[go: up one dir, main page]

TW440911B - Method for breaking the geometrical limitation in the semiconductor photolithography process - Google Patents

Method for breaking the geometrical limitation in the semiconductor photolithography process Download PDF

Info

Publication number
TW440911B
TW440911B TW89109297A TW89109297A TW440911B TW 440911 B TW440911 B TW 440911B TW 89109297 A TW89109297 A TW 89109297A TW 89109297 A TW89109297 A TW 89109297A TW 440911 B TW440911 B TW 440911B
Authority
TW
Taiwan
Prior art keywords
layer
etching
patent application
scope
item
Prior art date
Application number
TW89109297A
Other languages
Chinese (zh)
Inventor
Hung-Ji Wei
Original Assignee
Mosel Vitelic Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mosel Vitelic Inc filed Critical Mosel Vitelic Inc
Priority to TW89109297A priority Critical patent/TW440911B/en
Application granted granted Critical
Publication of TW440911B publication Critical patent/TW440911B/en

Links

Landscapes

  • Semiconductor Memories (AREA)

Abstract

The present invention discloses a method for breaking the geometry limitation in the semiconductor photolithography process. In the process for manufacturing semiconductor devices, a process for etching the sidewall is additionally provided after the photolithography and etching step and before peeling off the photoresist. Therefore, the spacing or line width between adjacent devices can be reduced, such that the geometrical dimension of the device can further break the limitation of the photolithography process. The present invention is characterized in being compatible with the existing semiconductor process, so as not to add manufacturing difficulties, influence the yield and increase too much additional manufacturing cost.

Description

五、發明說明(1) 發明領域 本發明是關於半導體元件之製作方法, 突破微影製程對於半導體元件尺寸限.制之方法。彳是心能夠 發明背景 所謂微影技術是將為數眾多電子零件 (pattern) ’ 一層一層地轉換到一個微小的晶方 上。當積體電路之密度不斷地提高,為使a 一樣,甚至縮小,以持續降低積體電路之單位‘ z積保= 的辦法就是不斷地縮小電路設計規格(D :唯一 ^ ^es1gn Ku 1 e ) * 營 縮小規格時1所遭遇的最大瓶頸即是微影技術。 以第一圖為例,其顯示動態隨機存取記憶體(dynamic random access memory ; DR AM)上二相鄰之電容蛾 B,上 述微影技術對於電容Α與Β幾何尺寸的限制在於二者之間的 間距d ’這主要是受限於微影技術所能夠曝光的最小特徵 尺寸(minimal feature size)0 電谷的電容值與其面積成正比,使半導體電容獲得較 大電容值的方法之一即是增加電容電極層的面積。然而由 於半導體電容與相鄰元件之間距受到微影製程的幾何尺寸 限制而無法進一步地縮減,意即半導體電容電極層的長度 與寬度的限制係根據當時的微影技術而定。因此在習知技 術中,係根據微影製程所定義的半導體電容電極層區域, 在此既定尺寸裡想辦法增加電容電極層的表面積以增加電 容值,例如形成粗错複晶石夕(r u g g e d ρ ο 1 y s i 1 i c ο η )使電容V. Description of the Invention (1) Field of the Invention The present invention relates to a method for manufacturing a semiconductor device, which breaks through the lithography process and limits the size of the semiconductor device.彳 是 心 能 Background of the invention The so-called lithography technology is to convert a large number of electronic parts (patterns) to a tiny crystal layer by layer. As the density of integrated circuits continues to increase, in order to make a the same, or even to reduce, the unit of integrated circuits is continuously reduced. The solution of z product protection = is to continuously reduce the circuit design specifications (D: the only ^ ^ es1gn Ku 1 e ) * Lithography technology is the biggest bottleneck encountered when scaling down. Taking the first picture as an example, it shows two adjacent capacitors B on the dynamic random access memory (DR AM). The limitation of the above-mentioned lithography technology on the geometric size of the capacitors A and B lies between the two. The distance d 'is mainly limited to the minimum feature size that can be exposed by the lithography technology. The capacitance value of the valley is directly proportional to its area. One of the methods to make semiconductor capacitors obtain larger capacitance values is It is to increase the area of the capacitor electrode layer. However, because the distance between the semiconductor capacitor and the adjacent components is limited by the lithographic process, it cannot be further reduced, which means that the restrictions on the length and width of the electrode layer of the semiconductor capacitor are based on the lithography technology at the time. Therefore, in the conventional technology, the area of the semiconductor capacitor electrode layer is defined according to the lithography process. In this given size, a method is used to increase the surface area of the capacitor electrode layer to increase the capacitance value, such as the formation of a coarsely complex polycrystalline stone (rugged ρ ο 1 ysi 1 ic ο η)

第4頁 d409 1 1 五、發明說明(2) 電極層表面微觀地粗糙化,以擴大電容電極層的表面積。 又如美國專利第5843822號及第59096 2 1號則分別提出增加 電極層面積的方法,該兩專利案的技術内容藉由材質之間 蚀刻比的不同,將電容電極層的側面做成波浪狀’藉以增 加電容電極層表的面積。 然而,上述的作法在實際應用上太過於複雜,這是半 導體製程所不欲見到的;並且這些習知技術仍無法根本地 增加元件的大小或縮小元件間的尺寸。因此有必要提出較 佳的改良方案,以求完善。 發明目的與 本發明 ,能夠突破 大小或縮小 本發明 ,能夠突破 元件之間的 與寬度,增 本發明 法,能夠以 表面積的目 本發明 方法。 本發明 概述 的在提出一種半導體元件之製作方法 製程的幾何極限,根本地增加元件的 尺寸。 的在提出一種製作半導體電容之方法 製程的限制,減少半導體電容與相鄰 本地延伸半導體電容之電極層的長度 電容電極層的面積。 的亦在提出一種製作半導體電容之方 的製程,達到增加半導體電容電極層 之主要目 現有微影 元件間的 g 之次 現有微影 間距,根 加半導體 之再一目 較為簡化 的。 之另一目的在提出一種縮小半導體線路寬度之 之又 目的在提出一種縮小半導體閘極導體尺Page 4 d409 1 1 V. Description of the invention (2) The surface of the electrode layer is micro-roughened to enlarge the surface area of the capacitor electrode layer. Another example is U.S. Patent Nos. 5843822 and No. 59096 21, which respectively propose methods for increasing the area of the electrode layer. The technical content of the two patents makes the side of the capacitor electrode layer wavy by the difference in the etching ratio between the materials. 'Thereby increasing the area of the surface of the capacitor electrode layer. However, the above-mentioned method is too complicated in practical application, which is undesired in the semiconductor manufacturing process; and these conventional technologies still cannot fundamentally increase the size of components or reduce the size between components. Therefore, it is necessary to propose a better improvement plan for perfection. The purpose of the invention and the invention can break through the size or reduce the invention, can break through the width and width between elements, increase the method of the invention, and the method of the invention can be based on the surface area. The present invention outlines a method for manufacturing a semiconductor device, and the geometric limit of the manufacturing process increases the size of the device. A method of manufacturing a semiconductor capacitor is proposed to reduce the length of the electrode layer of the semiconductor capacitor and the adjacent locally extended semiconductor capacitor. The area of the capacitor electrode layer is reduced. The company is also proposing a process for manufacturing semiconductor capacitors, which achieves the main purpose of increasing the electrode layer of semiconductor capacitors. The current lithography interval between the existing lithography components is the second, and the semiconductor lithography is simpler. Another purpose is to propose a method for reducing the width of a semiconductor circuit.

第5頁 五、發明說明(3) 寸之方法,使半導體 根據本發明,一 極限的方法係於半導 等步驟後,在剝除光 序,因此縮小相鄰元 尺寸進一步地突破微 小或縮小元件間的尺 發明應用在增加半導 (gate conductor)尺 明所能達成之功效。 本發明的特點之 僅額外增加一道蝕刻 影響良率,或者增 的大小或縮小元件間 電路設計 種突破半 體元件的 阻之前額 件之間的 影製程的 寸。在底 體電容表 寸,並且 一在於與 的步驟, 加頰外的 的尺寸β 規格縮小化。 導體製程中微影製程之幾何 製作過程中經過微影及蝕刻 外地增加一道蝕刻側壁的程 間距或線寬,使元件的幾何 限制’根本地增加元件的大 下的幾個實施例中,根據本 面積’減少線寬或閘極導體 以電腦模擬的圖表說明本發 現行的半導體製程相容,僅 並不會增加製程技術的難度 成本’即可根本地增加元件 圖式簡要說明 對於熟習本技藝之人 配合伴隨的圖式,本發明而言,從以下所作的詳細敘述 及其他目的及優點將會=能夠更清楚地被瞭解,其上述 第一圖顯示動態隨,更明顯。其中: 電容之間的間距說明微=憶體裡二相鄰之電容,藉該二 限制。 t製程對於半導體元件尺寸:幾何 第二a圓至第二£圖 圖,描述根據本發明製作^,本發明一實施例之製作流程 吓+導體電容之方法。Page 5 V. Description of the invention (3) Inch method, according to the present invention, a limit method is based on steps such as semiconducting, after stripping the light sequence, so reducing the size of adjacent elements to further break through the micro or shrink The invention of the rule between elements is applied to increase the effect that a gate conductor rule can achieve. The feature of the present invention is that only one additional etching is added to affect the yield, or the size is increased or the circuit design between components is reduced, which is a breakthrough in the process of the shadow process between the components. In the case of the substrate capacitance, and the first step is to reduce the size of the β size outside the cheek. In the geometric process of the lithography process in the conductor process, the lithography and etching field is added to increase the distance or line width of the etched sidewall to make the geometrical limitation of the element 'fundamentally increase the size of the element. In several embodiments, according to this The area 'reduced line width or the gate conductor's computer simulation chart shows that the foundry's semiconductor process is compatible, but it does not increase the difficulty and cost of the process technology', which can increase the component diagrams briefly. With the accompanying drawings, the present invention, from the following detailed description and other purposes and advantages will be able to be more clearly understood, the above-mentioned first picture shows the dynamic response and is more obvious. Among them: The distance between capacitors indicates that micro = two adjacent capacitors in the memory, which are limited by these two. For the manufacturing process of the semiconductor device, the t process is a geometric second circle to a second circle. The figure describes the manufacturing method according to the present invention, and the manufacturing process of an embodiment of the present invention to scare + conductor capacitance.

五、發明說明(4) 第三圖顯示根據本發明在增加半導體電容電極層表面 積所達到的效果。 第四a圖至第四d圖顯示根據本發明製作閘極導體的流 程示意圖。 第五a圖至第五d圖顯示根據本發明之另一實施例。 圖號說明: 10 矽底材 102 隔離 12 絕緣層 12 氧化矽層 13 氮化矽層 14 字元線 16 位元線 18 栓塞 20 絕緣層 22 光阻 25 凹槽 25' 凹槽 26 導體層 27 凹槽 27' 凹槽 30 閘極氧化層 322 摻雜的複晶矽層 324 矽化鎢層 326 氮化矽層 34 光阻 36 閘極導體 40 基材 42 結構層 44 罩幕 詳細說明 根據本發明製作半導體電容,係根本地減少半導體電 容與相鄰元件之間的間距,延伸半導體電容電極層的尺寸 ,使電容電極層的表面積再進一步地擴大。第二a圖至第5. Description of the invention (4) The third figure shows the effect achieved by increasing the surface area of the electrode layer of a semiconductor capacitor according to the present invention. Figures 4a to 4d show schematic diagrams of the flow of manufacturing a gate conductor according to the present invention. Figs. 5a to 5d show another embodiment according to the present invention. Description of drawing number: 10 silicon substrate 102 isolation 12 insulation layer 12 silicon oxide layer 13 silicon nitride layer 14 word line 16 bit line 18 plug 20 insulation layer 22 photoresist 25 groove 25 'groove 26 conductor layer 27 concave Slot 27 'groove 30 gate oxide layer 322 doped polycrystalline silicon layer 324 tungsten silicide layer 326 silicon nitride layer 34 photoresist 36 gate conductor 40 substrate 42 structural layer 44 Capacitance is to fundamentally reduce the distance between the semiconductor capacitor and adjacent elements, extend the size of the semiconductor capacitor electrode layer, and further increase the surface area of the capacitor electrode layer. The second a to the first

五、發明說明(5) ί圖顯示根據本發明製作動態隨機存取 容之流程。首先係如第二3圖所示,於珍底材2 $ 離102,然後在矽底材1〇上製作字元線(Mt丨丨V. Description of the invention (5) The figure shows the process of making dynamic random access content according to the present invention. First, as shown in Figure 3, Yu Zhen substrate 2 $ Li 102, and then a character line (Mt 丨 丨

Uyd Ilne)。接著依序沉積一氧化 二 J 1 3 ^ ^ ^ 2〇, ^ ^ ^ ^ (plug) 完成检塞1 8之後,在氮化石々思〗q主 费 2〇5 9 04^ m夕層13表面覆上一層絕緣層 在絕緣層20表面覆上一層光阻22。然 上方放置一光罩C進行微影製程,锈s f隹尤阻^ 第將yc上的圖案轉移至=22透:= 光^ ::制。接下來便根據光阻22的圖案進行触刻製程幾 J ::用乾式蝕刻’將絕緣層20未被光阻 t圖成所凹槽^及27,其中氣化石夕層13為餘刻停止層,即第 —c圖所不狀態。 明額! t f術進1到這裡’便將光阻22剝㊉。而根據本發 j,外地增加一道蝕刻侧壁的步驟。在光阻22剝除之前, =刻凹槽25及f的側壁’使其向旁側擴展,成為第二d圖 不之狀態。藉由姓刻凹槽2 5與2 7的側壁,凹槽2 5與2 7之 ,=間距d進一步地縮小至d,,並且凹槽25及27之側壁 °側擴展,使其長度與寬度根本地擴大而形成凹槽25, =槽27’。其中,較佳者係利用濕式蝕刻(wet etching) 行蝕刻凹槽2 5與2 7之侧壁。濕式蝕刻所使用的化學溶液 糸根據絕緣層2 0的材料而定,例如絕緣層2 〇為二氧化矽Uyd Ilne). Then sequentially deposit J 1 3 ^ ^ ^ 2〇, ^ ^ ^ ^ (plug) After completing the plug 18, in the nitride stone 々 〖q main fee 205 9 04 ^ m Xi layer 13 surface Cover an insulating layer with a photoresist 22 on the surface of the insulating layer 20. However, a photomask C is placed on the top for the lithography process, and the rust f is particularly obstructive ^ The pattern on yc is transferred to = 22 through: = light ^ :: system. Next, the touch-etching process is performed according to the pattern of the photoresist 22. J: Dry-etching is used to pattern the insulating layer 20 into the grooves ^ and 27 without photoresist. Among them, the gasification stone layer 13 is a stop layer for the remaining time. , That is, the state shown in Figure -c. Ming amount! When t f reaches 1 here, the photoresist 22 is peeled off. According to the present invention, a step of etching the sidewall is added in the field. Before the photoresist 22 is peeled off, the side walls of the grooves 25 and f are etched to expand to the side, and the state shown in FIG. By sculpting the side walls of the grooves 25 and 27, the distance between the grooves 25 and 27, = the distance d is further reduced to d, and the sides of the sides of the grooves 25 and 27 are expanded to make their length and width Enlarged fundamentally to form groove 25, = groove 27 '. Among them, the preferred one is to use wet etching to etch the sidewalls of the grooves 25 and 27. Chemical solution used for wet etching 糸 Depends on the material of the insulating layer 20, for example, the insulating layer 20 is silicon dioxide

第8頁 440 9 t 1 五、發明說明(6) (Si02),則可以使用氫氟酸(Hydrofluoric Acid)來進行 。一般而言,氫氟酸對二氧化矽的蝕率速率相當高,在製 程上不容易控制,因此在實際的應用都是使用稀釋過的氫 氟酸溶液,或者是添加了缓衝劑(例如氟化銨(NH4F ))的混 合液,來進行二氧化矽的蝕刻。添加緩衝劑的目的在補充 氟離子在溶液中因蝕刻反應的消耗,以保持穩定的蝕刻速 率。並且藉由適當的控制進行濕式蝕刻各項製程條件,例 如溶液濃度,反應溫度以及反應時間,可以控制濕式蝕刻 的速率。 接下來去除光阻2 2,然後沉積一導電層2 6充填凹槽 2 5 ’與2 7 ’ ,成為第二e圖所示之狀態,再經過平坦化製程 (Planarization )後,便成為第二f圖所示之狀態,二相 鄰半導體電容的下電極層結構於是形成。 後續的製程係在電容下電極層上方製作電容的上電極 層,此為熟悉製作半導體電容領域之人士所熟知者,在此 不再詳述。 在上述過程中,蝕刻凹槽2 5及2 7的側壁能夠突破微影 製程之幾何尺寸限制d,使凹槽2 5與2 7之間的間距d進一步 地縮小至d ’,進而使凹槽2 5及2 7的尺寸擴大。擴大後的凹 槽2 5 ’與2 7 ’經過後續製程所得到電容電極層的表面積將可 較習知技術增加。對於其他的實施例,根據本發明製作電 容應被理解為在去除光阻之前增加一道蝕刻側壁的步驟, I使得電容電極層與相鄰元件(未必是電容)的間距縮小,因 |而電容電極層的面積根本地增加。Page 8 440 9 t 1 V. Description of the invention (6) (Si02), you can use Hydrofluoric Acid. Generally speaking, the erosion rate of hydrofluoric acid to silicon dioxide is quite high, which is not easy to control in the process. Therefore, in practical applications, diluted hydrofluoric acid solution is used, or a buffering agent (such as fluorine A mixed solution of ammonium chloride (NH4F)) is used to perform silicon dioxide etching. The purpose of adding a buffer is to supplement the consumption of fluoride ions in the solution due to the etching reaction in order to maintain a stable etching rate. And through proper control of various process conditions of wet etching, such as solution concentration, reaction temperature and reaction time, the rate of wet etching can be controlled. Next, the photoresist 2 2 is removed, and then a conductive layer 26 is filled to fill the grooves 2 5 ′ and 2 7 ′, and becomes the state shown in the second figure e. After undergoing a planarization process (Planarization), it becomes the second In the state shown in figure f, the lower electrode layer structure of two adjacent semiconductor capacitors is thus formed. The subsequent process is to fabricate the upper electrode layer of the capacitor above the lower electrode layer of the capacitor. This is well known to those skilled in the field of semiconductor capacitor manufacturing and will not be described in detail here. In the above process, the sidewalls of the etched grooves 25 and 27 can break through the geometric size limitation d of the lithography process, so that the distance d between the grooves 25 and 27 is further reduced to d ', thereby making the grooves The sizes of 2 5 and 27 are enlarged. The surface area of the capacitor electrode layer obtained after the enlarged grooves 2 5 ′ and 2 7 ′ obtained by subsequent processes can be increased as compared with conventional techniques. For other embodiments, making a capacitor according to the present invention should be understood as adding a step of etching the sidewall before removing the photoresist. I reduces the distance between the capacitor electrode layer and the adjacent element (not necessarily the capacitor). The area of the layers has increased radically.

第9頁 1 4 0 9 1 1 五 、發明說明 ⑺ 蝕 刻 凹 槽 的 側 壁 對 於 電 容 電 極 層 表 面 積 增 加 的 比 例 可 以 第 圖 之 模 擬 結 果 表 示 其 中 假 設 凹 槽 2 5原 本 的 長 度 為 3L, Ά, 度 為 1L, 深 度 為 H< >在第三圖的圖表中 ,.-橫軸表ί 半 導 體 電 容 電 極 層 長 度 與 寬 度 增 加 的 百 分 比 J 亦 即 凹 槽 2E i ‘側壁擴展的距離與寬度L的 比 值 縱 轴 為 半 導 體 電 容 表 面 積 增 加 的 百 分 比 其 中 所 述 之 半 導 體 電 容 表 面 積 係 指 半 導 體 電 容 的 下 電 極 層 除 了 其 底 面 之 外 的 其 他 面 積 的 總 和 0 對 於 製 作 半 導 體 電 容 電 極 層 而 本 發 明 的 特 點 係 利 用 刻 技 術 突 破 微 影 製 程 對 於 電 容 與 相 鄰 元 件 間 距 的 幾 何 尺 寸 限 制 藉 由 縮 小 半 導 體 電 容 電 極 層 與 相 鄰 元 件 之 間 距 , 使 半 導 體 電 容 電 極 層 的 寬 度 與 長 度 延 伸 增 加 半 導 體 電 容 電 極 層 表 面 積 0 相 較 於 習 知 技 術 中 半 導 體 電 容 的 製 程 本 發 明 僅 增 加 姓 刻 側 壁 的 製 程 因 此 與 過 去 半 導 體 電 容 的 製 程 相 容 0 並 且 在 ik 刻 的 過 程 中 還 可 以 —一 併 達 到 在 導 電 層 2 6沉 積 之 前 預 先 清 潔 (pre-c1ean iI lg )凹 槽 表 面 的 效 果 〇 特 別 值 得 注 意 的 是 本 發 明 應 用 刻 技 術 使 製 作 半 導 體 電 容 電 極 層 的 凹 槽 側 壁 往 旁 側 擴 展 與 習 知 技 術 中 對 於 該 凹 槽 進 行 預 先 清 潔 是 不 同 的 D 在 習 知 技 術 中 進 行 預 先 清 潔 係 為 清 除 凹 槽 表 面 的 微 粒 (part] .C] e )或 其 他 表 面 附 著 物 ? 以 利 沉 積 導 體 層 製 作 半 導 體 電 容 , 這 種 步 驟 只 能 消 耗 絕 緣 層 約 5 0埃 的 厚 度 而 本 發 明 應 用 濕 式 姓 刻 乃 係 刻 凹 槽 的 側 壁 使 側 壁 往 旁 側 擴 展 進 而 使 凹 槽 與 相 鄰 元 件 的 間 距 縮 小 增 加 凹 槽 的 幾 何 尺 寸 使 半 導 體 電 容 電 極 層 的 表Page 9 1 4 0 9 1 1 V. Description of the invention 的 The ratio of the sidewall of the etched groove to the increase in the surface area of the capacitor electrode layer can be represented by the simulation results in the figure. It is assumed that the original length of the groove 2 5 is 3L, Ά, the degree is 1L, the depth is H < > In the chart of the third figure, the horizontal axis represents the percentage of increase in length and width of the semiconductor capacitor electrode layer J, which is the ratio of the distance of the side wall extension of the groove 2E i 'to the width L. The axis is the percentage increase in the surface area of the semiconductor capacitor, where the surface area of the semiconductor capacitor refers to the sum of the areas of the lower electrode layer of the semiconductor capacitor other than its bottom surface. The lithography process limits the geometric size of the capacitor and the adjacent components by reducing the distance between the semiconductor capacitor electrode layer and the adjacent components. The pitch extends the width and length of the semiconductor capacitor electrode layer to increase the surface area of the semiconductor capacitor electrode layer. 0 Compared to the conventional semiconductor capacitor manufacturing process, the present invention only increases the process of engraving the side wall and is therefore compatible with the past semiconductor capacitor manufacturing process. 0 In the process of ik engraving, the effect of pre-cleaning the groove surface before the conductive layer 26 is deposited can be achieved together. It is particularly noteworthy that the present invention applies the engraving technology to make a semiconductor capacitor electrode layer. The expansion of the side wall of the groove to the side is different from pre-cleaning the groove in the conventional technology. D Pre-cleaning in the conventional technology is to remove the particles on the surface of the groove (part) .C) e) or other Surface attachments? To facilitate the deposition of conductor layers to make semiconductor capacitors, this step can only consume insulation The thickness of the layer is about 50 angstroms, and the application of the wet type engraving method in the present invention is to etch the side wall of the groove to expand the side wall to the side so as to reduce the distance between the groove and the adjacent element, increase the geometry of the groove, and make the semiconductor capacitor electrode layer. The table

第ίο頁 五、發明說明(8) ' " 面積增加’只是在蝕刻側壁的過程裡亦可以一併獲到預先 清潔的效果而己。以0 . 2 5微米的製程而言,本發以將 二電容之間距縮小到0 . 1微米。 以上所述係以製作半導體電容為例說明本發明之特點 ’然而本發明的技術思想應被理解為在光阻剝除用 蝕刻技術進:步地突破現有微影製程之幾何尺寸的限G。 第四圖係顯不根據本發明在半導體製程中製作一 的過程,其中先在一閘極氧化層(Gate oxide) Μ上依序 形成一摻雜的複晶矽(doped-poly)層322,一矽化钱 (WSix)層324以及一氮化矽(SiN)層326。氮化矽層^面 被覆一層光阻34,然後根據所欲製作閘極導體的圖 微影製程,經顯影後光阻24成為第四3圖所示之案, 阻34之寬度W為微影製程之幾何尺寸限制。接下^ ^ 阻34的圖案蝕刻氮化石夕層326得到第四b圖所示之狀習 進行到這裡’便將光阻34除去,因此其製作:的閘 ,導體的尺寸主要受限於微影製程的幾何極限,亦即光阻 24的尺寸W。而根據本發明則在光阻24移除之前’進一步 蝕刻氮化矽層3 2 6之側壁,使氮化矽層326的寬度進一步的 縮減,變成第四c圖所示的氮化矽層3 2 6,,兑中較佳者係 以攝氏140度的磷酸(H3P04)對於氮化矽層32'6的側壁進行 濕式蝕刻。氮化矽層326的側壁經過蝕刻後,其寬度w,小 於原先氮化矽層3 2 6的寬度W。最後再利用氮化矽層3 2 6,作 為罩幕(mask) ’蝕刻沒有被氮化矽層326,覆蓋的矽化鎢層 3 2 4摻雜的複晶;5夕層3 2 2 ’即得到第四廿圖所示之閘極導體Page ί 5. Fifth, description of the invention (8) 'Increase the area' It is only in the process of etching the side wall that the pre-cleaning effect can be obtained together. In terms of a 0.25 micron process, the present invention reduces the distance between the two capacitors to 0.1 micron. The above description uses the fabrication of a semiconductor capacitor as an example to illustrate the characteristics of the present invention. However, the technical idea of the present invention should be understood as the use of etching technology in photoresist stripping to further break through the geometric size limit G of the existing lithography process. The fourth figure shows a process of manufacturing a semiconductor process according to the present invention, in which a doped-poly layer 322 is sequentially formed on a gate oxide M in sequence, A silicon silicide (WSix) layer 324 and a silicon nitride (SiN) layer 326. The silicon nitride layer is covered with a layer of photoresist 34, and then according to the photolithography process of the gate conductor to be produced, after development, the photoresist 24 becomes the case shown in Figure 4 and 3. The width W of the resist 34 is photolithography. Restrictions on the geometrical dimensions of the manufacturing process. Next, the pattern of the resist 34 is etched to the nitride nitride layer 326 to obtain the shape shown in the fourth b. The process proceeds here to 'remove the resist 34, so its fabrication: the size of the conductor is mainly limited by the micro The geometric limit of the shadow process, that is, the size W of the photoresist 24. According to the present invention, before the photoresist 24 is removed, the sidewalls of the silicon nitride layer 3 2 6 are further etched, so that the width of the silicon nitride layer 326 is further reduced to become the silicon nitride layer 3 shown in FIG. 4c. 26. The better one is wet etching of the sidewall of the silicon nitride layer 32'6 with phosphoric acid (H3P04) at 140 degrees Celsius. After the sidewall of the silicon nitride layer 326 is etched, its width w is smaller than the width W of the original silicon nitride layer 3 2 6. Finally, the silicon nitride layer 3 2 6 is used as a mask 'to etch the complex crystal doped with the tungsten silicide layer 3 2 4 which is not covered by the silicon nitride layer 326; the layer 3 2 2' is obtained Gate conductor shown in Figure 4

第11頁 五 '發明說明(9) 3 6,其中閘極導體3 6的尺寸係根據氮化矽層3 2 6 ’的尺寸W ,換言之,根據本發明製作閘極導體,其幾何尺寸可突破 微影製程之極限。類似的製程·可用來製作導線。 基於半導體裝置高度集積化的發展,縮小元件,減少 元件之間的間距,以及減少線寬乃是必然的趨勢,這些瓶 頸一直以來受限於微影製程的最小幾何尺寸。然而引用愈 先進的微影製程,勢必引進新的設備機台,而製程技術也 愈為複雜困難,良率愈低,成本也愈高。而根據本發明則 能夠以較為成熟或現有的微影製程,便可以使電路設計規 格進一步地縮小,這麼作的優點在於應用較為成熟的微影 技術,良率較高,不會增加太多額外的成本,而且其獲得 的效果可以媲美先進的微影製程。 再者,隨著微影製程的不斷發展,配合本發明將可再 突破現有微影技術的限制,使半導體尺寸最佳化,電路設 計規格再進一步地縮小化。 以上描述之實施例係藉由半導體製程中利用光阻作為 罩幕(mask)進行微影及蝕刻製程,在其他不同的應用上, 罩幕可能使用其他的材料,例如前述之氮化矽。以第五圖 為例,基材40上形成有一結構層42,結構層42主要係用來 製作元件,其表面的罩幕4 4是藉由一光阻進行微影製程及 蝕刻製程之後得到的圖案。接下來便藉由罩幕44姓刻其底 下的結構層4 2,成為第五b圖所示之狀態。在移除罩幕4 4 之前,蝕刻結構層4 2的側壁,使其尺寸變窄,因而得到第 五c圖所示的結果,在移除罩幕4 4之後,便成為第五d圖所Page 11 5'Invention description (9) 3 6, wherein the size of the gate conductor 36 is based on the size W of the silicon nitride layer 3 2 6 ', in other words, the gate conductor can be manufactured according to the present invention, and its geometric size can be broken Limits of the lithography process. A similar process can be used to make wires. Based on the development of highly integrated semiconductor devices, it is an inevitable trend to reduce components, reduce the spacing between components, and reduce line width. These necks have been limited by the minimum geometric size of the lithography process. However, the more advanced the lithography process is, the new equipment will inevitably be introduced, and the process technology becomes more complicated and difficult. The lower the yield rate and the higher the cost. According to the present invention, the circuit design specifications can be further reduced with a more mature or existing lithography process. The advantage of this is that the more mature lithography technology is applied, the yield is higher, and it does not add too much extra. Cost, and the effect can be comparable to advanced lithography process. Furthermore, with the continuous development of the lithography process, the limitations of the existing lithography technology can be broken through with the present invention, the semiconductor size can be optimized, and the circuit design specifications can be further reduced. The embodiments described above use photoresist as a mask in the semiconductor process for lithography and etching processes. In other different applications, the mask may use other materials, such as the aforementioned silicon nitride. Taking the fifth figure as an example, a structural layer 42 is formed on the substrate 40. The structural layer 42 is mainly used for making components. The mask 44 on the surface is obtained after a photolithography process and an etching process by a photoresist. pattern. Next, the structural layer 42 underneath is engraved by the surname of the mask 44 and becomes the state shown in Fig. 5b. Before the mask 4 4 is removed, the sidewalls of the structural layer 42 are etched to narrow the size, so the result shown in Figure 5c is obtained. After the mask 4 4 is removed, it becomes the fifth figure d.

第12頁 4 40 91 1 五、發明說明(ίο) 示之狀態。Page 12 4 40 91 1 V. State of the invention description (ίο).

從以 思想係在 蓋的結構 能是光阻 該罩幕所 -層或多 金屬矽化 以上 目的,而 的教導或 實施例 各種實施 明的技術 上揭露的 剝離製作 之側壁, 或者是其 覆蓋的結 層的介電 物,多晶 對於本發 無意限定 從本發明 係為解說 例利用本 思想企圖 兀件所依賴的罩幕之前,j 較佳者係使用=孓之^钱 韦诉便用濕式蝕刻。 ^料,例如氮化石夕或者氧 Ϊ 2硯當時製作的元件而定 ,,半導體或者導體材料 石(Polysi 1 icon)所組成。 明之較佳實施例所作的敘述 本發明精確地所揭露的形式 的實施例學習而作修改或^ 本發明的原理以及讓熟習贫 發明在實際應用上而選擇^ 由以下的申請專利範圍及其 #主要技術 刻m罩幕復 於該罩幕可 化矽,並且 ’有可能是 例如金屬, 係為闉明之 ’基於以上 化是可能的 項技術者以 敘述,本發 均等來決定From the idea that the structure that is tied to the cover can be photoresistor-layer or polymetallic silicidation for the above purposes, the teachings or examples of various implementations of the technically disclosed peel-off sidewalls, or the covered junctions Layers of dielectrics, polycrystals are not intended to limit the present invention. From the present invention, for the purpose of illustration, the mask on which the idea is used to attempt to rely on the components, j is better to use = ^ qianwei v. Wet type Etching. ^ Materials, such as nitride nitride or oxygen Ϊ 2 砚, depending on the components made at the time, semiconductor or conductive material stone (Polysi 1 icon). The description of the preferred embodiment of the present invention is made by modifying the embodiment of the form precisely disclosed by the present invention or ^ the principle of the present invention and the practice of poor inventions are selected ^ from the following patent application scope and # The main technique is to engrav the mask on the mask to convert silicon, and 'possibly it is, for example, a metal, it is 闉 mingzhi'. Based on the above, it is possible for the technicians to decide by narration and equalization of the hair.

Claims (1)

六、申請專利範圍 1. 一種半導體電容之製造方法,包括下列步驟: 於一絕緣層表面覆上一層光阻; 進行微影製程去除部份光阻; 以第一蝕刻製程蝕刻未被光阻覆蓋的絕緣層形成一凹槽 > 以第二蝕刻製程蝕刻該凹槽的側壁;以及 繼續該半導體電容的製程。 2 .如申請專利範圍第1項所述之方法,其中所述第一蝕刻 製程為乾式蝕刻。 3. 如申請專利範圍第1項所述之方法,其中該所述二蝕刻 製程為濕式蝕刻。 4. 如申請專利範圍第3項所述之方法,.其中該濕式蝕刻係 使用氩氟酸溶液者。 5. —種半導體元件之製作方法,包括下列步驟: 於一導體層表面覆上一罩幕層; 於罩幕層表面覆上一層光阻; 進行微影製程去除部份光阻; 姓刻未被光阻覆蓋的罩幕層; 蝕刻罩幕層的側壁; 去除光阻;以及 蝕刻未被罩幕層覆蓋的導體層。 6. 如申請專利範圍第5項所述之方法,其中係使用濕式蝕 刻姓刻罩幕層的側壁。 7 .如申請專利範圍第6項所述之方法,其中該濕式蝕刻係6. Scope of Patent Application 1. A method for manufacturing a semiconductor capacitor, including the following steps: coating a layer of photoresist on the surface of an insulating layer; performing a lithography process to remove a portion of the photoresist; etching in the first etching process without being covered by the photoresist Forming a groove in the insulating layer > etching the sidewall of the groove in a second etching process; and continuing the process of the semiconductor capacitor. 2. The method according to item 1 of the scope of patent application, wherein the first etching process is dry etching. 3. The method according to item 1 of the scope of patent application, wherein the second etching process is wet etching. 4. The method according to item 3 of the scope of patent application, wherein the wet etching is an argon fluoride acid solution. 5. A method for manufacturing a semiconductor device, including the following steps: covering a surface of a conductor layer with a cover layer; covering a surface of the cover layer with a layer of photoresist; performing a lithography process to remove part of the photoresist; A mask layer covered by a photoresist; etching a sidewall of the mask layer; removing the photoresist; and etching a conductor layer not covered by the mask layer. 6. The method according to item 5 of the scope of patent application, wherein the side walls of the mask layer are etched by wet etching. 7. The method according to item 6 of the scope of patent application, wherein the wet etching is 第15頁 440911 六、申請專利範圍 使用磷酸溶液。 8 .如申請專利範圍第5項所述之方法,其中該罩幕層為氮 化矽。 9. 一種突破半導體製程中微影製程之幾何極限的方法’包 括下列步驟: 於一結構層表面形成一具有圖案之罩幕; 蝕刻該結構層未被該罩幕覆蓋的部份;以及 蝕刻結構層的側壁。 1 0 .如申請專利範圍第9項所述之方法,其中係利用濕式蝕 刻蝕刻結構層的側壁。 Π.如申請專利範圍第9項所述之方法,其中該罩幕層為氮 |化石夕。 il2.如申請專利範圍第9項所述之方法,其中該罩幕層為氧 I 化矽。 1 3.如申請專利範圍第9項所述之方法,其中該結構層為一 層或多層介電層,半導體或者導體材料所組成。 1 4.如申請專利範圍第1 3項所述之方法,其中該導體材料 至少由金屬,金屬石夕化物或者多晶石夕之一所組成。Page 15 440911 6. Scope of patent application Use phosphoric acid solution. 8. The method according to item 5 of the scope of patent application, wherein the mask layer is silicon nitride. 9. A method of breaking the geometrical limit of the lithography process in a semiconductor process' includes the following steps: forming a patterned mask on a surface of a structural layer; etching a portion of the structural layer not covered by the mask; and etching the structure Side walls of the layer. 10. The method according to item 9 of the scope of patent application, wherein the sidewalls of the structural layer are etched by wet etching. Π. The method according to item 9 of the scope of patent application, wherein the cover layer is nitrogen | il2. The method according to item 9 of the scope of patent application, wherein the mask layer is silicon oxide silicon. 1 3. The method according to item 9 of the scope of patent application, wherein the structural layer is composed of one or more dielectric layers, semiconductors or conductive materials. 14. The method according to item 13 of the scope of the patent application, wherein the conductor material is composed of at least one of a metal, a metal petrified compound or a polycrystalline petrified compound. 第16頁Page 16
TW89109297A 2000-05-12 2000-05-12 Method for breaking the geometrical limitation in the semiconductor photolithography process TW440911B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW89109297A TW440911B (en) 2000-05-12 2000-05-12 Method for breaking the geometrical limitation in the semiconductor photolithography process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW89109297A TW440911B (en) 2000-05-12 2000-05-12 Method for breaking the geometrical limitation in the semiconductor photolithography process

Publications (1)

Publication Number Publication Date
TW440911B true TW440911B (en) 2001-06-16

Family

ID=21659727

Family Applications (1)

Application Number Title Priority Date Filing Date
TW89109297A TW440911B (en) 2000-05-12 2000-05-12 Method for breaking the geometrical limitation in the semiconductor photolithography process

Country Status (1)

Country Link
TW (1) TW440911B (en)

Similar Documents

Publication Publication Date Title
TWI251296B (en) Method for fabricating semiconductor device capable of preventing damage by wet cleaning process
JPH088233A (en) Manufacture of semiconductor device and treatment liquid used for manufacturing
JP2000077625A5 (en)
JP3953726B2 (en) Method for manufacturing semiconductor device having metal silicide layer with chamfer
TW440911B (en) Method for breaking the geometrical limitation in the semiconductor photolithography process
KR20040059982A (en) Method for fabrication of conduction pattern of semiconductor device
JP2004172311A (en) Method for manufacturing semiconductor device
KR100596899B1 (en) Manufacturing Method of Semiconductor Device
JP3371179B2 (en) Wiring formation method
KR100533363B1 (en) Forming method for storage node of semiconductor device
KR101037690B1 (en) Method for fabricating semiconductor device
JP3371180B2 (en) Wiring formation method
JPH11330045A (en) Method for etching laminated film of oxide film and silicon layer
JP2002141328A (en) Semiconductor device and its manufacturing method
TW552673B (en) A method of fabricating a semiconductor device
JPH11135481A (en) Etching method
KR20050068363A (en) Method for fabricating thin pattern using the hard mask
TW425683B (en) Method of diminishing the critical dimension of two bit lines on both sides of lower storage node for a memory cell
JP2004228258A (en) Method for manufacturing semiconductor device
JP3780657B2 (en) Etching method
JPH08274078A (en) Etching
KR100447261B1 (en) Manufacturing method of semiconductor device
KR100671631B1 (en) Semiconductor device manufacturing method
JP2002026020A (en) Method of manufacturing semiconductor device
JPH07135198A (en) Etching

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent
MK4A Expiration of patent term of an invention patent