[go: up one dir, main page]

TW202508213A - Simulation devices and mechanical control devices - Google Patents

Simulation devices and mechanical control devices Download PDF

Info

Publication number
TW202508213A
TW202508213A TW113124504A TW113124504A TW202508213A TW 202508213 A TW202508213 A TW 202508213A TW 113124504 A TW113124504 A TW 113124504A TW 113124504 A TW113124504 A TW 113124504A TW 202508213 A TW202508213 A TW 202508213A
Authority
TW
Taiwan
Prior art keywords
motor
temperature
unit
blower
action
Prior art date
Application number
TW113124504A
Other languages
Chinese (zh)
Inventor
神谷洋平
Original Assignee
日商發那科股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商發那科股份有限公司 filed Critical 日商發那科股份有限公司
Publication of TW202508213A publication Critical patent/TW202508213A/en

Links

Abstract

模擬裝置是模擬包含送風機的電動機的溫度的變化。模擬裝置具備溫度推定部及動作設定部,前述溫度推定部是依據電動機的模型來推定定子的溫度,前述動作設定部是設定送風機的動作。電動機的模型包含電動機的構成部分的模型,在構成部分的模型彼此之間設定有和熱傳遞有關的係數。動作設定部是依據由溫度推定部所推定的定子的推定溫度的每單位時間的變化率,來設定送風機的動作。The simulation device simulates the change of the temperature of the motor including the blower. The simulation device has a temperature estimation unit and an action setting unit. The temperature estimation unit estimates the temperature of the stator based on the model of the motor, and the action setting unit sets the action of the blower. The model of the motor includes the models of the components of the motor, and coefficients related to heat transfer are set between the models of the components. The action setting unit sets the action of the blower based on the rate of change per unit time of the estimated temperature of the stator estimated by the temperature estimation unit.

Description

模擬裝置及機械控制裝置Simulation devices and mechanical control devices

本揭示是有關於一種模擬裝置及機械控制裝置。The present disclosure relates to a simulation device and a mechanical control device.

已知在機械中為了使構成構件動作而配置有電動機。當電動機驅動時,定子鐵芯、固定於定子鐵芯的線圈等會發熱,電動機的溫度會上升。當電動機的溫度過高時,會有電動機不正確地動作、電動機的構成部分損傷、或電動機的壽命變短的情況。因此,已知在電動機中配置將電動機的本體冷卻的送風機。已知可藉由送風機所產生的空氣的流動,來將定子等冷卻。It is known that a motor is arranged in a machine to move components. When the motor is driven, the stator core, the coil fixed to the stator core, etc. will heat up, and the temperature of the motor will rise. When the temperature of the motor is too high, the motor may not operate properly, the components of the motor may be damaged, or the life of the motor may be shortened. Therefore, it is known to arrange a blower in the motor to cool the body of the motor. It is known that the stator, etc. can be cooled by the flow of air generated by the blower.

驅動電動機時的實際的電動機的構成部分的溫度可藉由安裝於電動機的構成部分的溫度檢測器來檢測。或者,可以由推定電動機的溫度之模擬來推定。例如,已知一種熱模型,其是依據電動機中的熱損失,來推定電動機的構成部分的溫度。 先前技術文獻 專利文獻 The actual temperature of the components of the motor when the motor is driven can be detected by a temperature detector installed on the components of the motor. Alternatively, it can be estimated by a simulation that estimates the temperature of the motor. For example, a thermal model is known that estimates the temperature of the components of the motor based on the heat loss in the motor. Prior Art Literature Patent Literature

專利文獻1:日本專利特開平7-79592號公報 專利文獻2:日本專利特開平11-37097號公報 專利文獻3:日本專利特開2018-121384號公報 Patent document 1: Japanese Patent Publication No. 7-79592 Patent document 2: Japanese Patent Publication No. 11-37097 Patent document 3: Japanese Patent Publication No. 2018-121384

發明欲解決之課題Invention Problems to be Solved

在電動機的運轉期間中,藉由送風機將空氣供給至電動機,藉此可以有效地冷卻電動機。然而,若一直以最大的旋轉速度來驅動送風機,會有電動機的消耗電力變大的問題。During the operation of the motor, the air is supplied to the motor by the blower, thereby effectively cooling the motor. However, if the blower is always driven at the maximum rotation speed, there is a problem that the power consumption of the motor increases.

又,當以固定的旋轉速度持續送風機的驅動時,電動機的本體的溫度會因應於電動機的負載率而變動。當電動機的負載率大時,電動機的溫度會變高,當負載率小時,電動機的溫度會變低。電動機的熱是傳遞到接觸電動機的機械的構成構件。當電動機的溫度的變動幅度變大時,接觸電動機的機械的構成構件的溫度的變動幅度會變大。其結果,會因機械的構成構件熱膨脹或收縮而造成熱位移產生。Furthermore, when the blower is driven continuously at a fixed rotational speed, the temperature of the motor body will change in accordance with the load factor of the motor. When the load factor of the motor is large, the temperature of the motor will become high, and when the load factor is small, the temperature of the motor will become low. The heat of the motor is transferred to the components of the machine in contact with the motor. When the temperature fluctuation range of the motor becomes larger, the temperature fluctuation range of the components of the machine in contact with the motor will also become larger. As a result, thermal displacement will occur due to thermal expansion or contraction of the components of the machine.

當機械的構成構件產生熱位移時,會有驅動機械的精確度惡化的情況。例如,當機械為切削工件的工具機的情況下,會有電動機的熱傳遞至保持工具的工具保持構件的情況。當工具保持構件熱膨脹時,工具前端的位置會變化,因此工件的加工精確度會降低。如此,電動機的溫度的變動幅度小是較理想的。亦即,較理想的是能夠盡量以固定的溫度來驅動電動機。 用以解決課題之手段 When the components of a machine produce thermal displacement, the accuracy of the driving machine may deteriorate. For example, when the machine is a machine tool that cuts a workpiece, the heat of the motor may be transferred to the tool holding component that holds the tool. When the tool holding component expands thermally, the position of the front end of the tool changes, and the machining accuracy of the workpiece decreases. In this case, it is ideal for the temperature of the motor to vary as little as possible. In other words, it is ideal to be able to drive the motor at a fixed temperature as much as possible. Means used to solve the problem

本揭示的一態樣是模擬包含送風機的電動機的溫度的變化之模擬裝置。模擬裝置具備:記憶部,記憶電動機的模型,前述電動機的模型是推定電動機的構成部分的溫度之模型;溫度推定部,依據電動機的模型來推定定子的溫度;及動作設定部,設定送風機的動作。電動機的模型包含電動機的構成部分的模型與外部空氣的模型。在至少1個構成部分的模型中設定有熱容量。在電動機的構成部分的模型彼此之間及電動機的構成部分的模型與外部空氣的模型之間,設定有和熱傳遞有關的係數。動作設定部是依據由溫度推定部所推定的定子的推定溫度的每單位時間的變化率,來設定送風機的動作。One aspect of the present disclosure is a simulation device for simulating the change in temperature of a motor including a blower. The simulation device comprises: a memory unit for storing a model of the motor, wherein the model of the motor is a model for estimating the temperature of the components of the motor; a temperature estimating unit for estimating the temperature of the stator based on the model of the motor; and an action setting unit for setting the action of the blower. The model of the motor includes a model of the components of the motor and a model of the outside air. A heat capacity is set in the model of at least one component. Coefficients related to heat transfer are set between the models of the components of the motor and between the models of the components of the motor and the model of the outside air. The operation setting unit sets the operation of the blower according to the rate of change per unit time of the estimated temperature of the stator estimated by the temperature estimating unit.

用以實施發明之形態The form used to implement the invention

參照圖1至圖18,說明實施形態中的電動機的模擬裝置及控制具備電動機的機械之機械控制裝置。本實施形態的電動機的模擬裝置具有以下的功能:使用電動機的熱模型,來推定電動機之事先決定的構成部分的溫度。機械控制裝置具有依據動作程式來控制機械的動作的功能。Referring to Fig. 1 to Fig. 18, a motor simulation device and a machine control device for controlling a machine equipped with a motor in an embodiment are described. The motor simulation device of this embodiment has the following functions: using a thermal model of the motor, the temperature of a predetermined component of the motor is estimated. The machine control device has the function of controlling the operation of the machine according to an operation program.

(機械的構成) 圖1是本實施形態中的機械及電動機的模擬裝置的方塊圖。可以採用具備電動機10的任意機械來作為機械1。在本實施形態中是列舉切削工件的工具機為例來作為機械1來說明。可以例示主軸馬達或進給軸馬達來作為電動機10,前述主軸馬達是使保持工具的主軸旋轉,前述進給軸馬達是用於使保持工件的工作台或包含主軸的主軸頭沿著事先決定的座標軸移動。 (Machine structure) Figure 1 is a block diagram of a simulation device of a machine and a motor in this embodiment. Any machine equipped with a motor 10 can be used as the machine 1. In this embodiment, a machine tool for cutting a workpiece is cited as an example to illustrate the machine 1. A spindle motor or a feed shaft motor can be exemplified as the motor 10. The spindle motor rotates the spindle holding the tool, and the feed shaft motor is used to move the worktable holding the workpiece or the spindle head including the spindle along a predetermined coordinate axis.

機械1具備驅動機械1的構成構件之電動機10、及控制機械1之機械控制裝置41。本實施形態的機械控制裝置41具備運算處理裝置(電腦)。機械控制裝置41包含作為處理器的CPU(Central Processing Unit,中央處理單元)。機械控制裝置41具有透過匯流排連接於CPU的RAM(Random Access Memory,隨機存取記憶體)及ROM(Read Only Memory,唯讀記憶體)等。The machine 1 has an electric motor 10 for driving the components of the machine 1, and a machine control device 41 for controlling the machine 1. The machine control device 41 of this embodiment has an operation processing device (computer). The machine control device 41 includes a CPU (Central Processing Unit) as a processor. The machine control device 41 has a RAM (Random Access Memory) and a ROM (Read Only Memory) connected to the CPU via a bus.

本實施形態的機械1是數值控制式。機械1是依據記載於事先製作的動作程式45之指令語句來驅動。當機械1為工具機的情況下,加工程式相當於動作程式45。機械控制裝置41包含:記憶部42,記憶動作程式45;及動作控制部43,依據動作程式45來生成電動機10的動作指令。機械1包含驅動裝置44,前述驅動裝置44包含依據由動作控制部43所生成的動作指令,將電力供給至電動機10的電路。藉由驅動裝置44供給電力,使電動機10驅動。The machine 1 of this embodiment is numerically controlled. The machine 1 is driven according to the instruction statements recorded in the pre-made action program 45. When the machine 1 is a machine tool, the processing formula is equivalent to the action program 45. The machine control device 41 includes: a memory unit 42, which stores the action program 45; and an action control unit 43, which generates an action instruction for the motor 10 according to the action program 45. The machine 1 includes a drive device 44, and the drive device 44 includes a circuit that supplies power to the motor 10 according to the action instruction generated by the action control unit 43. The motor 10 is driven by the power supplied by the drive device 44.

記憶部42可以由可以記憶資訊的非暫時性記憶媒體來構成。例如,記憶部42可以由揮發性記憶體、非揮發性記憶體、磁性記憶媒體、或光記憶媒體等記憶媒體來構成。動作控制部43相當於依照動作程式45來驅動的處理器。處理器讀入動作程式45來實施決定於動作程式45的控制,藉此作為動作控制部43來發揮功能。The memory unit 42 may be composed of a non-temporary memory medium that can store information. For example, the memory unit 42 may be composed of a memory medium such as a volatile memory, a non-volatile memory, a magnetic memory medium, or an optical memory medium. The action control unit 43 is equivalent to a processor driven according to the action program 45. The processor reads the action program 45 to implement the control determined by the action program 45, thereby functioning as the action control unit 43.

圖2是本實施形態的電動機的剖面圖。參照圖1及圖2,電動機10是轉子11具有磁鐵18的同步電動機。電動機10具備轉子11與定子12。定子12包含:由具有磁性的材質形成的定子鐵芯20、及固定於定子鐵芯20的線圈16。定子鐵芯20是由例如在軸桿13的軸方向上積層的複數個磁性鋼板來形成。線圈16包含例如捲繞在定子鐵芯20的繞組與固定繞組的樹脂部。FIG2 is a cross-sectional view of the motor of the present embodiment. Referring to FIG1 and FIG2, the motor 10 is a synchronous motor having a rotor 11 with a magnet 18. The motor 10 has a rotor 11 and a stator 12. The stator 12 includes a stator core 20 formed of a magnetic material and a coil 16 fixed to the stator core 20. The stator core 20 is formed of, for example, a plurality of magnetic steel plates stacked in the axial direction of the shaft 13. The coil 16 includes, for example, a winding wound on the stator core 20 and a resin portion that fixes the winding.

轉子11是固定於形成為棒狀的軸桿13。轉子11包含:轉子鐵芯17,固定於軸桿13的外周面,且由具有磁性的材質來形成;及複數個磁鐵18,固定於轉子鐵芯17。本實施形態的磁鐵18為永久磁鐵。The rotor 11 is fixed to a rod-shaped shaft 13. The rotor 11 includes a rotor core 17 fixed to the outer peripheral surface of the shaft 13 and formed of a magnetic material, and a plurality of magnets 18 fixed to the rotor core 17. The magnets 18 of this embodiment are permanent magnets.

軸桿13是為了傳遞旋轉力而連結於其他構件。軸桿13是繞著旋轉軸RA來旋轉。軸桿13是被作為軸承的培林14、15支撐。在本實施形態中,在電動機10中,將軸桿13與其他構件連結之側稱為前側。又,將前側的相反側稱為後側。在圖2所示的例子中,箭頭91顯示電動機10的前側。The shaft 13 is connected to other components in order to transmit rotational force. The shaft 13 rotates around the rotation axis RA. The shaft 13 is supported by bearings 14 and 15 as bearings. In this embodiment, in the motor 10, the side where the shaft 13 is connected to other components is called the front side. In addition, the opposite side of the front side is called the rear side. In the example shown in Figure 2, the arrow 91 shows the front side of the motor 10.

電動機10包含前側的殼體21及後側的殼體22。定子12的定子鐵芯20是被殼體21、22支撐。殼體21支撐培林14。在殼體22中,固定有支撐培林15的培林支撐構件24。殼體21、22是透過培林14、15將軸桿13支撐成可旋轉。在殼體22的後側的端部,固定有封閉殼體22的內部空間的後蓋23。The motor 10 includes a housing 21 at the front and a housing 22 at the rear. The stator core 20 of the stator 12 is supported by the housings 21 and 22. The housing 21 supports the bearing 14. A bearing support member 24 supporting the bearing 15 is fixed to the housing 22. The housings 21 and 22 support the shaft 13 rotatably through the bearings 14 and 15. A rear cover 23 that closes the internal space of the housing 22 is fixed to the end of the rear side of the housing 22.

在軸桿13的後側的端部,配置有用於檢測軸桿13的旋轉位置或旋轉速度的旋轉位置檢測器32。本實施形態的旋轉位置檢測器32是由編碼器來構成。在定子12的線圈16,固定有檢測線圈16的溫度之溫度檢測器31。本實施形態的溫度檢測器31是由熱敏電阻來構成。溫度檢測器31及旋轉位置檢測器32的輸出是輸入至機械控制裝置41。At the rear end of the shaft 13, a rotational position detector 32 for detecting the rotational position or rotational speed of the shaft 13 is arranged. The rotational position detector 32 of this embodiment is composed of an encoder. A temperature detector 31 for detecting the temperature of the coil 16 is fixed to the coil 16 of the stator 12. The temperature detector 31 of this embodiment is composed of a thermistor. The outputs of the temperature detector 31 and the rotational position detector 32 are input to the mechanical control device 41.

作為電動機10的構成部分,可以例示轉子11、轉子鐵芯17、磁鐵18、定子12、定子鐵芯20、線圈16、殼體21、22、軸桿13、後蓋23、培林支撐構件24、培林14、15、溫度檢測器31、及旋轉位置檢測器32等。電動機10的構成部分不限定於此形態,可以採用構成電動機10的任意部分。例如,亦可配置覆蓋定子鐵芯的外周面之框體來作為電動機的構成部分。As the components of the motor 10, there can be exemplified the rotor 11, the rotor core 17, the magnet 18, the stator 12, the stator core 20, the coil 16, the housing 21, 22, the shaft 13, the back cover 23, the bearing support member 24, the bearings 14, 15, the temperature detector 31, and the rotation position detector 32. The components of the motor 10 are not limited to this form, and any part constituting the motor 10 can be adopted. For example, a frame covering the outer peripheral surface of the stator core can be arranged as a component of the motor.

本實施形態的電動機10包含送風機29,前述送風機29供給用於冷卻電動機的本體的空氣。本實施形態的送風機29是透過筒狀構件25而固定於定子鐵芯20。筒狀構件25是固定於定子鐵芯20。筒狀構件25的內部的空間構成空氣的流路。The motor 10 of this embodiment includes a blower 29 that supplies air for cooling the motor body. The blower 29 of this embodiment is fixed to the stator core 20 through a cylindrical member 25. The cylindrical member 25 is fixed to the stator core 20. The space inside the cylindrical member 25 constitutes a flow path for air.

送風機29包含冷卻風扇27、罩殼28、及使冷卻風扇27旋轉的電動機。本實施形態的送風機29是配置成使冷卻風扇27的旋轉軸與軸桿13的旋轉軸RA一致。冷卻風扇27並不限定於此形態,可以在任意的位置配置成使空氣接觸到電動機的本體。The blower 29 includes a cooling fan 27, a housing 28, and a motor for rotating the cooling fan 27. The blower 29 of this embodiment is arranged so that the rotation axis of the cooling fan 27 coincides with the rotation axis RA of the shaft 13. The cooling fan 27 is not limited to this form, and can be arranged at any position so that air contacts the main body of the motor.

本實施形態的定子鐵芯20具有用於流通冷卻空氣的貫通孔26a。貫通孔26a是沿著轉子11的軸方向,從定子鐵芯20的一邊的端面貫通到另一邊的端面。殼體21具有用於流通空氣的貫通孔26b。貫通孔26b是和貫通孔26a連通。又,在送風機29的罩殼28上,形成有供空氣流通的空氣孔28a。The stator core 20 of this embodiment has a through hole 26a for circulating cooling air. The through hole 26a is penetrated from one end face of the stator core 20 to the other end face along the axial direction of the rotor 11. The housing 21 has a through hole 26b for circulating air. The through hole 26b is connected to the through hole 26a. In addition, an air hole 28a for circulating air is formed on the housing 28 of the blower 29.

當送風機29驅動時,冷卻風扇27會旋轉,使空氣往箭頭91所示的方向流動。冷卻空氣是從罩殼28的空氣孔28a流入罩殼28的內部。冷卻空氣是流通於罩殼28的內部及筒狀構件25的內部。冷卻空氣是流通於殼體22與筒狀構件25之間的空氣的流路。冷卻空氣是如箭頭92所示,流通於定子鐵芯20的貫通孔26a及殼體21的貫通孔26b。冷卻空氣是將後側的殼體22、定子鐵芯20、及前側的殼體21冷卻。冷卻空氣的流動並不限定於此形態,冷卻空氣亦可往和箭頭91相反的方向流動。When the blower 29 is driven, the cooling fan 27 rotates, causing the air to flow in the direction indicated by the arrow 91. The cooling air flows into the interior of the housing 28 from the air hole 28a of the housing 28. The cooling air circulates in the interior of the housing 28 and in the interior of the cylindrical member 25. The cooling air circulates in the air flow path between the housing 22 and the cylindrical member 25. As indicated by the arrow 92, the cooling air circulates in the through hole 26a of the stator core 20 and the through hole 26b of the housing 21. The cooling air cools the housing 22 on the rear side, the stator core 20, and the housing 21 on the front side. The flow of cooling air is not limited to this form, and the cooling air may also flow in the opposite direction of arrow 91.

(模擬裝置的構成) 模擬裝置2是推定電動機的構成部分的溫度。在本實施形態中是推定電動機的構成部分當中的定子的溫度。作為定子的溫度,可考慮定子鐵芯的溫度、捲繞於定子鐵芯的線圈的溫度、及配置在定子鐵芯周圍的框體的溫度等。在本實施形態中,將定子鐵芯20的溫度推定為定子的溫度。模擬裝置2是推定定子鐵芯20的溫度相對於時間經過的變化。在本實施形態中,將由溫度檢測器31實際地測定的溫度稱為測定溫度。又,將由模擬裝置2所推定的構成部分的溫度稱為推定溫度。 (Structure of simulation device) Simulation device 2 estimates the temperature of the components of the motor. In the present embodiment, the temperature of the stator among the components of the motor is estimated. As the temperature of the stator, the temperature of the stator core, the temperature of the coil wound around the stator core, and the temperature of the frame arranged around the stator core can be considered. In the present embodiment, the temperature of the stator core 20 is estimated as the temperature of the stator. Simulation device 2 estimates the change of the temperature of the stator core 20 with respect to the passage of time. In the present embodiment, the temperature actually measured by the temperature detector 31 is referred to as the measured temperature. In addition, the temperature of the component estimated by the simulation device 2 is referred to as the estimated temperature.

模擬裝置2具備包含作為處理器的CPU之運算處理裝置(電腦)。模擬裝置2是形成為可以與機械控制裝置41相互通訊。模擬裝置2包含記憶和電動機的模擬有關的資訊之記憶部51。The simulation device 2 includes a calculation processing device (computer) including a CPU as a processor. The simulation device 2 is formed to be able to communicate with the machine control device 41. The simulation device 2 includes a memory unit 51 for storing information related to the simulation of the motor.

記憶部51可以由可記憶資訊的非暫時性記憶媒體來構成。例如,記憶部51可以由揮發性記憶體、非揮發性記憶體、磁性記憶媒體、或光記憶媒體等記憶媒體來構成。用於驅動模擬裝置2的程式是記憶在記憶部51中。特別是,模擬執行部64用的程式及參數設定部57用的程式是記憶在記憶部51中。The memory unit 51 may be composed of a non-temporary memory medium capable of storing information. For example, the memory unit 51 may be composed of a memory medium such as a volatile memory, a non-volatile memory, a magnetic memory medium, or an optical memory medium. The program for driving the simulation device 2 is stored in the memory unit 51. In particular, the program for the simulation execution unit 64 and the program for the parameter setting unit 57 are stored in the memory unit 51.

模擬裝置2包含顯示和電動機的模擬有關的資訊之顯示部52。顯示部52可以由液晶顯示面板或有機EL(Electro Luminescence,電致發光)顯示面板等任意的顯示面板來構成。The simulation device 2 includes a display unit 52 for displaying information related to the simulation of the motor. The display unit 52 can be formed of any display panel such as a liquid crystal display panel or an organic EL (Electro Luminescence) display panel.

本實施形態中的模擬裝置2包含設定電動機的模型所包含的參數之參數設定部57。參數設定部57包含算出電動機的構成部分的溫度之溫度推定部53。溫度推定部53包含損失算出部54,前述損失算出部54是依據電動機10的動作指令,來算出線圈16的一次銅損所造成的發熱量及定子鐵芯20的鐵損所造成的發熱量。溫度推定部53包含溫度算出部55,前述溫度算出部55是以電動機的模型(熱模型)來推定電動機的構成部分的溫度。溫度算出部55是依據一次銅損及鐵損所造成的發熱量、各個構成部分的模型的熱容量、及和構成部分的模型彼此之間的熱傳遞有關的係數,來算出構成部分的推定溫度。The simulation device 2 in this embodiment includes a parameter setting unit 57 for setting parameters included in the model of the motor. The parameter setting unit 57 includes a temperature estimation unit 53 for calculating the temperature of the components of the motor. The temperature estimation unit 53 includes a loss calculation unit 54, which calculates the amount of heat generated by the primary copper loss of the coil 16 and the amount of heat generated by the iron loss of the stator core 20 based on the operation instruction of the motor 10. The temperature estimation unit 53 includes a temperature calculation unit 55, which estimates the temperature of the components of the motor using the model (thermal model) of the motor. The temperature calculation unit 55 calculates the estimated temperature of the component based on the heat generated by the primary copper loss and iron loss, the heat capacity of the model of each component, and the coefficient related to the heat transfer between the models of the component.

參數設定部57包含算出電動機10的模型所包含的參數之參數算出部59。參數包含:設定於電動機10的構成部分的模型之熱容量、及和構成部分的模型彼此之間的熱傳遞有關的係數。The parameter setting unit 57 includes a parameter calculating unit 59 that calculates parameters included in the model of the motor 10. The parameters include the heat capacity set in the model of the component of the motor 10 and a coefficient related to heat transfer between the models of the component.

參數設定部57包含狀態取得部58,前述狀態取得部58是取得實際驅動電動機10時之電動機10的驅動狀態。電動機10的驅動狀態包含測定溫度,前述測定溫度是由安裝在電動機10的溫度檢測器31所檢測的測定溫度。電動機10的驅動狀態包含:從動作控制部43輸出的電動機10的動作指令、及從旋轉位置檢測器32輸出的旋轉速度。又,狀態取得部58可以從外部空氣溫度檢測器33取得外部空氣的溫度。外部空氣溫度檢測器33例如是配置為檢測機械1周圍的溫度。The parameter setting unit 57 includes a state acquisition unit 58, which acquires the driving state of the motor 10 when the motor 10 is actually driven. The driving state of the motor 10 includes a measured temperature, which is a measured temperature detected by a temperature detector 31 installed on the motor 10. The driving state of the motor 10 includes: an action command of the motor 10 output from the action control unit 43, and a rotation speed output from the rotation position detector 32. In addition, the state acquisition unit 58 can acquire the temperature of the outside air from the outside air temperature detector 33. The outside air temperature detector 33 is configured to detect the temperature around the machine 1, for example.

本實施形態的參數算出部59是將參數算出為:電動機的模型所算出的溫度檢測器的推定溫度的變化,會對應於實際的測定溫度的變化。本實施形態的參數算出部59可以藉由機械學習來設定電動機的模型的參數。The parameter calculation unit 59 of this embodiment calculates the parameters so that the change of the estimated temperature of the temperature detector calculated by the motor model corresponds to the change of the actual measured temperature. The parameter calculation unit 59 of this embodiment can set the parameters of the motor model by machine learning.

溫度推定部53的損失算出部54是依據動作控制部43生成的動作指令、及由旋轉位置檢測器32所檢測的旋轉速度,來算出線圈16及定子鐵芯20的發熱量。此外,溫度算出部55是依據線圈16及定子鐵芯20的發熱量與熱模型,來算出溫度檢測器31的推定溫度。The loss calculation unit 54 of the temperature estimation unit 53 calculates the amount of heat generated by the coil 16 and the stator core 20 based on the action command generated by the action control unit 43 and the rotation speed detected by the rotation position detector 32. In addition, the temperature calculation unit 55 calculates the estimated temperature of the temperature detector 31 based on the amount of heat generated by the coil 16 and the stator core 20 and the thermal model.

參數算出部59包含評估部60,前述評估部60是將溫度檢測器31的推定溫度和狀態取得部58所取得的溫度檢測器31的測定溫度進行比較,藉此評估溫度檢測器的推定溫度。參數算出部59包含依據評估部60的評估結果來變更參數的值之參數變更部61。The parameter calculation unit 59 includes an evaluation unit 60 that compares the estimated temperature of the temperature detector 31 with the measured temperature of the temperature detector 31 obtained by the state acquisition unit 58 to evaluate the estimated temperature of the temperature detector. The parameter calculation unit 59 includes a parameter change unit 61 that changes the value of the parameter according to the evaluation result of the evaluation unit 60.

上述參數設定部57、溫度推定部53、損失算出部54、及溫度算出部55的各個單元相當於按照程式來驅動的處理器。狀態取得部58、參數算出部59、評估部60、及參數變更部61的各個單元相當於按照程式來驅動的處理器。處理器是藉由實施決定於程式的控制,而作為各個單元來發揮功能。Each of the parameter setting unit 57, the temperature estimation unit 53, the loss calculation unit 54, and the temperature calculation unit 55 is equivalent to a processor driven by a program. Each of the state acquisition unit 58, the parameter calculation unit 59, the evaluation unit 60, and the parameter change unit 61 is equivalent to a processor driven by a program. The processor functions as each unit by executing the control determined by the program.

模擬裝置2包含模擬執行部64,前述模擬執行部64模擬電動機的構成部分的溫度的變化。模擬執行部64是形成為可以用時間序列的方式來算出電動機的構成部分的溫度的變化。模擬執行部64包含前述溫度推定部53。溫度推定部53是按照電動機的模型,來算出電動機的構成部分的溫度,前述電動機的模型包含由參數設定部57設定的參數。The simulation device 2 includes a simulation execution unit 64, and the simulation execution unit 64 simulates the change of the temperature of the components of the motor. The simulation execution unit 64 is formed to calculate the change of the temperature of the components of the motor in a time series manner. The simulation execution unit 64 includes the temperature estimation unit 53. The temperature estimation unit 53 calculates the temperature of the components of the motor according to the model of the motor, and the model of the motor includes the parameters set by the parameter setting unit 57.

模擬執行部64包含設定電動機10的送風機29的動作之動作設定部65。模擬執行部64包含生成輔助程式的輔助程式生成部66,前述輔助程式是相對於基於動作程式45的動作指令,來決定送風機29的動作。模擬執行部64包含變動幅度比較部67,前述變動幅度比較部67是算出事先決定的期間中的定子的溫度的變動幅度。模擬執行部64包含消耗電力比較部68,前述消耗電力比較部68是算出事先決定的期間中的送風機的消耗電力。The simulation execution unit 64 includes an action setting unit 65 for setting the action of the blower 29 of the motor 10. The simulation execution unit 64 includes an auxiliary program generating unit 66 for generating an auxiliary program, wherein the auxiliary program determines the action of the blower 29 relative to the action instruction based on the action program 45. The simulation execution unit 64 includes a variation range comparison unit 67, wherein the variation range of the temperature of the stator in a predetermined period is calculated. The simulation execution unit 64 includes a power consumption comparison unit 68, wherein the power consumption comparison unit 68 is used to calculate the power consumption of the blower in a predetermined period.

模擬執行部64相當於按照事先決定的程式來驅動的處理器。又,動作設定部65、輔助程式生成部66、變動幅度比較部67、及消耗電力比較部68的各個單元相當於按照事先決定的程式來驅動的處理器。處理器讀取程式,並實施決定於程式的控制,藉此作為各個單元來發揮功能。The simulation execution unit 64 is equivalent to a processor driven according to a predetermined program. In addition, each unit of the action setting unit 65, the auxiliary program generation unit 66, the variation range comparison unit 67, and the power consumption comparison unit 68 is equivalent to a processor driven according to a predetermined program. The processor reads the program and implements the control determined by the program, thereby performing the function as each unit.

在圖3中顯示在本實施形態的模擬裝置中,設定電動機的送風機的動作之控制的流程圖。在步驟101,參數設定部57是依據溫度檢測器31的測定溫度,來設定電動機的模型所包含的參數。A flow chart for setting the control of the operation of the blower of the motor in the simulation device of the present embodiment is shown in Fig. 3. In step 101, the parameter setting unit 57 sets the parameters included in the model of the motor according to the temperature measured by the temperature detector 31.

(電動機的模型及電動機的模型的參數設定) 圖4顯示將本實施形態中的同步電動機的熱的移動模型化之電動機的模型。本實施形態的電動機的模型為熱模型。電動機的模型包含複數個構成部分的模型。電動機的模型包含以下參數:構成部分的熱容量、及和構成部分彼此之間的熱傳遞有關的係數等。電動機的模型10a包含構成電動機10的主要構成部分的模型。電動機的模型10a包含:轉子的模型11a、定子鐵芯的模型20a、及捲繞在定子鐵芯的線圈的模型16a。 (Model of the motor and parameter setting of the model of the motor) Fig. 4 shows the model of the motor that models the heat transfer of the synchronous motor in the present embodiment. The model of the motor in the present embodiment is a thermal model. The model of the motor includes models of a plurality of components. The model of the motor includes the following parameters: the heat capacity of the components, and coefficients related to heat transfer between the components. The model 10a of the motor includes models of the main components that constitute the motor 10. The model 10a of the motor includes: a model 11a of the rotor, a model 20a of the stator core, and a model 16a of the coil wound on the stator core.

又,電動機的模型10a包含用於檢測線圈16的溫度之溫度檢測器的模型31a。在本實施形態中,雖然設定具有小的熱容量的溫度檢測器的模型31a,但並不限定於此形態。亦可將溫度檢測器31的熱容量設定為零,將溫度檢測器的溫度當作和安裝溫度檢測器的構成部分的模型的溫度相同來計算。Furthermore, the model 10a of the motor includes a model 31a of a temperature detector for detecting the temperature of the coil 16. In this embodiment, the model 31a of the temperature detector having a small heat capacity is set, but the present invention is not limited to this form. The heat capacity of the temperature detector 31a may be set to zero, and the temperature of the temperature detector may be calculated as being the same as the temperature of the model of the component on which the temperature detector is mounted.

參照圖2,在轉子11與定子鐵芯20之間存在有空氣層。此外,在轉子11與線圈16之間存在有空氣層。參照圖4,本實施形態中的電動機的模型10a包含空氣層的模型35a。又,電動機的模型10a包含外部空氣的模型36a,來作為電動機10周圍的空氣的模型。Referring to Fig. 2, an air layer exists between the rotor 11 and the stator core 20. In addition, an air layer exists between the rotor 11 and the coil 16. Referring to Fig. 4, the motor model 10a in this embodiment includes a model 35a of the air layer. Furthermore, the motor model 10a includes a model 36a of the external air as a model of the air around the motor 10.

在電動機的模型10a中設定有複數個參數,前述複數個參數包含熱容量及和熱傳遞有關的係數。在至少一個構成部分的模型中設定有熱容量。在線圈的模型16a、定子鐵芯的模型20a、空氣層的模型35a、轉子的模型11a、及溫度檢測器的模型31a的各個模型中,設定有作為變數的溫度T 1、T 2、T 3、T 4、T 5及作為常數的熱容量C 1、C 2、C 3、C 4、C 5。又,在外部空氣的模型36a中設定有作為變數的溫度T rA plurality of parameters including heat capacity and coefficients related to heat transfer are set in the model 10a of the motor. Heat capacity is set in the model of at least one component. Temperatures T1, T2, T3, T4, T5 as variables and heat capacities C1 , C2 , C3 , C4 , C5 as constants are set in each of the models of the coil 16a, the stator core 20a, the air layer 35a, the rotor 11a , and the temperature detector 31a . In addition, temperature Tr is set as a variable in the model 36a of the outside air.

電動機10的一個構成部分的熱會傳遞到其他構成部分。在電動機10的各個構成部分的模型彼此之間,設定有和熱傳遞有關的係數。作為和熱傳遞有關的係數,可以採用熱傳遞係數或對熱傳遞係數乘上構成部分彼此的接觸面積所得的係數等。在這裡的例子中是決定對熱傳遞係數乘上接觸面積所得的係數。The heat of one component of the motor 10 is transferred to other components. A coefficient related to heat transfer is set between the models of the components of the motor 10. As the coefficient related to heat transfer, a heat transfer coefficient or a coefficient obtained by multiplying the heat transfer coefficient by the contact area between the components can be used. In this example, a coefficient obtained by multiplying the heat transfer coefficient by the contact area is determined.

在定子鐵芯的模型20a與線圈的模型16a之間,設定有和熱傳遞有關的係數ha。在空氣層的模型35a與線圈的模型16a之間,設定有和熱傳遞有關的係數hc1。在空氣層的模型35a與定子鐵芯的模型20a之間,設定有和熱傳遞有關的係數hc2。在空氣層的模型35a與轉子的模型11a之間,設定有和熱傳遞有關的係數hc3。在線圈的模型16a與溫度檢測器的模型31a之間,設定有和熱傳遞有關的係數hd。此外,為了模擬熱從定子鐵芯20往外部空氣的釋放,在定子鐵芯的模型20a與外部空氣的模型36a之間,設定有和熱傳遞有關的係數hb。A coefficient ha related to heat transfer is set between the model 20a of the stator core and the model 16a of the coil. A coefficient hc1 related to heat transfer is set between the model 35a of the air layer and the model 16a of the coil. A coefficient hc2 related to heat transfer is set between the model 35a of the air layer and the model 20a of the stator core. A coefficient hc3 related to heat transfer is set between the model 35a of the air layer and the model 11a of the rotor. A coefficient hd related to heat transfer is set between the model 16a of the coil and the model 31a of the temperature detector. Furthermore, in order to simulate the release of heat from the stator core 20 to the outside air, a coefficient hb related to heat transfer is set between the stator core model 20a and the outside air model 36a.

在本實施形態中的電動機的模型10a中,可考慮到在定子12的線圈16產生的一次銅損P c1,來作為構成部分產生的熱。對於線圈的模型16a輸入起因於一次銅損的發熱量。又,可考慮因轉子11的磁鐵18的磁力而產生的定子鐵芯20的鐵損P i。對於定子鐵芯的模型20a輸入起因於鐵損的發熱量。 In the model 10a of the motor in this embodiment, the primary copper loss P c1 generated in the coil 16 of the stator 12 can be considered as the heat generated by the components. The amount of heat generated due to the primary copper loss is input to the model 16a of the coil. In addition, the iron loss P i of the stator core 20 generated by the magnetic force of the magnet 18 of the rotor 11 can be considered. The amount of heat generated due to the iron loss is input to the model 20a of the stator core.

在線圈及定子鐵芯等各個構成部分彼此之間,熱會取決於和熱傳遞有關的係數的大小而移動。又,各個構成部分的溫度會依據熱輸入量與熱輸出量的差而上升或下降。圖3所示的電動機的模型10a的各個構成部分的溫度變化率可以由以下的式(1)至式(5)來表示。在各個構成部分中,可以將熱輸入量與熱輸出量的差除以熱容量,藉此來算出溫度變化率。Heat moves between components such as the coil and the stator core depending on the size of the coefficient related to heat transfer. In addition, the temperature of each component rises or falls according to the difference between the heat input and the heat output. The temperature change rate of each component of the motor model 10a shown in Figure 3 can be expressed by the following equations (1) to (5). In each component, the temperature change rate can be calculated by dividing the difference between the heat input and the heat output by the heat capacity.

[數學式1] [Mathematical formula 1]

構成部分的熱容量C 1、C 2、C 3、C 4、C 5為常數,可以事先決定。和熱傳遞有關的係數ha、hb、hc1、hc2、hc3、hd是對熱傳遞係數乘上接觸面積所得的係數。係數ha、hb、hc1、hc2、hc3、hd為常數,可以事先決定。溫度推定部53的損失算出部54是如後述地算出線圈16中的一次銅損P c1與定子鐵芯中的鐵損P i。溫度推定部53的溫度算出部55可以依據上述式(1)至(5)的式子,算出微小時間dt中的溫度的變化量。 The heat capacities C1 , C2 , C3 , C4 , and C5 of the components are constants and can be determined in advance. The coefficients ha, hb, hc1, hc2, hc3, and hd related to heat transfer are coefficients obtained by multiplying the heat transfer coefficient by the contact area. The coefficients ha, hb, hc1, hc2, hc3, and hd are constants and can be determined in advance. The loss calculation unit 54 of the temperature estimation unit 53 calculates the primary copper loss Pc1 in the coil 16 and the iron loss P1 in the stator core as described later. The temperature calculation unit 55 of the temperature estimation unit 53 can calculate the temperature change in the small time dt according to the above-mentioned equations (1) to (5).

接著,說明式(1)及式(2)所包含的一次銅損P c1及鐵損P i的算出方法。電動機10的旋轉速度及電動機10的負載率(相對於最大負載的比例)可以因應於機械所進行的作業,由作業人員來事先設定。溫度推定部53的損失算出部54是算出一次銅損P c1及鐵損P i。在表1中顯示用於算出損失的損失圖。 Next, the calculation method of the primary copper loss P c1 and the iron loss P i included in equations (1) and (2) is explained. The rotation speed of the motor 10 and the load factor (ratio relative to the maximum load) of the motor 10 can be set in advance by the operator according to the operation performed by the machine. The loss calculation unit 54 of the temperature estimation unit 53 calculates the primary copper loss P c1 and the iron loss P i . The loss diagram used to calculate the loss is shown in Table 1.

[表1] [Table 1]

在表1中顯示相對於電動機10的旋轉速度(旋轉數)之最大輸出時的損失、無負載時的損失、及最大輸出時的電流。最大輸出時的損失P m是電動機的負載率為100%時的損失,且是由電動機的旋轉速度來決定的值。無負載時的損失P n是電動機的負載率為零時的損失,且是取決於電動機的旋轉速度。最大輸出時的電流I m是在各個旋轉速度中,當負載率為100%時的電流值。表1所示的損失圖可以實際地驅動電動機來製作。此損失圖例如可以事先記憶在模擬裝置2的記憶部51中。 Table 1 shows the loss at maximum output, the loss at no load, and the current at maximum output relative to the rotation speed (rotation speed) of the motor 10. The loss P m at maximum output is the loss when the load factor of the motor is 100%, and is a value determined by the rotation speed of the motor. The loss P n at no load is the loss when the load factor of the motor is zero, and is dependent on the rotation speed of the motor. The current Im at maximum output is the current value when the load factor is 100% at each rotation speed. The loss diagram shown in Table 1 can be produced by actually driving the motor. This loss diagram can be stored in advance in the memory unit 51 of the simulation device 2, for example.

損失算出部54是算出包含一次銅損P c1及鐵損P i的總損失P t。總損失P t可以藉由以下的式(6)及式(7)來算出。 The loss calculation unit 54 calculates the total loss Pt including the primary copper loss Pc1 and the iron loss Pi . The total loss Pt can be calculated by the following equations (6) and (7).

[數學式2] [Mathematical formula 2]

總損失P t可以藉由最大輸出時的損失P m、無負載時的損失P n、及電動機的負載率LF來算出。由於電動機的旋轉速度及負載率是已決定的,因此可從表1算出最大輸出時的損失P m及無負載時的損失P n。常數k1、k2可以由作業人員事先決定。接著,一次銅損P c1可以藉由以下的式(8)及式(9)來算出。 The total loss Pt can be calculated from the loss Pm at maximum output, the loss Pn at no load, and the motor load factor LF. Since the motor rotation speed and load factor are already determined, the loss Pm at maximum output and the loss Pn at no load can be calculated from Table 1. The constants k1 and k2 can be determined in advance by the operator. Next, the primary copper loss Pc1 can be calculated by the following equations (8) and (9).

[數學式3] [Mathematical formula 3]

一次銅損P c1相當於在線圈16流動的電流的焦耳熱。又,在線圈16流動的電流I可以藉由對最大輸出時的電流I m乘上電動機的負載率LF來算出。最大輸出時的電流I m可以從表1取得。在此,線圈16的一次電阻r1是事先測定的。接著,鐵損P i可以藉由以下的式(10)來算出。鐵損P i可以藉由從總損失P t減去一次銅損P c1來算出。 The primary copper loss P c1 is equivalent to the Joule heat of the current flowing in the coil 16. In addition, the current I flowing in the coil 16 can be calculated by multiplying the current Im at the maximum output by the load factor LF of the motor. The current Im at the maximum output can be obtained from Table 1. Here, the primary resistance r1 of the coil 16 is measured in advance. Next, the iron loss Pi can be calculated by the following formula (10). The iron loss Pi can be calculated by subtracting the primary copper loss P c1 from the total loss P t .

[數學式4] [Mathematical formula 4]

溫度推定部53是從狀態取得部58取得電動機的動作模式,前述動作模式包含用於驅動機械1的旋轉速度及負載率。溫度推定部53的溫度算出部55首先可以將各個構成部分的溫度T 1~T 5設定為任意的溫度。例如,溫度算出部55是將構成部分的溫度T 1~T 5設定為通常的外部空氣的溫度T r。外部空氣的溫度T r可以因應於配置機械1的場所來事先決定。 The temperature estimation unit 53 obtains the motor operation mode from the state acquisition unit 58. The operation mode includes the rotation speed and the load factor for driving the machine 1. The temperature calculation unit 55 of the temperature estimation unit 53 can first set the temperature T 1 to T 5 of each component to an arbitrary temperature. For example, the temperature calculation unit 55 sets the temperature T 1 to T 5 of the component to the normal temperature Tr of the outside air. The temperature Tr of the outside air can be determined in advance according to the location where the machine 1 is arranged.

溫度推定部53的損失算出部54是依據動作模式中的旋轉速度及電動機的負載率,來算出一次銅損及鐵損。接著,溫度算出部55可以藉由解出上述式(1)至(5),來算出微小時間dt中的溫度檢測器31的溫度T 5的變化量。如此,作業人員可以決定電動機的運轉模式,推定以運轉模式運轉電動機時的溫度檢測器的溫度隨時間經過的變化。 The loss calculation unit 54 of the temperature estimation unit 53 calculates the primary copper loss and iron loss based on the rotation speed and the load factor of the motor in the operation mode. Then, the temperature calculation unit 55 can calculate the change in the temperature T5 of the temperature detector 31 in the micro time dt by solving the above equations (1) to (5). In this way, the operator can determine the operation mode of the motor and estimate the change in the temperature of the temperature detector over time when the motor is operated in the operation mode.

順帶一提,在本實施形態的電動機的模型10a中,構成為以良好的精確度來推定電動機的複數個構成部分當中的1個構成部分的溫度。在這裡的例子中,構成為能夠以良好的精確度來推定溫度檢測器的模型31a的溫度T 5Incidentally, the motor model 10a of the present embodiment is configured to estimate the temperature of one of the plurality of components of the motor with high accuracy. In this example, the model 10a is configured to estimate the temperature T 5 of the temperature detector model 31a with high accuracy.

此外,設定於電動機的模型10a之熱容量C 1~C 5、及設定於構成部分彼此之間之和熱傳遞有關的係數ha、hb、hc1、hc2、hc3、hd,會取決於構成部分的材質、形狀、及配置等而存在固有的值。然而,在本實施形態中的電動機的模型10a中,在複數個熱容量及複數個和熱傳遞有關的係數當中,至少一部分的參數亦可設定為與實際的熱容量或和實際的熱傳遞有關的係數有差距的值。 In addition, the heat capacities C1 to C5 set in the motor model 10a, and the coefficients ha, hb, hc1, hc2, hc3, and hd set between the components and related to heat transfer have inherent values depending on the materials, shapes, and arrangements of the components. However, in the motor model 10a in the present embodiment, at least some of the parameters among the plurality of heat capacities and the plurality of coefficients related to heat transfer may be set to values different from the actual heat capacities or the coefficients related to actual heat transfer.

各個參數是設定為使溫度檢測器的模型31a的溫度T 5的變化會對應於實際的溫度的變化。例如,可以將電動機的模型的參數設定為使溫度檢測器的溫度顯示接近實際溫度的值。另外,算出熱容量及和熱傳遞有關的係數,結果是構成部分的所有熱容量及所有和熱傳遞有關的係數以良好的精確度對應於實際的熱容量及實際和熱傳遞有關的係數亦無妨。並且,在溫度推定部推定構成部分的溫度時,所有構成部分的溫度亦可用良好的精確度對應於實際的構成部分的溫度。 Each parameter is set so that the change of the temperature T5 of the model 31a of the temperature detector corresponds to the change of the actual temperature. For example, the parameters of the model of the motor can be set so that the temperature of the temperature detector shows a value close to the actual temperature. In addition, the heat capacity and the coefficients related to heat transfer are calculated, and as a result, all the heat capacities and all the coefficients related to heat transfer of the components correspond to the actual heat capacity and the actual coefficients related to heat transfer with good accuracy. Furthermore, when the temperature estimation unit estimates the temperature of the components, the temperatures of all the components can also correspond to the actual temperatures of the components with good accuracy.

參照圖1,參數算出部59是算出電動機的模型10a所包含的熱容量、和熱傳遞有關的係數、及式(6)、(7)的常數k1、k2。首先,作業人員是按照事先決定的運轉模式來實際地驅動電動機10。狀態取得部58是取得電動機10的負載率、電動機10的旋轉速度、及從溫度檢測器31輸出的溫度來作為電動機10的驅動狀態。此外,狀態取得部58是從外部空氣溫度檢測器33取得外部空氣的溫度。Referring to FIG. 1 , the parameter calculation unit 59 calculates the heat capacity included in the motor model 10a, the coefficient related to heat transfer, and the constants k1 and k2 of equations (6) and (7). First, the operator actually drives the motor 10 according to the predetermined operation mode. The state acquisition unit 58 acquires the load factor of the motor 10, the rotation speed of the motor 10, and the temperature output from the temperature detector 31 as the driving state of the motor 10. In addition, the state acquisition unit 58 acquires the temperature of the outside air from the outside air temperature detector 33.

圖5顯示為了設定本實施形態的電動機的模型所包含的參數而驅動電動機時的運轉模式的圖表。在圖5中顯示無負載時的運轉模式。在此運轉模式中,不對電動機10施加負載,使電動機10的旋轉速度逐漸地上升。每隔事先決定的時間間隔,使電動機的負載率暫時地上升,藉此使電動機10的旋轉速度增加。FIG5 is a diagram showing an operation mode when the motor is driven in order to set the parameters included in the model of the motor of the present embodiment. FIG5 shows an operation mode when there is no load. In this operation mode, no load is applied to the motor 10, and the rotation speed of the motor 10 is gradually increased. The load factor of the motor is temporarily increased at predetermined time intervals, thereby increasing the rotation speed of the motor 10.

由溫度檢測器31檢測的溫度會逐漸地增加。在時刻t1~t7中,使電動機10的負載率暫時地上升,藉此使電動機10的旋轉速度上升。狀態取得部58是每隔事先決定的微小時間,取得電動機10的負載率、電動機10的旋轉速度、及從溫度檢測器31輸出的溫度,並且記憶於記憶部51中。又,在本實施形態中,狀態取得部58雖然是從外部空氣溫度檢測器33,每隔微小時間取得外部空氣的溫度,但不限定於此形態。外部空氣的溫度亦可採用固定的溫度。The temperature detected by the temperature detector 31 gradually increases. During the time t1 to t7, the load factor of the motor 10 is temporarily increased, thereby increasing the rotation speed of the motor 10. The state acquisition unit 58 acquires the load factor of the motor 10, the rotation speed of the motor 10, and the temperature output from the temperature detector 31 at predetermined intervals, and stores them in the memory unit 51. In addition, in the present embodiment, although the state acquisition unit 58 acquires the temperature of the outside air from the outside air temperature detector 33 at predetermined intervals, it is not limited to this form. The temperature of the outside air may also be a fixed temperature.

參照圖1,狀態取得部58是取得轉矩指令,前述轉矩指令是包含在機械控制裝置41的動作控制部43所生成的動作指令。由於轉矩指令是對應於電動機10的負載率,因此狀態取得部58可從轉矩指令算出負載率。1 , the state acquisition unit 58 acquires a torque command, which is an operation command generated by the operation control unit 43 included in the machine control device 41. Since the torque command corresponds to the load factor of the motor 10, the state acquisition unit 58 can calculate the load factor from the torque command.

參數算出部59是依據由狀態取得部58所取得的變數,來算出電動機的模型10a的參數。本實施形態的參數算出部59是依據線圈16及定子鐵芯20中的發熱量、由溫度檢測器31所檢測的溫度,來算出包含熱容量C 1、C 2、C 3、C 4、C 5及和熱傳遞有關的係數ha、hb、hc1、hc2、hc3、hd之參數。又,參數算出部59是算出式(6)及式(7)中的常數k1、k2來作為參數。在這裡的例子中,參數算出部59是以進行模擬時的溫度檢測器的模型31a的推定溫度的變化,接近實際的測定溫度變化的方式,來算出參數。 The parameter calculation unit 59 calculates the parameters of the motor model 10a based on the variables acquired by the state acquisition unit 58. The parameter calculation unit 59 of this embodiment calculates parameters including heat capacity C1, C2 , C3 , C4 , C5 and coefficients ha, hb, hc1, hc2, hc3, hd related to heat transfer based on the heat generated in the coil 16 and the stator core 20 and the temperature detected by the temperature detector 31. The parameter calculation unit 59 calculates constants k1 and k2 in equations (6) and (7) as parameters. In this example, the parameter calculation unit 59 calculates the parameters so that the change in the estimated temperature of the temperature detector model 31a during the simulation approaches the actual measured temperature change.

參數算出部59設定各個參數的初始值。參數的初始值可以藉由任意的方法來設定。損失算出部54是算出線圈16的一次銅損所造成的發熱量及定子鐵芯20的鐵損所造成的發熱量。損失算出部54是依據由狀態取得部58所取得之電動機10的旋轉速度及電動機10的負載率,並使用表1及式(6)至式(10),來算出一次銅損P c1及鐵損P iThe parameter calculation unit 59 sets the initial value of each parameter. The initial value of the parameter can be set by any method. The loss calculation unit 54 calculates the heat generated by the primary copper loss of the coil 16 and the heat generated by the iron loss of the stator core 20. The loss calculation unit 54 calculates the primary copper loss P c1 and the iron loss P i based on the rotation speed of the motor 10 and the load factor of the motor 10 obtained by the state acquisition unit 58, and uses Table 1 and equations (6) to ( 10 ).

在算出一次銅損P c1及鐵損P i的式(6)及式(7)中包含有常數k1、k2。此外,損失算出部54是算出事先決定的微小時間dt中的損失,亦即算出微小時間中的發熱量。如此,損失算出部54是依據電動機的動作指令(負載率)及包含旋轉位置檢測器32的輸出之實測值,來算出式(1)及式(2)中的一次銅損P c1及鐵損P iThe constants k1 and k2 are included in the equations (6) and (7) for calculating the primary copper loss P c1 and the iron loss P i . In addition, the loss calculation unit 54 calculates the loss in the predetermined micro time dt, that is, calculates the amount of heat generated in the micro time. In this way, the loss calculation unit 54 calculates the primary copper loss P c1 and the iron loss P i in the equations (1) and (2) based on the motor operation command (load factor) and the actual measurement value including the output of the rotation position detector 32.

溫度算出部55是推定構成部分的溫度。溫度算出部55可以使用各個參數及由損失算出部54算出的損失,依據電動機的模型10a,並且依據暫時決定的參數,來算出在開始電動機10的驅動之後由溫度檢測器31所檢測之隨時間經過的推定溫度的變化。電動機10的各個構成部分的模型的溫度,可以使用上述式(1)至式(5)的微分方程式來算出。各個構成部分的模型的溫度的初始值可以設定為例如開始電動機10的驅動時之外部空氣的溫度,亦即設定為室溫。The temperature calculation unit 55 estimates the temperature of the components. The temperature calculation unit 55 can calculate the change in the estimated temperature detected by the temperature detector 31 over time after the start of the drive of the motor 10 using the various parameters and the loss calculated by the loss calculation unit 54, based on the model 10a of the motor and based on the temporarily determined parameters. The temperature of the model of each component of the motor 10 can be calculated using the differential equations of the above-mentioned equations (1) to (5). The initial value of the temperature of the model of each component can be set to, for example, the temperature of the outside air when the drive of the motor 10 is started, that is, to room temperature.

參數算出部59的評估部60是比較由溫度算出部55所算出之溫度檢測器的模型31a的溫度(推定溫度)、及由溫度檢測器31實際地計測的測定溫度,藉此進行在電動機的模型10a中暫時設定的參數的評估。在這裡的例子中,評估部60並不評估溫度檢測器的模型31a的溫度以外的變數,只評估溫度檢測器的模型31a的溫度。The evaluation unit 60 of the parameter calculation unit 59 compares the temperature (estimated temperature) of the temperature detector model 31a calculated by the temperature calculation unit 55 with the measured temperature actually measured by the temperature detector 31, thereby evaluating the parameters temporarily set in the motor model 10a. In this example, the evaluation unit 60 does not evaluate variables other than the temperature of the temperature detector model 31a, but only evaluates the temperature of the temperature detector model 31a.

接著,參數算出部59的參數變更部61是依據評估部60的評估的結果來變更參數。然後,依據已變更的參數,藉由與上述同樣的計算,重複損失算出部54所進行的損失的算出、溫度算出部55所進行的溫度檢測器的模型的推定溫度的算出、評估部60所進行的評估、及參數變更部61所進行的參數的變更。當評估部的評估滿足事先決定的條件時,可以決定為最終的參數。Next, the parameter changing section 61 of the parameter calculating section 59 changes the parameters according to the evaluation result of the evaluating section 60. Then, according to the changed parameters, the calculation of the loss by the loss calculating section 54, the calculation of the estimated temperature of the model of the temperature detector by the temperature calculating section 55, the evaluation by the evaluating section 60, and the parameter changing by the parameter changing section 61 are repeated by the same calculation as above. When the evaluation by the evaluating section satisfies the conditions determined in advance, the parameters can be determined as the final parameters.

在此,電動機的模型10a中的複數個參數的組合的個數非常多。複數個參數可以藉由機械學習的方法來決定。例如,複數個參數可以藉由貝氏最佳化的方法來設定。在貝氏最佳化中,對於包含成為輸入的參數之解釋變數,生成成為評估對象的目標函數。然後,搜尋並設定目標函數被預測為最小或最大的參數。可以藉由重複此參數的搜尋,來設定參數的最佳的值。在此,設定各個參數的範圍可以事先決定。Here, the number of combinations of the plurality of parameters in the model 10a of the motor is very large. The plurality of parameters can be determined by a machine learning method. For example, the plurality of parameters can be set by a Bayesian optimization method. In Bayesian optimization, a target function that is an evaluation object is generated for an explanatory variable including a parameter that is an input. Then, a parameter that is predicted to be the minimum or maximum of the target function is searched and set. By repeating this parameter search, the optimal value of the parameter can be set. Here, the range for setting each parameter can be determined in advance.

在這裡的例子中,關於溫度檢測器31的溫度,將電動機的模型10a所推定的溫度檢測器的模型31a的溫度(推定溫度)、與實際由溫度檢測器31檢測的測定溫度之差分,設定為目標函數。亦即,關於溫度檢測器31的溫度,目標函數可以使用依據暫時設定的參數而從式(1)至式(5)算出的預測值、與實際由溫度檢測器31檢測的實測值之差。可以採用例如微小時間內的差的平均值等來作為目標函數。然後,參數變更部61是以目標函數變小的方式來搜尋下一個參數。In this example, regarding the temperature of the temperature detector 31, the difference between the temperature of the model 31a of the temperature detector estimated by the model 10a of the motor (estimated temperature) and the measured temperature actually detected by the temperature detector 31 is set as the target function. That is, regarding the temperature of the temperature detector 31, the target function can use the difference between the predicted value calculated from equations (1) to (5) based on the temporarily set parameters and the measured value actually detected by the temperature detector 31. For example, the average value of the difference within a small time period can be used as the target function. Then, the parameter changing unit 61 searches for the next parameter in such a way that the target function becomes smaller.

在貝氏最佳化中,可以重複參數的搜尋及參數的評估。若目標函數是在事先決定的判定範圍內,則評估部60可以採用當時的參數的值。另一方面,當目標函數超出事先決定的判定範圍的情況下,可以進行下一個參數的搜尋。在貝氏最佳化的方法中,由於是一邊預測存在解的區域一邊進行搜尋,因此可以抑制計算的處理量。記憶部51可以事先記憶已生成的電動機的模型10a。In Bayesian optimization, parameter search and parameter evaluation can be repeated. If the target function is within a predetermined judgment range, the evaluation unit 60 can adopt the value of the parameter at that time. On the other hand, when the target function exceeds the predetermined judgment range, the next parameter search can be performed. In the Bayesian optimization method, since the search is performed while predicting the area where the solution exists, the amount of calculation processing can be suppressed. The memory unit 51 can store the generated motor model 10a in advance.

電動機的模型10a所包含的參數,除了貝氏最佳化的參數的設定以外,還可以用任意的方法來設定。例如,可以事先決定各個參數設定的範圍。參數算出部59的參數變更部61是在參數的範圍內隨機地設定複數個參數。溫度算出部55是依據已設定的參數來推定溫度檢測器的模型31a的溫度。評估部60可以依據從溫度檢測器31取得的溫度的實測值,來評估已設定的參數。像這樣的參數的設定方法稱為隨機搜尋法。The parameters included in the model 10a of the motor can be set by any method other than the setting of the parameters of the Bayesian optimization. For example, the range of each parameter setting can be determined in advance. The parameter changing unit 61 of the parameter calculation unit 59 randomly sets a plurality of parameters within the parameter range. The temperature calculation unit 55 estimates the temperature of the model 31a of the temperature detector based on the set parameters. The evaluation unit 60 can evaluate the set parameters based on the measured value of the temperature obtained from the temperature detector 31. Such a parameter setting method is called a random search method.

或者,參數變更部61可以在設定參數的範圍的內部,每隔事先決定的間隔來設定參數。溫度算出部55是使用已設定的參數來推定溫度檢測器的模型31a的溫度。評估部60是針對離散地設定的參數的所有組合來進行評估。此方法稱為網格搜尋法。Alternatively, the parameter changing unit 61 may set the parameters at predetermined intervals within the range of the set parameters. The temperature calculating unit 55 estimates the temperature of the model 31a of the temperature detector using the set parameters. The evaluating unit 60 evaluates all combinations of discretely set parameters. This method is called a grid search method.

在隨機搜尋法或網格搜尋法中,和貝氏最佳化的方法同樣,評估部60也可以將溫度檢測器31的溫度設為評估的對象。若目標函數是在事先決定的判定範圍內,則評估部60可以採用當時的參數的值。或者,評估部60可以採用目標函數最優異的參數。評估部60可以將溫度檢測器31的推定溫度和實際的由溫度檢測器31所檢測的測定溫度良好地一致的參數,決定為電動機的模型10a中的參數。In the random search method or the grid search method, the evaluation unit 60 may also set the temperature of the temperature detector 31 as the object of evaluation, similarly to the Bayesian optimization method. If the target function is within the predetermined judgment range, the evaluation unit 60 may adopt the value of the parameter at that time. Alternatively, the evaluation unit 60 may adopt the parameter with the best target function. The evaluation unit 60 may determine the parameter in the model 10a of the motor as the parameter for which the estimated temperature of the temperature detector 31 and the actual measured temperature detected by the temperature detector 31 are well consistent.

在上述實施形態中,雖然顯示了無負載時的運轉,來作為為了設定電動機的模型10a的參數而驅動電動機10的運轉模式,但不限定於此形態。在決定電動機的模型的參數時,較理想的是使電動機10以各種運轉模式來運轉,並取得電動機10的驅動狀態。例如,可以採用重複電動機10的負載率的上升及下降之運轉模式。可以使電動機10的負載率大幅變化來使電動機的旋轉速度變化。由溫度檢測器31檢測的溫度會急劇地上升或下降。像這樣,可以採用包含電動機的急劇溫度變化之運轉模式。In the above-mentioned embodiment, although the operation under no load is shown as the operation mode for driving the motor 10 in order to set the parameters of the model 10a of the motor, it is not limited to this form. When determining the parameters of the model of the motor, it is ideal to operate the motor 10 in various operation modes and obtain the driving state of the motor 10. For example, an operation mode can be adopted in which the load factor of the motor 10 is repeatedly increased and decreased. The load factor of the motor 10 can be greatly changed to change the rotation speed of the motor. The temperature detected by the temperature detector 31 will rise or fall rapidly. In this way, an operation mode including a rapid temperature change of the motor can be adopted.

此外,本實施形態的參數設定部57是因應於電動機10的送風機29的動作,來設定電動機的模型10a的參數。亦即,參數設定部57是因應於電動機10的送風機29的動作,來製作複數個電動機的模型10a。In addition, the parameter setting unit 57 of this embodiment sets the parameters of the motor model 10a according to the operation of the blower 29 of the motor 10. That is, the parameter setting unit 57 creates a plurality of motor models 10a according to the operation of the blower 29 of the motor 10.

在本實施形態中,可以製作用固定的旋轉速度驅動電動機10的送風機29時之電動機的第1模型。在此,製作用最大的旋轉速度驅動電動機10的送風機29時之電動機的第1模型。參數設定部57的狀態取得部58是取得用固定的旋轉速度驅動送風機29時之電動機的驅動狀態。參數算出部59是算出用固定的旋轉速度驅動送風機29時之電動機的模型的參數。In this embodiment, a first model of the motor 10 can be produced when the blower 29 is driven at a fixed rotational speed. Here, a first model of the motor 10 is produced when the blower 29 is driven at the maximum rotational speed. The state acquisition unit 58 of the parameter setting unit 57 acquires the driving state of the motor when the blower 29 is driven at a fixed rotational speed. The parameter calculation unit 59 calculates the parameters of the model of the motor when the blower 29 is driven at a fixed rotational speed.

又,可以製作已將電動機10的送風機29停止時之電動機的第2模型。參數設定部57的狀態取得部58是取得已將送風機29停止時之電動機的驅動狀態。參數算出部59是算出已將送風機29停止時之電動機的模型的參數。如此,可以因應於送風機29的動作來生成熱模型,前述熱模型是已變更了電動機的模型所包含的熱容量等全部參數的熱模型。Furthermore, a second model of the motor 10 can be prepared when the blower 29 of the motor 10 is stopped. The state acquisition unit 58 of the parameter setting unit 57 acquires the driving state of the motor when the blower 29 is stopped. The parameter calculation unit 59 calculates the parameters of the model of the motor when the blower 29 is stopped. In this way, a thermal model can be generated in response to the operation of the blower 29, and the aforementioned thermal model is a thermal model in which all parameters such as heat capacity included in the model of the motor have been changed.

或者,參照圖4,一下驅動一下停止電動機10的送風機29,藉此從定子鐵芯的模型20a釋放至外部空氣的模型36a的熱量會變化。亦即,和熱傳遞有關的係數hb會變化。因此,在停止送風機之電動機的模型中的參數的算出中,亦可只算出和熱傳遞有關的係數hb。和熱傳遞有關的係數hb以外的參數可以採用當以固定的旋轉速度驅動送風機時所算出的參數。已將送風機停止時之和熱傳遞有關的係數hb可以藉由前述貝氏最佳化的方法、隨機搜尋法、及網格搜尋法等任意的方法來算出。Alternatively, referring to FIG. 4 , the amount of heat released from the model 20a of the stator core to the model 36a of the outside air by alternately driving and stopping the blower 29 of the motor 10 will change. That is, the coefficient hb related to heat transfer will change. Therefore, in the calculation of the parameters in the model of the motor with the blower stopped, only the coefficient hb related to heat transfer can be calculated. Parameters other than the coefficient hb related to heat transfer can be the parameters calculated when the blower is driven at a fixed rotational speed. The coefficient hb related to heat transfer when the blower is stopped can be calculated by any method such as the aforementioned Bayesian optimization method, random search method, and grid search method.

在上述實施形態中,雖然針對轉子具有永久磁鐵的同步電動機進行了說明,但不限定於此形態。可以用熱模型來推定任意的電動機的構成部分的溫度。例如,也可以對轉子不具有永久磁鐵的感應電動機,應用本實施形態的電動機的模型。In the above embodiment, although the synchronous motor whose rotor has permanent magnets is described, it is not limited to this embodiment. The temperature of any component of the motor can be estimated by using the thermal model. For example, the motor model of this embodiment can also be applied to an induction motor whose rotor does not have permanent magnets.

在圖6中顯示本實施形態中的其他電動機的模型。其他電動機的模型30a是感應電動機的模型。感應電動機的轉子包含由不鏽鋼或銅等所形成的籠型的導體。籠型的導體是固定於軸桿,且與軸桿一體地旋轉。在感應電動機中,藉由定子的線圈所生成的磁力,感應電流會在籠型的導體的內部流動。在籠型的導體周圍會產生磁場,轉子會旋轉。FIG6 shows a model of another motor in the present embodiment. The model 30a of another motor is a model of an induction motor. The rotor of the induction motor includes a cage-shaped conductor formed of stainless steel, copper, etc. The cage-shaped conductor is fixed to the shaft and rotates integrally with the shaft. In the induction motor, the induced current flows inside the cage-shaped conductor due to the magnetic force generated by the coil of the stator. A magnetic field is generated around the cage-shaped conductor, and the rotor rotates.

在感應電動機中,由於電流是在轉子的籠型的導體流動,因此會產生作為二次損失的二次銅損P c2。二次損失相當於在籠型的導體流動的電流所造成的焦耳熱。在其他電動機的模型30a中是產生轉子的二次銅損所造成的發熱。其他電動機的構成部分中的熱容量及和構成部分彼此之間的熱傳遞有關的係數,是與前述同步電動機用的電動機的模型10a同樣。 In the induction motor, since the current flows in the cage-shaped conductor of the rotor, secondary copper loss P c2 is generated as secondary loss. Secondary loss is equivalent to Joule heat caused by the current flowing in the cage-shaped conductor. In the model 30a of the other motor, heat is generated due to the secondary copper loss of the rotor. The heat capacity in the components of the other motor and the coefficient related to heat transfer between the components are the same as the model 10a of the motor for the synchronous motor mentioned above.

其他電動機的模型30a中的構成部分的溫度變化之微分方程式,算出轉子的溫度變化的微分方程式是和本實施形態的同步電動機用的電動機的模型10a不同。表現轉子的溫度的變化的微分方程式為以下的式(11)。The differential equation for calculating the temperature change of the rotor in the other motor model 30a is different from the motor model 10a for the synchronous motor of the present embodiment. The differential equation expressing the temperature change of the rotor is the following equation (11).

[數學式5] [Mathematical formula 5]

在式(11)中,對本實施形態的電動機的轉子的模型11a的式(4),加上了二次銅損P c2的發熱量。其他表示線圈、定子鐵芯、空氣層、溫度檢測器的溫度變化之微分方程式是和同步電動機的熱模型中的微分方程式相同。 In equation (11), the heat generated by the secondary copper loss P c2 is added to equation (4) of the model 11a of the motor rotor of this embodiment. The other differential equations representing the temperature changes of the coil, stator core, air layer, and temperature sensor are the same as the differential equations in the thermal model of the synchronous motor.

損失算出部54是算出在轉子的導體產生的二次銅損所造成的發熱量。損失算出部54是推定在籠型的導體流動的電流。損失算出部54可以藉由在導體流動的電流、導體的二次電阻、導體的電感、及導體與定子與線圈的互感,來算出二次銅損。導體的電感、互感、及導體的二次電阻可以事先決定。The loss calculation unit 54 calculates the amount of heat generated by the secondary copper loss generated in the conductor of the rotor. The loss calculation unit 54 estimates the current flowing in the cage-shaped conductor. The loss calculation unit 54 can calculate the secondary copper loss by the current flowing in the conductor, the secondary resistance of the conductor, the inductance of the conductor, and the mutual inductance between the conductor, the stator, and the coil. The inductance, mutual inductance, and secondary resistance of the conductor can be determined in advance.

感應電動機中的總損失P t及一次銅損P c1可以和同步電動機的總損失及一次銅損同樣地算出。然後,可以考慮到二次銅損P c2,用以下的式(12)來算出鐵損P iThe total loss Pt and primary copper loss Pc1 in the induction motor can be calculated in the same way as the total loss and primary copper loss in the synchronous motor. Then, the iron loss Pi can be calculated by taking the secondary copper loss Pc2 into consideration using the following formula (12).

[數學式6] [Mathematical formula 6]

如此,在其他電動機的模型30a中,算出一次銅損、鐵損、及二次銅損。在其他電動機的模型30a中,參數算出部59也可以藉由和同步電動機用的電動機的模型10a同樣的控制,來算出其他電動機的模型30a所包含的參數。In this way, the primary copper loss, iron loss, and secondary copper loss are calculated in the model 30a of the other motor. In the model 30a of the other motor, the parameter calculation unit 59 can also calculate the parameters included in the model 30a of the other motor by the same control as the model 10a of the motor for the synchronous motor.

在圖7中,顯示使用本實施形態的參數算出部所算出的參數,由溫度推定部推定的溫度檢測器的推定溫度的圖表。在此是顯示作為其他電動機的感應電動機的例子。在圖7中,顯示用互相不同值的參數群A及參數群B來實施了模擬時的圖表。參數群A及參數群B是由參數算出部59算出。將參數群A及參數群B所包含的參數顯示於表2。FIG7 shows a graph of the estimated temperature of the temperature detector estimated by the temperature estimation unit using the parameters calculated by the parameter calculation unit of the present embodiment. Here, an example of an induction motor as another motor is shown. FIG7 shows a graph when a simulation is performed using parameter group A and parameter group B having different values. Parameter group A and parameter group B are calculated by parameter calculation unit 59. The parameters included in parameter group A and parameter group B are shown in Table 2.

[表2] [Table 2]

參數群A及參數群B可藉由用互相不同的運轉模式來驅動其他電動機來得到。在表2中,顯示對電動機的各個構成部分彼此之間的熱傳遞係數乘上接觸面積所得之和熱傳遞有關的係數。又,熱容量是對各個構成部分的材料的比熱乘上質量來算出。由於各個材料的比熱可以事先決定,因此在表2中顯示用於算出熱容量的構成部分的質量m。比較參數群A及參數群B後可得知:和熱傳遞有關的係數hc2、hd及轉子的質量m 4等一部分的參數,值會在2個參數群A、B之間不同。 Parameter group A and parameter group B can be obtained by driving other motors with different operation modes. Table 2 shows the coefficients related to heat transfer obtained by multiplying the heat transfer coefficient between the components of the motor by the contact area. In addition, the heat capacity is calculated by multiplying the specific heat of the material of each component by the mass. Since the specific heat of each material can be determined in advance, the mass m of the component used to calculate the heat capacity is shown in Table 2. By comparing parameter group A and parameter group B, it can be seen that the values of some parameters such as the coefficients hc2 and hd related to heat transfer and the mass m4 of the rotor will be different between the two parameter groups A and B.

另一方面,參照圖7後可得知:使用參數群B所算出的溫度檢測器的推定溫度,是和使用參數群A所算出的溫度檢測器的推定溫度良好地一致。特別是,在溫度上升的期間中及溫度在預定範圍內變動的期間中之雙方,溫度的變化會良好地一致。此外,可得知由溫度推定部53所推定的圖6所示的溫度的變化,是和實際驅動電動機10時由溫度檢測器31所檢測的溫度的變化良好地一致。On the other hand, referring to FIG. 7 , it can be seen that the estimated temperature of the temperature detector calculated using the parameter group B is well consistent with the estimated temperature of the temperature detector calculated using the parameter group A. In particular, the temperature changes are well consistent both during the period of temperature rise and during the period of temperature fluctuation within a predetermined range. In addition, it can be seen that the temperature change shown in FIG. 6 estimated by the temperature estimation unit 53 is well consistent with the temperature change detected by the temperature detector 31 when the motor 10 is actually driven.

在上述實施形態中,雖然列舉對包含繞組的線圈安裝溫度檢測器的例子來說明,但不限定於此形態。溫度檢測器可以安裝在電動機的任意的構成部分。例如,亦可在定子鐵芯上安裝有溫度檢測器。又,亦可對電動機的複數個構成部分,安裝複數個溫度檢測器。參數算出部的評估部可以將複數個溫度檢測器的測定溫度和由模擬所算出的推定溫度作比較。參數變更部可以用複數個構成部分的推定溫度接近實際的由溫度檢測器所檢測的測定溫度之方式,來設定電動機的模型的參數。In the above-mentioned embodiment, although an example of installing a temperature detector on a coil including a winding is cited for explanation, it is not limited to this form. The temperature detector can be installed on any component of the motor. For example, a temperature detector can also be installed on a stator core. In addition, a plurality of temperature detectors can be installed on a plurality of components of the motor. The evaluation unit of the parameter calculation unit can compare the measured temperatures of a plurality of temperature detectors with the estimated temperatures calculated by the simulation. The parameter changing unit can set the parameters of the model of the motor in such a way that the estimated temperatures of a plurality of components are close to the actual measured temperatures detected by the temperature detector.

在電動機上安裝越多的溫度檢測器,則可以使電動機的模型的複數個參數各自的值越接近實際的值。又,可以使各個電動機的構成部分的推定溫度接近實際的測定溫度。安裝了複數個溫度檢測器,結果是所有熱容量及所有和熱傳遞有關的係數,會與實際的熱容量及實際和熱傳遞有關的係數相同亦無妨。在此情況下,當由溫度推定部推定構成部分的溫度時,所有構成部分的溫度會以良好的精確度對應於實際的構成部分的溫度。The more temperature detectors are installed on the motor, the closer the values of the multiple parameters of the motor model can be to the actual values. In addition, the estimated temperature of each component of the motor can be made close to the actual measured temperature. When multiple temperature detectors are installed, it is possible that all heat capacities and all coefficients related to heat transfer are the same as the actual heat capacities and the actual coefficients related to heat transfer. In this case, when the temperature estimation unit estimates the temperature of the component, the temperature of all components will correspond to the actual temperature of the component with good accuracy.

(由動作推定裝置所進行之電動機的驅動狀態的推定) 參照圖1,為了藉由本實施形態的模擬裝置2的模擬執行部64來進行模擬,必須由溫度推定部53的損失算出部54來算出發熱量。為了由損失算出部54算出發熱量,如前述,需要包含電動機的負載率及旋轉速度之電動機的驅動狀態的資訊69。 (Estimation of the driving state of the motor by the motion estimation device) Referring to FIG. 1, in order to perform simulation by the simulation execution unit 64 of the simulation device 2 of this embodiment, the heat generation must be calculated by the loss calculation unit 54 of the temperature estimation unit 53. In order to calculate the heat generation by the loss calculation unit 54, as described above, information 69 of the driving state of the motor including the load factor and rotation speed of the motor is required.

參照圖8至圖15,說明本實施形態中的推定電動機的驅動狀態之動作推定裝置。電動機的驅動狀態包含電動機的負載率及旋轉速度。作為本實施形態的機械1的工具機是一面使工具相對於工件的相對位置變化,一面加工工件。本實施形態的工具機具備:主軸馬達,用於旋轉工具;及移動裝置,移動保持工件的工作台及保持工具的主軸頭當中之至少一者。移動裝置包含對應於各個進給軸而配置的進給軸馬達。Referring to Figures 8 to 15, the motion estimation device for estimating the driving state of the motor in this embodiment is explained. The driving state of the motor includes the load factor and the rotation speed of the motor. The machine tool 1 as the machine of this embodiment processes the workpiece while changing the relative position of the tool with respect to the workpiece. The machine tool of this embodiment is equipped with: a spindle motor for rotating the tool; and a moving device for moving at least one of a worktable holding the workpiece and a spindle head holding the tool. The moving device includes a feed shaft motor configured corresponding to each feed shaft.

本實施形態的進給軸是由互相正交的3個直線運動軸(X軸、Y軸、及Z軸)所構成。在本實施形態的工具機中是形成為:固定工件的工作台會在X軸的方向及Y軸的方向上移動,保持工具的主軸會在Z軸的方向上移動。工具機的進給軸並不限定於此形態,可以由任意的直線運動軸或旋轉進給軸來構成。The feed axis of this embodiment is composed of three mutually orthogonal linear motion axes (X axis, Y axis, and Z axis). In the machine tool of this embodiment, the worktable that fixes the workpiece moves in the direction of the X axis and the direction of the Y axis, and the spindle that holds the tool moves in the direction of the Z axis. The feed axis of the machine tool is not limited to this form, and can be composed of any linear motion axis or rotary feed axis.

在圖8中顯示本實施形態中的動作推定裝置的方塊圖。動作推定裝置81是推定配置於工具機的電動機的驅動狀態。動作推定裝置81包含具有作為處理器之CPU的運算處理裝置(電腦)。動作推定裝置81包含記憶部82,前述記憶部82記憶用於進行電動機的驅動狀態的推定之資訊。記憶部82可以由可記憶資訊的非暫時性記憶媒體來構成。記憶部82可以由揮發性記憶體、非揮發性記憶體、磁性記憶媒體、或光記憶媒體等可記憶資訊的記憶媒體來構成。FIG8 shows a block diagram of the action estimation device in the present embodiment. The action estimation device 81 estimates the driving state of the motor installed in the machine tool. The action estimation device 81 includes an operation processing device (computer) having a CPU as a processor. The action estimation device 81 includes a memory unit 82, and the memory unit 82 stores information used to estimate the driving state of the motor. The memory unit 82 can be composed of a non-transitory storage medium that can store information. The memory unit 82 can be composed of a storage medium that can store information, such as a volatile memory, a non-volatile memory, a magnetic storage medium, or an optical storage medium.

對於動作推定裝置81,輸入用於推定電動機的驅動狀態之程式即推定程式71。推定程式71是由進行模擬的作業人員事先製作。又,移動裝置包含連接於電動機的減速機及用於驅動工作台等構件的驅動機構。驅動機構包含例如用於移動工具機的工作台之滾珠螺桿機構。對於動作推定裝置81輸入移動裝置的資訊72。在移動裝置的資訊72中,包含有例如減速機的齒輪比及滾珠螺桿的間距等資訊。The motion estimation device 81 inputs an estimation program 71, which is a program for estimating the driving state of the motor. The estimation program 71 is prepared in advance by the operator who performs the simulation. In addition, the moving device includes a speed reducer connected to the motor and a driving mechanism for driving components such as a workbench. The driving mechanism includes, for example, a ball screw mechanism for moving the workbench of a machine tool. The motion estimation device 81 inputs information 72 of the moving device. The moving device information 72 includes information such as the gear ratio of the speed reducer and the pitch of the ball screw.

又,對於動作推定裝置81輸入慣量的資訊73。和電動機的驅動有關的慣量(慣性矩),包含以電動機驅動的構件的慣量。又,和電動機的驅動有關的慣量包含施加於電動機的負載的慣量。例如,慣量包含:電動機的轉子的慣量、連接於進給軸馬達的減速機的慣量、及連接於主軸馬達的主軸的慣量等。慣量可以藉由進行模擬的作業人員來事先算出。此外,對於動作推定裝置81輸入電動機的輸出特性74。推定程式71、移動裝置的資訊72、慣量的資訊73、及電動機的輸出特性74是記憶於記憶部82中。Furthermore, inertia information 73 is input to the action estimation device 81. The inertia (inertia torque) related to the drive of the motor includes the inertia of the component driven by the motor. Furthermore, the inertia related to the drive of the motor includes the inertia of the load applied to the motor. For example, the inertia includes: the inertia of the rotor of the motor, the inertia of the speed reducer connected to the feed shaft motor, and the inertia of the main shaft connected to the main shaft motor. The inertia can be calculated in advance by the operator performing the simulation. Furthermore, the output characteristic 74 of the motor is input to the action estimation device 81. The estimation program 71 , the information 72 of the moving device, the information 73 of the inertia, and the output characteristics 74 of the motor are stored in the memory unit 82 .

動作推定裝置81具備算出部83,前述算出部83是依據推定程式71來算出顯示電動機的驅動狀態之變數。作為顯示電動機的驅動狀態之變數,包含電動機的旋轉速度、電動機的角加速度、電動機的負載率、及電動機的旋轉位置等。算出部83包含速度推定部84,前述速度推定部84是算出電動機的旋轉速度的隨時間經過的變化。算出部83包含轉矩推定部85,前述轉矩推定部85是推定電動機的負載率的隨時間經過的變化。The motion estimation device 81 includes a calculation unit 83, which calculates variables indicating the driving state of the motor according to the estimation program 71. The variables indicating the driving state of the motor include the rotation speed of the motor, the angular acceleration of the motor, the load factor of the motor, and the rotation position of the motor. The calculation unit 83 includes a speed estimation unit 84, which calculates the change of the rotation speed of the motor over time. The calculation unit 83 includes a torque estimation unit 85, which estimates the change of the load factor of the motor over time.

算出部83包含判定由算出部83所推定的變數之判定部86。算出部83包含顯示控制部87,前述顯示控制部87是生成將由判定部86所判定的結果顯示於顯示部88的指令。The calculation unit 83 includes a determination unit 86 that determines a variable estimated by the calculation unit 83. The calculation unit 83 includes a display control unit 87 that generates a command to display the result determined by the determination unit 86 on the display unit 88.

算出部83相當於按照事先決定的規則來驅動的運算處理裝置的處理器。本實施形態的算出部83相當於依據推定程式71來驅動的處理器。特別是,速度推定部84、轉矩推定部85、判定部86、及顯示控制部87的各個單元相當於運算處理裝置的處理器。處理器是依據推定程式71進行驅動,藉此作為各個單元來發揮功能。The calculation unit 83 is equivalent to a processor of the operation processing device driven according to a predetermined rule. The calculation unit 83 of this embodiment is equivalent to a processor driven according to the estimation program 71. In particular, each unit of the speed estimation unit 84, the torque estimation unit 85, the determination unit 86, and the display control unit 87 is equivalent to a processor of the operation processing device. The processor is driven according to the estimation program 71, thereby performing functions as each unit.

動作推定裝置81包含顯示部88,前述顯示部88顯示和電動機的驅動狀態之推定有關的資訊。顯示部88是由例如液晶顯示面板等顯示面板來構成。顯示部88是按照來自顯示控制部87的指令來顯示任意的資訊。The operation estimation device 81 includes a display unit 88 for displaying information related to the estimation of the driving state of the motor. The display unit 88 is composed of a display panel such as a liquid crystal display panel. The display unit 88 displays arbitrary information according to the instruction from the display control unit 87.

另外,本實施形態的動作推定裝置雖然是由和機械控制裝置的運算處理裝置及模擬裝置的運算處理裝置不同的運算處理裝置來構成,但不限定於此形態。機械控制裝置的運算處理裝置或模擬裝置的運算處理裝置亦可具有動作推定裝置的功能。例如,機械控制裝置的處理器亦可具有動作推定裝置的算出部的功能。In addition, although the motion estimation device of this embodiment is composed of a different operation processing device from the operation processing device of the mechanical control device and the operation processing device of the simulation device, it is not limited to this form. The operation processing device of the mechanical control device or the operation processing device of the simulation device may also have the function of the motion estimation device. For example, the processor of the mechanical control device may also have the function of the calculation unit of the motion estimation device.

本實施形態的動作推定裝置81是依據推定程式71,來推定顯示電動機的驅動狀態之變數,前述推定程式71是將作為驅動工具機用的動作程式之加工程式變形。在本實施形態的推定程式71中,對於加工程式的指令語句,追加有用於推定電動機的驅動狀態之輔助變數。The motion estimation device 81 of this embodiment estimates the variable indicating the driving state of the motor according to the estimation program 71. The aforementioned estimation program 71 is a modification of a machining program as an motion program for driving a machine tool. In the estimation program 71 of this embodiment, auxiliary variables useful for estimating the driving state of the motor are added to the instruction statement of the machining program.

本實施形態的動作推定裝置81的算出部83是依據包含推定程式71所記載的輔助變數之指令語句、電動機的輸出特性、及和電動機的驅動有關的慣量,以時間序列的方式來預測電動機的驅動狀態的變化。和電動機的驅動有關的慣量包含轉子等的慣量及電動機的負載的慣量。特別是,算出部83是算出電動機的旋轉速度的隨時間經過的變化及電動機的負載率的隨時間經過的變化當中之至少一者。亦即,算出部83是以時間序列的方式來算出電動機的旋轉速度及電動機的負載率當中之至少一者。又,動作推定裝置81是推定工具機進行作業的時間長度。The calculation unit 83 of the motion estimation device 81 of the present embodiment predicts the change of the driving state of the motor in a time series manner based on the instruction statement including the auxiliary variables recorded in the estimation program 71, the output characteristics of the motor, and the inertia related to the driving of the motor. The inertia related to the driving of the motor includes the inertia of the rotor, etc. and the inertia of the load of the motor. In particular, the calculation unit 83 calculates at least one of the change of the rotation speed of the motor over time and the change of the load rate of the motor over time. That is, the calculation unit 83 calculates at least one of the rotation speed of the motor and the load rate of the motor in a time series manner. Furthermore, the operation estimating device 81 estimates the time length for which the machine tool performs an operation.

在本實施形態的動作推定裝置81的主軸馬達的推定控制中是推定主軸馬達的驅動狀態。對於主軸馬達並未指定有使主軸的旋轉速度變化時的時間常數。時間常數是從一個旋轉速度到達目標的旋轉速度為止的時間長度。時間常數是對應於電動機的角加速度之變數。在本實施形態的控制中,依據推定程式來推定主軸馬達的驅動狀態,前述推定程式是對加工程式的指令語句追加了顯示電動機的負載率之輔助變數。In the estimation control of the spindle motor of the motion estimation device 81 of the present embodiment, the driving state of the spindle motor is estimated. The time constant for changing the rotation speed of the spindle is not specified for the spindle motor. The time constant is the length of time from one rotation speed to the target rotation speed. The time constant is a variable corresponding to the angular acceleration of the motor. In the control of the present embodiment, the driving state of the spindle motor is estimated according to the estimation program, and the aforementioned estimation program is an auxiliary variable that adds a load factor of the motor to the instruction statement of the machining program.

在圖9中,顯示和主軸馬達的推定控制中的推定程式相對應的加工程式的例子。在工具機的加工程式中記載有使主軸馬達及進給軸馬達動作的指令語句。加工程式是以G代碼、M代碼、及S代碼等被稱為代碼的指令語句所構成。在加工程式中,在每1行記載有指令語句。每1行的指令語句稱為區塊。又,包含於指令語句的變數稱為詞(word)。FIG9 shows an example of a machining formula corresponding to an estimation program in the estimation control of the spindle motor. In the machining formula of the machine tool, there are command statements for operating the spindle motor and the feed shaft motor. The machining formula is composed of command statements called codes such as G codes, M codes, and S codes. In the machining formula, a command statement is recorded in each line. The command statement in each line is called a block. In addition, the variable contained in the command statement is called a word.

在圖9中顯示有用於旋轉及停止主軸馬達的指令語句。在加工程式75中,第1行的M03的指令語句是顯示使主軸往正方向旋轉的指令之M代碼。第2行的S2000的指令語句是顯示主軸的目標的旋轉速度之S代碼。在第1行及第2行的指令語句中,顯示使主軸往正方向旋轉,直到電動機的旋轉速度為2000rpm。FIG9 shows the command statements for rotating and stopping the spindle motor. In machining formula 75, the command statement M03 on the first line is an M code indicating that the spindle is rotated in the positive direction. The command statement S2000 on the second line is an S code indicating the target rotation speed of the spindle. The command statements on the first and second lines indicate that the spindle is rotated in the positive direction until the motor rotation speed reaches 2000 rpm.

第3行的G04的指令語句是表示暫停功能的G代碼。G04的指令語句顯示在運轉工具機的期間中使加工程式的進行停止的指令。藉由變數P1000,顯示在1000msec的期間中停止加工程式的進行的指令。下一行中的M05的指令語句顯示使主軸停止的指令。藉由下一行中的G04的指令語句,在1000msec的期間中,加工程式的進行會停止。最後一行的M99的指令語句是顯示子程式的結束的M代碼。如此,在加工程式75中,由代碼與關於代碼的變數(引數)來形成指令語句。The G04 instruction statement in the third line is a G code indicating the pause function. The G04 instruction statement indicates the instruction to stop the machining process while the machine tool is running. The variable P1000 indicates the instruction to stop the machining process for 1000 msec. The M05 instruction statement in the next line indicates the instruction to stop the spindle. The machining process is stopped for 1000 msec by the G04 instruction statement in the next line. The M99 instruction statement in the last line is an M code indicating the end of the subroutine. In this way, in machining process 75, the instruction statement is formed by the code and the variable (argument) related to the code.

在圖10中顯示主軸馬達的推定控制中的推定程式。推定程式75a是對應於圖9所示的加工程式75而生成。本實施形態的推定程式是對用於驅動工具機的加工程式的指令語句,追加有顯示電動機的負載率的輔助變數。電動機的負載率為輸出轉矩相對於額定轉矩的比例。FIG10 shows an estimation program in the estimation control of the spindle motor. The estimation program 75a is generated corresponding to the machining formula 75 shown in FIG9. The estimation program of this embodiment is an instruction statement for driving the machining formula of the machine tool, and an auxiliary variable indicating the load factor of the motor is added. The load factor of the motor is the ratio of the output torque to the rated torque.

在推定程式75a中,在第1行的M03的指令語句及第4行的M05的指令語句中,記載有用於將主軸馬達加速或減速的第1輔助變數(spindlepower)。第1輔助變數是用於使電動機的旋轉速度變化之和負載率有關的變數。各個第1輔助變數是用「spindlepower100%」或「spindlepower-100%」來顯示。例如,在第1行的M03的指令語句中,記載有依據追加於加工程式75的指令語句的第1輔助變數,用負載率100%來加速主軸馬達的指令。In the estimation program 75a, the first auxiliary variable (spindlepower) used to accelerate or decelerate the spindle motor is recorded in the command statement M03 on the first line and the command statement M05 on the fourth line. The first auxiliary variable is a variable related to the load factor and used to change the rotation speed of the motor. Each first auxiliary variable is displayed as "spindlepower100%" or "spindlepower-100%". For example, in the command statement M03 on the first line, a command to accelerate the spindle motor with a load factor of 100% is recorded based on the first auxiliary variable added to the command statement of the processing formula 75.

在第3行的G04的指令語句及第5行的G04的指令語句中,記載有和加工工件用的負載率有關的第2輔助變數(spindlecutpower)。在本實施形態中,在進行工件的加工的期間中,電動機的旋轉速度為固定。在第2輔助變數中顯示有和工件的切削轉矩相對應的負載率。在此,作為第2輔助變數,顯示主軸馬達的切削時的負載率之「spindlecutpower50%」是記載在第3行的G04的指令語句。亦即,顯示用主軸馬達的負載率50%來切削工件。又,由於在第5行的G04的指令語句中切削已完成,因此記載有「spindlecutpower0%」。像這樣的電動機的負載率可以由進行模擬的作業人員事先決定。推定程式75a是藉由在加工程式75的指令語句中追加第1輔助變數及第2輔助變數而形成。In the G04 command statement on the 3rd line and the G04 command statement on the 5th line, the second auxiliary variable (spindlecutpower) related to the load factor for machining the workpiece is recorded. In the present embodiment, the rotation speed of the motor is fixed while the workpiece is being machined. The load factor corresponding to the cutting torque of the workpiece is displayed in the second auxiliary variable. Here, "spindlecutpower50%" which displays the load factor of the spindle motor during cutting is recorded in the G04 command statement on the 3rd line as the second auxiliary variable. That is, it is displayed that the workpiece is cut with a load factor of 50% of the spindle motor. In addition, since the cutting has been completed in the G04 command statement on the 5th line, "spindlecutpower0%" is recorded. Such a load factor of the motor can be determined in advance by the operator who performs the simulation. The estimation program 75a is formed by adding the first auxiliary variable and the second auxiliary variable to the instruction statement of the processing formula 75.

圖11是顯示主軸馬達的輸出特性的圖表。電動機的輸出特性顯示以100%的負載率驅動電動機時之電動機之相對於旋轉速度的輸出之關係。在橫軸顯示主軸馬達的旋轉速度,在縱軸顯示主軸馬達的輸出。旋轉速度到約7000rpm為止,顯示輸出和旋轉速度成比例的特性。Figure 11 is a graph showing the output characteristics of the spindle motor. The output characteristics of the motor show the relationship between the output of the motor and the rotation speed when the motor is driven at a 100% load rate. The horizontal axis shows the rotation speed of the spindle motor, and the vertical axis shows the output of the spindle motor. The output is proportional to the rotation speed up to about 7000rpm.

參照圖8,在主軸馬達的推定控制中,算出部83的速度推定部84是依據第1輔助變數來算出主軸馬達的角加速度。速度推定部84是推定主軸馬達的旋轉速度的隨時間經過的變化。亦即,速度推定部84是用時間序列的方式來算出主軸馬達的旋轉速度的變化。並且,速度推定部84是依據旋轉速度的隨時間經過的變化,來推定主軸馬達到達目標的旋轉速度為止的時間。Referring to FIG8 , in the estimation control of the spindle motor, the speed estimation unit 84 of the calculation unit 83 calculates the angular acceleration of the spindle motor based on the first auxiliary variable. The speed estimation unit 84 estimates the change of the rotation speed of the spindle motor over time. That is, the speed estimation unit 84 calculates the change of the rotation speed of the spindle motor in a time series manner. Furthermore, the speed estimation unit 84 estimates the time until the spindle motor reaches the target rotation speed based on the change of the rotation speed over time.

在圖12中,顯示主軸馬達的推定控制所推定的主軸馬達的驅動狀態的時序圖。參照圖10及圖12,從時刻t0至時刻t1為止,依據M03及S2000的指令語句,主軸馬達的旋轉速度會上升。依照S2000的指令語句,旋轉速度會加速到2000rpm。此時的主軸的加速用的負載率是藉由追加於M03的指令語句的第1輔助變數即「spindlepower100%」而被設定為100%。FIG12 shows a timing diagram of the spindle motor driving state estimated by the estimated control of the spindle motor. Referring to FIG10 and FIG12, from time t0 to time t1, the rotation speed of the spindle motor increases according to the command statements of M03 and S2000. According to the command statement of S2000, the rotation speed is accelerated to 2000rpm. The load factor for the acceleration of the spindle at this time is set to 100% by the first auxiliary variable "spindlepower100%" added to the command statement of M03.

在從時刻t1至時刻t2的期間中,依據第3行的G04的指令語句,在1秒的期間中維持旋轉速度。在從時刻t1至時刻t2的期間中之用於切削的主軸馬達的負載率,是藉由第2輔助變數而被設定為50%。從時刻t2至時刻t3為止,按照M05的指令語句的第1輔助變數,負載率以-100%減速。在時刻t3以後,依照第5行的G04的指令語句的第2輔助變數,在1秒的期間中,用於切削的負載率會被維持為0%。From time t1 to time t2, the rotation speed is maintained for 1 second according to the G04 command statement on line 3. The duty factor of the spindle motor for cutting from time t1 to time t2 is set to 50% by the second auxiliary variable. From time t2 to time t3, the duty factor is decelerated by -100% according to the first auxiliary variable of the M05 command statement. After time t3, the duty factor for cutting is maintained at 0% for 1 second according to the second auxiliary variable of the G04 command statement on line 5.

在圖11中顯示有負載率為100%的輸出特性的圖表。在主軸馬達的旋轉速度到約7000rpm為止,輸出會和旋轉速度成比例而增加。由於電動機的輸出是藉由對旋轉速度乘上轉矩來算出,因此在旋轉速度到7000rpm之前,電動機所輸出的轉矩為固定。Figure 11 shows a graph of output characteristics when the load factor is 100%. When the spindle motor rotates at about 7000 rpm, the output increases in proportion to the rotation speed. Since the motor output is calculated by multiplying the rotation speed by the torque, the motor output torque is fixed before the rotation speed reaches 7000 rpm.

在此,依據推定程式75a的G04的指令語句,從時刻t1至時刻t2的時間長度及從時刻t3至時刻t4的時間長度為1秒。但是,由於到達主軸馬達的目標的旋轉速度為止的時間(時間常數)並未事先決定,因此速度推定部84是以時間序列的方式來算出主軸馬達的旋轉速度的變化。Here, according to the G04 instruction statement of the estimation program 75a, the time length from time t1 to time t2 and the time length from time t3 to time t4 are 1 second. However, since the time (time constant) until the target rotation speed of the spindle motor is reached is not determined in advance, the speed estimation unit 84 calculates the change of the rotation speed of the spindle motor in a time series manner.

速度推定部84是算出從時刻t0至時刻t1的期間中的主軸馬達的角加速度。速度推定部84是依據圖11所示的主軸馬達的輸出特性,來算出和旋轉速度對應的主軸馬達的輸出。在此,速度推定部84是如箭頭95、96所示,算出對應於旋轉速度2000rpm的主軸馬達的輸出。在這裡的例子中,由於藉由第1輔助變數將用於加速主軸馬達的負載率設定為100%,因此可以採用由圖11所取得的主軸馬達的輸出。另外,當因第1輔助變數,主軸馬達的加速用的負載率小於100%的情況下,可以依據由圖11所取得的主軸馬達的輸出及加速用的負載率來算出主軸馬達的輸出。The speed estimation unit 84 calculates the angular acceleration of the spindle motor during the period from time t0 to time t1. The speed estimation unit 84 calculates the output of the spindle motor corresponding to the rotation speed based on the output characteristics of the spindle motor shown in FIG. 11. Here, the speed estimation unit 84 calculates the output of the spindle motor corresponding to the rotation speed of 2000 rpm as shown by arrows 95 and 96. In this example, since the load factor for accelerating the spindle motor is set to 100% by the first auxiliary variable, the output of the spindle motor obtained from FIG. 11 can be used. In addition, when the acceleration duty factor of the spindle motor is less than 100% due to the first auxiliary variable, the output of the spindle motor can be calculated based on the output of the spindle motor and the acceleration duty factor obtained from FIG. 11 .

接著,速度推定部84是將主軸馬達的輸出除以旋轉速度,藉此算出主軸馬達的轉矩。然後,速度推定部84是將主軸馬達的轉矩除以慣量,藉此來算出角加速度,前述慣量包含電動機的轉子的慣量及施加於電動機的負載的慣量。時刻t0至時刻t1中的旋轉速度的圖表的斜率相當於角加速度。速度推定部84可以依據最終到達的旋轉速度及角加速度,來算出從時刻t0至時刻t1的時間長度SX1。又,速度推定部84可以算出時刻t1。Next, the speed estimation unit 84 divides the output of the main shaft motor by the rotation speed to calculate the torque of the main shaft motor. Then, the speed estimation unit 84 divides the torque of the main shaft motor by the inertia to calculate the angular acceleration, and the aforementioned inertia includes the inertia of the motor rotor and the inertia of the load applied to the motor. The slope of the graph of the rotation speed from time t0 to time t1 is equivalent to the angular acceleration. The speed estimation unit 84 can calculate the time length SX1 from time t0 to time t1 based on the final rotation speed and angular acceleration. In addition, the speed estimation unit 84 can calculate the time t1.

速度推定部84針對從時刻t2至時刻t3的區間中之減速時的角加速度,也可以藉由同樣的控制來算出。速度推定部84可以算出從時刻t2至時刻t3的時間長度SX2。速度推定部84可以依據時刻t2與時間長度SX2來算出時刻t3。又,算出部83可以依據時間長度SX1、SX2,來推定從時刻t0至時刻t4之工具機進行作業的時間長度(週期時間)。亦即,算出部83可以算出電動機基於加工程式從啟動到停止為止的時間。The speed estimation unit 84 can also calculate the angular acceleration during deceleration in the interval from time t2 to time t3 by the same control. The speed estimation unit 84 can calculate the time length SX2 from time t2 to time t3. The speed estimation unit 84 can calculate time t3 based on time t2 and time length SX2. In addition, the calculation unit 83 can estimate the time length (cycle time) of the machine tool operation from time t0 to time t4 based on time lengths SX1 and SX2. That is, the calculation unit 83 can calculate the time from the start to the stop of the motor based on the machining process.

如此,速度推定部84可以依據角加速度來推定旋轉速度的隨時間經過的變化。又,速度推定部84可以依據角加速度,來算出主軸馬達到達目標的旋轉速度為止的時間。此外,速度推定部84可以推定從電動機的啟動到停止為止之電動機的旋轉速度的隨時間經過的變化。In this way, the speed estimation unit 84 can estimate the change of the rotation speed over time based on the angular acceleration. In addition, the speed estimation unit 84 can calculate the time until the spindle motor reaches the target rotation speed based on the angular acceleration. In addition, the speed estimation unit 84 can estimate the change of the rotation speed of the motor over time from the start to the stop of the motor.

在主軸馬達的推定控制中,為了算出電動機的旋轉速度,可以生成將第1輔助變數作為電動機的加速用的負載率來附加於加工程式的指令語句之指令語句。並且,可以依據電動機的輸出特性及慣量,來推定將電動機加速或減速時的角加速度。又,,可以生成將第2輔助變數作為和主軸馬達的切削轉矩對應的負載率來附加於切削工件的期間中的指令語句之指令語句。可以用第2輔助變數,來決定從時刻t1至時刻t2中的切削工件的期間中的負載率。算出部83可以推定從電動機的啟動到停止為止之電動機的負載率的隨時間經過的變化。In the estimated control of the spindle motor, in order to calculate the rotation speed of the motor, an instruction statement can be generated in which the first auxiliary variable is added as the load factor for accelerating the motor to the instruction statement of the processing formula. In addition, the angular acceleration when the motor is accelerated or decelerated can be estimated based on the output characteristics and inertia of the motor. In addition, an instruction statement can be generated in which the second auxiliary variable is added as the load factor corresponding to the cutting torque of the spindle motor to the instruction statement during the period of cutting the workpiece. The second auxiliary variable can be used to determine the load factor during the period of cutting the workpiece from moment t1 to moment t2. The calculation unit 83 can estimate the change in the load factor of the motor over time from the start to the stop of the motor.

接著,說明本實施形態的動作推定裝置81之推定進給軸馬達的驅動狀態的推定控制。在進給軸馬達的推定控制中是推定進給軸馬達的驅動狀態。進給軸馬達的時間常數是事先決定的。時間常數是對應於將進給軸馬達加速時或減速時的角加速度。電動機的時間常數是由例如控制電動機的控制軟體來決定。在進給軸馬達的推定控制中是推定當依照固定的角加速度來加速時進給軸馬達所輸出的轉矩。在本實施形態中是推定進給軸馬達的負載率。又,在進給軸馬達的推定控制中,推定進給軸馬達的旋轉速度的隨時間經過的變化、及進給軸馬達所驅動的對象物的位置的變化。Next, the estimation control of the driving state of the feed shaft motor of the motion estimation device 81 of this embodiment is explained. In the estimation control of the feed shaft motor, the driving state of the feed shaft motor is estimated. The time constant of the feed shaft motor is determined in advance. The time constant corresponds to the angular acceleration when the feed shaft motor is accelerated or decelerated. The time constant of the motor is determined by, for example, the control software that controls the motor. In the estimation control of the feed shaft motor, the torque output by the feed shaft motor when accelerating according to a fixed angular acceleration is estimated. In this embodiment, the load rate of the feed shaft motor is estimated. In the estimation control of the feed shaft motor, the temporal change in the rotation speed of the feed shaft motor and the change in the position of the object driven by the feed shaft motor are estimated.

在圖13中顯示進給軸馬達的推定控制中記載於推定程式的指令語句。在推定程式76a中為了驅動進給軸馬達而記載有G01的指令語句。推定程式76a的G01的指令語句是在加工程式的G01的指令語句中記載有輔助變數的指令語句。G01的指令語句顯示將工作台直線地移動的指令。在這裡的指令語句中,顯示固定工件的工作台的X軸方向的移動。FIG. 13 shows the instruction statement recorded in the estimation program in the estimation control of the feed shaft motor. In estimation program 76a, the G01 instruction statement is recorded to drive the feed shaft motor. The G01 instruction statement of estimation program 76a is an instruction statement in which an auxiliary variable is recorded in the G01 instruction statement of the machining program. The G01 instruction statement indicates the instruction to move the table linearly. In this instruction statement, the movement of the table that fixes the workpiece in the X-axis direction is displayed.

在本實施形態的工具機中,決定有即使主軸頭6及工作台移動也不會動的機械座標系統。在G01的指令語句中,以機械座標系統顯示工作台的目標位置。在G01的指令語句中,記載有將工作台移動成使機械座標系統的X軸的座標值成為10及Y軸的座標值成為10之指令。又,F1000是顯示工作台移動時的目標的移動速度之變數。在此是記載以1000mm/min的速度來移動工作台的情形。In the machine tool of this embodiment, a mechanical coordinate system is determined so that the spindle head 6 and the table do not move even if they move. In the G01 command statement, the target position of the table is displayed in the mechanical coordinate system. In the G01 command statement, there is a command to move the table so that the coordinate value of the X axis and the coordinate value of the Y axis of the mechanical coordinate system become 10 and 10, respectively. In addition, F1000 is a variable that displays the target moving speed when the table moves. Here, it is recorded that the table is moved at a speed of 1000 mm/min.

在推定程式76a中,對於在加工程式中所使用的G01的指令語句,追加有和用於加工工件的負載率有關的第3輔助變數。在此,作為第3輔助變數,顯示進給軸馬達的切削時的負載率之「servocutpower10%」是追加在加工程式的G01的指令語句之後。此負載率相當於切削時的轉矩指令。這裡的第3輔助變數顯示切削工件時之進給軸馬達的負載率為10%的情形。In the estimation program 76a, a third auxiliary variable related to the load factor used to process the workpiece is added to the G01 instruction statement used in the machining program. Here, as the third auxiliary variable, "servocutpower10%" which shows the load factor of the feed shaft motor during cutting is added after the G01 instruction statement of the machining program. This load factor is equivalent to the torque instruction during cutting. The third auxiliary variable here shows the situation where the load factor of the feed shaft motor during cutting the workpiece is 10%.

圖14是顯示進給軸馬達的輸出特性的圖表。和圖11的主軸馬達的圖表同樣地,在圖14的圖表中顯示進給軸馬達之和100%的負載率下的旋轉速度相對的輸出的關係。Fig. 14 is a graph showing the output characteristics of the feed shaft motor. Similar to the graph of the spindle motor in Fig. 11, the graph of Fig. 14 shows the relationship between the rotation speed and the output of the feed shaft motor at a total load factor of 100%.

參照圖8,算出部83的轉矩推定部85是依據進給軸馬達的時間常數、進給軸馬達的輸出特性、具有推定程式76a所包含的第3輔助變數之指令語句、及和電動機的驅動有關的慣量,來算出電動機的運轉時之負載率的隨時間經過的變化。如後述,轉矩推定部是算出進給軸馬達加速或減速時的負載率。8, the torque estimation unit 85 of the calculation unit 83 calculates the change of the load factor of the motor during operation with time based on the time constant of the feed shaft motor, the output characteristics of the feed shaft motor, the instruction statement having the third auxiliary variable included in the estimation program 76a, and the inertia related to the driving of the motor. As described later, the torque estimation unit calculates the load factor when the feed shaft motor is accelerated or decelerated.

在圖15中,顯示由進給軸馬達的推定控制所推定的進給軸馬達的驅動狀態的時序圖。在此,顯示將工具機的工作台往X軸的方向移動的例子。從時刻t0至時刻t5為止,進給軸馬達的旋轉速度會上升。從時刻t5至時刻t6為止,進給軸馬達是維持在固定的旋轉速度C。並且,從時刻t6至時刻t7為止,進給軸馬達的旋轉速度會減少。X軸方向的工作台的位置是從現在的位置移動到X軸的座標值為10的位置。FIG. 15 shows a timing diagram of the driving state of the feed shaft motor estimated by the estimated control of the feed shaft motor. Here, an example of moving the worktable of the machine tool in the direction of the X-axis is shown. From time t0 to time t5, the rotation speed of the feed shaft motor increases. From time t5 to time t6, the feed shaft motor is maintained at a fixed rotation speed C. Furthermore, from time t6 to time t7, the rotation speed of the feed shaft motor decreases. The position of the worktable in the X-axis direction moves from the current position to a position with a coordinate value of 10 on the X-axis.

在X軸的方向上移動工作台時之進給軸馬達的目標的旋轉速度C,可以依據推定程式76a的G01的指令語句當中的變數F1000來算出。變數F1000顯示工作台的目標的移動速度為1000mm/min。算出部83可以依據工作台的目標的移動速度、及在X軸方向上移動工作台的滾珠螺桿機構的滾珠螺桿的間距等移動裝置的資訊72,來算出X軸的進給軸馬達的目標的旋轉速度C。另外,在此雖然是顯示工作台在X軸方向上移動的例子,但並不限定於此形態。當工作台除了在X軸方向上之外還在Y軸方向上移動的情況下,可以依據工作台的Y軸方向的移動速度與Y軸的移動裝置的資訊,來算出Y軸的進給軸馬達的旋轉速度。並且,針對Y軸的進給軸馬達,也可以藉由和X軸的進給軸馬達同樣的控制來推定電動機的驅動狀態。The target rotation speed C of the feed shaft motor when the table is moved in the direction of the X axis can be calculated based on the variable F1000 in the G01 instruction statement of the estimation program 76a. The variable F1000 shows that the target movement speed of the table is 1000 mm/min. The calculation unit 83 can calculate the target rotation speed C of the feed shaft motor of the X axis based on the target movement speed of the table and the information 72 of the moving device such as the pitch of the ball screw of the ball screw mechanism that moves the table in the X axis direction. In addition, although the example in which the table moves in the X axis direction is shown here, it is not limited to this form. When the table moves in the Y-axis direction in addition to the X-axis direction, the rotation speed of the Y-axis feed shaft motor can be calculated based on the table's Y-axis movement speed and the information of the Y-axis moving device. In addition, the drive state of the motor can be estimated for the Y-axis feed shaft motor by the same control as the X-axis feed shaft motor.

算出部83是從已決定於進給軸馬達的時間常數來算出角加速度。算出部83可以算出時刻t0至時刻t5的區間中旋轉速度的隨時間經過的變化。算出部83可以依據旋轉速度的變化,來算出用於到達目標的旋轉速度C的時刻t0至時刻t5的時間長度SL1。又,算出部83可以依據角加速度來算出時刻t6至時刻t7的區間中旋轉速度的隨時間經過的變化及時間長度SL3。The calculation unit 83 calculates the angular acceleration from the time constant determined in the feed shaft motor. The calculation unit 83 can calculate the change of the rotation speed over time in the interval from time t0 to time t5. The calculation unit 83 can calculate the time length SL1 from time t0 to time t5 for reaching the target rotation speed C based on the change of the rotation speed. In addition, the calculation unit 83 can calculate the change of the rotation speed over time and the time length SL3 in the interval from time t6 to time t7 based on the angular acceleration.

算出部83可以對進給軸馬達的旋轉速度進行積分,藉此算出時刻t5及時刻t6中的進給軸馬達的旋轉位置。又,算出部83可以依據移動裝置的資訊72,算出和進給軸馬達的旋轉位置對應的工作台在X軸上的位置。算出部83可以算出由進給軸馬達所驅動的對象物的位置。算出部83可以依據進給軸馬達的旋轉位置或工作台在X軸方向上的位置,來算出從時刻t5至時刻t6的X軸方向的移動距離。並且,算出部83可以依據X軸方向的移動距離與固定的旋轉速度C,來算出從時刻t5至時刻t6的時間長度SL2。算出部83可以推定從時刻t0至時刻t7之工具機進行作業的時間長度(週期時間)。又,算出部83可以依據時間長度SL1、SL2、SL3來算出時刻t5、t6、t7。The calculation unit 83 can integrate the rotation speed of the feed shaft motor to calculate the rotation position of the feed shaft motor at time t5 and time t6. In addition, the calculation unit 83 can calculate the position of the worktable on the X-axis corresponding to the rotation position of the feed shaft motor based on the information 72 of the moving device. The calculation unit 83 can calculate the position of the object driven by the feed shaft motor. The calculation unit 83 can calculate the movement distance in the X-axis direction from time t5 to time t6 based on the rotation position of the feed shaft motor or the position of the worktable in the X-axis direction. In addition, the calculation unit 83 can calculate the time length SL2 from time t5 to time t6 based on the movement distance in the X-axis direction and the fixed rotation speed C. The calculation unit 83 can estimate the time length (cycle time) of the machine tool operating from time t0 to time t7. In addition, the calculation unit 83 can calculate the times t5, t6, and t7 based on the time lengths SL1, SL2, and SL3.

如此,算出部83可以推定從工作台的移動開始到結束為止之進給軸馬達的旋轉速度的變化及工作台的X軸方向的位置的變化。又,算出部83可以推定從工作台的移動開始到結束為止的時間長度。In this way, the calculation unit 83 can estimate the change in the rotation speed of the feed shaft motor and the change in the position of the table in the X-axis direction from the start to the end of the table movement. In addition, the calculation unit 83 can estimate the length of time from the start to the end of the table movement.

接著,在進給軸馬達的推定控制中,算出部83的轉矩推定部85是算出進給軸馬達的運轉時之負載率的隨時間經過的變化。在本實施形態中,轉矩推定部85是算出進給軸馬達加速或減速時的負載率(TX1)。Next, in the estimation control of the feed shaft motor, the torque estimation unit 85 of the calculation unit 83 calculates the temporal change of the load factor when the feed shaft motor is operating. In the present embodiment, the torque estimation unit 85 calculates the load factor (TX1) when the feed shaft motor is accelerating or decelerating.

參照圖14及圖15,在時刻t0至時刻t5的區間中,轉矩推定部85是對和電動機的驅動有關的慣量乘上角加速度,藉此算出加速所需的轉矩。參照圖14的電動機的輸出特性,轉矩推定部85是如箭頭97、98所示,依據目標的旋轉速度C來算出負載率為100%時的輸出。轉矩推定部85是將負載率為100%時的輸出除以旋轉速度,藉此來算出負載率為100%時的轉矩。轉矩推定部85可以將加速所需要的轉矩除以負載率為100%時的轉矩,藉此來算出進給軸馬達的負載率TX1。這裡的負載率相當於工具機的進給軸馬達的轉矩指令。Referring to FIG. 14 and FIG. 15 , in the interval between time t0 and time t5, the torque estimation unit 85 multiplies the inertia related to the driving of the motor by the angular acceleration to calculate the torque required for acceleration. Referring to the output characteristics of the motor in FIG. 14 , the torque estimation unit 85 calculates the output when the load factor is 100% according to the target rotation speed C as shown by arrows 97 and 98. The torque estimation unit 85 divides the output when the load factor is 100% by the rotation speed to calculate the torque when the load factor is 100%. The torque estimation unit 85 can divide the torque required for acceleration by the torque when the load factor is 100% to calculate the load factor TX1 of the feed shaft motor. The load factor here is equivalent to the torque command of the feed shaft motor of the machine tool.

如此,轉矩推定部85是算出圖15的負載率(TX1)。針對時刻t6至時刻t7中的減速時的負載率(-TX1),也可以用同樣的控制來算出。In this way, the torque estimation unit 85 calculates the load factor (TX1) shown in Fig. 15. The load factor (-TX1) during deceleration from time t6 to time t7 can also be calculated by the same control.

藉由工具機加工工件的期間中的進給軸馬達的負載率可以由進行模擬的作業人員事先設定。作業人員可以依據工具的資訊及工件的資訊,來推定加工時的負載率。參照圖13,作業人員在推定程式76a中,指定進給軸馬達的切削時的負載率來作為第3輔助變數。在這裡的例子中,進給軸馬達的切削時的負載率為10%。The load factor of the feed shaft motor during the machining of the workpiece by the machine tool can be set in advance by the operator who performs the simulation. The operator can estimate the load factor during machining based on the information of the tool and the information of the workpiece. Referring to FIG. 13 , the operator specifies the load factor of the feed shaft motor during cutting as the third auxiliary variable in the estimation program 76a. In this example, the load factor of the feed shaft motor during cutting is 10%.

參照圖15,轉矩推定部85是依據推定程式76a的指令語句所記載的第3輔助變數,來設定加工工件的期間中的進給軸馬達的負載率。轉矩推定部85是在時刻t5至時刻t6的區間中,將進給軸馬達的負載率設定為10%。其結果,轉矩推定部85可以從進給軸馬達的啟動到停止為止推定負載率的隨時間經過的變化。亦即,可以推定工作台的移動開始到結束為止之進給軸馬達的負載率的變化。如此,在進給軸馬達的推定控制中,可以算出進給軸馬達的驅動狀態。Referring to FIG. 15 , the torque estimation unit 85 sets the load factor of the feed shaft motor during the processing of the workpiece according to the third auxiliary variable recorded in the instruction statement of the estimation program 76a. The torque estimation unit 85 sets the load factor of the feed shaft motor to 10% in the interval from time t5 to time t6. As a result, the torque estimation unit 85 can estimate the change of the load factor over time from the start to the stop of the feed shaft motor. That is, the change of the load factor of the feed shaft motor from the start to the end of the movement of the worktable can be estimated. In this way, the driving state of the feed shaft motor can be calculated in the estimation control of the feed shaft motor.

但是,在進給軸馬達的推定控制中,當轉矩推定部85已算出加速所需要的轉矩的情況下,會有加速所需要的轉矩超過額定轉矩的情況。亦即,會有負載率超過100%的情況。當算出部83所推定的變數超出事先決定的容許範圍之情況下,算出部83的判定部86是實施對進行電動機的模擬的作業人員通知的控制。However, in the estimation control of the feed shaft motor, when the torque estimation unit 85 has calculated the torque required for acceleration, the torque required for acceleration may exceed the rated torque. In other words, the load factor may exceed 100%. When the variable estimated by the calculation unit 83 exceeds the pre-determined allowable range, the determination unit 86 of the calculation unit 83 implements control to notify the operator who performs the simulation of the motor.

在本實施形態中,判定部86是判定轉矩推定部85所推定的負載率是否超出容許範圍。作為負載率的容許範圍是事先決定0%以上且100%以下。特別是,判定部86是判定負載率是否超過100%。並且,當負載率超過100%的情況下,判定部86可以輸出文字檔案,來作為通知作業人員的控制,前述文字檔案記載有負載率已超出容許範圍的警告。或者,判定部86可以將警告包含在已推定電動機的驅動狀態的結果之檔案中。In the present embodiment, the determination unit 86 determines whether the load factor estimated by the torque estimation unit 85 exceeds the permissible range. The permissible range of the load factor is predetermined to be greater than 0% and less than 100%. In particular, the determination unit 86 determines whether the load factor exceeds 100%. Furthermore, when the load factor exceeds 100%, the determination unit 86 may output a text file as a control to notify the operator, and the text file may record a warning that the load factor has exceeded the permissible range. Alternatively, the determination unit 86 may include the warning in the file of the result of the estimated driving state of the motor.

或者,判定部86亦可將和電動機的負載率超出了容許範圍的資訊相對應的訊號,發送至顯示控制部87。顯示控制部87可以在顯示部88中顯示無法以現在的條件來驅動工具機。或者,顯示控制部87可以將進給軸馬達的負載率超出容許範圍的情形顯示於顯示部88。Alternatively, the determination unit 86 may send a signal corresponding to the information that the load factor of the motor exceeds the allowable range to the display control unit 87. The display control unit 87 may display on the display unit 88 that the machine tool cannot be driven under the current conditions. Alternatively, the display control unit 87 may display on the display unit 88 that the load factor of the feed shaft motor exceeds the allowable range.

作為對進行模擬的作業人員通知警告的控制,並不限定於輸出記載有警告的檔案之控制或將資訊顯示於顯示部之控制,可以採用任意的控制。例如,亦可用聲音來對作業人員通知無法驅動工具機的情形。The control for notifying the operator who is performing the simulation of the warning is not limited to the control for outputting a file recording the warning or the control for displaying the information on the display unit, and any control may be adopted. For example, the operator may be notified by sound that the machine tool cannot be driven.

本實施形態的動作推定裝置81即使不驅動實際的工具機也可以推定電動機的旋轉速度、角加速度、及負載率等電動機的驅動狀態。算出部83所算出的電動機的驅動狀態可以記憶於記憶部82。又,作業人員亦可依據已推定的電動機的驅動狀態,來確認工具機的驅動沒有問題、或變更驅動工具機的條件。The motion estimation device 81 of this embodiment can estimate the driving state of the motor such as the rotational speed, angular acceleration, and load factor of the motor without actually driving the machine tool. The driving state of the motor calculated by the calculation unit 83 can be stored in the storage unit 82. In addition, the operator can confirm that there is no problem in driving the machine tool or change the conditions for driving the machine tool based on the estimated driving state of the motor.

(電動機的模擬及送風機的動作的設定) 接著,說明依據模擬裝置的模擬執行部所進行之電動機的驅動狀態的模擬及模擬結果,來設定電動機的送風機的動作。 (Simulation of the motor and setting of the action of the blower) Next, the simulation of the motor driving state performed by the simulation execution unit of the simulation device and the simulation results are explained to set the action of the blower of the motor.

在圖16中,顯示本實施形態的電動機的構成部分的溫度的模擬結果的時序圖。在此,例示藉由工具機以預定的間隔來切削工件時之主軸馬達的驅動狀態。電動機的驅動狀態是以事先決定的間隔來重複負載率為100%的狀態與負載率為0%的狀態。當負載率為100%時切削工件,當負載率為0%時工具會空轉。例如,在時刻t 11中負載率的上升會開始而從0%變成100%,在時刻t 12中,負載率的下降會開始而從100%變成0%。電動機10的旋轉速度例如在時刻t 11中會從5000rpm開始減少至500rpm,在時刻t 12に中,旋轉速度會從500rpm開始增加至5000rpm。 FIG. 16 shows a timing chart of the simulation result of the temperature of the components of the motor of the present embodiment. Here, the driving state of the spindle motor when the machine tool cuts the workpiece at a predetermined interval is exemplified. The driving state of the motor repeats the state of a load factor of 100% and the state of a load factor of 0% at a predetermined interval. When the load factor is 100%, the workpiece is cut, and when the load factor is 0%, the tool runs idle. For example, at time t11 , the load factor starts to increase and changes from 0% to 100%, and at time t12 , the load factor starts to decrease and changes from 100% to 0%. For example, the rotation speed of the motor 10 decreases from 5000 rpm to 500 rpm at time t11 , and increases from 500 rpm to 5000 rpm at time t12 .

參照圖3,在步驟102中,動作推定裝置81是依據動作程式45來推定電動機的驅動狀態。在圖16的時序圖中,當旋轉速度從500rpm增大至5000rpm、或從5000rpm減少至500rpm時,如圖12所示,旋轉速度會以預定的斜率變化。作業人員是依據作為動作程式45的加工程式來生成推定程式71。動作推定裝置81是依據推定程式71,以時間序列的方式來算出包含電動機的旋轉速度及負載率之電動機的驅動狀態。Referring to FIG3, in step 102, the motion estimation device 81 estimates the driving state of the motor according to the motion program 45. In the timing diagram of FIG16, when the rotation speed increases from 500 rpm to 5000 rpm, or decreases from 5000 rpm to 500 rpm, as shown in FIG12, the rotation speed changes at a predetermined slope. The operator generates the estimation program 71 according to the processing formula as the motion program 45. The motion estimation device 81 calculates the driving state of the motor including the rotation speed and the load factor of the motor in a time series manner according to the estimation program 71.

動作推定裝置81可以用預定的時間間隔來算出電動機的驅動狀態。例如,動作推定裝置81是按模擬執行部64實施模擬的每個時間間隔,算出電動機的旋轉速度及負載率。參照圖1,動作推定裝置81所推定的電動機的驅動狀態的資訊69是記憶在模擬裝置2的記憶部51。The motion estimation device 81 can calculate the driving state of the motor at a predetermined time interval. For example, the motion estimation device 81 calculates the rotation speed and load factor of the motor at each time interval when the simulation execution unit 64 performs the simulation. Referring to FIG. 1 , the information 69 of the driving state of the motor estimated by the motion estimation device 81 is stored in the memory unit 51 of the simulation device 2.

參照圖3,在步驟103中,模擬執行部64的溫度推定部53是推定包含定子鐵芯20的推定溫度之電動機的構成構件的溫度。模擬執行部64的動作設定部65是依據定子鐵芯20的溫度變化,來設定電動機10的送風機29的動作。在圖16中,顯示溫度推定部53所推定的線圈的推定溫度、轉子的推定溫度、及定子鐵芯的推定溫度。又,在圖16中,顯示包含由動作設定部65所設定的送風機29的動作之驅動狀態。Referring to FIG3 , in step 103, the temperature estimation unit 53 of the simulation execution unit 64 estimates the temperature of the components of the motor including the estimated temperature of the stator core 20. The action setting unit 65 of the simulation execution unit 64 sets the action of the blower 29 of the motor 10 according to the temperature change of the stator core 20. FIG16 shows the estimated temperature of the coil, the estimated temperature of the rotor, and the estimated temperature of the stator core estimated by the temperature estimation unit 53. FIG16 also shows the driving state including the action of the blower 29 set by the action setting unit 65.

作為送風機29的動作,決定有開啟(ON)的狀態及關閉(OFF)的狀態。在送風機29為開啟(ON)的狀態下,送風機29是以最大的旋轉速度來運轉。在送風機29為關閉(OFF)的狀態下,送風機29會停止。The operation of the blower 29 is determined to be an ON state and an OFF state. When the blower 29 is in the ON state, the blower 29 is operated at the maximum rotation speed. When the blower 29 is in the OFF state, the blower 29 stops.

在本實施形態中,如前述,藉由參數設定部57,事先製作了電動機10的送風機29以最大的旋轉速度來驅動時之第1電動機的模型、及已停止電動機10的送風機29時之第2電動機的模型。如此,在本實施形態中,電動機的模型是依據實際驅動機械時之送風機29的驅動狀態來製作。In this embodiment, as described above, the model of the first motor when the blower 29 of the motor 10 is driven at the maximum rotation speed and the model of the second motor when the blower 29 of the motor 10 is stopped are prepared in advance by the parameter setting unit 57. Thus, in this embodiment, the model of the motor is prepared based on the driving state of the blower 29 when the machine is actually driven.

參照圖1,模擬執行部64包含溫度推定部53。溫度推定部53的損失算出部54是依據由動作推定裝置81所設定的電動機的負載率及旋轉速度,來算出線圈的銅損及定子鐵芯的鐵損。亦即,算出線圈中的發熱量及定子鐵芯中的發熱量。溫度算出部55是依據由損失算出部54所算出的損失,使用電動機的模型來算出電動機所包含的各個構成部分的溫度。1 , the simulation execution unit 64 includes a temperature estimation unit 53. The loss calculation unit 54 of the temperature estimation unit 53 calculates the copper loss of the coil and the iron loss of the stator core according to the load factor and the rotation speed of the motor set by the action estimation device 81. That is, the heat generated in the coil and the heat generated in the stator core are calculated. The temperature calculation unit 55 calculates the temperature of each component included in the motor according to the loss calculated by the loss calculation unit 54 using the model of the motor.

溫度算出部55是使用和送風機29的驅動狀態相因應的電動機的模型,來推定電動機10的構成部分的溫度。在這裡的例子中,當送風機為開啟(ON)時,使用送風機29以最大的旋轉速度驅動時之第1電動機的模型。當送風機為關閉(OFF)時,使用送風機29停止時之第2電動機的模型。The temperature calculation unit 55 estimates the temperature of the components of the motor 10 using the motor model corresponding to the driving state of the blower 29. In this example, when the blower is turned on (ON), the model of the first motor when the blower 29 is driven at the maximum rotation speed is used. When the blower is turned off (OFF), the model of the second motor when the blower 29 is stopped is used.

模擬執行部64的動作設定部65是取得由溫度推定部53所推定的定子的推定溫度。在本實施形態中,採用定子鐵芯的推定溫度來作為定子的推定溫度。定子的溫度不限定於定子鐵芯的溫度,可以採用構成定子的任意構成部分的溫度。例如,可以採用線圈的溫度。或者,當定子具有包圍定子鐵芯的框體之情況下,可以製作包含定子的框體之電動機的模型。並且,亦可將由電動機的模型所算出的定子的框體的溫度,採用作為定子的溫度。The action setting unit 65 of the simulation execution unit 64 obtains the estimated temperature of the stator estimated by the temperature estimation unit 53. In this embodiment, the estimated temperature of the stator core is used as the estimated temperature of the stator. The temperature of the stator is not limited to the temperature of the stator core, and the temperature of any component constituting the stator can be used. For example, the temperature of the coil can be used. Alternatively, when the stator has a frame surrounding the stator core, a model of the motor including the stator frame can be made. In addition, the temperature of the stator frame calculated by the motor model can also be used as the stator temperature.

動作設定部65是每隔事先決定的時間間隔,算出定子鐵芯20的推定溫度的每單位時間的變化率。亦即,動作設定部65是算出定子鐵芯20的推定溫度的斜率。動作設定部65是依據定子鐵芯20的推定溫度的斜率,來設定電動機10的送風機29的動作。亦即,依據定子鐵芯20的推定溫度的每單位時間的溫度上升幅度或每單位時間的溫度下降幅度,來變更送風機29的動作。The action setting unit 65 calculates the rate of change per unit time of the estimated temperature of the stator core 20 at predetermined time intervals. That is, the action setting unit 65 calculates the slope of the estimated temperature of the stator core 20. The action setting unit 65 sets the action of the blower 29 of the motor 10 according to the slope of the estimated temperature of the stator core 20. That is, the action of the blower 29 is changed according to the temperature increase or temperature decrease per unit time of the estimated temperature of the stator core 20.

本實施形態的動作設定部65是當定子鐵芯20的推定溫度上升的斜率的絕對值小於事先決定的判定值之情況下,設定為將送風機29停止。亦即,當相對於電動機的發熱量,送風機所造成的冷卻效果變大,溫度的上升速度變慢時,則停止送風機29。又,動作設定部65是當定子鐵芯20的推定溫度下降的斜率的絕對值小於事先決定的判定值之情況下,則設定為啟動送風機29。亦即,當相對於電動機的散熱量,發熱量增大,溫度的下降速度變慢時,則啟動送風機29。在本實施形態中,將依據定子等電動機的構成構件的推定溫度之斜率來變更送風機的驅動狀態的控制,稱為送風機的動作的控制。The action setting unit 65 of this embodiment is set to stop the blower 29 when the absolute value of the slope of the estimated temperature rise of the stator core 20 is less than a predetermined judgment value. That is, when the cooling effect of the blower becomes larger relative to the heat generated by the motor and the temperature rise rate becomes slower, the blower 29 is stopped. In addition, the action setting unit 65 is set to start the blower 29 when the absolute value of the slope of the estimated temperature drop of the stator core 20 is less than a predetermined judgment value. That is, when the heat generated increases relative to the heat dissipated by the motor and the temperature drop rate becomes slower, the blower 29 is started. In the present embodiment, the control of changing the driving state of the blower according to the slope of the estimated temperature of the components of the motor such as the stator is referred to as the control of the operation of the blower.

在圖16所示的例子中,在時刻t 11中增加了負載率之後,在時刻t 21中,定子鐵芯20的溫度下降率的絕對值小於判定值。因此,在時刻t 21中啟動送風機29。又,在時刻t 12中減少了負載率之後,在時刻t 22中,定子鐵芯20的溫度上升率的絕對值小於判定值。因此,在時刻t 22中停止送風機29。如此,動作設定部65設定將送風機29的驅動狀態切換為開啟(ON)的狀態與關閉(OFF)的狀態的時期。另外,溫度推定部53是使用電動機的模型來推定構成部分的溫度,前述電動機的模型是相應於由動作設定部65所設定的電動機的驅動狀態。 In the example shown in FIG. 16 , after the load factor is increased at time t11 , at time t21 , the absolute value of the temperature drop rate of the stator core 20 is less than the judgment value. Therefore, the blower 29 is started at time t21. Moreover, after the load factor is reduced at time t12 , at time t22 , the absolute value of the temperature rise rate of the stator core 20 is less than the judgment value. Therefore, the blower 29 is stopped at time t22 . In this way, the action setting unit 65 sets the period for switching the drive state of the blower 29 between the ON state and the OFF state. In addition, the temperature estimation unit 53 estimates the temperature of the component parts using the model of the motor, and the aforementioned motor model corresponds to the driving state of the motor set by the action setting unit 65.

實際驅動機械時之電動機的構成部分的溫度是對應於實施模擬時之構成部分的推定溫度。線圈的推定溫度是在電動機的負載率為100%時增大,在電動機的負載率為0%時減少。轉子11的推定溫度及定子鐵芯20的推定溫度會稍微延遲於線圈16的推定溫度的變化而變化。其結果,電動機10的送風機29是從負載率的變化稍微延遲來啟動及停止。送風機29的動作是重複開啟(ON)的狀態與關閉(OFF)的狀態。The temperature of the components of the motor when actually driving the machine corresponds to the estimated temperature of the components when the simulation is performed. The estimated temperature of the coil increases when the load factor of the motor is 100%, and decreases when the load factor of the motor is 0%. The estimated temperature of the rotor 11 and the estimated temperature of the stator core 20 change slightly later than the change in the estimated temperature of the coil 16. As a result, the blower 29 of the motor 10 starts and stops slightly delayed from the change in the load factor. The action of the blower 29 is to repeat the on (ON) state and the off (OFF) state.

藉由進行本實施形態的動作設定部65所進行之送風機的動作的設定,定子鐵芯20的溫度的變動幅度ΔT 21會變小。可以算出事先決定的期間中之定子鐵芯20的最大溫度與最小溫度的差,來作為變動幅度。作為事先決定的期間,可以採用剛開始啟動電動機後定子鐵芯的溫度上升結束,且定子鐵芯的溫度幾乎固定的期間。例如,可以決定定子鐵芯的溫度變化在事先決定的溫度幅度的內部變化的期間。在圖16中,可以決定從時刻t 11至時刻t 26的區間。在這裡的例子中,定子鐵芯20的溫度的變動幅度ΔT 21為1.2℃。 By setting the action of the blower performed by the action setting unit 65 of this embodiment, the temperature fluctuation range ΔT 21 of the stator core 20 becomes smaller. The difference between the maximum temperature and the minimum temperature of the stator core 20 in a predetermined period can be calculated as the fluctuation range. As the predetermined period, the period after the stator core temperature rise ends and the temperature of the stator core is almost constant after the motor is started can be used. For example, the period in which the temperature of the stator core changes within the predetermined temperature range can be determined. In Figure 16, the interval from time t 11 to time t 26 can be determined. In this example, the temperature fluctuation range ΔT 21 of the stator core 20 is 1.2°C.

在圖17中,顯示第1比較例的電動機的模擬結果的時序圖。在第1比較例中,無關於電動機10的負載率及電動機10的構成部分的溫度,以事先決定的固定的旋轉速度來持續驅動送風機29。在這裡的例子中,並不停止送風機29,而是以最大的旋轉速度來驅動。亦即,動作設定部65並未進行切換送風機29的動作之判定。FIG. 17 shows a timing chart of the simulation result of the motor of the first comparative example. In the first comparative example, the blower 29 is continuously driven at a predetermined fixed rotation speed regardless of the load factor of the motor 10 and the temperature of the components of the motor 10. In this example, the blower 29 is not stopped but driven at the maximum rotation speed. That is, the action setting unit 65 does not determine the action of switching the blower 29.

為了實施和電動機10的送風機29的驅動狀態相因應的模擬,溫度推定部53是使用以最大的旋轉速度驅動送風機29時之電動機的模型,來推定電動機的構成部分的溫度。在圖17中顯示有線圈16的推定溫度、轉子11的推定溫度、及定子鐵芯20的推定溫度。In order to perform simulation corresponding to the driving state of the blower 29 of the motor 10, the temperature estimating unit 53 estimates the temperature of the components of the motor using a model of the motor when the blower 29 is driven at the maximum rotation speed. FIG17 shows the estimated temperature of the coil 16, the estimated temperature of the rotor 11, and the estimated temperature of the stator core 20.

實施圖16所示的送風機的動作的控制時,線圈16的溫度的最大值,會比圖17所示之一直驅動送風機29的情況下之線圈16的溫度的最大值更高。又,針對轉子11的溫度的平均值及定子鐵芯20的溫度的平均值,和一直驅動送風機時的值相較之下,實施送風機的動作的控制時的值較高。第1比較例的模擬中的定子鐵芯20的推定溫度的變動幅度ΔT 22,在時刻t 11至時刻t 16的期間中為4℃。 When the control of the operation of the blower shown in FIG. 16 is implemented, the maximum value of the temperature of the coil 16 is higher than the maximum value of the temperature of the coil 16 when the blower 29 is driven all the time as shown in FIG. 17. Moreover, the average value of the temperature of the rotor 11 and the average value of the temperature of the stator core 20 are higher when the control of the operation of the blower is implemented than the values when the blower is driven all the time. The fluctuation range ΔT 22 of the estimated temperature of the stator core 20 in the simulation of the first comparative example is 4°C during the period from time t 11 to time t 16 .

在圖18中,顯示第2比較例的電動機的模擬結果的時序圖。在第2比較例中,對應於電動機10的負載率的變化來使送風機29的動作變化。在圖18所示的例子中,當電動機10的負載率為100%時,以最大的旋轉速度來驅動送風機29。當電動機10的負載率為0%時,將送風機29停止。當電動機10的負載率為100%時,溫度推定部53是使用以最大的旋轉速度來驅動送風機29時之電動機的模型,來推定電動機10的構成部分的溫度。又,當電動機10的負載率為0%時,溫度推定部53是使用將送風機29停止時之電動機的模型,來推定電動機10的構成部分的溫度。FIG18 shows a timing diagram of the simulation result of the motor of the second comparative example. In the second comparative example, the operation of the blower 29 is changed in accordance with the change in the load factor of the motor 10. In the example shown in FIG18, when the load factor of the motor 10 is 100%, the blower 29 is driven at the maximum rotation speed. When the load factor of the motor 10 is 0%, the blower 29 is stopped. When the load factor of the motor 10 is 100%, the temperature estimation unit 53 estimates the temperature of the components of the motor 10 using a model of the motor when the blower 29 is driven at the maximum rotation speed. Furthermore, when the load factor of the motor 10 is 0%, the temperature estimating unit 53 estimates the temperature of the components of the motor 10 using a model of the motor when the blower 29 is stopped.

在第2比較例中,並不基於動作設定部65之定子鐵芯20的溫度的變化率來實施送風機的動作的判定,而是隨著負載率的變化使送風機的動作變化。此模擬中的定子鐵芯20的推定溫度的變動幅度ΔT 23,在時刻t 11到時刻t 16的期間中為1.9℃。 In the second comparative example, the operation of the blower is not determined based on the change rate of the temperature of the stator core 20 of the operation setting unit 65, but the operation of the blower is changed as the load factor changes. The variation range ΔT 23 of the estimated temperature of the stator core 20 in this simulation is 1.9°C during the period from time t11 to time t16 .

參照圖16至圖18,當藉由本實施形態的動作設定部65實施了送風機的動作的判定時,定子鐵芯的推定溫度的變動幅度ΔT 21,是比第1比較例的推定溫度的變動幅度ΔT 22及第2比較例的推定溫度的變動幅度ΔT 23更小。更具體而言,使送風機的動作和負載率的變化同時地變化時(第2比較例)的推定溫度的變動幅度ΔT 23,是比一直驅動送風機時(第1比較例)的推定溫度的變動幅度ΔT 22更小。此外,實施本實施形態的送風機的動作的控制時之變動幅度ΔT 21是比第2比較例的推定溫度的變動幅度ΔT 23更小。 16 to 18, when the action of the blower is determined by the action setting unit 65 of the present embodiment, the variation range ΔT21 of the estimated temperature of the stator core is smaller than the variation range ΔT22 of the estimated temperature in the first comparison example and the variation range ΔT23 of the estimated temperature in the second comparison example. More specifically, the variation range ΔT23 of the estimated temperature when the action of the blower and the change in the load factor are changed simultaneously (the second comparison example) is smaller than the variation range ΔT22 of the estimated temperature when the blower is always driven (the first comparison example). Furthermore, the fluctuation range ΔT21 during the control of the operation of the blower in the present embodiment is smaller than the fluctuation range ΔT23 of the estimated temperature in the second comparative example.

如此,藉由實施本實施形態的送風機的動作的控制,可以將定子鐵芯20的溫度的變動幅度縮小。亦即,可以縮小電動機10的溫度的變動幅度。In this way, by controlling the operation of the blower according to the present embodiment, the temperature fluctuation range of the stator core 20 can be reduced. In other words, the temperature fluctuation range of the motor 10 can be reduced.

由於電動機10的溫度的變動幅度變小,因此可以減少電動機10所接觸的機械的構成構件的熱位移。其結果,可以提升驅動機械的精確度。例如,會有電動機為配置於工具機的主軸頭之主軸馬達的情況。在主軸頭上配置有保持工具的主軸。因此,會有電動機的熱傳遞到主軸的情況。當電動機的溫度的變動幅度較大時,主軸的溫度的變動幅度會變大。主軸的熱位移量會變大,而有工具的前端點的位置位移之疑慮。其結果,會有加工工件的精確度惡化的疑慮。Since the temperature fluctuation range of the motor 10 becomes smaller, the thermal displacement of the components of the machine that the motor 10 contacts can be reduced. As a result, the accuracy of the driving machine can be improved. For example, there may be a case where the motor is a spindle motor configured on the spindle head of a machine tool. A spindle for holding the tool is configured on the spindle head. Therefore, there may be a case where the heat of the motor is transferred to the spindle. When the temperature fluctuation range of the motor is large, the temperature fluctuation range of the spindle will increase. The thermal displacement of the spindle will increase, and there is a concern that the position of the front end point of the tool will be displaced. As a result, there is a concern that the accuracy of the processed workpiece will deteriorate.

藉由電動機的溫度的變動幅度變小,主軸的溫度變化會變小,可以縮小主軸的熱位移量。其結果,可以抑制工具的前端點的位置的位移。或者,會有因應於電動機的驅動狀態來補正工具的前端點的位置之情況。在此情況下,藉由主軸的溫度變化變小,就不需要因應於主軸的驅動狀態來變更工具的前端點的位置的補正量。或者,可以將工具的前端點的位置的補正量設為固定。或者,不需要補正工具的前端點的位置。By reducing the fluctuation range of the temperature of the motor, the temperature fluctuation of the spindle will also be reduced, and the thermal displacement of the spindle can be reduced. As a result, the displacement of the position of the tip point of the tool can be suppressed. Alternatively, there may be a situation where the position of the tip point of the tool is corrected in response to the driving state of the motor. In this case, by reducing the temperature fluctuation of the spindle, it is not necessary to change the correction amount of the position of the tip point of the tool in response to the driving state of the spindle. Alternatively, the correction amount of the position of the tip point of the tool can be set to be fixed. Alternatively, there is no need to correct the position of the tip point of the tool.

又,當一直驅動送風機29時,電動機10的消耗電力會變大。當實施本實施形態的送風機的動作的控制時,由於會產生將送風機29停止的期間,因此可以抑制電動機10的消耗電力。Moreover, when the blower 29 is always driven, the power consumption of the motor 10 increases. When the control of the operation of the blower of this embodiment is performed, since a period of stopping the blower 29 is generated, the power consumption of the motor 10 can be suppressed.

本實施形態的動作設定部65是依據定子的推定溫度的斜率來設定送風機的動作。定子的溫度會因線圈的銅損及定子鐵芯的鐵損等而上升。定子會有接觸機械的構成構件的情況。藉由抑制定子的溫度的變動幅度,可以抑制機械的構成構件的熱位移。The action setting unit 65 of this embodiment sets the action of the blower according to the slope of the estimated temperature of the stator. The temperature of the stator will rise due to copper loss of the coil and iron loss of the stator core. The stator may contact the components of the machine. By suppressing the temperature fluctuation of the stator, the thermal displacement of the components of the machine can be suppressed.

又,定子鐵芯會接觸機械的構成構件、或配置於接近機械的構成構件的位置。因此,採用定子鐵芯的推定溫度來作為定子的推定溫度,藉此可以用良好的精確度來推定傳遞至機械的構成構件的熱量。Furthermore, the stator core may contact the components of the machine or be arranged close to the components of the machine. Therefore, the estimated temperature of the stator core is used as the estimated temperature of the stator, thereby estimating the heat transferred to the components of the machine with good accuracy.

此外,動作設定部65是判定定子的溫度的斜率。在定子的溫度的判定中,並不知道發熱量與散熱量的關係。然而,可以藉由判定定子的溫度的斜率,來直接進行電動機的每單位時間的發熱量與每單位時間的散熱量之比較。在本實施形態的送風機的動作的控制中,和對應於負載率的變化來使送風機的驅動狀態變化之控制(第2比較例)相較之下,可以將定子的溫度的變動幅度縮小。In addition, the action setting unit 65 is a slope for determining the temperature of the stator. In determining the temperature of the stator, the relationship between the heat generation and the heat dissipation is unknown. However, by determining the slope of the temperature of the stator, the heat generation per unit time and the heat dissipation per unit time of the motor can be directly compared. In the control of the action of the blower in this embodiment, the variation range of the stator temperature can be reduced compared to the control (the second comparison example) in which the driving state of the blower is changed in accordance with the change of the load factor.

(輔助程式生成部) 參照圖3,在步驟104中,模擬執行部64是製作送風機29的動作的輔助程式。參照圖1,模擬執行部64的輔助程式生成部66是生成輔助程式,以在實際驅動機械1時,可以實施由動作設定部65所設定的送風機29的動作。在輔助程式中,記載有例如和動作控制部43依據動作程式45輸出的動作指令相對應的送風機29的動作。 (Auxiliary program generation unit) Referring to FIG. 3 , in step 104 , the simulation execution unit 64 is an auxiliary program for creating the action of the blower 29 . Referring to FIG. 1 , the auxiliary program generation unit 66 of the simulation execution unit 64 is to generate an auxiliary program so that when the machine 1 is actually driven, the action of the blower 29 set by the action setting unit 65 can be implemented. In the auxiliary program, for example, the action of the blower 29 corresponding to the action instruction output by the action control unit 43 according to the action program 45 is recorded.

例如,在圖16的送風機的動作的控制中,輔助程式是製作成:從發送負載率100%的動作指令後,經過時間差Δt後則啟動送風機29。時間差Δt為例如(時刻t 21-時刻t 11),可以依據模擬的結果來算出。 For example, in the control of the operation of the blower in Fig. 16, the auxiliary program is created so that the blower 29 is activated after a time difference Δt has passed since the operation command of the load factor 100% was issued. The time difference Δt is, for example, (time t21 - time t11 ), which can be calculated based on the simulation result.

輔助程式是記憶在機械控制裝置41的記憶部42。並且,當實際驅動機械1時,動作控制部43是依據動作程式45來驅動電動機10。此外,動作控制部43是依據電動機10的動作指令及輔助程式,來控制送風機29的動作。The auxiliary program is stored in the memory unit 42 of the machine control device 41. When the machine 1 is actually driven, the motion control unit 43 drives the motor 10 according to the motion program 45. In addition, the motion control unit 43 controls the motion of the blower 29 according to the motion command of the motor 10 and the auxiliary program.

在上述形態中,雖然是藉由模擬執行部製作輔助程式,對於基於動作程式的電動機的動作來控制送風機的動作,但不限定於此形態。例如,模擬執行部亦可對動作程式加入送風機的動作之指令語句。例如,除了動作程式45的電動機的動作的指令語句之外,亦可用對應於電動機的驅動狀態的方式,記載送風機的動作的指令語句。在此,輔助程式的生成或動作程式的修正,亦可由模擬裝置的模擬執行部或作業人員來實施。In the above form, although the auxiliary program is created by the simulation execution unit to control the movement of the blower based on the movement of the motor in the action program, the present invention is not limited to this form. For example, the simulation execution unit may also add the instruction statement of the movement of the blower to the action program. For example, in addition to the instruction statement of the movement of the motor in the action program 45, the instruction statement of the movement of the blower may also be recorded in a manner corresponding to the driving state of the motor. Here, the generation of the auxiliary program or the modification of the action program may also be implemented by the simulation execution unit of the simulation device or the operator.

(變動幅度比較部及消耗電力比較部) 參照圖1,模擬執行部64的變動幅度比較部67是算出事先決定的期間中之定子的溫度的變動幅度。可以如前述地計算定子鐵芯20的推定溫度的最大值與推定溫度的最小值之差,來作為變動幅度。參照圖16及圖17,變動幅度比較部67是依據實施送風機的動作的控制時之變動幅度ΔT 21、及以事先決定的固定的旋轉速度驅動送風機時之變動幅度ΔT 22,來算出用於比較變動幅度的變數。 (Variation Range Comparison Unit and Power Consumption Comparison Unit) Referring to FIG. 1 , the variation range comparison unit 67 of the simulation execution unit 64 calculates the variation range of the stator temperature during a predetermined period. The difference between the maximum value and the minimum value of the estimated temperature of the stator core 20 can be calculated as the variation range as described above. Referring to FIG. 16 and FIG. 17 , the variation range comparison unit 67 calculates a variable for comparing the variation range based on the variation range ΔT 21 when the fan is controlled and the variation range ΔT 22 when the fan is driven at a predetermined fixed rotation speed.

可以算出從變動幅度ΔT 22減去變動幅度ΔT 21後的變動幅度之差(ΔT 22-ΔT 21),來作為用於比較變動幅度的變數。又,可以算出將變動幅度ΔT 21除以變動幅度ΔT 22之變動幅度的比(ΔT 21/ΔT 22),來作為用於比較變動幅度的變數。 The difference in the variation range (ΔT 22 - ΔT 21 ) obtained by subtracting the variation range ΔT 21 from the variation range ΔT 22 can be calculated as a variable for comparing the variation ranges. Alternatively, the variation range ratio (ΔT 21 / ΔT 22 ) obtained by dividing the variation range ΔT 21 by the variation range ΔT 22 can be calculated as a variable for comparing the variation ranges.

可以用變動幅度比較部67來算出和變動幅度的差有關的係數,藉此來判定是否實施送風機的動作的控制。例如,即使實施圖16所示的送風機的動作的控制,也會有電動機10的溫度的變動幅度無法充分地變小的情況。在此情況下,可以判定為不實施本實施形態中的送風機的動作的控制。此判定可以由變動幅度比較部或作業人員來進行。The coefficient related to the difference in the variation amplitude can be calculated by the variation amplitude comparison unit 67 to determine whether to implement the control of the action of the blower. For example, even if the control of the action of the blower shown in FIG. 16 is implemented, there may be a case where the variation amplitude of the temperature of the motor 10 cannot be sufficiently reduced. In this case, it can be determined that the control of the action of the blower in this embodiment is not implemented. This determination can be made by the variation amplitude comparison unit or the operator.

或者,可以依據和變動幅度的差有關的係數,來推定驅動機械的精確度。當定子鐵芯的推定溫度的變動幅度已充分地小的情況下,可以判定為機械的驅動的精確度高。例如,可以判定為不需要根據工具機的主軸馬達的驅動狀態來補正工具的前端點的位置。此判定可以由變動幅度比較部或作業人員來進行。Alternatively, the accuracy of the driving machine can be estimated based on a coefficient related to the difference in the amplitude of variation. When the amplitude of variation of the estimated temperature of the stator core is sufficiently small, it can be determined that the driving accuracy of the machine is high. For example, it can be determined that it is not necessary to correct the position of the tip point of the tool according to the driving state of the spindle motor of the machine tool. This determination can be made by the amplitude of variation comparison department or the operator.

變動幅度比較部67可以算出當電動機的任意驅動狀態時用於比較變動幅度的變數。特別是,較理想的是,變動幅度比較部67是算出用於比較在定子鐵芯20的推定溫度幾乎固定的期間中之變動幅度的變數。例如,將電動機10從長時間停止的狀態啟動之後,定子鐵芯等電動機的構成部分的溫度會從室溫逐漸地上升。當電動機的運轉狀態已成為穩定狀態或重複事先決定的運轉模式之狀態時,定子鐵芯的推定溫度的變動幅度會幾乎固定。The variation range comparison unit 67 can calculate a variable for comparing the variation range in any driving state of the motor. In particular, it is desirable that the variation range comparison unit 67 calculates a variable for comparing the variation range during a period in which the estimated temperature of the stator core 20 is almost constant. For example, after the motor 10 is started from a state of long-term stop, the temperature of the motor components such as the stator core gradually rises from room temperature. When the motor operation state has become a stable state or a state in which a predetermined operation mode is repeated, the variation range of the estimated temperature of the stator core becomes almost constant.

定子鐵芯的推定溫度是否為幾乎固定的判定,例如是每隔事先決定的時間間隔來算出變動幅度。並且,當變動幅度逐漸變小而變成小於事先決定的判定值時,則可以判定為定子鐵芯的推定溫度幾乎固定。或者,按每個預定的時間間隔來算出定子鐵芯的推定溫度的移動平均值。此時,當上一次的移動平均值與這一次的移動平均值之差已變成小於事先決定的判定基準時,則可以判定為定子鐵芯的推定溫度已成為幾乎固定。藉由比較定子鐵芯的推定溫度幾乎為固定時的變動幅度,即可以正確地判定進行送風機的動作的控制時之效果。Whether the estimated temperature of the stator core is almost fixed is determined, for example, by calculating the fluctuation range at predetermined time intervals. And, when the fluctuation range gradually decreases and becomes smaller than the predetermined judgment value, it can be determined that the estimated temperature of the stator core is almost fixed. Alternatively, the moving average of the estimated temperature of the stator core is calculated at each predetermined time interval. At this time, when the difference between the last moving average and the current moving average becomes smaller than the predetermined judgment criterion, it can be determined that the estimated temperature of the stator core has become almost fixed. By comparing the fluctuation range when the estimated temperature of the stator core is almost fixed, the effect of controlling the action of the blower can be accurately determined.

參照圖1,模擬執行部64的消耗電力比較部68是算出事先決定的期間中的送風機的消耗電力。消耗電力比較部68是依據實施送風機的動作的控制時(圖16的控制)的消耗電力、及以事先決定的固定的旋轉速度驅動送風機時(圖17的控制)的消耗電力,來算出用於比較消耗電力的變數。可以算出從以固定的旋轉速度驅動送風機時之消耗電力,減去實施送風機的動作的控制時之消耗電力後的變數,來作為用於比較消耗電力的變數。或者,可以算出將實施送風機的動作的控制時之消耗電力,除以用固定的旋轉速度驅動送風機時之消耗電力所得的變數。Referring to FIG. 1 , the power consumption comparison unit 68 of the simulation execution unit 64 calculates the power consumption of the blower during a predetermined period. The power consumption comparison unit 68 calculates a variable for comparing power consumption based on the power consumption when the blower is controlled (the control of FIG. 16 ) and the power consumption when the blower is driven at a predetermined fixed rotation speed (the control of FIG. 17 ). The variable for comparing power consumption can be calculated by subtracting the power consumption when the blower is controlled from the power consumption when the blower is driven at a fixed rotation speed. Alternatively, the variable can be calculated by dividing the power consumption when the blower is controlled by the power consumption when the blower is driven at a fixed rotation speed.

藉由算出用於比較消耗電力的變數,可以得知因送風機的動作的控制之實施所造成的消耗電力的減少量。又,可以依據消耗電力的減少量,來判定是否實施送風機的動作的控制。例如,當消耗電力未充分地小的情況下,可以判定為不實施送風機的動作的控制。此判定可以由消耗電力比較部或作業人員來進行。By calculating the variable used to compare power consumption, the amount of power consumption reduction caused by the implementation of the control of the action of the blower can be known. In addition, it can be determined whether to implement the control of the action of the blower based on the reduction in power consumption. For example, when the power consumption is not sufficiently small, it can be determined that the control of the action of the blower is not implemented. This determination can be made by the power consumption comparison unit or the operator.

在前述實施形態中,作為送風機29的動作,雖然例示以事先決定的固定的旋轉速度來驅動的狀態、及送風機29停止的狀態,但並不限定於此形態。動作設定部可以依據由溫度推定部所推定的定子的推定溫度的斜率,來任意地設定送風機的動作。例如,動作設定部是將送風機的動作設定為:由溫度推定部所推定的定子的推定溫度上升的斜率的絕對值越大,則送風機的旋轉速度越大。或者,可以將送風機的動作設定為:由溫度推定部所推定的定子的推定溫度下降的斜率的絕對值越大,則送風機的旋轉速度越小。In the aforementioned embodiment, as the action of the blower 29, although the state of being driven at a predetermined fixed rotational speed and the state of the blower 29 being stopped are exemplified, it is not limited to this form. The action setting unit can arbitrarily set the action of the blower according to the slope of the estimated temperature of the stator estimated by the temperature estimation unit. For example, the action setting unit sets the action of the blower so that the greater the absolute value of the slope of the estimated temperature rise of the stator estimated by the temperature estimation unit, the greater the rotational speed of the blower. Alternatively, the action of the blower can be set so that the greater the absolute value of the slope of the estimated temperature drop of the stator estimated by the temperature estimation unit, the smaller the rotational speed of the blower.

特別是,動作設定部亦可因應於定子的推定溫度的斜率,來實施連續地變更送風機的旋轉速度的控制。或者,動作設定部亦可設定為因應於定子的推定溫度的斜率,來階段性地變更送風機的旋轉速度。In particular, the action setting unit may also be configured to continuously change the rotation speed of the blower in accordance with the slope of the estimated temperature of the stator. Alternatively, the action setting unit may be configured to change the rotation speed of the blower in stages in accordance with the slope of the estimated temperature of the stator.

另外,當要變更電動機的旋轉速度的情況下,溫度算出部可以採用和送風機的旋轉速度相因應的電動機的模型。例如,事先決定送風機的複數個旋轉速度的範圍,參數設定部可以用各個旋轉速度的範圍的中央的旋轉速度來製作電動機的模型。溫度算出部可以在實施電動機的模擬時,因應於送風機的旋轉速度來切換電動機的模型。In addition, when the rotation speed of the motor is to be changed, the temperature calculation unit may use a model of the motor corresponding to the rotation speed of the blower. For example, a plurality of rotation speed ranges of the blower are determined in advance, and the parameter setting unit may create a model of the motor using a rotation speed in the middle of each rotation speed range. The temperature calculation unit may switch the model of the motor in accordance with the rotation speed of the blower when performing the simulation of the motor.

參照圖1,本實施形態的模擬裝置2是由和機械控制裝置41不同的運算處理裝置來構成。例如,模擬裝置2雖然是由筆記型電腦來構成,但不限定於此形態。機械控制裝置41可以具有模擬裝置2的功能。亦即,機械控制裝置41亦可包含模擬執行部64、參數設定部57、記憶部51、及顯示部52。Referring to FIG. 1 , the simulation device 2 of this embodiment is composed of a different operation processing device from the mechanical control device 41. For example, although the simulation device 2 is composed of a laptop computer, it is not limited to this form. The mechanical control device 41 can have the function of the simulation device 2. That is, the mechanical control device 41 can also include a simulation execution unit 64, a parameter setting unit 57, a memory unit 51, and a display unit 52.

機械控制裝置可以具備上述模擬裝置、及生成驅動機械的動作指令之動作控制部。並且,動作控制部可以輸出送風機的動作指令,以實施由模擬裝置所設定的送風機的動作。例如,動作控制部可以依據由輔助程式生成部所生成的輔助程式,來驅動電動機的送風機。藉由採用此構成,可以縮小電動機的溫度的變動幅度,來抑制機械的構成構件的熱位移。其結果,可以謀求機械的驅動狀態的精確度的提升。又,可以抑制電動機的消耗電力。The mechanical control device may include the above-mentioned simulation device and an action control unit that generates action instructions for driving the machine. Furthermore, the action control unit may output action instructions for the blower to implement the action of the blower set by the simulation device. For example, the action control unit may drive the blower of the motor according to the auxiliary program generated by the auxiliary program generation unit. By adopting this structure, the temperature fluctuation range of the motor can be reduced to suppress the thermal displacement of the components of the machine. As a result, the accuracy of the driving state of the machine can be improved. In addition, the power consumption of the motor can be suppressed.

根據如上述說明的至少一個實施形態,可以提供一種模擬裝置及具備模擬裝置的機械控制裝置,前述模擬裝置是對應於定子的溫度變化來設定電動機的送風機的動作。According to at least one embodiment as described above, a simulation device and a machine control device having the simulation device can be provided, wherein the simulation device sets the action of the blower of the motor in response to the temperature change of the stator.

雖然已針對本揭示詳細敘述,但本揭示並不限定於上述各個實施形態。這些實施形態可以在不超出本揭示的主旨之範圍內、或在不超出從申請專利範圍所記載的內容與其均等物所導出之本揭示的宗旨的範圍內,進行各種的追加、置換、變更、局部刪除等。又,也可以組合這些實施形態來實施。例如,在上述實施形態中,各動作的順序或各處理的順序只是作為一例而顯示之順序,實施形態並不限定於這些。又,在上述實施形態的說明中使用數值或數式的情況下也是同樣的。Although the present disclosure has been described in detail, the present disclosure is not limited to the above-mentioned embodiments. These embodiments can be variously added, replaced, changed, partially deleted, etc. within the scope of the main purpose of the present disclosure, or within the scope of the purpose of the present disclosure derived from the contents recorded in the patent application and its equivalents. Moreover, these embodiments can also be implemented in combination. For example, in the above-mentioned embodiments, the order of each action or the order of each processing is only shown as an example, and the embodiments are not limited to these. Moreover, the same is true when numerical values or formulas are used in the description of the above-mentioned embodiments.

有關於上述實施形態及變形例,揭示以下附註。The following notes are disclosed regarding the above-mentioned embodiments and modifications.

(附註1) 一種模擬裝置,是模擬包含送風機的電動機的溫度的變化之模擬裝置,前述模擬裝置具備: 記憶部,記憶電動機的模型,前述電動機的模型是推定電動機的構成部分的溫度之模型; 溫度推定部,依據電動機的模型來推定定子的溫度;及 動作設定部,設定送風機的動作, 電動機的模型包含電動機的構成部分的模型與外部空氣的模型, 在至少1個構成部分的模型中設定有熱容量, 在電動機的構成部分的模型彼此之間及電動機的構成部分的模型與外部空氣的模型之間,設定有和熱傳遞有關的係數, 動作設定部是依據由溫度推定部所推定的定子的推定溫度的每單位時間的變化率,來設定送風機的動作。 (Note 1) A simulation device is a simulation device for simulating the temperature change of a motor including a blower, the simulation device comprising: a memory unit for storing a model of the motor, wherein the model of the motor is a model for estimating the temperature of a component of the motor; a temperature estimating unit for estimating the temperature of the stator based on the model of the motor; and an action setting unit for setting the action of the blower, the model of the motor includes a model of a component of the motor and a model of external air, a heat capacity is set in the model of at least one component, a coefficient related to heat transfer is set between the models of the component of the motor and between the model of the component of the motor and the model of the external air, The action setting unit sets the action of the blower according to the rate of change per unit time of the estimated temperature of the stator estimated by the temperature estimation unit.

(附註2) 如附註1所記載的模擬裝置,其中動作設定部是當由溫度推定部所推定的定子的推定溫度上升的斜率的絕對值小於事先決定的判定值的情況下則設定為停止送風機,當由溫度推定部所推定的定子的推定溫度下降的斜率的絕對值小於事先決定的判定值的情況下則設定為啟動送風機。 (Note 2) A simulation device as described in Note 1, wherein the action setting unit is set to stop the blower when the absolute value of the slope of the estimated temperature rise of the stator estimated by the temperature estimation unit is less than a predetermined judgment value, and is set to start the blower when the absolute value of the slope of the estimated temperature drop of the stator estimated by the temperature estimation unit is less than a predetermined judgment value.

(附註3) 如附註1所記載的模擬裝置,其中動作設定部是由溫度推定部所推定的定子的推定溫度上升的斜率越大,則設定為送風機的旋轉速度越大。 (Note 3) In the simulation device described in Note 1, the action setting unit sets the rotation speed of the blower to a higher value as the slope of the estimated temperature rise of the stator estimated by the temperature estimation unit increases.

(附註4) 如附註1至3中任一項所記載的模擬裝置,其具備變動幅度比較部,前述變動幅度比較部是算出事先決定的期間中的定子的溫度的變動幅度, 變動幅度比較部是依據實施由動作設定部所設定之送風機的動作的控制時的變動幅度、及以事先決定的固定的旋轉速度來驅動送風機時之變動幅度,來算出用於比較變動幅度的變數。 (Note 4) The simulation device as described in any one of Notes 1 to 3 has a variation amplitude comparison unit, which calculates the variation amplitude of the temperature of the stator during a predetermined period. The variation amplitude comparison unit calculates a variable for comparing the variation amplitude based on the variation amplitude when the action of the blower set by the action setting unit is controlled and the variation amplitude when the blower is driven at a predetermined fixed rotation speed.

(附註5) 如附註1至3中任一項所記載的模擬裝置,其具備消耗電力比較部,前述消耗電力比較部是算出事先決定的期間中的送風機的消耗電力, 消耗電力比較部是依據實施由動作設定部所設定之送風機的動作的控制時的消耗電力、及以事先決定的固定的旋轉速度來驅動送風機時之消耗電力,來算出用於比較消耗電力的變數。 (Note 5) The simulation device as described in any one of Notes 1 to 3 has a power consumption comparison unit, which calculates the power consumption of the blower during a predetermined period. The power consumption comparison unit calculates a variable for comparing power consumption based on the power consumption when the blower is controlled by the action setting unit and the power consumption when the blower is driven at a predetermined fixed rotation speed.

(附註6) 如附註1至3中任一項所記載的模擬裝置,其中溫度推定部包含:損失算出部,依據電動機的負載率及旋轉速度,來算出線圈的銅損所造成的發熱量及定子鐵芯的鐵損所造成的發熱量;及溫度算出部,依據線圈的發熱量及定子鐵芯的發熱量,使用電動機的模型來算出定子的推定溫度。 (Note 6) A simulation device as described in any one of Notes 1 to 3, wherein the temperature estimation unit includes: a loss calculation unit that calculates the heat generated by the copper loss of the coil and the heat generated by the iron loss of the stator core according to the load factor and rotation speed of the motor; and a temperature calculation unit that calculates the estimated temperature of the stator using a model of the motor based on the heat generated by the coil and the heat generated by the stator core.

(附註7) 如附註1至3中任一項所記載的模擬裝置,其具備動作推定裝置,前述動作推定裝置是推定配置於機械的電動機的驅動狀態, 動作推定裝置包含算出部,前述算出部是依據事先製作的推定程式,來算出顯示電動機的驅動狀態之變數, 推定程式是在用於驅動機械的動作程式的指令語句中追加有用於推定電動機的驅動狀態之輔助變數的程式, 算出部是依據電動機的輸出特性、事先決定之和電動機的驅動有關的慣量、及輔助變數,來算出電動機的旋轉速度的隨時間經過的變化及電動機的負載率的隨時間經過的變化當中之至少一者, 溫度推定部是依據由算出部所算出的電動機的旋轉速度及負載率,來推定定子的溫度。 (Note 7) A simulation device as described in any one of Notes 1 to 3, which has an action estimation device, the action estimation device estimates the driving state of a motor installed in a machine, The action estimation device includes a calculation unit, the calculation unit calculates a variable indicating the driving state of the motor according to a pre-made estimation program, The estimation program is a program in which auxiliary variables useful for estimating the driving state of the motor are added to the instruction statement of the action program for driving the machine, The calculation unit calculates at least one of the change in the rotation speed of the motor and the change in the load factor of the motor over time based on the output characteristics of the motor, the inertia related to the drive of the motor determined in advance, and the auxiliary variable. The temperature estimation unit estimates the temperature of the stator based on the rotation speed and the load factor of the motor calculated by the calculation unit.

(附註8) 一種機械控制裝置,其具備: 如附註1所記載的模擬裝置;及 動作控制部,生成電動機的動作指令, 動作控制部是輸出送風機的動作指令,以實施由動作設定部所設定的送風機的動作。 (Note 8) A mechanical control device comprising: A simulation device as described in Note 1; and An action control unit that generates an action command for a motor, The action control unit outputs an action command for a blower to implement the action of the blower set by the action setting unit.

1:機械 2:模擬裝置 10:電動機 10a,30a:電動機的模型 11:轉子 11a:轉子的模型 12:定子 13:軸桿 14,15:培林 16:線圈 16a:線圈的模型 17:轉子鐵芯 18:磁鐵 20:定子鐵芯 20a:定子鐵芯的模型 21,22:殼體 23:後蓋 24:培林支撐構件 25:筒狀構件 26a,26b:貫通孔 27:冷卻風扇 28:罩殼 28a:空氣孔 29:送風機 31:溫度檢測器 31a:溫度檢測器的模型 32:旋轉位置檢測器 33:外部空氣溫度檢測器 35a:空氣層的模型 36a:外部空氣的模型 41:機械控制裝置 42:記憶部 43:動作控制部 44:驅動裝置 45:動作程式 51:記憶部 52:顯示部 53:溫度推定部 54:損失算出部 55:溫度算出部 57:參數設定部 58:狀態取得部 59:參數算出部 60:評估部 61:參數變更部 64:模擬執行部 65:動作設定部 66:輔助程式生成部 67:變動幅度比較部 68:消耗電力比較部 69:電動機的驅動狀態的資訊 71:推定程式 72:移動裝置的資訊 73:慣量的資訊 74:電動機的輸出特性 75:加工程式 75a,76a:推定程式 81:動作推定裝置 82:記憶部 83:算出部 84:速度推定部 85:轉矩推定部 86:判定部 87:控制部 88:顯示部 91,92,95,96:箭頭 101,102,103,104:步驟 C:旋轉速度 C 1、C 2、C 3、C 4、C 5:熱容量 ha,hb,hc1,hc2,hc3,hd:和熱傳遞有關的係數 P c1:一次銅損 P c2:二次銅損 P i:鐵損 RA:旋轉軸 SL1,SL2,SL3,SX1,SX2:時間長度 T 1,T 2,T 3,T 4,T 5,T r:溫度 TX1:負載率 t0,t1,t2,t3,t4,t5,t6,t7,t 11,t 12,t 13,t 14,t 15,t 16,t 21,t 22,t 23,t 24,t 25,t 26:時刻 ΔT 21,ΔT 22,ΔT 23:變動幅度 1: Machine 2: Simulation device 10: Motor 10a, 30a: Motor model 11: Rotor 11a: Rotor model 12: Stator 13: Shaft 14, 15: Bearing 16: Coil 16a: Coil model 17: Rotor core 18: Magnet 20: Stator core 20a: Stator core model 21, 22: Housing 23: Back cover 24: Bearing support member 25: Cylindrical member 26a ,26b: through hole 27: cooling fan 28: cover 28a: air hole 29: blower 31: temperature detector 31a: temperature detector model 32: rotation position detector 33: external air temperature detector 35a: air layer model 36a: external air model 41: mechanical control device 42: memory unit 43: action control unit 44: drive device 45: action program 51: memory unit 52: Display unit 53: Temperature estimation unit 54: Loss calculation unit 55: Temperature calculation unit 57: Parameter setting unit 58: State acquisition unit 59: Parameter calculation unit 60: Evaluation unit 61: Parameter change unit 64: Simulation execution unit 65: Action setting unit 66: Auxiliary program generation unit 67: Variation range comparison unit 68: Power consumption comparison unit 69: Information on the driving state of the motor 71: Estimation program 72: Information of moving device 73: Information of inertia 74: Output characteristics of motor 75: Processing formula 75a, 76a: Estimation program 81: Motion estimation device 82: Memory unit 83: Calculation unit 84: Speed estimation unit 85: Torque estimation unit 86: Determination unit 87: Control unit 88: Display unit 91, 92, 95, 96: Arrows 101, 102, 103, 104: Step C: Rotation speed C 1 , C2 , C3 , C4 , C5 : heat capacity ha, hb, hc1, hc2, hc3, hd: coefficients related to heat transfer Pc1 : primary copper loss Pc2 : secondary copper loss Pi : iron loss RA: rotation axis SL1, SL2, SL3, SX1, SX2: time length T1 , T2 , T3 , T4 , T5 , Tr : temperature TX1: load rate t0, t1, t2, t3, t4, t5 , t6, t7, t11, t12, t13 , t14 , t15 , t16 , t21 , t22 , t23 , t24 , t25 ,t 26 : time ΔT 21 ,ΔT 22 ,ΔT 23 : variation range

圖1是實施形態中的機械及模擬裝置的方塊圖。 圖2是實施形態中的電動機的概略剖面圖。 圖3是設定送風機的動作的流程圖。 圖4是實施形態中的電動機的模型。 圖5是說明用於設定電動機的模型中的參數之電動機的運轉模式的時序圖。 圖6是實施形態中的其他電動機的模型。 圖7是使用由參數設定部所設定的參數之模擬的結果的圖表。 圖8是實施形態中推定電動機的驅動狀態之動作推定裝置的方塊圖。 圖9是工具機的主軸馬達的加工程式的例子。 圖10是用於藉由動作推定裝置來推定主軸馬達的驅動狀態的推定程式。 圖11是主軸馬達的預定的負載率中相對於旋轉速度的輸出之圖表。 圖12是由動作推定裝置所推定的主軸馬達的驅動狀態的時序圖。 圖13是用於推定工具機的進給軸馬達的驅動狀態的推定程式。 圖14是進給軸馬達的預定的負載率中相對於旋轉速度的輸出之圖表。 圖15是由動作推定裝置所推定的進給軸馬達的驅動狀態的時序圖。 圖16是由模擬裝置所推定的電動機的構成部分的溫度的時序圖。 圖17是由模擬裝置所推定的電動機的構成部分的溫度的比較例的時序圖。 圖18是由模擬裝置所推定的電動機的構成部分的溫度的其他比較例的時序圖。 FIG. 1 is a block diagram of a machine and a simulation device in an embodiment. FIG. 2 is a schematic cross-sectional view of a motor in an embodiment. FIG. 3 is a flow chart for setting the action of a blower. FIG. 4 is a model of a motor in an embodiment. FIG. 5 is a timing diagram of an operation mode of a motor for explaining parameters used to set the model of the motor. FIG. 6 is a model of another motor in an embodiment. FIG. 7 is a graph of the results of a simulation using parameters set by a parameter setting unit. FIG. 8 is a block diagram of an action estimation device for estimating the driving state of a motor in an embodiment. FIG. 9 is an example of a machining formula for a spindle motor of a machine tool. FIG. 10 is an estimation program for estimating the driving state of the spindle motor by the motion estimation device. FIG. 11 is a graph showing the output relative to the rotational speed at a predetermined load rate of the spindle motor. FIG. 12 is a timing diagram showing the driving state of the spindle motor estimated by the motion estimation device. FIG. 13 is an estimation program for estimating the driving state of the feed shaft motor of the machine tool. FIG. 14 is a graph showing the output relative to the rotational speed at a predetermined load rate of the feed shaft motor. FIG. 15 is a timing diagram showing the driving state of the feed shaft motor estimated by the motion estimation device. FIG. 16 is a timing diagram showing the temperature of the components of the motor estimated by the simulation device. FIG. 17 is a timing chart showing a comparative example of the temperature of the components of the motor estimated by the simulation device. FIG. 18 is a timing chart showing another comparative example of the temperature of the components of the motor estimated by the simulation device.

101,102,103,104:步驟 101,102,103,104: Steps

Claims (8)

一種模擬裝置,是模擬包含送風機的電動機的溫度的變化之模擬裝置,前述模擬裝置具備: 記憶部,記憶電動機的模型,前述電動機的模型是推定電動機的構成部分的溫度之模型; 溫度推定部,依據電動機的模型來推定定子的溫度;及 動作設定部,設定送風機的動作, 電動機的模型包含電動機的構成部分的模型與外部空氣的模型, 在至少1個構成部分的模型中設定有熱容量, 在電動機的構成部分的模型彼此之間及電動機的構成部分的模型與外部空氣的模型之間,設定有和熱傳遞有關的係數, 前述動作設定部是依據由前述溫度推定部所推定的定子的推定溫度的每單位時間的變化率,來設定送風機的動作。 A simulation device is a simulation device for simulating the temperature change of a motor including a blower, the simulation device comprising: a memory unit for storing a model of the motor, the model of the motor being a model for estimating the temperature of a component of the motor; a temperature estimating unit for estimating the temperature of the stator based on the model of the motor; and an action setting unit for setting the action of the blower, the model of the motor includes a model of a component of the motor and a model of external air, a heat capacity is set in the model of at least one component, a coefficient related to heat transfer is set between the models of the component of the motor and between the model of the component of the motor and the model of the external air, The aforementioned action setting unit sets the action of the blower according to the rate of change per unit time of the estimated temperature of the stator estimated by the aforementioned temperature estimating unit. 如請求項1之模擬裝置,其中前述動作設定部是當由前述溫度推定部所推定的定子的推定溫度上升的斜率的絕對值小於事先決定的判定值的情況下則設定為停止送風機,當由前述溫度推定部所推定的定子的推定溫度下降的斜率的絕對值小於事先決定的判定值的情況下則設定為啟動送風機。A simulation device as in claim 1, wherein the action setting unit is set to stop the blower when the absolute value of the slope of the estimated temperature rise of the stator estimated by the temperature estimation unit is less than a predetermined judgment value, and is set to start the blower when the absolute value of the slope of the estimated temperature drop of the stator estimated by the temperature estimation unit is less than a predetermined judgment value. 如請求項1之模擬裝置,其中前述動作設定部是由前述溫度推定部所推定的定子的推定溫度上升的斜率越大,則設定為送風機的旋轉速度越大。In the simulation device of claim 1, the action setting unit sets the rotation speed of the blower to a higher value as the slope of the estimated temperature rise of the stator estimated by the temperature estimating unit is greater. 如請求項1至3中任一項之模擬裝置,其具備變動幅度比較部,前述變動幅度比較部是算出事先決定的期間中的定子的溫度的變動幅度, 前述變動幅度比較部是依據實施由前述動作設定部所設定之送風機的動作的控制時的變動幅度、及以事先決定的固定的旋轉速度來驅動送風機時之變動幅度,來算出用於比較變動幅度的變數。 A simulation device as claimed in any one of claims 1 to 3, which has a variation amplitude comparison unit, the variation amplitude comparison unit calculates the variation amplitude of the temperature of the stator during a predetermined period, The variation amplitude comparison unit calculates a variable for comparing the variation amplitude based on the variation amplitude when the action of the blower set by the action setting unit is controlled and the variation amplitude when the blower is driven at a predetermined fixed rotation speed. 如請求項1至3中任一項之模擬裝置,其具備消耗電力比較部,前述消耗電力比較部是算出事先決定的期間中的送風機的消耗電力, 前述消耗電力比較部是依據實施由前述動作設定部所設定之送風機的動作的控制時的消耗電力、及以事先決定的固定的旋轉速度來驅動送風機時之消耗電力,來算出用於比較消耗電力的變數。 A simulation device as claimed in any one of claims 1 to 3, comprising a power consumption comparison unit, the power consumption comparison unit calculating the power consumption of the blower during a predetermined period, the power consumption comparison unit calculating a variable for comparing power consumption based on the power consumption when the blower action set by the action setting unit is controlled and the power consumption when the blower is driven at a predetermined fixed rotation speed. 如請求項1至3中任一項之模擬裝置,其中前述溫度推定部包含:損失算出部,依據電動機的負載率及旋轉速度,來算出線圈的銅損所造成的發熱量及定子鐵芯的鐵損所造成的發熱量;及溫度算出部,依據線圈的發熱量及定子鐵芯的發熱量,使用電動機的模型來算出定子的推定溫度。A simulation device as claimed in any one of claims 1 to 3, wherein the temperature estimating unit comprises: a loss calculating unit, which calculates the amount of heat generated by the copper loss of the coil and the amount of heat generated by the iron loss of the stator core according to the load factor and rotation speed of the motor; and a temperature calculating unit, which uses a model of the motor to calculate the estimated temperature of the stator according to the heat generated by the coil and the heat generated by the stator core. 如請求項1至3中任一項之模擬裝置,其具備動作推定裝置,前述動作推定裝置是推定配置於機械的電動機的驅動狀態, 前述動作推定裝置包含算出部,前述算出部是依據事先製作的推定程式,來算出顯示電動機的驅動狀態之變數, 前述推定程式是在用於驅動機械的動作程式的指令語句中追加有用於推定電動機的驅動狀態之輔助變數的程式, 前述算出部是依據電動機的輸出特性、事先決定之和電動機的驅動有關的慣量、及前述輔助變數,來算出電動機的旋轉速度的隨時間經過的變化及電動機的負載率的隨時間經過的變化當中之至少一者, 前述溫度推定部是依據由前述算出部所算出的電動機的旋轉速度及負載率,來推定定子的溫度。 A simulation device as claimed in any one of claims 1 to 3, which has an action estimation device, wherein the action estimation device estimates the driving state of a motor installed in a machine. The action estimation device includes a calculation unit, wherein the calculation unit calculates a variable indicating the driving state of the motor according to a pre-made estimation program. The estimation program is a program in which an auxiliary variable for estimating the driving state of the motor is added to the instruction statement of the action program for driving the machine. The calculation unit calculates at least one of the change in the rotation speed of the motor and the change in the load factor of the motor over time based on the output characteristics of the motor, the inertia determined in advance and related to the driving of the motor, and the auxiliary variable. The temperature estimation unit estimates the temperature of the stator based on the rotation speed and load factor of the motor calculated by the calculation unit. 一種機械控制裝置,具備: 如請求項1之模擬裝置;及 動作控制部,生成電動機的動作指令, 前述動作控制部是輸出送風機的動作指令,以實施由前述動作設定部所設定的送風機的動作。 A mechanical control device, comprising: a simulation device as claimed in claim 1; and an action control unit, which generates an action command of a motor, wherein the action control unit outputs an action command of a blower to implement the action of the blower set by the action setting unit.
TW113124504A 2023-08-01 2024-07-01 Simulation devices and mechanical control devices TW202508213A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
WOPCT/JP2023/028108 2023-08-01

Publications (1)

Publication Number Publication Date
TW202508213A true TW202508213A (en) 2025-02-16

Family

ID=

Similar Documents

Publication Publication Date Title
US9956660B2 (en) Controller for a machine tool to perform efficient warm-up control
US10663990B2 (en) Cooling mechanism for machine
JP7492022B2 (en) Parameter setting device for setting the parameters of the electric motor model
EP1959532A1 (en) Sensor-free temperature monitoring of an industrial robot motor
US20090195091A1 (en) Rotary Electric Machine Having Cooling Device and Electric Generating System Including the Machine
JP6444933B2 (en) Numerical control device that reduces power consumption in non-cutting state
JP2012093975A (en) Machining time prediction device of numerical control machine tool
JP2008109816A (en) Temperature protecting device for motor, and temperature protection method of motor
JP2014156005A (en) Control device for machine tool having time estimation means for estimating time until motor reaches overheat temperature
KR20180026031A (en) Failure diagnosis method and system of temperature sensor for switching unit
CN106341073A (en) Motor Control Device For Estimating Temperature Of Windings, And Method For Calculating Allowable Duty Cycle Time For Machine
JP7513740B2 (en) Temperature estimation device for estimating the temperature of a temperature detector of an electric motor
JP6360032B2 (en) Machine tool control device having function of changing operation according to motor temperature and amplifier temperature
TW202508213A (en) Simulation devices and mechanical control devices
JP6444934B2 (en) Control device and control method for changing operation according to motor temperature
WO2022131106A1 (en) Estimation device for estimating drive state of electric motor disposed in machine tool
JP6697794B1 (en) Control device
JP5506095B2 (en) Drive motor cooling device for press machine
JP6457778B2 (en) Numerical controller
WO2025027786A1 (en) Simulation device and machine control device
JP2019130625A (en) Reference temperature setting device, reference temperature setting method and reference temperature setting program
EP2088410A1 (en) Rotary electric machine
Pantonial et al. Real time thermal estimation of a Brushed DC Motor by a steady-state Kalman filter algorithm in multi-rate sampling scheme
JP2008225652A (en) Numerical controller
TW202408130A (en) Monitoring device for electric motor