a doped polycrystalline silicon layer first, with a thickness of about 100 0 ~ 2000 A, and then a low-pressure chemical vapor deposition method is then used to deposit a silicide metal layer, such as tungsten silicide, with a thickness of about 1,000 to 2000 A. After the gate oxide layer and the gate conductive layer are formed, they are defined as shown in FIG. 3A by using a conventional lithography imaging and etching technique and using a gas-containing etching source.
454340 五、發明說明(5) 閘極結構。蝕刻完畢後,可使用氧電漿的乾式去光阻程序 與濕式洗淨程序將光阻去除,其中透過濕式洗淨程序可 未被閘極導電層覆蓋的氧化層去除。 ’ 接著,如第3B圖所示,以熱氧化法在基底1〇〇表面及 閘極104側壁,形成一遮蔽氧化層(screefl oxide)1〇6,厚 度约20〜70 A。由於在前述定義閘極結構所進行的蝕刻過 程’可能會導致閘氧化層與晶圓表面的一些缺陷,因此這 裡的再氧化程序(re-oxidation)可以將蝕刻所造成的損壞 復原’而所形成的遮蔽氧化層1 〇 6,在後續的輕摻雜源極/ 淡極(LDD)離子伟植中可用來保護閘氧化層與基底避免受 到離子為擊的破壞。 接著,進行N型離子的佈植,以在靠近閘極邊緣的基 底中形成一袋狀(pocket)摻雜區108。形成袋狀摻雜區iQg 的目的是為了降低離子擊穿(pUnch-through)的風險。一 般而言,PM0S的袋狀佈植可用磷離子或砷離子,在劑量約 1 X 1〇13〜6 X 1013 cnr2,能量約50〜150 KeV的條件下進行植 入0 請參照第3C圖,接下來’不作輕摻雜源極/汲極(LDD) 的離子佈植’而是直接進行快速熱回火程序(RTA)1〇9,將 袋狀佈植所造成的晶格缺陷加以修復。另一方面,如果在 基底上同時有製作NM0S的話’也可在此時將NM0S的LDK佈 植與袋狀佈植一起加以回火。此處的快速熱回火較佳係在 900 C~1050 °C的溫度下進行。 凊參照第3D圖,完成上述的熱回火程序後,才進行輕454340 V. Description of the invention (5) Gate structure. After the etching is completed, the photoresist can be removed using the dry plasma removal process and wet cleaning process of the oxygen plasma. The wet cleaning process can be used to remove the oxide layer that is not covered by the gate conductive layer. ′ Next, as shown in FIG. 3B, a shield oxide layer 106 is formed on the surface of the substrate 100 and the side wall of the gate 104 by a thermal oxidation method, and the thickness is about 20 to 70 A. Because the etching process performed in the aforementioned definition of the gate structure 'may cause some defects in the gate oxide layer and the wafer surface, the re-oxidation process here can restore the damage caused by the etching' and form The shielding oxide layer 10 can be used to protect the gate oxide layer and the substrate from ion damage in the subsequent lightly doped source / light-emitting (LDD) ion implantation. Next, N-type ions are implanted to form a pocket doped region 108 in the substrate near the gate edge. The purpose of forming the bag-shaped doped region iQg is to reduce the risk of pUnch-through. Generally speaking, PM0S can be implanted in the form of a bag with phosphorus or arsenic ions at a dose of about 1 X 1013 ~ 6 X 1013 cnr2 and an energy of about 50 ~ 150 KeV. 0 Please refer to Figure 3C. Next, 'do not do ion implantation of lightly doped source / drain (LDD)', but directly perform a rapid thermal tempering procedure (RTA) 109 to repair the lattice defects caused by bag-shaped implants. On the other hand, if NMOS is produced on the substrate at the same time, the LDK planting of NMOS and the bag-like planting can also be tempered at this time. The rapid thermal tempering here is preferably performed at a temperature of 900 C to 1050 ° C.凊 Refer to Figure 3D and perform the light tempering procedure before completing the light tempering.
454340454340
摻雜源極/沒極(LDD)的離子佈植’將p型離子佈植於閘極 兩側的基底中’以形成一輕摻雜源極/彡及極區p-。PM0S元 件的LDD植入可使用硼離子(B)或二氟化硼(BF2)離子,在 劑量約1 Ο14~ 1 015/cm-2,能量約1〜1 5 KeV的條件下進行植 入° 請參照第3 E圖,佈植完輕摻雜源極/没極區p —後,不 進行任何的回火程序,直接沈積閘極側壁層丨〗〇。例如, 可以低壓化學氣相沈積法(LPCVD)或電漿加強式化學氣相 沈積法(PECVD)在350〜850 °C下沈積一層厚度約2〇〇〜2000入 的絕緣層’例如氧化梦、氮化石夕、氮氧化砍等;又,若是 製作複合式(compos i t e )側壁層,則可沈積一層以上的絕 緣層。沈積完畢後,使用SF6、CF,、CHF3、或C2F6當作蝕刻 源’以反應性離子蝕刻程序進行非等向性的蝕刻,便可在 閘極結構的側壁形成侧壁絕緣層1 1 0。 之後,利用閘極構造和侧壁層11 〇共同當作罩幕,佈 植較高劑量的離子進入基底中’形成重摻雜源極/汲極區 P+ ’便完成如第3E圖所示’具有極淺接面的PM0S電晶體。 此處重摻雜源極/汲極區p+的佈楂可使用棚離子或二氟化 硕離子’在劑量約1 X 1 〇i5〜7 X 1 〇i5cm-2,能量約4KeV的 條件下進行植入。Ion implantation of doped source / non-electrode (LDD) implants p-type ions into the substrate on both sides of the gate 'to form a lightly doped source / 彡 and electrode region p-. LMD implantation of PM0S elements can use boron ion (B) or boron difluoride (BF2) ion at a dose of about 1014 ~ 1 015 / cm-2 and an energy of about 1 ~ 1 5 KeV. Please refer to FIG. 3E. After the lightly doped source / inverted region p is implanted, the gate sidewall layer is directly deposited without performing any tempering procedure. For example, a low-pressure chemical vapor deposition (LPCVD) or plasma enhanced chemical vapor deposition (PECVD) method can be used to deposit an insulating layer having a thickness of about 2000 to 2000 in at 350 to 850 ° C. Nitrile oxide, oxynitride, etc .; if a composite (compos ite) sidewall layer is made, more than one insulating layer can be deposited. After the deposition is completed, using SF6, CF, CHF3, or C2F6 as an etching source 'to perform anisotropic etching using a reactive ion etching process, a sidewall insulating layer 1 10 can be formed on the sidewall of the gate structure. After that, the gate structure and the sidewall layer 110 are used together as a mask, and a higher dose of ions is implanted into the substrate to form a heavily doped source / drain region P +, which is completed as shown in FIG. 3E. PMOS transistor with extremely shallow junction. Here, the heavily doped source / drain region p + can be used under the conditions of a dose of about 1 X 1 〇i5 ~ 7 X 1 〇i5cm-2 and an energy of about 4KeV. Implanted.
請參照第2圖,其為根據本發明之PM0S電晶體局部製 造步驟流程圖◊其顯示本發明製程步驟包括:植型離 子形成袋狀摻雜區—快速熱回火製程—植入p型離子形成 輕摻雜源極/汲極區—沈積作為閘極側壁層之絕緣層DPlease refer to FIG. 2, which is a flowchart of the local manufacturing steps of the PM0S transistor according to the present invention. It shows that the process steps of the present invention include: implanted ions forming a bag-shaped doped region—rapid thermal tempering process—implanted p-type ions Form lightly doped source / drain regions—deposit an insulating layer D as the gate sidewall layer
454340 五、發明說明(7) 比較第1圖與第2圖可知,本發明與習知技術之不同處 在於’本發明將快速熱回火製程之步驟提前,而省略了輕 摻雜源極/汲極區的快速熱回火製程。 請參照第4圖,第4圖繪示硼離子佈植 (BF2/2KeV/lE15)在經過RTA處理後與沒有經過RTA處理的 濃度縱深圖’其中又分為有作袋狀佈植與沒有作袋狀佈植 者’因此共有四個曲線。由圖中可看出,無論有沒有作袋 狀佈植,沒有作RTA處理者都具有比較淺的接合深度。 請參照第5圖’第5圖繪示一通道長度與起始電壓的關 係圖,其中□係按照第1圖之習知流程所製作之pM〇s,△ 則是按照第2圖之本發明流程所製作之pm〇S。由圖中可 知’根據本發明所製作之PM0S在短通道效應上具有明顯的 改善’而且也沒有反短通道效應(RSCE)的現象出現。再 者’依照習知製程之PM0S的k為〇 · 6 3,而依照本發明所製 作之PM0S的CQV為0 _ 55,更進一步證明本發明具有較淺的接 面深度。 對於本發明所產生之不可預料的進步性,發明人作了 以下的推論: 由於蝴加速擴散現象(BED)的臨界溫度約為wo ,因 此,一旦進行了LDD RTA,勢必會形成硼化矽(SiB4),其 結果是當後續沈積閘極側壁層時,獨化石夕(S i & )會放出插 隙型缺陷(interstitials)而促進硼離子的擴散。在本發 明中,由於沒有進行LDD RTA ’不會形成硼化矽(SiB4), 而在沈積側壁層時,也就不會發生硼加速擴散現象。454340 V. Description of the invention (7) It can be seen from the comparison between Fig. 1 and Fig. 2 that the present invention is different from the conventional technology in that the invention advances the steps of the rapid thermal tempering process, and omits the lightly doped source / Fast thermal tempering process in the drain region. Please refer to Figure 4. Figure 4 shows the depth map of boron ion implantation (BF2 / 2KeV / lE15) after RTA treatment and without RTA treatment. The pouch grower 'therefore has a total of four curves. It can be seen from the figure that, whether with or without bag-like planting, those without RTA treatment have a relatively shallow joining depth. Please refer to Fig. 5 '. Fig. 5 shows the relationship between a channel length and the starting voltage, where □ is the pM0s produced according to the conventional process of Fig. 1, and △ is the invention according to Fig. 2 Pm0S produced by the process. It can be seen from the figure that 'the PMOS produced according to the present invention has a marked improvement in the short channel effect' and there is no phenomenon of reverse short channel effect (RSCE). Furthermore, k of PMOS according to the conventional process is 0.63, and CQV of PMOS made according to the present invention is 0 to 55, which further proves that the present invention has a shallower interface depth. For the unexpected advancement produced by the present invention, the inventors made the following inferences: Since the critical temperature of the butterfly accelerated diffusion phenomenon (BED) is about wo, once LDD RTA is performed, silicon boride will inevitably be formed ( SiB4). As a result, when the gate sidewall layer is subsequently deposited, Si & s will release interstitials and promote the diffusion of boron ions. In the present invention, since LDD RTA 'is not performed, silicon boride (SiB4) is not formed, and when the sidewall layer is deposited, the phenomenon of accelerated boron diffusion does not occur.
454340 五、發明說明(8) 再者,由於硼加速擴散現象只有在表面濃度很高的時 候才會發生,而當接面越來越淺’所需要的佈植劑量越來 越高時,硼加速擴散現象(BED)可能就比暫態加速擴散現 象(TED)更佔優勢。這或許可以解釋為何在0. 25微米的技 術中LDD RTA可減少接面深度,但在0. 18微米以下反而會 增加接面深度。 有關於硼加速擴散現象之文獻,可參照ApL,v〇 1454340 V. Description of the invention (8) Furthermore, because the accelerated diffusion of boron occurs only when the surface concentration is very high, and when the interface is getting shallower, the required implantation dose is getting higher and higher. Accelerated diffusion (BED) may be more advantageous than transient accelerated diffusion (TED). This may explain why the LDD RTA can reduce the junction depth in the 0.25 micron technology, but it will increase the junction depth below 0.15 micron. For the literature on the accelerated diffusion of boron, see ApL, v〇 1
74,No. 16,p.2331 ( 1 999)以及IEDM 1997,P.467 (A74, No. 16, p. 2331 (1 999) and IEDM 1997, p. 467 (A
Agarwal et al · ) ° 限定=發:月已以較佳實施例揭露如上,然其並非用以 :定二:明任何熟習此技藝者’在 和I,圍内,當可作各種之更動與 ::月之㈣ 範圍當視後附之巾請專利範圍 g本發明之保護Agarwal et al ·) ° Limitation = Hair: The month has been disclosed as above in a preferred embodiment, but it is not used for: Definition 2: Anyone who is familiar with this skill 'is within the range of I and I, and can make various changes and :: The range of the moon The scope of the present should be attached to the patent please g the scope of the invention
第12頁Page 12
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW89109231A TW454340B (en) | 2000-05-15 | 2000-05-15 | Method for manufacturing PMOS transistor with ultra-shallow junction |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW89109231A TW454340B (en) | 2000-05-15 | 2000-05-15 | Method for manufacturing PMOS transistor with ultra-shallow junction |
Publications (1)
Publication Number | Publication Date |
---|---|
TW454340B true TW454340B (en) | 2001-09-11 |
Family
ID=21659720
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW89109231A TW454340B (en) | 2000-05-15 | 2000-05-15 | Method for manufacturing PMOS transistor with ultra-shallow junction |
Country Status (1)
Country | Link |
---|---|
TW (1) | TW454340B (en) |
-
2000
- 2000-05-15 TW TW89109231A patent/TW454340B/en not_active IP Right Cessation
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN100399576C (en) | Semiconductor component with degenerate doping profile in the channel region and method for producing the semiconductor component | |
TW200816328A (en) | Use of carbon co-implantation with millisecond anneal to produce ultra-shallow junctions | |
CN100442444C (en) | Method for providing a semiconductor substrate with an active dopant layer structure | |
CN102856177B (en) | Semiconductor device and method for manufacturing same | |
CN104269358A (en) | Semiconductor device preparation method | |
TW469648B (en) | Semiconductor device and its manufacture method | |
JP4514023B2 (en) | Silicon oxide liner ion implantation to prevent dopants from diffusing out of source / drain extensions | |
CN103985633B (en) | A kind of preparation method of PMOS transistor | |
CN105280501A (en) | Stress memorization techniques for transistor devices | |
CN103871887B (en) | PMOS transistor, nmos pass transistor and respective preparation method thereof | |
CN110098146B (en) | Semiconductor device and method of forming the same | |
CN100405581C (en) | Method for forming non-amorphous ultra-thin semiconductor devices using sacrificial implant layers | |
CN101288159A (en) | Semiconductor device with polysilicon electrodes | |
CN107170704A (en) | Semiconductor structure and forming method thereof | |
TW454340B (en) | Method for manufacturing PMOS transistor with ultra-shallow junction | |
CN107039277B (en) | Stress memorization techniques for transistor devices | |
JPH0499037A (en) | Manufacture of semiconductor device | |
US6780700B2 (en) | Method of fabricating deep sub-micron CMOS source/drain with MDD and selective CVD silicide | |
CN100474513C (en) | A method of manufacturing a semiconductor device and a semiconductor device manufactured by the method | |
CN100401476C (en) | Manufacturing method of semiconductor device | |
CN102446769B (en) | Method used for reducing resistance of polysilicon gate in carbon auxiliary injection technological process | |
CN108630535B (en) | Semiconductor structures and methods of forming them | |
TWI377627B (en) | Method of manufacturing a semiconductor device and semiconductor device | |
JP2003179071A (en) | Method of fabricating deep submicron CMOS source / drain using MDD and selective CVD silicide | |
KR100705233B1 (en) | Method of manufacturing semiconductor device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
GD4A | Issue of patent certificate for granted invention patent | ||
MK4A | Expiration of patent term of an invention patent |