TW202509612A - 折疊式相機 - Google Patents
折疊式相機 Download PDFInfo
- Publication number
- TW202509612A TW202509612A TW113144965A TW113144965A TW202509612A TW 202509612 A TW202509612 A TW 202509612A TW 113144965 A TW113144965 A TW 113144965A TW 113144965 A TW113144965 A TW 113144965A TW 202509612 A TW202509612 A TW 202509612A
- Authority
- TW
- Taiwan
- Prior art keywords
- camera
- telephoto
- lens
- sub
- image sensor
- Prior art date
Links
Abstract
本發明提供一種行動裝置,包括:第一相機,具有第一視野(FOV1)和第一影像感測器;及第二相機,具有第二視野(FOV2)、多個透鏡元件、第一反射元件和第二影像感測器,其中FOV2<FOV1,該第二相機具有F數值小於或等於3,該第一影像感測器被配置為接收來自第一方向通過物體和該第一影像感測器之間的第一光徑的第一光線,並且該第二影像感測器被配置為接收來自該第一方向通過該物體和該第二影像感測器之間的第二光徑的第二光線,該第一反射元件設定在該些透鏡元件和該第二影像感測器之間的該第二光徑中,及該第一相機是自動對焦相機。
Description
相關申請案之交互參照
本申請案主張西元2015年5月20日提出的美國專利申請案第14/717,258號與西元2014年8月10日提出的美國專利申請案第14/455,906號之優先權,此二件美國專利申請案之標題均為“具有折疊透鏡的變焦雙光圈相機”。
本揭示標的是概括關於數位相機的領域,且尤指多光圈的數位相機。
近年來,諸如手機(且尤指智慧型手機)、平板電腦與膝上型電腦的行動裝置已經成為普遍存在。此類的裝置通常包括一個或二個小型的數位相機,例如:一個主要的後置相機(即:在裝置的背面上、面向遠離使用者且經常用於臨時照相之一個相機)以及一個輔助的前置相機(即:位在裝置的正面上且經常用於視訊會議之一個相機)。
諸多的此等相機之設計是類似於一種數位靜物相機的傳統結構,即:其包含被置放在一個影像感測器(亦在此後簡稱為“感測器”)的頂部上之一個光學構件(或一連串的數個光學元件與一個主要的光圈)。該光學構件(亦稱為“光學器件”)使進來光線折射且將其彎曲以在感測器上產生一個場景的影像。
此等相機的尺度是主要由感測器的尺寸並且由光學器件的高度所確定。此等者通常是透過透鏡的焦距(f)與其視野(FOV, field of view)而被連結在一起,必須將某個FOV成像在某個尺寸的感測器上之一種透鏡具有一個特定的焦距。將FOV保持為固定,感測器尺度(例如:在X-Y平面)愈大,則該焦距與光學器件高度愈大。
隨著行動裝置的尺度(且尤其是諸如智慧型手機之裝置的厚度)在不斷地減小,小型相機尺度成為裝置厚度的一個愈來愈限制的因素。數種方式已經被提出來降低小型相機尺度以減輕此限制。近來,多光圈的系統已經針對此目的而被提出。在此類的系統中,並非為具有一個光圈與一連串的光學元件,該相機被分成數個光圈,各者具有專用的光學元件,且全部共用一個類似的視野。下文,各個此種光圈、連同光學器件以及該影像被形成在其上的感測器區域被定義為一個“子相機(sub-camera)”。來自該等子相機的影像被融合在一起以產生單一個輸出影像。
相較於由一個參考的單光圈相機所產生的影像,在一些多光圈相機設計中,各個子相機是在影像感測器上產生一個較小的影像。因此,各個子相機的高度可為小於單光圈相機的高度,降低該種相機的總高度且允許行動裝置之較薄的設計。
其中一個子相機具有寬FOV (“廣角(Wide)子相機”)而且另一者具有窄FOV (“遠距(Tele)子相機”)之雙光圈變焦相機為已知。對於雙光圈變焦相機的一個問題是關於變焦遠距子相機的高度。遠距(“T”)與廣角(“W”)子相機的高度(亦習稱為“總軌道長度(TTL, total track length)”)具有重大的差異。TTL典型被定義為在第一個透鏡元件的物體側表面與一個相機影像感測器平面之間的最大距離。在大多數的小型透鏡中,TTL是大於透鏡有效焦距(EFL, effective focal length)。對於一個既定透鏡(或透鏡單元)之典型的TTL/EFL比值為大約1.3。在具有1/3-1/4”感測器之單光圈智慧型手機相機中,EFL典型為在3.5與4.5 mm之間,其分別導致70-80°的FOV。
舉例來說,假設想要達成在一種智慧型手機中之雙光圈X2光學變焦,將正常使用EFL
W=3.5 mm與EFL
T=2×EFL
W=7 mm。然而,在沒有空間限制情況下,廣角透鏡將具有EFL
W=3.5 mm與TTL
W為3.5×1.3=4.55 mm,而遠距透鏡將具有EFL
T=7 mm與TTL
T為7×1.3=9.1 mm。一個9.1 mm透鏡之納入在智慧型手機相機中將導致大約為10 mm的相機高度,其對於許多的智慧型手機製造業者而言為不可接受。
對於上述問題之解決方案的一個實例被描述在其標題為“雙光圈變焦數位相機”之共同發明且共同擁有的PCT專利申請案PCT/IB2014/062180。此解決方案之一些原理被顯示在圖1,其為以(a)概括的等角視圖與(b)切開的等角視圖來示意說明一種具有自動對焦(AF, auto-focus)且標號為100的雙光圈變焦相機之一個實施例。相機100包含其標示為102與104的二個子相機,各個子相機具有其本身的光學器件。因此,子相機102包括其具有一個光圈108與一個光學透鏡模組110的一個光學區塊106、以及一個感測器112。同理,子相機104包括其具有一個光圈116與一個光學透鏡模組118的一個光學區塊114、以及一個感測器120。各個光學透鏡模組可包括數個透鏡元件以及一個紅外線(IR, Infra-Red)濾波器122a與122b。選用而言,屬於不同光圈的一些或所有透鏡元件可被形成在相同基板上。該二個子相機被定位為緊鄰著彼此,具有在二個光圈108與116的中心之間的一個小的底線(於124)。各個子相機可更包括由一個控制器(未顯示)所控制的一個AF機構,分別為126與128。相機100是針對於各個子相機而由TTL/EFL所表達為“薄”。典型而言,TTL
W/EFL
W>1.1且TTL
T/EFL
T<1.0 (例如:0.85)。
儘管在相機100之中的變焦範圍是大約X2,將為有利的是進一步增大此範圍。然而,此需要進一步增大該遠距透鏡EFL (EFL
T),其將引起相機高度的增加。EFL
T之增大到範例為12 mm將造成例如0.85×12+0.9= 11.1 mm之不合意的相機高度。
如上所述,對於用於可攜式電子裝置的數位相機之要求是關於該種相機的尺度與影像品質。甚者,不同於可附接到可攜式裝置之其他外部相機單元,此等要求是在當該相機要被裝設在可攜式裝置之內而變得更為重要。
就一種內部(整合)相機單元來說,相機必須具有儘可能為小的尺度,以便配合該相機被裝設在其中之裝置的厚度(較佳為沒有從該裝置的殼體突出),而且為適合與常用的影像感測器來一起操作。此問題是在當使用具有長的有效焦距(EFL)以得到相當高的變焦效果之一種遠距透鏡時而更為艱難。
因此,根據本揭示標的之一個觀點,提出一種變焦數位相機,其包含一個廣角子相機與一個遠距子相機。該廣角子相機包含一個廣角透鏡模組與一個廣角影像感測器,該廣角透鏡模組具有沿著在一個物體側與該廣角影像感測器之間的第一光徑之一個廣角透鏡對稱軸。該廣角子相機被建構以提供一個廣角影像。
該遠距子相機包含一個遠距透鏡模組與一個遠距影像感測器。該遠距透鏡模組具有沿著第二光徑的一個遠距透鏡對稱軸,該遠距透鏡對稱軸被定位為實質垂直於該廣角透鏡對稱軸。該遠距子相機被建構以提供一個遠距影像。
該種相機更包括第一反射元件,其具有對於該廣角透鏡對稱軸與該遠距透鏡對稱軸為實質傾斜45度之第一反射元件對稱軸,且為運作以提供在該物體與該遠距影像感測器之間的一個折疊光徑。是以,該遠距子相機被視為折疊式且在本文被稱作為“折疊式遠距子相機”。
該廣角透鏡具有一個廣角視野(FOV
W)且該遠距透鏡具有較FOV
W為窄的一個遠距視野FOV
T。根據一個非限制的實例,相較於該廣角子相機,該遠距子相機提供X5的變焦效果。
該種數位相機被運作連接到至少一個影像處理器,其被建構以將遠距影像與廣角影像處理成為一個輸出影像。將透過不同光徑所接收的影像融合成為單一個輸出影像之方法被提出在例如標題為“高解析度的薄型多光圈成像系統”之共同發明且共同擁有的PCT專利申請案公告編號WO2014/083489、以及標題為“雙光圈的變焦數位相機”之共同發明且共同擁有的美國專利申請案第14/365,711號,其為以參照方式而納入本文且揭示一種多光圈成像系統,該種系統包含其捕捉第一個影像之具有第一感測器的第一相機、以及其捕捉第二個影像之具有第二感測器的第二相機。基於一個變焦因數,任一個影像可被選取為一個主要或輔助影像。具有由主要影像所確定的觀點之一個輸出影像是藉由將該輔助影像登錄到主要影像所得到。
為了使折疊式遠距子相機的尺度為進一步適應於電子可攜式裝置的潮流,試圖要儘可能多地縮減其厚度,折疊式遠距子相機的種種特徵被明確組態以致能達成一種具有縮減的高度之折疊式遠距子相機。該遠距子相機的高度之縮減致能縮減一種雙光圈相機的整體高度。再者,該折疊式遠距子相機的高度之縮減是在維持合意的影像品質之同時而達成。
因此,除了上述特徵之外,根據本揭示標的之種種實例,該種變焦數位相機可包含以任何期望的組合與置換之下列特徵(1)到(32)之中的一者或多者。
(1)其中該折疊式遠距子相機的遠距透鏡模組包含一個群組的至少三個透鏡元件,且其中在該群組中的透鏡元件被設計以具有直徑為實質不超過該遠距子相機之一個光圈的直徑。如下文所解說,此為不同於習用的透鏡模組,其透鏡的直徑被設計為朝著感測器而愈來愈寬。
(2)其中該折疊式遠距子相機的遠距透鏡模組包含一個群組的三到五個透鏡元件。
(3)其中該遠距子相機更包含一個基板、一個用於將該等透鏡元件保持在定位的結構、與一個相機殼體。
(4)其中該遠距子相機的光圈被設計以提供一個充分低的F數值(F-number,F#) (例如:等於或小於3)以增加其落在該遠距影像感測器的光線。
(5)其中該遠距透鏡模組被設計以致能產生在該遠距影像感測器之一個整體面積上的一個影像。該遠距影像感測器可為例如一個1/3”影像感測器或一個1/4”影像感測器。
(6)其中在該群組中的透鏡元件被設計以使得經阻斷的光線不超過其進入該遠距透鏡模組的光線的某個百分比(例如:不超過其進入該遠距透鏡模組的光線的25%被阻斷)。
(7)其中根據一個實例,該遠距子相機被建構以具有以下的技術參數:EFL> 9 mm、F#< 3,且對於所有視角而言,光線阻斷不超過其進入該遠距子相機光圈的光線的多於25%。
(8)其中該遠距子相機是特徵為高度不超過6.5 mm。
(9)其中該遠距子相機是特徵為高度不超過5.7 mm。
(10)其中該遠距影像感測器是位在實質垂直於該遠距透鏡對稱軸的一個平面。
(11)其中該遠距子相機包含一個遠距自動對焦(AF)機構,其被建構以將該遠距透鏡沿著該遠距對稱軸而移動;該AF機構被設計以使得其高度為實質不超過一個遠距透鏡模組的高度。
(12)其中該AF機構包含經耦合到個別的線圈之一個或多個磁鐵,其被側向定位在該遠距透鏡模組的一側或二側,該等磁鐵具有高度為實質不超過該遠距透鏡模組的高度。
(13)其中該AF機構包含經耦合到個別的線圈之僅有一磁鐵。
(14)其中該種相機更包含第二反射元件,其被定位在該遠距透鏡模組與該遠距影像感測器之間的第二光徑,該第二反射元件被建構以將平行於該第二光徑而傳播的光線指向到該第一光徑,其中該遠距影像感測器是位在實質垂直於該廣角透鏡對稱軸的一個平面。
(15)其中該種相機更包含一個遠距自動對焦(AF)機構,其被建構以將該第二反射元件沿著第二反射元件對稱軸而移動。
(16)該廣角與遠距影像感測器被安裝在單一個印刷電路板上。
(17)其中被運作連接到該種相機的至少一個處理器被建構以使用一個變焦因數(ZF, zoom factor)來確定個別的輸出視野。
(18)其中該廣角透鏡模組具有一個廣角視野FOV
W且該遠距透鏡模組具有較FOV
W為窄的一個遠距視野FOV
T;該相機更包含一個中間(Mid)子相機,其包括具有一個視野FOV
M為滿足FOV
W>FOV
M>FOV
T的一個中間透鏡模組及一個中間影像感測器,該中間透鏡具有一個中間透鏡對稱軸;該中間相機被建構以提供一個中間影像。
(19)其中該中間子相機被建構為具有一個EFL,其等於該廣角子相機的一個EFL與該遠距子相機的一個EFL之幾何平均。
(20)其中被運作連接到該種相機的至少一個處理器被建構以將該中間影像連同該遠距影像或該廣角影像處理成為一個輸出影像。
(21)其中該中間透鏡對稱軸是實質垂直於該廣角透鏡對稱軸且該中間影像感測器是位在實質垂直於該中間透鏡對稱軸的一個平面;且其中該遠距影像感測器是位在實質垂直於該遠距透鏡對稱軸的一個平面。
(22)其中該種相機更包含:一個中間自動對焦(AF)機構,其被建構以將該中間透鏡模組沿著該中間對稱軸而移動,該中間對稱軸是實質垂直於該廣角透鏡對稱軸;及,一個遠距AF機構,其被建構以將該遠距透鏡模組沿著該遠距對稱軸而移動;該中間AF機構與該遠距AF機構之任一者具有高度為實質不超過該遠距透鏡模組的高度。
(23)其中該中間AF機構包含經耦合到個別的線圈之一個或多個磁鐵,其被側向定位在該遠距透鏡模組的一側或二側,該等磁鐵具有高度為實質不超過該遠距透鏡模組的高度。
(24)其中該中間AF機構包含經耦合到個別的線圈之僅有一個磁鐵。
(25)其中該種相機更包含第三反射元件,其對於該廣角透鏡對稱軸與該中間透鏡對稱軸為實質傾斜45度;該第三反射元件被建構以提供在該物體側與該中間影像感測器之間的一個折疊光徑。
(26)其中該種相機更包含第四反射元件,其被定位在該中間透鏡與該中間影像感測器之間的第四光徑,該第四反射元件被建構以將平行於該第二光徑而傳播的光線指向到該第一光徑,其中該中間影像感測器是位在實質平行於該中間透鏡對稱軸的一個平面。
(27)其中該種相機更包含一個中間自動對焦(AF)機構,其被建構以將該第四反射元件沿著第四反射元件對稱軸而移動。
(28)其中該中間子相機的一個中間透鏡對稱軸是實質平行於該廣角透鏡對稱軸且該廣角與中間影像感測器被安裝在單一個印刷電路板上。
(29)其中該中間子相機的一個中間透鏡對稱軸是實質垂直於該廣角透鏡對稱軸且該廣角與中間影像感測器被安裝在單一個印刷電路板上。
(30)其中被運作連接到該種相機的至少一個處理器被建構以使用一個變焦因數(ZF)來確定個別的輸出視野。
(31)其中被運作連接到該種相機的至少一個處理器被建構以輸出藉由使用廣角與中間影像所形成的一個輸出影像,針對於其將FOV設定在FOV
W與FOV
M之間的一個ZF。
(32)其中被運作連接到該種相機的至少一個處理器被建構以輸出藉由使用中間與遠距影像所形成的一個輸出影像,針對於其將FOV設定在FOV
M與FOV
T之間的一個ZF。
根據一個實例,本揭示標的包括一種數位相機,其被建構以整合在一個電子裝置的一個殼體之內,該相機包含:一個廣角子相機、一個遠距子相機與一個遠距自動對焦(AF)機構;
該廣角子相機包含一個廣角透鏡模組與一個廣角影像感測器,該廣角透鏡模組具有沿著在一個物體側與該廣角影像感測器之間的第一光徑之一個廣角透鏡對稱軸;該廣角子相機被建構以提供一個廣角影像;該遠距子相機包含一個遠距透鏡模組與一個遠距影像感測器;該遠距透鏡模組具有沿著第二光徑之一個遠距透鏡對稱軸,該遠距透鏡對稱軸被定位為實質垂直於該廣角透鏡對稱軸;該遠距子相機被建構以提供一個遠距影像;第一反射鏡具有對於該廣角透鏡對稱軸與該遠距透鏡對稱軸為實質傾斜45度之第一反射鏡對稱軸,且為運作以提供在該物體與該遠距影像感測器之間的一個折疊光徑;
其中該遠距透鏡模組包含一個群組的三到五個透鏡元件,且其中在該群組中的透鏡元件被設計以具有直徑為實質不超過該遠距子相機之一個光圈的直徑,致能在該遠距影像感測器之一個整體面積上的一個影像之產生,且致能其進入該遠距透鏡模組的光線的至少75%之通過朝向該遠距影像感測器;
其中該遠距AF機構被建構以將該遠距透鏡沿著該遠距對稱軸而移動;該遠距AF機構包含其被耦合到個別的線圈之一個或多個磁鐵,其被側向定位在該遠距透鏡模組的一側或二側,該等磁鐵具有高度為實質不超過該遠距透鏡模組的高度。
本揭示標的更思及一種行動電子裝置,諸如:手機(例如:智慧型手機)、可攜式電腦、記事本、平板電腦、手錶、任何型式的電子穿戴式裝置(例如:手環、手錶、頭盔、眼鏡、等等)、或類似者,其配備具有如本文所揭示的一種數位相機。根據一些實例,該種數位相機被完全整合在該電子裝置內(即:沒有從該電子裝置的殼體突出)。
本揭示標的更思及一種折疊式遠距子相機,其具有如上文所揭示之低矮的相機輪廓。
要瞭解的是,當在本文提出特定的方向及/或角度值,其為意指包括在有關領域所習知的實際容許度內為可接受之一個範圍的值。
甚者,為了清楚,術語“實質”被使用在本文以暗示在一個可接受範圍內的值之變化的可能性。根據一個實例,在本文所使用的術語“實質”應被解讀以暗示在任何指定值之上或之下為高達10%的可能變化。根據另一個實例,在本文所使用的術語“實質”應被解讀以暗示在任何指定值之上或之下為高達5%的可能變化。根據再一個實例,在本文所使用的術語“實質”應被解讀以暗示在任何指定值之上或之下為高達2.5%的可能變化。指定值可為絕對值(例如:實質為不超過45°、實質垂直、等等)或相對(例如:實質為不超過x的高度、等等)。
注意的是,在此論述中,“光圈直徑”是指在一種具有固定光圈尺寸的相機中之一個光圈的直徑或指在一種具有可變光圈尺寸的相機中之最大光圈直徑。
如在本文所使用,片語“舉例來說”、“諸如”、“例如”、“在一個實施例中”以及其變化描述本揭示標的之非限制實例。理解的是,為了清楚而描述在個別實施例中之本揭示標的之某些特徵亦可被組合而提供在單一個實施例中。反之,為了簡明而描述在單一個實施例中之本揭示標的之種種特徵亦可被單獨或以任何適合的子組合而提供。
注意的是,如在本文所使用的術語“光學區塊(bloc)”是指透鏡模組以及自動對焦機構。
轉到圖2A,其為以(a)概括等角視圖與(b)截面等角視圖來示意顯示本文所揭示之一種具有折疊式遠距透鏡的變焦及自動對焦雙光圈相機200之一個實施例。該等角視圖是關於一種XYZ座標系統來顯示。相機200包含二個子相機,一個一般的廣角子相機202與一個遠距子相機204。
廣角相機202包括其具有個別的光圈208 (指出該相機的物體側)與一個光學透鏡模組210 (或簡稱為“透鏡模組”)之一個廣角光學區塊、以及一個廣角影像感測器214,光學透鏡模組210具有朝Y方向的一個對稱(光學)軸212。遠距相機204包括其具有個別的光圈218與一個光學透鏡模組220之一個遠距光學區塊、以及一個遠距影像感測器224,光學透鏡模組220具有一個遠距透鏡對稱(光學)軸222a。
相機200更包含其被插入在一個“遠距”光徑之中的第一扁平反射元件(例如:反射鏡或稜鏡) 226。遠距光徑是從一個物體(未顯示)通過該遠距透鏡模組(或簡稱為“遠距透鏡”)而延伸到遠距影像感測器且為由箭頭222b與222a所標示。箭頭222b指示自該相機的物體側之方向且實質平行於廣角子相機的對稱軸212。為了簡化,在下文,該種反射元件被稱為“反射鏡(mirror)”,然而,此僅為舉例而絕不應被視為限制。
根據一個實例,廣角影像感測器214是位在一個X-Z平面,而該遠距影像感測器是位在其實質垂直於遠距透鏡對稱軸222a的一個X-Y平面。種種的相機元件可被安裝在一個基板232,例如:印刷電路板(PCB, printed circuit board)。可被聲稱的是,遠距影像感測器為“直立”,由於其位在實質垂直於廣角感測器214與基板232者的一個平面。
顯然,使用其具有在直立位置的一個遠距影像感測器之一種遠距子相機有助於縮減該遠距子相機的長度且因此縮減整體相機的佔用空間,相較於其定位在X-Z平面的一種遠距子相機,如關於圖3之下文所述。
根據一個實例,反射鏡226是對於遠距透鏡對稱軸(222a)且對於箭頭222b為實質傾斜45°。該遠距光徑因此為“折疊”。下文,具有通過於其的一個折疊光徑之遠距透鏡被稱為一種“折疊式遠距透鏡”,且具有此種折疊透鏡之遠距子相機被稱為一種“折疊式遠距子相機”。
廣角與遠距子相機均可為固定對焦(FF, fixed focus)或自動對焦(AF, auto focus)。當存在時,用於廣角相機的一種AF機構是概括由標號206所指出,且在一個實例中,其可為類似於在圖1所示的機構。一種新的、低矮輪廓的AF機構是關於圖12與圖13而在下文被描述。
若一種AF機構被納入在遠距子相機之中,其被應用以使得自動對焦移動是沿著Z軸。一種AF機構可被耦合到遠距透鏡且可被運作以將該遠距透鏡沿著朝由一個箭頭230所顯示的方向(即:平行於其對稱軸222a)之Z軸而移動。遠距透鏡移動範圍可為例如在100-500μm之間。相機200可更包括(或用其他方式運作連接到)一個處理單元,其包含一個或多個適合組態的處理器(未顯示)以將遠距影像與廣角影像處理成為輸出影像。
該處理單元可包括特定專用於和數位相機一起操作的硬體(HW, hardware)與軟體(SW, software)。替代而言,該相機安裝在其中之一種電子裝置的處理器(例如:其本機CPU)可為適用於執行關於數位相機之種種的處理操作(包括而不限於:將遠距影像與廣角影像處理成為輸出影像)。
根據一些非限制性的實例,相機200 (以及下文所述的其他相機)可具有如在表1所示的尺度及/或參數。此等尺度(單位為毫米所提出)與參數包括:相機寬度W、相機長度L、相機高度H、廣角子相機有效焦距EFL
M、廣角F數值(F-number) F#
W、遠距子相機有效焦距EFL
T、以及遠距F數值F#
T。
表1
圖 | W | L | H | EFL W | EFL M | EFL T | F# W | F# M | F# T |
2A | 5-12 | 20-50 | 4-8 | 2-8 | 5-25 | 2-3 | 2-5 | ||
2B | 10-25 | 10-40 | 4-8 | 2-8 | 5-25 | 2-3 | 2-5 | ||
3 | 5-12 | 20-50 | 4-8 | 2-8 | 5-25 | 2-3 | 2-5 | ||
4 | 5-12 | 20-50 | 4-8 | 2-8 | 5-25 | 2-3 | 2-5 | ||
6A | 5-12 | 25-60 | 4-8 | 2-5 | 4-10 | 8-30 | 2-3 | 2-3 | 2-5 |
6B | 5-12 | 20-50 | 4-8 | 2-5 | 4-10 | 8-30 | 2-3 | 2-3 | 2-5 |
6C | 10-25 | 10-40 | 4-8 | 2-5 | 4-10 | 8-30 | 2-3 | 2-3 | 2-5 |
7 | 5-12 | 25-60 | 4-8 | 2-5 | 4-10 | 8-30 | 2-3 | 2-3 | 2-5 |
8 | 10-25 | 20-50 | 4-8 | 2-8 | 4-20 | 8-30 | 2-3 | 2-5 | 2-5 |
舉例來說,在相機200 (以及下文的相機300-600)之中的遠距透鏡模組之折疊致能其具有EFL
T為12 mm的一種遠距透鏡模組之使用而且維持整體相機高度為顯著低於其利用具有相同EFL
T(例如:在先前技術段落之前述的11.1 mm)的一般直立式遠距透鏡之相機的高度。
為了提供更多的明確性且避免在以下圖式中的混亂,類似或相同於在相機200的元件之一些元件可被描述,但在沒有參考標號的情況下而顯示。
圖2B是以概括等角視圖來示意顯示本文所揭示之一種具有折疊式遠距透鏡模組的變焦及自動對焦雙光圈相機(200’)之另一個實施例。相機200’包括如同相機200的實質相同元件,且此類的元件(當標號時)是因此以相同編號來標號。該二種相機主要是在遠距與廣角子相機與反射鏡226的相對定位(例如:在基板232’之上)為不同。
如所顯示,此等元件被配置以使得相機200’具有比相機200為“較方正”的佔用空間。尤其是,在相機200’之中的寬度W是大於在相機200之中的寬度W,而在相機200’之中的長度L是小於在相機200之中的長度L。注意,其中該廣角子相機的側邊為分別平行於X與Z軸而且該遠距透鏡為實質對準沿著Z軸之所示的組態是僅為舉例說明所顯示,且在其他實施例中,各個子相機可為以不同方式來定位。舉例來說,廣角子相機可具有非平行於X、Y軸的側邊,且遠距透鏡可朝不同於Z的一個方向而對準,只要光軸(在折疊之前)為平行於廣角相機對稱軸。相機200’ 可具有在表1所示的範例的尺度及/或參數。
圖3是以(a)概括等角視圖與(b)截面等角視圖來示意顯示本文所揭示且標號為300之一種具有折疊式遠距透鏡模組的變焦及自動對焦雙光圈相機之又一個實施例。相機300是實質相同於相機200,除了相機300包括其插入在遠距透鏡與遠距影像感測器224之間的光徑中的第二反射鏡302,該徑是由箭頭304a與304b來標示在此。此外,不同於在相機200與200’之中(但為如同在相機100之中),遠距影像感測器224位在X-Z平面中(如同廣角感測器)。根據一個實例,廣角與遠距影像感測器可被置放在相同基板上,例如:PCB。替代而言,各個感測器可被安裝在一個單獨的PCB之上。二個反射鏡可對於遠距透鏡對稱軸222a而均為實質傾斜45°。
如同在相機200之中,廣角與遠距子相機均可為固定對焦(FF)或自動對焦(AF)。如同在相機200之中,一種AF機構(未顯示)可被耦合到遠距透鏡且可被運作以將該遠距透鏡沿著朝由一個箭頭230所顯示的方向(即:平行於其對稱軸222a)之Z軸而移動。舉例來說,相機300可具有如同相機200的相同尺度及/或參數或沿著Z軸為較大(例如:約為5-10 mm)。
相機300要求的是,遠距透鏡模組被設計以使得其背部焦距(BFL, back focal length)為足夠大而致能第二反射鏡之納入,背部焦距(BFL)是沿著從遠距透鏡鏡筒的左手側到反射鏡、以及從其到遠距影像感測器之光徑的距離(箭頭304a與304b的組合長度)。此外,在相機300之中的折疊的遠距幾何形狀允許該廣角與遠距影像感測器之直接安裝在單一個共同的PCB。替代而言,各個感測器可被安裝在一個單獨的PCB。相機300可具有例如在表1所示的尺度及/或參數。
圖4是以(a)概括等角視圖與(b)截面等角視圖來示意顯示本文所揭示且標號為400之一種具有折疊式遠距透鏡的變焦及自動對焦雙光圈相機之一個實施例。相機400是實質相同於相機300,除了遠距子相機是藉由使用耦合到其的一個AF機構(參閱:圖5) 402來移動該第二反射鏡所自動對焦之外。機構402是朝由一個箭頭430所顯示而垂直於其扁平平面之方向(例如:對於X-Y與X-Z平面為45°)來移動第二反射鏡302。該反射鏡移動範圍可為例如在100-500μm之間。替代而言,第二反射鏡302可為朝其他方向而移動以對焦其由遠距影像感測器所捕捉的影像,例如:沿著Z軸或Y軸。相機400可具有例如在表1所示的尺度及/或參數。
圖5是以(a)概括等角視圖與(b)穿過截面A-A的橫截面視圖來示意顯示機構402的細節。機構402包括一個電磁致動器,其包含一個靜止件404與一個移動件406。靜止件404包括四個永久磁鐵408a-d。概括在此顯示具有一個對稱軸410的圓柱形狀之移動件406包括一個鐵心412,其至少部分為由一個線圈414所環繞。移動件406在一端416被機械耦合到反射鏡302且在一個相對端418被機械耦合到四個彈簧420a-d,其接著被剛性耦合到一個靜止框架422。所示的彈簧之數目是僅作為舉例而提供,且少於(例如:1個)或多於四個彈簧可被運用。使用中,通過線圈414的電流導致一個磁力,其致使移動件406與反射鏡302為沿著對稱軸410而移動,如由箭頭430所指出。
圖6A是以概括等角視圖來示意顯示本文所揭示之一種具有一個折疊式遠距透鏡的變焦及自動對焦三光圈相機600之一個實施例。相機600包括例如相機200的元件與功能性。即,相機600包括具有一個廣角透鏡210與一個廣角感測器214的一個廣角子相機202、具有一個折疊式遠距透鏡220的一個遠距子相機204、一個反射鏡226、以及一個“直立”的遠距影像感測器224。
在此實例中,該三個子相機是沿著一個共同軸而朝Z方向被實質對準。如同在相機200之中,遠距透鏡自動對焦是藉由朝箭頭230所示的方向而沿著Z軸來移動該遠距透鏡所達成。然而,除了相機200的元件之外,相機600更包括第二遠距(稱為“中間(M)”)子相機602,其具有一個中間透鏡604與一個中間感測器606。中間子相機602具有在廣角與遠距子相機的彼等者(參閱:在表1之中的實例)之中間的EFL
M與FOV
M。中間子相機的一個對稱(光學)軸612是實質平行於廣角子相機202的軸212以及在遠距子相機204的方向222b。注意,儘管該廣角與中間子相機是以一種特定配置(中間子相機602為較接近於遠距子相機204)所顯示,此順序可被改變以使得該廣角與中間子相機交換位置。相機600可具有例如在表1所示的尺度及/或參數。
在使用中,相機600 (以及相機600’、600”、700與800)的一個輸出FOV是由一個變焦因數(ZF, zoom factor)所定義。此種FOV可被標示為“FOV
ZF”。舉例來說,在變焦放大到ZF=ZF
M,相機輸出是相同於其僅具有廣角與中間子相機之一種雙光圈變焦相機的輸出,其中,該中間子相機取代該遠距子相機。當從ZF
M變焦放大到ZF
T,相機輸出是相同於其僅具有中間與遠距子相機之一種雙光圈變焦相機的輸出,其中,該中間子相機取代該廣角子相機。此提供一種“連續變焦”(即:解析度增益對(vs.) ZF)經驗。如在本文所使用的術語“連續變焦”、以及用本文揭示的一種相機所得到的一種連續變焦經驗的一個實例之更詳細解說是關於圖8而提出。
圖6B是以概括等角視圖來示意顯示本文所揭示且標號為600’之一種具有一個折疊式遠距透鏡的變焦及自動對焦三光圈相機之另一個實施例。相機600’包括實質如同相機600的相同元件,但是該廣角與中間子相機被對準為沿著Z方向,而遠距子相機具有Z方向來作為其對稱軸。如同在相機600之中,廣角與中間子相機的位置為可互換。相機600’可具有例如在表1所示的尺度及/或參數。
圖6C是以概括等角視圖來示意顯示本文所揭示且標號為600”之一種具有一個折疊式遠距透鏡的變焦及自動對焦三光圈相機之又一個實施例。相機600”包括實質如同相機600與600’的相同元件,但是該三個子相機的定位被改變以使得折疊式遠距透鏡為鄰近且平行於廣角子相機202的一個側邊608與中間子相機602的一個側邊610。如同在相機600與600’之中,廣角與中間子相機的位置為可互換。相機600”可具有例如在表1所示的尺度及/或參數。
注意,儘管圖6A-6C之具有一個折疊式遠距透鏡的三光圈相機的實施例被顯示為包括一個“直立”遠距影像感測器224,具有一個折疊式遠距透鏡的其他三光圈相機的實施例可包括第二反射鏡與定位在X-Z平面的一個遠距影像感測器,如同在相機300之中。一個此類的實施例被顯示在圖7。圖7是以概括等角視圖來示意顯示本文所揭示且標號為700之一種具有一個折疊式遠距透鏡的變焦及自動對焦三光圈相機之又一個實施例。相機700可被實質視為一種相機,其中,一個中間子相機602被附加到相機300的元件。替代而言,可被視為一種相機,其中,第二反射鏡302被插入在折疊式遠距透鏡220與遠距影像感測器224之間的光徑中。遠距自動對焦可藉由移動第二反射鏡302 (如同在相機400之中)或者是藉由移動遠距透鏡(如同在相機300之中)所達成。相機700可具有例如在表1所示的尺度及/或參數。
圖8是以概括等角視圖來示意顯示本文所揭示且標號為800之一種具有二個折疊透鏡的變焦及自動對焦三光圈相機之一個實施例。相機800可被視為結合其存在相機200之中的元件與一個附加的“折疊”中間子相機802。因此,如同在相機200之中,相機800可包括具有廣角透鏡與廣角感測器的一個廣角子相機202、具有折疊式遠距透鏡的一個遠距子相機204、一個直立式遠距影像感測器224、以及一個反射鏡226。折疊式中間子相機802包括一個中間透鏡804與一個直立的中間感測器806。一個附加的反射鏡808反射其朝平行於方向222b與軸212的方向810之從物體側所到達的幅射,沿著一個中間透鏡對稱軸812而通過中間透鏡804到中間感測器,因此提供中間影像資料,其可和廣角與遠距子相機影像資料作組合。在一些實例中,中間透鏡804可朝Z方向(由箭頭830所示的移動)沿著其軸812而由一個AF機構(未顯示)所移動以提供中間自動對焦,類似於由箭頭230之上文所述的遠距自動對焦。
一種具有折疊式的中間與遠距透鏡之相機的替代實施例(未顯示)可包括另外的反射鏡與“扁平”的中間與遠距影像感測器(類似於針對於遠距透鏡而在圖3、4與7所示的實施例)。再者,根據此實施例,自動對焦可藉由移動此等反射鏡而非該等透鏡所達成。相機800可具有例如在表1所示的尺度及/或參數。此組態的相機800致能例如EFL
M=3*EFL
W與EFL
T=9*EFL
W而且維持小於7 mm的相機高度。
圖9a說明在一種理想光學變焦情形中之解析度增益對ZF的使用者經驗。圖9b說明在二個13百萬(13M)像素子相機(一個廣角子相機與一個遠距子相機)與一個2百萬(2M)像素檢視器(例如:顯示器)的一種常見情形中之解析度增益對ZF的使用者經驗。
舉例來說,假設該等廣角與遠距子相機具有EFL為滿足EFL
T=5*EFL
W。在此情形中,起始的解析度(ZF=1)將為觀察者之2M。隨著ZF藉由子相機數位變焦所增大,觀察者2M像素將取樣一個較小的“新”FOV (造成較高的解析度)。此新FOV是ZF的一個函數,即:FOV
ZF=FOV
W/ZF。新FOV
ZF是由在廣角子相機(造成較低的解析度)之中的較小數目個像素(PXC)所取樣,根據PXC=13M/(ZF)
2。只要PXC>2M (或ZF<(13/2)
0.5=DZC),感知的解析度將隨著ZF而提高。對於接近1的ZF,解析度增大將為類似於一種光學變焦之解析度增大。對於其接近DZC的一種數位ZF,解析度增大將為降低許多。對於一種數位ZF>DZC,解析度將維持固定。描述由廣角子相機之數位變焦所達成的解析度增益(RG, resolution gain)為ZF的一個函數之公式可被寫為:
RG = RG(W)*(1 +CQ*(ZFC – 1)* sqrt(tanh(((ZF – 1)/ CQ*(ZFC – 1))
2)))
其中,CQ (典型在0.7-0.8之間)代表在最大解析度的相機品質,且RG(W)是在無任何數位變焦之情況下的一個廣角子相機影像的感知物體解析度。
在圖9b之中,RG遵照此式,針對於1<ZF<5。在ZF=5 (其定義為“變遷ZF”或ZF
t),輸出切換到具有一個對應RG(T)=5的T子相機,其中RG(T)是在沒有任何數位變焦情況下之一個T子相機影像的感知物體解析度。以類似方式,在子相機切換後之具有ZF的連續解析度增益遵照:
RG = RG(T)*(1 +CQ*(DZC – 1)* sqrt(tanh(((ZF/ZFT – 1)/ CQ*(DZC – 1))
2)))
如可由圖9b所看出,解析度增益對ZF的使用者經驗是極為不同於在一種理想光學變焦情形中。
圖9c說明在關於一種三光圈相機之13M子相機與2M檢視器的一種常見情形中之解析度增益對ZF的使用者經驗,該三光圈相機包括具有EFL
W的一個廣角子相機、具有EFL
M=2.35*EFL
W之一個居間的中間子相機、以及具有EFL
T=5*EFL
W的一個遠距子相機。在此情形中,具有二個子相機變遷ZF
t1=2.35與ZF
t2=5。對應而言,具有三個解析度增益RG(W)=1、RG(M)=2.35與RG(T)=5。此圖說明以下的RG行為:
從ZF=1直到ZF=2.35,
RG = RG(W)*(1 +CQ*(DZC-1)* sqrt(tanh(((ZF/1-1)/ CQ*(DZC-1))
2)));
從ZF=2.35直到ZF=5,
RG = RG(M)*(1 +CQ*(DZC – 1)* sqrt(tanh(((ZF/ZF
T1– 1)/ CQ*(DZC – 1))
2)));
從ZF=5繼續向前,
RG = RG(T)*(1 +CQ*(DZC – 1)* sqrt(tanh(((ZF/ZF
T2– 1)/ CQ*(DZC – 1))
2)))。
如可看出,在此情形中,解析度增益對ZF的使用者經驗是極為接近於在一種理想光學變焦中的使用者經驗。
因此,根據本揭示標的之一個實例,既定一個EFL
W與EFL
T,具有個別EFL
M之一種中間子相機可基於EFL
W值與EFL
T值的幾何平均數來選擇。根據此實例,EFL
M是基於等式=>
所選擇,其中在一些情形中,EFL
M等於
。
如上所述,合意的是,設計一種具有其為儘可能小的尺度之相機,為了適以和常用的影像感測器一起操作且配合該相機所裝設在其中之一種電子裝置(例如:智慧型手機)的厚度(較佳為並未從該裝置的殼體所突出)。是以,在本文所揭示的一種多光圈(例如:雙光圈)相機中,合意的是,維持一種折疊式遠距子相機的高度為儘可能低。不同於一般相機(例如:直立式的子相機),在本文所揭示的一種折疊式遠距子相機中,相機的高度是有關於該模組在例如在圖2所示之y軸的尺度,且主要為取決於在個別透鏡模組中的透鏡之中的最大透鏡的直徑。
同時,亦為合意的是,達成良好的影像解析度而且提供高的變焦效果(例如:ZF=X5或更大),且因此在折疊式的遠距子相機之中的光圈直徑必須維持為充分大以致能達成一個充分小的F# (例如:F#=3或更小)。顯然,遠距子相機的EFL愈大,光圈必須為愈大以維持一個既定的F#。
再者,在其具有感測器為大於光圈之諸多習用的透鏡模組(例如:直立式廣角或遠距透鏡模組),該等透鏡的直徑被設計為朝著感測器而愈來愈寬,使得其為適應進入相機光圈的光線之視場角,其意欲為落在感測器的整個面積上。在一種折疊透鏡單元中,此增大透鏡直徑之習用設計將造成較大的相機高度且因此為不合意。
因此,一種新的折疊式遠距子相機被揭示在本文為具有一個群組的透鏡元件之一種透鏡模組,其被設計為具有降低的高度而維持光線阻斷為低於某個值且允許進來的光線之投射在影像感測器的整個面積上。
根據本揭示標的之實例,在該透鏡模組中的透鏡元件並未被設計以具有朝著感測器而為愈來愈大的直徑。反之,在該種折疊式遠距子相機之透鏡模組中的各個透鏡元件是尺寸縮小。各個透鏡的直徑被確定為儘可能小而且維持充分的光線通過透鏡朝向感測器以得到期望的相機品質(例如:解析度與信號雜訊比(Signal-to-noise ratio,SNR))且致能繼續提供在影像感測器的整個面積(即:感測器的主動像素面積)之一個影像。該等影像感測器可為例如1/3”影像感測器與1/4”影像感測器。
根據某些實例,在遠距透鏡模組(其包含至少3個透鏡元件)中之最大透鏡元件的直徑是實質為不超過光圈(218)的直徑以允許光線進入遠距子相機(即:遠距子相機光圈)。因此,遠距子相機光圈的直徑可有助於界定在遠距透鏡模組中之透鏡元件的最大直徑。
根據一個實例,在遠距透鏡模組中之最大透鏡元件的直徑是低於或等於遠距子相機光圈的直徑。根據另一個實例,在遠距透鏡模組中之最大透鏡元件的直徑不超過遠距子相機光圈的直徑為多於10%。根據另一個實例,在遠距透鏡模組中之最大透鏡元件的直徑不超過遠距子相機光圈的直徑為多於5%。根據又一個實例,在遠距透鏡模組中之最大透鏡元件的直徑不超過遠距子相機光圈的直徑為多於2.5%。根據此等原理之折疊式遠距子相機設計參數的實例是參考圖10與11以及表2-7來描述在下文。
圖10A-10C顯示其可使用在本文所揭示的一種變焦雙光圈相機之種種示範的遠距透鏡模組(標號為220a、220b、或220c),其包括一個折疊式遠距透鏡。各個模組包括個別群組的透鏡元件。亦在圖10A所顯示者是光圈光闌218、朝“z”方向的對稱軸222a、遠距影像感測器224與附加的蓋板223。
透鏡模組220a、220b、或220c分別包括5、4、與3個透鏡元件(或簡稱為“元件”)。該等透鏡元件被標示為L1、L2、L3、L4與L5 (在透鏡模組220a之中)、L1、L2、L3與L4 (在透鏡模組220b之中)以及L1、L2與L3 (在透鏡模組220c之中)。明顯的是,在此所述的實例包括至少三個透鏡元件,其可提供充分的成像品質。
詳細的光學資料與非球狀表面資料被提出在下列的表中,表2與3是針對於透鏡模組220a,表4與5是針對於透鏡模組220b,表6與7是針對於透鏡模組220c。曲率半徑(R)、透鏡元件厚度及/或在沿著對稱軸的元件之間的距離、與直徑之單位是以 mm來表示。“N
d”是折射率,“V
d”是指示透鏡材料色差的一個參數。大的V
d指示小的色差,且反之亦然。“BK7”是具有已知的N
d與V
d之一種已知的玻璃。非球狀表面輪廓的等式被表示為:
其中,“r”是相距(且垂直於)對稱軸的距離,k是圓錐係數,c=1/R,其中R是曲率半徑,且α是提供在表3、5、與7之中的係數。注意的是,r的最大值“max r”=直徑/2。亦注意的是,在表2 (以及在以下的表4與6)之中,在種種元件(及/或表面)之間的距離是在對稱軸Z所測量,其中,光闌是在Z=0。各個編號是從前一個表面所測量。
表2
表3
表4
表5
表6
表7
# | 半徑(R) | 距離 | N d/V d | 直徑 | 圓錐係數k |
1 | 無限 | -0.324 | 4.0 | 0 | |
2 | 4.938499 | 0.779 | 1.544921/55.9149 | 4.0 | 2.2402 |
3 | 53.73119 | 0.074 | 4.0 | 28 | |
4 | 4.310708 | 1.217 | 1.635517/23.9718 | 4.0 | 1.2159 |
5 | 2.127431 | 0.509 | 3.5 | -0.9831 | |
6 | 7.374006 | 0.678 | 1.544921/55.9149 | 3.6 | 10.8851 |
7 | -147.731 | 0.604 | 3.5 | -12.2 | |
8 | -2.28889 | 0.742 | 1.635517/23.9718 | 3.5 | -7.6686 |
9 | -2.97793 | 0.082 | 3.9 | -5.7863 | |
10 | 2.411553 | 0.6 | 1.544921/55.9149 | 4.1 | -6.0953 |
11 | 3.111521 | 6.982 | 4.0 | -8.4191 | |
12 | 無限 | 0.21 | BK7 | 6.0 | 0 |
13 | 無限 | 0.187 | 6.0 | 0 | |
14 | 無限 | 0 | 6.1 | 0 |
# | α 1 | α 2 | α 3 | α 4 | α 5 | α 6 | α 7 | α 8 |
2 | 0 | -2.5699E-03 | -6.5546E-04 | -2.4933E-05 | -1.9717E-05 | 9.1450E-07 | 1.8986E-08 | 0.0000E+00 |
3 | 0 | 4.7508E-04 | -4.3516E-04 | -6.5166E-05 | -4.2148E-07 | 1.0572E-06 | 4.4021E-08 | 0.0000E+00 |
4 | 0 | -9.1395E-03 | 2.5655E-04 | -4.5210E-05 | 7.4472E-06 | -1.1011E-06 | 2.8410E-07 | 0.0000E+00 |
5 | 0 | -1.0827E-02 | 1.0372E-03 | 5.0554E-05 | -9.5710E-06 | 1.1448E-05 | -2.2474E-06 | 0.0000E+00 |
6 | 0 | -9.5074E-03 | 1.0268E-03 | 2.4209E-04 | 1.1234E-04 | 3.9355E-06 | -9.7194E-06 | 7.9430E-07 |
7 | 0 | -3.6269E-03 | 8.7662E-04 | 7.0010E-04 | 6.5578E-05 | -2.0053E-05 | -4.1923E-06 | 0.0000E+00 |
8 | 0 | -1.2355E-02 | 1.8611E-03 | 1.5007E-04 | -9.4899E-05 | -8.0223E-06 | -3.1794E-06 | 0.0000E+00 |
9 | 0 | -7.3112E-03 | 9.3354E-04 | 2.5951E-06 | -4.0614E-06 | -8.8752E-06 | -1.6836E-06 | 6.2706E-07 |
10 | 0 | -2.7777E-03 | 7.1318E-04 | 3.0673E-05 | -2.3126E-06 | -2.9513E-06 | 5.1524E-07 | 0.0000E+00 |
11 | 0 | -3.8232E-03 | 4.8687E-04 | 4.8505E-05 | 2.2064E-06 | -4.0755E-06 | 5.8813E-07 | 0.0000E+00 |
# | 半徑 | 距離 | N d/V d | 直徑 | 圓錐係數k |
1 | 無限 | -0.420 | 4.0 | ||
2 | 4.114235 | 1.674 | 1.544921/55.9149 | 4.0 | -0.6679 |
3 | -14.5561 | 0.073 | 4.0 | 15.3789 | |
4 | 76.19695 | 1.314 | 1.635517/23.9718 | 3.9 | -10.0000 |
5 | 3.726602 | 1.130 | 3.6 | -0.3699 | |
6 | 5.336503 | 1.407 | 1.635517/23.9718 | 3.8 | -9.4625 |
7 | 9.356809 | 0.839 | 3.6 | -12.2000 | |
8 | 2.76767 | 0.512 | 1.544921/55.9149 | 3.8 | -3.0862 |
9 | 2.342 | 3.457 | 4.0 | -2.3717 | |
10 | 無限 | 0.210 | BK7 | 8.0 | |
11 | 無限 | 0.894 | 8.0 | ||
12 | 無限 | 0.000 | 8.0 |
# | α 1 | α 2 | α 3 | α 4 | α 5 | α 6 | α 7 |
2 | 0 | 3.1365E-04 | -2.4756E-04 | -3.2950E-05 | -3.1474E-06 | -6.6837E-07 | -9.3198E-08 |
3 | 0 | 1.1887E-03 | -5.1479E-04 | -7.0886E-06 | -6.6567E-06 | 7.3082E-07 | -2.1508E-07 |
4 | 0 | -6.7467E-03 | 1.6492E-03 | -1.7937E-04 | 2.4668E-05 | -6.1495E-08 | -5.8827E-07 |
5 | 0 | -1.8460E-02 | 3.8467E-03 | -5.0388E-04 | 9.0675E-05 | 6.3951E-06 | -4.2041E-06 |
6 | 0 | -1.0557E-03 | 5.4851E-04 | -1.1124E-04 | 1.2112E-04 | -1.4549E-05 | -1.0474E-06 |
7 | 0 | -1.3355E-02 | 7.1465E-03 | -1.8536E-03 | 4.1411E-04 | -8.4044E-06 | -6.4049E-06 |
8 | 0 | -5.9360E-02 | 6.4070E-03 | 4.1503E-04 | -2.5533E-04 | 4.3694E-05 | -5.0293E-06 |
9 | 0 | -5.6451E-02 | 9.0603E-03 | -5.9225E-04 | -1.1000E-04 | 2.2464E-05 | -1.5043E-06 |
# | 半徑 | 距離 | N d/V d | 直徑 | 圓錐係數 k |
1 | 無限 | 0.060 | 5.0 | 0.00 | |
2 | 7.942 | 1.682 | 1.534809/55.6639 | 5.0 | -7.2579 |
3 | -15.778 | 2.040 | 5.0 | 17.1752 | |
4 | -2.644 | 2.143 | 1.639078/23.2529 | 5.0 | -5.3812 |
5 | -7.001 | 0.063 | 5.0 | -8.3079 | |
6 | 2.300 | 1.193 | 1.534809/55.6639 | 5.0 | -0.5654 |
7 | 3.373 | 7.787 | 5.0 | -0.1016 | |
8 | 無限 | 0.210 | BK7 | 8.0 | |
9 | 無限 | 0.200 | 8.0 |
# | α 1 | α 2 | α 3 | α 4 | α 5 | α 6 | α 7 |
2 | 0 | -3.4545E-04 | -2.6977E-04 | -6.3091E-06 | -7.6965E-07 | 0.0000E+00 | 0.0000E+00 |
3 | 0 | -1.2414E-03 | -3.0118E-04 | 1.6812E-05 | -1.6865E-06 | 1.9446E-07 | -1.1391E-08 |
4 | 0 | 3.0073E-03 | -4.8811E-04 | 9.4948E-05 | -5.7587E-06 | 1.0543E-07 | 0.0000E+00 |
5 | 0 | 3.6847E-03 | -4.8608E-04 | 7.2121E-05 | -2.9304E-06 | 0.0000E+00 | 0.0000E+00 |
6 | 0 | -1.5774E-02 | 1.4580E-03 | -2.6302E-04 | 2.3905E-05 | -1.1017E-06 | 0.0000E+00 |
7 | 0 | -8.6658E-03 | 1.2548E-03 | -3.6145E-04 | 5.0797E-05 | -3.8486E-06 | 1.1039E-07 |
以下術語被定義:“透鏡光學高度”“H”是各個透鏡元件的光學使用面積(即:光線是透過其而直接從相機光圈通過到感測器以形成一個影像的面積)之最大直徑。該術語是針對於一種四元件的透鏡模組而被說明在圖11A。各個元件L
n具有個別的光學高度“H
n”。該圖顯示H/2為在對稱軸與標示箭頭的尖端之間的距離。“相機光學高度”是所有透鏡元件之中的最大光學高度,在此例為H
1。
“阻斷光線百分比”(每個視角)被定義為以某個視角(水平與垂直)從一個極遠物體到達在相機且其進入相機光圈而未到達影像感測器之光線的百分比。顯然,相對的光線阻斷是隨著在透鏡元件的直徑之減小而增大。圖11B說明由插入(舉例而言)在一種四元件的遠距透鏡的元件L3與L4之間的一個光闌250所引起的部分的光線之阻斷240。亦簡稱為“光闌(stop)”之光闌被建構以阻止光線到達透鏡邊緣且為朝所有方向散射。
根據本揭示標的,在遠距透鏡模組之中的透鏡元件之直徑被確定以使得由光闌所阻斷的光線不會阻止超過預定百分比的進來光線到達影像感測器。
上文所揭示的遠距透鏡允許一個較大的遠距影像感測器(>4.5 mm×3.35 mm)之使用,致能高像素總數(例如:13百萬(Mega)像素)。其提供低的相機1.25,此致能低的相機模組高度(例如:<1.25*(1+EFL/F#)=1.25*(1+相機光圈)),亦參閱圖12與13。
本文所揭示的折疊式遠距透鏡允許對於高變焦之長的EFL (例如:>10 mm)、低的F# (例如:<3)以得到較多的光線與光學解析度、以及針對於所有視角之低百分比的阻斷光線(<25%)。如上所示,一種折疊式遠距透鏡模組可包括例如3到5個透鏡元件。此種組合的透鏡元件致使能夠以低的價格來得到高的影像品質。
注意的是,該種遠距透鏡模組的透鏡元件是由一種特別結構(例如:筒)而被固定在定位,例如:藉由一種塑膠盆(冷筒)。因此,本文所論述的遠距透鏡模組被視為包括其將透鏡元件固定在定位之結構(筒)以及一種基板(例如:一個或多個PCB)。該一個或二個磁鐵可被定位在基板上,如在圖12與13所示,或是在基板的側邊。在任一情況中,其高度為實質不超過該種遠距透鏡模組的高度。
圖12是以(a)等角視圖與(b)外部視圖來顯示本文揭示且標號為1200的一種相機。相機1200包括用於折疊式遠距透鏡之一種二個磁鐵(1202與1204)、二個線圈(1206與1208)的AF機構。各對的磁鐵-線圈被配置以提供力量來將一個遠距透鏡1210沿著其對稱軸而移動。該力量(與移動)是藉由一個彈簧1212所抗衡(及倒轉)。
圖13是以(a)等角視圖與(b)外部視圖來顯示本文揭示且標號為1300的一種相機。對照於相機1200,相機1300包括用於折疊式遠距透鏡之一種一個磁鐵(1302)、一個線圈(1306)與彈簧(1312)的AF機構。在圖12與圖13所示的AF機構被建構以根據音圈致動器(VCA, voice coil actuator)(通常稱為“磁性致動器”)的原理來操作。
此AF機構被特別設計以維持低矮的相機輪廓。根據一個實例,AF機構被設計以側向安裝在遠距透鏡模組的一或二面,而其他面維持不觸及AF機構零件。
明確而言,一個或二個磁鐵(磁性耦合到個別的線圈)被設計具有高度為實質不超過遠距透鏡模組的高度,藉以避免對於折疊式的遠距子相機的整體高度之任何顯著促成。
此種設計被說明在圖12 (其顯示具有二個磁鐵的AF設計)與圖13 (其顯示具有一個磁鐵的AF設計)之中。注意,儘管該等磁鐵被直立定位在遠距透鏡模組的一側或二側上,位在垂直於該等磁鐵之二個其他的平面(在由箭頭OS所標示的物體側與由箭頭SS所標示的基板側)維持不觸及該等磁鐵。概括而言, 該AF機構與磁鐵之此種設計明確為顯著降低(或在一些組態中為完全避免)在遠距子相機的整體高度之增大,否則其可能為由該AF機構所引起。
根據一個實例,該等磁鐵的高度是低於或等於該遠距透鏡模組的高度(例如由最高的透鏡所界定)。根據另一個實例,該等磁鐵的高度不超過該遠距透鏡模組的高度為多於10%。根據另一個實例,該等磁鐵的高度不超過該遠距透鏡模組的高度為多於5%。根據另一個實例,該等磁鐵的高度不超過該遠距透鏡模組的高度為多於2.5%。
整體的相機(包括AF機構)可被封裝在一個具有高度H
T(總高度)的低矮輪廓的機械封裝(殼體) 1250之中,參閱圖12(b),致能在本文揭示的一種變焦雙或三光圈相機之納入在一個低矮輪廓的手機中,俾使H
T是等於或小於6.5 mm且在一些實例中是等於或小於5.7 mm。
圖14顯示一種根據本揭示標的之一個實例的一種可攜式電子裝置之一個實例的示意例圖,該種可攜式電子裝置具有一種具有折疊式遠距透鏡模組的整合式雙光圈相機。如在影像中所示,相機1450 (包括具有折疊式遠距透鏡模組與相機殼體的雙光圈相機)被完全整合在可攜式電子裝置1400之中且並未從該裝置殼體所突出。該種相機是在可攜式裝置之內被定向,俾使其縱向尺度是關於該裝置為水平定位。歸因於遠距子相機之折疊的光徑,其可具有一種並未從電子裝置(例如:智慧型手機)的殼體所突出之結構而提供高的變焦效果(例如:X5或更大)。
儘管此揭露內容已經根據某些實施例與概括關聯的方法來描述,該等實施例與方法的交替及變更將對於熟習此技藝人士為顯而易見。此揭露內容將被瞭解為不受限於本文所述的特定實施例,而是僅為由隨附申請專利範圍的範疇所限定。
100:雙光圈變焦相機
102、104:子相機
106、114:光學區塊
108、116:光圈
110、118:光學透鏡模組
112、120:感測器
122a、122b:紅外線(IR)濾波器
124:底線
126、128:自對對焦(AF)機構
200、200’:相機
202:廣角子相機
204:遠距子相機
208:光圈
210:光學透鏡模組
212:對稱(光學)軸
214:廣角影像感測器
218:光圈(光闌)
220:光學透鏡模組
220a、220b、220c:遠距透鏡模組
222a:遠距透鏡對稱(光學)軸
222b:箭頭
223:蓋板
224:遠距影像感測器
226:反射鏡
230:箭頭
232、232’:基板
240:阻斷
250:光闌
300:相機
302:第二反射鏡
304a、304b:箭頭
400:可攜式電子裝置
402:自動對焦(AF)機構
404:靜止件
406:移動件
408a-408d:永久磁鐵
410:對稱軸
412:鐵心
414:線圈
416:移動件406的一端
418:移動件406的一個相對端
420a-420d:彈簧
422:靜止框架
430:箭頭
600、600’、600”:相機
602:中間子相機
604:中間透鏡
606:中間感測器
608:側邊
610:側邊
612:對稱(光)軸
700、800:相機
802:折疊式中間子相機
804:中間透鏡
806:中間感測器
808:反射鏡
810:方向
812:中間透鏡對稱軸
830:箭頭
1200:相機
1202、1204:磁鐵
1206、1208:線圈
1210:遠距透鏡
1212:彈簧
1250:機械封裝(殼體)
1300:相機
1302:磁鐵
1306:線圈
1312:彈簧
1400:可攜式電子裝置
1450:相機
本文所揭示的實施例之非限制性的實例是關於隨附於其的圖式而被描述在下文,該等圖式是在此段落之後而列出。該等圖式與描述是意指來說明且闡述本文所揭示的實施例,且絕不應被視為限制性質。在不同圖式中的同樣元件可由相同的標號所指出。
圖1示意顯示一種具有變焦與自動對焦(AF)的雙光圈相機之設計;
圖2A是以(a)概括等角視圖與(b)側視圖來示意顯示根據本揭示標的之一個實例之一種具有折疊式遠距透鏡模組的變焦及自動對焦雙光圈相機;
圖2B是以概括等角視圖來示意顯示根據本揭示標的之一個實例之一種具有折疊式遠距透鏡模組的變焦及自動對焦雙光圈相機;
圖3是以(a)概括等角視圖與(b)側視圖來示意顯示根據本揭示標的之一個實例在本文所揭示之一種具有折疊式遠距透鏡模組的變焦及自動對焦雙光圈相機;
圖4是以(a)概括等角視圖與(b)側視圖來示意顯示根據本揭示標的之一個實例在本文所揭示之一種具有折疊式遠距透鏡模組的變焦及自動對焦雙光圈相機;
圖5是以(a)概括等角視圖與(b)穿過截面A-A的橫截面視圖來示意顯示其用於移動在圖4所示的實例中的第二反射鏡之自動對焦機構的細節;
圖6A是以概括等角視圖來示意顯示根據本揭示標的之一個實例之一種具有一個折疊式遠距透鏡的變焦及自動對焦三光圈相機;
圖6B是以概括等角視圖來示意顯示根據本揭示標的之一個實例之一種具有一個折疊式遠距透鏡的變焦及自動對焦三光圈相機;
圖6C是以概括等角視圖來示意顯示根據本揭示標的之一個實例之一種具有一個折疊式遠距透鏡的變焦及自動對焦三光圈相機;
圖7是以概括等角視圖來示意顯示根據本揭示標的之一個實例之一種具有二個折疊式透鏡的變焦及自動對焦三光圈相機;
圖8是以概括等角視圖來示意顯示根據本揭示標的之一個實例之一種具有二個折疊式遠距透鏡的變焦及自動對焦三光圈相機;
圖9顯示曲線圖,其說明在:(a)在一種理想連續變焦中之解析度增益對變焦因數的使用者經驗;(b)用其包括有13百萬像素感測器與2百萬像素檢視器的二個(廣角與遠距)子相機的一種相機之解析度增益對變焦因數的使用者經驗;及,(c)用根據本揭示標的之一個實例之其包括有13百萬像素感測器與2百萬像素檢視器的三個(廣角、中間與遠距)子相機的一種相機之解析度增益對變焦因數的使用者經驗;
圖10A顯示根據本揭示標的之一個實例之一種具有五元件的遠距透鏡單元之遠距透鏡模組,其可被使用在一種相機中;
圖10B顯示根據本揭示標的之一個實例之一種具有四元件的遠距透鏡單元之遠距透鏡模組,其可被使用在本文所揭示的一種相機中;
圖10C顯示根據本揭示標的之一個實例之一種具有三元件的遠距透鏡單元之遠距透鏡模組,其可被使用在一種相機中;
圖11A說明根據本揭示標的之一個實例之對於一種四元件的透鏡單元之各個透鏡元件的術語“透鏡光學高度”H/2;
圖11B說明根據本揭示標的之一個實例之阻斷光線的效果;
圖12是以(a)等角視圖與(b)外部視圖來示意顯示根據本揭示標的之一個實例之一種相機模組;
圖13是以(a)等角視圖與(b)外部視圖來示意顯示根據本揭示標的之一個實例之另一種相機模組;且
圖14示意顯示根據本揭示標的之一個實例之一種具有折疊式遠距透鏡模組的整合雙光圈相機的可攜式電子裝置。
200:相機
202:廣角子相機
204:遠距子相機
208:光圈
210:光學透鏡模組
212:對稱(光學)軸
214:廣角影像感測器
218:光圈(光闌)
220:遠距透鏡模組
222a:遠距透鏡對稱(光學)軸
222b:箭頭
224:遠距影像感測器
226:反射鏡
230:箭頭
232:基板
Claims (21)
- 一種折疊式相機,包括: 一透鏡模組,具有N個透鏡元件Li,其中1 ≤ i ≤ N; 一第一反射元件,該第一反射元件將來自一第一光徑的光折疊到一第二光徑;及 一影像感測器, 其中該透鏡元件被設計為具有相應的直徑,該相應的直徑基本上不超過一光圈直徑,並且該折疊式相機的一相機模組高度小於1.25*(1+EFL/F#)。
- 如請求項1所述的折疊式相機,其中每個透鏡元件Li具有各自的光學高度Hi,其界定有透鏡元件Li的一最大透鏡元件直徑,其中一第一透鏡元件L 1最接近物體具有一光學高度H 1,並且Hi ≤ H 1,其中2 ≤ i ≤N。
- 如請求項2所述的折疊式相機,其中該影像感測器具有沿平行於該第一光徑的軸測量的一影像感測器高度,並且該影像感測器高度大於H 1。
- 如請求項1所述的折疊式相機,其中該N個透鏡元件全部具有一共同透鏡光軸。
- 如請求項4所述的折疊式相機,其中該第二光徑平行於該共同透鏡光軸。
- 如請求項1所述的折疊式相機,其中該第二光徑垂直於該第一光徑。
- 如請求項1所述的折疊式相機,其中該折疊式相機對於所有視角都呈現出阻斷光線 < 25%的百分比。
- 如請求項1所述的折疊式相機,其中該折疊式相機還包括一第二反射元件,該第二反射元件將來自該第二光徑的光折疊到該透鏡模組與該影像感測器之間的一第三光徑,其中該第三光徑平行於該第一光徑。
- 如請求項1所述的折疊式相機,其中該透鏡模組具有一有效焦距EFL在8 mm至30 mm之間。
- 如請求項1所述的折疊式相機,其中該透鏡模組具有一F數值 F#和一有效焦距EFL,並且該鏡頭光圈直徑等於EFL/F#。
- 如請求項10所述的折疊式相機,其中F# < 3。
- 如請求項10所述的折疊式相機,其中F# ≤ 2.9。
- 如請求項10所述的折疊式相機,其中F# ≤ 2.75。
- 如請求項10所述的折疊式相機,其中F#在2至3的範圍內。
- 如請求項1所述的折疊式相機,其中該影像感測器具有一影像感測器尺寸大於4.5 mm × 3.35 mm。
- 依據請求項1所述的折疊式相機,其中該N個透鏡元件包括3至5個透鏡元件。
- 如請求項1所述的折疊式相機,其中該影像感測器具有一感測器尺寸S,該感測器尺寸S滿足1/4” ≤ S ≤ 1/3”。
- 如請求項1至17任一項所述的折疊式相機,其中該相機被包括在一行動裝置中。
- 如請求項18所述的折疊式相機,其中該行動裝置進一步包括另一相機。
- 如請求項18所述的折疊式相機,其中該行動裝置是智慧型手機。
- 如請求項19所述的折疊式相機,其中該行動裝置是智慧型手機。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/455,906 | 2014-08-10 | ||
US14/717,258 | 2015-05-20 |
Publications (1)
Publication Number | Publication Date |
---|---|
TW202509612A true TW202509612A (zh) | 2025-03-01 |
Family
ID=
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI867627B (zh) | 行動裝置 | |
TW202509612A (zh) | 折疊式相機 |