[go: up one dir, main page]

TW202509665A - Optical component array substitution for metrology - Google Patents

Optical component array substitution for metrology Download PDF

Info

Publication number
TW202509665A
TW202509665A TW113108969A TW113108969A TW202509665A TW 202509665 A TW202509665 A TW 202509665A TW 113108969 A TW113108969 A TW 113108969A TW 113108969 A TW113108969 A TW 113108969A TW 202509665 A TW202509665 A TW 202509665A
Authority
TW
Taiwan
Prior art keywords
radiation
array
substrate
metrology
optical components
Prior art date
Application number
TW113108969A
Other languages
Chinese (zh)
Inventor
托雷斯 勞爾 安德烈斯 葛瓦拉
納拉吉 羅珊娜 雷茲瓦尼
周子理
貴格瑞 瓦倫 詹金斯
Original Assignee
荷蘭商Asml荷蘭公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 荷蘭商Asml荷蘭公司 filed Critical 荷蘭商Asml荷蘭公司
Publication of TW202509665A publication Critical patent/TW202509665A/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70605Workpiece metrology
    • G03F7/706843Metrology apparatus
    • G03F7/706851Detection branch, e.g. detector arrangements, polarisation control, wavelength control or dark/bright field detection
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
    • G03F9/7088Alignment mark detection, e.g. TTR, TTL, off-axis detection, array detector, video detection

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

An optical component array substitution that simplifies a metrology system used for imaging a substrate is described. An array of cheaper and relatively optically simple optical components replaces a typical optical wedge for imaging and/or other metrology operations. In some embodiments, two of the optical components in the array are configured to create two oppositely defocused 0th order images in two different imaging locations on a radiation sensor, which facilitates determination of a focus position, without the need for a separate focus branch in the metrology system. In some embodiments, two of the optical components in the array comprise microlens arrays, with each microlens in a microlens array configured to form a focal spot on the radiation sensor whose position is useable to determine radiation wavefront aberrations, without a need for traditional wavefront aberration sensor.

Description

用於度量衡之光學組件陣列替代物Optical component array replacement for metrology

本說明書係關於一種用於度量衡之光學組件陣列替代物。This specification relates to an optical component array replacement for metrology.

微影投影設備可用於(例如)積體電路(IC)之製造中。圖案化裝置(例如光罩)可包括或提供對應於IC(「設計佈局」)之個別層之圖案,且可藉由諸如將已塗佈有輻射敏感材料(「抗蝕劑」)層之基板(例如矽晶圓)上之目標部分(例如包含一或多個晶粒)輻照通過圖案化裝置上之圖案之方法而將此圖案轉印至該目標部分上。一般而言,單一基板包括複數個鄰近目標部分,圖案藉由微影投影設備連續地轉印至該等鄰近目標部分,一次一個目標部分。在一種類型之微影投影設備中,在一個操作中將整個圖案化裝置上之圖案轉印至一個目標部分上。此設備通常被稱作步進器。在通常被稱作步進掃描設備之替代設備中,投影束在給定參考方向(「掃描」方向)上遍及圖案化裝置進行掃描,同時平行或反平行於此參考方向而同步地移動基板。將圖案化裝置上之圖案之不同部分漸進地轉印至一個目標部分。Lithographic projection apparatus may be used, for example, in the manufacture of integrated circuits (ICs). A patterned device (e.g., a photomask) may include or provide patterns corresponding to individual layers of the IC ("design layout"), and this pattern may be transferred to a target portion (e.g., comprising one or more dies) on a substrate (e.g., a silicon wafer) coated with a layer of radiation-sensitive material ("resist") by irradiating the target portion through the pattern on the patterned device. Typically, a single substrate includes a plurality of adjacent target portions, to which the pattern is transferred successively, one at a time, by the lithographic projection apparatus. In one type of lithographic projection apparatus, the entire pattern on the patterning device is transferred to a target portion in one operation. Such an apparatus is often referred to as a stepper. In an alternative apparatus, often referred to as a stepper-scan apparatus, the projection beam is scanned across the patterning device in a given reference direction (the "scanning" direction) while the substrate is synchronously moved parallel or antiparallel to this reference direction. Different portions of the pattern on the patterning device are progressively transferred to a target portion.

在將圖案自圖案化裝置轉印至基板之前,基板可經歷各種工序,諸如上底漆、抗蝕劑塗佈及軟烘烤。在曝光之後,基板可經受其他工序(「後曝光工序」),諸如後曝光烘烤(PEB)、顯影、硬烘烤及對經轉印圖案之量測/檢測。此工序陣列係用作製造一裝置(例如,IC)之個別層的基礎。基板可接著經歷各種程序,諸如蝕刻、離子植入(摻雜)、金屬化、氧化、沉積、化學機械研磨等,該等程序皆意欲完成裝置之個別層。若在裝置中需要若干層,則針對每一層來重複整個工序或其變體。最終,在基板上之每一目標部分中將存在一裝置。接著藉由諸如切割或鋸割之技術來使此等裝置彼此分離,使得可將個別裝置安裝於載體上、連接至銷釘,等等。此裝置製造程序可被認為係圖案化程序。Before the pattern is transferred from the patterned device to the substrate, the substrate may undergo various processes such as priming, resist coating and soft baking. After exposure, the substrate may undergo other processes ("post-exposure processes") such as post-exposure baking (PEB), development, hard baking and measurement/inspection of the transferred pattern. This array of processes serves as the basis for manufacturing individual layers of a device (e.g., an IC). The substrate may then undergo various processes such as etching, ion implantation (doping), metallization, oxidation, deposition, chemical mechanical polishing, etc., all of which are intended to complete the individual layers of the device. If several layers are required in the device, the entire process or a variation thereof is repeated for each layer. Ultimately, there will be a device in each target portion on the substrate. These devices are then separated from one another by techniques such as cutting or sawing so that the individual devices can be mounted on a carrier, connected to pins, etc. This device manufacturing process can be considered a patterning process.

微影為在諸如IC之裝置之製造時的中心步驟,其中形成於基板上之圖案界定裝置之功能元件,諸如微處理器、記憶體晶片等。類似微影技術亦用於形成平板顯示器、微機電系統(MEMS)及其他裝置。Lithography is a central step in the manufacture of devices such as integrated circuits, where patterns formed on a substrate define the functional components of the device, such as microprocessors, memory chips, etc. Similar lithography techniques are also used to form flat panel displays, microelectromechanical systems (MEMS), and other devices.

隨著半導體製造程序繼續進步,幾十年來,功能元件之尺寸已不斷地減小,而每裝置的諸如電晶體之功能元件之數目已在穩固地增加,此遵循通常被稱作「莫耳定律」之趨勢。在當前技術狀態下,使用微影投影設備來製造裝置之層,該等微影投影設備使用來自深紫外線照明源之照明將設計佈局投影至基板上,從而產生尺寸充分低於100 nm,亦即小於來自照明源(例如193 nm照明源)之輻射的波長之一半的個別功能元件。As semiconductor manufacturing processes continue to advance, the size of functional elements has been decreasing steadily over the decades, while the number of functional elements, such as transistors, per device has been increasing steadily, following a trend often referred to as "Moore's Law." In the current state of the art, the layers of a device are manufactured using lithography projection equipment that projects the design layout onto a substrate using illumination from a deep ultraviolet illumination source, thereby producing individual functional elements with dimensions well below 100 nm, i.e., less than half the wavelength of the radiation from the illumination source (e.g., a 193 nm illumination source).

供印刷尺寸小於微影投影設備之經典解析度極限之特徵的此程序根據解析度公式CD = k 1×λ/NA通常稱為低k 1微影,其中λ為所採用輻射之波長(當前在大多數情況下,248 nm或193 nm),NA為微影投影設備中之投影光學件之數值孔徑,CD為「關鍵尺寸」(通常為所印刷之最小特徵大小),且k 1為經驗解析度因數。大體而言,k 1愈小,則在基板上再現類似於由設計者規劃之形狀及尺寸以便達成特定電功能性及效能的圖案變得愈困難。為了克服此等困難,將複雜微調步驟應用至微影投影設備、設計佈局或圖案化裝置。此等步驟包括例如但不限於NA及光學相干設定之最佳化、自訂照明方案、相移圖案化裝置之使用、設計佈局中之光學近接校正(OPC,有時亦被稱作「光學及程序校正」),或通常被定義為「解析度增強技術」(RET)之其他方法。 This process for printing features smaller than the classical resolution limit of the lithographic projection equipment is usually referred to as low- k1 lithography, according to the resolution formula CD = k1 × λ/NA, where λ is the wavelength of the radiation employed (currently 248 nm or 193 nm in most cases), NA is the numerical aperture of the projection optics in the lithographic projection equipment, CD is the "critical dimension" (usually the smallest feature size printed), and k1 is an empirical resolution factor. In general, the smaller k1 is, the more difficult it becomes to reproduce a pattern on a substrate that resembles the shape and size planned by the designer in order to achieve specific electrical functionality and performance. To overcome these difficulties, complex fine-tuning steps are applied to the lithographic projection equipment, the design layout, or the patterning device. These steps include, for example, but are not limited to, optimization of NA and optical coherence settings, customized illumination schemes, use of phase-shift patterning devices, optical proximity correction (OPC, sometimes also called "optical and process correction") in the design layout, or other methods generally defined as "resolution enhancement technology" (RET).

本發明描述一種簡化用於成像一基板之一度量衡系統的光學組件陣列替代物。便宜且光學上相對簡單的光學組件之一陣列替代用於成像及/或其他度量衡操作之一典型光楔。在一些實施例中,該陣列中之該等光學組件中之兩者經組態以在一輻射感測器上的兩個不同成像位置中產生兩個相反散焦0階影像,此有助於判定一聚焦位置,而不需要在該度量衡系統中使用一單獨的聚焦分支。在一些實施例中,該陣列中之該等光學組件中之兩者包含微透鏡陣列,其中一微透鏡陣列中之每一微透鏡經組態以在該輻射感測器上形成一焦點,該焦點之位置可用以判定輻射波前像差,而不需要傳統的波前像差感測器。The present invention describes a simplified optical component array replacement for a metrology system used to image a substrate. An array of inexpensive and relatively optically simple optical components replaces a typical optical wedge used for imaging and/or other metrology operations. In some embodiments, two of the optical components in the array are configured to produce two oppositely defocused 0-order images in two different imaging locations on a radiation sensor, which helps determine a focus position without the need to use a separate focus branch in the metrology system. In some embodiments, two of the optical components in the array include microlens arrays, wherein each microlens in a microlens array is configured to form a focal point on the radiation sensor, the position of the focal point being used to determine radiation wavefront aberrations without the need for a conventional wavefront aberration sensor.

根據實施例,一種度量衡系統。該度量衡系統包含經組態以基於在輻射感測器上之不同成像位置處接收之輻射產生度量衡信號的一輻射感測器。該度量衡系統包含經組態以自基板接收不同繞射階之輻射、改變不同繞射階之輻射之角度,及朝向輻射感測器上之不同成像位置引導不同繞射階之輻射的光學組件之陣列。According to an embodiment, a metrology system includes a radiation sensor configured to generate a metrology signal based on radiation received at different imaging locations on the radiation sensor. The metrology system includes an array of optical components configured to receive radiation of different diffraction orders from a substrate, change the angle of the radiation of the different diffraction orders, and direct the radiation of the different diffraction orders toward different imaging locations on the radiation sensor.

在一些實施例中,光學組件之陣列包含四個光學組件,其中四個光學組件中之兩者與第0繞射階輻射相關聯,且四個光學組件中之兩者與第1繞射階輻射相關聯。In some embodiments, the array of optical components includes four optical components, wherein two of the four optical components are associated with 0th diffraction order radiation and two of the four optical components are associated with 1st diffraction order radiation.

在一些實施例中,光學組件之陣列包含透鏡之陣列。在一些實施例中,每一透鏡具有圓形或正方形橫截面形狀。In some embodiments, the array of optical components includes an array of lenses. In some embodiments, each lens has a circular or square cross-sectional shape.

在一些實施例中,光學組件之陣列包含空間光調變器(SLM)。在一些實施例中,SLM為透射式的或反射式的,或具有透射式或反射式的部分。在一些實施例中,SLM包含液晶、數位微鏡裝置(DMD),及/或經組態以改變不同繞射階之輻射之角度並朝向輻射感測器上之不同成像位置引導不同繞射階之輻射的圖案。In some embodiments, the array of optical components includes a spatial light modulator (SLM). In some embodiments, the SLM is transmissive or reflective, or has transmissive or reflective portions. In some embodiments, the SLM includes a liquid crystal, a digital micromirror device (DMD), and/or a pattern configured to change the angle of radiation of different diffraction orders and direct the radiation of different diffraction orders toward different imaging locations on a radiation sensor.

在一些實施例中,光學組件之陣列包含超穎透鏡之陣列。In some embodiments, the array of optical components includes an array of super-lenses.

在一些實施例中,系統包含以操作方式與輻射感測器連接且經組態以基於度量衡信號判定度量衡量測值的一或多個處理器。在一些實施例中,度量衡量測值包含與在基板上執行之半導體製造程序相關聯的對準值、疊對值、聚焦值,及/或關鍵尺寸值。In some embodiments, the system includes one or more processors operatively connected to the radiation sensor and configured to determine metrology measurements based on the metrology signal. In some embodiments, the metrology measurements include alignment values, overlay values, focus values, and/or critical dimension values associated with a semiconductor manufacturing process performed on the substrate.

在一些實施例中,光學組件陣列中之光學組件中之兩者經組態以在輻射感測器上的兩個不同成像位置中產生兩個相反散焦0階影像。在一些實施例中,該一或多個處理器以操作方式與輻射感測器連接且經組態以基於輻射感測器上的兩個不同成像位置中之相反散焦0階影像判定用於運用度量衡系統成像基板之聚焦位置。在一些實施例中,該一或多個處理器經進一步組態以基於聚焦位置自動地調整固持基板之度量衡系統之載物台的位置,以使得基板之後續影像在聚焦中。In some embodiments, two of the optical components in the array of optical components are configured to generate two oppositely defocused 0-order images in two different imaging locations on the radiation sensor. In some embodiments, the one or more processors are operatively connected to the radiation sensor and configured to determine a focus position for imaging a substrate using a metrology system based on the oppositely defocused 0-order images in the two different imaging locations on the radiation sensor. In some embodiments, the one or more processors are further configured to automatically adjust a position of a stage of a metrology system holding the substrate based on the focus position so that subsequent images of the substrate are in focus.

在一些實施例中,光學組件陣列中之光學組件中之兩者包含微透鏡陣列,其中一微透鏡陣列中之每一微透鏡經組態以在該輻射感測器上形成一焦點,該焦點之位置可用以判定輻射波前像差。在一些實施例中,該一或多個處理器以操作方式與輻射感測器連接且經組態以基於焦點相對於參考位置之位置偵測輻射波前像差。In some embodiments, two of the optical components in the array of optical components include microlens arrays, wherein each microlens in one of the microlens arrays is configured to form a focal point on the radiation sensor, and the position of the focal point can be used to determine radiation wavefront aberrations. In some embodiments, the one or more processors are operatively connected to the radiation sensor and configured to detect radiation wavefront aberrations based on the position of the focal point relative to a reference position.

在一些實施例中,輻射感測器包括經組態用於感測焦點之子部分,其中該系統進一步包含經組態以將輻射自微透鏡陣列引導至輻射感測器之子部分的分段鏡。在一些實施例中,與光學組件陣列中之其他光學組件相比較,微透鏡陣列定位在度量衡系統之不同平面中,使得輻射感測器位於微透鏡陣列及光學組件陣列中之其他光學組件之焦平面處。In some embodiments, the radiation sensor includes a subsection configured to sense a focus, wherein the system further comprises a segmented mirror configured to direct radiation from the microlens array to the subsection of the radiation sensor. In some embodiments, the microlens array is positioned in a different plane of the metrology system than other optical components in the array of optical components, such that the radiation sensor is at a focal plane of the microlens array and other optical components in the array of optical components.

在一些實施例中,該系統包含一輻射源及一或多個透鏡。輻射源及一或多個透鏡經組態以產生輻射且朝向基板引導輻射。In some embodiments, the system includes a radiation source and one or more lenses. The radiation source and one or more lenses are configured to generate radiation and direct the radiation toward the substrate.

在一些實施例中,基板包含具有經組態以朝向光學組件陣列反射輻射之一或多個疊對目標的半導體晶圓,且感測器包含與疊對量測相關聯的以微繞射為基礎之疊對。In some embodiments, the substrate includes a semiconductor wafer having one or more stacked targets configured to reflect radiation toward an array of optical components, and the sensor includes microdiffraction-based stacking associated with stacking measurements.

在一些實施例中,輻射感測器包含攝影機、電荷耦合裝置(CCD)陣列、互補金屬氧化物半導體(CMOS)及/或光電二極體陣列。In some embodiments, the radiation sensor includes a camera, a charge coupled device (CCD) array, a complementary metal oxide semiconductor (CMOS), and/or a photodiode array.

根據另一實施例,提供包含上文所描述的操作中之一或多者的度量衡方法。According to another embodiment, a metrology method is provided that includes one or more of the operations described above.

在半導體裝置製造中,度量衡操作通常包括一度量衡標記(或多個標記)及/或半導體裝置結構層中之其他目標的量測。量測通常藉由利用輻射輻照度量衡標記及比較自度量衡標記反射的不同繞射階之輻射的特性來執行。此等技術用以量測疊對、對準及/或其他參數。In semiconductor device manufacturing, metrology operations often include the measurement of a metrology mark (or marks) and/or other targets in the semiconductor device structure layer. The measurement is usually performed by irradiating the metrology mark with radiation and comparing the characteristics of radiation of different diffraction orders reflected from the metrology mark. These techniques are used to measure overlay, alignment and/or other parameters.

許多度量衡系統包括經組態以引導不同繞射階之輻射至輻射感測器上之特定位置的光楔、用以判定用於成像基板之聚焦位置的單獨聚焦分支(例如包含輻射源、若干透鏡及許多其他光學組件之度量衡系統的一部分)、波前像差感測器及/或其他組件。此等系統係大型、複雜且昂貴的。舉例而言,光楔及實施光楔所需之實體系統空間的成本與其他光學組件相比較高。此等系統需要諸如額外光束分裂器之額外組件以組合聚焦分支與度量衡系統之剩餘部分,此降低至中心感測器之輻射通量。此系統中之聚焦位置判定並不連續,此係由於用於判定聚焦位置之輻射沿著與最終用於度量衡量測之輻射相同的光學路徑之至少一部分行進。此意謂度量衡系統在其中聚焦分支中之輻射源及光學件「接通」的聚焦位置判定模式與其中聚焦分支中之輻射源及光學件「斷開」的度量衡影像獲取模式之間來回切換。此等模式之間的聚焦間隙可歸因於散焦及/或其他問題而引起疊對誤差。另外,來自基板上之度量衡目標的不同階之繞射光基於物鏡波前誤差而具有不同聚焦位置,當前度量衡系統不考慮此情況。Many metrology systems include an optical wedge configured to direct radiation of different diffraction orders to specific locations on a radiation sensor, a separate focusing branch (e.g., part of a metrology system that includes a radiation source, several lenses, and many other optical components) to determine the focal position for imaging a substrate, a wavefront aberration sensor, and/or other components. Such systems are large, complex, and expensive. For example, the cost of the optical wedge and the physical system space required to implement the wedge is high compared to the other optical components. Such systems require additional components such as an additional beam splitter to combine the focusing branch with the remainder of the metrology system, which reduces the radiation flux to the central sensor. Focus determination in this system is not continuous because the radiation used to determine focus travels along at least a portion of the same optical path as the radiation ultimately used for metrological measurement. This means that the metrology system switches back and forth between a focus determination mode in which the radiation source and optics in the focusing branch are "on," and a metrology image acquisition mode in which the radiation source and optics in the focusing branch are "off." The focus gap between these modes can cause overlay errors due to defocus and/or other problems. In addition, different orders of diffracted light from a metrology target on a substrate have different focus positions based on the objective wavefront error, which is not taken into account by current metrology systems.

描述簡化用於包括成像基板之度量衡操作之度量衡系統的光學組件陣列替代物。有利地,便宜且光學上相對簡單的光學組件之一陣列替代用於成像及/或其他度量衡操作之一典型光楔。在一些實施例中,該陣列中之該等光學組件中之兩者經組態以在一輻射感測器上的兩個不同成像位置中產生兩個相反散焦0階影像,此有助於判定一聚焦位置,而不需要在該度量衡系統中使用一單獨的聚焦分支。在一些實施例中,該陣列中之該等光學組件中之兩者包含微透鏡陣列,其中一微透鏡陣列中之每一微透鏡經組態以在該輻射感測器上形成一焦點,該焦點之位置可用以判定輻射波前像差,而不需要傳統的波前像差感測器。Optical component array replacements for simplifying metrology systems for metrology operations including imaging substrates are described. Advantageously, an array of inexpensive and optically relatively simple optical components replaces a typical optical wedge for imaging and/or other metrology operations. In some embodiments, two of the optical components in the array are configured to produce two oppositely defocused 0-order images in two different imaging locations on a radiation sensor, which aids in determining a focus position without requiring the use of a separate focus branch in the metrology system. In some embodiments, two of the optical components in the array include microlens arrays, wherein each microlens in a microlens array is configured to form a focal point on the radiation sensor, the position of the focal point being used to determine radiation wavefront aberrations without the need for a conventional wavefront aberration sensor.

藉助於簡要介紹,下文中之描述係關於半導體裝置製造及圖案化程序。以下段落亦描述用於半導體裝置度量衡之系統及/或方法的數個組件。此等系統及方法可用於例如在半導體裝置製造程序中量測疊對、對準等,或用於其他操作。By way of brief introduction, the following description is about semiconductor device manufacturing and patterning processes. The following paragraphs also describe several components of systems and/or methods for semiconductor device metrology. Such systems and methods can be used, for example, to measure overlay, alignment, etc., or for other operations in semiconductor device manufacturing processes.

儘管在本文中可特定地參考疊對、對準或其他參數之量測及用於半導體裝置之積體電路(IC)之製造,但應理解,本文中之描述具有許多其他可能的應用。舉例而言,該等應用可用於製造整合式光學系統、用於磁疇記憶體之導引及偵測圖案、液晶顯示面板、薄膜磁頭等。熟習此項技術者應瞭解,在此等替代應用之內容背景中,本文中對術語「倍縮光罩」、「晶圓」或「晶粒」之任何使用應被認為分別可與更一般之術語「光罩」、「基板」及「目標部分」互換。Although specific reference may be made herein to the measurement of overlay, alignment or other parameters and the fabrication of integrated circuits (ICs) for semiconductor devices, it should be understood that the description herein has many other possible applications. For example, such applications may be used in the fabrication of integrated optical systems, guide and detection patterns for magnetic resonance memory, liquid crystal display panels, thin film heads, etc. Those skilled in the art should understand that any use of the terms "mask", "wafer" or "die" herein should be considered interchangeable with the more general terms "mask", "substrate" and "target portion", respectively, in the context of such alternative applications.

如本文所使用之術語「投影光學件」應被廣泛地解譯為涵蓋各種類型之光學系統,包括(例如)折射光學件、反射光學件、孔徑及反射折射光學件。術語「投影光學件」亦可包括根據此等設計類型中之任一者而操作的組件,以用於集體地或單一地引導、塑形或控制投影輻射光束。術語「投影光學件」可包括微影投影設備中之任何光學組件,而不管光學組件定位於微影投影設備之光學路徑上之何處。投影光學件可包括用於在來自源之輻射通過圖案化裝置之前塑形、調整及/或投影該輻射的光學組件,及/或用於在輻射通過圖案化裝置之後塑形、調整及/或投影該輻射的光學組件。投影光學件通常排除光源及圖案化裝置。As used herein, the term "projection optics" should be broadly interpreted to cover various types of optical systems, including, for example, refractive optics, reflective optics, apertures, and reflective-refractive optics. The term "projection optics" may also include components that operate according to any of these design types for collectively or singly directing, shaping, or controlling a projected radiation beam. The term "projection optics" may include any optical component in a lithography projection apparatus, regardless of where the optical component is positioned on the optical path of the lithography projection apparatus. Projection optics may include optical components for shaping, conditioning, and/or projecting radiation from a source before it passes through a patterning device, and/or optical components for shaping, conditioning, and/or projecting radiation after it passes through a patterning device. Projection optics typically exclude the light source and patterning device.

圖1示意性地描繪微影設備LA之一實施例。該設備包含:照明系統(照明器) IL,其經組態以調節輻射光束B (例如UV輻射、DUV輻射或EUV輻射);支撐結構(例如光罩台) MT,其經建構以支撐圖案化裝置(例如光罩) MA,且連接至經組態以根據某些參數來準確地定位圖案化裝置之第一定位器PM;基板台(例如晶圓台) WT (例如,WTa、WTb或兩者),其經組態以固持基板(例如抗蝕劑塗佈晶圓) W且耦接至經組態以根據某些參數來準確地定位該基板之第二定位器PW;及投影系統(例如折射投影透鏡系統) PS,其經組態以將由圖案化裝置MA賦予至輻射光束B之圖案投影至基板W之目標部分C (例如包含一或多個晶粒且常常被稱作場)上。投影系統被支撐於參考框架RF上。如所描繪,該設備屬於透射類型(例如,使用透射光罩)。替代地,該設備可屬於反射類型(例如,使用可程式化鏡面陣列,或使用反射光罩)。FIG1 schematically depicts an embodiment of a lithography apparatus LA. The apparatus comprises an illumination system (illuminator) IL configured to condition a radiation beam B (e.g., UV radiation, DUV radiation, or EUV radiation); a support structure (e.g., mask stage) MT constructed to support a patterning device (e.g., mask) MA and connected to a first positioner PM configured to accurately position the patterning device according to certain parameters; a substrate stage (e.g., wafer stage) WT (e.g., WTa, WTb, or both) configured to hold a substrate (e.g., a resist-coated wafer) W and coupled to a second positioner PW configured to accurately position the substrate according to certain parameters; and a projection system (e.g., a refractive projection lens system) PS is configured to project the pattern imparted to the radiation beam B by the patterning device MA onto a target portion C (e.g. comprising one or more dies and often referred to as a field) of the substrate W. The projection system is supported on a reference frame RF. As depicted, the apparatus is of a transmissive type (e.g. using a transmissive mask). Alternatively, the apparatus may be of a reflective type (e.g. using a programmable mirror array, or using a reflective mask).

照明器IL自輻射源SO接收輻射光束。舉例而言,當輻射源為準分子雷射時,輻射源與微影設備可為分離實體。在此等狀況下,不認為源形成微影設備之部件,且輻射光束係憑藉包含(例如)合適引導鏡面及/或光束擴展器之光束遞送系統BD而自源SO傳遞至照明器IL。在其他狀況下,舉例而言,當源為汞燈時,源可為設備之整體部件。源SO及照明器IL連同光束遞送系統BD在需要時可被稱作輻射系統。The illuminator IL receives a radiation beam from a radiation source SO. When the radiation source is, for example, an excimer laser, the radiation source and the lithography apparatus may be separate entities. In such cases, the source is not considered to form part of the lithography apparatus and the radiation beam is delivered from the source SO to the illuminator IL by means of a beam delivery system BD comprising, for example, suitable steering mirrors and/or a beam expander. In other cases, when the source is, for example, a mercury lamp, the source may be an integral part of the apparatus. The source SO and the illuminator IL together with the beam delivery system BD may be referred to as a radiation system when necessary.

照明器IL可更改光束之強度分佈。照明器可經配置以限制輻射光束之徑向範圍,使得在照明器IL之光瞳平面中之環形區內的強度分佈為非零。另外或替代地,照明器IL可操作以限制光束在光瞳平面中之分佈使得在光瞳平面中之複數個同等間隔之區段中的強度分佈為非零。輻射光束在照明器IL之光瞳平面中之強度分佈可被稱作照明模式。The illuminator IL may modify the intensity distribution of the beam. The illuminator may be configured to limit the radial extent of the radiated beam so that the intensity distribution is non-zero within an annular region in a pupil plane of the illuminator IL. Additionally or alternatively, the illuminator IL may be operated to limit the distribution of the beam in the pupil plane so that the intensity distribution is non-zero in a plurality of equally spaced segments in the pupil plane. The intensity distribution of the radiated beam in the pupil plane of the illuminator IL may be referred to as an illumination mode.

照明器IL可包含經組態以調整光束之(角/空間)強度分佈的調整器AD。一般而言,可調整照明器之光瞳平面中之強度分佈之至少外部徑向範圍及/或內部徑向範圍(通常分別稱作σ外部及σ內部)。照明器IL可操作以變更光束之角分佈。舉例而言,照明器可操作以變更強度分佈為非零的光瞳平面中之區段之數目及角範圍。藉由調整光束在照明器之光瞳平面中之強度分佈,可達成不同照明模式。舉例而言,藉由限制照明器IL之光瞳平面中之強度分佈之徑向範圍及角範圍,強度分佈可具有多極分佈,諸如偶極、四極或六極分佈。可(例如)藉由將提供所要照明模式之光學件插入至照明器IL中或使用空間光調變器來獲得彼照明模式。The illuminator IL may comprise an adjuster AD configured to adjust the (angular/spatial) intensity distribution of the light beam. In general, at least the outer radial extent and/or the inner radial extent (usually referred to as σ outer and σ inner, respectively) of the intensity distribution in the pupil plane of the illuminator may be adjusted. The illuminator IL may be operated to change the angular distribution of the light beam. For example, the illuminator may be operated to change the number and the angular extent of the segments in the pupil plane where the intensity distribution is non-zero. By adjusting the intensity distribution of the light beam in the pupil plane of the illuminator, different illumination modes may be achieved. For example, by limiting the radial extent and the angular extent of the intensity distribution in the pupil plane of the illuminator IL, the intensity distribution may have a multipole distribution, such as a dipole, quadrupole or hexapole distribution. The illumination pattern may be obtained, for example, by inserting optics providing the desired illumination pattern into the illuminator IL or using a spatial light modulator.

照明器IL可操作以更改光束之偏振且可操作以使用調整器AD來調整偏振。橫越照明器IL之光瞳平面之輻射光束的偏振狀態可被稱作偏振模式。使用不同偏振模式可允許在形成於基板W上之影像中達成較大對比度。輻射光束可為非偏振的。替代地,照明器可經配置以使輻射光束線性地偏振。輻射光束之偏振方向可橫越照明器IL之光瞳平面而變更。輻射之偏振方向在照明器IL之光瞳平面中之不同區域中可不同。可取決於照明模式來選擇輻射之偏振狀態。針對多極照明模式,輻射光束之每一極之偏振可大體上垂直於照明器IL的光瞳平面中之彼極的位置向量。舉例而言,對於偶極照明模式,輻射可在實質上垂直於平分偶極之兩個對置區段之線的方向上線性地偏振。輻射光束可在可被稱作X偏振狀態及Y偏振狀態之兩個不同正交方向中之一者上偏振。對於四極照明模式,每一極之區段中之輻射可在實質上垂直於平分彼區段之線之方向上線性地偏振。此偏振模式可稱為XY偏振。類似地,對於六極照明模式,每一極之區段中之輻射可在實質上垂直於平分彼區段之線之方向上線性地偏振。此偏振模式可稱為TE偏振。The illuminator IL is operable to change the polarization of the light beam and is operable to adjust the polarization using an adjuster AD. The polarization state of the radiation beam that crosses the pupil plane of the illuminator IL can be referred to as a polarization mode. The use of different polarization modes allows a greater contrast to be achieved in the image formed on the substrate W. The radiation beam may be unpolarized. Alternatively, the illuminator may be configured so that the radiation beam is linearly polarized. The polarization direction of the radiation beam may change across the pupil plane of the illuminator IL. The polarization direction of the radiation may be different in different regions in the pupil plane of the illuminator IL. The polarization state of the radiation may be selected depending on the illumination mode. For multi-pole illumination modes, the polarization of each pole of the radiation beam may be substantially perpendicular to the position vector of the other pole in the pupil plane of the illuminator IL. For example, for a dipole illumination mode, the radiation may be linearly polarized in a direction substantially perpendicular to a line bisecting two opposing segments of the dipole. The radiation beam may be polarized in one of two different orthogonal directions that may be referred to as the X polarization state and the Y polarization state. For a quadrupole illumination mode, the radiation in a segment of each pole may be linearly polarized in a direction substantially perpendicular to a line bisecting that segment. This polarization mode may be referred to as XY polarization. Similarly, for a hexapole illumination mode, the radiation in a segment of each pole may be linearly polarized in a direction substantially perpendicular to a line bisecting that segment. This polarization mode may be referred to as TE polarization.

另外,照明器IL通常包含各種其他組件,諸如積光器IN及聚光器CO。照明光學系統可包括用於引導、塑形或控制輻射的各種類型之光學組件,諸如折射、反射、磁性、電磁、靜電或其他類型之光學組件,或其任何組合。因此,照明器提供在其橫截面中具有所要均一性及強度分佈之經調節輻射光束B。In addition, the illuminator IL typically includes various other components, such as an integrator IN and a condenser CO. The illumination optical system may include various types of optical components for directing, shaping or controlling radiation, such as refractive, reflective, magnetic, electromagnetic, electrostatic or other types of optical components, or any combination thereof. Thus, the illuminator provides a regulated radiation beam B having a desired uniformity and intensity distribution in its cross-section.

支撐結構MT以取決於圖案化裝置之定向、微影設備之設計及諸如圖案化裝置是否被固持於真空環境中之其他條件的方式支撐圖案化裝置。支撐結構可使用機械、真空、靜電或其他夾持技術以固持圖案化裝置。支撐結構可為(例如)框架或台,其可根據需要而固定或可移動。支撐結構可確保圖案化裝置(例如)相對於投影系統處於所要位置。可認為本文中對術語「倍縮光罩」或「光罩」之任何使用皆與更一般術語「圖案化裝置」同義。The support structure MT supports the patterning device in a manner that depends on the orientation of the patterning device, the design of the lithography equipment, and other conditions such as whether the patterning device is held in a vacuum environment. The support structure may use mechanical, vacuum, electrostatic or other clamping techniques to hold the patterning device. The support structure may be, for example, a frame or a table, which may be fixed or movable as required. The support structure may ensure that the patterning device is in a desired position, for example, relative to a projection system. Any use of the term "reduction mask" or "mask" herein may be considered synonymous with the more general term "patterning device".

本文中所使用之術語「圖案化裝置」應被廣泛地解譯為係指可用以在基板之目標部分中賦予圖案的任何裝置。在一實施例中,圖案化裝置為可用以在輻射光束之橫截面中向輻射光束賦予圖案以在基板之目標部分中產生圖案的任何裝置。應注意,舉例而言,若被賦予至輻射光束之圖案包括相移特徵或所謂輔助特徵,則該圖案可不確切地對應於基板之目標部分中之所要圖案。一般而言,被賦予至輻射光束之圖案將對應於裝置之目標部分中所產生之裝置(諸如積體電路)中之特定功能層。The term "patterning device" as used herein should be broadly interpreted as referring to any device that can be used to impart a pattern in a target portion of a substrate. In one embodiment, the patterning device is any device that can be used to impart a pattern to a radiation beam in a cross-section of the radiation beam to produce a pattern in a target portion of a substrate. It should be noted that if, for example, the pattern imparted to the radiation beam includes phase-shifting features or so-called auxiliary features, the pattern may not exactly correspond to the desired pattern in the target portion of the substrate. In general, the pattern imparted to the radiation beam will correspond to a specific functional layer in a device (such as an integrated circuit) produced in the target portion of the device.

圖案化裝置可為透射的或反射的。圖案化裝置之實例包括光罩、可程式化鏡面陣列及可程式化LCD面板。光罩在微影中為吾人所熟知,且包括諸如二元、交變相移及衰減式相移之光罩類型,以及各種混合光罩類型。可程式化鏡面陣列之實例使用小鏡面之矩陣配置,該等小鏡面中之每一者可個別地傾斜,以便使入射輻射光束在不同方向上反射。傾斜之鏡面在由鏡面矩陣反射之輻射光束中賦予圖案。Patterned devices may be transmissive or reflective. Examples of patterned devices include photomasks, programmable mirror arrays, and programmable LCD panels. Photomasks are well known in lithography, and include mask types such as binary, alternating phase shift, and attenuated phase shift, as well as various hybrid mask types. Examples of programmable mirror arrays use a matrix arrangement of mirror facets, each of which can be individually tilted so as to reflect an incident radiation beam in different directions. The tilted mirrors impart a pattern in the radiation beam that is reflected by the mirror array.

本文所使用之術語「投影系統」應被廣泛地解釋為涵蓋適於所使用之曝光輻射或適於諸如浸潤液體之使用或真空之使用之其他因素的任何類型之投影系統,包括折射、反射、反射折射、磁性、電磁及靜電光學系統,或其任何組合。可認為本文中對術語「投影透鏡」之任何使用與更一般之術語「投影系統」同義。The term "projection system" as used herein should be interpreted broadly to cover any type of projection system appropriate to the exposure radiation used or to other factors such as the use of an immersion liquid or the use of a vacuum, including refractive, reflective, catadioptric, magnetic, electromagnetic, and electro-optical systems, or any combination thereof. Any use of the term "projection lens" herein should be considered synonymous with the more general term "projection system."

投影系統PS可包含複數個光學(例如,透鏡)元件,且可進一步包含經組態以調整該等光學元件中之一或多者以便校正像差(在整個場中光瞳平面上的相位變化)的調整機構。為了達成此校正,調整機構可操作而以一或多種不同方式操控投影系統PS內之一或多個光學(例如,透鏡)元件。投影系統可具有其光軸在z方向上延伸的座標系。調整機構可操作以進行以下各項之任何組合:使一或多個光學元件移位;使一或多個光學元件傾斜;及/或使一或多個光學元件變形。光學元件之位移可在任何方向(x、y、z或其組合)上。光學元件之傾斜通常出自垂直於光軸之平面藉由圍繞在x及/或y方向上之軸線旋轉而進行,但對於非旋轉對稱之非球面光學元件可使用圍繞z軸之旋轉。光學元件之變形可包括低頻形狀(例如,散光)及/或高頻形狀(例如,自由形式非球面)。可例如藉由使用一或多個致動器以對光學元件之一或多個側施加力及/或藉由使用一或多個加熱元件以加熱光學元件之一或多個選定區來執行光學元件之變形。一般而言,沒有可能調整投影系統PS以校正變跡(橫越光瞳平面之透射變化)。可在設計用於微影設備LA之圖案化裝置(例如光罩) MA時使用投影系統PS之透射映像。使用計算微影技術,圖案化裝置MA可經設計為用以至少部分地校正變跡。The projection system PS may include a plurality of optical (e.g., lens) elements, and may further include an adjustment mechanism configured to adjust one or more of the optical elements so as to correct for aberrations (phase variations in the pupil plane across the field). To achieve this correction, the adjustment mechanism may be operable to manipulate one or more optical (e.g., lens) elements within the projection system PS in one or more different ways. The projection system may have a coordinate system whose optical axis extends in the z-direction. The adjustment mechanism may be operable to perform any combination of the following: displacing one or more optical elements; tilting one or more optical elements; and/or deforming one or more optical elements. The displacement of the optical elements may be in any direction (x, y, z, or a combination thereof). The tilt of the optical element is usually performed out of a plane perpendicular to the optical axis by rotation about an axis in the x and/or y direction, but for non-rotationally symmetric aspheric optical elements a rotation about the z-axis may be used. Deformations of the optical element may include low-frequency shape (e.g., astigmatism) and/or high-frequency shape (e.g., free-form asphericity). Deformations of the optical element may be performed, for example, by using one or more actuators to apply forces to one or more sides of the optical element and/or by using one or more heating elements to heat one or more selected areas of the optical element. In general, it is not possible to adjust the projection system PS to correct for apodization (transmission variations across the pupil plane). A transmission image of the projection system PS may be used in the design of a patterning device (e.g., a mask) MA for the lithography apparatus LA. Using computational lithography techniques, the patterning device MA can be designed to at least partially correct apodization.

微影設備可屬於具有兩個(雙載物台)或更多個台(例如兩個或更多個基板台WTa、WTb,兩個或更多個圖案化裝置台,在無專用於例如促進量測及/或清潔等之基板的情況下在投影系統下方之基板台WTa及台WTb)之類型。在此等「多載物台」機器中,可並行地使用額外台,或可對一或多個台進行預備步驟,同時將一或多個其他台用於曝光。舉例而言,可進行使用對準感測器AS之對準量測及/或使用位準感測器LS之位準(高度、傾角等等)量測。The lithography apparatus may be of a type having two (dual stage) or more stages, for example two or more substrate tables WTa, WTb, two or more patterning device tables, a substrate table WTa and a table WTb below the projection system in the absence of a dedicated substrate for example to facilitate metrology and/or cleaning etc. In such "multi-stage" machines the additional stages may be used in parallel or preparation steps may be performed on one or more stages while one or more other stages are being used for exposure. For example, alignment metrology using an alignment sensor AS and/or level (height, tilt etc.) measurement using a level sensor LS may be performed.

微影設備亦可屬於以下類型:其中基板之至少一部分可由具有相對較高的折射率之液體(例如,水)覆蓋,以填充投影系統與基板之間的空間。亦可將浸潤液體施加至微影設備中之其他空間,例如,圖案化裝置與投影系統之間的空間。浸潤技術在此項技術中被熟知用於增大投影系統之數值孔徑。如本文中所使用之術語「液體浸潤」不意謂諸如基板之結構必須浸沒於液體中,而是僅意謂液體在曝光期間位於投影系統與基板之間。The lithography apparatus may also be of a type in which at least a portion of the substrate may be covered by a liquid having a relatively high refractive index (e.g., water) to fill the space between the projection system and the substrate. Immersion liquid may also be applied to other spaces in the lithography apparatus, such as the space between the patterning device and the projection system. Immersion techniques are well known in the art for increasing the numerical aperture of projection systems. The term "liquid immersion" as used herein does not mean that structures such as the substrate must be immersed in the liquid, but only that the liquid is located between the projection system and the substrate during exposure.

在微影設備之操作中,輻射光束經調節且由照明系統IL提供。輻射光束B入射於固持在支撐結構(例如,光罩台) MT上之圖案化裝置(例如,光罩) MA上,且係由圖案化裝置而圖案化。在已橫穿圖案化裝置MA之後,輻射光束B傳遞通過投影系統PS,該投影系統PS將該光束聚焦至基板W之目標部分C上。憑藉第二定位器PW及位置感測器IF (例如,干涉量測裝置、線性編碼器、2D編碼器或電容式感測器),可準確地移動基板台WT,例如,以使不同目標部分C定位於輻射光束B之路徑中。類似地,第一定位器PM及另一位置感測器(其並未明確地在圖1中描繪)可用以例如在自光罩庫機械擷取之後或在掃描期間相對於輻射光束B之路徑準確地定位圖案化裝置MA。一般而言,可憑藉形成第一定位器PM之部分之長衝程模組(粗略定位)及短衝程模組(精細定位)來實現支撐結構MT之移動。類似地,可使用形成第二定位器PW之部分之長衝程模組及短衝程模組來實現基板台WT之移動。在步進器(相對於掃描器)之狀況下,支撐結構MT可僅連接至短衝程致動器,或可固定。可使用圖案化裝置對準標記M1、M2及基板對準標記P1、P2來對準圖案化裝置MA與基板W。儘管所說明之基板對準標記佔據專用目標部分,但其可位於目標部分之間的空間中(此等者被稱為切割道對準標記)。類似地,在多於一個晶粒經提供於圖案化裝置MA上之情形中,圖案化裝置對準標記可位於該等晶粒之間。In operation of the lithography apparatus, a radiation beam is conditioned and provided by an illumination system IL. The radiation beam B is incident on a patterning device (e.g. a mask) MA held on a support structure (e.g. a mask table) MT and is patterned by the patterning device. After having traversed the patterning device MA, the radiation beam B passes through a projection system PS which focuses the beam onto a target portion C of the substrate W. By means of a second positioner PW and a position sensor IF (e.g. an interferometric measurement device, a linear encoder, a 2D encoder or a capacitive sensor), the substrate table WT can be accurately moved, for example, so that different target portions C are positioned in the path of the radiation beam B. Similarly, a first positioner PM and a further position sensor (which is not explicitly depicted in FIG. 1 ) may be used to accurately position the patterning device MA relative to the path of the radiation beam B, for example after mechanical retrieval from a mask library or during scanning. In general, movement of the support structure MT may be achieved by means of a long-stroke module (coarse positioning) and a short-stroke module (fine positioning) forming part of the first positioner PM. Similarly, movement of the substrate table WT may be achieved using a long-stroke module and a short-stroke module forming part of the second positioner PW. In the case of a stepper (as opposed to a scanner), the support structure MT may be connected to a short-stroke actuator only, or may be fixed. The patterning device alignment marks M1, M2 and the substrate alignment marks P1, P2 may be used to align the patterning device MA with the substrate W. Although the substrate alignment marks are illustrated as occupying dedicated target portions, they may be located in spaces between target portions (these are referred to as scribe line alignment marks). Similarly, in the case where more than one die is provided on the patterning device MA, the patterning device alignment marks may be located between the dies.

所描繪設備可用於以下模式中之至少一者中。在步進模式中,在將被賦予至輻射光束之圖案一次性投影至目標部分C上(亦即,單次靜態曝光)時,使支撐結構MT及基板台WT保持基本上靜止。接著,使基板台WT在X及/或Y方向上移位,以使得可曝光不同目標部分C。在步進模式中,曝光場之最大大小限制單次靜態曝光中所成像之目標部分C之大小。在掃描模式下,同步地掃描支撐結構MT及基板台WT,同時將賦予至輻射光束之圖案投影至目標部分C上(亦即,單次動態曝光)。可藉由投影系統PS之縮小率及影像反轉特性來判定基板台WT相對於支撐結構MT之速度及方向。在掃描模式中,曝光場之最大大小限制單次動態曝光中之目標部分之寬度(在非掃描方向上),而掃描運動之長度判定目標部分之高度(在掃描方向上)。在另一模式中,在將被賦予至輻射光束之圖案投影至目標部分C上時,使支撐結構MT保持基本上靜止,從而固持可程式化圖案化裝置,且移動或掃描基板台WT。在此模式中,通常使用脈衝式輻射源,且在基板台WT之每一移動之後或在一掃描期間的順次輻射脈衝之間根據需要而更新可程式化圖案化裝置。此操作模式可易於應用於利用可程式化圖案化裝置(諸如,上文所提及之類型之可程式化鏡面陣列)之無光罩微影。The depicted apparatus may be used in at least one of the following modes. In step mode, the support structure MT and the substrate table WT are held essentially stationary while a pattern imparted to the radiation beam is projected onto a target portion C at one time (i.e. a single static exposure). The substrate table WT is then shifted in the X and/or Y direction so that a different target portion C can be exposed. In step mode, the maximum size of the exposure field limits the size of the target portion C imaged in a single static exposure. In scan mode, the support structure MT and the substrate table WT are scanned synchronously while a pattern imparted to the radiation beam is projected onto the target portion C (i.e. a single dynamic exposure). The speed and direction of the substrate table WT relative to the support structure MT can be determined by the reduction factor and image inversion characteristics of the projection system PS. In the scanning mode, the maximum size of the exposure field limits the width of the target portion in a single dynamic exposure (in the non-scanning direction), while the length of the scanning motion determines the height of the target portion (in the scanning direction). In another mode, the support structure MT, holding the programmable patterning device, is held substantially stationary, and the substrate table WT is moved or scanned while the pattern imparted to the radiation beam is projected onto the target portion C. In this mode, a pulsed radiation source is typically used, and the programmable patterning device is updated as necessary after each movement of the substrate table WT or between successive radiation pulses during a scan. This mode of operation can be readily applied to maskless lithography using programmable patterning devices (e.g., programmable mirror arrays of the type mentioned above).

亦可使用上文所描述之使用模式之組合及/或變化或完全不同的使用模式。Combinations and/or variations on the modes of use described above or entirely different modes of use may also be used.

可在曝光之前或之後在例如塗佈顯影系統(通常將抗蝕劑層施加至基板且顯影經曝光抗蝕劑之工具)或度量衡或檢測工具中處理基板。在適用情況下,可將本文中之揭示內容應用於此等及其他基板處理工具。此外,可將基板處理多於一次,例如以便產生多層IC,使得本文中所使用之術語基板亦可係指已包括多個經處理層之基板。The substrate may be processed before or after exposure in, for example, a coating development system (a tool that typically applies a resist layer to a substrate and develops the exposed resist) or a metrology or inspection tool. The disclosures herein may be applied to these and other substrate processing tools, where applicable. Furthermore, a substrate may be processed more than once, for example to produce a multi-layer IC, so that the term substrate used herein may also refer to a substrate that has included multiple processed layers.

本文中所使用之關於微影的術語「輻射」及「光束」涵蓋所有類型之電磁輻射,包括紫外線(UV)或深紫外線(DUV)輻射(例如,具有為365 nm、248 nm、193 nm、157 nm或126 nm之波長)及極紫外(EUV)輻射(例如具有在5 nm至20 nm之範圍內的波長),以及粒子束,諸如離子束或電子束。The terms "radiation" and "beam" used herein with respect to lithography cover all types of electromagnetic radiation, including ultraviolet (UV) or deep ultraviolet (DUV) radiation (e.g., having a wavelength of 365 nm, 248 nm, 193 nm, 157 nm, or 126 nm) and extreme ultraviolet (EUV) radiation (e.g., having a wavelength in the range of 5 nm to 20 nm), as well as particle beams, such as ion beams or electron beams.

圖案化裝置上或由圖案化裝置提供之各種圖案可具有不同程序窗。亦即,將在規格內產生圖案所根據之處理變數的空間。關於潛在系統性缺陷之圖案規格之實例包括檢查頸縮、線拉回、線薄化、CD、邊緣置放、重疊、抗蝕劑頂部損耗、抗蝕劑底切及/或橋接。可藉由使每一個別圖案之程序窗合併(例如重疊)來獲得圖案化裝置或其區域上之圖案的程序窗。圖案群組之程序窗之邊界包含個別圖案中之一些的程序窗之邊界。換言之,此等個別圖案限制圖案群組之程序窗。Various patterns on or provided by a patterning device may have different program windows. That is, the space within the specification upon which the processing variables according to which the pattern will be generated. Examples of pattern specifications for potential systematic defects include checking for necking, line pullback, line thinning, CD, edge placement, overlap, resist top loss, resist undercut and/or bridging. The program window of a pattern on a patterning device or a region thereof may be obtained by merging (e.g., overlapping) the program windows of each individual pattern. The boundaries of the program window of a group of patterns include the boundaries of the program windows of some of the individual patterns. In other words, these individual patterns limit the program window of the group of patterns.

如圖2中所展示,微影設備LA可形成微影單元LC (有時亦被稱作微影製造單元或叢集)之部分,微影製造單元LC亦包括用以對基板執行曝光前程序及曝光後程序之設備。通常,此等設備包括用以沉積一或多個抗蝕劑層之一或多個旋塗器SC、用以顯影經曝光抗蝕劑之一或多個顯影器、一或多個冷卻板CH及/或一或多個烘烤板BK。基板處置器或機器人RO自輸入/輸出埠I/O1、I/O2拾取一或多個基板,將其在不同程序設備之間移動且將其遞送至微影設備之裝載匣LB。常常被集體地稱為塗佈顯影系統之此等設備由塗佈顯影系統控制單元TCU控制,塗佈顯影系統控制單元TCU自身受監督控制系統SCS控制,監督控制系統SCS亦經由微影控制單元LACU控制微影設備。因此,不同設備可經操作以最大化產出率及處理效率。As shown in FIG2 , the lithography apparatus LA may form part of a lithography cell LC (sometimes also referred to as a lithography fabrication cell or cluster) which also includes apparatus for performing pre-exposure and post-exposure processes on substrates. Typically, such apparatus include one or more spin coaters SC for depositing one or more resist layers, one or more developers for developing the exposed resist, one or more cooling plates CH and/or one or more baking plates BK. A substrate handler or robot RO picks up one or more substrates from input/output ports I/O1, I/O2, moves them between different process apparatuses and delivers them to a loading box LB of the lithography apparatus. These devices, often collectively referred to as the coating and developing system, are controlled by a coating and developing system control unit TCU, which itself is controlled by a supervisory control system SCS, which also controls the lithography equipment via a lithography control unit LACU. Thus, the different devices can be operated to maximize throughput and process efficiency.

為正確且一致地曝光由微影設備曝光之基板,及/或為監測包括至少一個圖案轉印步驟(例如光學微影步驟)之圖案化程序(例如器件製造程序)的一部分,需要檢測基板或其他物件以量測或判定一或多個性質,諸如對準、疊對(其可例如在上覆層中之結構之間或在已藉由例如雙重圖案化程序而分別提供至該層之同一層中的結構之間)、線厚度、關鍵尺寸(CD)、聚焦偏移、材料性質等。因此,定位有微影製造單元LC之製造設施通常亦包括度量衡系統,該度量衡系統量測已在該微影製造單元中處理的基板W (圖1)中之一些或全部或該微影製造單元中之其他物件。度量衡系統可為微影製造單元LC之部分,舉例而言,其可為微影設備LA之部分(諸如對準感測器AS (圖1))。For correct and consistent exposure of substrates exposed by lithography equipment, and/or for monitoring a portion of a patterning process (e.g. a device manufacturing process) comprising at least one pattern transfer step (e.g. an optical lithography step), it is necessary to inspect the substrate or other objects to measure or determine one or more properties, such as alignment, overlay (which may be, for example, between structures in an overlying layer or between structures in the same layer that have been separately provided to the layer by, for example, a double patterning process), line thickness, critical dimension (CD), focus offset, material properties, etc. Therefore, a manufacturing facility in which a lithography fabrication cell LC is located usually also includes a metrology system that measures some or all of the substrates W ( FIG. 1 ) that have been processed in the lithography fabrication cell or other objects in the lithography fabrication cell. The metrology system may be part of a lithography cell LC, for example, it may be part of a lithography apparatus LA (such as an alignment sensor AS ( FIG. 1 )).

舉例而言,一或多個所量測參數可包括:形成於經圖案化基板中或上之連續層之間的對準、疊對、例如形成於經圖案化基板中或上之特徵的關鍵尺寸(CD) (例如,臨界線寬)、光學微影步驟之聚焦或聚焦誤差、光學微影步驟之劑量或劑量誤差、光學微影步驟之光學像差等。常常對經提供於基板上之一或多個專用度量衡目標執行此量測。可在抗蝕劑顯影之後但在蝕刻之前、在蝕刻之後、在沉積之後及/或在其他時間執行量測。For example, one or more measured parameters may include: alignment between consecutive layers formed in or on the patterned substrate, overlay, critical dimensions (CD) of features formed in or on the patterned substrate (e.g., critical line width), focus or focus error of a photolithography step, dose or dose error of a photolithography step, optical aberration of a photolithography step, etc. Such measurements are often performed on one or more dedicated metrology targets provided on the substrate. Measurements may be performed after resist development but before etching, after etching, after deposition, and/or at other times.

存在用於對在圖案化程序中形成之結構進行量測的各種技術,包括使用掃描電子顯微鏡、以影像為基礎之量測工具及/或各種特殊化工具。快速且非侵入形式之特殊化度量衡工具為輻射光束經導引至基板之表面上之目標上且量測散射(繞射/反射)光束之屬性的度量衡工具。藉由評估由基板散射之輻射之一或多個性質,可判定基板的一或多個性質。傳統地,此可稱為基於繞射之度量衡。此以繞射為基礎之度量衡的應用包括疊對、對準等之量測。舉例而言,可藉由比較繞射光譜之部分(例如,比較週期性光柵之繞射光譜中之不同繞射階)來量測疊對及/或對準。There are various techniques for measuring structures formed in the patterning process, including the use of scanning electron microscopes, image-based metrology tools, and/or various specialized tools. A rapid and non-invasive form of specialized metrology tools is one that directs a beam of radiation onto a target on the surface of a substrate and measures the properties of the scattered (diffracted/reflected) beam. By evaluating one or more properties of the radiation scattered by the substrate, one or more properties of the substrate can be determined. Traditionally, this can be referred to as diffraction-based metrology. Applications of this diffraction-based metrology include measurement of overlay, alignment, etc. For example, overlay and/or alignment may be measured by comparing portions of the diffraction spectrum (eg, comparing different diffraction orders in the diffraction spectrum of a periodic grating).

因此,在裝置製作程序(例如,圖案化程序或微影程序)中,基板或其他物件可在程序期間或在程序之後經受各種類型之量測。量測可判定一特定基板是否有缺陷、可建立對程序及用於程序中之設備之調整(例如,將基板上之兩個層對準或將圖案化裝置對準至基板)、可量測程序及設備之效能,或可用於其他目的。量測之實例包括光學成像(例如光學顯微鏡)、非成像光學量測(例如基於繞射之量測,諸如ASML YieldStar度量衡工具、ASML SMASH度量衡系統)、機械量測(例如使用電筆之剖面探測、原子力顯微法(AFM))及/或非光學成像(例如掃描電子顯微法(SEM))。Thus, in a device fabrication process (e.g., a patterning process or a lithography process), a substrate or other object may be subjected to various types of metrology during or after the process. The metrology may determine whether a particular substrate is defective, may establish adjustments to the process and equipment used in the process (e.g., aligning two layers on a substrate or aligning a patterned device to a substrate), may measure the performance of the process and equipment, or may be used for other purposes. Examples of metrology include optical imaging (e.g., optical microscopes), non-imaging optical metrology (e.g., diffraction-based metrology, such as ASML YieldStar metrology tools, ASML SMASH metrology systems), mechanical metrology (e.g., profiling using an electric pencil, atomic force microscopy (AFM)), and/or non-optical imaging (e.g., scanning electron microscopy (SEM)).

可將度量衡結果直接或間接地提供至監督控制系統SCS。若偵測到誤差,則可對後續基板之曝光(尤其在可足夠迅速且快速完成檢測以使得該批次之一或多個其他基板仍待曝光之情況下)及/或對經曝光基板之後續曝光進行調整。另外,已曝光基板可經剝離及重工以改良良率,或被捨棄,藉此避免對已知有缺陷之基板執行進一步處理。在基板之僅一些目標部分有瑕疵的狀況下,可僅對符合規格之彼等目標部分執行進一步曝光。預期其他製造程序調整。The metrology results may be provided directly or indirectly to the supervisory control system SCS. If an error is detected, adjustments may be made to the exposure of subsequent substrates (especially where the inspection can be completed quickly and rapidly enough that one or more other substrates of the batch remain to be exposed) and/or to the subsequent exposure of an exposed substrate. Additionally, exposed substrates may be stripped and reworked to improve yield, or discarded, thereby avoiding further processing of substrates known to be defective. In the case where only some target portions of a substrate are defective, further exposure may be performed only on those target portions that meet specification. Other manufacturing process adjustments are contemplated.

度量衡系統可用於判定基板結構之一或多個性質,且尤其判定不同基板結構之一或多個性質如何變化,或相同基板結構之不同層如何在層與層之間變化。度量衡系統可整合至微影設備LA或微影單元LC中,或可為單機裝置。The metrology system may be used to determine one or more properties of a substrate structure, and in particular to determine how one or more properties vary between different substrate structures, or how different layers of the same substrate structure vary from layer to layer. The metrology system may be integrated into the lithography apparatus LA or the lithography cell LC, or may be a stand-alone device.

為了實現度量衡,常常將一或多個目標特定地提供於基板上。通常,目標經專門設計且可包含週期性結構。舉例而言,基板上之目標可包含一或多個1-D週期性結構(例如,諸如光柵之幾何特徵),其經印刷以使得在顯影之後,週期性結構特徵由固體抗蝕劑線形成。作為另一實例,目標可包含一或多個2-D週期性結構(例如,光柵),其經印刷使得在顯影之後,一或多個週期性結構由抗蝕劑中之固體抗蝕劑導柱或通孔形成。桿體、導柱或通孔可替代地經蝕刻至基板中(例如經蝕刻至基板上之一或多個層中)。To achieve metrology, one or more targets are often specifically provided on a substrate. Typically, the target is specially designed and may include periodic structures. For example, a target on a substrate may include one or more 1-D periodic structures (e.g., geometric features such as a grating) that are printed so that after development, the periodic structure features are formed by solid resist lines. As another example, a target may include one or more 2-D periodic structures (e.g., a grating) that are printed so that after development, the one or more periodic structures are formed by solid resist guide posts or vias in the resist. The rods, guide posts or vias may alternatively be etched into the substrate (eg, etched into one or more layers on the substrate).

圖3描繪可用以偵測疊對、對準及/或執行其他度量衡操作之實例度量衡(檢測)系統10。其包含輻射或照明源2,該輻射或照明源2將輻射投射或以其他方式輻照至基板W (例如,其可通常包括度量衡標記)上。重導向輻射傳遞至諸如光譜儀偵測器4及/或其他感測器之感測器,該感測器量測鏡面反射及/或繞射輻射之光譜(依據波長而變化的強度),例如,在圖4左方之曲線圖中所展示。感測器可產生度量衡信號,該度量衡信號傳達指示反射輻射之性質的度量衡資料。自此資料,產生所偵測光譜之結構或剖面可由一或多個處理器PRO (其一般性實例展示於圖4中)重建構,或藉由其他操作重建構。FIG3 depicts an example metrology (inspection) system 10 that can be used to detect overlay, alignment, and/or perform other metrology operations. It includes a radiation or illumination source 2 that projects or otherwise irradiates radiation onto a substrate W (e.g., which may typically include metrology markings). The redirected radiation is transmitted to a sensor such as a spectrometer detector 4 and/or other sensors that measure the spectrum (intensity as a function of wavelength) of the specularly reflected and/or diffracted radiation, such as shown in the graph on the left of FIG4. The sensor can generate a metrology signal that conveys metrology data indicative of the properties of the reflected radiation. From this data, the structure or profile that yields the detected spectrum may be reconstructed by one or more processors PRO (a general example of which is shown in FIG. 4 ), or by other operations.

與在圖1中之微影設備LA中一樣,可提供一或多個基板台(圖4中未展示)以在量測操作期間固持基板W。一或多個基板台可在形式上與圖1之基板台WT (WTa或WTb)類似或相同。在檢測系統10與微影設備整合之實例中,一或多個基板台可甚至為同一基板台。粗略定位器及精細定位器可經提供及組態以相對於量測光學系統來準確地定位基板。提供各種感測器及致動器例如以獲取結構之所關注目標部分(例如,度量衡標記)的位置,且將該所關注目標部分帶入至物鏡下方的位置中。通常,將對在基板W上之不同位置處的結構之目標部分進行許多量測。基板支撐件可在X方向及Y方向上移動以獲取不同目標,且在Z方向上移動以獲得目標部分相對於光學系統之聚焦的所要位置。舉例而言,當實務上光學系統可保持實質上靜止(通常在X及Y方向上,但可能亦在Z方向上)且基板移動時,將操作考慮並描述為如同物鏡被帶入至相對於基板的不同位置為便利的。假定基板及光學系統之相對位置正確,則以下情況在原則上並不重要:基板及光學系統中之哪一者正在移動,或基板及光學系統兩者是否均移動,或光學系統之一部分正在移動(例如,在Z方向及/或傾斜方向上)與光學系統之剩餘部分靜止且基板正在移動(例如,在X方向及Y方向上,但亦視情況在Z方向及/或傾斜方向上)的組合。As in the lithography apparatus LA in FIG. 1 , one or more substrate tables (not shown in FIG. 4 ) may be provided to hold the substrate W during the measurement operation. The one or more substrate tables may be similar or identical in form to the substrate table WT (WTa or WTb) of FIG. 1 . In an example in which the detection system 10 is integrated with the lithography apparatus, the one or more substrate tables may even be the same substrate table. Coarse and fine positioners may be provided and configured to accurately position the substrate relative to the measurement optical system. Various sensors and actuators are provided, for example, to obtain the position of a target portion of a structure of interest (e.g., a metrology mark) and to bring the target portion of interest into position under the objective lens. Typically, many measurements will be performed on the target portion of the structure at different locations on the substrate W. The substrate support may be moved in the X and Y directions to obtain different targets, and in the Z direction to obtain the desired position of the target portion relative to the focus of the optical system. For example, while it is practical for the optical system to remain substantially stationary (typically in the X and Y directions, but possibly also in the Z direction) and the substrate to be moved, it is convenient to consider and describe the operation as if the objective is brought into different positions relative to the substrate. Provided that the relative position of substrate and optical system is correct, it is in principle unimportant which of the substrate and the optical system is moving, or whether both the substrate and the optical system are moving, or a combination of one part of the optical system moving (e.g. in the Z direction and/or the tilt direction) and the rest of the optical system being stationary and the substrate moving (e.g. in the X and Y directions, but also in the Z direction and/or the tilt direction as appropriate).

對於典型度量衡量測,基板W上之目標30可為1-D光柵,其經印刷使得在顯影之後,桿體係由固體抗蝕劑線(例如,其可由沉積層覆蓋)及/或其他材料形成。或目標30可為2-D光柵,其經印刷以使得在顯影之後,光柵由抗蝕劑中之固體抗蝕劑導柱及/或其他特徵形成。For typical metrology measurements, the target 30 on the substrate W may be a 1-D grating that is printed such that after development, the rods are formed of solid resist lines (which may be covered by a deposited layer, for example) and/or other materials. Or the target 30 may be a 2-D grating that is printed such that after development, the grating is formed of solid resist guide posts and/or other features in resist.

桿體、導柱、通孔及/或其他特徵可經蝕刻至基板中或上(例如,至基板上之一或多個層中)、沉積於基板上、由沉積層覆蓋及/或具有其他性質。(例如,桿體、導柱、通孔等之)目標(部分) 30對圖案化程序中之處理的改變(例如,微影投影設備中(諸如投影系統中)之光學像差、聚焦改變、劑量改變等)敏感,使得程序變化表現為目標30中之變化。因此,來自目標30之經量測資料可用以判定對製造程序中之一或多者的調整,及/或用作用於進行實際調整之基礎。The rods, guide posts, vias, and/or other features may be etched into or onto the substrate (e.g., into one or more layers on the substrate), deposited on the substrate, covered by a deposited layer, and/or have other properties. The target (portion) 30 (e.g., of the rods, guide posts, vias, etc.) is sensitive to changes in processing in the patterning process (e.g., optical aberrations, focus changes, dose changes, etc. in a lithographic projection apparatus such as a projection system), so that process changes manifest as changes in the target 30. Thus, measured data from the target 30 may be used to determine adjustments to one or more of the manufacturing processes and/or used as a basis for making actual adjustments.

舉例而言,來自目標30之經量測資料可指示半導體裝置之層的疊對。來自目標30之經量測資料可(例如,藉由一或多個處理器PRO及/或其他處理器)用於基於疊對判定一或多個半導體裝置製造程序參數,且基於一或多個經判定半導體裝置製造程序參數判定對半導體裝置製造裝置之調整。在一些實施例中,此可包含例如載物台位置調整,或此可包括判定對光罩設計、度量衡目標設計、半導體裝置設計、輻射之強度、輻射之入射角、輻射之波長、光瞳大小及/或形狀、抗蝕劑材料及/或其他程序參數的調整。For example, the measured data from the target 30 may indicate an overlay of layers of a semiconductor device. The measured data from the target 30 may be used (e.g., by one or more processors PRO and/or other processors) to determine one or more semiconductor device manufacturing process parameters based on the overlay, and to determine adjustments to the semiconductor device manufacturing apparatus based on the one or more determined semiconductor device manufacturing process parameters. In some embodiments, this may include, for example, stage position adjustments, or this may include determining adjustments to a mask design, a metrology target design, a semiconductor device design, the intensity of radiation, the angle of incidence of radiation, the wavelength of radiation, pupil size and/or shape, resist material, and/or other process parameters.

圖5說明典型目標(例如,度量衡標記) 30之平面圖,及圖4之系統中之典型輻射照明光點S的範圍。通常,為了獲得免於來自周圍結構之干涉的繞射光譜,在一些實施例中,目標30為大於照明光點S之寬度(例如,直徑)的週期性結構(例如,光柵)。光點S之寬度可小於目標之寬度及長度。換言之,目標係由照明「填充不足」,且繞射信號基本上不含來自目標自身外部之產品特徵及其類似者之任何信號。舉例而言,照明配置可經組態以在物鏡之後焦平面上提供均一強度之照明。替代地,藉由例如在照明路徑中包括孔徑,照明可限於軸上方向或離軸方向。FIG. 5 illustrates a plan view of a typical target (e.g., a metrology mark) 30, and the extent of a typical radiated illumination spot S in the system of FIG. 4. Typically, in order to obtain a diffraction spectrum that is free from interference from surrounding structures, in some embodiments, the target 30 is a periodic structure (e.g., a grating) that is larger than the width (e.g., diameter) of the illumination spot S. The width of the spot S may be smaller than the width and length of the target. In other words, the target is "underfilled" by the illumination, and the diffraction signal is substantially free of any signal from product features and the like external to the target itself. For example, the illumination arrangement may be configured to provide illumination of uniform intensity at the rear focal plane of the objective. Alternatively, illumination may be limited to an on-axis or off-axis direction, for example by including apertures in the illumination path.

圖6說明度量衡系統600。藉由系統600執行之度量衡操作可包括成像一或多個度量衡目標30。舉例而言,目標30可包含被統稱為目標30的形成於諸如半導體晶圓之基板602中的一或多個度量衡標記,諸如繞射光柵目標。目標30可包含圖案化基板中能夠提供繞射信號的一或多個結構。舉例而言,一或多個目標30可包括於半導體裝置結構中之基板層中。在一些實施例中,特徵包含幾何特徵,諸如1D或2D特徵及/或其他幾何特徵。作為若干非限制性實例,特徵可包含光柵、線、邊緣、一系列細節距之線及/或邊緣,及/或其他特徵。FIG6 illustrates a metrology system 600. Metrology operations performed by system 600 may include imaging one or more metrology targets 30. For example, target 30 may include one or more metrology marks, such as diffraction grating targets, collectively referred to as targets 30, formed in a substrate 602, such as a semiconductor wafer. Target 30 may include one or more structures in a patterned substrate capable of providing diffraction signals. For example, one or more targets 30 may be included in a substrate layer in a semiconductor device structure. In some embodiments, the features include geometric features, such as 1D or 2D features and/or other geometric features. As a few non-limiting examples, features may include gratings, lines, edges, a series of fine-pitch lines and/or edges, and/or other features.

系統600包含經組態以接收來自目標30之輻射並產生度量衡信號的輻射感測器604。輻射可用以獲得度量衡目標30之影像,及/或用於其他用途。輻射可包含諸如光及/或其他輻射之照明。系統600包含光學元件606,其經組態以接收自目標30及基板602反射之輻射、改變輻射之角度且朝向感測器604引導輻射。光學元件606包括光學組件605之陣列,如下文所描述。系統600包含以操作方式與輻射感測器604連接且經組態以執行以下操作的一或多個處理器PRO:基於度量衡信號判定度量衡量測值;判定用於成像基板之聚焦位置;偵測波前像差;及/或執行其他操作。System 600 includes a radiation sensor 604 configured to receive radiation from target 30 and generate a metrology signal. The radiation can be used to obtain an image of the metrology target 30, and/or for other purposes. The radiation can include illumination such as light and/or other radiation. System 600 includes an optical element 606 configured to receive radiation reflected from target 30 and substrate 602, change the angle of the radiation, and direct the radiation toward sensor 604. Optical element 606 includes an array of optical components 605, as described below. The system 600 includes one or more processors PRO operatively connected to the radiation sensor 604 and configured to: determine a metrology measurement value based on the metrology signal; determine a focus position for imaging a substrate; detect wavefront aberrations; and/or perform other operations.

系統600可類似於及/或相同於圖3中展示的系統10。在圖6中,相較於系統10,額外細節針對系統600予以說明。在一些實施例中,系統600可形成上文關於圖3所描述的系統10之部分。舉例而言,系統600可為系統10之子系統。在一些實施例中,系統600之一或多個組件可與系統10之一或多個組件類似及/或相同。在一些實施例中,系統600之一或多個組件可替換系統10之一或多個組件、與該一或多個組件一起使用及/或以其他方式擴增該一或多個組件。System 600 may be similar to and/or identical to system 10 shown in FIG3 . In FIG6 , additional details are described for system 600 compared to system 10. In some embodiments, system 600 may form a portion of system 10 described above with respect to FIG3 . For example, system 600 may be a subsystem of system 10. In some embodiments, one or more components of system 600 may be similar to and/or identical to one or more components of system 10. In some embodiments, one or more components of system 600 may replace, be used with, and/or otherwise augment one or more components of system 10.

系統600包含輻射源612;光學元件606;具有感測器604之疊對偵測分支660;光束分裂器670;對準分支680;各種透鏡、反射器及其他光學組件(具有在圖6中標記之實例物鏡690);及/或其他組件。在一些實施例中,系統600之組件形成用於半導體製造程序中的疊對及/或對準感測器之一部分。輻射源612經組態以產生自目標30沿著諸如光學路徑621之光學路徑反射的輻射。輻射可具有目標波長及/或波長範圍、目標強度及/或其他特性。目標波長及/或波長範圍、目標強度等可由使用者鍵入及/或選定,由系統(例如,圖3中所展示之系統10)基於先前量測及/或以其他方式判定。在一些實施例中,輻射包含光及/或其他輻射。在一些實施例中,光包含可見光、紅外光及/或其他光。在一些實施例中,輻射可為適於干涉術之任何輻射。System 600 includes radiation source 612; optical element 606; stacked detection branch 660 with sensor 604; beam splitter 670; alignment branch 680; various lenses, reflectors, and other optical components (with example objective lens 690 labeled in FIG. 6); and/or other components. In some embodiments, the components of system 600 form part of a stacked and/or aligned sensor used in a semiconductor manufacturing process. Radiation source 612 is configured to generate radiation reflected from target 30 along an optical path such as optical path 621. The radiation may have a target wavelength and/or wavelength range, a target intensity, and/or other characteristics. Target wavelengths and/or wavelength ranges, target intensities, etc. may be entered and/or selected by a user, determined by a system (e.g., system 10 shown in FIG. 3 ) based on previous measurements and/or otherwise. In some embodiments, radiation includes light and/or other radiation. In some embodiments, light includes visible light, infrared light, and/or other light. In some embodiments, radiation may be any radiation suitable for interferometry.

系統600不包括單獨聚焦分支650 (在圖6中說明為移除),或單獨波前像差感測器。系統600提供新的光學設計架構。系統600在使用系統之感測組件(例如感測器604、光學元件606、光學組件605之陣列等)以判定聚焦位置的度量衡量測過程中使用自基板中之目標30獲得的視場影像之位置,而不是使用聚焦分支650及上文所描述的聚焦量測之原理。系統600亦可經組態以使得光學組件605之陣列中之光學組件中之兩者包含微透鏡陣列,其中微透鏡陣列中之每一微透鏡經組態以在感測器604上形成一焦點,該焦點之位置可用以判定輻射波前像差。System 600 does not include a separate focus branch 650 (illustrated as removed in FIG. 6 ), or a separate wavefront aberration sensor. System 600 provides a new optical design architecture. System 600 uses the position of a field of view image obtained from a target 30 in a substrate in a metrological measurement process using the sensing components of the system (e.g., sensor 604, optical element 606, array of optical components 605, etc.) to determine the focus position, rather than using focus branch 650 and the principles of focus measurement described above. System 600 can also be configured so that two of the optical components in the array of optical components 605 include microlens arrays, wherein each microlens in the microlens array is configured to form a focus on sensor 604, the position of which can be used to determine radiation wavefront aberrations.

與先前系統相比較,此新的架構減少成本及體積,此係由於不需要楔(及相關聯透鏡)、聚焦分支650之組件及/或單獨波前像差感測器。此新的架構增加至感測器604之輻射通量,此係由於不再需要額外光束分裂器來組合聚焦分支650與系統600之剩餘部分。此新的架構不需要色彩聚焦校準,此係由於不再存在感測器604與聚焦分支650之間的輻射波長之改變(例如此係由於聚焦分支650完全不再存在)。此新的架構提供連續聚焦判定,此係由於不再需要聚焦模式與量測模式之間的來回切換。此新的架構考慮物鏡波前誤差,及/或具有其他優點。The new architecture reduces cost and size compared to previous systems because no wedge (and associated lens), components of the focusing branch 650, and/or a separate wavefront aberration sensor are required. The new architecture increases the radiation flux to the sensor 604 because no additional beam splitter is required to combine the focusing branch 650 with the rest of the system 600. The new architecture does not require chromatic focus calibration because there is no change in radiation wavelength between the sensor 604 and the focusing branch 650 (e.g., because the focusing branch 650 is no longer present). The new architecture provides continuous focus determination because switching back and forth between focus mode and measurement mode is no longer required. The new architecture takes objective wavefront errors into account, and/or has other advantages.

自諸如半導體晶圓之基板602中之目標30反射的輻射係運用光學元件606 (包括光學組件605之陣列)接收,其改變輻射之角度,並朝向輻射感測器604引導輻射。來自光學組件605之陣列的輻射係運用感測器604接收,且指示輻射之視場影像位置的信號產生。輻射感測器604可與圖3中展示之偵測器4及/或處理器PRO及/或其他組件類似及/或相同。在一些實施例中,感測器604包含攝影機、電荷耦合裝置(CCD)陣列、互補金屬氧化物半導體(CMOS)、光電二極體陣列及/或其他感測器。在一些實施例中,感測器604包含與疊對量測相關聯之基於微繞射的疊對攝影機。在先前系統中,疊對偵測分支660包含楔及/或其他光學組件,諸如以微繞射為基礎之疊對楔。Radiation reflected from a target 30 in a substrate 602, such as a semiconductor wafer, is received using an optical element 606 (including an array of optical components 605), which changes the angle of the radiation and directs the radiation toward a radiation sensor 604. Radiation from the array of optical components 605 is received using sensor 604, and a signal is generated indicating the position of a field of view image of the radiation. Radiation sensor 604 may be similar and/or identical to detector 4 and/or processor PRO and/or other components shown in FIG. 3. In some embodiments, sensor 604 includes a camera, a charge coupled device (CCD) array, a complementary metal oxide semiconductor (CMOS), a photodiode array, and/or other sensors. In some embodiments, the sensor 604 includes a micro-diffraction based overlay camera associated with overlay measurement. In previous systems, the overlay detection branch 660 includes a wedge and/or other optical components, such as a micro-diffraction based overlay wedge.

舉例而言,圖7說明包含光楔700、透鏡702 (例如其與圖6中之物鏡690類似及/或相同)、704、706及708、感測器604、照明光瞳711、偵測光瞳712及實例視場影像714 (來自圖6的光學組件605之陣列此處並不包括)的疊對偵測分支660。楔700包含四段,其置放在偵測光瞳712平面中,且其將來自基板602之輻射720之+1及-1繞射階(在右上方及左下方象限中)及0階(在左上及右下方象限中)重新引導至視場影像714中之四個間隔開的位置。然而,此等組件係大型、複雜且昂貴的。舉例而言,光楔及實施光楔所需之實體系統空間的成本與其他光學組件相比較高。For example, FIG7 illustrates a stacked detection branch 660 including a wedge 700, lenses 702 (e.g., which are similar and/or identical to objective lens 690 in FIG6), 704, 706, and 708, sensor 604, illumination pupil 711, detection pupil 712, and an example field image 714 (the array of optical components 605 from FIG6 is not included here). Wedge 700 includes four segments that are placed in the plane of detection pupil 712 and that redirect the +1 and -1 diffraction orders (in the upper right and lower left quadrants) and the 0 order (in the upper left and lower right quadrants) of radiation 720 from substrate 602 to four spaced-apart locations in field image 714. However, these components are large, complex, and expensive. For example, the cost of the optical wedge and the physical system space required to implement the optical wedge is high compared to other optical components.

圖8說明簡化系統600之光學組件陣列(光學組件605之陣列)替代物。與光楔700 (圖7)相比較,光學組件605之陣列更便宜且在光學上相對簡單。楔700及透鏡708用光學組件605之陣列替換,此減少系統600 (圖6)中之元件的數目。舉例而言,光學組件605之陣列替代圖7中所展示之楔700及一或多個透鏡(例如透鏡708)。光學組件605之陣列經組態以自基板602接收不同繞射階之輻射710、改變不同繞射階之輻射710之角度,及朝向輻射感測器604上之不同成像位置引導不同繞射階之輻射710以產生視場影像714。FIG8 illustrates an optical component array (array of optical components 605) alternative to simplified system 600. Compared to optical wedge 700 (FIG. 7), array of optical components 605 is less expensive and relatively simple optically. Wedge 700 and lens 708 are replaced with array of optical components 605, which reduces the number of components in system 600 (FIG. 6). For example, array of optical components 605 replaces wedge 700 and one or more lenses (e.g., lens 708) shown in FIG7. The array of optical components 605 is configured to receive radiation 710 of different diffraction orders from the substrate 602, change the angle of the radiation 710 of different diffraction orders, and direct the radiation 710 of different diffraction orders toward different imaging locations on the radiation sensor 604 to produce a field of view image 714.

在一些實施例中,光學組件605之陣列包含四個光學組件(例如劃分成象限Q1至Q4),其中四個光學組件中之兩者與第0繞射階輻射710相關聯,且四個光學組件中之兩者與第1繞射階輻射710相關聯。每一象限經組態以將輻射的一部分(例如0階輻射,及/或+/-1階輻射)引導至感測器604之不同關注區以在感測器604上形成輻射之光點(參見對應視場影像714)。在一些實施例中,光學組件605之陣列包含透鏡之陣列及/或其他組件。舉例而言,每一透鏡可具有圓形800、正方形802,及/或其他橫截面形狀。In some embodiments, the array of optical components 605 includes four optical components (e.g., divided into quadrants Q1 to Q4), wherein two of the four optical components are associated with 0th diffraction order radiation 710, and two of the four optical components are associated with 1st diffraction order radiation 710. Each quadrant is configured to direct a portion of the radiation (e.g., 0th order radiation, and/or +/-1st order radiation) to a different region of interest of the sensor 604 to form a spot of radiation on the sensor 604 (see corresponding field of view image 714). In some embodiments, the array of optical components 605 includes an array of lenses and/or other components. For example, each lens may have a circular shape 800, a square shape 802, and/or other cross-sectional shapes.

在一些實施例中,可使用四個圓形透鏡之陣列。儘管圓形透鏡可不俘獲在光瞳中心區域處或附近的照明之小部分,但其可方便實施,及/或具有其他優點。在一些實施例中,可使用四個正方形形狀透鏡之陣列,其將俘獲完整光瞳。在一些實施例中,對於0階象限Q1及Q3,可使用圓柱形透鏡,其可比正方形透鏡更便宜。涵蓋其他組態。In some embodiments, an array of four circular lenses may be used. Although circular lenses may not capture a small portion of the illumination at or near the center region of the pupil, they may be convenient to implement, and/or have other advantages. In some embodiments, an array of four square shaped lenses may be used, which will capture the entire pupil. In some embodiments, for the 0th order quadrants Q1 and Q3, cylindrical lenses may be used, which may be less expensive than square lenses. Other configurations are contemplated.

此等透鏡之透鏡光學能力可經組態以維持感測器604處之邊緣射線角度、在感測器604處之目標放大率,及/或具有其他效應。此可減少系統600 (圖6)的偵測分支660之成本及大小,及/或具有其他優點。透鏡之光軸位置亦可經最佳化。離開每一透鏡之射線的角度可藉由在此實例中之y維度上改變每一透鏡上之光軸來線性地調變。此外,每一透鏡具有其自身光軸且可經獨立地選擇以產生離開透鏡的射線之所要傾斜。此可改變來自感測器604的象限影像中之每一者的x-y位置。The lens optical capabilities of these lenses can be configured to maintain the edge ray angle at the sensor 604, the target magnification at the sensor 604, and/or have other effects. This can reduce the cost and size of the detection branch 660 of the system 600 (Figure 6), and/or have other advantages. The optical axis position of the lenses can also be optimized. The angle of the ray leaving each lens can be linearly modulated by changing the optical axis on each lens in the y dimension in this example. In addition, each lens has its own optical axis and can be independently selected to produce the desired tilt of the ray leaving the lens. This can change the x-y position of each of the quadrant images from the sensor 604.

在一些實施例中,光學組件605之陣列包含空間光調變器(SLM)。SLM可為透射式的或反射式的,或具有透射式或反射式的部分。SLM可包含液晶、數位微鏡裝置(DMD)、經組態以改變不同繞射階之輻射之角度的圖案,及/或經組態以朝向輻射感測器上之不同成像位置引導不同繞射階之輻射的其他特徵。在一些實施例中,光學組件605之陣列包含超穎透鏡之陣列。一或多個處理器PRO (例如下文所描述的在圖3、圖6及圖15中所展示)以操作方式與輻射感測器604連接且經組態以基於度量衡信號判定度量衡量測值。舉例而言,度量衡量測值可包含與在基板602上執行之半導體製造程序相關聯的對準值、疊對值、聚焦值、關鍵尺寸值,及/或其他度量衡量測值。In some embodiments, the array of optical components 605 includes a spatial light modulator (SLM). The SLM can be transmissive or reflective, or have transmissive or reflective portions. The SLM can include liquid crystals, digital micromirror devices (DMDs), patterns configured to change the angle of radiation of different diffraction orders, and/or other features configured to direct radiation of different diffraction orders toward different imaging locations on the radiation sensor. In some embodiments, the array of optical components 605 includes an array of superlenses. One or more processors PRO (such as shown in Figures 3, 6, and 15 described below) are operatively connected to the radiation sensor 604 and are configured to determine metrological measurement values based on the metrological signal. For example, the metrology measurements may include alignment values, overlay values, focus values, critical dimension values, and/or other metrology measurements associated with a semiconductor manufacturing process performed on the substrate 602.

在一些實施例中,如圖9中所展示,光學組件605之陣列中的光學組件(在此實例中在象限Q1及Q3中)中之兩者經組態以在輻射感測器604上的兩個不同成像位置中產生兩個相反散焦(900、902)0階影像(參見視場影像910中之對應散焦影像904、906)。此組態可包括例如改變兩個光學組件之曲率使得正及負散焦在此等兩個象限之影像平面處產生。差分散焦信號可自此等兩個0階影像量測且因此啟用即時聚焦偵測及/或其他操作。In some embodiments, as shown in FIG. 9 , two of the optical components in the array of optical components 605 (in quadrants Q1 and Q3 in this example) are configured to produce two oppositely defocused (900, 902) 0-order images in two different imaging locations on the radiation sensor 604 (see corresponding defocused images 904, 906 in field of view image 910). This configuration may include, for example, changing the curvature of the two optical components so that positive and negative defocus are produced at the image planes of these two quadrants. A differential defocus signal may be measured from these two 0-order images and thus enable real-time focus detection and/or other operations.

舉例而言,視場影像位置影像904及/或906自預期視場影像位置的移位係藉由一或多個處理器PRO來判定。入射於偵測光瞳712的散焦輻射致使移位。藉由感測器604產生之信號指示輻射之光點的四個單獨視場影像位置。另外,亦可以相同方式使用影像904及/或906之模糊。舉例而言,當影像904及906移位相同距離,且在相同位準處模糊時,可到達理想聚焦。以操作方式與輻射感測器604連接的一或多個處理器PRO (例如及/或圖3、圖6中展示之PRO,及/或下文關於圖15所描述之處理器)可經組態以基於在輻射感測器604上的兩個不同成像位置中之相反散焦0階影像904、906、模糊及/或其他資訊判定用於運用系統600 (圖6)成像基板602之聚焦位置。For example, the displacement of the field image position images 904 and/or 906 from the expected field image position is determined by one or more processors PRO. Defocused radiation incident on the detection pupil 712 causes the displacement. The signal generated by the sensor 604 indicates the four individual field image positions of the light point of the radiation. In addition, the blurring of the images 904 and/or 906 can also be used in the same way. For example, when the images 904 and 906 are displaced by the same distance and blurred at the same level, the ideal focus can be achieved. One or more processors PRO (e.g., and/or the PRO shown in FIGS. 3 , 6 , and/or the processor described below with respect to FIG. 15 ) operatively connected to the radiation sensor 604 may be configured to determine a focal position for imaging the substrate 602 using the system 600 ( FIG. 6 ) based on oppositely defocused 0-order images 904, 906, blur and/or other information at two different imaging positions on the radiation sensor 604.

在一些實施例中,聚焦位置係基於移位與度量衡系統600物鏡散焦之間的關係來判定。此關係可為線性的及/或具有其他對應關係。舉例而言,一或多個處理器(例如圖3中展示之PRO及/或下文關於圖15所描述之處理器)經組態以判定0階及1階光點之移位,並基於0階及1階光點之移位判定聚焦位置。移位與物鏡散焦之間的線性關係意謂隨著散焦增加,光點更遠離其預期位置。此移位及此關係可以用於判定用於諸如物鏡690之光學組件的(最佳)聚焦位置以對目標30進行成像。在一些實施例中,一或多個處理器PRO可基於例如影像910中之輻射的光點之形心及/或藉由其他方法判定視場影像904、906之視場影像位置的移位。在一些實施例中,視場影像904、906之視場影像位置的移位係基於視場影像904、906之強度偵測而判定。在一些實施例中,舉例而言,強度偵測係在視場影像904、906中之輻射光點的一或多個瓣環之一或多個半部處判定。另外,如上文所描述,亦可以類似方式使用影像904及/或906之模糊。舉例而言,當影像904及906移位相同距離,且在相同位準處模糊時,可到達理想聚焦。In some embodiments, the focus position is determined based on the relationship between the shift and the defocus of the objective of the metrology system 600. This relationship can be linear and/or have other corresponding relationships. For example, one or more processors (such as the PRO shown in Figure 3 and/or the processor described below with respect to Figure 15) are configured to determine the shift of the 0th and 1st order light spots, and determine the focus position based on the shift of the 0th and 1st order light spots. The linear relationship between the shift and the defocus of the objective means that as the defocus increases, the light spots are further away from their expected positions. This shift and this relationship can be used to determine the (optimal) focus position for optical components such as the objective 690 to image the target 30. In some embodiments, one or more processors PRO may determine the shift of the field of view image position of field of view images 904, 906 based on, for example, the centroid of the radiated light spot in image 910 and/or by other methods. In some embodiments, the shift of the field of view image position of field of view images 904, 906 is determined based on intensity detection of field of view images 904, 906. In some embodiments, for example, the intensity detection is determined at one or more halves of one or more annuli of the radiated light spot in field of view images 904, 906. In addition, as described above, the blurring of images 904 and/or 906 may also be used in a similar manner. For example, ideal focus may be achieved when images 904 and 906 are shifted the same distance and blurred at the same level.

在一些實施例中,一或多個處理器經組態以基於聚焦位置自動地調整固持基板602之系統600之載物台(例如與圖1中所示及上文所描述的WTa及/或WTb類似及/或相同)之位置,以使得基板602之後續影像在聚焦中。應注意圖9將包含來自圖8的正方形802橫截面形狀透鏡之陣列的光學組件605之陣列說明為一個可能實例。然而,此等透鏡可具有允許其如本文所描述其作用的任何形狀。In some embodiments, one or more processors are configured to automatically adjust the position of a stage (e.g., similar and/or identical to WTa and/or WTb shown in FIG. 1 and described above) of the system 600 holding the substrate 602 based on the focus position so that subsequent images of the substrate 602 are in focus. It should be noted that FIG. 9 illustrates an array of optical components 605 including an array of square 802 cross-sectional shaped lenses from FIG. 8 as one possible example. However, these lenses may have any shape that allows them to function as described herein.

在一些實施例中,光學組件605之陣列中之光學組件中之兩者包含微透鏡陣列,其中一微透鏡陣列中之每一微透鏡經組態以在該輻射感測器604上形成一焦點,該焦點之位置可用以判定輻射波前像差。微透鏡陣列中之個別微透鏡可收集填充其孔徑之光且在感測器604上形成焦點,其位於微透鏡陣列之焦平面處。不具有像差(例如零斜率)之波前可產生在個別微透鏡後方居中的光點,其可用作參考位置。在具有像差(例如非零斜率)之波前中,使光點之位置相對於其對應參考位置位移。量測位移促進波前像差判定(例如波前之斜率)。舉例而言,以操作方式與輻射感測器604連接的一或多個處理器PRO (圖3、圖6、圖15)可經組態以基於焦點相對於參考位置之(位移)位置偵測輻射波前像差。另外,一或多個處理器可偵測的最小斜率對應於散焦感測器604及/或一或多個處理器PRO可量測的最小值。In some embodiments, two of the optical components in the array of optical components 605 include microlens arrays, wherein each microlens in one microlens array is configured to form a focal point on the radiation sensor 604, the position of which can be used to determine radiation wavefront aberrations. Individual microlenses in the microlens array can collect light that fills its aperture and form a focal point on the sensor 604, which is located at the focal plane of the microlens array. A wavefront without aberrations (e.g., zero slope) can produce a light spot centered behind the individual microlens, which can be used as a reference position. In a wavefront with aberrations (e.g., non-zero slope), the position of the light spot is displaced relative to its corresponding reference position. Measuring the displacement facilitates wavefront aberration determination (e.g., slope of the wavefront). For example, one or more processors PRO (FIGS. 3, 6, 15) operatively connected to the radiation sensor 604 may be configured to detect radiation wavefront aberrations based on the (displaced) position of the focus relative to a reference position. Additionally, a minimum slope detectable by the one or more processors corresponds to a minimum value measurable by the defocus sensor 604 and/or the one or more processors PRO.

作為實例,圖10說明經組態以在輻射感測器604上形成其位置可用以判定輻射波前1004、1006像差之焦點1002的微透鏡陣列1001中的微透鏡1000 (例如微透鏡)。微透鏡陣列1001中之個別微透鏡1000可收集填充其孔徑之光並在感測器604上形成焦點1002。不具有像差(例如零斜率)之波前1004可產生在如視圖1020中所展示之個別微透鏡後方右側居中的光點1002,其可用作參考位置1003。在具有像差(例如非零斜率)之波前1006中,光點之位置1008相對於其對應參考位置1003位移(如在視圖1021中所展示)。量測位移促進波前像差判定(例如波前之斜率)。舉例而言,以操作方式與輻射感測器604連接的一或多個處理器PRO (圖3、圖6、圖15)可經組態以基於焦點相對於參考位置之(位移)位置偵測輻射波前像差。在圖10中所展示之實例中,與遺失光點1014一起說明若干位移光點1012。10 illustrates a microlens 1000 (e.g., a microlens) in a microlens array 1001 configured to form a focal point 1002 on a radiation sensor 604 whose position can be used to determine aberrations of a radiation wavefront 1004, 1006. An individual microlens 1000 in the microlens array 1001 can collect light filling its aperture and form a focal point 1002 on the sensor 604. A wavefront 1004 with no aberrations (e.g., zero slope) can produce a light spot 1002 centered right behind an individual microlens as shown in view 1020, which can be used as a reference position 1003. In a wavefront 1006 having an aberration (e.g. a non-zero slope), the position 1008 of the spot is displaced relative to its corresponding reference position 1003 (as shown in view 1021). Measuring the displacement facilitates wavefront aberration determination (e.g. the slope of the wavefront). For example, one or more processors PRO (FIGS. 3, 6, 15) operatively connected to the radiation sensor 604 may be configured to detect radiation wavefront aberrations based on the (displaced) position of the focus relative to a reference position. In the example shown in FIG. 10, several displaced spots 1012 are illustrated together with missing spots 1014.

圖11亦說明經組態以在輻射感測器604上形成其位置可用以判定輻射波前像差之焦點1002 (亦參看影像1102中之焦點1002的對應影像1100)的微透鏡陣列1001 (在此實例中在Q1及Q4中)中之微透鏡1000 (例如微透鏡),但在光學組件605之陣列中的情形類似於在圖8及圖9中展示的情形。如圖11中所展示,光學組件605之陣列中之光學組件中的兩者包含微透鏡陣列1001,其中微透鏡陣列1001中之每一微透鏡1000 (微透鏡)經組態以在輻射感測器604上形成焦點1002。在此實例中,Q1及Q4中之微透鏡陣列1001及0階輻射710可用於像差偵測。11 also illustrates microlenses 1000 (e.g., microlenses) in a microlens array 1001 (in this example, in Q1 and Q4) configured to form a focal point 1002 (also see the corresponding image 1100 of the focal point 1002 in the image 1102) on the radiation sensor 604 whose position can be used to determine the radiation wavefront aberration, but the situation in the array of optical components 605 is similar to that shown in FIGS. 8 and 9. As shown in FIG. 11, two of the optical components in the array of optical components 605 include a microlens array 1001, wherein each microlens 1000 (microlens) in the microlens array 1001 is configured to form a focal point 1002 on the radiation sensor 604. In this example, the microlens array 1001 in Q1 and Q4 and the 0th order radiation 710 can be used for aberration detection.

微透鏡陣列1001中之個別微透鏡1000 (微透鏡)可收集填充其孔徑之光且形成位於微透鏡陣列1001之焦平面1110處的焦點1002。如圖12中所展示,微透鏡陣列1001之焦平面1110可與來自光學組件605之陣列中之其他光學組件(例如在此實例中之Q2及Q3中之透鏡)的輻射710之光點1200的焦平面1202不相同。結果,在一些實施例中,與光學組件605之陣列中之光學組件相比較,微透鏡陣列1001可定位在系統600 (圖6)之不同平面中,使得輻射感測器604位於微透鏡陣列1001及光學組件605之陣列中之其他光學組件(在此實例中在Q2及Q3中之透鏡)的焦平面1110處。舉例而言,微透鏡陣列1001可經定位而使得在圖12中展示之實例焦平面1110及1202重合(例如在感測器604處或附近)。Individual microlenses 1000 (microlenses) in the microlens array 1001 can collect light filling its aperture and form a focus 1002 located at a focal plane 1110 of the microlens array 1001. As shown in Figure 12, the focal plane 1110 of the microlens array 1001 can be different from the focal plane 1202 of the light point 1200 of the radiation 710 from other optical components in the array of optical components 605, such as the lenses in Q2 and Q3 in this example. As a result, in some embodiments, microlens array 1001 can be positioned in a different plane of system 600 ( FIG. 6 ) than the optical components in the array of optical components 605, such that radiation sensor 604 is located at focal plane 1110 of microlens array 1001 and the other optical components in the array of optical components 605 (lenses in Q2 and Q3 in this example). For example, microlens array 1001 can be positioned so that the example focal planes 1110 and 1202 shown in FIG. 12 coincide (e.g., at or near sensor 604).

圖13說明其中輻射感測器604包括經組態用於感測來自圖10至圖12之焦點1002之一或多個子部分1300的另一實施例。在此實例中,系統600 (圖6)之疊對偵測分支660包含經組態以將輻射自微透鏡陣列1001 (在此實例中在象限Q1及Q4中)引導至輻射感測器604之子部分1300的分段鏡1302 (及/或類似功能組件)。子部分1300亦可為分別地自輻射感測器604安裝的具有不同操作規格之非相依感測器(及因此實際上完全並非為子部分,而是單獨感測器)。舉例而言,若需要高散焦監視速度,則部分1300可具有比感測器604高的偵測速度。若不需要(或較少需要)高空間解析度用於散焦監視,則部分1300可具有比感測器604更少的像素(例如其更快且更便宜)。鏡面1302可例如為邊緣安裝分段鏡,及/或經組態用於類似功能性之其他組件。圖13說明鏡面1302之側視圖1305、正視圖1310及俯視圖1320。來自象限Q2及Q3中之光學組件605的輻射可朝向如上文所描述之感測器604引導。鏡面1302可經定位及/或以其他方式經組態使得輻射710之光點1002形成於對應於子部分1300之焦平面處。在此實例中,象限Q1及Q4中之微透鏡陣列1001的焦距可為約10至20 nm,而象限Q2及Q3中之光學組件605的焦距可為約190 nm。涵蓋其他組態。FIG. 13 illustrates another embodiment in which the radiation sensor 604 includes one or more sub-portions 1300 configured to sense the focal point 1002 from FIG. 10 to FIG. 12. In this example, the stack detection branch 660 of the system 600 (FIG. 6) includes a segmented mirror 1302 (and/or similar functional components) configured to direct radiation from the microlens array 1001 (in quadrants Q1 and Q4 in this example) to the sub-portions 1300 of the radiation sensor 604. The sub-portions 1300 may also be independent sensors with different operating specifications that are separately mounted from the radiation sensor 604 (and thus are not actually sub-portions at all, but rather separate sensors). For example, if high defocus monitoring speed is required, portion 1300 may have a higher detection speed than sensor 604. If high spatial resolution is not required (or less required) for defocus monitoring, portion 1300 may have fewer pixels than sensor 604 (e.g., it is faster and cheaper). Mirror 1302 may be, for example, an edge mounted segmented mirror, and/or other components configured for similar functionality. FIG. 13 illustrates a side view 1305, a front view 1310, and a top view 1320 of mirror 1302. Radiation from optical component 605 in quadrants Q2 and Q3 may be directed toward sensor 604 as described above. Mirror 1302 may be positioned and/or otherwise configured so that spot 1002 of radiation 710 is formed at a focal plane corresponding to subsection 1300. In this example, the focal length of microlens array 1001 in quadrants Q1 and Q4 may be approximately 10-20 nm, while the focal length of optical assembly 605 in quadrants Q2 and Q3 may be approximately 190 nm. Other configurations are contemplated.

返回至圖6,各種透鏡(實例物鏡690標記在圖6中)、反射器及其他光學組件經組態以接收、透射、反射、聚焦及/或對藉由源612產生、由光束分裂器670分裂、由各種光學元件透射或反射、由偵測分支660接收、由對準分支680接收及/或由系統600之其他部分使用的照明執行其他操作。此等各種透鏡、反射器及/或其他光學組件可包含任何類型之透鏡、反射器及/或經組態以允許系統600如所描述起作用之其他光學組件。舉例而言,物鏡690可由任何透明材料形成,且具有彎曲表面,該等彎曲表面經組態以將一或多個輻射之光點集中或以其他方式聚焦於目標30上。各種透鏡、反射器、光學元件、光束分裂器及其他光學元件可定位於任何位置及/或相對於彼此成任何角度,從而允許系統600如本文所描述起作用。此可包括定位於元件之間的特定相對距離、元件之間的特定角度等處。在一些實施例中,各種透鏡、反射器、光學元件、光束分裂器及其他光學組件在系統600中經由結構部件、夾子、夾具、螺釘、螺帽、螺栓、黏著劑及/或其他機械裝置相對於彼此而定位。在一些實施例中,透鏡、反射器、光學元件、光束分裂器及其他光學元件中之多者可相對於彼此移動。移動可經組態以調整例如一或多個目標30上之對應照明光點的位置。在一些實施例中,移動包含使各種透鏡、反射器及其他光學組件之間的距離傾斜、平移或以其他方式改變。涵蓋移動之其他實例。Returning to FIG6 , various lenses (example objective lens 690 is labeled in FIG6 ), reflectors, and other optical components are configured to receive, transmit, reflect, focus, and/or perform other operations on illumination generated by source 612, split by beam splitter 670, transmitted or reflected by various optical elements, received by detection branch 660, received by alignment branch 680, and/or used by other portions of system 600. These various lenses, reflectors, and/or other optical components may include any type of lenses, reflectors, and/or other optical components configured to allow system 600 to function as described. For example, objective lens 690 may be formed of any transparent material and have curved surfaces that are configured to concentrate or otherwise focus one or more radiated spots onto target 30. The various lenses, reflectors, optical elements, beam splitters, and other optical elements may be positioned at any position and/or at any angle relative to each other, thereby allowing the system 600 to function as described herein. This may include positioning at a specific relative distance between elements, a specific angle between elements, etc. In some embodiments, the various lenses, reflectors, optical elements, beam splitters, and other optical components are positioned relative to each other in the system 600 via structural members, clips, fixtures, screws, nuts, bolts, adhesives, and/or other mechanical devices. In some embodiments, more than one of the lenses, reflectors, optical elements, beam splitters, and other optical elements may be moved relative to each other. The movement may be configured to adjust, for example, the position of a corresponding illumination spot on one or more targets 30. In some embodiments, movement includes tilting, translating, or otherwise changing the distances between various lenses, reflectors, and other optical components. Other examples of movement are encompassed.

在一些實施例中,移動可藉由一處理器以電子方式控制,該處理器諸如處理器PRO (且下文亦在圖3及圖15中論述)。處理器PRO可包括於計算系統CS (圖15)中且可基於電腦或機器可讀指令(例如,如下文關於圖15所描述)而操作。可藉由在單獨組件之間傳輸電子信號、在系統600之單獨組件之間傳輸資料、在單獨組件之間傳輸值及/或其他通信來發生電子通信。系統600之組件可經由導線通信或經由網路(諸如網際網路,或網際網路結合各種其他網路,如區域網路、蜂巢式網路或個人區域網路、內部組織網路及/或其他網路)無線地通信。In some embodiments, movement may be controlled electronically by a processor, such as processor PRO (and also discussed below in FIG. 3 and FIG. 15 ). Processor PRO may be included in computing system CS ( FIG. 15 ) and may operate based on computer or machine readable instructions (e.g., as described below with respect to FIG. 15 ). Electronic communication may occur by transmitting electronic signals between individual components, transmitting data between individual components of system 600, transmitting values between individual components, and/or other communications. The components of system 600 may communicate wirelessly via wired communications or via a network (such as the Internet, or the Internet in combination with various other networks, such as a local area network, a cellular network or a personal area network, an intranet, and/or other networks).

在一些實施例中,一或多個致動器(圖6中未展示)可耦接至且經組態以移動系統600的一或多個組件。致動器可藉由黏著劑、夾子、夾具、螺釘、軸環及/或其他機構耦接至系統600之一或多個組件。致動器可經組態為以電子方式受控制。個別致動器可經組態以將電信號轉換成機械移位。機械移位經組態以移動系統600之組件。作為一實例,致動器中之一或多者可為壓電的。一或多個處理器PRO可經組態以控制致動器。一或多個處理器PRO可經組態以個別地控制該一或多個致動器中之每一者。In some embodiments, one or more actuators (not shown in FIG. 6 ) may be coupled to and configured to move one or more components of the system 600. The actuators may be coupled to one or more components of the system 600 by adhesives, clips, clamps, screws, collars, and/or other mechanisms. The actuators may be configured to be electronically controlled. Individual actuators may be configured to convert electrical signals into mechanical displacements. Mechanical displacements are configured to move components of the system 600. As an example, one or more of the actuators may be piezoelectric. One or more processors PRO may be configured to control the actuators. One or more processors PRO may be configured to individually control each of the one or more actuators.

圖6中所展示之各種透鏡、反射器及/或其他光學組件之數量並不意欲為限制性的。本文中所描述之原理可經擴展,使得在一些實施例中,系統600包含額外或更少透鏡、反射器及/或其他光學組件。The number of various lenses, reflectors and/or other optical components shown in Fig. 6 is not intended to be limiting. The principles described herein can be expanded so that in some embodiments, system 600 includes additional or fewer lenses, reflectors and/or other optical components.

圖14說明度量衡方法1400。在一些實施例中,方法1400作為例如半導體裝置製造程序中之疊對及/或對準感測操作之部分而執行。在一些實施例中,舉例而言,方法1400之一或多個操作可實施於圖6中說明之系統600、圖3中說明之系統10、電腦系統(例如,如圖15中所說明及下文所描述)及/或其他系統中或由以上各者實施。在一些實施例中,方法1400包含運用光學組件陣列接收(操作1402)自基板反射之輻射,改變不同繞射階之輻射的角度,及朝向輻射感測器上之不同成像位置引導不同繞射階之輻射;判定(操作1404)用於成像基板之聚焦位置;偵測(操作1406)波前像差;基於在不同成像位置處接收的輻射產生(操作1408)度量衡信號;基於度量衡信號、聚焦位置、波前像差及/或其他資訊判定(操作1410)度量衡量測值;及/或執行其他操作。FIG. 14 illustrates a metrology method 1400. In some embodiments, the method 1400 is performed as part of an overlay and/or alignment sensing operation, such as in a semiconductor device manufacturing process. In some embodiments, one or more operations of the method 1400 may be implemented in or by, for example, the system 600 illustrated in FIG. 6 , the system 10 illustrated in FIG. 3 , a computer system (e.g., as illustrated in FIG. 15 and described below), and/or other systems. In some embodiments, method 1400 includes receiving (operation 1402) radiation reflected from a substrate using an array of optical components, changing the angle of the radiation of different diffraction orders, and directing the radiation of different diffraction orders toward different imaging locations on a radiation sensor; determining (operation 1404) a focus position for imaging the substrate; detecting (operation 1406) wavefront aberrations; generating (operation 1408) metrology signals based on the radiation received at different imaging locations; determining (operation 1410) metrology measurement values based on the metrology signals, focus position, wavefront aberrations, and/or other information; and/or performing other operations.

方法1400之操作意欲係說明性的。在一些實施例中,方法1400可用未描述之一或多個額外操作及/或不用所論述之操作中之一或多者來實現。舉例而言,在一些實施例中,方法1400可包括額外操作,該額外操作包含判定半導體裝置製造程序之調整。另外,在圖14中說明及在本文中描述的方法1400之操作所藉以的次序並不意欲為限制性的。The operations of method 1400 are intended to be illustrative. In some embodiments, method 1400 may be implemented with one or more additional operations not described and/or without one or more of the operations discussed. For example, in some embodiments, method 1400 may include additional operations that include determining adjustments to a semiconductor device manufacturing process. Additionally, the order in which the operations of method 1400 are illustrated in FIG. 14 and described herein is not intended to be limiting.

在一些實施例中,方法1400之一或多個部分可實施於一或多個處理裝置(例如,數位處理器、類比處理器、經設計以處理資訊之數位電路、經設計以處理資訊之類比電路、狀態機及/或用於以電子方式處理資訊之其他機構)中及/或由該一或多個處理裝置控制。一或多個處理裝置可包括回應於以電子方式儲存於電子儲存媒體上之指令而執行方法1400的操作中之一些或全部的一或多個裝置。一或多個處理裝置可包括一或多個裝置,該一或多個裝置經由經特定設計以用於實行方法1400之操作中之一或多者(例如,參見下文關於圖15之論述)的硬體、韌體及/或軟體而組態。In some embodiments, one or more portions of method 1400 may be implemented in and/or controlled by one or more processing devices (e.g., digital processors, analog processors, digital circuits designed to process information, analog circuits designed to process information, state machines, and/or other mechanisms for electronically processing information). The one or more processing devices may include one or more devices that perform some or all of the operations of method 1400 in response to instructions stored electronically on an electronic storage medium. The one or more processing devices may include one or more devices configured via hardware, firmware, and/or software specifically designed to perform one or more of the operations of method 1400 (eg, see discussion below with respect to FIG. 15 ).

在操作1402處,自基板反射之輻射係運用光學組件陣列接收。光學組件陣列經組態以改變不同繞射階之輻射的角度,並朝向輻射感測器上之不同成像位置引導不同繞射階之輻射。輻射感測器可與圖3及圖6中展示之偵測器4、感測器604及/或處理器PRO (其以操作方式耦接至輻射感測器)及/或其他組件類似及/或相同。在一些實施例中,光學組件陣列與上文所描述的在圖8至圖13中展示之光學組件605的陣列中之一或多者類似及/或相同。光學組件之此等陣列可包含四個光學組件(例如劃分成象限Q1至Q4),其中四個光學組件中之兩者與第0繞射階輻射相關聯,且四個光學組件中之兩者與第1繞射階輻射相關聯。每一象限經組態以將輻射的一部分(例如0階輻射,及/或+/-1階輻射)引導至感測器之不同關注區以在感測器上形成輻射之光點。At operation 1402, radiation reflected from the substrate is received using an array of optical components. The array of optical components is configured to change the angle of radiation of different diffraction orders and direct the radiation of different diffraction orders toward different imaging locations on a radiation sensor. The radiation sensor may be similar and/or identical to the detector 4, sensor 604, and/or processor PRO (operably coupled to the radiation sensor) and/or other components shown in Figures 3 and 6. In some embodiments, the array of optical components is similar and/or identical to one or more of the arrays of optical components 605 shown in Figures 8 to 13 described above. Such arrays of optical components may include four optical components (e.g., divided into quadrants Q1 to Q4), wherein two of the four optical components are associated with 0th order radiation and two of the four optical components are associated with 1st order radiation. Each quadrant is configured to direct a portion of the radiation (e.g., 0th order radiation, and/or +/-1st order radiation) to a different region of interest of the sensor to form a spot of radiation on the sensor.

在一些實施例中,光學組件之陣列包含透鏡之陣列。舉例而言,每一透鏡可具有圓形或正方形橫截面形狀。在一些實施例中,光學組件之陣列包含空間光調變器(SLM)。SLM可為透射式的或反射式的,或具有透射式或反射式的部分。SLM可包含液晶、數位微鏡裝置(DMD)、經組態以改變不同繞射階之輻射之角度的圖案,及/或經組態以朝向輻射感測器上之不同成像位置引導不同繞射階之輻射的其他特徵。在一些實施例中,光學組件之陣列包含超穎透鏡之陣列。In some embodiments, the array of optical components includes an array of lenses. For example, each lens may have a circular or square cross-sectional shape. In some embodiments, the array of optical components includes a spatial light modulator (SLM). The SLM may be transmissive or reflective, or have transmissive or reflective portions. The SLM may include liquid crystals, digital micromirror devices (DMDs), patterns configured to change the angle of radiation of different diffraction orders, and/or other features configured to direct radiation of different diffraction orders toward different imaging locations on a radiation sensor. In some embodiments, the array of optical components includes an array of super-lenses.

在一些實施例中,操作1402包含運用輻射源(諸如圖3中展示之源2及/或圖6中展示之612)產生輻射,及朝向基板引導輻射。在一些實施例中,基板包含具有一或多個目標之半導體晶圓,該一或多個目標經組態以朝向光學組件陣列反射輻射。在一些實施例中,感測器包含攝影機、電荷耦合裝置(CCD)陣列、互補金屬氧化物半導體(CMOS)、光電二極體陣列及/或其他感測器。在一些實施例中,該感測器包含與疊對量測相關聯之一基於微繞射的疊對攝影機。In some embodiments, operation 1402 includes generating radiation using a radiation source (such as source 2 shown in FIG. 3 and/or 612 shown in FIG. 6 ), and directing the radiation toward a substrate. In some embodiments, the substrate includes a semiconductor wafer having one or more targets configured to reflect the radiation toward an array of optical components. In some embodiments, the sensor includes a camera, a charge coupled device (CCD) array, a complementary metal oxide semiconductor (CMOS), a photodiode array, and/or other sensors. In some embodiments, the sensor includes a micro-diffraction based overlay camera associated with overlay measurement.

在一些實施例中,操作1402包括用輻射照明(及/或另外輻照)經圖案化基板中之一或多個目標(例如,圖3中所展示之目標30)。輻射包含光及/或其他輻射。在一些實施例中,輻射可由輻射源以其他方式引導至多個目標、單一目標、目標之子部分(例如小於整個塗層之某物)上及/或基板上。在一些實施例中,輻射可由輻射源以時變方式引導至目標上。舉例而言,可在目標上光柵化輻射(例如,藉由在輻射下移動目標)使得在不同時間輻照目標之不同部分。作為另一實例,輻射之特性(例如,波長、強度等)可變化。此可產生時變資料包絡或窗口以供分析。資料包絡可促進對目標之個別子部分的分析、目標之一個部分與另一部分及/或其他目標(例如,在其他層中)的比較及/或其他分析。In some embodiments, operation 1402 includes illuminating (and/or otherwise irradiating) one or more targets in the patterned substrate (e.g., target 30 shown in FIG. 3 ) with radiation. The radiation includes light and/or other radiation. In some embodiments, the radiation may be otherwise directed by a radiation source onto multiple targets, a single target, a sub-portion of a target (e.g., something less than the entire coating), and/or onto the substrate. In some embodiments, the radiation may be directed by a radiation source onto the target in a time-varying manner. For example, the radiation may be rastered over the target (e.g., by moving the target under the radiation) so that different portions of the target are irradiated at different times. As another example, a characteristic of the radiation (e.g., wavelength, intensity, etc.) may vary. This can generate a time-varying data envelope or window for analysis. The data envelope can facilitate analysis of individual sub-portions of the target, comparison of one portion of the target with another portion and/or other targets (e.g., in other layers), and/or other analysis.

在一些實施例中,操作1402包含偵測來自一或多個繞射光柵目標之反射輻射(運用上文所描述的輻射感測器)。偵測反射輻射包含偵測來自目標之一或多個幾何特徵之反射輻射中的一或多個相位及/或振幅(強度)移位。該一或多個相位及/或振幅移位對應於目標之一或多個維度。舉例而言,來自目標之一側的反射輻射之相位及/或振幅相對於來自目標之另一側的反射輻射之相位及/或振幅係不同的。In some embodiments, operation 1402 includes detecting reflected radiation from one or more diffraction grating targets (using the radiation sensors described above). Detecting reflected radiation includes detecting one or more phase and/or amplitude (intensity) shifts in the reflected radiation from one or more geometric features of the target. The one or more phase and/or amplitude shifts correspond to one or more dimensions of the target. For example, the phase and/or amplitude of reflected radiation from one side of the target is different relative to the phase and/or amplitude of reflected radiation from another side of the target.

偵測來自目標之反射輻射的一或多個相位及/或振幅(強度)移位包含量測對應於目標之不同部分的局部相移(例如,局部相位增量)及/或振幅變化。舉例而言,來自目標之特定區域的反射輻射可包含具有某一相位及/或振幅的正弦波形。來自目標之不同區域(或不同層中之目標)的反射輻射亦可包含正弦波形,但具有不同相位及/或振幅的正弦波形。所偵測反射輻射亦包含量測不同繞射階之反射輻射中的相位及/或振幅差。偵測一或多個局部相位及/或振幅移位可使用例如希爾伯特(Hilbert)變換及/或其他技術來執行。干涉量測技術及/或其他操作可用以量測不同繞射階之反射輻射中的相位及/或振幅差。Detecting one or more phase and/or amplitude (intensity) shifts of reflected radiation from a target includes measuring local phase shifts (e.g., local phase increments) and/or amplitude changes corresponding to different parts of the target. For example, reflected radiation from a particular area of the target may include a sinusoidal waveform with a certain phase and/or amplitude. Reflected radiation from different areas of the target (or targets in different layers) may also include sinusoidal waveforms, but with different phases and/or amplitudes. Detecting reflected radiation also includes measuring phase and/or amplitude differences in reflected radiation of different diffraction orders. Detecting one or more local phase and/or amplitude shifts can be performed using, for example, a Hilbert transform and/or other techniques. Interferometry techniques and/or other operations may be used to measure phase and/or amplitude differences in reflected radiation of different diffraction orders.

在操作1404處,判定用於成像基板之聚焦位置。在一些實施例中,光學組件陣列中之光學組件中之兩者經組態以在輻射感測器上的兩個不同成像位置中產生兩個相反散焦0階影像(參見圖9)。諸如處理器PRO之一或多個處理器經組態以基於在輻射感測器上的兩個不同成像位置中之相反散焦0階影像判定用於運用度量衡系統成像基板之聚焦位置。在一些實施例中,該一或多個處理器經組態以基於聚焦位置自動地調整固持基板之度量衡系統之載物台的位置,以使得基板之後續影像在聚焦中。At operation 1404, a focus position for imaging the substrate is determined. In some embodiments, two of the optical components in the array of optical components are configured to produce two oppositely defocused 0-order images in two different imaging positions on the radiation sensor (see FIG. 9 ). One or more processors, such as processor PRO, are configured to determine a focus position for imaging the substrate using the metrology system based on the oppositely defocused 0-order images in the two different imaging positions on the radiation sensor. In some embodiments, the one or more processors are configured to automatically adjust the position of a stage of the metrology system holding the substrate based on the focus position so that subsequent images of the substrate are in focus.

在操作1406處,偵測波前像差。在一些實施例中,光學組件陣列中之光學組件中之兩者包含微透鏡陣列及/或其他組件。微透鏡陣列中之每一微透鏡經組態以在輻射感測器上形成焦點,該焦點之位置可用以判定輻射波前像差(參見圖10至圖11及上文對應描述)。該一或多個處理器PRO可經組態以基於焦點相對於參考位置之位置及/或其他資訊偵測波前像差。在一些實施例中,與光學組件陣列中之其他光學組件相比較,微透鏡陣列定位在度量衡系統之不同平面中,使得輻射感測器位於微透鏡陣列及光學組件陣列中之其他光學組件之焦平面處。在一些實施例中,輻射感測器包括經組態用於感測焦點的子部分(定位在不同平面中)(參見上文所描述的圖12)。操作1406可包括運用分段鏡將輻射自微透鏡陣列引導至輻射感測器之子部分(例如如圖13中所展示及上文所描述)。At operation 1406, wavefront aberrations are detected. In some embodiments, two of the optical components in the optical component array include a microlens array and/or other components. Each microlens in the microlens array is configured to form a focal point on the radiation sensor, and the position of the focal point can be used to determine the radiation wavefront aberration (see Figures 10-11 and corresponding descriptions above). The one or more processors PRO can be configured to detect wavefront aberrations based on the position of the focal point relative to a reference position and/or other information. In some embodiments, the microlens array is positioned in a different plane of the metrology system than other optical components in the array of optical components, such that the radiation sensor is located at a focal plane of the microlens array and other optical components in the array of optical components. In some embodiments, the radiation sensor includes a sub-portion (positioned in a different plane) configured for sensing focus (see FIG. 12 described above). Operation 1406 may include directing radiation from the microlens array to the sub-portion of the radiation sensor using a segmented mirror (e.g., as shown in FIG. 13 and described above).

在操作1408處,基於在不同成像位置處接收的輻射及/或其他資訊產生度量衡信號。度量衡信號係由輻射感測器(例如圖3中之偵測器4及/或其他感測器)產生。度量衡信號包含表示及/或以其他方式對應於自目標反射之輻射的電子信號。度量衡信號可指示與例如繞射光柵目標相關聯之度量衡值及/或其他資訊。產生度量衡信號包含感測反射輻射及將感測到之反射輻射轉換成電子信號。在一些實施例中,產生度量衡信號包含感測來自目標之不同區域及/或不同幾何形狀及/或多個目標的反射輻射之不同部分,及組合反射輻射之該等不同部分以形成度量衡信號。此可包括使用本文中所描述之輻射產生及/或分析目標之一或多個影像。此感測及轉換可由與圖3及圖6中所展示之偵測器4、感測器604及/或處理器PRO類似及/或相同的組件及/或其他組件執行。At operation 1408, a metrology signal is generated based on the radiation and/or other information received at different imaging locations. The metrology signal is generated by a radiation sensor (e.g., detector 4 in FIG. 3 and/or other sensors). The metrology signal includes an electronic signal that represents and/or otherwise corresponds to radiation reflected from a target. The metrology signal may indicate a metrology value and/or other information associated with, for example, a diffraction grating target. Generating the metrology signal includes sensing the reflected radiation and converting the sensed reflected radiation into an electronic signal. In some embodiments, generating the metrology signal includes sensing different portions of reflected radiation from different regions of the target and/or different geometric shapes and/or multiple targets, and combining the different portions of the reflected radiation to form the metrology signal. This may include generating and/or analyzing one or more images of the target using the radiation described herein. This sensing and conversion may be performed by components similar and/or the same as the detector 4, sensor 604 and/or processor PRO shown in Figures 3 and 6 and/or other components.

在操作1410處,度量衡量測值係基於度量衡信號、聚焦位置、波前像差及/或其他資訊而判定。度量衡量測值可由一或多個處理器(例如本文中所描述的處理器PRO)及/或其他組件判定。在一些實施例中,度量衡量測值包含與在基板上執行之半導體製造程序相關聯的對準值、疊對值、聚焦值、關鍵尺寸值,及/或其他度量衡值。可使用干涉法之原理及/或其他原理來判定量測資訊(例如,疊對值、對準值及/或其他資訊)。在一些實施例中,舉例而言,操作1410包括判定疊對及/或對準。疊對及/或對準可基於自基板上之繞射光柵目標反射的繞射輻射、聚焦位置、波前像差及/或其他資訊來判定。At operation 1410, metrological measurement values are determined based on metrology signals, focal position, wavefront aberrations, and/or other information. The metrological measurement values may be determined by one or more processors (e.g., processor PRO described herein) and/or other components. In some embodiments, the metrological measurement values include alignment values, overlay values, focus values, key dimension values, and/or other metrological values associated with a semiconductor manufacturing process performed on a substrate. The measurement information (e.g., overlay values, alignment values, and/or other information) may be determined using the principles of interferometry and/or other principles. In some embodiments, for example, operation 1410 includes determining overlay and/or alignment. Overlay and/or alignment may be determined based on diffracted radiation reflected from a diffracted grating target on the substrate, focal position, wavefront aberrations, and/or other information.

在一些實施例中,方法1400包含判定半導體裝置製造程序之調整。舉例而言,此可包括運用一或多個處理器PRO基於經判定聚焦位置自動地調整固持基板之度量衡系統之載物台的位置,以使得基板之後續影像在聚焦中(如上文所描述)。在一些實施例中,方法1400包括判定一或多個半導體裝置製造程序參數。可基於一或多個偵測到之相位及/或振幅變化、由度量衡信號指示之疊對及/或對準值及/或其他資訊而判定一或多個半導體裝置製造程序參數。一或多個參數可包括輻射(用於度量衡之輻射)之參數、半導體裝置結構之層上之度量衡檢測位置、在目標上之輻射光束軌跡,及/或其他參數。在一些實施例中,程序參數可被廣泛地解譯為包括載物台位置、光罩設計、度量衡目標設計、半導體裝置設計、輻射之強度(用於曝光抗蝕劑等)、輻射之入射角(用於曝光抗蝕劑等)、輻射之波長(用於曝光抗蝕劑等)、光瞳大小及/或形狀、抗蝕劑材料及/或其他參數。In some embodiments, method 1400 includes determining adjustments to a semiconductor device manufacturing process. For example, this may include using one or more processors PRO to automatically adjust the position of a stage of a metrology system holding a substrate based on the determined focus position so that subsequent images of the substrate are in focus (as described above). In some embodiments, method 1400 includes determining one or more semiconductor device manufacturing process parameters. The one or more semiconductor device manufacturing process parameters may be determined based on one or more detected phase and/or amplitude changes, overlay and/or alignment values indicated by the metrology signal, and/or other information. The one or more parameters may include parameters of radiation (radiation for metrology), metrology detection locations on layers of semiconductor device structures, radiation beam trajectories on targets, and/or other parameters. In some embodiments, process parameters may be broadly interpreted to include stage position, mask design, metrology target design, semiconductor device design, intensity of radiation (for exposing resist, etc.), angle of incidence of radiation (for exposing resist, etc.), wavelength of radiation (for exposing resist, etc.), pupil size and/or shape, resist material, and/or other parameters.

在一些實施例中,方法1400包括基於一或多個經判定半導體裝置製造程序參數來判定程序調整、基於經判定調整來調整半導體裝置製造設備,及/或其他操作。此情形可由一或多個處理器執行,該一或多個處理器係諸如展示於圖3及圖6中的PRO、描述為圖15中所說明且下文描述之電腦系統之部分的處理器,及/或其他處理器。舉例而言,若經判定度量衡量測不在程序公差內,則超出公差量測可由一或多個製造程序引起,該一或多個製造程序的程序參數已漂移及/或以其他方式改變,使得程序不再產生可接受裝置(例如,量測可突破可接受之臨限值)。可基於量測判定來判定一或多個新的或經調整的程序參數。該等新的或經調整的程序參數可經組態以使得製造程序再次產生可接受裝置。In some embodiments, method 1400 includes determining a process adjustment based on one or more determined semiconductor device manufacturing process parameters, adjusting semiconductor device manufacturing equipment based on the determined adjustment, and/or other operations. This may be performed by one or more processors, such as the PRO shown in Figures 3 and 6, a processor described as part of the computer system illustrated in Figure 15 and described below, and/or other processors. For example, if it is determined that a metric measurement is not within a process tolerance, the out-of-tolerance measurement may be caused by one or more manufacturing processes whose process parameters have drifted and/or otherwise changed such that the process no longer produces acceptable devices (e.g., the measurement may exceed an acceptable threshold value). One or more new or adjusted process parameters may be determined based on the measurement determination. The new or adjusted process parameters can be configured so that the manufacturing process again produces acceptable devices.

舉例而言,新的或經調整程序參數可使得先前不可接受之量測值經調整回可接受範圍中。可將該等新的或經調整的程序參數與用於給定程序之現有參數進行比較。舉例而言,若存在差異,則彼差異可用於判定用於產生裝置之設備的調整(例如,應增加/減小/改變參數「x」,使得其匹配判定為方法1400之部分的參數「x」之新的或經調整版本)。在一些實施例中,方法1400可包括以電子方式調整設備(例如,基於經判定程序參數)。以電子方式調整設備可包括將例如引起設備中之改變的電子信號及/或其他通信發送至該設備。電子調整可包括例如改變設備上之設定,及/或其他調整。For example, new or adjusted process parameters may cause previously unacceptable measurements to be adjusted back into an acceptable range. The new or adjusted process parameters may be compared to existing parameters for a given process. For example, if there is a difference, the difference may be used to determine an adjustment to a device used to produce the apparatus (e.g., parameter "x" should be increased/decreased/changed so that it matches a new or adjusted version of parameter "x" determined to be part of method 1400). In some embodiments, method 1400 may include electronically adjusting the device (e.g., based on the determined process parameters). Electronically adjusting the device may include sending an electronic signal and/or other communication to the device that, for example, causes a change in the device. Electronic adjustments may include, for example, changing settings on the device, and/or other adjustments.

圖15為可用於本文中所描述之操作中之一或多者的實例電腦系統CS之圖式。電腦系統CS包括用於傳達資訊之匯流排BS或其他通信機構,以及與匯流排BS耦接以用於處理資訊之處理器PRO (或與圖3及圖6中所展示之處理器PRO類似及/或相同的多個處理器)。電腦系統CS亦包括耦接至匯流排BS以用於儲存待由處理器PRO實行之資訊及指令的主記憶體MM,諸如隨機存取記憶體(RAM)或其他動態儲存裝置。主記憶體MM亦可用於在由處理器PRO執行指令期間儲存暫時性變數或其他中間資訊。電腦系統CS進一步包括耦接至匯流排BS以用於儲存用於處理器PRO之靜態資訊及指令的唯讀記憶體(ROM) ROM或其他靜態儲存裝置。提供諸如磁碟或光碟之儲存裝置SD,且將其耦接至匯流排BS以用於儲存資訊及指令。FIG. 15 is a diagram of an example computer system CS that can be used for one or more of the operations described herein. The computer system CS includes a bus BS or other communication mechanism for communicating information, and a processor PRO (or multiple processors similar to and/or identical to the processor PRO shown in FIG. 3 and FIG. 6 ) coupled to the bus BS for processing information. The computer system CS also includes a main memory MM coupled to the bus BS for storing information and instructions to be executed by the processor PRO, such as a random access memory (RAM) or other dynamic storage device. The main memory MM can also be used to store temporary variables or other intermediate information during the execution of instructions by the processor PRO. The computer system CS further comprises a read-only memory (ROM) ROM or other static storage device coupled to the bus BS for storing static information and instructions for the processor PRO. A storage device SD such as a magnetic disk or optical disk is provided and coupled to the bus BS for storing information and instructions.

電腦系統CS可經由匯流排BS耦接至用於向電腦使用者顯示資訊之顯示器DS,諸如平板或觸控面板顯示器或陰極射線管(CRT)。包括文數字及其他按鍵之輸入裝置ID耦接至匯流排BS以用於將資訊及命令選擇傳達至處理器PRO。另一類型之使用者輸入裝置為用於將方向資訊及命令選擇傳達至處理器PRO且用於控制顯示器DS上之游標移動的游標控制件CC,諸如滑鼠、軌跡球或游標方向按鍵。此輸入裝置通常具有在兩個軸線(第一軸(例如,x)及第二軸(例如,y))上之兩個自由度,從而允許該裝置指定平面中之位置。觸控面板(螢幕)顯示器亦可被用作輸入裝置。The computer system CS can be coupled via a bus BS to a display DS for displaying information to a computer user, such as a flat-panel or touch panel display or a cathode ray tube (CRT). An input device ID including alphanumeric and other keys is coupled to the bus BS for communicating information and command selections to the processor PRO. Another type of user input device is a cursor control CC, such as a mouse, trackball or cursor direction keys, for communicating directional information and command selections to the processor PRO and for controlling the movement of a cursor on the display DS. This input device typically has two degrees of freedom on two axes, a first axis (e.g., x) and a second axis (e.g., y), allowing the device to specify a position in a plane. A touch panel (screen) display can also be used as an input device.

在一些實施例中,本文中所描述之一或多個操作中之全部或一些可由電腦系統CS回應於處理器PRO實行主記憶體MM中含有的一或多個指令之一或多個序列而執行。可將此等指令自另一電腦可讀媒體(諸如儲存裝置SD)讀取至主記憶體MM中。主記憶體MM中所包括之指令序列的實行使得處理器PRO執行本文中所描述之程序步驟(操作)。呈多處理配置之一或多個處理器亦可用於實行主記憶體MM中所含有之指令序列。在一些實施例中,可代替或結合軟體指令而使用硬連線電路系統。因此,本文中之描述不限於硬體電路系統及軟體之任何特定組合。In some embodiments, all or some of the one or more operations described herein may be executed by the computer system CS in response to the processor PRO executing one or more sequences of one or more instructions contained in the main memory MM. These instructions may be read from another computer-readable medium (such as a storage device SD) into the main memory MM. The execution of the instruction sequence included in the main memory MM causes the processor PRO to execute the program steps (operations) described herein. One or more processors in a multi-processing configuration may also be used to execute the instruction sequence contained in the main memory MM. In some embodiments, a hard-wired circuit system may be used instead of or in conjunction with software instructions. Therefore, the description herein is not limited to any specific combination of hardware circuit systems and software.

如本文中所使用之術語「電腦可讀媒體」或「機器可讀媒體」係指參與將指令提供至處理器PRO以供實行之任何媒體。此媒體可採取許多形式,包括(但不限於)非揮發性媒體、揮發性媒體及傳輸媒體。非揮發性媒體包括例如光碟或磁碟,諸如儲存裝置SD。揮發性媒體包括動態記憶體,諸如主記憶體MM。傳輸媒體包括同軸纜線、銅線及光纖,包括包含匯流排BS之線。傳輸媒體亦可採取聲波或光波之形式,諸如,在射頻(RF)及紅外線(IR)資料通信期間產生之聲波或光波。電腦可讀媒體可為非暫時性的,例如軟碟、可撓性磁碟、硬碟、磁帶、任何其他磁性媒體、CD-ROM、DVD、任何其他光學媒體、打孔卡、紙帶、具有孔圖案之任何其他實體媒體、RAM、PROM及EPROM、FLASH-EPROM、任何其他記憶體晶片或卡匣。非暫時性電腦可讀媒體可具有其上記錄之指令。該等指令在由電腦實行時可實施本文中所描述之操作中之任一者。舉例而言,暫時性電腦可讀媒體可包括載波或其他傳播電磁信號。As used herein, the term "computer-readable medium" or "machine-readable medium" refers to any medium that participates in providing instructions to the processor PRO for implementation. This medium can take many forms, including (but not limited to) non-volatile media, volatile media, and transmission media. Non-volatile media include, for example, optical discs or magnetic disks, such as storage devices SD. Volatile media include dynamic memory, such as main memory MM. Transmission media include coaxial cables, copper wires and optical fibers, including wires that include bus bars BS. Transmission media can also take the form of sound waves or light waves, such as those generated during radio frequency (RF) and infrared (IR) data communications. Computer readable media may be non-transitory, such as floppy disks, flexible disks, hard disks, magnetic tapes, any other magnetic media, CD-ROMs, DVDs, any other optical media, punch cards, paper tapes, any other physical media with hole patterns, RAM, PROMs and EPROMs, FLASH-EPROMs, any other memory chips or cartridges. Non-transitory computer readable media may have instructions recorded thereon. Such instructions, when executed by a computer, may implement any of the operations described herein. For example, a transient computer readable medium may include a carrier wave or other propagated electromagnetic signal.

可在將一或多個指令之一或多個序列攜載至處理器PRO以供執行時涉及電腦可讀媒體之各種形式。舉例而言,初始地可將該等指令承載於遠端電腦之磁碟上。遠端電腦可將指令載入至其動態記憶體內,且使用數據機經由電話線而發送指令。在電腦系統CS本端之數據機可接收電話線上之資料,且使用紅外線傳輸器將資料轉換為紅外線信號。耦接至匯流排BS之紅外線偵測器可接收紅外線信號中所攜載之資料且將資料置放於匯流排BS上。匯流排BS將資料攜載至主記憶體MM,處理器PRO自該主記憶體擷取且執行指令。由主記憶體MM接收之指令可視情況在由處理器PRO實行之前或之後儲存於儲存裝置SD上。Various forms of computer-readable media may be involved in carrying one or more sequences of one or more instructions to the processor PRO for execution. For example, the instructions may initially be carried on a disk of a remote computer. The remote computer may load the instructions into its dynamic memory and send the instructions via a telephone line using a modem. The modem at the local end of the computer system CS may receive the data on the telephone line and convert the data into an infrared signal using an infrared transmitter. An infrared detector coupled to the bus BS may receive the data carried in the infrared signal and place the data on the bus BS. The bus BS carries the data to the main memory MM, from which the processor PRO retrieves and executes the instructions. The commands received by the main memory MM may be stored in the storage device SD before or after their execution by the processor PRO, as the case may be.

電腦系統CS亦可包括耦合至匯流排BS之通信介面CI。通信介面CI提供與網路鏈路NDL之雙向資料通信耦接,該網路鏈路NDL連接至區域網路LAN。舉例而言,通信介面CI可為整合式服務數位網路(ISDN)卡或數據機以提供至對應類型之電話線的資料通信連接。作為另一實例,通信介面CI可為區域網路(LAN)卡以提供與相容LAN的資料通信連接。亦可實施無線鏈路。在任何此實施中,通信介面CI發送且接收攜載表示各種類型之資訊之數位資料流的電信號、電磁信號或光學信號。The computer system CS may also include a communication interface CI coupled to the bus BS. The communication interface CI provides a two-way data communication coupling with a network link NDL, which is connected to a local area network LAN. For example, the communication interface CI may be an integrated services digital network (ISDN) card or a modem to provide a data communication connection to a corresponding type of telephone line. As another example, the communication interface CI may be a local area network (LAN) card to provide a data communication connection with a compatible LAN. A wireless link may also be implemented. In any such implementation, the communication interface CI sends and receives electrical signals, electromagnetic signals, or optical signals carrying digital data streams representing various types of information.

網路鏈路NDL通常通過一或多個網路提供與其他資料裝置之資料通信。舉例而言,網路鏈路NDL可通過區域網路LAN提供與主電腦HC之連接。此可包括經由全球封包資料通信網路(現在通常稱為「網際網路」INT)而提供資料通信服務。區域網路LAN (網際網路)可使用攜載數位資料串流之電信號、電磁信號或光信號。通過各種網路之信號及在網路資料鏈路NDL上且通過通信介面CI之信號為輸送資訊的例示性載波形式,該等信號將數位資料攜載至電腦系統CS且自該電腦系統攜載數位資料。The network link NDL typically provides data communications with other data devices via one or more networks. For example, the network link NDL may provide a connection to a host computer HC via a local area network LAN. This may include providing data communications services via a global packet data communications network, now commonly referred to as the "Internet" INT. The local area network LAN (Internet) may use electrical, electromagnetic or optical signals that carry digital data streams. Signals through various networks and signals on the network data link NDL and through the communication interface CI are exemplary carrier forms for transmitting information, which carry digital data to and from the computer system CS.

電腦系統CS可經由網路、網路資料鏈路NDL及通信介面CI發送訊息及接收資料(包括程式碼)。在網際網路實例中,主電腦HC可經由網際網路INT、網路資料鏈路NDL、區域網路LAN及通信介面CI傳輸用於應用程式之經請求程式碼。舉例而言,一個此經下載應用程式可提供本文中所描述之方法的全部或部分。所接收程式碼可在接收其時由處理器PRO執行,及/或儲存於儲存裝置SD或其他非揮發性儲存器中以供稍後執行。以此方式,電腦系統CS可獲得呈載波之形式之應用程式碼。The computer system CS can send messages and receive data (including program codes) via the network, the network data link NDL and the communication interface CI. In the Internet example, the host computer HC can transmit the requested program code for the application via the Internet INT, the network data link NDL, the local area network LAN and the communication interface CI. For example, one such downloaded application can provide all or part of the method described herein. The received program code can be executed by the processor PRO at the time of reception, and/or stored in the storage device SD or other non-volatile storage for later execution. In this way, the computer system CS can obtain the application code in the form of a carrier.

本發明系統及方法之各種實施例揭示於經編號條項之後續清單中。在下文中,將依據條項來描述本發明之進一步特徵、特性及例示性技術解決方案,該等條項可視情況以任何組合來主張: 1.  一種度量衡系統,其包含:一輻射感測器,其經組態以基於在該輻射感測器上之不同成像位置處接收的輻射產生一度量衡信號;及一光學組件陣列,其經組態以自一基板接收不同繞射階之輻射、改變該等不同繞射階之該輻射之角度,及朝向該輻射感測器上之該等不同成像位置引導該等不同繞射階之該輻射。 2.  如條項1之系統,其中該光學組件陣列包含四個光學組件,其中該四個光學組件中之兩者與第0繞射階輻射相關聯,且該四個光學組件中之兩者與第1繞射階輻射相關聯。 3.  如前述條項中任一項之系統,其中該光學組件陣列包含一透鏡陣列。 4.  如前述條項中任一項之系統,其中每一透鏡具有一圓形或正方形橫截面形狀。 5.  如前述條項中任一項之系統,其中該光學組件陣列包含一空間光調變器(SLM)。 6.  如前述條項中任一項之系統,其中該SLM為透射式的或反射式的,或具有透射式或反射式的部分。 7.  如前述條項中任一項之系統,其中該SLM包含液晶、一數位微鏡裝置(DMD),及/或經組態以改變該等不同繞射階之該輻射之該等角度並朝向該輻射感測器上之該等不同成像位置引導該等不同繞射階之該輻射的一圖案。 8.  如前述條項中任一項之系統,其中該光學組件陣列包含一超穎透鏡陣列。 9.  如前述條項中任一項之系統,其進一步包含以操作方式與該輻射感測器連接且經組態以基於該度量衡信號判定一度量衡量測值的一或多個處理器。 10.  如前述條項中任一項之系統,其中該度量衡量測值包含與在該基板上執行之一半導體製造程序相關聯的對準值、一疊對值、一聚焦值,及/或一關鍵尺寸值。 11.  如前述條項中任一項之系統,其中該光學組件陣列中之該等光學組件中之兩者經組態以在該輻射感測器上的兩個不同成像位置中產生兩個相反散焦0階影像。 12.  如前述條項中任一項之系統,其進一步包含以操作方式與該輻射感測器連接且經組態以基於該輻射感測器上的該兩個不同成像位置中之該等相反散焦0階影像判定用於運用該度量衡系統成像該基板之一聚焦位置的一或多個處理器。 13.  如前述條項中任一項之系統,其中該一或多個處理器經進一步組態以基於該聚焦位置自動地調整固持該基板之該度量衡系統的一載物台之一位置,以使得該基板之一後續影像在聚焦中。 14.  如前述條項中任一項之系統,其中該光學組件陣列中之該等光學組件中之兩者包含微透鏡陣列,其中一微透鏡陣列中之每一微透鏡經組態以在該輻射感測器上形成一焦點,該焦點之位置可用以判定輻射波前像差。 15.  如前述條項中任一項之系統,其進一步包含以操作方式與該輻射感測器連接且經組態以基於該等焦點相對於參考位置之位置偵測該等輻射波前像差的一或多個處理器。 16.  如前述條項中任一項之系統,其中該輻射感測器包括經組態用於感測該等焦點之一子部分,該系統進一步包含經組態以將輻射自該等微透鏡陣列引導至該輻射感測器之該子部分的一分段鏡。 17.  如前述條項中任一項之系統,其中與該光學組件陣列中之其他光學組件相比較,該等微透鏡陣列定位在該度量衡系統之一不同平面中,使得該輻射感測器位於該微透鏡陣列及該光學組件陣列中之其他光學組件之該焦平面處。 18.  如前述條項中任一項之系統,其進一步包含一輻射源及一或多個透鏡,該輻射源及一或多個透鏡經組態以產生該輻射且朝向該基板引導該輻射。 19.  如前述條項中任一項之系統,其中該基板包含具有經組態以朝向該光學組件陣列反射該輻射的一或多個疊對目標的一半導體晶圓,且其中該感測器包含與疊對量測相關聯的一以微繞射為基礎之疊對攝影機。 20.  如前述條項中任一項之系統,其中該輻射感測器包含一攝影機、一電荷耦合裝置(CCD)陣列、一互補金屬氧化物半導體(CMOS)及/或一光電二極體陣列。 21.  一種度量衡方法,其包含:運用一光學組件陣列自一基板接收不同繞射階之輻射;改變該等不同繞射階之該輻射之角度;及朝向一輻射感測器上之不同成像位置引導該等不同繞射階之該輻射;及運用該輻射感測器基於在該輻射感測器上之不同成像位置處接收之輻射產生一度量衡信號。 22.  如條項21之方法,其中該光學組件陣列包含四個光學組件,其中該四個光學組件中之兩者與第0繞射階輻射相關聯,且該四個光學組件中之兩者與第1繞射階輻射相關聯。 23.  如前述條項中任一項之方法,其中該光學組件陣列包含一透鏡陣列。 24.  如前述條項中任一項之方法,其中每一透鏡具有一圓形或正方形橫截面形狀。 25.  如前述條項中任一項之方法,其中該光學組件陣列包含一空間光調變器(SLM)。 26.  如前述條項中任一項之方法,其中該SLM為透射式的或反射式的,或具有透射式或反射式的部分。 27.  如前述條項中任一項之方法,其中該SLM包含液晶、一數位微鏡裝置(DMD),及/或經組態以改變該等不同繞射階之該輻射之該等角度並朝向該輻射感測器上之該等不同成像位置引導該等不同繞射階之該輻射的一圖案。 28.  如前述條項中任一項之方法,其中該光學組件陣列包含一超穎透鏡陣列。 29.  如前述條項中任一項之方法,其進一步包含運用以操作方式與該輻射感測器連接的一或多個處理器基於該度量衡信號判定一度量衡量測值。 30.  如前述條項中任一項之方法,其中該度量衡量測值包含與在該基板上執行之一半導體製造程序相關聯的對準值、一疊對值、一聚焦值,及/或一關鍵尺寸值。 31.  如前述條項中任一項之方法,其中該光學組件陣列中之該等光學組件中之兩者經組態以在該輻射感測器上的兩個不同成像位置中產生兩個相反散焦0階影像。 32.  如前述條項中任一項之方法,其進一步包含運用以操作方式與該輻射感測器連接的一或多個處理器基於該輻射感測器上的該兩個不同成像位置中之該等相反散焦0階影像判定用於成像該基板之一聚焦位置。 33.  如前述條項中任一項之方法,其中該一或多個處理器經進一步組態以基於該聚焦位置自動地調整固持該基板之該度量衡系統的一載物台之一位置,以使得該基板之一後續影像在聚焦中。 34.  如前述條項中任一項之方法,其中該光學組件陣列中之該等光學組件中之兩者包含微透鏡陣列,其中一微透鏡陣列中之每一微透鏡經組態以在該輻射感測器上形成一焦點,該焦點之位置可用以判定輻射波前像差。 35.  如前述條項中任一項之方法,其進一步包含運用以操作方式與該輻射感測器連接的一或多個處理器基於該等焦點相對於參考位置之位置偵測該等輻射波前像差。 36.  如前述條項中任一項之方法,其中該輻射感測器包括經組態用於感測該等焦點之一子部分,該方法進一步包含運用一分段鏡將輻射自該等微透鏡陣列引導至該輻射感測器之該子部分。 37.  如前述條項中任一項之方法,其中與該光學組件陣列中之其他光學組件相比較,該等微透鏡陣列定位在一不同平面中,使得該輻射感測器位於該微透鏡陣列及該光學組件陣列中之其他光學組件之一焦平面處。 38.  如前述條項中任一項之方法,其進一步包含運用一輻射源產生該輻射且朝向該基板引導該輻射。 39.  如前述條項中任一項之方法,其中該基板包含具有經組態以朝向該光學組件陣列反射該輻射的一或多個疊對目標的一半導體晶圓,且其中該感測器包含與疊對量測相關聯的一以微繞射為基礎之疊對攝影機。 40.  如前述條項中任一項之方法,其中該輻射感測器包含一攝影機、一電荷耦合裝置(CCD)陣列、一互補金屬氧化物半導體(CMOS)及/或一光電二極體陣列。 Various embodiments of the system and method of the present invention are disclosed in the subsequent list of numbered clauses. In the following, further features, characteristics and exemplary technical solutions of the present invention will be described according to the clauses, which can be claimed in any combination as appropriate: 1. A metrology system, comprising: a radiation sensor configured to generate a metrology signal based on radiation received at different imaging positions on the radiation sensor; and an optical component array configured to receive radiation of different diffraction orders from a substrate, change the angles of the radiation of the different diffraction orders, and direct the radiation of the different diffraction orders toward the different imaging positions on the radiation sensor. 2. The system of clause 1, wherein the array of optical components comprises four optical components, wherein two of the four optical components are associated with 0th diffraction order radiation, and two of the four optical components are associated with 1st diffraction order radiation. 3. The system of any of the preceding clauses, wherein the array of optical components comprises a lens array. 4. The system of any of the preceding clauses, wherein each lens has a circular or square cross-sectional shape. 5. The system of any of the preceding clauses, wherein the array of optical components comprises a spatial light modulator (SLM). 6. The system of any of the preceding clauses, wherein the SLM is transmissive or reflective, or has transmissive or reflective portions. 7.  The system of any of the preceding clauses, wherein the SLM comprises liquid crystal, a digital micromirror device (DMD), and/or a pattern configured to change the angles of the radiation of the different diffraction orders and direct the radiation of the different diffraction orders toward the different imaging locations on the radiation sensor. 8.  The system of any of the preceding clauses, wherein the array of optical components comprises an array of super-smooth lenses. 9.  The system of any of the preceding clauses, further comprising one or more processors operatively connected to the radiation sensor and configured to determine a metrological measurement value based on the metrological signal. 10. The system of any of the preceding clauses, wherein the metrology measurement comprises an alignment value, an overlay value, a focus value, and/or a critical dimension value associated with a semiconductor manufacturing process performed on the substrate. 11. The system of any of the preceding clauses, wherein two of the optical components in the array of optical components are configured to produce two oppositely defocused 0-order images in two different imaging positions on the radiation sensor. 12. The system of any of the preceding clauses, further comprising one or more processors operatively connected to the radiation sensor and configured to determine a focus position for imaging the substrate using the metrology system based on the oppositely defocused 0-order images in the two different imaging positions on the radiation sensor. 13.  The system of any of the preceding clauses, wherein the one or more processors are further configured to automatically adjust a position of a stage of the metrology system holding the substrate based on the focal position so that a subsequent image of the substrate is in focus. 14.  The system of any of the preceding clauses, wherein two of the optical components in the optical component array include microlens arrays, wherein each microlens in a microlens array is configured to form a focal point on the radiation sensor, the position of the focal point being used to determine radiation wavefront aberrations. 15.  The system of any of the preceding clauses, further comprising one or more processors operatively connected to the radiation sensor and configured to detect wavefront aberrations of the radiation based on the positions of the focal points relative to a reference position. 16.  The system of any of the preceding clauses, wherein the radiation sensor includes a subsection configured to sense the focal points, the system further comprising a segmented mirror configured to direct radiation from the microlens array to the subsection of the radiation sensor. 17.  The system of any of the preceding clauses, wherein the array of microlenses is positioned in a different plane of the metrology system than other optical components in the array of optical components, such that the radiation sensor is located at the focal plane of the array of microlenses and other optical components in the array of optical components. 18.  The system of any of the preceding clauses, further comprising a radiation source and one or more lenses configured to generate the radiation and direct the radiation toward the substrate. 19.  The system of any of the preceding clauses, wherein the substrate comprises a semiconductor wafer having one or more stacked targets configured to reflect the radiation toward the array of optical components, and wherein the sensor comprises a micro-diffraction based stacking camera associated with stacking measurements. 20.  The system of any of the preceding clauses, wherein the radiation sensor comprises a camera, a charge coupled device (CCD) array, a complementary metal oxide semiconductor (CMOS) and/or a photodiode array. 21. A metrology method comprising: using an optical component array to receive radiation of different diffraction orders from a substrate; changing the angle of the radiation of the different diffraction orders; and directing the radiation of the different diffraction orders toward different imaging locations on a radiation sensor; and using the radiation sensor to generate a metrology signal based on the radiation received at different imaging locations on the radiation sensor. 22. The method of clause 21, wherein the optical component array comprises four optical components, wherein two of the four optical components are associated with 0th diffraction order radiation, and two of the four optical components are associated with 1st diffraction order radiation. 23.  A method as in any of the preceding clauses, wherein the array of optical components comprises an array of lenses. 24.  A method as in any of the preceding clauses, wherein each lens has a circular or square cross-sectional shape. 25.  A method as in any of the preceding clauses, wherein the array of optical components comprises a spatial light modulator (SLM). 26.  A method as in any of the preceding clauses, wherein the SLM is transmissive or reflective, or has transmissive or reflective portions. 27. The method of any of the preceding clauses, wherein the SLM comprises liquid crystal, a digital micromirror device (DMD), and/or a pattern configured to change the angles of the radiation of the different diffraction orders and direct the radiation of the different diffraction orders toward the different imaging locations on the radiation sensor. 28. The method of any of the preceding clauses, wherein the array of optical components comprises an array of super-lenses. 29. The method of any of the preceding clauses, further comprising determining a metrological measurement value based on the metrological signal using one or more processors operatively connected to the radiation sensor. 30. The method of any of the preceding clauses, wherein the metrological measurement comprises an alignment value, an overlay value, a focus value, and/or a critical dimension value associated with a semiconductor manufacturing process performed on the substrate. 31. The method of any of the preceding clauses, wherein two of the optical components in the array of optical components are configured to produce two oppositely defocused 0-order images in two different imaging positions on the radiation sensor. 32. The method of any of the preceding clauses, further comprising determining a focus position for imaging the substrate based on the oppositely defocused 0-order images in the two different imaging positions on the radiation sensor using one or more processors operatively connected to the radiation sensor. 33.  The method of any of the preceding clauses, wherein the one or more processors are further configured to automatically adjust a position of a stage of the metrology system holding the substrate based on the focal position so that a subsequent image of the substrate is in focus. 34.  The method of any of the preceding clauses, wherein two of the optical components in the optical component array include microlens arrays, wherein each microlens in a microlens array is configured to form a focal point on the radiation sensor, the position of the focal point being usable to determine radiation wavefront aberrations. 35.  The method of any of the preceding clauses, further comprising using one or more processors operatively connected to the radiation sensor to detect the radiation wavefront aberrations based on the positions of the focal points relative to a reference position. 36.  The method of any of the preceding clauses, wherein the radiation sensor includes a sub-portion configured to sense the focal points, the method further comprising using a segmented mirror to direct radiation from the microlens array to the sub-portion of the radiation sensor. 37.  The method of any of the preceding clauses, wherein the array of microlenses is positioned in a different plane than other optical components in the array of optical components such that the radiation sensor is located at a focal plane of the array of microlenses and other optical components in the array of optical components. 38.  The method of any of the preceding clauses, further comprising generating the radiation using a radiation source and directing the radiation toward the substrate. 39.  The method of any of the preceding clauses, wherein the substrate comprises a semiconductor wafer having one or more stacked targets configured to reflect the radiation toward the array of optical components, and wherein the sensor comprises a microdiffraction based stacking camera associated with stacking measurement. 40.  A method as in any of the preceding clauses, wherein the radiation sensor comprises a camera, a charge coupled device (CCD) array, a complementary metal oxide semiconductor (CMOS) and/or a photodiode array.

本文中所揭示之概念可與用於對子波長特徵進行成像之任何通用成像系統相關聯,且可尤其對能夠產生愈來愈短的波長之新興成像技術有用。新興技術已經在使用中包括極紫外線(EUV),DUV微影能夠藉由使用ArF雷射來產生193 nm之波長且甚至能夠藉由使用氟雷射來產生157 nm之波長。此外,EUV微影能夠藉由使用同步加速器或藉由運用高能電子來撞擊材料(固體或電漿)而產生在20 nm至5 nm之範圍內的波長,以便產生在此範圍內之光子。The concepts disclosed herein can be associated with any general imaging system for imaging sub-wavelength features, and can be particularly useful for emerging imaging techniques that can produce shorter and shorter wavelengths. Emerging techniques already in use include extreme ultraviolet (EUV), DUV lithography can produce wavelengths of 193 nm by using ArF lasers and even 157 nm by using fluorine lasers. In addition, EUV lithography can produce wavelengths in the range of 20 nm to 5 nm by using synchrotrons or by applying high energy electrons to hit materials (solid or plasma) in order to produce photons in this range.

雖然本文所揭示之概念可用於在諸如矽晶圓之基板上之成像,但應理解,所揭示概念可供與任何類型之微影成像系統一起使用,例如,用於在除了矽晶圓以外的基板上之成像之微影成像系統。此外,所揭示元件之組合及子組合可包含單獨實施例。Although the concepts disclosed herein may be used for imaging on substrates such as silicon wafers, it should be understood that the disclosed concepts may be used with any type of lithography imaging system, for example, lithography imaging systems for imaging on substrates other than silicon wafers. Furthermore, combinations and subcombinations of the disclosed elements may comprise separate embodiments.

上方描述意欲為說明性,而非限制性的。因此,對於熟習此項技術者將顯而易見,可在不脫離下文所闡明之申請專利範圍之範疇的情況下如所描述進行修改。The above description is intended to be illustrative rather than restrictive. Therefore, it will be apparent to those skilled in the art that modifications may be made as described without departing from the scope of the claims set forth below.

2:照明源 4:偵測器 10:檢測系統 30:目標 600:度量衡系統 602:基板 604:輻射感測器 605:光學組件 606:光學元件 612:輻射源 621:光學路徑 650:聚焦分支 660:疊對偵測分支 670:光束分裂器 680:對準分支 690:實例物鏡 700:光楔 702:透鏡 704:透鏡 706:透鏡 708:透鏡 710:輻射 711:照明光瞳 712:偵測光瞳 714:實例視場影像 800:圓形 802:正方形 900:相反散焦 902:相反散焦 904:散焦影像/視場影像/視場影像位置影像 906:散焦影像/視場影像/視場影像位置影像 910:視場影像 1000:微透鏡 1001:微透鏡陣列 1002:焦點 1003:參考位置 1004:輻射波前 1006:輻射波前 1008:位置 1012:位移光點 1014:遺失光點 1020:視圖 1021:視圖 1100:對應影像 1102:影像 1110:焦平面 1200:光點 1202:焦平面 1300:子部分 1302:分段鏡/鏡面 1305:側視圖 1310:正視圖 1320:俯視圖 1400:度量衡方法 1402:操作 1404:操作 1406:操作 1408:操作 1410:操作 AD:調整器 AS:對準感測器 B:輻射光束 BD:光束遞送系統 BK:烘烤板 BS:匯流排 CC:游標控制件 CH:冷卻板 CI:通信介面 CO:聚光器 CS:電腦系統 DS:顯示器 HC:主電腦 ID:輸入裝置 IF:位置感測器 IL:照明器 IN:積光器 INT:網際網路 I/O1:輸入/輸出埠 I/O2:輸入/輸出埠 LA:微影設備 LACU:微影控制單元 LAN:區域網路 LB:裝載匣 LC:微影製造單元 LS:位準感測器 MA:圖案化裝置 MM:主記憶體 MT:支撐結構 M1:圖案化裝置對準標記 M2:圖案化裝置對準標記 NDL:網路資料鏈路 PM:第一定位器 PRO:處理器 PS:投影系統 PW:第二定位器 P1:基板對準標記 P2:基板對準標記 Q1:象限 Q2:象限 Q3:象限 Q4:象限 RF:參考框架 RO:機器人 ROM:唯讀記憶體 S:照明光點 SC:旋塗器 SCS:監督控制系統 SD:儲存裝置 SO:輻射源 TCU:塗佈顯影系統控制單元 W:基板 WTa:基板台 WTb:基板台 2: Illumination source 4: Detector 10: Detection system 30: Target 600: Metrology system 602: Substrate 604: Radiation sensor 605: Optical assembly 606: Optical element 612: Radiation source 621: Optical path 650: Focusing branch 660: Overlap detection branch 670: Beam splitter 680: Alignment branch 690: Example objective lens 700: Optical wedge 702: Lens 704: Lens 706: Lens 708: Lens 710: Radiation 711: Illumination pupil 712: Detection pupil 714: Example field image 800:circle 802:square 900:opposite defocus 902:opposite defocus 904:defocus image/field image/field image position image 906:defocus image/field image/field image position image 910:field image 1000:microlens 1001:microlens array 1002:focal point 1003:reference position 1004:radiation wavefront 1006:radiation wavefront 1008:position 1012:displaced light spot 1014:missing light spot 1020:view 1021:view 1100:corresponding image 1102:image 1110:focal plane 1200:light spot 1202: focal plane 1300: subsection 1302: segmented mirror/mirror 1305: side view 1310: front view 1320: top view 1400: metrology 1402: operation 1404: operation 1406: operation 1408: operation 1410: operation AD: adjuster AS: alignment sensor B: radiation beam BD: beam delivery system BK: bake plate BS: bus bar CC: cursor control CH: cooling plate CI: communication interface CO: condenser CS: computer system DS: display HC: host computer ID: input device IF: position sensor IL: illuminator IN: integrator INT: Internet I/O1: Input/Output Port I/O2: Input/Output Port LA: Lithography Equipment LACU: Lithography Control Unit LAN: Local Area Network LB: Loading Box LC: Lithography Fabrication Unit LS: Level Sensor MA: Patterning Device MM: Main Memory MT: Support Structure M1: Patterning Device Alignment Mark M2: Patterning Device Alignment Mark NDL: Network Data Link PM: Primary Positioner PRO: Processor PS: Projection System PW: Secondary Positioner P1: Substrate Alignment Mark P2: Substrate Alignment Mark Q1: Quadrant Q2: Quadrant Q3: Quadrant Q4: Quadrant RF: Reference Frame RO: Robot ROM: Read-Only Memory S: Illumination spot SC: Spin coater SCS: Supervisory control system SD: Storage device SO: Radiation source TCU: Coating and developing system control unit W: Substrate WTa: Substrate stage WTb: Substrate stage

對於一般熟習此項技術者而言,在結合隨附圖式而審閱特定實施例之以下描述後,以上態樣以及其他態樣及特徵將變得顯而易見。The above aspects and other aspects and features will become apparent to those of ordinary skill in the art after reviewing the following description of specific embodiments in conjunction with the accompanying drawings.

圖1示意性地描繪根據實施例之微影設備。FIG. 1 schematically illustrates a lithography apparatus according to an embodiment.

圖2示意性地描繪根據實施例之微影製造單元或叢集之實施例。FIG. 2 schematically depicts an embodiment of a lithography fabrication unit or cluster according to an embodiment.

圖3示意性地描繪根據實施例之實例檢測系統。FIG3 schematically depicts an example detection system according to an embodiment.

圖4示意性地描繪根據實施例之實例度量衡技術。FIG4 schematically depicts an example metrology technique according to an embodiment.

圖5說明根據實施例的檢測系統之輻射照明光點與度量衡目標之間的關係。FIG. 5 illustrates the relationship between the radiation illumination spot and the metrology target of the detection system according to an embodiment.

圖6說明根據實施例之度量衡系統。FIG. 6 illustrates a metrology system according to an embodiment.

圖7說明根據實施例的包含光楔、透鏡、感測器、照明光瞳、偵測光瞳及實例視場影像之光學元件。FIG. 7 illustrates an optical system including a wedge, a lens, a sensor, an illumination pupil, a detection pupil, and an example field of view image according to an embodiment.

圖8說明根據實施例之簡化圖6中所展示之系統的光學組件陣列替代物(用於圖7中所展示之楔及一或多個透鏡)。FIG. 8 illustrates an optical component array alternative (for the wedge and one or more lenses shown in FIG. 7 ) to simplify the system shown in FIG. 6 , according to an embodiment.

圖9說明根據實施例之來自圖8的光學組件陣列中之兩個光學組件(在此實例中在象限Q1及Q3中),該兩個光學組件經組態以在輻射感測器上的兩個不同成像位置中產生用於聚焦判定之兩個相反散焦0階影像。9 illustrates two optical components in the optical component array from FIG. 8 (in quadrants Q1 and Q3 in this example) configured to produce two oppositely defocused 0-order images for focus determination in two different imaging locations on the radiation sensor, according to an embodiment.

圖10說明根據實施例之經組態以在輻射感測器上形成其位置可用以判定輻射波前像差之焦點的微透鏡陣列中的微透鏡。FIG. 10 illustrates a microlens in a microlens array configured to form a focus on a radiation sensor whose position can be used to determine radiation wavefront aberrations according to an embodiment.

圖11亦說明根據實施例之經組態以在輻射感測器上形成其位置可用以判定輻射波前像差之焦點的微透鏡陣列中的微透鏡,但在光學組件之陣列中的情形在類似於在圖8及圖9中展示的情形。FIG. 11 also illustrates microlenses in a microlens array configured to form a focus on a radiation sensor whose position can be used to determine radiation wavefront aberrations according to an embodiment, but in an array of optical components similar to that shown in FIGS. 8 and 9 .

圖12說明根據實施例之來自圖11的微透鏡陣列之焦平面可如何與來自光學組件陣列中之其他光學組件(在此實例中之象限Q2及Q3)的輻射光點之焦平面不相同。FIG. 12 illustrates how the focal plane from the microlens array of FIG. 11 may be different from the focal plane of radiation spots from other optical components in the optical component array (quadrants Q2 and Q3 in this example) according to an embodiment.

圖13說明根據一實施例之度量衡系統之實施例,其中輻射感測器包括經組態用於感測焦點之子部分,且該度量衡系統之光學元件包含經組態以將輻射自微透鏡陣列引導至輻射感測器之子部分的分段鏡(及/或類似功能組件)。13 illustrates an embodiment of a metrology system according to an embodiment, wherein a radiation sensor includes a sub-portion configured for sensing a focus, and the optical elements of the metrology system include a segmented mirror (and/or similar functional components) configured to direct radiation from a microlens array to the sub-portion of the radiation sensor.

圖14說明根據實施例之度量衡方法。FIG. 14 illustrates a metrology method according to an embodiment.

圖15為根據實施例之實例電腦系統的方塊圖。Figure 15 is a block diagram of an example computer system according to an embodiment.

2:照明源 2: Lighting source

4:偵測器 4: Detector

10:檢測系統 10: Detection system

30:目標 30: Target

PRO:處理器 PRO: Processor

W:基板 W: Substrate

Claims (15)

一種度量衡系統,其包含: 一輻射感測器,其經組態以基於在該輻射感測器上之不同成像位置處接收之輻射產生一度量衡信號;及 一光學組件陣列,其經組態以自一基板接收不同繞射階之輻射、改變該等不同繞射階之該輻射之角度,及朝向該輻射感測器上之該等不同成像位置引導該等不同繞射階之該輻射。 A metrology system comprising: a radiation sensor configured to generate a metrology signal based on radiation received at different imaging locations on the radiation sensor; and an array of optical components configured to receive radiation of different diffraction orders from a substrate, change the angles of the radiation of the different diffraction orders, and direct the radiation of the different diffraction orders toward the different imaging locations on the radiation sensor. 如請求項1之系統,其中該光學組件陣列包含四個光學組件,其中該四個光學組件中之兩者與第0繞射階輻射相關聯,且該四個光學組件中之兩者與第1繞射階輻射相關聯。The system of claim 1, wherein the array of optical components comprises four optical components, wherein two of the four optical components are associated with 0th diffraction order radiation and two of the four optical components are associated with 1st diffraction order radiation. 如請求項1或2之系統,其中該光學組件陣列包含一透鏡陣列。A system as in claim 1 or 2, wherein the optical component array comprises a lens array. 如請求項3之系統,其中每一透鏡具有一圓形或正方形橫截面形狀。A system as in claim 3, wherein each lens has a circular or square cross-sectional shape. 如請求項1或2之系統,其中該光學組件陣列包含一空間光調變器(SLM)。A system as in claim 1 or 2, wherein the optical component array comprises a spatial light modulator (SLM). 如請求項5之系統,其中該SLM為透射式的或反射式的,或具有透射式或反射式的部分。A system as claimed in claim 5, wherein the SLM is transmissive or reflective, or has a transmissive or reflective portion. 如請求項5之系統,其中該SLM包含液晶、一數位微鏡裝置(DMD),及/或經組態以改變該等不同繞射階之該輻射之該等角度並朝向該輻射感測器上之該等不同成像位置引導該等不同繞射階之該輻射的一圖案。A system as in claim 5, wherein the SLM comprises liquid crystal, a digital micromirror device (DMD), and/or a pattern configured to change the angles of the radiation of the different diffraction orders and to direct the radiation of the different diffraction orders toward the different imaging locations on the radiation sensor. 如請求項1或2之系統,其中該光學組件陣列包含一超穎透鏡陣列。A system as in claim 1 or 2, wherein the optical component array comprises a super lens array. 如請求項1或2之系統,其進一步包含以操作方式與該輻射感測器連接且經組態以基於該度量衡信號判定一度量衡量測值的一或多個處理器。The system of claim 1 or 2, further comprising one or more processors operatively connected to the radiation sensor and configured to determine a metrology measurement value based on the metrology signal. 如請求項9之系統,其中該度量衡量測值包含與在該基板上執行之一半導體製造程序相關聯的對準值、一疊對值、一聚焦值,及/或一關鍵尺寸值。A system as in claim 9, wherein the metrology measurement comprises an alignment value, an overlay value, a focus value, and/or a critical dimension value associated with a semiconductor manufacturing process performed on the substrate. 如請求項1或2之系統,其中該光學組件陣列中之該等光學組件中之兩者經組態以在該輻射感測器上的兩個不同成像位置中產生兩個相反散焦0階影像。A system as in claim 1 or 2, wherein two of the optical components in the optical component array are configured to produce two oppositely defocused 0-order images in two different imaging locations on the radiation sensor. 如請求項11之系統,其進一步包含以操作方式與該輻射感測器連接且經組態以基於該輻射感測器上的該兩個不同成像位置中之該等相反散焦0階影像判定用於運用該度量衡系統成像該基板之一聚焦位置的一或多個處理器。The system of claim 11, further comprising one or more processors operatively connected to the radiation sensor and configured to determine a focal position for imaging the substrate using the metrology system based on the oppositely defocused 0-order images in the two different imaging positions on the radiation sensor. 如請求項12之系統,其中該一或多個處理器經進一步組態以基於該聚焦位置自動地調整固持該基板之該度量衡系統的一載物台之一位置,以使得該基板之一後續影像在聚焦中。The system of claim 12, wherein the one or more processors are further configured to automatically adjust a position of a stage of the metrology system holding the substrate based on the focal position so that a subsequent image of the substrate is in focus. 如請求項1或2之系統,其中該光學組件陣列中之該等光學組件中之兩者包含微透鏡陣列,其中一微透鏡陣列中之每一微透鏡經組態以在該輻射感測器上形成一焦點,該焦點之位置可用以判定輻射波前像差。A system as in claim 1 or 2, wherein two of the optical components in the optical component array include microlens arrays, wherein each microlens in a microlens array is configured to form a focus on the radiation sensor, and the position of the focus can be used to determine radiation wavefront aberrations. 如請求項14之系統,其進一步包含以操作方式與該輻射感測器連接且經組態以基於該等焦點相對於參考位置之位置偵測該等輻射波前像差的一或多個處理器。The system of claim 14, further comprising one or more processors operatively connected to the radiation sensor and configured to detect the radiation wavefront aberrations based on the positions of the focal points relative to a reference position.
TW113108969A 2023-03-15 2024-03-12 Optical component array substitution for metrology TW202509665A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202363452422P 2023-03-15 2023-03-15
US63/452,422 2023-03-15

Publications (1)

Publication Number Publication Date
TW202509665A true TW202509665A (en) 2025-03-01

Family

ID=90014363

Family Applications (1)

Application Number Title Priority Date Filing Date
TW113108969A TW202509665A (en) 2023-03-15 2024-03-12 Optical component array substitution for metrology

Country Status (2)

Country Link
TW (1) TW202509665A (en)
WO (1) WO2024188601A1 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL2017452A (en) * 2015-10-02 2017-04-11 Asml Netherlands Bv Metrology method and apparatus, computer program and lithographic system
EP3575875A1 (en) * 2018-05-31 2019-12-04 ASML Netherlands B.V. Measurement apparatus and method of measuring a target

Also Published As

Publication number Publication date
WO2024188601A1 (en) 2024-09-19

Similar Documents

Publication Publication Date Title
JP7654141B2 (en) Generation of alignment signals based on local distortion of alignment marks
TW202509665A (en) Optical component array substitution for metrology
TWI858470B (en) Systems and methods for generating multiple illumination spots from a single illumination source
TW202449521A (en) Integrated photonic sensor
TW202427066A (en) Compact optical arrangement for a metrology system
WO2024115066A1 (en) Determining a focus position based on a field image position shift
WO2024184017A1 (en) Broad spectrum metrology systems and methods for various metrology mark types
TW202431022A (en) Positioning system for an optical element of a metrology apparatus
TW202403462A (en) Optical arrangement for a metrology system
WO2025078101A1 (en) Aberration correction in a metrology system
WO2024193929A1 (en) Parallel sensing camera based metrology systems and methods
TW202503421A (en) Wavefront sensor for a metrology system
WO2024184047A1 (en) Multi-layer metrology systems and methods
WO2025061389A1 (en) Optical vortex based metrology systems and methods
TW202435003A (en) Optical system for metrology
WO2025021453A1 (en) Reference grating for semiconductor metrology systems and methods
WO2025078100A2 (en) Wavefront measurement for multi core optical fiber in semiconductor metrology systems and methods
TW202434995A (en) Progressively energized electrostatic clamp for a lithography apparatus
TW202511867A (en) Stable light source systems and methods
TW202409741A (en) Passive integrated optical systems and methods for reduction of spatial optical coherence
TW202518181A (en) Method for conditioning light for metrology
TW202524228A (en) Overlay and alignment metrology systems and methods for semiconductor manufacturing
WO2024120765A1 (en) Dispersion engineered beam modifier for a metrology system
WO2025082680A1 (en) Virtual metrology system components and associated methods
WO2024240444A1 (en) Reduced volume demultiplexer systems and methods