[go: up one dir, main page]

TW385552B - Semiconductor position detection apparatus - Google Patents

Semiconductor position detection apparatus Download PDF

Info

Publication number
TW385552B
TW385552B TW87117053A TW87117053A TW385552B TW 385552 B TW385552 B TW 385552B TW 87117053 A TW87117053 A TW 87117053A TW 87117053 A TW87117053 A TW 87117053A TW 385552 B TW385552 B TW 385552B
Authority
TW
Taiwan
Prior art keywords
conductive layer
psd
light
backbone
resistance
Prior art date
Application number
TW87117053A
Other languages
Chinese (zh)
Inventor
Tatsuo Takeshita
Masayuki Sakakibara
Original Assignee
Hamamatsu Photonics Kk
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamamatsu Photonics Kk filed Critical Hamamatsu Photonics Kk
Application granted granted Critical
Publication of TW385552B publication Critical patent/TW385552B/en

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Measurement Of Optical Distance (AREA)
  • Light Receiving Elements (AREA)

Abstract

The width of a plurality of resistance ranges constituting the basic conductive layer becomes wider and wider from one end to the other, and their resistivities are substantially the same, so, when the semi-conductor position detection is so disposed that the electric charge generating in accordance with the injecting light from the measured object at a long distance, the resistivity in the narrow resistance area is high even when the injecting light on the light receiving surface can only move slightly due to the change in the distance of the measured object, the output current from both ends of the basic conductive layer fluctuates greatly and the position detection accuracy is enhanced.

Description

A7 B7 五、發明説明(【) [技術領域丨 本發明為有關一種半導體檢测裝置(PSD)。A7 B7 V. Description of the invention ([) [Technical Field 丨 The present invention relates to a semiconductor detection device (PSD).

II

[技術#景] 半導體距離檢測裝置(以下稱P S D )是莉用所謂三角測 量的原理等,以測被測定物的距離之裝置,乃為眾所周 知者。P S D是以有源方式的距離測定器之形態,被裝在 攝影機等之攝影機器上,在這種攝影機器中,是依據PSD 所測定的被測定物之距離,以進行攝影透鏡之調焦者。 [發明之啓示] 在上述PSD中,在PSD.受光面上的入射光光點之位置 ,會隨著其與被測定物的距離而移動。PSD的電阻層之 電阻值會隨著入射光光點的位置而被所分割,PSD的輸 出電流會隨箸電阻分割比率而變化,因而可依據該輸出 電流,以測出其與被測定物之距離者。然而,利用三角 測量法的原理做距離測定時,其與在近距離的被測定物 之距離有所變化時,入射光光點的位置在受光面上會有 很大的移動,但,其與在遠距離的被測定物之距離有所 變化時,入射光光點位置並不怎麼移動。即,在以往, 對於遠距離的被測定物之距離測定精確度是比對近距離 的測定精度為差。因而,將入射光光點所照射的電阻層 之寬度,隨箸由受光面的近距離側向遠距離側,以一次 函數的縮小,以使從遠距離被測定物來的入射光光點之 移動量雖然很徹小,也可使電阻層的電阻分割比率有很 大的變化者,記載於特平4 - 2 4 0 5 1 1號公報上。 -3 - 本紙张尺度適用中國阀家摞个((:NS ) Λ4規格(210X 297公f ) (¾先閱讀背面之注意事項再填寫本頁) -------¾衣 訂 l.lu.lr i JLrLiillLlmL : A7 B7五、發明説明(> ) . 然而,在上述特平4 - 2 4 0 5 1 1號公報所記載P S D是將電 阻層的寬度隨箸從遠距離側向近距離側以一次函數的擴 大,卽^將電阻層的寬度隨著從近距離側向遠距離側以一 次函數的縮小。此電阻層是形成為受光面。電阻層可認 為是由微小的電阻連接成為矩陣狀之撤小電阻集合體者 。光線入射於電阻層所産生的電荷,會根據入射光位置 到電阻層兩端的電極之電阻比率被所分割,但如僅在於 電阻層寬度方向排列的徹小電阻群中之一部分受到光點 形狀的入射光之照射時,所産生的電荷不能均勻的沿箸 電阻層之長度方向通過,因而,在理論上從電阻層形狀所計 算的入射光位置和輸出電流之關偽式,會在於每一入射 光位置及入射光形狀而有所差異,要從輸出電流以單一 的關偽式正確的算出入射光位置是有所困難。即,要從 輸出電流得知正確的入射光位置時,需要有對於每一入 射光位置及入射光形狀的多數之蓮算電路〇換言之,在 上述P S D中只能在於電阻層寬度方向排列的全部徹小電 阻群上被照射到入射光時,即狹縫形的入射光橫掃照射 於電阻層之情形時,才可利用單一運算電路求出入射光 位置。 本發明之目的是在於解決上述問題,而提供一種半導 體位置檢測裝置,其偽可比以往的更提升其位置檢測精 確度,且對於入射光形狀並無限制者。 本發明的半導體位置檢測裝置之特徽俗具:由多數的電 阻區域在所定方向接連而成之骨幹導電層;和從該骨幹 -4 - (誚先閱讀背而之注意事項?本頁) 裝---- 、tr #.i -UE-UEEE- 本紙张尺度川中因四家標肀(('NS ) Μ规格(2丨0X 297公f ) A7 B7 經消部屮次""^’,]'工"叭合竹"'^~ t 五、發明説明( 3 ) 1 1 m 電 層 沿 著 受 光 面 延 伸 ί 並 依 昭 八W 受 光 面 上 的 人 射 光 位 置 I . 丨 1义 不 同 t 可 使 其 骨 幹 導 電 層 兩 端 所 輸 出 的 電 流 也 有 所 相 異 之 分 支 導 m 層 » 而 電 阻 區 域 具 有 實 質 上 相 同 的 電 阻 率 請 ί 先 , 且 垂 直 於 所 定 方 向 的 寬 度 是 從 骨 幹 導 電 層 的 — 端 向 另 閱 讀 背 _. 端 逐 漸 加 寬 者 〇 又 j 多 數 的 電 阻 區 域 是 在 各 電 阻 區 域 面 之 1 間 , . 面 使 分 支 導 電 層 介 於 其 間 、 一 面 接 連 者 較 為 理 想 意 1 1 事 1 9 但 也 可 各 電 阻 區 域 __. 面 互 相 接 觸 面 接 連 者 0 項 再, 1 ;| 入 射 光 的 位 置 會 隨 著 被 測 定 物 的 距 離 在 受 光 面 上 移 動 寫 本 裝 I 0 而 隨 應 於 入 射 光 的 昭 /V.S 射 所 產 生 的 電 荷 畲 通 過 分 支 導 電 頁 >〆 1 I 層 流 入 於 骨 幹 導 電 層 0 分 支 導 電 層 是 依 昭 其 入 射 光 位 置 | > 使 骨 幹 導 電 層 兩 端 的 輸 出 電 流 有 所 相 異 的 延 伸 在 受 光 1 » I 上 > 因 而 5 可 由 該 輸 出 電 流 測 出 入 射 光 的 位 置 0 ! 訂 構 成 骨 幹 導 電 層 的 多 數 電 阻 區 域 之 寬 度 是 從 —_. 端 向 另 1 一 端 逐 漸 的 加 寬 > 而 各 個 的 電 阻 率 在 實 質 上 相 同 因 而 1 9 如 將 半 導 體 位置檢測裝置配 置 成 為 可 使 隨 應 於 從 違 距 離 1 的 被 測 定 物 來 的 入 射 光 所 產 生 的 電 荷 流 入 於 窄 幅 之 電 阻 1 ~s i線 1 區 域 1 則 在 於 被 測 定 物 的 距 離 之 變 化 9 只 能 使 入 射 光 位 置 在 受 光 面 上 有 微 小 的 移 動 之 情 形 時 i 由 於 窄 幅 的 電 阻 1 [ 區 域 之 電 阻 值 較 高 > 從 骨 幹 導 電 層 兩 端 輸 出 的 電 流 也 1 ! 很 大 的 變 動 0 I 又 > 入 射 光 是 由 分 支 導 電 層 所 受 光 > 所 產 生 的 電 荷 會 1 | 在 骨 幹 導 電 層 的 電 阻 所 分 割 , 因 而 可 使 # 幹 的 寬 度 縮 小 1 1 9 如 升 高 雜 質 濃 度 K 降 低 電 阻 率 也 可 獲 得 所 欲 之 電 阻 值 1 〇 即 升 高 雜 質 濃 度 時 > 其 可 控 制 ΒΙ 取 小 雜 質 濃 度 的 對 於 1 1 I -5- 1 1 1 本紙張尺度適州中國國家標卒^’奶^心见格㈠⑴/之…公漦) A7 B7 經濟部中决標準局P工消贽合竹社印^ 五、發明説明 ( 4 ) 1 1 整 體 雜 質 濃 度 之 比 率 會 降 低 t 可 縮 小 電 阻 率 參 差 > 而 .1 1 1 可 提 升 位 置 檢 測 之 精 確 度 〇 又 > 電 域 的 寬 度 是 Μ 從 骨 幹 導 電 層 之 --> 端 起 的 順 讀 先 著 所 定 方 向 位 置 之 一 次 函 數 或 二 次 函 數 值 較 為 理 想 , 入 閱 讀 射 光 是 會 昭 射 到 形 成 有 分 支 導 電 層 的 受 光 面 上 ) 因 而 可 之 1 不 限 制 入 射 光 的 形 狀 > p、 要 利 用 由 電 阻 區 域 的 寛 度 是 位 注 意 1 I 事 1 置 的 —*- 次 函 數 或 二 次 函 數 所 導 出 的 作 為 距 離 撿 測 用 之 函 項 再 1 數 > 就 可 由 骨 幹 導 電 層 兩 端 所 輸 出 的 電 流 算 出 到 被 測 定 填 寫 本 i 1 裝 物 之 距 離 〇 頁 '—/ 1 1 又 9 在 骨 幹 導 電 層 的 兩 端 9 設 置 取 出 其 輸 出 電 流 用 的 1 Ί 1 信 號 取 出 電 極 時 9 如 在 鄰 接 於 該 信 號 取 出 電 極 的 分 支 導 1 ;* 1 電 層 被 昭 射 到 入 射 光 9 則 其 人 射 光 的 一 部 分 會 眧 V、、N 射 到 信 1 訂 1 3m 取 出 電 極 入 射 光 的 重 心 位 置 .會 從 真 正 的 位 置 偏 移 於 分 支 導 電 層 側 > 其 位 置 撿 測 精 確 度 會 劣 化 〇 1 因 此 > 本 發 明 的 半 導 體 位 置 檢測裝置 之 另 一 特 徵 為 並 具 1 備 設 置 在 與 從 骨 幹 導 電 層 一 端 部 位 的 具 Ef 取 窄 幅 電 阻 區 1 ,線 1 域 延 伸 之 所 定 分 支 導 m 層 相 鄰 接 > 而 具 比 骨 幹 導 電 層 為 低 的 電 阻 率 之 高 濃 度 半 導 體 區 域 ) 及 設 在 隨 應 於 入 射 光 1 所 產 生 而 通 過 高 濃 度 半 導 體 區 域 的 電 荷 之 不 經 過 骨 幹 辱 1 1 電 層 而 可 流 入 的 位 置 並 可 取 出 上 述 輸 出 電 流 的 一 方 之 I 信 號 取 出 電 極 者 0 1 1 如 未 設 高 濃 度 半 導 體 區 域 9 則 當 入 射 眧 射 到 從 骨 幹 1 1 導 '電 層 — 端 部 位 的 具 取 窄 幅 電 阻 區 域 所 延 伸 之 分 支 導 電 1 層 及 信 號 電 極 時 人 射 光 會 受 到 信 號 取 出 電 極 所 遮 擋 > 1 1 -C — 1 1 1 1 本紙張尺度適州屮國1¾家標率((’NS ) Λ4現格(2丨OX 29*7公漦) A7 _________ B7_;____ 五、發明説明(r ) 信號取出電極的输出電流會減少。然而,本發明的半導 體位置檢測裝置具高濃度半導體區域,並隨應照射於高濃 度半導;體層的入射光所産生的電荷,會不經由骨幹導電 層,直接流入於信號取出電極,以使信號取出電極的輸 出電流增加,因而,而可所運算的入射光重心位置接近 於真正的位置,而提高位置檢測精確度。 骨幹導電層被照射到光線時,會由於光線的形狀而使 所蓮算的入射光位置偏離於真正位置之情形。因此,要 求更高的精確度時,在本發明半導體位置檢測裝置中,更 加具備在骨幹導電層上所形成之遮光膜者。如此,可更 提高其位置檢測之精確度。 又,在本發明半導體位置檢測裝置之再一特徵為·,具備 可從骨幹導電層兩端分別取出其輸出電流之一對信號取 出電極;而骨幹導電層如位於信號取出電極之時間,是 以絶緣性材料的遮光膜覆蓋於佶號取出電極間的骨幹導 電層上者。遮光膜如以絶緣性材料構成時,雖然將信號 電極間的骨幹導電層全區域覆蓋,信號取出電極也不致 於被短路。 又,該遮光膜是以黑色感光_所形成者較為理想,通 常的感光膠是在於形成金屬配線等的元件時作為捲模之 用,而本發明中,感光膠本身是用黑色者。而只要在硬 化前的感光膠上照射光線,將其顯像就可形成遮光膜。 [實施發明之最佳形態] 以下說明本發明之實施形態,其相同要素或具相同功 ' -7- 本紙乐尺度適川中國阀家標枣(('NS ) Μ規格(2丨0〆297公漦) (讀先閱讀背面之注意事項#/-,填寫本頁) 裝----[Technology # 景] The semiconductor distance detection device (hereinafter referred to as PSD) is a device for measuring the distance of the object to be measured using the principle of so-called triangulation measurement, etc., and is well known. PSD is in the form of an active distance measuring device and is mounted on a camera such as a camera. In this camera, the focus of the camera lens is adjusted based on the distance of the object to be measured measured by the PSD. . [Revelation of the invention] In the above PSD, the position of the spot of the incident light on the PSD. Light receiving surface moves with the distance from the object to be measured. The resistance value of the PSD resistance layer will be divided according to the position of the incident light spot, and the output current of the PSD will change with the ratio of the 箸 resistance division. Therefore, the output current of the PSD can be measured according to the output current. Distancer. However, when the distance measurement is performed using the principle of triangulation, the position of the incident light spot on the light receiving surface will move greatly when the distance between the object and the object to be measured at a short distance changes. When the distance of the distant object to be measured changes, the position of the incident light spot does not move much. That is, in the past, the accuracy of distance measurement of a long-distance object is worse than the accuracy of measurement of a short distance. Therefore, the width of the resistance layer irradiated by the incident light spot is reduced by a linear function from the near side to the far side of the light receiving surface, so that the width of the incident light spot from the object to be measured at a long distance is reduced. Although the amount of movement is very small, it can also cause a large change in the resistance division ratio of the resistance layer, which is described in Japanese Patent Application Laid-Open No. 4-2 4 0 5 1 1. -3-This paper size is suitable for Chinese valve furniture ((: NS) Λ4 size (210X 297 male f) (¾Please read the precautions on the back before filling this page) ---------- ¾ lu.lr i JLrLiillLlmL: A7 B7 V. Description of the invention (>). However, the PSD described in Japanese Patent Application Publication No. 4-2 4 0 5 1 1 is to increase the width of the resistance layer from the far side to the near side. The distance side is enlarged by a linear function, and the width of the resistance layer is reduced by a linear function from the near side to the far side. This resistance layer is formed as a light receiving surface. The resistance layer can be considered to be connected by a small resistance Become a matrix-like small resistance assembly. The charge generated by the light incident on the resistance layer will be divided according to the resistance ratio of the incident light to the electrodes at both ends of the resistance layer, but if it is only arranged in the width direction of the resistance layer When a part of the small resistance group is irradiated with incident light in the shape of a light spot, the generated charges cannot pass uniformly along the length of the rubidium resistance layer. Therefore, the position and output of the incident light calculated from the shape of the resistance layer in theory The pseudo type of current, will There is a difference in the position and shape of each incident light. It is difficult to accurately calculate the position of the incident light from the output current in a single pseudo-formula. That is, when the correct position of the incident light is to be known from the output current. For each incident light position and shape of incident light, in other words, in other words, in the above PSD, only the entire small resistor group arranged in the width direction of the resistive layer is irradiated to the incident light, that is, narrow A single arithmetic circuit can be used to determine the position of the incident light only when the slit-shaped incident light is swept across the resistive layer. The object of the present invention is to solve the above-mentioned problem and provide a semiconductor position detection device, which can be more false than conventional ones. Those whose position detection accuracy is improved and there is no restriction on the shape of incident light. Special emblems of the semiconductor position detection device of the present invention: a conductive layer of a backbone formed by connecting most of the resistance regions in a predetermined direction; and from the backbone -4-(Please read the precautions on this page first? This page) ---- 、 tr # .i -UE-UEEE- This paper has four standards in Sichuan (('N S) Μ specifications (2 丨 0X 297 male f) A7 B7 Ministry of Economic Affairs " " ^ ',]' 工 "; 合 竹 " '^ ~ t 5. Description of the invention (3) 1 1 m The electrical layer extends along the light-receiving surface and follows the light-emitting position I of the person on the light-receiving surface of the Zhaoba W. Different meanings t can cause the current output from the two ends of the backbone conductive layer to be different. The resistive areas have essentially the same resistivity, please, and the width perpendicular to the predetermined direction is from the backbone conductive layer — the end to the other reading _. The end gradually widens 〇 and j Most of the resistive areas are in each resistance There are 1 areas in the area,. The surface has the branch conductive layer in between, and one side is more ideal. 1 1 matters 1 9 but each resistance area __. The surface is in contact with each other and the surface is connected. 0 items, 1; | incident Light The position will move with the distance of the object to be measured on the light receiving surface. The writing device I 0 will correspond to the charge generated by the / VS radiation of the incident light 畲 through the branch conductive page> 〆1 The I layer flows into the backbone conductive layer 0 The branched conductive layer is based on the position of the incident light | > The output current at both ends of the backbone conductive layer is differently extended on the light receiving 1 »I > Therefore 5 The position of the incident light can be measured by the output current 0! Order The width of most of the resistive regions constituting the backbone conductive layer is gradually widened from the end to the other end. The resistivity of each is substantially the same. Therefore, if the semiconductor position detection device is configured to be compatible with The charge generated by the incident light from the object to be measured that violates the distance 1 flows into the narrow resistance 1 ~ si line 1 area 1 is the change in the distance of the object to be measured 9 can only make the incident light level When there is a slight movement on the light-receiving surface, due to the narrow resistance 1 [the resistance value in the region is high> the current output from the two ends of the conductive layer of the backbone is also 1! Great change 0 I again> incident The light is generated by the light received by the branch conductive layer. The charge generated by the conductive layer will be divided by 1 | the resistance in the backbone conductive layer, so the width of # stem can be reduced by 1 1 9 The desired resistance value is 1 〇 when the impurity concentration is increased> It can be controlled Β1 Take a small impurity concentration for 1 1 I -5- 1 1 1 / 之… 漦) A7 B7 The Industrial Standards Bureau of the Ministry of Economic Affairs of the Standards Bureau of the People ’s Republic of China Eliminates the Seal of the Bamboo Industry ^ V. Description of the Invention (4) 1 1 The ratio of the overall impurity concentration will be reduced t can reduce the resistivity variation > and .1 1 1 can improve the position detection The degree of accuracy is 0 and the width of the electric field is M. From the end of the conductive layer of the backbone, the reading of the first-order function or the quadratic function of the position in the predetermined direction is preferred, and the incoming light will be projected to form There is a branched conductive layer on the light-receiving surface) Therefore, it is not necessary to limit the shape of the incident light. P. To use the degree of resistance of the resistance region is a bit of attention. The derived function is used to measure the distance and then calculate the distance from the current output from the two ends of the conductive layer of the backbone to the distance to be measured. Fill in the i 1 contents. Both ends of the layer 9 are provided with a 1 Ί 1 signal extraction electrode for taking out its output current, 9 as in the branch adjacent to the signal extraction electrode Guide 1; * 1 The electrical layer is radiated to incident light 9 and a part of the human light will be 眧 V ,, N will be incident on the letter 1, order 1 3m take out the position of the center of gravity of the incident light of the electrode. It will shift from the true position to the branch Conductive layer side> The accuracy of position detection will deteriorate. Therefore, another feature of the semiconductor position detection device of the present invention is that it is provided with a narrow resistance with Ef provided at one end of the conductive layer from the backbone. Zone 1, the branched m-layers of the line 1 domain extending adjacently are adjacent > a high-concentration semiconductor region with a lower resistivity than the backbone conductive layer) and are set to pass through the high-concentration in response to the incident light 1 Where the charge in the semiconductor region can flow through the backbone layer 1 1 The position where the electric layer can flow in and can take out the I signal of the above-mentioned output current. Take out the electrode 0 1 1 If no high-concentration semiconductor is set In domain 9, when the incident radiation hits the conductive layer 1 and the signal electrode extending from the backbone 1 1's electrical layer — the end portion with a narrow resistance area and the signal electrode, the human light will be blocked by the signal extraction electrode> 1 1 -C — 1 1 1 1 This paper is scaled in 1 state of Shizhou, and the national standard rate (('NS) Λ4 is present (2 丨 OX 29 * 7) 漦 A7 _________ B7_; ____ 5. Description of the invention (r) Signal extraction The output current of the electrode will decrease. However, the semiconductor position detection device of the present invention has a high-concentration semiconductor region and is irradiated to the high-concentration semiconductor; the charges generated by the incident light of the body layer will directly flow into the signal extraction electrode without going through the backbone conductive layer, so that The output current of the signal taking-out electrode increases, so that the position of the center of gravity of the incident light that can be calculated is close to the true position, and the accuracy of position detection is improved. When the backbone conductive layer is irradiated with light, the position of the incident light may deviate from the true position due to the shape of the light. Therefore, when higher accuracy is required, the semiconductor position detection device of the present invention further includes a light-shielding film formed on the backbone conductive layer. In this way, the accuracy of its position detection can be further improved. In addition, another feature of the semiconductor position detection device of the present invention is that: it has a pair of signal extraction electrodes that can respectively take out its output current from both ends of the backbone conductive layer; and the time when the backbone conductive layer is located at the signal extraction electrode is A light-shielding film of an insulating material covers the conductive layer on the backbone between the 取出 extraction electrodes. When the light-shielding film is made of an insulating material, although the entire area of the backbone conductive layer between the signal electrodes is covered, the signal extraction electrodes are not short-circuited. In addition, the light-shielding film is preferably formed by black photosensitivity. A common photoresist is used as a roll mold when forming elements such as metal wiring. In the present invention, the photoresist itself is black. A light-shielding film can be formed by irradiating light on the photoresist before hardening and developing it. [Best Mode for Implementing the Invention] The following describes the embodiment of the present invention, which has the same elements or the same functions. -7- This paper is a scale suitable for the Sichuan valve family standard date ((NS) M specifications (2 丨 0〆297 Public note) (Read the precautions on the back # /-, fill out this page)

、1T ¼ 經满部屮夾標"局只-τ消贽合竹.^印?表 A7 B7 五、發明説明(6 ) 能的要素,·都用相同符號,並從略其重複說明。 (第]實施形態)、 1T ¼ After the whole part is clamped " bureau only -τ eliminates the combined bamboo. ^ 印? Table A7 B7 V. Description of the invention (6) The elements that can be used are the same symbols, and repeated descriptions are omitted. (First) embodiment

I 第1鬪是第1實胞形態的半導體位置檢測裝置(K下稱 P S D )之平面圖。第2圖是第1圖所示P S D的I - I箭頭 斷而圖,第3圖是第1圖所示PSD的I-Ι[箭頭斷面圖 。又,說明所用的PSD之斷面圖是表示其邊面者。 本實施形態的P S D係具備:由低濃度η型矽(K下稱 Si)所形成的半導體基板2η,和形成在半導體基板2η的 背面,而由高濃度d型S ί所形成的背面側η型半導體層 In。半導體基板2η的表面是長方形者。在Κ下說明中是 設背面側η型半導體層1 η向η型半導體基板2 η的方向為 向上方向,η型半導體基板2 η的長方形表面的長邊延伸 方向為長度方向X 、短邊延伸方向為寬度方向Υ 、垂直 於寬度方向X及寬度方向Υ雙方的方向為深度方向(厚 度方向)Ζ 。即方向X 、¥及2是互成正交。 本PSD是形成在半導體基板2ri內,具有順著長度方向 X延伸的骨幹導電層P n 。骨幹導電層P 是由P型S i所 形成,骨幹導電層P N的電阻率是比半導體基板2 η的電 陌率為低。骨幹導電層Pn是由多數的P型電阻區域Pi 〜P 2〇順著P S D的長度方向X接連而成,並形成在η型 半導體基板2 η之內。各電阻區域P i〜Ρ 2〇具有在實質上 相同的雜質濃度,從n型半導體基板2 η的表面順著寬度 方向Ζ延伸到實質上相同之深度。各電阻區域P i〜Ρ 2〇 具有在實質上相同的電阻率P 。各電阻區域P 1〜P 2〇的 -8- 氺紙張尺度適州中國國家標牟(('NS ) Λ4規格(2丨OX 297公f ) (讀先閱讀背面之注意事項再'填寫本頁) •裝. 訂 經满部中决標準局努-T消贽合竹社印則表 A7 B7五、發明説明(7 ) 表而是成為’梯形,而在梯形表面的頂邊及底遴都平行於 寬度方向Y ,剩下2邊中的靠PSD表面外邊緣一邊是平 i 行於長度方向X ,而與頂邊及底邊成正交,另一邊是與 長度方向X形成相同一角度,且該第2邊分別位於同一 直線上。因而骨幹導電層PN表面的輪廊在整體上是構 成為略圼梯形者。 本P S D係具備形成在P S D表面兩端部位,而分別可從 骨幹導電層PN兩端取出其輸出電流之一對信號取出電 極1 e、2 e。在Μ下說明中,是Μ骨幹導電層P n的最接 近信號電極le位置作為長度方向X之基準位置(Χ = 0)。 又,構成骨幹導電層ΡΝ表面的各邊中,平行於長度方 向X的邊位置作為寬度方向Υ之基準位置(Υ = 〇 )。又, 從信號取出電極le向信號取出電極2e的方向作為X的正 方向,從骨幹導電層Pn向受光面的方向作為Y的正方 同。在本實施的PSD中,骨幹導電層Pn的寬度Y是從 信號取出電極le向2e方向逐漸加寬,而具寬度Y=aX + b之 關係,但,a及b是常數。 本P S D係具備從骨幹導電層P n沿著受光面延伸之多 數分支導電層4PN 。分支導電層4PN是由高濃度p型Si 所形成。分支導電層4 P N的雜質濃度是比骨幹導電層P n 的雜質濃度為高,又,分支導電層4PN的電阻率是比骨 幹導電層P n的電阻率為低。構成分支導1電層4 P N的多 數分支導電層4 P i〜4 P ^ 9是形成在η型半導體基板2 η內 ,而從構成骨幹導電餍ΡΝ的多數電阻區域P i〜Ρ 2◦之間 (請先閱讀背面之注意事項#填寫本頁) .裝· 訂 腺 本紙張尺度適川中國國家標卒(CNS )八4規格(2丨0X 297公釐) A7 B7 五、發明説明(8 順著寬度方向Y延伸。分支導電層4 P i〜4 P 19從η型半 導體基板2 η表面順著寬度方向Z延伸到比骨幹導電層P n 的深度更深之位置,而分支導電曆4 P i〜4 P iS的寬度方 向Y之長度是相同。 又,分支導電層4P N的順著寬度方向Y之長度是比入 射光光點的直徑為長,而可使其光點不會照射到骨幹導 電層Pn 。 本PSD係具備分別接連於電阻區域Pi 〜P2〇在長度方 向X接連而成的骨幹導電層Pn之兩端,而形成在半導 體基板2n内之一對高濃度信號取出用半導體層Ip、2p。 高濃度信號取出用半導體層1 P、2 p是由高濃度p型S i所 形成。高濃度信號取出用半導體層Ip、2p是從半導體基 板2 ri表面順著寬度方向Z延伸到比電阻區域P i〜P 2〇的 深度為深的位置。高濃度信號取出用半導體曆1 P、2 p係 各個具有長方形的表面,其長邊是平行於寬度方向Y , 短邊是平行於長度方向X 。骨幹導電層PN的兩端,分 別K高濃度信號取出用半導體層1 P、2 p的長方彤表面之 一邊緣為界接連於高濃度信號取出用半導體層Ip、2p。 換言之,骨幹導電層P n的順著長度方向X之一邊緣, 即寬度Y最窄的電阻區域P i是接連於一高濃度信號取 出用半導體層1 p的順著寬度方向γ之一邊緣,而骨幹導 電層P n的順著長度方向X之另一邊緣,'即寬度Y最寬 的電阻區域P 20是接連於另一高濃度信號取出用半導體 厲2 p的順著寬度方向Y之一邊緣。 -10 本紙张尺度適用中國囤家標枣((、NS )八4规格(210X297公漦) 請 先 閱 背 ιέ 之 注 意 事 項 再, J裝 頁 1Τ 經淖部中决標準局1'iJ'J·消贽合竹社印'1,1^ 經濟部中央標準局員工消t合作社印製 Λ 7 Β7 五、發明説明(9 ) 本P S D係具備形成在半導體基板2 η的長方形表面外周 鬩之外框半導體層3 η。外框半導體層3 η是由高濃度η型 S i所形成。外椐半導體層3 η是形成在半導體基板2 η長方 形表面的外邊緣區域内,呈口字形,是將形成有分支導 電層4ΡΝ 、骨幹導電層Ρν及高濃度信號取出用半導體 曆1ρ、2ρ的基板表面區域予Μ包圍,而從η型半導體基 板2 η的表面順著寬度方向Ζ延伸到所定的深度。 本P S D係具備形成在半導體基板2 η內的分支導電層隔 離用半導體層4η。分支導電層隔離用半導體層4η是由高 濃度η型Si所形成。分支導電層隔離用半導體層4η是從 口字形外框半導體層3ri的一長邊内側順著寬度方向Υ向 骨幹導電層PN方向延伸的多數η型分支區域4ηι〜4n2〇 所構成。各分支區域4ηι〜4n20是從η型半導體基板2n 表面順著寬度Z方向延伸到所定深度。N型分支區域4N2 〜4N 19是具和P型分支導電層4P i〜4P 19大致相同深度 ,而介於分支導電層4P i〜4P 19之間,Μ將分支導電層 4Ρι〜4Ρΐ9在電氣上予以隔離。即分支區域4ηι〜4ηΐ3 是將分支導電層4 P i〜4 Ρ 19的相鄰兩者彼此之間,阻止 其沿著長度方向X的電流之流通者。位於最外側的分支 區域4 n i及4 η 2(3分別介於順著長度方向X的在於最外側 之分支導電層4 P :l 、4 Ρ 19與高濃度信號取出用半導體層 1 P、2 p之間,K分別將分支導電層4 P i 、4 P is與高濃度 信號取出用半導體層1 P、2 ρ在電氣上予K隔離者。 本P S I)係具備覆蓋η型半導體基板2的長方形表面之 -11- 本紙張尺度適用中國國家標準(CNS ) Λ4規格(210X297公犮) ----------裝-- (請先閱讀背面之注意事項再^势本頁) 訂 線| 經濟部中央標準局員工消費合作社印製 Λ7 B7 ' 五、發明説明(10 ) 純化瞑5 '。又,在第1圖及K下的實驗j形態中,P S D的 平面鬪上均將鈍化膜5的記載予K省略。鈍化膜5在其 長度方向的兩端部位具有一對信號取出電極用的開口, 並在其外周圍具有外框電極用的口字形開口。鈍化膜5 是由二氧化矽(S ί 0 2 )所形成。信號取出電極1 e、2 e 分別經由鈍化膜5的一對信號取出電極用開口個別形成 在高濃度信號取出用半導體層Ip、2p上,而與高濃度信 號取出用半導體層1 p、2 p Μ電阻性接觸。又,信號取出 電極le、2e的表面形狀是和高濃度信號取出用半導體層 1 P、2 p的表面形狀相同。 本P S D像具有經由鈍化膜5的外框電極用開口,而形 成在η型外框半導體層3 η上之外框電極3 e。外框電極3 e 可阻止光線的入射於半導體基板2 η的外周園。又也可在 外框電極3e與信號取出電極le、2e之間,施加所定電壓。 本PSD係具備形成在背面側η型半導體層In下面之下 面電極4 e。下而電極4 e是與背面側η型半導體層1 η Μ電 阻性接觸。 在一對信號取出電極le、2e與下面電極4e之間加上電 壓,Μ使用P型分支導電曆4Pn及η型半導體基板2η所 構成的Ρ η接合二極體被施加反相偏壓之狀態下,入射光 Μ光點聚光人射於形成有分支導電曆4ΡΝ而在η型半導 體基板2 η表面區域所規定之受光面時,隨應於該入射光 ,在P S D内部產生正孔電子對(電荷),随著擴散及P S D 内部之電場,其一方會流人分支導電層4 Ρ Ν内。此電荷 -12- 本紙張尺度適用中國國家標準(CNS ) Λ4現格(210X 297公兑) fn - nnt I - r tnn n tm^i n^— US. -. (請先閱讀背面之注意事項·%:/寫本頁)> 訂 —線 W1 濟 部 中 央 標 隼 為 貝 工 消 费 合 作 社 印 製 五、發明説明 ( 11 ) 1 i 1? 由 分 支 導 電 層 4P N 内 的 傳 導 t 流 入 於 骨 幹 導 電 層 Ρν 'K 的 所 定 區 域 f 依 據 所 定 電 阻 區 域 的 骨 幹 導 電 層 Ρκ 在長 1 度 方 向 的 位 置 > 分 配 其 電 荷 量 > 被 分 配 的 電 荷 分 別 m |IUU 由 請 先 I - 骨 幹 導 m 層 的兩端從信號取出電極1 e及2 e被取出c 閱 讀 1 在 本 實 施 形 態 的 PSD 中 9 具 有 上 述 之 分 支 導 電 層 4P N 背 i I 之 1 > 入 射 光 會 昭 /W\ 射 於 形 成 有 分 支 導 電 層 4P N 的 受 光 面 0 因 i I 1 而 不 受 入 射 光 形 狀 的 影 響 , 可 正 確 的 撿 測 其 位 置 j 可 將 項 1 位 置 撿 測 精 確 度 比 Μ 往 的 PSD 者 更 為 提 高 0 寫 本 1 1 裝 在 Μ 下 的 說 明 中 9 隨 應 於 入 射 於 受 光 面 的 入 射 , 而 分 頁 I I 別 由 信 號 取 出 電 極 1 e 及 2e 所 輸 出 的 輸 出 電 流 分 別 設 為 11 '1 及 12 ° 1 、丨 第 4 圖 是 利 用 第 1 圖 的 PSD1 00 之 測 距 裝 置 9 該 測 距 裝 1 訂 置 是 可 設 置 在 攝 影 機 等 之 攝 影 機 器 上 〇 又 此 測 量 裝 置 除 1 可 利 用 第 1 圖 的 PSD 之 外 > 也 可 利 用 K 下 各 實 施 形 態 中 1 1 的 任 一 PSD 0 本 测 距 裝 置 係 具 備 PSD 1 00 發 光 二 極 體 1 (LEE )1 01 » 投 光 用 透 m 102 J 聚 光 用 透 鏡 103 > 及 蓮 算 1 k 1 電 路 104 0 又 PSD 1 00 中 施 加 Μ 上 述 之 電 壓 〇 PSD1 00 的 配 I 置 是 使 其 長 度 方 向 X 平 行 於 由 透 m 102 及 103 的 光 軸 間 1 距 離 ( 基 線 長 度 ) B 所 規 定 的 線 段 > 且 其 信 Brte 取 出 電 極 1 1 1 € 是 比 信 號 取 出 電 極 2 € 較 靠 近 於 透 鏡 103 的 光 軸 之 配 置 I I 者 0 又 , 透 鏡 102 103 與 PS D 1 0 0 的 受 光 面 之 間 的 距 離 1 1 f 是 與 這 些 透 Δώ: m 102 、 103 的 隹 點 距 離 大 致 成 為 一 致 〇 1 1 又 > 與 EI 取 接 近 於 信 取 出 電 極 1 e的 骨 幹 導 電 層 Ρ卜 U邊緣 1 一 致 之 受 光 面 是 位 於 聚 光 透 鏡 103 之 光 軸 上 〇 1 -1 3- 1 1 1 1 本紙張尺度適用中國國家標準(CNS ) /\4規格(210X2W公览) 經濟部中央標準局員工消費合作社印製 ,A7 ,五、發明説明(l2 ) 由L E D 1. 0 _]射出的紅外線光線經由投光用透鏡1 0 2照射 到在於近距離(L 1 )的被測定物Ο B 1時,從被測定物Ο B 1 回來的反射光會經由聚光透鏡1 0 3 ,入射於P S D受光面 的近距離側,也即靠近於信號取出電極2 e —邊之分支導 電層4 P N 。又,從在於遠距離(L 2 )的被測定物Ο B 2回來 的反射光會經由聚光鏡103入射於PSD受光面的遠距離. 側,也即靠近於信號取出電極1 e —邊之分支導電層4 P n 。 在於近距離的被测定物0B1所反射的光線之在於受光 面上的入射位置X 1,是位於從聚光透鏡1 0 3的光軸起順 著P S D長度方向離開距離X 1之位置,在於遠距離的被測 定物0B2所反射的光線之在於受光面上的入射位置X2, 是位於從聚光透鏡103的光軸起順著PSD長度方向離開 距離X2之位置。又,骨幹導電層PN的長度方向X之全 長設為C 。 到被測物的距離L(L1,L2)與入射光光點位置X(X1,X2) 是具如下式所賦與之關係,此關係為如第5圖所示者。 又,在本實施形態PSD中,是Μ基線長B = 30mm,焦點距 離 f = 者。 L = f X (B/X) --------Ο) 如第5圖所示,距離L愈長,其相對於距離L的變動 最之入射光光點位置X之移動量會愈小。一方面,骨幹 導電層Pn的寬度 Y 與長度方向位置X之間有Y = aX + b 之關係,即電阻區域P:l〜P2的寬度Y是從骨幹導電層 P N —端起順著長度方向的位置X之一次函數。這種情 -14- _ 2;_____ - J ~il !J.'-- i :1 - -I 1-1 n -- -- I- 士衣-. I (請先閱讀背面之注意事一.V填寫本頁)I No. 1 is a plan view of a semiconductor position detection device (hereinafter referred to as P S D) in the form of a first cell. FIG. 2 is a cross-sectional view of the arrow I-I of P S D shown in FIG. 1, and FIG. 3 is a cross-sectional view of the arrow I-I of the PSD shown in FIG. 1. It should be noted that the cross-sectional view of the PSD used in the description is one showing the sides. The PSD system of this embodiment includes a semiconductor substrate 2η formed of low-concentration η-type silicon (hereinafter referred to as Si), and a back surface side η formed of a high-concentration d-type S on the rear surface of the semiconductor substrate 2η. Type semiconductor layer In. The surface of the semiconductor substrate 2n is rectangular. In the description below K, the direction of the back side n-type semiconductor layer 1 η to the η-type semiconductor substrate 2 η is an upward direction, and the long side extension direction of the rectangular surface of the η-type semiconductor substrate 2 η is a length direction X and a short side extension. The direction is the width direction Υ, and the directions perpendicular to both the width direction X and the width direction 为 are the depth direction (thickness direction) Z. That is, directions X, ¥, and 2 are orthogonal to each other. This PSD is formed in the semiconductor substrate 2ri and has a backbone conductive layer Pn extending along the longitudinal direction X. The backbone conductive layer P is formed of a P-type Si, and the resistivity of the backbone conductive layer P N is lower than that of the semiconductor substrate 2η. The backbone conductive layer Pn is formed by connecting most of the P-type resistance regions Pi to P 20 along the length direction X of P S D, and is formed within the n-type semiconductor substrate 2 η. Each of the resistance regions P i to P 20 has substantially the same impurity concentration, and extends from the surface of the n-type semiconductor substrate 2 n in the width direction Z to a substantially same depth. Each of the resistance regions P i to P 20 has a resistivity P that is substantially the same. Each resistance area P 1 ~ P 2〇 -8- 氺 Paper size Shizhou Chinese national standard (('NS) Λ4 specification (2 丨 OX 297 male f) (Read the precautions on the back before you fill in this page ) • Assembling. The book is completed by the Ministry of Defence Standards Bureau-T eliminates the seal of the Bamboo Society A7 B7 V. Description of invention (7) The table becomes a trapezoid, and the top and bottom edges of the trapezoid surface are Parallel to the width direction Y, one of the remaining two sides, which lies on the outer edge of the PSD surface, is flat and runs in the length direction X, orthogonal to the top and bottom edges, and the other side forms the same angle as the length direction X. And the second sides are located on the same straight line respectively. Therefore, the contour of the PN surface of the backbone conductive layer is formed as a trapezoid as a whole. This PSD system is provided at the two ends of the PSD surface, and the conductive layers can be separated from the backbone. At both ends of the PN, one of the pair of signal extraction electrodes 1 e, 2 e is taken out. In the description below, the closest position of the signal layer le of the backbone conductive layer P n of M is used as the reference position of the length direction X (X = 0). In addition, among the sides constituting the surface of the backbone conductive layer PN, the sides parallel to the longitudinal direction X It is set as the reference position of the width direction Υ (Υ = 〇). The direction from the signal extraction electrode le to the signal extraction electrode 2e is the positive direction of X, and the direction from the backbone conductive layer Pn to the light receiving surface is the same as the square of Y. In the PSD of the present embodiment, the width Y of the backbone conductive layer Pn is gradually widened from the signal extraction electrode le toward 2e, and has a relationship of width Y = aX + b, but a and b are constants. This PSD system has Most branch conductive layers 4PN extending from the backbone conductive layer P n along the light-receiving surface. The branch conductive layer 4PN is formed of a high concentration of p-type Si. The impurity concentration of the branch conductive layer 4 PN is higher than the impurity concentration of the backbone conductive layer P n The resistivity of the branched conductive layer 4PN is lower than that of the backbone conductive layer P n. Most of the branched conductive layers 4 P i to 4 P ^ 9 constituting the branched conductive layer 4 PN are formed at η. Type semiconductor substrate 2 η, and from most of the resistance regions P i to P 2 ◦ which constitute the backbone conductive pn (please read the precautions on the back first # Fill this page). National Standard Soldier (CNS) 8 4 specifications (2 丨 0X 297 mm) A7 B7 V. Description of the invention (8 Extends along the width direction Y. The branch conductive layer 4 P i ~ 4 P 19 extends from the η-type semiconductor substrate 2 η surface along the width direction Z to a position deeper than the depth of the backbone conductive layer P n The length of the branched conductive layer 4P i ~ 4 P iS in the width direction Y is the same. In addition, the length of the branched conductive layer 4P N along the width direction Y is longer than the diameter of the incident light spot, so that The light spot does not irradiate the backbone conductive layer Pn. This PSD system has two ends of the backbone conductive layer Pn connected to the resistance regions Pi to P2 in the longitudinal direction X, and is formed in one of the semiconductor substrates 2n. The high-concentration signal extraction semiconductor layers Ip and 2p. The high-concentration signal extraction semiconductor layers 1 P and 2 p are formed of a high-concentration p-type Si. The high-concentration signal extraction semiconductor layers Ip and 2p extend from the surface of the semiconductor substrate 2 ri in the width direction Z to a position deeper than the depth of the resistance regions P i to P 20. The high-concentration signal extraction semiconductor calendars 1 P and 2 p each have a rectangular surface, and the long side is parallel to the width direction Y and the short side is parallel to the length direction X. Both ends of the backbone conductive layer PN are connected to the semiconductor layer Ip, 2p for high-concentration signal extraction by one edge of the rectangular surface of the semiconductor layer 1P, 2p for high-concentration signal extraction. In other words, one edge of the backbone conductive layer P n along the length direction X, that is, the resistance region P i with the narrowest width Y is one of the edges along the width direction γ connected to a semiconductor layer 1 p for high-concentration signal extraction. The other edge of the backbone conductive layer P n along the length direction X, that is, the resistance region P 20 with the widest width Y is one of the width direction Y connected to another semiconductor for high-concentration signal extraction 2 p. edge. -10 This paper size is applicable to Chinese jujube standard jujube ((, NS) 8 4 specifications (210X297) 漦 Please read the precautions before loading, J page 1T the Ministry of Economic Affairs Standards Bureau 1'iJ'J · Published in combination with the Bamboo Club '1,1 ^ Printed by the staff of the Central Standards Bureau of the Ministry of Economic Affairs, printed by the cooperative Λ 7 Β7 V. Description of the invention (9) This PSD is provided with a rectangular surface outside the semiconductor substrate 2 η The frame semiconductor layer 3 η. The outer frame semiconductor layer 3 η is formed of a high-concentration η-type Si. The outer semiconductor layer 3 η is formed in the outer edge region of the rectangular surface of the semiconductor substrate 2 η. The substrate surface area where the branch conductive layer 4PN, the backbone conductive layer Pν, and the high-concentration signal extraction semiconductor semiconductors 1ρ and 2ρ are taken out is surrounded by M, and the surface of the n-type semiconductor substrate 2 η extends along the width direction Z to a predetermined depth. The PSD system includes a branch conductive layer isolation semiconductor layer 4η formed in a semiconductor substrate 2n. The branch conductive layer isolation semiconductor layer 4η is formed of a high concentration of η-type Si. The branch conductive layer isolation semiconductor layer 4η is formed from mouth The inner side of one long side of the zigzag-shaped outer-frame semiconductor layer 3ri is formed by a plurality of n-type branch regions 4n ~ 4n20 extending in the direction of the backbone conductive layer PN along the width direction. Each branch region 4n ~ 4n20 is from the surface of the n-type semiconductor substrate 2n Extend to a predetermined depth along the width Z direction. The N-type branch regions 4N2 to 4N 19 have approximately the same depth as the P-type branch conductive layers 4P i to 4P 19, and are located between the branch conductive layers 4P i to 4P 19, Μ The branch conductive layers 4Pι ~ 4Ρ〜9 are electrically isolated. That is, the branch areas 4ηι ~ 4ηΐ3 are adjacent to each other of the branch conductive layers 4P i ~ 4 P19, preventing their current along the length direction X. Circulator. The outermost branched regions 4 ni and 4 η 2 (3 are located between the outermost branched conductive layers 4 P : 1, 4 ρ 19 along the length direction X and the semiconductor layer 1 for high-concentration signal extraction 1 Between P and 2 p, K electrically separates the branched conductive layers 4 P i and 4 P is from the semiconductor layer 1 P and 2 ρ for high-concentration signal extraction. This PSI) is provided with a covering n-type semiconductor. -11- Rectangular surface of substrate 2 Applicable to China National Standard (CNS) Λ4 specification (210X297) 犮 ---------- install-(Please read the precautions on the back before ^ this page) Ordering Line | Staff of the Central Bureau of Standards, Ministry of Economic Affairs Printed by the consumer cooperative Λ7 B7 'V. Description of the invention (10) Purified 瞑 5'. In the experiment j form shown in Fig. 1 and K, the description of the passivation film 5 is omitted on the plane 鬪 of the PSD. The passivation film 5 has a pair of openings for signal extraction electrodes at both ends in the longitudinal direction, and has a mouth-shaped opening for a frame electrode on the outer periphery. The passivation film 5 is formed of silicon dioxide (S 0 2). The signal extraction electrodes 1 e and 2 e are respectively formed on the high-concentration signal extraction semiconductor layers Ip and 2p through the pair of signal-extraction electrode openings of the passivation film 5, and the high-concentration signal extraction semiconductor layers 1 p and 2 p respectively. M resistive contact. The surface shapes of the signal extraction electrodes le and 2e are the same as those of the semiconductor layers 1 P and 2 p for high-concentration signal extraction. This PS D image has an outer frame electrode 3 e formed on the n-type outer frame semiconductor layer 3 η through the opening for the outer frame electrode through the passivation film 5. The outer frame electrode 3 e can prevent light from entering the outer periphery of the semiconductor substrate 2 η. Alternatively, a predetermined voltage may be applied between the frame electrode 3e and the signal extraction electrodes le, 2e. This PSD system includes a lower surface electrode 4e formed on the lower surface of the n-type semiconductor layer In on the back surface side. The lower electrode 4e is in resistive contact with the n-type semiconductor layer 1nM on the back side. A voltage is applied between a pair of signal extraction electrodes le, 2e and the lower electrode 4e, and a reverse phase bias is applied to the pn junction diode composed of a P-type branch conductor 4Pn and an η-type semiconductor substrate 2η. Next, when the incident light spot M is focused on a light receiving surface defined by the n-type semiconductor substrate 2 n surface area formed by the branched conductive calendar 4PN, a positive hole electron pair is generated in the PSD in accordance with the incident light. (Charge), with the diffusion and the electric field inside the PSD, one of them will flow into the branch conductive layer 4 PN. This charge -12- This paper size is in accordance with Chinese National Standard (CNS). Λ4 is present (210X 297). Fn-nnt I-r tnn n tm ^ in ^ — US.-. (Please read the precautions on the back first · %: / Write this page) > Order-line W1 Central Ministry of Economics and Trademarks printed for Shellfish Consumer Cooperatives V. Description of the invention (11) 1 i 1? Conduction t in the branch conductive layer 4P N flows into the backbone conductive The predetermined area f of the layer Pν 'K is determined by the position of the backbone conductive layer Pκ of the predetermined resistance area in the direction of 1 degree in length > the amount of charge allocated > The electrodes 1 e and 2 e are taken out from both ends c. Read 1 In the PSD of this embodiment 9 has the branched conductive layer 4P N back i I 1 > the incident light will be / W \ The light-receiving surface 0 of the branch conductive layer 4P N is not affected by the shape of incident light due to i I 1, The correct detection of its position j can improve the accuracy of item 1's position detection than that of PSD towards M. 0 Script 1 1 In the description under M. 9 Corresponds to the incident on the light receiving surface, and page II The output currents from the signal extraction electrodes 1e and 2e are set to 11'1 and 12 ° 1, respectively. Figure 4 shows the distance measuring device 9 using PSD1 00 of Figure 1. The distance measuring device 1 is set to It can be installed on a photographic device such as a video camera. This measuring device can use either the PSD of the first figure as well as any of the PSD of 1 1 in each embodiment under K. 0 This ranging device is equipped with PSD 1 00 Light Emitting Diode 1 (LEE) 1 01 »Transmitting light m 102 J Condensing lens 103 > and 1K 1 circuit 104 0 and PSD 1 00 The above mentioned voltage is applied to PSD1 00 Configuration I is such that the length direction X is parallel to 1 distance (baseline length) between the optical axis of m 102 and 103 (line length specified by B) and its letter Brte extraction electrode 1 1 1 € is closer to the optical axis of lens 103 than signal extraction electrode II II In addition, the distance 1 1 f between the lens 102 103 and the light-receiving surface of PSD 1 0 0 is approximately the same as the distance between the points of m 102 and 103. 0 1 1 is close to EI. The letter 1 of the backbone conductive layer of the electrode 1 e is located at the edge 1 and the uniform light receiving surface is located on the optical axis of the condenser lens 103. 0 1 -1 3- 1 1 1 1 This paper size applies to the Chinese National Standard (CNS) / \ 4 Specifications (210X2W public view) Printed by the Consumer Cooperatives of the Central Standards Bureau of the Ministry of Economic Affairs, A7, V. Description of the Invention (l2) The infrared rays emitted by the LED 1. 0 _] are illuminated by the projection lens 1 102. When the object OB 1 is measured at a short distance (L 1), the reflected light from the object O B 1 passes through the condenser lens 1 0 3, Close to the exit side of the light receiving surface P S D, i.e. close to the signal extraction electrode 2 e - side of the branch conductive layer 4 P N. In addition, the reflected light coming back from the measurement object Ο B 2 at a long distance (L 2) will be incident on the long distance of the PSD light receiving surface through the condenser 103. The side, that is, the branch near the signal extraction electrode 1 e-is conductive. Layer 4 P n. The light reflected by the measurement object 0B1 at a short distance lies at the incident position X 1 on the light receiving surface, and is located at a position away from the distance X 1 along the length of the PSD from the optical axis of the condenser lens 103. The light reflected by the distance measurement object 0B2 lies at the incident position X2 on the light receiving surface, and is located at a position separated from the optical axis of the condenser lens 103 by a distance X2 along the length of the PSD. The total length of the backbone conductive layer PN in the length direction X is set to C. The distance L (L1, L2) to the object to be measured and the spot position X (X1, X2) of the incident light have a relationship given by the following formula, and the relationship is as shown in FIG. 5. In the PSD of this embodiment, the base line length of M is B = 30 mm, and the focal distance f =. L = f X (B / X) -------- 〇) As shown in Figure 5, the longer the distance L, the greater the change in the distance L from the incident light spot position X will be The smaller. On the one hand, the width Y of the backbone conductive layer Pn and the position X in the length direction have a relationship of Y = aX + b, that is, the width Y of the resistance region P: 1 to P2 runs from the end of the backbone conductive layer PN to the length direction. The function of the first degree of position X. This situation -14- _ 2; _____-J ~ il! J .'-- i: 1--I 1-1 n--I- 衣衣-. I (Please read the note on the back first .V fill in this page)

’•IT 曇 線 本紙張尺度適用中國國家標萃(CNS ) Λ4规格(210X297公炖) 經濟部中央標準局員工消費合作社印製 ΗΊ五、發明説明(I3 ) 形下,入射光位置X與光電流相對輸出(%)之間,具如 第6圖所示之關係。其中,設骨幹導電層P N的全長C 為lOOOwm,寬度Y與位置X是可滿足Υ = 0.1Χ + 10(μπι) 者。又,光電流相對輸出是指骨幹導電層Ρ Ν兩端的輸 出電流11及I 2之對於全輸出電流11 + I 2之比率者。又, 經算出其比率R1 = I1MI1 + I2),及R2=I2/(I1 + I2)時,入 射光光點位置5(可由下式求得。 = 10(1〇咖/〇 卜叩+10咖+Walx/?2) — ——⑵ 運算電路1 0 4是從輸出電流11及I 2運算其比率R 1及R 2 後,再蓮算其位置X ,然後從儲存著預先算出其距離L 與位置X關係的表格之記憶體內,檢索對應於位置X之 距離L ,而求得距離L 。又,入射光位置X是具如下式 之關係,因而也可由下式直接運算X後,再>乂上式算出 距離L 。 V 1 ㈣ 2)/(/1472) ,、 Jx — λ U — yj) j dj ----(3〉 (第2實施形態) 第7圖是第2實胞形態的PSD平面圖。又第7圖中 PSD的I-Ι箭頭斷面及I- I箭頭斷面各個是和第2圖 及第3圖相同,省略其記載。即,第7圖的PSD與第1 圖的P S D只有其骨幹導電層P n的表面形狀有所不同者 。骨幹導電層P N的寬度Y與長度方向位置X係具 Y = a X 2 + b之關係。即電阻區域P i〜P 20的寬度Y是從骨 幹導電層P N的一端起順著長度方向的位置X之二次函 數。在這種情況下,入射光位置X與光電流相對輸出(% ) -15- (請先間讀背面之注意事項馬4寫本頁) 訂 ----線 -=.».........iiluErr; 本紙張尺度適用中國國家標準(CNS ) /\4現格(210X297公兑) Λ7 , 經濟部中央標準局員工消t合作社印製 五、發明説明(μ) 係具如第8漏所示之關係。其中,設骨幹導電層Ρ Νΐ的 全長C為1 0 0 0 u m,而寬度Υ與位置X是可滿足 Y = 0 . 0 0 0 1 X 2 + 1 0 ( W m )者。又,算出其比率 R 2 = I 2 / ( I 1 + I 2 ) 時,入射光光點位置X可由下式求得。X « -\lbja X tan {R2x tan~l(C /4bja )) ----⑷ 此時,運算電路104是從輸出電流U及12運算,其比 率R 2後,再運算其位置X ,然後從儲存著預先算出距離 L與位置X關係的表格之記憶體內,檢索對應於位置X 之距離L ,而求得距離L 。 又,入射光位置X是具K下之關係,因而也可由下式 直接算出X後,再Μ上式算出距離L ·。12—xtarT(C/VWfl) |" , ---(5) 與骨幹導電層 ,是設骨幹導 X = 4b/a xtanl-xtan_1(C/^/a)'• IT 昙 The size of this paper is applicable to the Chinese National Standard Extraction (CNS) Λ4 specification (210X297 male stew) Printed by the Consumer Cooperatives of the Central Standards Bureau of the Ministry of Economic Affairs ΗΊ 5. Invention Description (I3) In the shape of incident light position X and light The current relative output (%) has a relationship as shown in FIG. 6. Among them, suppose that the total length C of the backbone conductive layer P N is 100 wm, and the width Y and the position X are those that can satisfy Υ = 0.1 × + 10 (μπι). The relative output of the photocurrent refers to a ratio of the output current 11 and I 2 to the full output current 11 + I 2 at both ends of the backbone conductive layer PN. When the ratio R1 = I1MI1 + I2) and R2 = I2 / (I1 + I2) are calculated, the position of the incident light spot is 5 (can be obtained from the following formula. = 10 (1〇Ca / 〇 卜 叩 +10) Ca + Walx /? 2) — ——⑵ The arithmetic circuit 1 0 4 calculates its ratio R 1 and R 2 from the output currents 11 and I 2, and then calculates its position X, and then calculates its distance L from the storage in advance. In the memory of the table related to the position X, the distance L corresponding to the position X is retrieved, and the distance L is obtained. In addition, the incident light position X has a relationship of the following formula, so X can also be directly calculated by the following formula, and then> ; 乂 Calculate the distance L using the above formula. V 1 ㈣ 2) / (/ 1472), Jx — λ U — yj) j dj ---- (3> (Second Embodiment) Figure 7 is the second cell The PSD plan view of the form. The I-I arrow cross section and the I-I arrow cross section of the PSD in FIG. 7 are the same as those in FIG. 2 and FIG. 3, and the description is omitted. That is, the PSD in FIG. The PSD in Figure 1 is only the surface shape of the backbone conductive layer P n is different. The width Y of the backbone conductive layer PN and the position X in the length direction have a relationship of Y = a X 2 + b. That is, the resistance area P i ~ P The width Y of 20 is from the backbone conductive layer P One end of N plays a quadratic function of the position X along the length direction. In this case, the relative output of the incident light position X and the photocurrent (%) -15- (Please read the precautions on the back first. Ma 4 write Page) Order ---- line-=. »...... iiluErr; This paper size applies to Chinese National Standard (CNS) / \ 4 spot (210X297) Λ7, Central Bureau of Standards, Ministry of Economic Affairs Printed by the employee cooperative. V. The description of the invention (μ) has the relationship as shown in Section 8. Among them, it is assumed that the total length C of the backbone conductive layer P Νΐ is 1 0 0 0 um, and the width Υ and the position X are possible. If Y = 0. 0 0 0 1 X 2 + 1 0 (W m). When the ratio R 2 = I 2 / (I 1 + I 2) is calculated, the position X of the incident light spot can be obtained by the following formula X. «-\ lbja X tan {R2x tan ~ l (C / 4bja)) ---- ⑷ At this time, the arithmetic circuit 104 calculates from the output currents U and 12, and calculates its position after the ratio R 2 X, and then retrieve the distance L corresponding to the position X from the memory storing a table in which the relationship between the distance L and the position X is calculated in advance. Since the incident light position X has a relationship under K, it is also possible to directly calculate X from the following formula and then calculate the distance L · from the above formula. 12—xtarT (C / VWfl) | ", --- (5) and backbone conductive layer, it is set to backbone conduction X = 4b / a xtanl-xtan_1 (C / ^ / a)

Zlx/2 第9圖是長度方向位置(電阻長度)X P N的寬度(電阻寬度)Y之關係曲線圖 電層P N的全長C為1 0 0 0 w Hi,骨幹導電層P N的遠距雛 側(靠近X = 0處)寬度Y之最小值為1 0 w m,骨幹導電層 P N的近距離側(遠離於X = 0處)寬度Y之最大值為1 0 0 um者。寬度Y為位置X的一次函數(Y=aX + b)時,在 X = 100" Bi及200" 1»處的寬度Y分別為19w m及2δ". m。 又,寬度Y為位置X的二次函數(Y = a X 2 + b )時,在 X = 100w m及200 w m處的寬度Y分別為10.9.U m及13.6w m 。如上述實施形態1及實施形態2的P S D中,其骨幹導 電層P n的寬度Y和長度方向位置X可滿足一次函數 16- 本紙張尺度適用中國國家標準 ( CNS ) /\4规格(210X297公垃) (請先閱讀背面之注意事項坪填寫本頁) II 丄户Zlx / 2 Figure 9 is the relationship between the length position (resistance length) XPN width (resistance width) Y and the total length C of the electrical layer PN is 1 0 0 0 w Hi, and the remote side of the backbone conductive layer PN ( Near X = 0) the minimum value of width Y is 10 wm, and the maximum value of width Y at the near side of the backbone conductive layer PN (away from X = 0) is 10 0 um. When the width Y is a linear function of position X (Y = aX + b), the width Y at X = 100 " Bi and 200 " 1 »is 19w m and 2δ ". m, respectively. When the width Y is a quadratic function of the position X (Y = a X 2 + b), the width Y at X = 100 w m and 200 w m is 10.9.U m and 13.6 w m, respectively. As in the PSDs of the first and second embodiments, the width Y and the length position X of the backbone conductive layer P n can satisfy the linear function 16- This paper size applies the Chinese National Standard (CNS) / \ 4 specifications (210X297) Waste) (Please read the notes on the back first and fill in this page) II

、1T ---線— -1 .....-. I ί I _-··.1·1-·=1-—ι-~ I -UEUU'-u.l 經濟部中央標準局員工消费合作社印製 ΗΊ五、發明説明(15 ) (Y = a X + b )或二次函數(Y = a X 2 + b )之關係時,相對於遠距 離側的X之變化,Y會有很大的變化。因此X及Y在於 這種關係下時,K通常的製造精確度製造骨幹導電層P N 時,由於相對於製造精確度的寬度Y之變化率很大,仍 可製造出具所必備特性之骨幹導電層P N!。 再者,這些寬度Y與位置X之關係如為滿足三次函數 (Y = aX3 +b)之關係者,其在X = 100u m及200/i m時的寬度 Y分別為1 〇 . 〇 9 w πι及1 〇 . 7 2 w in ,滿足四次函數(Y = a X 4 + b ) 之關係者,其在Χ = 100ίζπι及200 wm時的寬度Y分別成為 10.009ytn及10.144/u. m,也即,相對於長度方向X的變 化,其寬度Y的變化會顯著的減少。 因此,寬度Y與長度方向位置X如有三次函數Μ上的 關係時,其寬度Υ必須控制在非常高的精確度,如Κ通 常的精確度製造時,其位置檢測精確度會劣化。 又,如要其可滿足上述三次及四次函數之關係,並使 X = 1 0 0 M m時的寬度Υ和滿足二次函數的關係時相同,即 使Y = 10.9,以設定a值時,近距離側(遠離於X = 0位置) 的寬度Y分別成為9 1 Ο μ m及9 0 1 0 w m ,即非常的寬。也 即,寬度Y和長度方向位置X如在於三次函數Μ上的關 係時,要Κ 一次及二次函數同樣的通常之製造精確度製 造骨幹導電層Ρ Ν ,則必須將P S D極為大型化。 上述實施形態的P S D中,是使其骨幹導電層Ρ Ν的寬 度Υ和長度方向位置X的關係滿足於一次函數或二次函 數,因而,PSD無須大型化而可加寬受光面面積之同時 -17- ' 本紙張尺度適用中國國家標準(CNS ) Λ4^格(210X 297公犮) —丨丨;-----—装I — (請先閱讀背面之注意事項再4寫本頁)、 1T --- line— -1 .....-. I ί I _- ·· .1 · 1- · = 1-—ι- ~ I -UEUU'-ul Staff Consumer Cooperatives, Central Standards Bureau, Ministry of Economic Affairs When the relationship between the description of the invention (15) (Y = a X + b) or the quadratic function (Y = a X 2 + b) is printed, Y will be very large relative to the change in X on the far side. The change. Therefore, when X and Y are in this relationship, when K has a general manufacturing accuracy of the backbone conductive layer PN, the width Y of the width relative to the manufacturing accuracy is very large, and the backbone conductive layer having the necessary characteristics can still be manufactured. PN !. Moreover, the relationship between these width Y and position X is to satisfy the relationship of the cubic function (Y = aX3 + b), and the width Y at X = 100um and 200 / im is 1 〇. 〇9 w πι And 1 0.72 w in, satisfying the relationship of the quartic function (Y = a X 4 + b), whose width Y at X = 100ίζπι and 200 wm becomes 10.009ytn and 10.144 / u.m, respectively, also That is, the change in the width Y is significantly reduced with respect to the change in the length direction X. Therefore, if there is a cubic function M between the width Y and the position X in the length direction, the width Υ must be controlled to a very high accuracy. For example, when K is usually manufactured with precision, its position detection accuracy will deteriorate. In addition, if it is to satisfy the above-mentioned relations of cubic and quartic functions, and make the width 时 when X = 1 0 0 M m and the relation of the quadratic function the same, even if Y = 10.9, when setting a value, The width Y on the near side (away from the position of X = 0) becomes 9 1 0 μm and 9 0 1 0 wm, respectively, that is, very wide. That is, if the width Y and the position X in the longitudinal direction are in a relationship of the cubic function M, to make the backbone conductive layer PN with the same general manufacturing accuracy as the first-order and quadratic functions, P S D must be extremely large. In the PSD of the above embodiment, the relationship between the width Υ of the backbone conductive layer PN and the position X in the longitudinal direction satisfies a linear function or a quadratic function. Therefore, the PSD can be widened without increasing the size of the light-receiving area- 17- 'This paper size is in accordance with Chinese National Standard (CNS) Λ4 ^ grid (210X 297 cm) — 丨 丨; -----— I— (Please read the precautions on the back before writing this page)

、1T -線1T-line

i i-F-:. I .I: .1.:1-.1:--1^--1^lE-mEI^j1-6·, li;--lnu,,-F.J 11 經濟部中央標準局員工消费合作社印製 五、發明説明(16 ) ,不會降低其骨幹導電層寬度的精確度,因此,可提高 這些P S D的位置檢測精確度。 (第3實施形態) 第10圖是第3實施形態的PSD平面圖,第11圖是第10 圖所示P S D的I - I箭頭斷面圖,第1 2圖是第1 0圖所示 P S D的I - E的箭頭斷面圖。本實胞形態的P S D是在第1 實施形態的P S D中附加遮光膜6者。遮光膜6是形成在 骨幹導電層卩^上,是要將入射於骨幹導電層Pn的光線 遮住者。 在第1實施形態的P S D之骨幹導電層P 上,被照射 到光線時,會由於光線的形狀而使所運算的入射光位置 偏離於真正之值之情形。因此,半導體位置檢測裝置係並 具形成在骨幹導電層Pn上之遮光膜6 , K更提高其位 置檢測精確度者。又,本遮光膜6也可適用於實施形態 2中的,Μ骨幹導電層P n寬度Y為位置X的二次函數 所規定之P S D上。 遮光膜δ是Μ含有黑色顔料或染料之光感應性樹脂, 即黒色感光膠所形成。即,遮光膜6是種絕緣體,因而 Κ遮光膜6將骨幹導電層Ρν的表面全區域覆蓋時,信 號取出電極1 e與信號取出電極2 e之間也不會在電氣上產 生短絡。又,遮光膜6本身是由黒色感光膠所形成,因 而在P S D的全表面上塗布之後,只要Μ所定圖案對其照 射曝光光線加Μ顯像,就可形成遮光膜6 ,因此可容易 的製造遮光膜6 。 一 18- (請先閲讀背面之注意事項再'填寫本頁) •裝· 、1Τ —線 ilJLrr 卜 Ε^Ε^ϋ^ωΕ,ΙΜΓ.-.ΧΓΓ-ΜΧ」 本紙張尺度適用中國國家標準(CNS ) Λ4規格(210 X 297公及) 經濟部中次標準局妇-T消费合竹社印來 A7 ___________ 丨_B7_'____ 五、發明説明(‘7 ) (第4實施形態) 第13画是第4實施形態的PSD平面圖,第14圖是第13 圖所示1 P S 1)的I - I箭頭斷面画。第1 5圖是第1 3圖所示 PSD的II-II箭頭斷面圖。本實施形態的PSD是在第1實 施形態的P S D中,改變其骨幹導電層P N的電阻區域P 1 〜Pm之表而形狀、外框半導體3n和外框電極3e的形狀 ,及分支導電層PN的寬度方向Y之長度者。 本PSD的骨幹導電層PN之電阻區域Pi 〜P2〇也具有 梯形表面,但各電阻區域Pi〜Pm梯形表面的受光面侧 之邊是平行於PSD的長度方向X ,而在於同一直線上。 又,各電阻區域P 1〜P 2Q在於P S D的長方形表面外邊緣 之邊,是與長度方向X以所定角度交叉,骨幹導電層Pn 的寬度Y與長度方向位置X是有Y = -aX-b之關僳。又, 在口字形外框半導體層3n内側邊,而鄰接於骨幹導電層 PN之邊是平行於骨幹導電層Pn在於PSD的長方形表面 外邊緣之邊,即平行於直線Y = - a X - b。在本實施形態的 PSD中,從骨幹導電層PN的受光面側之邊到分支導電 層4Pn的末端之距離是為一定者。因而,各個分支導電 層4 P n的從骨幹導電層P n受光面側之邊到末端之電阻 值大致成為一定,因此可抑制由於分支導電層4PN在寬 度方向Y的電阻值之參差所引起的位置檢測精確度之降 低。又,使外框電極3 e内側一邊與骨幹導電層P n的形 狀為一致並與其接近,則可由外框電極3 e對入射於骨幹 導電層P n外側的干擾光線加以遮住,可更進一步的抑 制由於這種干擾光線所引起的位置檢測精確度之降低β -1 9 - (#先閱讀背面之注意事項再'填k本頁) 裝 線 木紙乐尺度適川中國阀家椋f ( (、NS ) Λ4规格(2丨ΟΧ297公犮) Λ? 1Γ 經濟部中央標準局員工消f合作社印製 五、發明説明 (18 ) 丨 (第5 實施形態) /1 第 1 6 圖 是 第 5 實 施 形 態 的 PSD 平 面 圖 9 第 17 圖 是 第 1 6 | 圖 所 示 PSD 的 I -1 箭頭斷面圖, 第18圖是第1 6圖所f 請 1 先 PSD 的 I 一 ϊ 箭頭斷面圖。 本實施形態的PSD 是在第4 閱 讀 實 施 形 態 的 PSD 中 > 在 其 信 號 取 出 電 極 1 e 、 2 β 與 在 m 取 外 τέ] 卜 I 之 1 側 的 分 支 導 電 層 4P 1 4P 19 之 間 設 置 所 定 區 域 > 而. 將 高 意 1 | 濃 度 信 號 取 出 用 半 導 體 層 1 ρ .、 2 ρ 從 信 取 出 電 極 1 e > 2 e 事 項 1 1 的 IE 下 方 延 伸 到 此 區 域 內 者 〇 又 在高濃度信號取出用 J 寫 本 1 | 裝 半 導 am m 層 1 ρ 、 2 ρ 的 延 伸 部 分 之 高 濃 度 半 導 體 區 域 11 P、 頁 '—- 1 I 12 P 之 正 上 方 > 並 未 設 置 信 號 取 出 電 極 1 e Λ 2 e 5 Μ 使 入 1 射 光 可 入 射 於 該 高 濃 度 半 導 體 區 域 11 P、 1 2 ρ 内 者 0 高 濃 1 I 度 半 導 體 區 域 11 P . 1 2 ρ 與 取 外 側 分 支 導 電 層 4P 1 Λ 4P 13 1 1 之 間 相 關 所 定 間 隔 > 且 順 著 與 其 平 行 的 寬 度 方 向 Υ 延 伸 1 丁 1 0 因 而 > 入 射 光 如 入 射 於 高 濃 度 半 導 體 區 域 11 P 、 1 2 ρ 時 1 y 在 高 濃 度 半 導 體 域 11 P 1 2 ρ 所 產 生 及 所 收 集 的 電 荷 1 1 之 中 » 會 流 人 於 高 濃 度 半 導 體 區 域 11 P、 12p 所 靠 近 的 各 1 個 信 號 取 出 極 1 e Λ 2 e 電 荷 > 可 不 經 由 骨 幹 導 電 層 Ρ N •線 I > 而 直 接 由 信 號 電 極 1 e ·> 2e 所 取 出 0 1 亦 即 > 在 第 4 實 施 形 態 的 PSD 中 » 如 入 射 光 Μ 光 點 聚 1 1 光 入 射 於 其 最 外 側 的 PSD 分 支 導 電 層 4P 1 Λ 4P 19 之 近 旁 1 I 時 , 光 點 的 一 部 分 會 受 到 信 號 取 出 電 極 1 e 2e 所 遮 住 1 1 因 而 入 射 光 重 心 位 置 會 隨 著 光 點 被 遮 住 部 分 而 產 生 偏 移 1 I > 但 在 本 實 施 形 態 的 PSD 中 f 在 這 種 情 形 時 > 也 可 將 隨 丨 I 應 於 光 點 聚 光 所 產 生 的 電 荷 9 在 高 濃 度 半 導 體 區 域 1 1 P I -20- 1 1 1 本紙張尺度適用中國國家摞準(CNS ) Λ4规格(210X2y7公炎) 經濟部中央標準局員工消費合作社印製 Λ 7 IP五、發明説明(19) 、1 2 P加K收集,可更加提升P S D的位置檢測精確度。 (第6實施形態) 第1 9圖是第6實施形態的P S D平面圖,第2 0 _是第1 9 圖所示P S D的I - I箭頭斷面圖,第2 1画是第1 9圖所示 PSD的I-Ι箭頭斷面圖。本實施形態的PSD是在第4 實施形態的P S D中,去掉其信號取出電極1 e、2 e的一部 分,而將信號取出電極le、2e被去掉部分的正下方之高 濃度信號取出用半導體層1 P、2 P作為高濃度半導體區域 1 1 P、1 2 p , Μ使入射光可入射於該高濃度半導體區域1 1 P 、12ρ内者。高濃度半導體區域lip、12ρ與最外側分支 導電層4Ρ i 、4Ρ 19之間相隔所定間隔,且順著與其平行 的寬度Y方向延伸。因而,入射光如人射於該高濃度半 導體區域IIP、12P時,在高濃度半導體區域IIP、12P所 產生及所收集的電荷之中,會流入於高濃度半導體區域 lip、12p所靠近的各個信號取出電極le、2e之電荷,可 不經由骨幹導電層PN ,而直接由信號取出電極le、2e 所取出。 亦即,在第4實施形態的PSD中,如入射光Μ光點聚 光入射於其最外側的P S D分支導電層4. P :l 、4 Ρ 13之近旁 時,光點的一部分會受到信號取出電極1 e、2 e所遮住, 因而人射光重心位置會隨著光點被遮住部分而產生偏移 ,但在本實施形態的P S D中,在這種情形時,也可將隨 意於光點聚光所產生的電荷,在高濃度半導體區域1 1 P 、12p加Μ收集,可更加提升PSD的位置檢測精確度。 -2 1 - ------------裝-- (請先閱讀背面之注意事項丹填寫本頁)i iF- :. I .I: .1.: 1-.1:-1 ^-1 ^ lE-mEI ^ j1-6 ·, li;-lnu ,,-FJ 11 Central Bureau of Standards, Ministry of Economic Affairs Printed by Employee Consumer Cooperatives 5. Invention Description (16) will not reduce the accuracy of the width of the backbone conductive layer, so the accuracy of position detection of these PSDs can be improved. (Third Embodiment) Fig. 10 is a PSD plan view of the third embodiment, Fig. 11 is a sectional view of the arrow I-I of the PSD shown in Fig. 10, and Fig. 12 is a view of the PSD shown in Fig. 10 I-E arrow cross section. The PS D of this real cell form is one in which a light shielding film 6 is added to the PS D of the first embodiment. The light-shielding film 6 is formed on the backbone conductive layer 卩, and shields the light incident on the backbone conductive layer Pn. When light is irradiated onto the backbone conductive layer P of PS D in the first embodiment, the calculated incident light position may deviate from the true value due to the shape of the light. Therefore, the semiconductor position detection device is equipped with a light-shielding film 6 formed on the backbone conductive layer Pn, and the position detection accuracy is further improved. The light-shielding film 6 can also be applied to the PS backbone D of the second embodiment in which the width M of the M-bone conductive layer P n is a quadratic function of the position X. The light-shielding film δ is formed by a light-sensitive resin containing a black pigment or dye, that is, a black-colored photoresist. That is, the light-shielding film 6 is an insulator, so when the K-light-shielding film 6 covers the entire area of the surface of the backbone conductive layer Pv, no short circuit is generated electrically between the signal extraction electrode 1e and the signal extraction electrode 2e. In addition, the light-shielding film 6 itself is formed of an ochre-colored photoresist. Therefore, after coating on the entire surface of the PSD, the light-shielding film 6 can be formed as long as it is exposed to the exposure light and M is developed in a predetermined pattern. Light-shielding film 6.一 18- (Please read the precautions on the back before you fill out this page) • Installation ·, 1Τ—line ilJLrr 卜 Ε ^ Ε ^ ϋ ^ ωΕ, ΙΜΓ .-. × ΓΓ-MXX This paper standard applies to Chinese national standards ( CNS) Λ4 specification (210 X 297) and A7 printed by the Women's Bureau of the Intermediate Standards Bureau of the Ministry of Economic Affairs-T Consumption Co., Ltd. A7 ___________ 丨 _B7 _'____ 5. Explanation of the invention ('7) (Fourth embodiment) Picture 13 It is a PSD plan view of the fourth embodiment, and FIG. 14 is a sectional view of the arrow I-I shown in FIG. 13 1 PS 1). Fig. 15 is a sectional view of the arrow II-II of the PSD shown in Fig. 13; In the PSD of this embodiment, in the PSD of the first embodiment, the shape of the resistance region P 1 to Pm of the backbone conductive layer PN is changed, the shape of the outer frame semiconductor 3n and the outer frame electrode 3e, and the branched conductive layer PN. Length in the width direction Y. The resistance regions Pi to P20 of the backbone conductive layer PN of this PSD also have a trapezoidal surface, but the edges of the light-receiving surface sides of the trapezoidal surfaces of each of the resistance regions Pi to Pm are parallel to the length direction X of the PSD and are on the same straight line. In addition, each of the resistance regions P 1 to P 2Q lies on the outer edge of the rectangular surface of the PSD, and intersects the longitudinal direction X at a predetermined angle. The width Y of the backbone conductive layer Pn and the longitudinal position X are Y = -aX-b Off. In addition, the inside edge of the square-shaped outer-frame semiconductor layer 3n, and the edge adjacent to the backbone conductive layer PN is parallel to the backbone conductive layer Pn lying on the outer edge of the rectangular surface of the PSD, that is, parallel to the straight line Y =-a X- b. In the PSD of this embodiment, the distance from the edge of the light-receiving surface side of the backbone conductive layer PN to the end of the branch conductive layer 4Pn is constant. Therefore, the resistance value of each branch conductive layer 4 P n from the edge of the backbone conductive layer P n to the light-receiving surface side becomes substantially constant, so it is possible to suppress the variation caused by the resistance value of the branch conductive layer 4PN in the width direction Y. Reduced position detection accuracy. In addition, if the inner side of the outer frame electrode 3 e is consistent with and close to the shape of the backbone conductive layer P n, the outer frame electrode 3 e can block the interference light incident on the outer side of the backbone conductive layer P n, which can be further advanced. Suppression of the reduction in position detection accuracy caused by this kind of interference light β -1 9-(#Read the precautions on the back before filling in this page) (, NS) Λ4 specification (2 丨 〇297297) Λ? 1Γ Printed by the staff of the Central Standards Bureau of the Ministry of Economic Affairs and printed by the cooperative V. Invention description (18) 丨 (Fifth embodiment) / 1 The 16th figure is the 5th A plan view of the PSD of the embodiment 9 FIG. 17 is a sectional view of the arrow I -1 of the PSD shown in FIG. 16 | FIG. 18 is a sectional view of the arrow I of the PSD shown in FIG. In the PSD of this fourth embodiment, in the PSD of the fourth reading embodiment, the signal extraction electrodes 1 e and 2 β are separated from the signal taken from m. A predetermined area is set between the supporting conductive layers 4P 1 4P 19 > The semiconductor layer 1 ρ., 2 ρ for extracting the concentration signal is taken out from the letter 1 e > 2 e Matter 1 1 extends below the IE Within this area, the high-concentration semiconductor region 11 P, page '—- 1 I 12 P directly above the high-concentration semiconductor region where the J-script 1 for the high-concentration signal is taken out and the extended portion of the semiconductor layer 1 ρ and 2 ρ is installed. > The signal extraction electrode 1 e Λ 2 e 5 Μ is not provided so that the incoming light can be incident on the high-concentration semiconductor region 11 P, 1 2 ρ which is 0 high-concentration 1 I-degree semiconductor region 11 P. 1 2 ρ and Take the predetermined interval between the outer branch conductive layers 4P 1 Λ 4P 13 1 1 > and extend along the width direction parallel to it 1 extend 1 d 1 0 so > if the incident light is incident on the high-concentration semiconductor region 11 P, 1 2 When ρ is 1 y in the high-concentration semiconductor domain 11 P 1 2 ρ Medium »Will flow to each of the signal extraction poles 1 e Λ 2 e near the high-concentration semiconductor regions 11 P and 12p. The charge > can pass directly through the backbone conductive layer PN • Line I > · ≫ 0 1 taken out of 2e, that is, > In the PSD of the fourth embodiment »If the incident light M light spot is condensed 1 1 The light is incident on the outermost PSD branch conductive layer 4P 1 Λ 4P 19 near the 1 I At this time, a part of the light spot will be covered by the signal extraction electrode 1 e 2e 1 1. Therefore, the position of the center of gravity of the incident light will shift as the light spot is covered by the part 1 I > However, in the PSD of this embodiment, f In this case > The charge generated as a result of concentrating the light spot on the light spot 9 can also be used in the high-concentration semiconductor region 1 1 PI -20- 1 1 1 This paper size applies to China National Standards (CNS) Λ4 Specifications (210X2y7 Gong Yan) Consumer Co-operation of the Central Standards Bureau of the Ministry of Economic Affairs Printed by the company Λ 7 IP 5. Description of the invention (19), 1 2 P plus K collection, can further improve the accuracy of P S D position detection. (Sixth Embodiment) Fig. 19 is a PSD plan view of the sixth embodiment. Fig. 20_ is a cross-sectional view of the arrow I-I of the PSD shown in Fig. 19, and Fig. 21 is shown in Fig. 19 A cross-sectional view of the arrow I-I of the PSD is shown. In the PSD of this embodiment, in the PSD of the fourth embodiment, a part of the signal extraction electrodes 1 e and 2 e is removed, and the high-concentration signal extraction semiconductor layer directly below the signal extraction electrodes le and 2 e is removed. 1 P and 2 P are high-concentration semiconductor regions 1 1 P and 1 2 p, and M allows incident light to be incident on the high-concentration semiconductor regions 1 1 P and 12ρ. The high-concentration semiconductor regions lip, 12ρ and the outermost branched conductive layers 4P i, 4P 19 are separated by a predetermined interval, and extend along a width Y direction parallel to them. Therefore, when the incident light is incident on the high-concentration semiconductor regions IIP and 12P, the charges generated and collected by the high-concentration semiconductor regions IIP and 12P will flow into each of the high-concentration semiconductor regions lip and 12p. The charge of the signal taking-out electrodes le, 2e can be taken out directly by the signal taking-out electrodes le, 2e without going through the backbone conductive layer PN. That is, in the PSD of the fourth embodiment, if the spot light of the incident light M is condensed and incident on the outermost PSD branch conductive layer 4. P: 1, 4 P 13, a part of the light spot receives a signal. The electrodes 1 e and 2 e are taken out, so the position of the center of gravity of the light emitted by the person will shift as the light spot is covered. However, in the PSD of this embodiment, in this case, the The charges generated by the light spot condensing are collected in the high-concentration semiconductor regions 1 P and 12p plus M, which can further improve the position detection accuracy of the PSD. -2 1------------- install-(Please read the notes on the back first and fill in this page)

、1T, 1T

Ilf I線 _ μ^ρρρΕΙΕ^. ίΕ」Γ'Ε1 * 本紙張尺度適用中國國家標準(CNS ) A4«L格(210X 297公及) ΙΓ. 五、發明説明(20) 又,信號取出電極1 e、2 e是配置在骨幹導電層Ρ ν的 長度方向X兩端之延長線上,但未配置在形成分支導電 層4 Ρ N的受光面長度方向X兩端之延長線上。Μ如此的 配置信號取出電極1 e、2 e時,其與實施形態5的P S D相 較,可縮短PSD在長度方向X之長度,而可使PSD小型 化。 (第7實施形態) 第22圖是第7實腌形態的PSD平面圖,第23圖是第22 圖所示P S D的I - I箭頭斷面圖,第2 4圖是第2 2圖所示 , PSD的Ι-E箭頭斷面圖。本實施形態的PSD是在第6 實施形態的PSD之骨幹導電層Pn上形成遮光膜6者。 遮光膜6是Μ含有黑色的顔料或染料之光感應性樹脂, 即,黑色感光膠所形成者。 (第8實施形態) 經濟部中央標準局員工消f合作社印製 -----1^ ! (讀先間讀背面之注意事項寫本頁) 、-=a 丨線 第25圖是第8實施形態的PSD平面圖,第26圖是第25 圆所示PSD的I - I箭頭斷面圖,第27圖是第25圖所示 P S D的I - I[箭頭斷面圖。本實施形態的P S D是在第6 實施形態的P S D中,將其信號取出電極1 e、2 e配置成為 横跨在位於骨幹導電層Ρ ν的長度方向X兩端之電阻區 域P t 、P 2〇與高濃度信號取出用半導體層1 ρ、2 ρ之上者 。兩端的電阻區域P i 、P 2〇分別直接連接於信號取出電 極1 e、2 e,且,高濃度半導體區域1 1 p、1 2 ρ也有直接連 接於信號取出電極1 e、2 e。本P S D中,從骨幹導電層Ρ ν 來的電荷及在高濃度半導體區域1 1 P、1 2 ρ所收集的電荷 -2 2- 本紙張尺度適用中國國家標率 ( CNS ) 210Χ29";公及) A7 B7 五、發明説明(—) ,可由信號·取出電極le、 2e直接取出之。 (第9實施形態) 第^圖是第9實施形態的PSD平面圖,第29圖是第28 圓所示PSD的I-Ι箭頭斷面圔,第30圖是第28圖所示 PSD的II -II箭頭斷面圖。本賁施形態的PSD是在第1 實施形態中,使其骨幹導電層Pn、分支導電層4PN及 高濃度信號取出用半導體層IP、2p之雜質濃度在實質上 形成為相同者。本PSD是在半導體基板2n上添加p型雜 質,以同時製成骨幹導電層Pn、分支導電層4Pn及高 濃度信號取出用半導體層lp、2p者。使高濃度信號取出 用半導體層1 P、2 p的雜質濃度增加到可和佶號取出電極 le、2e以電阻性接觸時,電阻層的骨幹導電層之電 阻率會降低。因此,減少骨幹導電層PN的深度Z ,使 電阻率増加,就可獲得所欲之電阻值。在本實施形態的 PSD中,其骨幹導電層、分支導電層4PN及高濃度 信號取出用半導體層IP、2 p的雜質濃度較高,且,其在 表面的寬度方向之深度Z雖然相同,但其深度Z很深, 因而高濃度信號取出用半導體層lp、2P是以電阻性的接 觸於信號取出電極1 e、2 e ,而骨幹導電層P N具有作為 位置檢測的充分之電阻值。又,η型分支區域4 η 2〜 4 n 19是比Ρ型分支導電層4 P i〜4 Ρ 20具有較深之深度, 因而可介於分支導電層4 P 1〜4 P 之間,可更加將分 支導電層4Ρι〜4P?_〇在電氣上隔離。分支區域4η.ι及 4 n so是分別介於順著長度方向X的,在最.外側之分支導電 層4 Ρ 1、4 Ρ ®與高濃度信號取出用半導體層1 p、2 ρ之間 -2 3 - 本紙张尺度诮用中國囡家標.sf ( ΓΝ5> ) Λ4规格(210X297公f ) _ Γ.— Li ______I _ 士k__ (請先閱讀背面之注意事項界填寫本頁) 訂 丨線. 曇 經濟部中央標準局員工消费合作社印製 A ΙΓ 五、發明説明(22 ) ,分別將分支導電層4 P i 、4 P 20與高濃度信號取出用半 導體層1 P、2 p在電氣上予Μ隔離。依據本實施形態的P S D 時,可Κ在同一工程中製造骨幹導電層Ρν 、分支導電 曆4 Ρ Ν及高濃度信號取出甩半導體層1 Ρ、2 Ρ ,因而與上 述實施形態的P S D比較,在製造上較為容易。 (第1 0實施形態) 第31圖是第10實施形態的PSD平面圏,第32圖是第31 圖所示P S D的I - I箭頭斷面圖,第3 3圖是第3 1画所示 PSD的H-1I箭頭斷面圖。本實施形態的PSD是使構成 骨幹導電曆P N的各個電阻區域P 1〜P 20的寬度Y都形 成為第1實施形態的PSD之電阻區域P1〜P2〇的寬度之 2分之1 ,並K順著PSD長度方向X的寬度方向Y之中 心線為準,設置與電阻區域?3_〜?2◦在線上相對稱之電 阻區域P 21〜40 ,並將有對稱關係的電阻區域彼此之間 K分支導電層4 P n連接,而將信號取出電極1 e、2 e之間 Μ電阻區域P 1〜P 20和電阻區域P 21〜P 40並聯連接者。 (第11實施形態) 第34圖是第11實施形態的PSD平面圖,第35圖是第34 鬪所示P S D的I - I箭頭斷面圖,第3 6圖是第34画所示 P SI)的E - I箭頭斷面圖。本實施形態的P S D是在第1 實施形態的P S D中,將構成其骨幹導電層P n的電阻區 域P i〜P :«中之第偶數個電阻區域P 2n ( η為1〜1 0之整 數),Κ順著PSD長度方向X的寬度方向Υ之中心線為 準,做線上相對稱的移動,並將第偶數個電阻區域P2n 本紙張尺度適用中國國家標準(CNS ) Λ4規格(210X 297公垃) ΙΓΓ.-----丨裝丨| (諳先閱讀背面之注意事項寫本頁) 、1Τ 1線 經濟部中夾摞率局员工消费合作社印a,!本 A7 B7 ' 五、發明説明(W ) 與相鄰接的.第奇數個電阻區域Ph-i、P2n+1 ( 2 Π + 1 < 2 1) 以分支導電層4 Ρ ν連接,而信號取出電極1 e、2 e之間, 以電阳1區域Pi 〜P2〇串聯連接者。 (第1 2實施形態) 第37圖是第].2實施形態的PSD平面圖,第38圖是第37 圖所示PSD的I - I箭頭斷面圖,第39圖是第37圖所示 P S D的II - II箭頭斷面腫U本實施形態的P S D是在第1 實施形態的PSD中,使構成其骨幹導電層〖(^的各電阻 區域Pi〜P 2〇在寛度方向Y之中心線,和PSD長方形表 面的在於順箸長度方向X的寬度方向Y之中心線為一致 者。 如以上所説明,本發明之半導體位置檢測裝置是將分 支導電層所收集的光電作用所産生之電荷,由可變其寬 度的骨幹導電層兩端取出。因而,不受到點狀或細長狀 等入射光形狀的限制,可從半導體位置檢測裝置取出高 精確度的對應於距離之輸出電流。 [産業上之利用可能性] 本發明之半導體位置檢測裝置(P S I)),係利用所謂三角 測量之原理等,用來測量被測量物之距離的裝置,以作 有源方式之距離測量器搭載於攝影機等之攝影機器。 [圖式之簡單説明] 第1圖為有關實施形態1之PSD平面圔。 第2圖為第1圖所示PSD的I-Ι箭頭斷面圖。 第3圖為第1圖所示PSD的II -II箭頭斷面圖。 -25- (讀先間讀背面之注意事項再寫本頁) 31— mu n _ 0¾ 訂Ilf I 线 _ μ ^ ρρρΕΙΕ ^. ΊΕ ″ Γ'Ε1 * This paper size applies to Chinese National Standard (CNS) A4 «L grid (210X 297 and) ΙΓ. 5. Description of the invention (20) In addition, the signal extraction electrode 1 e, 2 e are the extension lines arranged on both ends of the backbone conductive layer ρ ν in the length direction X, but are not arranged on the extension lines of both ends of the light receiving surface forming the branch conductive layer 4 PN in the length direction X. When the signal extraction electrodes 1e and 2e are arranged as described above, compared with the PSD of the fifth embodiment, the length of the PSD in the longitudinal direction X can be shortened, and the PSD can be miniaturized. (Seventh embodiment) Fig. 22 is a plan view of the PSD in the seventh solid pickled form, Fig. 23 is a sectional view of the arrow I-I of the PSD shown in Fig. 22, and Figs. I-E arrow sectional view of PSD. The PSD of this embodiment is a light shielding film 6 formed on the backbone conductive layer Pn of the PSD of the sixth embodiment. The light-shielding film 6 is a light-sensitive resin containing a black pigment or dye, that is, a black photoresist. (Embodiment 8) Printed by the Consumer Cooperative of the Central Bureau of Standards of the Ministry of Economic Affairs ----- 1 ^! (Read the precautions on the back and write this page) 、-= a 丨 The 25th picture is the 8th The PSD plan view of the embodiment, FIG. 26 is a cross-sectional view taken along the arrow I-I of the PSD shown in the 25th circle, and FIG. 27 is a cross-sectional view taken along the arrow I-I of the PSD shown in the 25th diagram. In the PSD of this embodiment, in the PSD of the sixth embodiment, the signal extraction electrodes 1 e and 2 e are arranged so as to straddle the resistance regions P t and P 2 located at both ends in the longitudinal direction X of the backbone conductive layer P ν. 〇 and the high concentration signal extraction semiconductor layer 1 ρ, 2 ρ. The resistance regions P i and P 20 at both ends are directly connected to the signal extraction electrodes 1 e and 2 e, respectively, and the high-concentration semiconductor regions 1 1 p and 1 2 ρ are also directly connected to the signal extraction electrodes 1 e and 2 e. In this PSD, the electric charge from the backbone conductive layer P ν and the electric charge collected in the high-concentration semiconductor region 1 1 P, 1 2 ρ-2 2-This paper standard is applicable to China National Standard (CNS) 210 × 29 "; public and ) A7 B7 V. Description of the invention (-) It can be directly taken out by the signal · removal electrodes le and 2e. (Ninth Embodiment) Fig. ^ Is a PSD plan view of the ninth embodiment, Fig. 29 is an I-I arrow section 圔 of the PSD shown in the 28th circle, and Fig. 30 is a II of the PSD shown in Fig. 28- II arrow cross section. In the first embodiment, the PSD is formed such that the backbone conductive layer Pn, the branch conductive layer 4PN, and the high-concentration signal extraction semiconductor layers IP and 2p have substantially the same impurity concentration. In this PSD, a p-type impurity is added to the semiconductor substrate 2n, and the backbone conductive layer Pn, the branch conductive layer 4Pn, and the high-concentration signal extraction semiconductor layers lp and 2p are simultaneously produced. When the impurity concentration of the high-concentration signal extraction semiconductor layers 1 P and 2 p is increased so as to be in resistive contact with the 佶 extraction electrodes le and 2e, the resistivity of the backbone conductive layer of the resistance layer decreases. Therefore, by reducing the depth Z of the backbone conductive layer PN and increasing the resistivity, a desired resistance value can be obtained. In the PSD of this embodiment, the backbone conductive layer, the branch conductive layer 4PN, and the high-concentration signal extraction semiconductor layer IP and 2 p have high impurity concentrations, and the depth Z in the width direction of the surface is the same, but The depth Z is very deep. Therefore, the semiconductor layers lp and 2P for high-concentration signal extraction are resistively contacting the signal extraction electrodes 1 e and 2 e, and the backbone conductive layer PN has a sufficient resistance value for position detection. In addition, the n-type branch region 4 η 2 to 4 n 19 has a deeper depth than the P-type branch conductive layer 4 P i to 4 P 20, and therefore may be located between the branch conductive layers 4 P 1 to 4 P. Furthermore, the branch conductive layers 4P1 ~ 4P? _〇 are electrically isolated. The branch areas 4η.ι and 4 n so are respectively located between the outermost branch conductive layers 4 P 1 and 4 P ® along the length direction X and the semiconductor layers 1 p and 2 ρ for high-concentration signal extraction. -2 3-This paper uses the Chinese standard. Sf (ΓΝ5 >) Λ4 size (210X297 male f) _ Γ. — Li ______I _ 士 k__ (Please read the notes on the back to complete this page first) Order 丨昙 Printed by the Consumers' Cooperative of the Central Standards Bureau of the Ministry of Economic Affairs A ΙΓ 5. Description of the invention (22), the branch conductive layers 4 P i, 4 P 20 and the semiconductor layer 1 P, 2 p for high-concentration signal extraction are respectively in electrical Isolated on M. According to the PSD of this embodiment, the backbone conductive layer Pv, the branch conductive calendar 4PN, and the high-concentration signal can be manufactured in the same process to take out the semiconductor layer 1P, 2P. Therefore, compared with the PSD of the above embodiment, It is easier to manufacture. (10th embodiment) Fig. 31 is a PSD plane 圏 of the tenth embodiment, Fig. 32 is a cross-sectional view of the arrow I-I of the PSD shown in Fig. 31, and Fig. 3 is a drawing shown in Fig. 31 H-1I arrow cross section of PSD. The PSD of this embodiment is such that the width Y of each of the resistance regions P1 to P20 constituting the backbone conductive calendar PN is formed to be one-half of the width of the resistance regions P1 to P20 of the PSD of the first embodiment, and K Set along the center line of the width direction Y of the PSD length direction X, and the resistance area? 3_ ~? 2◦Resistant resistance areas P 21 ~ 40 on the line, and connect the K-branch conductive layer 4 P n between the resistance areas with symmetrical relationship, and take out the signal M resistance area P between the electrodes 1 e and 2 e. 1 ~ P 20 and resistance area P 21 ~ P 40 are connected in parallel. (Eleventh embodiment) Fig. 34 is a PSD plan view of the eleventh embodiment, Fig. 35 is an I-I arrow sectional view of the PSD shown in Fig. 34 (), and Fig. 36 is a PSI shown in picture 34) E-I arrow sectional view. In the PSD of this embodiment, in the PSD of the first embodiment, the resistive regions P i to P constituting the backbone conductive layer P n are: the even-numbered resistive region P 2n (where η is an integer of 1 to 10) ), K follows the center line of the width direction Υ of the PSD length direction X, and moves symmetrically on the line, and applies the even-numbered resistance area P2n. This paper size applies the Chinese National Standard (CNS) Λ4 specification (210X 297 male) (Garbage) ΙΓΓ .-------- Installation || (谙 Please read the precautions on the back to write this page), 1T 1st-line Ministry of Economic Affairs, the Consumers 'Cooperatives of the Bureau of Labor Insurance, a! This A7 B7' V. Invention Explanation (W) is connected to the adjacent. The odd-numbered resistance regions Ph-i, P2n + 1 (2 Π + 1 < 2 1) are connected by the branch conductive layer 4 ρ ν, and the signal extraction electrodes 1 e, 2 e Those are connected in series with Pi 1 area Pi ~ P20. (12th embodiment) Fig. 37 is a plan view of the PSD of the second embodiment. Fig. 38 is a sectional view of the arrow I-I of the PSD shown in Fig. 37, and Fig. 39 is a PSD shown in Fig. 37. II-II arrow cross section swollen U The PSD of this embodiment is the PSD of the first embodiment in which the conductive layer constituting the backbone conductive layer [(^ ~ P 2 of each resistance region Pi ~ P 2〇 is in the center line of the direction Y , And the PSD rectangular surface is consistent with the center line of the width direction Y along the length direction X. As explained above, the semiconductor position detection device of the present invention is a charge generated by the photoelectric effect collected by the branch conductive layer, It is taken out from both ends of the backbone conductive layer with variable width. Therefore, it is not restricted by the shape of the incident light such as dots or slender shapes, and it is possible to take out a high-accuracy output current corresponding to distance from the semiconductor position detection device. Utilization possibilities] The semiconductor position detection device (PSI) of the present invention is a device for measuring the distance of an object to be measured using the principle of triangulation, etc., as an active distance measuring device mounted on a camera, etc. Photography machine. [Brief Description of the Drawings] FIG. 1 is a PSD plane 圔 related to the first embodiment. Fig. 2 is a sectional view of the arrow I-I of the PSD shown in Fig. 1. Fig. 3 is a cross-sectional view taken along the line II-II of the PSD shown in Fig. 1. -25- (Read the notes on the back first and then write this page) 31— mu n _ 0¾ Order

泉 I 本紙張尺度適州中囡拽家標_siM )八4规格(210X 297公犮) Λ 7 經濟部中央標準局員H;消t合作社印製 ___五、發明説明(24 ) 第4圖為利用P S D的測距裝置之構成圖。 第5圖為測定距離L ( m)與入射光位置X ( « m)之關係曲 線圖0 第6圖為表示人射光光點位置X ( u m )與光電流相對輸 出U)之關係曲線圖。 第7圖為有關第2實施彤態之PSD平面圖。 第8圖為表示入射光光點位置X ( u πι)與光電流相對輸 出(%)之關係曲線_。 第9圖為電阻長度(xzm)與電阻寬度(ΜΠ!)之關係曲線 圏。 第10圖為第3實施形態之PSD平面圖。 第11圖為第10圖所示PSD的I - I箭頭斷面圖。 第12圖為第10圖所示PSD的S-Ι[箭頭斷面圖。 第13圖為有關第4實施形態之PSD平面圖。 第14圖為第13圖所示PSD的I - I箭頭斷面圖。 第15圖為第13圖所示PSD的H-I箭頭斷面圖。 第16圖為有關第5實施形態之PSD平面圖。 第17圖為第16圖所示PSD的I-Ι箭頭斷面圖。 第18圖為第16圖所示PSD的I - I箭頭斷面_。 第1 9圖為有關第6實施形態之P S D平面圖。 第20圖為第19圖所示PSD的I - I箭頭斷面圖。 第2 1圖為第.1 9圖所示P S D的E - I箭頭斷面圖。 第22圖為有關第7實施形態之PSD平面圖。 第23圖為第22圖所示PSD的I - I箭頭斷面圖。 一 2 6 - 本紙張尺度適用中國國家標隼(CNS ) /\4规格(210Χ 297~^Γ7 (請先閱讀背面之注意事項I破寫本頁) ---I n^i--- 訂 --線--Γ. 馨Quan I This paper is standard in Shizhou, and the standard is _siM) 8 specifications (210X 297 gong) Λ 7 Member of the Central Standards Bureau of the Ministry of Economic Affairs H; printed by the cooperative ___ V. Description of the invention (24) No. 4 The figure shows the structure of a ranging device using PSD. Fig. 5 is a graph showing the relationship between the measurement distance L (m) and the incident light position X («m). Fig. 6 is a graph showing the relationship between the position X (um) of the human light spot and the photocurrent relative output U). FIG. 7 is a plan view of the PSD of the second embodiment. Fig. 8 is a graph showing the relationship between the spot position X (u π) of the incident light and the relative output (%) of the photocurrent. Fig. 9 is the relationship curve 长度 of resistance length (xzm) and resistance width (ΜΠ!). Fig. 10 is a PSD plan view of the third embodiment. Fig. 11 is a sectional view of the arrow I-I of the PSD shown in Fig. 10. FIG. 12 is a cross-sectional view of the arrow S-1 of the PSD shown in FIG. 10. Fig. 13 is a plan view of a PSD according to a fourth embodiment. Fig. 14 is a sectional view of the arrow I-I of the PSD shown in Fig. 13. Fig. 15 is a sectional view of the arrow H-I of the PSD shown in Fig. 13; Fig. 16 is a plan view of a PSD according to a fifth embodiment. Fig. 17 is a cross-sectional view of the arrow I-I of the PSD shown in Fig. 16. Fig. 18 is an I-I arrow section _ of the PSD shown in Fig. 16. Fig. 19 is a plan view of PS D according to the sixth embodiment. Fig. 20 is a sectional view of the arrow I-I of the PSD shown in Fig. 19. Figure 21 is a sectional view of the arrow E-I of PS D shown in Figure 19. Fig. 22 is a plan view of a PSD according to a seventh embodiment. Fig. 23 is a sectional view of the arrow I-I of the PSD shown in Fig. 22; 1 2 6-This paper size is applicable to China National Standard (CNS) / \ 4 specifications (210Χ 297 ~ ^ Γ7 (please read the precautions on the back first to break this page) --- I n ^ i --- Order -线 --Γ. 馨

IP 五、發明説明(25 ) 第24圖為第22圖所示PSD的E-Η箭頭斷面圖。 第25圖為有關第δ實施形態之PSD平面圖。 第2 6圖為第2 5圖所示P S D的I - I箭頭斷面圖。 第2 7圖為第2 5圖所示P S D的I - E箭頭斷面圖。 第28圖為有關第9實施形態之PSD平面圖。 第29圖為第2δ圖所示PSD的I - I箭頭斷面圖。 第30圖為第2δ圖所示PSD的]I - I[箭頭斷面圔。 第31圖為有關第10實施形態之PSD平面圖。 第32圖為第31圖所示PSD的I - I箭頭斷面圖。 第33圖為第31圖所示PSD的Ι-E箭頭斷面圖。 第34圖為有闢第11實施形態之PSD平面圖。 第35圖為第34圖所示PSD的I-Ι箭頭斷面圖 第36圖為第34圖所示PSD的2 - E箭頭斷面圖 第37圖為有關第12實施形態之PSD平面圖。 第38圖為第37圖所示PSD的I-Ι箭頭斷面圖 第39圖為第37圖所示PSD的I - I箭頭斷面圖 請先閲讀背面之注意事好 '填寫本頁) .旁· 經濟部中央標準局員工消费合作社印製 27- 本紙張尺度適用中國國家標準(CNS ) Λ4规格(2丨0X29?公垃) 五、發明説明(26 (參考符號說明) 信號取出電極 3 e 4 e In 2 π 3 η 4 π 4η 广4η20 r μ Ρ 1 〜Ρ 20 、Ρ 21 4Ρμ 4 Ρ ι 〜4 Ρ 11 5 外框電極 下面電極 背面側η型半導體曆 半導體基板 外框半導體層 分支導電層隔離用半導體層 分支區域 骨幹導電層 電阻區域 分支導電層 分支導電層 高濃度信號取出用半導體層 高濃度半導體區域 鈍化膜 (請先閱讀背面之注意事項/ ^寫本頁) -裝 、1Τ 經濟部中央標準局員工消费合作社印製.IP V. Description of the Invention (25) Figure 24 is an E-Η arrow sectional view of the PSD shown in Figure 22. Fig. 25 is a plan view of a PSD relating to a δ embodiment. Fig. 26 is an I-I arrow sectional view of P S D shown in Fig. 25. Fig. 27 is an I-E arrow sectional view of P S D shown in Fig. 25. Fig. 28 is a plan view of a PSD according to a ninth embodiment. Fig. 29 is an I-I arrow sectional view of the PSD shown in Fig. 2δ. Fig. 30 shows the] I-I [arrow section 圔 of the PSD shown in Fig. 2δ. Fig. 31 is a PSD plan view of the tenth embodiment. Fig. 32 is a sectional view of the arrow I-I of the PSD shown in Fig. 31. Fig. 33 is a sectional view of arrow I-E of the PSD shown in Fig. 31. Fig. 34 is a PSD plan view showing the eleventh embodiment. Fig. 35 is a sectional view of arrow I-I of the PSD shown in Fig. 34. Fig. 36 is a sectional view of arrow 2-E of the PSD shown in Fig. 34. Fig. 37 is a plan view of the PSD according to the twelfth embodiment. Figure 38 is the I-I arrow section of the PSD shown in Figure 37. Figure 39 is the I-I arrow section of the PSD shown in Figure 37. Please read the note on the back first and fill in this page.) · Printed by the Consumer Cooperatives of the Central Bureau of Standards of the Ministry of Economic Affairs 27- This paper size applies to Chinese National Standards (CNS) Λ4 specifications (2 丨 0X29? Public waste) V. Description of the invention (26 (Reference symbol description) Signal extraction electrode 3 e 4 e In 2 π 3 η 4 π 4η wide 4η20 r μ P 1 to P 20, P 21 4P μ 4 P 1 to 4 P 11 5 n-type semiconductor calendar under the outer-frame electrode on the back side of the semiconductor substrate outer-layer semiconductor layer branch conductive Semiconductor layer branch area for layer isolation Backbone conductive layer Resistive area Branch conductive layer Branch conductive layer High-concentration signal extraction Semiconductor layer High-concentration semiconductor area passivation film (Please read the precautions on the back / ^ write this page)-Installation, 1T Economy Printed by the Consumer Standards Cooperative of the Central Bureau of Standards.

6 100 10 1 1 0 2 103 104 B OBI 0B2 II、 12 遮光膜 PSD (半導體位置檢測裝置) V:- 發光二極體(L E D ) 投光用透鏡 聚光用透鏡 運算電路 光軸間距離(基線長度) 被測定物 輸出電流 馨 線 本紙張尺度適用中國國家標隼(CNS ) /\4规格(210X297*^ )6 100 10 1 1 0 2 103 104 B OBI 0B2 II, 12 Light-shielding film PSD (semiconductor position detection device) V:-Light-emitting diode (LED) Lens for projection lens Condensing lens arithmetic circuit Optical axis distance (baseline Length) The output current of the object to be measured. The paper size is applicable to the Chinese National Standard (CNS) / \ 4 specifications (210X297 * ^).

Claims (1)

經濟部中央標準局員工消費合作社印製 層導光 直逐Φ»方 電幹受 垂端 定 導骨著 其一 ,預 幹述沿 且另 置著 骨上層 ,向 裝沿 之由電 率端 測端 成使導 阻一 檢一 ..而,幹 電的 置的 含 連置骨 之層 位層 包接位從 同電 體電 ,向光, 相導導導 置方射異;有幹 半幹 裝定入相層具骨 之骨 測預的流電上從 項從 檢在上電導質是 1 是 置域面的支實度 第 , 位區光出分偽寬 圍度 體阻受輸數域的 範寬 導電於所多區向 c 利的 卑數應端之阻方者專域 種多因兩伸電定大請區 一 由可層延該預擴申阻 1.電面 於漸如電 A8 B8 C8 D8 申請專利範圍 向位置之一次函數或二次函數者。 3.如申請專利範圍第1項之半導體位置撿測裝置,其僳更 具備有: 從位置於骨幹導電層一端部而具有最窄幅度電阻區 域延伸之預定分支導電層相鄰接,具有比骨幹導電層 低的電阻率的高濃度半導體區域·,及 設成因應於入射光而通過高濃度半導體區域的電荷 ,不經由骨幹導電層可流入的位置,並可取出一方輸 出電流的信號取出電極者。 4 .如申請專利範圍第2項之半導體位置檢測裝置,其像更 具備有: 形成在骨幹導電層上之遮光膜者。 .如申請專利範圍第4項之半導體位置檢測裝置,其傜更 具備有·. 2 9 本紙張尺度適用中國國家標準(CNS〉A4規格(210X297公釐) (請先閱讀背面之注意事項寫本頁ΓThe printed layer of the Consumer Cooperative of the Central Bureau of Standards of the Ministry of Economic Affairs directs the light guide to Φ »Fang Diangui, one of which is fixed at the vertical end, and the upper layer of bone is pre-dried and placed along the other side. The end resistance makes the resistance check .. And, the dry electricity placement of the layer containing the connected bone layers encloses the electricity from the same body, to the light, and the phase guide is different; Presence of osseous electricity measured on the phase layer is measured. The electrical conductivity is 1 and the degree of solidity of the localization plane is the highest. The light output is divided into the pseudo-wide perimeter body and the input field is blocked. Fan Kuan ’s electrical conductivity is inferior to the resistance of the many areas to c. The special area of the resistance is more than two because of the two extensions. The area can be extended by the pre-expansion. 1. The electrical surface is gradually becoming electric. A8 B8 C8 D8 Those who apply for patents range from linear functions or quadratic functions to positions. 3. The semiconductor position picking and testing device according to item 1 of the patent application scope, further comprising: a predetermined branch conductive layer extending from the end of the backbone conductive layer and having the narrowest resistance area, adjacent to each other, having a specific ratio The high-concentration semiconductor region with low resistivity of the backbone conductive layer and the charge that passes through the high-concentration semiconductor region in response to incident light are provided at positions where the conductive layer of the backbone can flow in without taking out a signal that outputs an electric current. By. 4. The semiconductor position detection device according to item 2 of the patent application scope, the image further includes: a light-shielding film formed on the conductive layer of the backbone. .If you apply for the semiconductor position detection device in the scope of patent application No. 4, it is more equipped with ... 2 9 This paper size is applicable to Chinese national standards (CNS> A4 specification (210X297 mm) (Please read the notes on the back first to write this Page Γ 8 8 8 8 ABCD 六、申請專利範圍 分別可’從骨幹導電層兩端取出輸出電流之一對信號 取出電極; 該骨幹導電層是位於信號取出電極間, 遮光膜是由絕緣性材料所形成,將信號取出電極間 的骨幹導電層予Μ覆蓋者。 6 .如申請專利範圍第5項之半導體位置檢測裝置,其中該 遮光膜是由黒色感光膠所形成者。 (請先閲讀背面之注意事項再夫寫本頁) 、1T 線· 經濟部中央操準局員工消費合作社印製 EEbEfeFrE^E'. “ίΓ」--;li;-;l.K» 本紙張尺度適用中國國家標準(CNS ) Α4規格(210Χ297公釐)8 8 8 8 ABCD 6. The scope of the patent application can be used to 'take out one pair of signal extraction electrodes from the output current at both ends of the conductive layer of the backbone; The conductive layer of the backbone is located between the signal extraction electrodes, and the light-shielding film is formed of an insulating material. The signal was taken out of the conductive layer of the backbone between the electrodes to the M cover. 6. The semiconductor position detecting device according to item 5 of the scope of patent application, wherein the light-shielding film is formed of a black-colored photosensitive adhesive. (Please read the precautions on the back before writing this page), 1T line · Printed by EEbEfeFrE ^ E 'from the Consumer Cooperatives of the Central Directorate of the Ministry of Economic Affairs. "ΊΓ"-; li;-; lK »This paper size applies China National Standard (CNS) Α4 specification (210 × 297 mm)
TW87117053A 1997-04-15 1998-10-14 Semiconductor position detection apparatus TW385552B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09756697A JP3836935B2 (en) 1997-04-15 1997-04-15 Semiconductor position detector

Publications (1)

Publication Number Publication Date
TW385552B true TW385552B (en) 2000-03-21

Family

ID=14195792

Family Applications (1)

Application Number Title Priority Date Filing Date
TW87117053A TW385552B (en) 1997-04-15 1998-10-14 Semiconductor position detection apparatus

Country Status (2)

Country Link
JP (1) JP3836935B2 (en)
TW (1) TW385552B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002289908A (en) * 2001-03-26 2002-10-04 Hamamatsu Photonics Kk Optical semiconductor device
DE102006013461B3 (en) 2006-03-23 2007-11-15 Prüftechnik Dieter Busch AG Photodetector arrangement, measuring arrangement with a photodetector arrangement and method for operating a measuring arrangement
DE102006013460B3 (en) 2006-03-23 2007-11-08 Prüftechnik Dieter Busch AG Photodetector arrangement, measuring arrangement with a photodetector arrangement and method for operating a measuring arrangement
JP2024154718A (en) * 2023-04-19 2024-10-31 浜松ホトニクス株式会社 Semiconductor optical position detector and semiconductor optical position detector array

Also Published As

Publication number Publication date
JP3836935B2 (en) 2006-10-25
JPH10290013A (en) 1998-10-27

Similar Documents

Publication Publication Date Title
TW441119B (en) Dark current reducing guard ring
TW408496B (en) The structure of image sensor
US9577121B2 (en) Tetra-lateral position sensing detector
JP4414646B2 (en) Photodetector
KR20100011291A (en) Image sensor having light focusing structure
TW396707B (en) Semiconductor device
TW461119B (en) Semiconductor device having photodetector and optical pickup system using the same
JPS61120466A (en) semiconductor photodetector
CN101593763B (en) Image sensor using photo-detecting molecule and method of operating the same
TW385552B (en) Semiconductor position detection apparatus
TW393782B (en) Photoelectric conversion device and image sensor
JPH021522A (en) Radiation detecting element and interferometer
KR930022571A (en) Charge Transfer Device and Solid State Imaging Device
US20070278486A1 (en) Scanning Head for Optical Position-Measuring Systems
CN102572323A (en) Image sensor pixel circuit
US9721980B2 (en) MOS-transistor structure as light sensor
WO2000022680A1 (en) Semiconductor position sensor
WO2018088281A1 (en) Solid-state imaging device and manufacturing method for same
TW200410418A (en) Construction method and apparatus for tunable photo diode having frequency spectrum with flat response or selected response
US7514687B2 (en) Energy ray detecting element
Carvalho et al. A novel hybrid polarization-quadrature pixel cluster for local light angle and intensity detection
Chao et al. CMOS light field image sensor building block for detection of multicolor LED blink sequence from heterogeneous locations
CN107331723B (en) Photosensitive element and ranging system
JPS62500829A (en) light detection device
WO2023148768A1 (en) Photodiode and method of operation

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent
MM4A Annulment or lapse of patent due to non-payment of fees