[go: up one dir, main page]

TW425634B - Method for preventing the loss of ions in MOS manufacturing process - Google Patents

Method for preventing the loss of ions in MOS manufacturing process Download PDF

Info

Publication number
TW425634B
TW425634B TW88114504A TW88114504A TW425634B TW 425634 B TW425634 B TW 425634B TW 88114504 A TW88114504 A TW 88114504A TW 88114504 A TW88114504 A TW 88114504A TW 425634 B TW425634 B TW 425634B
Authority
TW
Taiwan
Prior art keywords
layer
gate
item
patent application
scope
Prior art date
Application number
TW88114504A
Other languages
Chinese (zh)
Inventor
Jian-Ting Lin
Jin-Lai Chen
Original Assignee
United Microelectronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by United Microelectronics Corp filed Critical United Microelectronics Corp
Priority to TW88114504A priority Critical patent/TW425634B/en
Application granted granted Critical
Publication of TW425634B publication Critical patent/TW425634B/en

Links

Landscapes

  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

The present invention provides a method for manufacturing PMOS by preventing the loss of born boron. The manufacturing process of the present invention comprises: first, providing a semiconductor substrate having at least STI regions, and forming a gate oxide layer on the substrate; forming a polysilicon layer on the gate oxide layer; implanting ions into the polysilicon layer; depositing a silicon oxynitride layer on the polysilicon layer, wherein the silicon oxynitride layer is used as an anti-reflective layer; forming a photoresist layer on the silicon oxynitride layer; pattern-etching the silicon oxynitride layer and the polysilicon layer to form a gate region; depositing a dielectric layer on the gate region after lightly doping drain region; using anisotropic etching method to etch the silicon oxynitride layer, so as to form a spacer on the side wall of the gate; then, performing a heavy doping process to form a source/drain; and finally, performing an annealing process.

Description

fs <r : ' 4 «X. ofs < r: '4 «X. o

5~l發明領域: 本發明係有關於一種用在半導體元件製程中產生PMOS 的方法’特別是有關於一種防止硼流失來產生pM〇s的方法 發明背景: 當積體電路之密度不斷地擴大時,為使晶片(chip)面 積保持一樣,甚至縮小,以持續降低電路之單位成本,唯 —的辦法’就是不斷地縮小電路設計規格(design rule) 。且當元件的尺寸縮小時’在源極/汲極中的接合面必須 配合變淺’以避免短通道效應。因此,當我們來進行PM〇s 歲接面的輕摻雜汲極的離子植入時’必須使用低能量、高 劑量的硼離子(硼或氟化硼)。但是在回火製程,藉以恢復 石夕晶片表面的結晶結構的同時,硼容易流向表面氧化層, 使得源極/汲極中所植入的硼離子在矽晶片裡發生流失, 而使硼離子降低其靠近表面的濃度’造成源極/汲極阻值 的提高與驅動電流(ID,SAT)的衰退,進而降低半導體元件 的效能。 發明目的及概述:5 ~ l Field of the invention: The present invention relates to a method for generating PMOS used in the manufacturing of semiconductor devices. In particular, it relates to a method for preventing boron loss to generate pM0s. Background of the invention: When the density of integrated circuits is continuously expanding At the same time, in order to keep the area of the chip (chip) the same, or even shrink, so as to continuously reduce the unit cost of the circuit, the only way is to continuously reduce the design rule of the circuit (design rule). And when the size of the component is reduced, the junction surface in the source / drain must be shallower to avoid short-channel effects. Therefore, we must use low energy, high dose boron ions (boron or boron fluoride) when implanting lightly doped drain electrodes at the PM0s interface. However, during the tempering process to restore the crystal structure on the surface of the Shi Xi wafer, boron easily flows to the surface oxide layer, so that the boron ions implanted in the source / drain electrode are lost in the silicon wafer, which reduces the boron ions. Its concentration near the surface causes an increase in the source / drain resistance and a decrease in the driving current (ID, SAT), thereby reducing the efficiency of the semiconductor device. Purpose and summary of the invention:

第4頁 A2563 4 五、發明說明(2) 赛於上述之發明背景中,傳統產生PMOS方法的諸多缺 ‘點’本發明提供一種製程,藉以解決傳統產生PM〇s的問題 本發明的一目的,在於提供一種產生pM〇s的方法,藉 由沉積氮化矽在閘極側壁來形成補償間隙壁,以氮化矽來 阻擾推入之删離子的流失。 、 本發明的另一目的,在於提供一種產生PMOS的方法, 並降低源極/汲極的阻值和提高驅動電流。這是因為在後 續的回火製程中,植入的硼離子易流向氧化層而降低其靠 近表面的濃度,造成源極/汲極中阻值的提高與驅動電流 (ID,SAT )的衰退。藉由此製造方法,可使硼離子維持其 靠近表面的濃度,導致源極/汲極的低阻值和 (ID’SAT),進而提高半導體元件的效能。 、本發明的又—目的,在於提供一種產生pm〇s的方法, 並有效減少重疊電容(Cgd),以減少队時間延遲(RC time delay) ’進而提昇半導體元件的效能。 在本發明的一實施例中, 隔離(STI)區域的半導體基底 上,形成多晶石夕層在閘極氧化 内,接著沉積氮氧化矽層在多 首先提供一至少包括淺溝槽 ’且形成閘極氧化層在基底 層上,植入離子在多晶矽層 晶砂層上’且此氮氧化矽層Page 4 A2563 4 V. Description of the invention (2) In the background of the above invention, there are many shortcomings of the traditional method of generating PMOS. The present invention provides a process to solve the problem of traditional generation of PMos. It is to provide a method for generating pMOS by forming silicon nitride on the side wall of the gate to form a compensating gap wall, and using silicon nitride to hinder the loss of the inserted ions. Another object of the present invention is to provide a method for generating a PMOS, and reduce the source / drain resistance and increase the driving current. This is because in the subsequent tempering process, the implanted boron ions easily flow to the oxide layer and reduce the concentration near the surface, resulting in an increase in the source / drain resistance and a decline in the driving current (ID, SAT). By this manufacturing method, the concentration of boron ions close to the surface can be maintained, resulting in a low resistance value (ID'SAT) of the source / drain electrode, thereby improving the performance of the semiconductor device. Another object of the present invention is to provide a method for generating pms, and effectively reduce overlapping capacitance (Cgd), so as to reduce RC time delay ′ and thereby improve the efficiency of the semiconductor device. In one embodiment of the present invention, a polycrystalline silicon layer is formed on the semiconductor substrate in the isolation (STI) region in the gate oxide, and then a silicon oxynitride layer is deposited. First, a silicon nitride oxide layer is first provided and includes at least a shallow trench. The gate oxide layer is on the base layer, and the ions are implanted on the polycrystalline silicon layer and the crystal sand layer.

第5頁 4 2 5 6 3 4 五 '發明說明(3) " 用來作為一抗反射層,然後形成一光阻層在氮氧化矽層上 ’並囷案蝕刻氮氧化矽層和多晶矽層以形成閘極區β接下 來’沉積氮化矽層在閘極區上,利用非等向性蝕刻法蝕刻 氣化發層,藉以在閘極側壁形成補償間隙壁。緊接著,進 行一輕摻雜沒極後’沈積氮化矽層在基底上,且利用非等 向性敍刻方式触刻氮化矽層,以形成間隙壁在閘極的側壁 ,然後進行重摻雜以形成—源極/汲極,最後執行一回火 製程。 5 - 4圖式簡單說明: 第一 Α圖到第一 Η圖顯示本發明實施例,防止硼流失 來產生PMOS的方法中,夂此& * Τ 各步驟的剖面結構示意圖; 主要部分之代表符號: 10 基底 14 淺溝槽隔離 16 閘氧化層 18 多晶矽層 20 氣氧化·^層 21 光阻yf 22 氮化$夕層 24 補償間隙壁Page 5 4 2 5 6 3 4 Five 'Invention description (3) " Used as an anti-reflection layer, and then forming a photoresist layer on the silicon oxynitride layer' and etched silicon oxynitride layer and polycrystalline silicon layer In order to form the gate region β, a silicon nitride layer is deposited on the gate region, and the vaporization layer is etched by anisotropic etching to form a compensation gap on the gate sidewall. Next, a lightly doped electrode is used to deposit a silicon nitride layer on the substrate, and the silicon nitride layer is etched by using an anisotropic etch method to form a spacer on the side wall of the gate, and then a heavy Doping to form a source / drain, and finally performing a tempering process. Figures 5-4 are simple illustrations: Figures A through 1 show the method of preventing the loss of boron to generate PMOS according to the embodiments of the present invention. Here & Symbols: 10 substrate 14 shallow trench isolation 16 gate oxide layer 18 polycrystalline silicon layer 20 gas oxidation layer 21 photoresistance yf 22 nitride layer 24 compensation gap

五、發明說明(4) 26 源極/汲極 2 8 氮化梦廣 30 間隙壁 5-5發明詳細說明: 如第一 A圖顯示出’半導體基底1 〇係使用電性為n型的 矽底材’在此底材至少包括淺溝槽隔離1 4,將表面上的砂 氧化成為厚度約在15埃至60埃的二氧化麥,這二氧化碎層 將作為半導體元件的閘氧化層16(gate oxide)。緊接著, 以低壓化學氣相沉積法(LPCVD,low pressure chemical vapor depos i t ion )沉積厚度約1 5 0 0埃至2500埃的多晶砍 層1 8在二氧化矽上。以熱擴散法或離子植入的方式,將高 濃度的硼、磷或砷,摻入剛沉積的多晶矽裡,藉以降低閘 極的電阻率’來減少閘極導電層的》RC時間延遲(RC t丨託 delay)"。以電漿輔助化學氣相沉積法(piasma_EnhancedV. Description of the invention (4) 26 Source / Drain 2 8 Nitride Mitsubishi 30 Spacer 5-5 Detailed description of the invention: As shown in the first A diagram, 'Semiconductor substrate 1 0' uses n-type silicon Substrate 'here includes at least a shallow trench isolation 14 to oxidize the sand on the surface to a thickness of about 15 angstroms to 60 angstroms. This shredded layer of oxide will serve as a gate oxide layer for semiconductor components. 16 (gate oxide). Next, a low pressure chemical vapor deposition (LPCVD) method is used to deposit a polycrystalline layer 18 having a thickness of about 150 to 2500 angstroms on silicon dioxide. By thermal diffusion or ion implantation, a high concentration of boron, phosphorus, or arsenic is doped into the newly deposited polycrystalline silicon, thereby reducing the gate resistivity to reduce the "RC time delay" of the gate conductive layer (RC t 丨 delay) ". Plasma-assisted chemical vapor deposition (piasma_Enhanced

Chemical Vap〇r Deoosition,PECVD)沉積一層氮氧化矽 層20(SiON)在多晶矽層is上,其厚度约2〇〇埃至5〇()埃。在 這裡必須簡略地提到,半導體底材1〇是有元件的結構在裡 面形成,而這些對本發明並不重要,並不會因為沒有詳細 描述細節而無法理解本發明。 在氮氧化矽層20上方覆蓋一光阻層21,利用步進機( stepper)進行局部性的曝光(exp〇sure),使光罩上的圖案Chemical Vapor Deoosition (PECVD) deposits a silicon oxynitride layer 20 (SiON) on the polycrystalline silicon layer is, and has a thickness of about 200 angstroms to 50 angstroms. It must be mentioned briefly here that the semiconductor substrate 10 is a structure with elements formed therein, and these are not important to the present invention and will not be incomprehensible because the details are not described in detail. A photoresist layer 21 is covered on the silicon oxynitride layer 20, and a stepper is used for local exposure to make the pattern on the photomask

五、發明說明(5) 完整的傳遞到光阻上’然後進行光阻的顯影,藉以定義出 閘極尺寸大小,如第一 B圖所示之構造,以便進行接下來 的微影製程’定義出各層薄膜的圖案及摻雜區域。 蝕刻氮氧化矽層2 0和多晶矽層〗8,用以形成閛極結構 。接下來’以化學氣相沉積法(C V D)沉積一氮化矽層2 2, 覆蓋整個晶片的表面,其厚度約在1〇〇埃至600埃之間,用 來做為閘極補償間隙壁之用,如第一 C圖中所示。此補償 間隙壁用以阻止對硼流失(boron out diffusion)。這是 因為在後續的回火製程中’雖然可以恢復矽晶月表面的結 晶結構,但是也將導致所植入的硼離子在矽晶片裡易流向 表面氧化層’使硼離子降低其靠近表面的濃度,造成阻值 的提高與驅動電流(ID,SAT)的衰退《藉由此氮化矽(sa) 補償間隙壁的生成,可有效防止源極/汲極中的硼離子在 回火製程中的流失。當硼離子維持其靠近表面的濃度時, 導致源極/汲極的低阻值和高驅動電流(ID,SAT)的產生’ 進而提高半導體元件的效能。 將覆蓋有氮化矽層2 2的晶片,以非等向性( 乾蝕刻(dry etching),部分附在閘極間隙 24之社爐石Γ紋將不會完全的被去除,而形成補償間隙壁 整,進行離,植入,這個植入繼不高,^ cm β主要疋用來作為防止短通道效應發生的"輕摻雜 425634 五、發明說明(6) 沒極(Lightly Doped Drain,LDD)"之用,會形成輕摻雜 源極/汲極26 ’如第一E圖所示。緊接著,以傳統的化學氣 相沈積方式’形成氮化矽層28覆蓋在晶片的表面上,如第 一 F圖所示β將覆蓋有氮化矽層2 8的晶片送入乾蝕刻機 ’進行非等向性的蝕刻(Anis〇tr〇pic Etch)方式,將會在 閘極侧壁形成如第一 G圖所示的間隙壁3 〇結構。 接下來’對晶片進行高濃度且深度較深的離子植入, 以進行源極/及極26的重摻雜(heaVy doping),濃度約 1 019 /=m2之間,將做為源極/汲極的主體之用。緊接著, 將已完成重摻雜植人後的晶片送人熱擴散爐内,在大約 9 0 0 C到1 G 5 G C左右的高溫下進行離子的活化作用。同時 ”離:植入,而被破壞的部分晶片表面的矽原 加以回火(annealing),如第一}1圖所示。 以上所述僅為本發明 本發明之申請專利範圍; 神下所完成之等效改變或 請範圍内。 之較佳實施例而已’並非以限定 凡其它未脫離本發明所揭示之精 修飾,均應包含在下述之專利申V. Description of the invention (5) Complete transfer to the photoresist 'and then develop the photoresist to define the size of the gate electrode. The structure shown in Figure 1B is used for the next lithography process. The patterns and doped regions of the thin films are shown. The silicon oxynitride layer 20 and the polycrystalline silicon layer are etched to form a ytterbium structure. Next, a chemical vapor deposition (CVD) method is used to deposit a silicon nitride layer 22 to cover the entire surface of the wafer. The thickness is about 100 angstroms to 600 angstroms, which is used as a gate compensation gap. Use, as shown in the first C diagram. This compensation spacer is used to prevent boron out diffusion. This is because in the subsequent tempering process, "Although the crystal structure of the silicon crystal surface can be restored, it will also cause the implanted boron ions to easily flow to the surface oxide layer in the silicon wafer," which will reduce the boron ions close to the surface Concentration, resulting in an increase in resistance and a decline in driving current (ID, SAT) "The silicon nitride (sa) is used to compensate the formation of the spacer, which can effectively prevent boron ions in the source / drain during the tempering process Churn. When the boron ion maintains its concentration near the surface, it results in the generation of a low resistance value of the source / drain and a high driving current (ID, SAT) ', thereby improving the efficiency of the semiconductor device. The wafer covered with the silicon nitride layer 22 will be partially anisotropic (dry etching), and the furnace stone Γ pattern partially attached to the gate gap 24 will not be completely removed to form a compensation gap. The wall is straightened, separated, and implanted. This implantation is not high. ^ Cm β is mainly used to prevent the occurrence of short-channel effects. "Light doping 425634. V. Description of the invention (6) Lightly Doped Drain, LDD) " will form a lightly doped source / drain 26 'as shown in Figure E. Next, a conventional chemical vapor deposition method is used to form a silicon nitride layer 28 to cover the surface of the wafer. As shown in the first F diagram, β sends the wafer covered with the silicon nitride layer 2 8 into a dry etcher to perform an anisotropic etching (Anis〇tr〇pic Etch) method, which will be on the gate side. The wall forms a gap wall 30 structure as shown in the first G diagram. Next, the wafer is subjected to high concentration and deep ion implantation to perform heaVy doping of the source / and electrode 26, The concentration is about 1 019 / = m2, which will be used as the source / drain body. Then, the heavily doped implant will be completed. After the wafer is sent to the thermal diffusion furnace, the ion activation is performed at a high temperature of about 900 C to 1 G 5 GC. At the same time, "off": implantation, and the silicon on the surface of the damaged wafer is returned. Fire (annealing), as shown in the first figure 1. The above is only the scope of the present invention for the patent application; equivalent changes made by God or within the scope. The preferred embodiment is not ' Restrictions All other fine modifications that do not depart from the present disclosure should be included in the following patent applications

Claims (1)

2 563 4 六、申請專利範圍 1. 一種防止離子流失的方法,該方法至少包含: 提供一至少包括一淺溝槽隔離(STI)區域的半導體基 底; 形成一閘極氧化層在該基底上; 形成一導電層在該閘極氧化層上; 形成一抗反射層在該導電層上; 且形成一閘極區 圖案蝕刻該抗反射層和該導電層, 形成一介電層覆蓋在該閘極區上; #开^用3?蝕刻法回蝕刻該介電層,藉以在閘極側 壁形成一補償間隙壁; 進行一輕摻雜汲極; 形成一間隙壁在該閘極的側壁;及 進行行重摻雜於該輕摻雜 Bk /、 修雜/及極以形成一源極/汲極, 且對遺源極/ ί及極執行回火製程。 2. 如申請專利範圍第1項 少包含Ν型半導體底材。 中上述半導體底材至 3. 如申請專利範圍第1項 含多晶矽。 負之方法,其中上述導電層至少包 4. 如申請專利範圍第1項 包含氣氧切。 $之方去,其中上述抗反射層至少 1 第10頁 4 2563 4 /、申清專利範圍 %如申請專利範圍第4項之方法,其中上述抗反射層,其 形成方法至少包含下列之一:快速加熱化學氣相沉積方法 '低麼化學氣相沉積法或電漿化學氣相沉積法。 少 至 質 摻 β 摻 述 上 中 其 法 方。 之删 項化 1氟 第或 圍棚 範 *. 利一 專之 請列 申下 如含 6’包 7人如申請專利範圍第1項之方法,其中上述介電層至少包 含氮化石夕。 衫’種防止離子流失的方法,該方法至少包含: 底·提供—至少包括一淺溝槽隔離(STI)區域的半導體基 形成—閘極氧化層在該基底上; 形成一多晶矽層在該閘極氧化層上; 植入離子在該多晶矽層内; 用fί 一氮氧化矽層在該多晶矽層上,且該氮氧化石夕層 用來作為一抗反射層; 3—光阻層在該氮氧化石夕層上,且在該氮氧化 和該多Β曰矽層區域上定義出一閘極面積; 敍刻該閘極面積形成一閘極區; 沉積一氮化矽層覆蓋在該閘極區; 藉以在閘極侧 利用非等向性蝕刻法蝕刻該氮化矽層 壁形成一補償間隙壁; 425634 六、申請專利範圍 進行一輕摻雜汲極; 沈積一氮化矽層在該基底上,且利用非等向性蝕刻方 式蝕刻該氮化矽層,以形成一間隙壁在該閘極的側壁; 進行重摻雜以形成一源極/汲極;及 最後執行一回火製程。 9.如申請專利範圍第8項之方法,其中上述閘極層至少包 含多晶矽。 1 0.如申請專利範圍第8項之方法,其中上述多晶矽之蝕刻 係以自行對準反應性離子蝕刻法製得。 11.如申請專利範圍第8項之方法,其中上述閘極層至少包 含下列摻質之一:硼、磷或砷。 1 2.如申請專利範圍第8項之方法,其中上述摻質係以離子 植入法摻雜。 1 3.如申請專利範圍第8項之方法,其中上述摻質係以熱擴 散法推雜。 1 4,如申請專利範圍第8項之方法,其中上述輕摻雜摻質至 少包含下列之一:硼或氟化硼。2 563 4 VI. Application Patent Scope 1. A method for preventing ion loss, the method at least comprises: providing a semiconductor substrate including at least a shallow trench isolation (STI) region; forming a gate oxide layer on the substrate; Forming a conductive layer on the gate oxide layer; forming an anti-reflection layer on the conductive layer; and forming a gate region pattern to etch the anti-reflection layer and the conductive layer to form a dielectric layer covering the gate Area; # 开 ^ etch back the dielectric layer with a 3? Etching method to form a compensation gap on the gate side wall; perform a lightly doped drain; form a gap wall on the side wall of the gate; and The lightly doped Bk /, dopant / and electrode are heavily doped to form a source / drain, and a tempering process is performed on the remaining source / d and electrode. 2. If item 1 of the scope of patent application includes N-type semiconductor substrates. The above-mentioned semiconductor substrate to 3. If the scope of the patent application No. 1 contains polycrystalline silicon. Negative method, in which the above-mentioned conductive layer includes at least 4. As described in item 1 of the patent application scope, gas-oxygen cutting is included. $ 之 方 去, where the above anti-reflection layer is at least 1 page 10 4 2563 4 / method of claiming patent scope% as in item 4 of the patent application range, wherein the above-mentioned anti-reflection layer is formed by at least one of the following methods: Fast-heating chemical vapor deposition method 'low chemical vapor deposition method or plasma chemical vapor deposition method. As little as qualitatively doped with β. Deletion Item 1 Fluorine or Shelter Fan *. Li Yi Special Please list below Apply if there are 6 ’packages and 7 people apply for the method of patent scope item 1, where the above dielectric layer contains at least nitride stone. A method for preventing ion loss, the method includes at least: bottom providing-at least a semiconductor base formation including a shallow trench isolation (STI) region-a gate oxide layer on the substrate; forming a polycrystalline silicon layer on the gate On the polar oxide layer; implanted ions in the polycrystalline silicon layer; use a silicon nitride oxide layer on the polycrystalline silicon layer, and the oxynitride layer is used as an anti-reflection layer; 3—the photoresist layer is in the nitrogen A gate area is defined on the oxidized stone layer and the region of the oxidized nitrogen and the silicon layer; the gate area is described to form a gate area; a silicon nitride layer is deposited to cover the gate Area; by using an anisotropic etching method on the gate side to etch the silicon nitride layer wall to form a compensation gap; 425634 VI. Patent application scope for a lightly doped drain electrode; depositing a silicon nitride layer on the substrate The silicon nitride layer is etched by using an anisotropic etching method to form a spacer on the side wall of the gate electrode; performing heavy doping to form a source / drain electrode; and finally performing a tempering process. 9. The method according to item 8 of the patent application, wherein the gate layer includes at least polycrystalline silicon. 10. The method according to item 8 of the scope of patent application, wherein the etching of the above polycrystalline silicon is made by a self-aligned reactive ion etching method. 11. The method according to item 8 of the patent application, wherein the gate layer includes at least one of the following dopants: boron, phosphorus, or arsenic. 1 2. The method according to item 8 of the patent application, wherein the dopant is doped by an ion implantation method. 1 3. The method according to item 8 of the scope of patent application, wherein the above-mentioned dopant is impregnated by a thermal diffusion method. 14. The method according to item 8 of the application, wherein the lightly doped dopant contains at least one of the following: boron or boron fluoride. 第12頁 六、申請專利範圍 1 5.如申請專利範圍第8項之方法,其中上述多晶矽之蝕刻 係以自行對準反應性離子蝕刻法製得。 1 6.如申請專利範圍第8項之方法,其中上述摻質係以熱擴 散法摻雜。 1 7 ·如申請專利範圍第8項之方法,其中上述氮化矽層的厚 度大約在100埃至600埃。Page 12 6. Scope of patent application 1 5. The method according to item 8 of the scope of patent application, wherein the etching of the above polycrystalline silicon is made by self-aligned reactive ion etching. 16. The method according to item 8 of the patent application, wherein the dopant is doped by a thermal diffusion method. 17 · The method according to item 8 of the patent application, wherein the thickness of the silicon nitride layer is about 100 angstroms to 600 angstroms. 第13頁Page 13
TW88114504A 1999-08-25 1999-08-25 Method for preventing the loss of ions in MOS manufacturing process TW425634B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW88114504A TW425634B (en) 1999-08-25 1999-08-25 Method for preventing the loss of ions in MOS manufacturing process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW88114504A TW425634B (en) 1999-08-25 1999-08-25 Method for preventing the loss of ions in MOS manufacturing process

Publications (1)

Publication Number Publication Date
TW425634B true TW425634B (en) 2001-03-11

Family

ID=21642039

Family Applications (1)

Application Number Title Priority Date Filing Date
TW88114504A TW425634B (en) 1999-08-25 1999-08-25 Method for preventing the loss of ions in MOS manufacturing process

Country Status (1)

Country Link
TW (1) TW425634B (en)

Similar Documents

Publication Publication Date Title
US6214654B1 (en) Method for forming super-steep retrograded channel (SSRC) for CMOS transistor using rapid laser annealing to reduce thermal budget
US6475888B1 (en) Method for forming ultra-shallow junctions using laser annealing
TW495876B (en) Semiconductor integrated circuit device and its manufacture method
US6190977B1 (en) Method for forming MOSFET with an elevated source/drain
JP4633310B2 (en) Method for forming germanium-doped polysilicon gate of MOS transistor and method for forming CMOS transistor using the same
US7235153B2 (en) System for removal of a spacer
TW200522348A (en) Advanced strained-channel technique to improve CMOS performance
US5972761A (en) Method of making MOS transistors with a gate-side air-gap structure and an extension ultra-shallow S/D junction
CN112151367A (en) Semiconductor device and method of forming the same
US6046090A (en) Process to fabricate ultra-short channel MOSFETS with self-aligned silicide contact
TW200305940A (en) Use of liner oxide implant to prevent dopant segregation from extensions
US6069044A (en) Process to fabricate ultra-short channel nMOSFETS with self-aligned silicide contact
US6284612B1 (en) Process to fabricate ultra-short channel MOSFETs with self-aligned silicide contact
TW425634B (en) Method for preventing the loss of ions in MOS manufacturing process
TWI238475B (en) High temperature hydrogen annealing of a gate insulator layer to increase etching selectivity between conductive gate structure and gate insulator layer
US6294797B1 (en) MOSFET with an elevated source/drain
KR100702118B1 (en) Manufacturing method of semiconductor device
CN101740391B (en) Fabricating method of NMOS (N-channel Metal Oxide Semiconductor)
KR100400305B1 (en) Method for manufacturing CMOS
TW425609B (en) Process to fabricate ultra-short channel MOSFETS with self-aligned silicide contact
JP3765968B2 (en) Method for forming electrode structure and method for manufacturing semiconductor device
TW466767B (en) Method for manufacturing ultra-shallow junction metal oxide semiconductor transistor
CN115020335A (en) Method of forming a semiconductor structure
KR20060037776A (en) Method for manufacturing a semiconductor device having a gate spacer by atomic layer deposition
TWI242238B (en) Manufacturing method for dual gate oxide layer

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent
MM4A Annulment or lapse of patent due to non-payment of fees