[go: up one dir, main page]

TW202507815A - Semiconductor structure and method for forming the same - Google Patents

Semiconductor structure and method for forming the same Download PDF

Info

Publication number
TW202507815A
TW202507815A TW112128692A TW112128692A TW202507815A TW 202507815 A TW202507815 A TW 202507815A TW 112128692 A TW112128692 A TW 112128692A TW 112128692 A TW112128692 A TW 112128692A TW 202507815 A TW202507815 A TW 202507815A
Authority
TW
Taiwan
Prior art keywords
layer
conductive filling
gate electrode
semiconductor structure
filling layer
Prior art date
Application number
TW112128692A
Other languages
Chinese (zh)
Other versions
TWI862051B (en
Inventor
陳暐鈞
陳曠舉
劉漢英
Original Assignee
新唐科技股份有限公司
Filing date
Publication date
Application filed by 新唐科技股份有限公司 filed Critical 新唐科技股份有限公司
Priority to TW112128692A priority Critical patent/TWI862051B/en
Priority claimed from TW112128692A external-priority patent/TWI862051B/en
Priority to CN202410202982.6A priority patent/CN119451176A/en
Application granted granted Critical
Publication of TWI862051B publication Critical patent/TWI862051B/en
Publication of TW202507815A publication Critical patent/TW202507815A/en

Links

Images

Abstract

The present disclosure provides a semiconductor structure, including: an epitaxial layer with a trench; a dielectric spacer layer disposed in the trench; a conductive filling layer disposed on the dielectric spacer layer and including a dopant; a gate dielectric layer disposed on the conductive filling layer; and a gate electrode layer disposed in the trench and separated from the conductive filling layer by the gate electric layer, wherein the dopant has a gradient doping concentration in the conductive filling layer.

Description

半導體結構及其形成方法Semiconductor structure and method for forming the same

本發明是關於半導體結構,特別是關於摻質在導電填充層中具有漸變的(gradient)摻雜濃度的半導體結構。The present invention relates to a semiconductor structure, and more particularly to a semiconductor structure having a dopant with a gradient doping concentration in a conductive filling layer.

近年來,半導體產業在功率元件(power device)的發展上具有顯著的進步。目前已發展出例如高電壓金氧半導體(high voltage metal-oxide-semiconductor,HVMOS)電晶體、絕緣閘雙極性電晶體(insulated gate bipolar transistor,IGBT)、接面場效電晶體(Junction Field Effect Transistor,JFET)、與肖特基阻障二極體(Schottky barrier diode,SBD)等多種功率元件。這些元件通常係用於如家用電器、通信設備與車用發電機等儀器之功率系統內的功率放大、功率控制等多種應用之中。In recent years, the semiconductor industry has made significant progress in the development of power devices. Currently, a variety of power devices have been developed, such as high voltage metal-oxide-semiconductor (HVMOS) transistors, insulated gate bipolar transistors (IGBT), junction field effect transistors (JFET), and Schottky barrier diodes (SBD). These devices are usually used in power amplification, power control and other applications in power systems of household appliances, communication equipment and automotive generators.

在現有的金屬氧化物半導體電晶體設計中,藉由使用溝槽式的電晶體結構,能夠降低電晶體的導通電阻。此外,藉由形成包括分離式閘極(split-gate)的電晶體,能夠降低半導體裝置的寄生電容以減少切換損耗(switching loss)。然而,在傳統製程所形成的分離式閘極電晶體的結構中,無法獨立控制源極多晶矽(source poly)與閘極多晶矽(gate poly)之間的氧化物的厚度,也就是多晶矽間氧化物(inter poly oxide,IPO)的厚度。In existing metal oxide semiconductor transistor designs, the on-resistance of the transistor can be reduced by using a trench transistor structure. In addition, by forming a transistor including a split-gate, the parasitic capacitance of the semiconductor device can be reduced to reduce switching loss. However, in the structure of the split-gate transistor formed by the conventional process, the thickness of the oxide between the source polysilicon and the gate polysilicon, that is, the thickness of the inter-poly oxide (IPO), cannot be independently controlled.

具體而言,上述氧化物是同時成長於磊晶層的頂表面、溝槽的側壁、多晶矽的側壁、以及多晶矽的頂表面等表面,且氧化物在這些表面上的各個部分的厚度彼此相關並具有特定的比例關係。氧化物在這些表面上的厚度將會影響裝置尺寸及電性能,且源極多晶矽的側壁及頂表面上的氧化物將成為多晶矽間氧化物。如果為了將啟動電阻(R ON)及臨界電壓(V th)維持在特定範圍而沉積較薄的氧化物層,可能會使得多晶矽間氧化物太薄,導致源極多晶矽與閘極多晶矽之間有短路或崩潰(breakdown)的風險。另一方面,如果形成較厚的多晶矽間氧化物,則會連帶使得其他部分的氧化物也變得較厚,影響裝置尺寸及電性能。 Specifically, the oxide is grown simultaneously on the top surface of the epitaxial layer, the sidewalls of the trench, the sidewalls of the polysilicon, and the top surface of the polysilicon, and the thickness of the oxide on each part of these surfaces is related to each other and has a specific proportional relationship. The thickness of the oxide on these surfaces will affect the device size and electrical performance, and the oxide on the sidewalls and top surface of the source polysilicon will become the inter-polysilicon oxide. If a thinner oxide layer is deposited in order to maintain the turn-on resistance (R ON ) and critical voltage (V th ) within a specific range, the inter-polysilicon oxide may be too thin, resulting in a risk of short circuit or breakdown between the source polysilicon and the gate polysilicon. On the other hand, if a thicker inter-polysilicon oxide is formed, the oxides in other parts will also become thicker, affecting the device size and electrical performance.

綜上所述,雖然現有的溝槽式電晶體可大致滿足它們原先預定的用途,但其仍未在各個方面皆徹底地符合需求。舉例而言,如何在提高電多晶矽間氧化物的厚度的同時不影響半導體裝置的尺寸及電性能,仍為目前業界致力研究的課題。因此,溝槽式電晶體的研發需要持續的更新與調整以解決半導體裝置的製造所面臨的各種問題。In summary, although existing trench transistors can generally meet their original intended uses, they still do not fully meet the needs in all aspects. For example, how to increase the thickness of the inter-polysilicon oxide without affecting the size and electrical performance of semiconductor devices is still a topic that the industry is committed to studying. Therefore, the research and development of trench transistors requires continuous updates and adjustments to solve various problems faced by the manufacture of semiconductor devices.

一種半導體結構,包括:磊晶層,具有溝槽;介電間隔層,設置於溝槽中;導電填充層,設置於介電間隔層上且包括摻質;閘極介電層,設置於導電填充層上;以及閘極電極層,設置於溝槽中,且藉由閘極介電層與導電填充層分隔,其中摻質在導電填充層中具有漸變的摻雜濃度。A semiconductor structure includes: an epitaxial layer having a trench; a dielectric spacer layer disposed in the trench; a conductive filling layer disposed on the dielectric spacer layer and including a dopant; a gate dielectric layer disposed on the conductive filling layer; and a gate electrode layer disposed in the trench and separated from the conductive filling layer by the gate dielectric layer, wherein the dopant has a gradient doping concentration in the conductive filling layer.

一種半導體結構的形成方法,包括:在磊晶層的溝槽中形成介電間隔層;在溝槽中形成導電填充層;進行摻雜製程以使導電填充層包括摻質;在導電填充層上形成閘極介電層;以及在溝槽中形成閘極電極層,且閘極電極層藉由閘極介電層與導電填充層分隔,其中摻質在導電填充層中具有漸變的摻雜濃度。A method for forming a semiconductor structure includes: forming a dielectric spacer layer in a trench of an epitaxial layer; forming a conductive filling layer in the trench; performing a doping process so that the conductive filling layer includes a dopant; forming a gate dielectric layer on the conductive filling layer; and forming a gate electrode layer in the trench, wherein the gate electrode layer is separated from the conductive filling layer by the gate dielectric layer, wherein the dopant has a gradient doping concentration in the conductive filling layer.

以下的揭示內容提供許多不同的實施例或範例,以展示本發明實施例的不同部件。以下將揭示本說明書各部件及其排列方式之特定範例,用以簡化本揭露敘述。當然,這些特定範例並非用於限定本揭露。例如,若是本說明書以下的發明內容敘述了將形成第一部件於第二部件之上或上方,即表示其包括了所形成之第一及第二部件是直接接觸的實施例,亦包括了尚可將附加的部件形成於上述第一及第二部件之間,則第一及第二部件為未直接接觸的實施例。此外,本揭露說明中的各式範例可能使用重複的參照符號及/或用字。這些重複符號或用字的目的在於簡化與清晰,並非用以限定各式實施例及/或所述配置之間的關係。The following disclosure provides many different embodiments or examples to show different components of the embodiments of the present invention. The following will disclose specific examples of the components of this specification and their arrangement to simplify the disclosure. Of course, these specific examples are not used to limit the disclosure. For example, if the following invention content of this specification describes forming a first component on or above a second component, it means that it includes an embodiment in which the first and second components formed are in direct contact, and also includes an embodiment in which an additional component can be formed between the above-mentioned first and second components, and the first and second components are not in direct contact. In addition, the various examples in the disclosure may use repeated reference symbols and/or words. The purpose of these repeated symbols or words is to simplify and clarify, and is not used to limit the relationship between the various embodiments and/or the configurations.

再者,為了方便描述圖式中一元件或部件與另一(些)元件或部件的關係,可使用空間相對用語,例如「在…之下」、「下方」、「下部」、「上方」、「上部」及諸如此類用語。除了圖式所繪示之方位外,空間相對用語亦涵蓋使用或操作中之裝置的不同方位。當裝置被轉向不同方位時(例如,旋轉90度或者其他方位),則其中所使用的空間相對形容詞亦將依轉向後的方位來解釋。Furthermore, to facilitate description of the relationship between one element or component and another element or component in the drawings, spatially relative terms may be used, such as "under," "below," "lower," "above," "upper," and the like. In addition to the orientations depicted in the drawings, spatially relative terms also cover different orientations of the device in use or operation. When the device is turned to a different orientation (e.g., rotated 90 degrees or other orientations), the spatially relative adjectives used therein will also be interpreted based on the orientation after the rotation.

在此,「約」、「大約」、「大抵」之用語通常表示在一給定值或範圍的20%之內,較佳是10%之內,且更佳是5%之內,或3%之內,或2%之內,或1%之內,或0.5%之內。應注意的是,說明書中所提供的數量為大約的數量,亦即在沒有特定說明「約」、「大約」、「大抵」的情況下,仍可隱含「約」、「大約」、「大抵」之含義。Here, the terms "about", "approximately", and "generally" generally mean within 20% of a given value or range, preferably within 10%, and more preferably within 5%, or within 3%, or within 2%, or within 1%, or within 0.5%. It should be noted that the quantities provided in the specification are approximate quantities, that is, in the absence of specific description of "about", "approximately", and "generally", the meaning of "about", "approximately", and "generally" can still be implied.

以下敘述一些本發明實施例,在這些實施例中所述的多個階段之前、期間以及/或之後,可提供額外的步驟。一些所述階段在不同實施例中可被替換或刪去。半導體裝置結構可增加額外部件。一些所述部件在不同實施例中可被替換或刪去。儘管所討論的一些實施例以特定順序的步驟執行,這些步驟仍可以另一合乎邏輯的順序執行。Some embodiments of the present invention are described below, and additional steps may be provided before, during, and/or after the various stages described in these embodiments. Some of the stages may be replaced or deleted in different embodiments. Additional components may be added to the semiconductor device structure. Some of the components may be replaced or deleted in different embodiments. Although some of the embodiments discussed are performed in a specific order of steps, these steps may still be performed in another logical order.

此處所使用的用語「實質上(substantially)」,表示一給定量的數值可基於目標半導體裝置相關的特定技術節點而改變。在一些實施例中,基於特定的技術節點,用語「實質上地」可表示一給定量的數值在例如目標(或期望)值之±5%的範圍。As used herein, the term "substantially" means that a given amount of value may vary based on a particular technology node associated with the target semiconductor device. In some embodiments, based on a particular technology node, the term "substantially" may mean that a given amount of value is within a range of, for example, ±5% of a target (or desired) value.

本揭露提供一種用於形成包括分離式閘極結構的半導體結構及其形成方法。透過這樣的方法所形成的半導體結構會在分離式閘極結構的導電填充層中具有漸變的摻質濃度分布,使得導電填充層的電阻值在垂直方向上變化。此外,藉由本揭露的形成方法,能夠在不影響位於磊晶層頂表面及溝槽側壁的部分的閘極介電層的厚度的情況下自由地控制在分離式閘極結構的導電層之間的部分的閘極介電層的厚度。如此一來,能夠維持半導體裝置的尺寸及電性能,且能夠降低在分離式閘極結構中發生短路或崩潰的風險。The present disclosure provides a semiconductor structure including a separated gate structure and a method for forming the same. The semiconductor structure formed by such a method has a gradient doping concentration distribution in the conductive filling layer of the separated gate structure, so that the resistance value of the conductive filling layer varies in the vertical direction. In addition, by the formation method disclosed in the present disclosure, the thickness of the gate dielectric layer between the conductive layers of the separated gate structure can be freely controlled without affecting the thickness of the gate dielectric layer located on the top surface of the epitaxial layer and the sidewall of the trench. In this way, the size and electrical performance of the semiconductor device can be maintained, and the risk of short circuit or collapse in the split gate structure can be reduced.

第1圖是根據本揭露的一些實施例,繪示出包括垂直型的分離式閘極結構之半導體結構10的剖面圖。半導體結構10可以包括具有溝槽100T的磊晶層100以及設置於溝槽100T中的介電間隔層110。半導體結構10可以更包括設置於介電間隔層110上且包括摻質的導電填充層120,且摻質在導電填充層120中可以具有漸變的摻雜濃度。應理解的是,所謂的漸變的摻雜濃度是指摻質在導電填充層120中具有漸變的濃度分布。半導體結構10可以更包括設置於導電填充層120上的閘極介電層130。此外,半導體結構10可以更包括設置於溝槽100T中的閘極電極層140,且閘極電極層140可以藉由閘極介電層130與導電填充層120分隔。FIG. 1 is a cross-sectional view of a semiconductor structure 10 including a vertical split gate structure according to some embodiments of the present disclosure. The semiconductor structure 10 may include an epitaxial layer 100 having a trench 100T and a dielectric spacer layer 110 disposed in the trench 100T. The semiconductor structure 10 may further include a conductive filling layer 120 disposed on the dielectric spacer layer 110 and including a dopant, and the dopant may have a gradient doping concentration in the conductive filling layer 120. It should be understood that the so-called gradient doping concentration means that the dopant has a gradient concentration distribution in the conductive filling layer 120. The semiconductor structure 10 may further include a gate dielectric layer 130 disposed on the conductive filling layer 120 . In addition, the semiconductor structure 10 may further include a gate electrode layer 140 disposed in the trench 100T, and the gate electrode layer 140 may be separated from the conductive filling layer 120 by the gate dielectric layer 130 .

磊晶層100可以被設置於基底(未顯示)上。在一些實施例中,基底是塊狀半導體基板,例如半導體晶圓。在一些實施例中,基底是由矽、鍺、其他適合的半導體材料、或前述之組合所形成。舉例而言,在一個特定的實施例中,基底包括矽。在一些實施例中,基底可以包括化合物半導體,例如碳化矽、氮化鎵、氧化鎵、砷化鎵、其他適合的半導體材料、或前述之組合。在一些實施例中,基底可以包括合金半導體,例如矽鍺、碳化矽鍺、其他適合的材料、或前述之組合。在一些實施例中,基底可以由多層材料組成,例如包括矽/矽鍺、矽/碳化矽的多層材料。The epitaxial layer 100 may be disposed on a substrate (not shown). In some embodiments, the substrate is a bulk semiconductor substrate, such as a semiconductor wafer. In some embodiments, the substrate is formed of silicon, germanium, other suitable semiconductor materials, or a combination thereof. For example, in a specific embodiment, the substrate includes silicon. In some embodiments, the substrate may include a compound semiconductor, such as silicon carbide, gallium nitride, gallium oxide, gallium arsenide, other suitable semiconductor materials, or a combination thereof. In some embodiments, the substrate may include an alloy semiconductor, such as silicon germanium, silicon germanium carbide, other suitable materials, or a combination thereof. In some embodiments, the substrate may be composed of multiple layers of materials, such as multiple layers of silicon/silicon germanium, silicon/silicon carbide.

在本揭露的一些實施例中,舉例而言,基底是摻雜有第一導電類型的摻質的晶圓,且第一導電類型是n型。在一些其他的實施例中,第一導電類型也可以是p型。在第一導電類型是n型的情況下,上述具有第一導電類型的摻質可以是例如氮、磷、砷、銻、鉍。在第一導電類型是p型的情況下,上述具有第一導電類型的摻質可以是例如硼、鋁、鎵、銦、鉈。在一些實施例中,基底的摻雜濃度可以在大約1e19 atoms/cm 3至大約1e21 atoms/cm 3之間。 In some embodiments of the present disclosure, for example, the substrate is a doped wafer doped with a first conductivity type, and the first conductivity type is n-type. In some other embodiments, the first conductivity type may also be p-type. In the case where the first conductivity type is n-type, the dopant having the first conductivity type may be, for example, nitrogen, phosphorus, arsenic, antimony, and bismuth. In the case where the first conductivity type is p-type, the dopant having the first conductivity type may be, for example, boron, aluminum, gallium, indium, and bismuth. In some embodiments, the doping concentration of the substrate may be between about 1e19 atoms/cm 3 and about 1e21 atoms/cm 3 .

磊晶層100可以包括與基底相同或類似的材料,例如矽、鍺、碳化矽、氮化鎵、氧化鎵、砷化鎵、矽鍺、碳化矽鍺、其他適合的材料、或前述之組合。在一些實施例中,基底與磊晶層100具有相同的導電類型(例如n型),且基底與磊晶層100可以包括相同的摻質。在一些實施例中,上述摻質在磊晶層100中的摻雜濃度小於在基底中的摻雜濃度。在一些實施例中,磊晶層100的摻雜濃度可以在大約1e13 atoms/cm 3至大約1e18 atoms/cm 3之間。在本揭露的一些實施例中,舉例而言,磊晶層100包括碳化矽。藉由以碳化矽形成磊晶層100,能夠以適合碳化矽的能帶範圍且具有較低的活化能的摻質摻雜磊晶層100。此外,由碳化矽形成的磊晶層100能夠提供較高的崩潰電壓、較低的漏電流、以及較低的導通電阻。 The epitaxial layer 100 may include the same or similar material as the substrate, such as silicon, germanium, silicon carbide, gallium nitride, gallium oxide, gallium arsenide, silicon germanium, silicon germanium carbide, other suitable materials, or combinations thereof. In some embodiments, the substrate and the epitaxial layer 100 have the same conductivity type (e.g., n-type), and the substrate and the epitaxial layer 100 may include the same dopant. In some embodiments, the doping concentration of the above dopant in the epitaxial layer 100 is less than the doping concentration in the substrate. In some embodiments, the doping concentration of the epitaxial layer 100 may be between about 1e13 atoms/cm 3 and about 1e18 atoms/cm 3 . In some embodiments of the present disclosure, for example, the epitaxial layer 100 includes silicon carbide. By forming the epitaxial layer 100 with silicon carbide, the epitaxial layer 100 can be doped with a dopant that is suitable for the energy band range of silicon carbide and has a lower activation energy. In addition, the epitaxial layer 100 formed of silicon carbide can provide a higher breakdown voltage, a lower leakage current, and a lower on-resistance.

如第1圖所示,介電間隔層110及導電填充層120可以被設置於磊晶層100的溝槽100T中。介電間隔層110可以在導電填充層120與磊晶層100之間延伸。介電間隔層110的材料可以包括氧化矽、氧化鉿、氧化鋯、氧化鋁、二氧化鋁鉿合金、二氧化矽鉿、氮氧化矽鉿、氧化鉭鉿、氧化鈦鉿、氧化鋯鉿、其它適合的高介電常數(high-k)介電材料、或前述之組合。在一些實施例中,介電間隔層110包括具有與磊晶層100共同的元素的氧化物。舉例而言,在一個特定的實施例中,磊晶層100包括矽或碳化矽,且介電間隔層110包括氧化矽。As shown in FIG. 1 , a dielectric spacer 110 and a conductive filling layer 120 may be disposed in a trench 100T of an epitaxial layer 100. The dielectric spacer 110 may extend between the conductive filling layer 120 and the epitaxial layer 100. The material of the dielectric spacer 110 may include silicon oxide, tantalum oxide, zirconia, aluminum oxide, aluminum dioxide tantalum alloy, silicon dioxide tantalum, silicon oxynitride tantalum oxide, tantalum oxide, titanium oxide, zirconia oxide, other suitable high-k dielectric materials, or a combination thereof. In some embodiments, the dielectric spacer 110 includes an oxide having an element in common with the epitaxial layer 100. For example, in one particular embodiment, the epitaxial layer 100 includes silicon or silicon carbide, and the dielectric spacer layer 110 includes silicon oxide.

在一些實施例中,上述摻質的摻雜濃度在該導電填充層120的上部比在該導電填充層120的下部更高。本揭露並未限定上述摻質的種類,通常知識者可以根據設計需求來決定使用何種摻質。上述摻質的導電類型可以是n型也可以是p型。在上述摻質的導電類型是n型的情況下,上述摻質可以是例如氮、磷、砷、銻、鉍。在上述摻質的導電類型是p型的情況下,上述摻質可以是例如硼、鋁、鎵、銦、鉈。導電填充層120的材料可以包括多晶矽、金屬、金屬氮化物、其他適合的導電材料、或前述之組合。In some embodiments, the doping concentration of the above-mentioned dopant is higher in the upper part of the conductive filling layer 120 than in the lower part of the conductive filling layer 120. The present disclosure does not limit the types of the above-mentioned dopant, and a person skilled in the art can decide which dopant to use according to design requirements. The conductivity type of the above-mentioned dopant can be n-type or p-type. In the case where the conductivity type of the above-mentioned dopant is n-type, the above-mentioned dopant can be, for example, nitrogen, phosphorus, arsenic, antimony, and bismuth. In the case where the conductivity type of the above-mentioned dopant is p-type, the above-mentioned dopant can be, for example, boron, aluminum, gallium, indium, and bismuth. The material of the conductive filling layer 120 can include polysilicon, metal, metal nitride, other suitable conductive materials, or a combination of the foregoing.

如第1圖所示,閘極介電層130及閘極電極層140也可以被設置於磊晶層100的溝槽100T中。在一些實施例中,如第1圖所示,閘極電極層140包括在導電填充層120的側壁與溝槽100T的側壁之間延伸的延伸部142。如第1圖所示,閘極電極層140的底表面(例如延伸部142的底表面)可以低於導電填充層120的頂表面。然而,在一些其他的實施例中,延伸部142並未延伸到導電填充層120的側壁與溝槽100T的側壁之間。在又一些其他的實施例中,閘極電極層140不具有往下延伸的延伸部142且具有平坦的底表面。As shown in FIG. 1 , the gate dielectric layer 130 and the gate electrode layer 140 may also be disposed in the trench 100T of the epitaxial layer 100. In some embodiments, as shown in FIG. 1 , the gate electrode layer 140 includes an extension 142 extending between the sidewall of the conductive filling layer 120 and the sidewall of the trench 100T. As shown in FIG. 1 , the bottom surface of the gate electrode layer 140 (e.g., the bottom surface of the extension 142) may be lower than the top surface of the conductive filling layer 120. However, in some other embodiments, the extension 142 does not extend between the sidewall of the conductive filling layer 120 and the sidewall of the trench 100T. In still other embodiments, the gate electrode layer 140 does not have the extending portion 142 extending downward and has a flat bottom surface.

在一些實施例中,如第1圖所示,閘極介電層130圍繞閘極電極層140,使得閘極電極層140與介電間隔層110及磊晶層100兩者分隔。閘極介電層130可以在閘極電極層140與導電填充層120之間延伸,也可以在閘極電極層140與介電間隔層110之間延伸,且也可以進一步在閘極電極層140與磊晶層100之間延伸。In some embodiments, as shown in FIG. 1 , the gate dielectric layer 130 surrounds the gate electrode layer 140 so that the gate electrode layer 140 is separated from the dielectric spacer layer 110 and the epitaxial layer 100. The gate dielectric layer 130 may extend between the gate electrode layer 140 and the conductive filling layer 120, between the gate electrode layer 140 and the dielectric spacer layer 110, and further between the gate electrode layer 140 and the epitaxial layer 100.

具體而言,如第1圖所示,閘極介電層130可以包括在導電填充層120的頂表面與閘極電極層140的底表面之間橫向延伸的橫向部分。在一些實施例中,上述橫向部分的厚度大於閘極介電層130之覆蓋溝槽100T的側壁的部分的厚度(例如第1圖中的第二厚度T2)。在一些實施例中,閘極電極層140的寬度大於導電填充層120的寬度。閘極介電層130可以在導電填充層120與閘極電極層140的側壁(例如延伸部142的側壁)之間具有第一厚度T1且在閘極電極層140與溝槽100T的側壁之間具有第二厚度T2,且第一厚度T1可以大於第二厚度T2。Specifically, as shown in FIG. 1 , the gate dielectric layer 130 may include a lateral portion extending laterally between the top surface of the conductive filling layer 120 and the bottom surface of the gate electrode layer 140. In some embodiments, the thickness of the lateral portion is greater than the thickness of the portion of the gate dielectric layer 130 covering the sidewall of the trench 100T (e.g., the second thickness T2 in FIG. 1 ). In some embodiments, the width of the gate electrode layer 140 is greater than the width of the conductive filling layer 120. The gate dielectric layer 130 may have a first thickness T1 between the conductive filling layer 120 and the sidewall of the gate electrode layer 140 (eg, the sidewall of the extension 142 ) and a second thickness T2 between the gate electrode layer 140 and the sidewall of the trench 100T, and the first thickness T1 may be greater than the second thickness T2.

閘極介電層130可以包括與介電間隔層110相同或類似的材料。舉例而言,閘極介電層130的材料可以包括氧化矽、氧化鉿、氧化鋯、氧化鋁、二氧化鋁鉿合金、二氧化矽鉿、氮氧化矽鉿、氧化鉭鉿、氧化鈦鉿、氧化鋯鉿、其它適合的高介電常數(high-k)介電材料、或前述之組合。閘極電極層140可以包括與導電填充層120相同或類似的材料。舉例而言,閘極電極層140的材料可以包括多晶矽、金屬、金屬氮化物、其他適合的導電材料、或前述之組合。The gate dielectric layer 130 may include a material that is the same as or similar to the dielectric spacer layer 110. For example, the material of the gate dielectric layer 130 may include silicon oxide, tantalum oxide, zirconia, aluminum oxide, aluminum dioxide tantalum alloy, silicon dioxide tantalum, silicon tantalum oxynitride, tantalum tantalum oxide, titanium tantalum oxide, zirconia tantalum oxide, other suitable high-k dielectric materials, or a combination thereof. The gate electrode layer 140 may include a material that is the same as or similar to the conductive fill layer 120. For example, the material of the gate electrode layer 140 may include polysilicon, metal, metal nitride, other suitable conductive materials, or a combination thereof.

應理解的是,半導體結構10中的包括磊晶層100、介電間隔層110、導電填充層120、閘極介電層130、及閘極電極層140的部分可以被稱為分離式閘極結構。特別是,由於半導體結構10的導電填充層120及閘極電極層140在半導體結構10的垂直方向重疊,半導體結構10的分離式閘極結構可以被稱為垂直型的分離式閘極結構。以下將參照第3A~3F圖以及第4A~4G圖以說明垂直型的分離式閘極結構的形成方法。It should be understood that the portion of the semiconductor structure 10 including the epitaxial layer 100, the dielectric spacer layer 110, the conductive filling layer 120, the gate dielectric layer 130, and the gate electrode layer 140 can be referred to as a separated gate structure. In particular, since the conductive filling layer 120 and the gate electrode layer 140 of the semiconductor structure 10 overlap in the vertical direction of the semiconductor structure 10, the separated gate structure of the semiconductor structure 10 can be referred to as a vertical separated gate structure. The formation method of the vertical separated gate structure will be described below with reference to FIGS. 3A to 3F and FIGS. 4A to 4G.

第3A~3F圖是根據本揭露的一些實施例,繪示出垂直型的分離式閘極結構的形成方法的各個階段的剖面圖。3A to 3F are cross-sectional views showing various stages of a method for forming a vertical split gate structure according to some embodiments of the present disclosure.

首先,可以透過在基材(未顯示)上沉積用於磊晶層100的材料來提供磊晶層100。磊晶層100的形成方法可以包括物理氣相沉積(physical vapor deposition,PVD)、化學氣相沉積(chemical vapor deposition,CVD)、原子層沉積(atomic layer deposition,ALD)、其他適合的方法、或前述之組合。First, the epitaxial layer 100 may be provided by depositing a material for the epitaxial layer 100 on a substrate (not shown). The epitaxial layer 100 may be formed by physical vapor deposition (PVD), chemical vapor deposition (CVD), atomic layer deposition (ALD), other suitable methods, or a combination thereof.

用於形成溝槽100T的製程可以包括例如圖案化製程。在圖案化前的磊晶層100上方形成圖案化的遮蔽層(未顯示)(例如,正/負光阻、硬遮罩等)。可以藉由(例如,透過旋轉塗佈製程)在磊晶層100上形成遮蔽層(未顯示)、將遮蔽層曝光至圖案(例如,透過微影製程,例如光微影、極紫外線微影等)、以及顯影遮蔽層以形成圖案化的遮蔽層。之後,在圖案化的遮蔽層就位後,根據圖案化的遮蔽層對磊晶層100進行蝕刻製程。The process for forming the trench 100T may include, for example, a patterning process. A patterned shielding layer (not shown) (e.g., positive/negative photoresist, hard mask, etc.) is formed on the epitaxial layer 100 before patterning. The patterned shielding layer may be formed by forming a shielding layer (not shown) on the epitaxial layer 100 (e.g., by a spin coating process), exposing the shielding layer to a pattern (e.g., by a lithography process, such as photolithography, extreme ultraviolet lithography, etc.), and developing the shielding layer. Thereafter, after the patterned shielding layer is in place, an etching process is performed on the epitaxial layer 100 according to the patterned shielding layer.

上述蝕刻製程可以移除磊晶層100的不被遮蔽的部分,藉此形成溝槽結構100T。在一些實施例中,上述蝕刻製程可以是或包括例如濕蝕刻製程、乾蝕刻製程、反應離子蝕刻(reactive ion etching,RIE)製程、其他適合的蝕刻製程、或前述之組合。接著,可以剝離圖案化的遮蔽層。The etching process can remove the unshielded portion of the epitaxial layer 100, thereby forming the trench structure 100T. In some embodiments, the etching process can be or include, for example, a wet etching process, a dry etching process, a reactive ion etching (RIE) process, other suitable etching processes, or a combination thereof. Then, the patterned shielding layer can be peeled off.

參照第3A圖,可以在磊晶層100的溝槽100T中形成介電間隔層110,且可以在溝槽100T中形成導電填充層120。具體而言,可以在磊晶層100上方以及溝槽100T中沉積介電間隔層110,且可以在介電間隔層110上形成導電填充層120。3A , a dielectric spacer layer 110 may be formed in the trench 100T of the epitaxial layer 100 , and a conductive filling layer 120 may be formed in the trench 100T. Specifically, the dielectric spacer layer 110 may be deposited over the epitaxial layer 100 and in the trench 100T, and the conductive filling layer 120 may be formed on the dielectric spacer layer 110 .

在一些實施例中,介電間隔層110的形成方法可以包括物理氣相沉積(PVD)、化學氣相沉積(CVD)、原子層沉積(ALD)、溶凝膠(sol-gel)法、旋轉塗佈(spin coating)、其他適合的方法、或前述之組合。導電填充層120的形成方法可以包括物理氣相沉積(PVD)、化學氣相沉積(CVD)、原子層沉積(ALD)、電子束蒸鍍、電鍍、其他適合的方法、或前述之組合。In some embodiments, the dielectric spacer layer 110 may be formed by physical vapor deposition (PVD), chemical vapor deposition (CVD), atomic layer deposition (ALD), sol-gel method, spin coating, other suitable methods, or a combination thereof. The conductive filler layer 120 may be formed by physical vapor deposition (PVD), chemical vapor deposition (CVD), atomic layer deposition (ALD), electron beam evaporation, electroplating, other suitable methods, or a combination thereof.

接著,參照第3B圖,可以部分移除介電間隔層110,使得介電間隔層110在溝槽100T的側壁的上部具有較薄的厚度。在一些實施例中,藉由進行移除製程,使得介電間隔層110在磊晶層100的頂表面上方的部分也變得較薄。上述蝕刻製程可以是或包括例如濕蝕刻製程、乾蝕刻製程、反應離子蝕刻(RIE)製程、其他適合的蝕刻製程、或前述之組合。Next, referring to FIG. 3B , the dielectric spacer layer 110 may be partially removed so that the dielectric spacer layer 110 has a thinner thickness at the upper portion of the sidewall of the trench 100T. In some embodiments, by performing a removal process, the portion of the dielectric spacer layer 110 above the top surface of the epitaxial layer 100 also becomes thinner. The etching process may be or include, for example, a wet etching process, a dry etching process, a reactive ion etching (RIE) process, other suitable etching processes, or a combination thereof.

在部分移除介電間隔層110之後,進行摻雜製程1000以使導電填充層120包括摻質。摻質的種類如先前所討論,在此為了簡化起見而省略其詳細描述。摻雜製程1000是離子佈植製程。在進行摻雜製程1000之後,摻質在導電填充層120中具有漸變的摻雜濃度。舉例而言,在一些實施例中,摻質在導電填充層120的上部具有漸變的濃度分布,且摻質的濃度隨著與導電填充層120的頂表面距離增加而降低。在一些實施例中,摻雜製程1000包括從導電填充層120的頂表面及/或側壁將摻質引入導電填充層120。舉例而言,在摻雜製程1000為離子佈植製程的情況下,可以將摻質源(dopant source)中的離子從導電填充層120的頂表面及/或側壁摻雜到導電填充層120中。After partially removing the dielectric spacer layer 110, a doping process 1000 is performed to make the conductive fill layer 120 include a dopant. The types of dopants are as discussed previously, and a detailed description thereof is omitted here for simplicity. The doping process 1000 is an ion implantation process. After performing the doping process 1000, the dopant has a gradient doping concentration in the conductive fill layer 120. For example, in some embodiments, the dopant has a gradient concentration distribution in the upper portion of the conductive fill layer 120, and the concentration of the dopant decreases as the distance from the top surface of the conductive fill layer 120 increases. In some embodiments, the doping process 1000 includes introducing dopants into the conductive filling layer 120 from the top surface and/or the sidewall of the conductive filling layer 120. For example, when the doping process 1000 is an ion implantation process, ions in a dopant source may be doped into the conductive filling layer 120 from the top surface and/or the sidewall of the conductive filling layer 120.

在進行摻雜製程1000之後,參照第3C圖,部分移除介電間隔層110以露出溝槽100T的側壁的一部分。在一些實施例中,介電間隔層110的位於磊晶層100的頂表面上方的部分也一併被移除,使得磊晶層100的頂表面露出。此外,藉由進行上述移除製程,可以進一步增加導電填充層120的側壁露出的面積,如第3C圖所示。上述移除製程可以是或包括例如濕蝕刻製程、乾蝕刻製程、反應離子蝕刻(RIE)製程、其他適合的蝕刻製程、或前述之組合。After performing the doping process 1000, referring to FIG. 3C , the dielectric spacer layer 110 is partially removed to expose a portion of the sidewall of the trench 100T. In some embodiments, the portion of the dielectric spacer layer 110 located above the top surface of the epitaxial layer 100 is also removed, so that the top surface of the epitaxial layer 100 is exposed. In addition, by performing the above-mentioned removal process, the exposed area of the sidewall of the conductive filling layer 120 can be further increased, as shown in FIG. 3C . The above-mentioned removal process can be or include, for example, a wet etching process, a dry etching process, a reactive ion etching (RIE) process, other suitable etching processes, or a combination thereof.

接著,參照第3D圖,可以在導電填充層120上形成閘極介電層130。在一些實施例中,閘極介電層130是被順應性地(conformally)沉積在導電填充層120、介電間隔物110、及磊晶層100上。閘極介電層130可以在不同的表面上具有不同的厚度,取決於閘極介電層130下方的材料性質。在一些實施例中,舉例而言,閘極介電層130在導電填充層120上的部分比在介電間隔層110上的部分更厚,且在介電間隔層110上的部分比在磊晶層100上的部分更厚。此外,閘極介電層130在導電填充層120的頂表面上的橫向部分可以比其他部分的閘極介電層130更厚。閘極介電層130的形成方法可以包括物理氣相沉積(PVD)、化學氣相沉積(CVD)、原子層沉積(ALD)、其他適合的方法、或前述之組合。Next, referring to FIG. 3D , a gate dielectric layer 130 may be formed on the conductive filling layer 120. In some embodiments, the gate dielectric layer 130 is conformally deposited on the conductive filling layer 120, the dielectric spacer 110, and the epitaxial layer 100. The gate dielectric layer 130 may have different thicknesses on different surfaces, depending on the material properties under the gate dielectric layer 130. In some embodiments, for example, a portion of the gate dielectric layer 130 on the conductive filling layer 120 is thicker than a portion on the dielectric spacer 110, and a portion on the dielectric spacer 110 is thicker than a portion on the epitaxial layer 100. In addition, a lateral portion of the gate dielectric layer 130 on the top surface of the conductive fill layer 120 may be thicker than other portions of the gate dielectric layer 130. The gate dielectric layer 130 may be formed by physical vapor deposition (PVD), chemical vapor deposition (CVD), atomic layer deposition (ALD), other suitable methods, or a combination thereof.

接著,參照第3E、3F圖,可以在溝槽100T中形成閘極電極層140,且閘極電極層140可以藉由閘極電極層130與導電填充層120分隔。具體而言,閘極電極層140的形成可以包括在閘極介電層130上沉積導電材料140’以及對導電材料140’進行蝕刻製程以形成閘極電極層140。導電材料140’的沉積方法可以包括物理氣相沉積(PVD)、化學氣相沉積(CVD)、原子層沉積(ALD)、電子束蒸鍍、電鍍、其他適合的方法、或前述之組合。上述蝕刻製程可以是或包括例如濕蝕刻製程、乾蝕刻製程、反應離子蝕刻(RIE)製程、其他適合的蝕刻製程、或前述之組合。Next, referring to FIGS. 3E and 3F , a gate electrode layer 140 may be formed in the trench 100T, and the gate electrode layer 140 may be separated from the conductive filling layer 120 by the gate electrode layer 130. Specifically, the formation of the gate electrode layer 140 may include depositing a conductive material 140′ on the gate dielectric layer 130 and performing an etching process on the conductive material 140′ to form the gate electrode layer 140. The deposition method of the conductive material 140' may include physical vapor deposition (PVD), chemical vapor deposition (CVD), atomic layer deposition (ALD), electron beam evaporation, electroplating, other suitable methods, or a combination thereof. The etching process may be or include, for example, a wet etching process, a dry etching process, a reactive ion etching (RIE) process, other suitable etching processes, or a combination thereof.

由於摻質可以在導電填充層120的上部具有較高的濃度,有助於閘極介電層130在導電填充層120的頂表面及/或側面上的沉積。因此,即使將其他部分的閘極介電層130形成為較薄以維持半導體裝置的尺寸及基本電性能,也能夠將導電填充層120與閘極電極層140之間的部分的閘極介電層130維持在一定的厚度以上。換句話說,透過上述實施例的方法所形成的垂直型的分離式閘極結構能夠在維持半導體裝置的尺寸及基本電性能的同時降低導電填充層120與閘極電極層140之間發生短路或崩潰的風險。Since the dopant can have a higher concentration on the upper portion of the conductive filling layer 120, it is helpful to deposit the gate dielectric layer 130 on the top surface and/or side surface of the conductive filling layer 120. Therefore, even if the gate dielectric layer 130 of other portions is formed to be thinner to maintain the size and basic electrical performance of the semiconductor device, the gate dielectric layer 130 of the portion between the conductive filling layer 120 and the gate electrode layer 140 can be maintained at a certain thickness or above. In other words, the vertical separated gate structure formed by the method of the above embodiment can reduce the risk of short circuit or collapse between the conductive filling layer 120 and the gate electrode layer 140 while maintaining the size and basic electrical performance of the semiconductor device.

第4A~4G圖是根據本揭露的一些其他的實施例,繪示出垂直型的分離式閘極結構的形成方法的各個階段的剖面圖。FIGS. 4A to 4G are cross-sectional views of various stages of a method for forming a vertical split gate structure according to some other embodiments of the present disclosure.

與第3A~3F圖所示的形成方法的實施例類似,首先,可以透過在基材(未顯示)上沉積用於磊晶層100的材料並進行圖案化製程來提供具有溝槽100T的磊晶層100。接著,參照第4A圖,可以在磊晶層100的溝槽100T中形成介電間隔層110,且可以在溝槽100T中形成導電填充層120。具體而言,可以在磊晶層100上方以及溝槽100T中沉積介電間隔層110,且可以在介電間隔層110上形成導電填充層120。磊晶層100、介電間隔層110、及導電填充層120的形成方法可以與第3A~3F圖所示的實施例相同或類似,在此為了簡化起見而省略其詳細描述。Similar to the embodiment of the formation method shown in FIGS. 3A to 3F, first, the epitaxial layer 100 having the trench 100T can be provided by depositing a material for the epitaxial layer 100 on a substrate (not shown) and performing a patterning process. Next, referring to FIG. 4A, a dielectric spacer layer 110 can be formed in the trench 100T of the epitaxial layer 100, and a conductive filling layer 120 can be formed in the trench 100T. Specifically, the dielectric spacer layer 110 can be deposited above the epitaxial layer 100 and in the trench 100T, and the conductive filling layer 120 can be formed on the dielectric spacer layer 110. The formation methods of the epitaxial layer 100, the dielectric spacer layer 110, and the conductive filling layer 120 may be the same as or similar to the embodiments shown in FIGS. 3A to 3F, and the detailed description thereof is omitted for simplicity.

接著,參照第4B圖,可以部分移除介電間隔層110,使得介電間隔層110在溝槽100T的側壁的上部具有較薄的厚度。在一些實施例中,藉由進行移除製程,使得介電間隔層110在磊晶層100的頂表面上方的部分也變得較薄。上述蝕刻製程可以是或包括例如濕蝕刻製程、乾蝕刻製程、反應離子蝕刻(RIE)製程、其他適合的蝕刻製程、或前述之組合。Next, referring to FIG. 4B , the dielectric spacer layer 110 may be partially removed so that the dielectric spacer layer 110 has a thinner thickness at the upper portion of the sidewall of the trench 100T. In some embodiments, by performing a removal process, the portion of the dielectric spacer layer 110 above the top surface of the epitaxial layer 100 also becomes thinner. The etching process may be or include, for example, a wet etching process, a dry etching process, a reactive ion etching (RIE) process, other suitable etching processes, or a combination thereof.

在部分移除介電間隔層110之後,進行摻雜製程2000以使導電填充層120包括摻質。摻雜製程2000包括使用包含用於導電填充層120的前驅物進行熱擴散。在一個特定的實施例中,摻雜製程2000可以包括使用含磷的前驅物進行熱擴散。含磷的前驅物可以包括例如POCl 3。在進行摻雜製程2000之後,摻質在導電填充層120中具有漸變的摻雜濃度。舉例而言,在一些實施例中,摻質在導電填充層120的上部具有漸變的濃度分布,且摻質的濃度隨著與導電填充層120的頂表面距離增加而降低。在一些實施例中,摻雜製程2000包括從導電填充層120的頂表面及/或側壁將摻質引入導電填充層120。舉例而言,在摻雜製程2000的熱擴散中,可以將前驅物中的離子從導電填充層120的頂表面及/或側壁摻雜到導電填充層120中。 After partially removing the dielectric spacer layer 110, a doping process 2000 is performed to make the conductive filling layer 120 include a dopant. The doping process 2000 includes performing thermal diffusion using a precursor for the conductive filling layer 120. In a specific embodiment, the doping process 2000 may include performing thermal diffusion using a phosphorus-containing precursor. The phosphorus-containing precursor may include, for example, POCl 3 . After performing the doping process 2000, the dopant has a gradient doping concentration in the conductive filling layer 120. For example, in some embodiments, the dopant has a gradient concentration distribution at the upper portion of the conductive filling layer 120, and the concentration of the dopant decreases as the distance from the top surface of the conductive filling layer 120 increases. In some embodiments, the doping process 2000 includes introducing the dopant into the conductive filling layer 120 from the top surface and/or the sidewall of the conductive filling layer 120. For example, in the thermal diffusion of the doping process 2000, ions in the precursor may be doped into the conductive filling layer 120 from the top surface and/or the sidewall of the conductive filling layer 120.

由於在導電填充層120的頂部會產生包括摻質元素的氧化物,因此需要進行蝕刻製程以移除氧化物,藉此避免分離式閘極結構的電性能受到影響。參照第4C圖。在進行作為摻雜製程2000的熱擴散製程之後,可以對導電填充層120的頂表面進行移除製程以移除氧化物。上述蝕刻製程可以是或包括例如濕蝕刻製程、乾蝕刻製程、反應離子蝕刻(RIE)製程、其他適合的蝕刻製程、或前述之組合。舉例而言,蝕刻製程在使用含磷的前驅物進行熱擴散的實施例中,會在導電填充層120的頂表面附近形成較薄的磷化矽酸鹽玻璃(phospho-silicate glass,PSG)層。可以藉由例如使用HF以作為蝕刻劑的濕蝕刻製程或其他適合的蝕刻製程以移除磷化矽酸鹽玻璃層。在一些實施例中,如第4C圖所示,蝕刻製程也一併移除部分的介電間隔層110。舉例而言,在一些實施例中,移除位於磊晶層100的頂表面上方的部分的介電間隔層,使得磊晶層100的頂表面露出。此外,位於溝槽100T的側壁上的部分也可能因為蝕刻製程而變薄,僅留下剩餘部112,如第4C圖所示。Since oxides including doping elements are generated on the top of the conductive filling layer 120, an etching process is required to remove the oxides to prevent the electrical performance of the separated gate structure from being affected. Refer to FIG. 4C. After the thermal diffusion process as the doping process 2000 is performed, a removal process can be performed on the top surface of the conductive filling layer 120 to remove the oxides. The etching process can be or include, for example, a wet etching process, a dry etching process, a reactive ion etching (RIE) process, other suitable etching processes, or a combination thereof. For example, in an embodiment where a phosphorus-containing precursor is used for thermal diffusion, the etching process forms a thinner phospho-silicate glass (PSG) layer near the top surface of the conductive fill layer 120. The phospho-silicate glass layer can be removed by, for example, a wet etching process using HF as an etchant or other suitable etching process. In some embodiments, as shown in FIG. 4C, the etching process also removes a portion of the dielectric spacer layer 110. For example, in some embodiments, a portion of the dielectric spacer layer located above the top surface of the epitaxial layer 100 is removed, so that the top surface of the epitaxial layer 100 is exposed. In addition, the portion located on the sidewall of the trench 100T may also be thinned due to the etching process, leaving only a residual portion 112, as shown in FIG. 4C.

接著,參照第4D圖,部分移除介電間隔層110以露出溝槽100T的側壁的一部分。舉例而言,可以將第4C圖所示的介電間隔層110的剩餘部112完全移除。在磊晶層100的頂表面上方還有剩餘的介電間隔層110的情況下,介電間隔層110的位於磊晶層100的頂表面上方的部分也可以一併被移除,使得磊晶層100的頂表面露出。此外,藉由進行上述移除製程,可以進一步增加導電填充層120的側壁露出的面積,如第4D圖所示。上述移除製程可以是或包括例如濕蝕刻製程、乾蝕刻製程、反應離子蝕刻(RIE)製程、其他適合的蝕刻製程、或前述之組合。Next, referring to FIG. 4D , the dielectric spacer layer 110 is partially removed to expose a portion of the sidewall of the trench 100T. For example, the remaining portion 112 of the dielectric spacer layer 110 shown in FIG. 4C may be completely removed. In the case where there is still remaining dielectric spacer layer 110 above the top surface of the epitaxial layer 100, the portion of the dielectric spacer layer 110 located above the top surface of the epitaxial layer 100 may also be removed together, so that the top surface of the epitaxial layer 100 is exposed. In addition, by performing the above-mentioned removal process, the exposed area of the sidewall of the conductive filling layer 120 may be further increased, as shown in FIG. 4D . The removal process may be or include, for example, a wet etching process, a dry etching process, a reactive ion etching (RIE) process, other suitable etching processes, or a combination thereof.

接著,參照第4E圖,可以在導電填充層120上形成閘極介電層130。在一些實施例中,閘極介電層130是被順應性地沉積在導電填充層120、介電間隔物110、及磊晶層100上。閘極介電層130可以在不同的表面上具有不同的厚度,取決於閘極介電層130下方的材料性質。在一些實施例中,舉例而言,閘極介電層130在導電填充層120上的部分比在介電間隔層110上的部分更厚,且在介電間隔層110上的部分比在磊晶層100上的部分更厚。此外,閘極介電層130在導電填充層120的頂表面上的橫向部分可以比其他部分的閘極介電層130更厚。閘極介電層130的形成方法可以包括物理氣相沉積(PVD)、化學氣相沉積(CVD)、原子層沉積(ALD)、其他適合的方法、或前述之組合。Next, referring to FIG. 4E , a gate dielectric layer 130 may be formed on the conductive filling layer 120. In some embodiments, the gate dielectric layer 130 is conformally deposited on the conductive filling layer 120, the dielectric spacer 110, and the epitaxial layer 100. The gate dielectric layer 130 may have different thicknesses on different surfaces, depending on the material properties under the gate dielectric layer 130. In some embodiments, for example, a portion of the gate dielectric layer 130 on the conductive filling layer 120 is thicker than a portion on the dielectric spacer 110, and a portion on the dielectric spacer 110 is thicker than a portion on the epitaxial layer 100. In addition, a lateral portion of the gate dielectric layer 130 on the top surface of the conductive fill layer 120 may be thicker than other portions of the gate dielectric layer 130. The gate dielectric layer 130 may be formed by physical vapor deposition (PVD), chemical vapor deposition (CVD), atomic layer deposition (ALD), other suitable methods, or a combination thereof.

接著,參照第4F、4G圖,可以在溝槽100T中形成閘極電極層140,且閘極電極層140可以藉由閘極電極層130與導電填充層120分隔。具體而言,閘極電極層140的形成可以包括在閘極介電層130上沉積導電材料140’以及對導電材料140’進行蝕刻製程以形成閘極電極層140。導電材料140’的沉積方法可以包括物理氣相沉積(PVD)、化學氣相沉積(CVD)、原子層沉積(ALD)、電子束蒸鍍、電鍍、其他適合的方法、或前述之組合。上述蝕刻製程可以是或包括例如濕蝕刻製程、乾蝕刻製程、反應離子蝕刻(RIE)製程、其他適合的蝕刻製程、或前述之組合。Next, referring to FIGS. 4F and 4G , a gate electrode layer 140 may be formed in the trench 100T, and the gate electrode layer 140 may be separated from the conductive filling layer 120 by the gate electrode layer 130. Specifically, the formation of the gate electrode layer 140 may include depositing a conductive material 140′ on the gate dielectric layer 130 and performing an etching process on the conductive material 140′ to form the gate electrode layer 140. The deposition method of the conductive material 140' may include physical vapor deposition (PVD), chemical vapor deposition (CVD), atomic layer deposition (ALD), electron beam evaporation, electroplating, other suitable methods, or a combination thereof. The etching process may be or include, for example, a wet etching process, a dry etching process, a reactive ion etching (RIE) process, other suitable etching processes, or a combination thereof.

由於摻質可以在導電填充層120的上部具有較高的濃度,有助於閘極介電層130在導電填充層120的頂表面及/或側面上的沉積。因此,即使將其他部分的閘極介電層130形成為較薄以維持半導體裝置的尺寸及基本電性能,也能夠將導電填充層120與閘極電極層140之間的部分的閘極介電層130維持在一定的厚度以上。換句話說,透過上述實施例的方法所形成的垂直型的分離式閘極結構也能夠在維持半導體裝置的尺寸及基本電性能的同時降低導電填充層120與閘極電極層140之間發生短路或崩潰的風險。Since the dopant can have a higher concentration on the upper portion of the conductive filling layer 120, it is helpful to deposit the gate dielectric layer 130 on the top surface and/or side surface of the conductive filling layer 120. Therefore, even if the gate dielectric layer 130 of other portions is formed to be thinner to maintain the size and basic electrical performance of the semiconductor device, the gate dielectric layer 130 of the portion between the conductive filling layer 120 and the gate electrode layer 140 can be maintained at a certain thickness or above. In other words, the vertical separated gate structure formed by the method of the above embodiment can also reduce the risk of short circuit or collapse between the conductive filling layer 120 and the gate electrode layer 140 while maintaining the size and basic electrical performance of the semiconductor device.

再次參照第1圖,在一些實施例中,磊晶層100包括橫向圍繞分離式閘極結構的摻雜結構150。摻雜結構150可以包括摻雜井152、第一重摻雜區154、及第二重摻雜區156。在一些實施例中,摻雜井152的鄰近分離式閘極結構的部分能夠用作半導體結構10運作時的通道區。舉例而言,當對閘極電極層140施加正向偏壓時,能夠在摻雜井152的鄰近分離式閘極結構的側壁附近形成反轉層(inversion layer)以產生電流。第二重摻雜區156可以用於將摻雜井152電性連接到上方的電極層(例如後續形成的上電極層170)。第一重摻雜區154可以被電性連接到源極。1, in some embodiments, the epitaxial layer 100 includes a doped structure 150 that laterally surrounds the split gate structure. The doped structure 150 may include a doped well 152, a first heavily doped region 154, and a second heavily doped region 156. In some embodiments, a portion of the doped well 152 adjacent to the split gate structure can be used as a channel region when the semiconductor structure 10 is in operation. For example, when a forward bias is applied to the gate electrode layer 140, an inversion layer can be formed near the sidewall of the split gate structure adjacent to the doped well 152 to generate a current. The second heavily doped region 156 can be used to electrically connect the doped well 152 to an upper electrode layer (e.g., an upper electrode layer 170 formed later). The first heavily doped region 154 can be electrically connected to the source.

第一重摻雜區154可以具有與磊晶層100相同的第一導電類型(例如n型),且摻雜井152及第二重摻雜區156可以具有第二導電類型(例如p型)。摻雜井152的摻雜濃度可以在大約1e15 atoms/cm 3至大約1e18 atoms/cm 3之間。第一重摻雜區154的摻雜濃度可以在大約1e18 atoms/cm 3至大約1e21 atoms/cm 3之間。第二重摻雜區156的摻雜濃度可以在大約1e18 atoms/cm 3至大約1e21 atoms/cm 3之間。 The first heavily doped region 154 may have the same first conductivity type (e.g., n-type) as the epitaxial layer 100, and the doped well 152 and the second heavily doped region 156 may have a second conductivity type (e.g., p-type). The doping concentration of the doped well 152 may be between about 1e15 atoms/cm 3 and about 1e18 atoms/cm 3. The doping concentration of the first heavily doped region 154 may be between about 1e18 atoms/cm 3 and about 1e21 atoms/cm 3. The doping concentration of the second heavily doped region 156 may be between about 1e18 atoms/cm 3 and about 1e21 atoms/cm 3 .

摻雜結構150可以包括與磊晶層100的摻雜結構150下方的部分相同或類似的材料,例如矽、鍺、碳化矽、氮化鎵、氧化鎵、砷化鎵、矽鍺、碳化矽鍺、其他適合的材料、或前述之組合。摻雜結構150可以透過對用於形成磊晶層100的磊晶材料進行摻雜製程所形成。在一些實施例中,摻雜結構150的頂表面與閘極電極層140的頂表面實質上共平面。The doped structure 150 may include a material that is the same as or similar to the portion of the epitaxial layer 100 below the doped structure 150, such as silicon, germanium, silicon carbide, gallium nitride, gallium oxide, gallium arsenide, silicon germanium, silicon germanium carbide, other suitable materials, or a combination thereof. The doped structure 150 may be formed by performing a doping process on the epitaxial material used to form the epitaxial layer 100. In some embodiments, the top surface of the doped structure 150 is substantially coplanar with the top surface of the gate electrode layer 140.

在一些實施例中,在分離式閘極結構上方形成蓋層160。具體而言,可以在閘極電極層140上方形成蓋層160。蓋層160的材料及形成方法可以與介電間隔層110或閘極介電層130相同或類似,在此為了簡化起見而省略其詳細描述。In some embodiments, a capping layer 160 is formed on the split gate structure. Specifically, the capping layer 160 may be formed on the gate electrode layer 140. The material and formation method of the capping layer 160 may be the same as or similar to the dielectric spacer layer 110 or the gate dielectric layer 130, and a detailed description thereof is omitted for simplicity.

接著,如第1圖所示,可以在摻雜結構150及蓋層160上形成上電極層170,且可以在磊晶層100下形成下電極層180。Next, as shown in FIG. 1 , an upper electrode layer 170 may be formed on the doped structure 150 and the capping layer 160 , and a lower electrode layer 180 may be formed under the epitaxial layer 100 .

上電極層108及下電極層180可以包括,例如鉑(Pt)、鈦(Ti)、氮化鈦(TiN)、鉭(Ta)、氮化鉭(TaN)、鎢(W)、氮化鎢(WN)、金(Au)、鐵(Fe)、鎳(Ni)、鈚(Be)、鉻(Cr)、鈷(Co)、銻(Sb)、銥(Ir)、鉬(Mo)、鋨(Os)、釷(Th)、釩(V)、一些其他的金屬或金屬氮化物、或前述之組合。The upper electrode layer 108 and the lower electrode layer 180 may include, for example, platinum (Pt), titanium (Ti), titanium nitride (TiN), tantalum (Ta), tantalum nitride (TaN), tungsten (W), tungsten nitride (WN), gold (Au), iron (Fe), nickel (Ni), benzenium (Be), chromium (Cr), cobalt (Co), antimony (Sb), iridium (Ir), molybdenum (Mo), nimum (Os), thorium (Th), vanadium (V), some other metals or metal nitrides, or a combination of the foregoing.

上電極層170及下電極層180的形成方法可以包括例如化學氣相沉積(CVD)、原子層沉積(ALD)、電子束蒸鍍、電鍍、濺鍍、電化學鍍、無電鍍、一些其他的沉積製程、或前述之組合。The formation method of the upper electrode layer 170 and the lower electrode layer 180 may include, for example, chemical vapor deposition (CVD), atomic layer deposition (ALD), electron beam evaporation, electroplating, sputtering, electrochemical plating, electroless plating, some other deposition processes, or a combination thereof.

第2圖是根據本揭露的一些實施例,繪示出包括橫向型的分離式閘極結構之半導體結構20的剖面圖。半導體結構20可以包括具有溝槽100T的磊晶層100以及設置於溝槽100T中的介電間隔層110。半導體結構20可以更包括設置於介電間隔層110上且包括摻質的導電填充層120,且摻質在導電填充層120中可以具有漸變的摻雜濃度。半導體結構20可以更包括設置於導電填充層120上的閘極介電層130。此外,半導體結構20可以更包括設置於溝槽100T中的閘極電極層140,且閘極電極層140可以藉由閘極介電層130與導電填充層120分隔。FIG. 2 is a cross-sectional view of a semiconductor structure 20 including a lateral split gate structure according to some embodiments of the present disclosure. The semiconductor structure 20 may include an epitaxial layer 100 having a trench 100T and a dielectric spacer layer 110 disposed in the trench 100T. The semiconductor structure 20 may further include a conductive filling layer 120 disposed on the dielectric spacer layer 110 and including a dopant, and the dopant may have a gradient doping concentration in the conductive filling layer 120. The semiconductor structure 20 may further include a gate dielectric layer 130 disposed on the conductive filling layer 120. In addition, the semiconductor structure 20 may further include a gate electrode layer 140 disposed in the trench 100T, and the gate electrode layer 140 may be separated from the conductive filling layer 120 by the gate dielectric layer 130 .

應理解的是,半導體結構20中的包括磊晶層100、介電間隔層110、導電填充層120、閘極介電層130、及閘極電極層140的部分可以被稱為分離式閘極結構。特別是,由於半導體結構20的導電填充層120及閘極電極層140沿半導體結構20的橫向排列,半導體結構20的分離式閘極結構可以被稱為橫向型的分離式閘極結構。It should be understood that the portion of the semiconductor structure 20 including the epitaxial layer 100, the dielectric spacer layer 110, the conductive filling layer 120, the gate dielectric layer 130, and the gate electrode layer 140 can be referred to as a separated gate structure. In particular, since the conductive filling layer 120 and the gate electrode layer 140 of the semiconductor structure 20 are arranged in the lateral direction of the semiconductor structure 20, the separated gate structure of the semiconductor structure 20 can be referred to as a lateral separated gate structure.

如第2圖所示,介電間隔層110及導電填充層120可以被設置於磊晶層100的溝槽100T中。介電間隔層110可以在導電填充層120與磊晶層100之間延伸。介電間隔層110的材料可以包括氧化矽、氧化鉿、氧化鋯、氧化鋁、二氧化鋁鉿合金、二氧化矽鉿、氮氧化矽鉿、氧化鉭鉿、氧化鈦鉿、氧化鋯鉿、其它適合的高介電常數(high-k)介電材料、或前述之組合。在一些實施例中,介電間隔層110包括具有與磊晶層100共同的元素的氧化物。舉例而言,在一個特定的實施例中,磊晶層100包括矽或碳化矽,且介電間隔層110包括氧化矽。As shown in FIG. 2 , the dielectric spacer 110 and the conductive filling layer 120 may be disposed in the trench 100T of the epitaxial layer 100. The dielectric spacer 110 may extend between the conductive filling layer 120 and the epitaxial layer 100. The material of the dielectric spacer 110 may include silicon oxide, tantalum oxide, zirconia, aluminum oxide, aluminum dioxide tantalum alloy, silicon dioxide tantalum, silicon oxynitride tantalum oxide, tantalum oxide, titanium oxide, zirconia oxide, other suitable high-k dielectric materials, or a combination thereof. In some embodiments, the dielectric spacer 110 includes an oxide having an element in common with the epitaxial layer 100. For example, in one particular embodiment, the epitaxial layer 100 includes silicon or silicon carbide, and the dielectric spacer layer 110 includes silicon oxide.

在一些實施例中,上述摻質的摻雜濃度在該導電填充層120的上部比在該導電填充層120的下部更高。本揭露並未限定上述摻質的種類,通常知識者可以根據設計需求來決定使用何種摻質。上述摻質的導電類型可以是n型也可以是p型。在上述摻質的導電類型是n型的情況下,上述摻質可以是例如氮、磷、砷、銻、鉍。在上述摻質的導電類型是p型的情況下,上述摻質可以是例如硼、鋁、鎵、銦、鉈。導電填充層120的材料可以包括多晶矽、金屬、金屬氮化物、其他適合的導電材料、或前述之組合。In some embodiments, the doping concentration of the above-mentioned dopant is higher in the upper part of the conductive filling layer 120 than in the lower part of the conductive filling layer 120. The present disclosure does not limit the types of the above-mentioned dopant, and a person skilled in the art can decide which dopant to use according to design requirements. The conductivity type of the above-mentioned dopant can be n-type or p-type. In the case where the conductivity type of the above-mentioned dopant is n-type, the above-mentioned dopant can be, for example, nitrogen, phosphorus, arsenic, antimony, and bismuth. In the case where the conductivity type of the above-mentioned dopant is p-type, the above-mentioned dopant can be, for example, boron, aluminum, gallium, indium, and bismuth. The material of the conductive filling layer 120 can include polysilicon, metal, metal nitride, other suitable conductive materials, or a combination of the foregoing.

如第2圖所示,閘極介電層130及閘極電極層140也可以被設置於磊晶層100的溝槽100T中。在一些實施例中,如第1圖所示,閘極介電層130圍繞閘極電極層140,使得閘極電極層140與介電間隔層110及磊晶層100兩者分隔。閘極介電層130可以在閘極電極層140與導電填充層120之間延伸,也可以在閘極電極層140與介電間隔層110之間延伸,且也可以進一步在閘極電極層140與磊晶層100之間延伸。此外,閘極電極層140可以被導電填充層120橫向分隔為多個部分。舉例而言,在第2圖所例示的兩個分離式閘極結構中,各個分離式閘極結構中的導電填充層120可以將閘極電極層140分隔為在橫向上的兩個部分。此外,如第2圖所示。閘極電極層140的頂表面可以低於導電填充層120的頂表面。在其他的實施例中,閘極介電層140可以包括在導電填充層120的頂表面橫向延伸的橫向部分(如後續第5F圖所示),且閘極電極層140的頂表面低於上述橫向部分的頂表面。閘極介電層130可以在導電填充層120與閘極電極層140的側壁之間具有第一厚度T1且在閘極電極層140與溝槽100T的側壁之間具有第二厚度T2,且第一厚度T1可以大於第二厚度T2。As shown in FIG. 2 , the gate dielectric layer 130 and the gate electrode layer 140 may also be disposed in the trench 100T of the epitaxial layer 100 . In some embodiments, as shown in FIG. 1 , the gate dielectric layer 130 surrounds the gate electrode layer 140 , so that the gate electrode layer 140 is separated from both the dielectric spacer 110 and the epitaxial layer 100 . The gate dielectric layer 130 may extend between the gate electrode layer 140 and the conductive filling layer 120, may extend between the gate electrode layer 140 and the dielectric spacer layer 110, and may further extend between the gate electrode layer 140 and the epitaxial layer 100. In addition, the gate electrode layer 140 may be laterally divided into a plurality of parts by the conductive filling layer 120. For example, in the two separated gate structures illustrated in FIG. 2 , the conductive filling layer 120 in each separated gate structure may divide the gate electrode layer 140 into two parts in the lateral direction. In addition, as shown in FIG. 2 . The top surface of the gate electrode layer 140 may be lower than the top surface of the conductive filling layer 120. In other embodiments, the gate dielectric layer 140 may include a lateral portion extending laterally from the top surface of the conductive filling layer 120 (as shown in the subsequent FIG. 5F), and the top surface of the gate electrode layer 140 is lower than the top surface of the lateral portion. The gate dielectric layer 130 may have a first thickness T1 between the conductive filling layer 120 and the sidewall of the gate electrode layer 140 and a second thickness T2 between the gate electrode layer 140 and the sidewall of the trench 100T, and the first thickness T1 may be greater than the second thickness T2.

閘極介電層130可以包括與介電間隔層110相同或類似的材料。舉例而言,閘極介電層130的材料可以包括氧化矽、氧化鉿、氧化鋯、氧化鋁、二氧化鋁鉿合金、二氧化矽鉿、氮氧化矽鉿、氧化鉭鉿、氧化鈦鉿、氧化鋯鉿、其它適合的高介電常數(high-k)介電材料、或前述之組合。閘極電極層140可以包括與導電填充層120相同或類似的材料。舉例而言,閘極電極層140的材料可以包括多晶矽、金屬、金屬氮化物、其他適合的導電材料、或前述之組合。The gate dielectric layer 130 may include a material that is the same as or similar to the dielectric spacer layer 110. For example, the material of the gate dielectric layer 130 may include silicon oxide, tantalum oxide, zirconia, aluminum oxide, aluminum dioxide tantalum alloy, silicon dioxide tantalum, silicon tantalum oxynitride, tantalum tantalum oxide, titanium tantalum oxide, zirconia tantalum oxide, other suitable high-k dielectric materials, or a combination thereof. The gate electrode layer 140 may include a material that is the same as or similar to the conductive fill layer 120. For example, the material of the gate electrode layer 140 may include polysilicon, metal, metal nitride, other suitable conductive materials, or a combination thereof.

應理解的是,由於半導體結構10及半導體結構20包括其他相同或類似的部件及膜層(例如摻雜結構150、蓋層160、上電極層170、及下電極層180等),這些部件及膜層能夠以相同或類似的材料及形成方法來形成,在此為了簡化起見而省略詳細描述。以下將參照第5A~5F圖以說明橫向型的分離式閘極結構的形成方法。It should be understood that since the semiconductor structure 10 and the semiconductor structure 20 include other identical or similar components and film layers (e.g., the doped structure 150, the capping layer 160, the upper electrode layer 170, and the lower electrode layer 180, etc.), these components and film layers can be formed with identical or similar materials and formation methods, and detailed descriptions are omitted for simplicity. The formation method of the lateral split gate structure will be described below with reference to FIGS. 5A to 5F.

第5A~5F圖是根據本揭露的一些實施例,繪示出橫向型的分離式閘極結構的形成方法的各個階段的剖面圖。5A to 5F are cross-sectional views of various stages of a method for forming a lateral split gate structure according to some embodiments of the present disclosure.

與第3A~3F、4A~4G圖所示的形成方法的實施例類似,首先,可以透過在基材(未顯示)上沉積用於磊晶層100的材料並進行圖案化製程來提供具有溝槽100T的磊晶層100。接著,參照第5A圖,可以在磊晶層100的溝槽100T中形成介電間隔層110,且可以在溝槽100T中形成導電填充層120。具體而言,可以在磊晶層100上方以及溝槽100T中沉積介電間隔層110,且可以在介電間隔層110上形成導電填充層120。磊晶層100、介電間隔層110、及導電填充層120的形成方法可以與垂直型的分離式閘極結構的實施例相同或類似,在此為了簡化起見而省略其詳細描述。此外,在一些實施例中,在形成導電填充層120的過程中,藉由蝕刻導電材料以使得導電填充層120的頂表面與磊晶層100實質上等高。Similar to the embodiments of the formation method shown in FIGS. 3A to 3F and 4A to 4G, first, the epitaxial layer 100 having the trench 100T can be provided by depositing a material for the epitaxial layer 100 on a substrate (not shown) and performing a patterning process. Next, referring to FIG. 5A , a dielectric spacer layer 110 can be formed in the trench 100T of the epitaxial layer 100, and a conductive filling layer 120 can be formed in the trench 100T. Specifically, the dielectric spacer layer 110 can be deposited above the epitaxial layer 100 and in the trench 100T, and the conductive filling layer 120 can be formed on the dielectric spacer layer 110. The formation method of the epitaxial layer 100, the dielectric spacer layer 110, and the conductive filling layer 120 may be the same or similar to the embodiment of the vertical split gate structure, and the detailed description thereof is omitted for simplicity. In addition, in some embodiments, during the process of forming the conductive filling layer 120, the conductive material is etched so that the top surface of the conductive filling layer 120 is substantially the same height as the epitaxial layer 100.

接著,參照第5B圖,可以部分移除介電間隔層110,使得介電間隔層110在溝槽100T的側壁的上部具有較薄的厚度。在一些實施例中,藉由進行移除製程,使得介電間隔層110在磊晶層100的頂表面上方的部分也變得較薄。上述蝕刻製程可以是或包括例如濕蝕刻製程、乾蝕刻製程、反應離子蝕刻(RIE)製程、其他適合的蝕刻製程、或前述之組合。Next, referring to FIG. 5B , the dielectric spacer layer 110 may be partially removed so that the dielectric spacer layer 110 has a thinner thickness at the upper portion of the sidewall of the trench 100T. In some embodiments, by performing a removal process, the portion of the dielectric spacer layer 110 above the top surface of the epitaxial layer 100 also becomes thinner. The etching process may be or include, for example, a wet etching process, a dry etching process, a reactive ion etching (RIE) process, other suitable etching processes, or a combination thereof.

在部分移除介電間隔層110之後,進行作為離子佈植製程的摻雜製程1000或作為熱擴散製程的摻雜製程2000以使導電填充層120包括摻質。摻質的種類如先前所討論,在此為了簡化起見而省略其詳細描述。After partially removing the dielectric spacer layer 110, a doping process 1000 as an ion implantation process or a doping process 2000 as a thermal diffusion process is performed to make the conductive filling layer 120 include dopants. The types of dopants are as discussed above, and a detailed description thereof is omitted here for simplicity.

在進行作為離子佈植製程的摻雜製程1000的情況下,在進行摻雜製程1000之後,摻質在導電填充層120中具有漸變的摻雜濃度。舉例而言,在一些實施例中,摻質在導電填充層120的上部具有漸變的濃度分布,且摻質的濃度隨著與導電填充層120的頂表面距離增加而降低。在一些實施例中,摻雜製程1000包括從導電填充層120的頂表面及/或側壁將摻質引入導電填充層120。舉例而言,在進行作為離子佈植製程的摻雜製程1000的情況下,可以將摻質源中的離子從導電填充層120的頂表面及/或側壁摻雜到導電填充層120中。In the case of performing the doping process 1000 as an ion implantation process, after performing the doping process 1000, the dopant has a gradient doping concentration in the conductive filling layer 120. For example, in some embodiments, the dopant has a gradient concentration distribution in the upper portion of the conductive filling layer 120, and the concentration of the dopant decreases as the distance from the top surface of the conductive filling layer 120 increases. In some embodiments, the doping process 1000 includes introducing the dopant into the conductive filling layer 120 from the top surface and/or sidewall of the conductive filling layer 120. For example, when the doping process 1000 is performed as an ion implantation process, ions in the doping source may be doped into the conductive filling layer 120 from the top surface and/or the sidewall of the conductive filling layer 120 .

在進行作為熱擴散製程的摻雜製程2000的情況下,在進行摻雜製程2000之後,摻質在導電填充層120中具有漸變的摻雜濃度。在一個特定的實施例中,摻雜製程2000可以包括使用含磷的前驅物進行熱擴散。含磷的前驅物可以包括例如POCl 3。舉例而言,在一些實施例中,摻質在導電填充層120的上部具有漸變的濃度分布,且摻質的濃度隨著與導電填充層120的頂表面距離增加而降低。在一些實施例中,摻雜製程2000包括從導電填充層120的頂表面及/或側壁將摻質引入導電填充層120。舉例而言,在摻雜製程2000的熱擴散中,可以將前驅物中的離子從導電填充層120的頂表面及/或側壁摻雜到導電填充層120中。 In the case of performing the doping process 2000 as a thermal diffusion process, after performing the doping process 2000, the dopant has a gradient doping concentration in the conductive filling layer 120. In a specific embodiment, the doping process 2000 may include performing thermal diffusion using a phosphorus-containing precursor. The phosphorus-containing precursor may include, for example, POCl 3 . For example, in some embodiments, the dopant has a gradient concentration distribution in the upper portion of the conductive filling layer 120, and the concentration of the dopant decreases as the distance from the top surface of the conductive filling layer 120 increases. In some embodiments, the doping process 2000 includes introducing dopants into the conductive filling layer 120 from the top surface and/or the sidewall of the conductive filling layer 120. For example, in the thermal diffusion of the doping process 2000, ions in the precursor may be doped into the conductive filling layer 120 from the top surface and/or the sidewall of the conductive filling layer 120.

由於在導電填充層120的頂部會產生包括摻質元素的氧化物,因此需要進行蝕刻製程以移除氧化物,藉此避免分離式閘極結構的電性能受到影響。在進行作為摻雜製程2000的熱擴散製程之後,可以對導電填充層120的頂表面進行移除製程以移除氧化物。上述蝕刻製程可以是或包括例如濕蝕刻製程、乾蝕刻製程、反應離子蝕刻(RIE)製程、其他適合的蝕刻製程、或前述之組合。舉例而言,在使用含磷的前驅物進行熱擴散的實施例中,會在導電填充層120的頂表面附近形成較薄的磷化矽酸鹽玻璃(PSG)層。可以藉由例如使用HF以作為蝕刻劑的濕蝕刻製程或其他適合的蝕刻製程移除磷化矽酸鹽玻璃層。在一些實施例中,蝕刻製程也一併移除部分的介電間隔層110。舉例而言,在一些實施例中,移除位於磊晶層100的頂表面上方的部分的介電間隔層,使得磊晶層100的頂表面露出。此外,位於溝槽100T的側壁上的部分也可能因為蝕刻製程而變薄。Since oxides including doping elements are generated on the top of the conductive filling layer 120, an etching process is required to remove the oxides to prevent the electrical performance of the separated gate structure from being affected. After the thermal diffusion process as the doping process 2000 is performed, a removal process can be performed on the top surface of the conductive filling layer 120 to remove the oxides. The etching process can be or include, for example, a wet etching process, a dry etching process, a reactive ion etching (RIE) process, other suitable etching processes, or a combination thereof. For example, in an embodiment using a phosphorus-containing precursor for thermal diffusion, a thinner phosphosilicate glass (PSG) layer is formed near the top surface of the conductive fill layer 120. The phosphosilicate glass layer can be removed by, for example, a wet etching process using HF as an etchant or other suitable etching process. In some embodiments, the etching process also removes a portion of the dielectric spacer layer 110. For example, in some embodiments, a portion of the dielectric spacer layer located above the top surface of the epitaxial layer 100 is removed, so that the top surface of the epitaxial layer 100 is exposed. In addition, the portion located on the sidewall of the trench 100T may also be thinned due to the etching process.

在進行摻雜製程1000之後,參照第5C圖,部分移除介電間隔層110以露出溝槽100T的側壁的一部分。在一些實施例中,介電間隔層110的位於磊晶層100的頂表面上方的部分也一併被移除,使得磊晶層100的頂表面露出。此外,藉由進行上述移除製程,也可以進一步增加導電填充層120的側壁露出的面積。上述移除製程可以是或包括例如濕蝕刻製程、乾蝕刻製程、反應離子蝕刻(RIE)製程、其他適合的蝕刻製程、或前述之組合。After the doping process 1000 is performed, referring to FIG. 5C , the dielectric spacer layer 110 is partially removed to expose a portion of the sidewall of the trench 100T. In some embodiments, the portion of the dielectric spacer layer 110 located above the top surface of the epitaxial layer 100 is also removed, so that the top surface of the epitaxial layer 100 is exposed. In addition, by performing the above-mentioned removal process, the exposed area of the sidewall of the conductive filling layer 120 can also be further increased. The above-mentioned removal process can be or include, for example, a wet etching process, a dry etching process, a reactive ion etching (RIE) process, other suitable etching processes, or a combination thereof.

接著,參照第5D圖,可以在導電填充層120上形成閘極介電層130。在一些實施例中,閘極介電層130是被順應性地(conformally)沉積在導電填充層120、介電間隔物110、及磊晶層100上。閘極介電層130可以在不同的表面上具有不同的厚度,取決於閘極介電層130下方的材料性質。在一些實施例中,舉例而言,閘極介電層130在導電填充層120上的部分比在介電間隔層110上的部分更厚,且在介電間隔層110上的部分比在磊晶層100上的部分更厚。此外,閘極介電層130在導電填充層120的頂表面上的橫向部分可以比其他部分的閘極介電層130更厚。閘極介電層130的形成方法可以包括物理氣相沉積(PVD)、化學氣相沉積(CVD)、原子層沉積(ALD)、其他適合的方法、或前述之組合。Next, referring to FIG. 5D , a gate dielectric layer 130 may be formed on the conductive filling layer 120. In some embodiments, the gate dielectric layer 130 is conformally deposited on the conductive filling layer 120, the dielectric spacer 110, and the epitaxial layer 100. The gate dielectric layer 130 may have different thicknesses on different surfaces, depending on the material properties under the gate dielectric layer 130. In some embodiments, for example, a portion of the gate dielectric layer 130 on the conductive filling layer 120 is thicker than a portion on the dielectric spacer 110, and a portion on the dielectric spacer 110 is thicker than a portion on the epitaxial layer 100. In addition, a lateral portion of the gate dielectric layer 130 on the top surface of the conductive fill layer 120 may be thicker than other portions of the gate dielectric layer 130. The gate dielectric layer 130 may be formed by physical vapor deposition (PVD), chemical vapor deposition (CVD), atomic layer deposition (ALD), other suitable methods, or a combination thereof.

接著,參照第5E、5F圖,可以在溝槽100T中形成閘極電極層140,且閘極電極層140可以藉由閘極電極層130與導電填充層120分隔。具體而言,閘極電極層140的形成可以包括在閘極介電層130上沉積導電材料140’以及對導電材料140’進行蝕刻製程以形成閘極電極層140。導電材料140’的沉積方法可以包括物理氣相沉積(PVD)、化學氣相沉積(CVD)、原子層沉積(ALD)、電子束蒸鍍、電鍍、其他適合的方法、或前述之組合。上述蝕刻製程可以是或包括例如濕蝕刻製程、乾蝕刻製程、反應離子蝕刻(RIE)製程、其他適合的蝕刻製程、或前述之組合。如第5F圖所示,導電材料140’在蝕刻製程之後成為具有被導電填充層120橫向分隔的多個部分的閘極電極層140。後續也可以進行蝕刻製程以移除磊晶層100的頂表面上方的部分的閘極介電層130。Next, referring to FIGS. 5E and 5F , a gate electrode layer 140 may be formed in the trench 100T, and the gate electrode layer 140 may be separated from the conductive filling layer 120 by the gate electrode layer 130. Specifically, the formation of the gate electrode layer 140 may include depositing a conductive material 140′ on the gate dielectric layer 130 and performing an etching process on the conductive material 140′ to form the gate electrode layer 140. The deposition method of the conductive material 140' may include physical vapor deposition (PVD), chemical vapor deposition (CVD), atomic layer deposition (ALD), electron beam evaporation, electroplating, other suitable methods, or a combination thereof. The above-mentioned etching process may be or include, for example, a wet etching process, a dry etching process, a reactive ion etching (RIE) process, other suitable etching processes, or a combination thereof. As shown in FIG. 5F , after the etching process, the conductive material 140' becomes a gate electrode layer 140 having a plurality of portions laterally separated by the conductive filling layer 120. An etching process may be subsequently performed to remove a portion of the gate dielectric layer 130 above the top surface of the epitaxial layer 100 .

由於摻質可以在導電填充層120的上部具有較高的濃度,有助於閘極介電層130在導電填充層120的頂表面及/或側面上的沉積。因此,即使將其他部分的閘極介電層130形成為較薄以維持半導體裝置的尺寸及基本電性能,也能夠將導電填充層120與閘極電極層140之間的部分的閘極介電層130維持在一定的厚度以上。換句話說,透過上述實施例的方法所形成的橫向型的分離式閘極結構能夠在維持半導體裝置的尺寸及基本電性能的同時降低導電填充層120與閘極電極層140之間發生短路或崩潰的風險。Since the dopant can have a higher concentration on the upper portion of the conductive filling layer 120, it is helpful to deposit the gate dielectric layer 130 on the top surface and/or side surface of the conductive filling layer 120. Therefore, even if the gate dielectric layer 130 of other portions is formed to be thinner to maintain the size and basic electrical performance of the semiconductor device, the gate dielectric layer 130 of the portion between the conductive filling layer 120 and the gate electrode layer 140 can be maintained at a certain thickness or above. In other words, the lateral separated gate structure formed by the method of the above embodiment can reduce the risk of short circuit or collapse between the conductive filling layer 120 and the gate electrode layer 140 while maintaining the size and basic electrical performance of the semiconductor device.

在透過第5A~5F圖所示的形成方法形成橫向型的分離式閘極結構之後,可以形成半導體結構20的其他部件及膜層(例如摻雜結構150、蓋層160、上電極層170、及下電極層180等)。這些部件及膜層能夠透過以上所討論的材料及形成方法來形成,在此為了簡化起見而省略詳細描述。After forming the lateral split gate structure by the formation method shown in FIGS. 5A to 5F, other components and film layers (such as the doped structure 150, the capping layer 160, the upper electrode layer 170, and the lower electrode layer 180) of the semiconductor structure 20 can be formed. These components and film layers can be formed by the materials and formation methods discussed above, and detailed descriptions are omitted here for simplicity.

綜上所述,本揭露提供一種用於形成包括分離式閘極結構的半導體結構及其形成方法。透過這樣的方法所形成的半導體結構會在分離式閘極結構的導電填充層中具有漸變的摻質濃度分布,使得導電填充層的電阻值在垂直方向上變化。此外,藉由本揭露的形成方法,能夠在不影響位於磊晶層頂表面及溝槽側壁的部分的閘極介電層的厚度的情況下自由地控制在分離式閘極結構的導電層之間的部分的閘極介電層的厚度。如此一來,能夠維持半導體裝置的尺寸及電性能,且能夠降低在分離式閘極結構中發生短路或崩潰的風險。In summary, the present disclosure provides a semiconductor structure including a separated gate structure and a method for forming the same. The semiconductor structure formed by such a method has a gradient doping concentration distribution in the conductive filling layer of the separated gate structure, so that the resistance value of the conductive filling layer varies in the vertical direction. In addition, by the formation method disclosed in the present disclosure, the thickness of the gate dielectric layer between the conductive layers of the separated gate structure can be freely controlled without affecting the thickness of the gate dielectric layer located on the top surface of the epitaxial layer and the sidewall of the trench. In this way, the size and electrical performance of the semiconductor device can be maintained, and the risk of short circuit or collapse in the split gate structure can be reduced.

以上概述數個實施例之特徵,以使本發明所屬技術領域中具有通常知識者可更易理解本發明實施例的觀點。本發明所屬技術領域中具有通常知識者應理解,可輕易地以本發明實施例為基礎,設計或修改其他製程和結構,以達到與在此介紹的實施例相同之目的及/或優勢。在本發明所屬技術領域中具有通常知識者也應理解到,此類等效的製程和結構並無悖離本發明的精神與範圍,且可在不違背本發明之精神和範圍之下,做各式各樣的改變、取代和替換。The features of several embodiments are summarized above so that those with ordinary knowledge in the art to which the present invention belongs can more easily understand the viewpoints of the embodiments of the present invention. Those with ordinary knowledge in the art to which the present invention belongs should understand that other processes and structures can be easily designed or modified based on the embodiments of the present invention to achieve the same purpose and/or advantages as the embodiments introduced herein. Those with ordinary knowledge in the art to which the present invention belongs should also understand that such equivalent processes and structures do not violate the spirit and scope of the present invention, and various changes, substitutions and replacements can be made without violating the spirit and scope of the present invention.

10,20:半導體結構 100:磊晶層 100T:溝槽 110:介電間隔層 112:剩餘部 120:導電填充層 130:閘極介電層 140:閘極電極層 140’:導電材料 142:延伸部 150:摻雜結構 152:摻雜井 154:第一重摻雜區 156:第二重摻雜區 160:蓋層 170:上電極層 180:下電極層 1000,2000:摻雜製程 T1:第一厚度 T2:第二厚度 10,20: Semiconductor structure 100: Epitaxial layer 100T: Trench 110: Dielectric spacer layer 112: Remaining part 120: Conductive filling layer 130: Gate dielectric layer 140: Gate electrode layer 140’: Conductive material 142: Extension part 150: Doping structure 152: Doping well 154: First heavily doped region 156: Second heavily doped region 160: Capping layer 170: Upper electrode layer 180: Lower electrode layer 1000,2000: Doping process T1: First thickness T2: Second thickness

以下將配合所附圖式詳述本發明實施例。應注意的是,依據在業界的標準做法,各種特徵並未按照比例繪製且僅用以說明例示。事實上,可任意地放大或縮小元件的尺寸,以清楚地表現出本發明實施例的特徵。 第1圖是根據本揭露的一些實施例,繪示出包括垂直型的分離式閘極結構之半導體結構的剖面圖。 第2圖是根據本揭露的一些實施例,繪示出包括橫向型的分離式閘極結構之半導體結構的剖面圖。 第3A~3F圖是根據本揭露的一些實施例,繪示出垂直型的分離式閘極結構的形成方法的各個階段的剖面圖。 第4A~4G圖是根據本揭露的一些其他的實施例,繪示出垂直型的分離式閘極結構的形成方法的各個階段的剖面圖。 第5A~5F圖是根據本揭露的一些實施例,繪示出橫向型的分離式閘極結構的形成方法的各個階段的剖面圖。 The following will be described in detail with the accompanying drawings. It should be noted that, according to standard practices in the industry, various features are not drawn to scale and are only used for illustration. In fact, the size of the components can be arbitrarily enlarged or reduced to clearly show the features of the embodiments of the present invention. FIG. 1 is a cross-sectional view of a semiconductor structure including a vertical separated gate structure according to some embodiments of the present disclosure. FIG. 2 is a cross-sectional view of a semiconductor structure including a horizontal separated gate structure according to some embodiments of the present disclosure. FIGS. 3A to 3F are cross-sectional views of various stages of a method for forming a vertical separated gate structure according to some embodiments of the present disclosure. Figures 4A to 4G are cross-sectional views of various stages of a method for forming a vertical split gate structure according to some other embodiments of the present disclosure. Figures 5A to 5F are cross-sectional views of various stages of a method for forming a horizontal split gate structure according to some embodiments of the present disclosure.

10:半導體結構 10:Semiconductor structure

100:磊晶層 100: Epitaxial layer

100T:溝槽 100T: Groove

110:介電間隔層 110: Dielectric spacer layer

120:導電填充層 120: Conductive filling layer

130:閘極介電層 130: Gate dielectric layer

140:閘極電極層 140: Gate electrode layer

142:延伸部 142: Extension

150:摻雜結構 150:Doped structure

152:摻雜井 152: Mixed Well

154:第一重摻雜區 154: The first heavily doped area

156:第二重摻雜區 156: Second mixed area

160:蓋層 160: Covering layer

170:上電極層 170: Upper electrode layer

180:下電極層 180: Lower electrode layer

T1:第一厚度 T1: First thickness

T2:第二厚度 T2: Second thickness

Claims (20)

一種半導體結構,包括: 一磊晶層,具有一溝槽; 一介電間隔層,設置於該溝槽中; 一導電填充層,設置於該介電間隔層上且包括一摻質; 一閘極介電層,設置於該導電填充層上;以及 一閘極電極層,設置於該溝槽中,且藉由該閘極介電層與該導電填充層分隔; 其中該摻質在該導電填充層中具有漸變的(gradient)一摻雜濃度。 A semiconductor structure comprises: an epitaxial layer having a trench; a dielectric spacer layer disposed in the trench; a conductive filling layer disposed on the dielectric spacer layer and comprising a dopant; a gate dielectric layer disposed on the conductive filling layer; and a gate electrode layer disposed in the trench and separated from the conductive filling layer by the gate dielectric layer; wherein the dopant has a gradient doping concentration in the conductive filling layer. 如請求項1之半導體結構,其中該摻雜濃度在該導電填充層的上部比在該導電填充層的下部更高。A semiconductor structure as claimed in claim 1, wherein the doping concentration is higher at an upper portion of the conductive filling layer than at a lower portion of the conductive filling layer. 如請求項1之半導體結構,其中該閘極電極層包括在該導電填充層的側壁與該溝槽的側壁之間延伸的延伸部。A semiconductor structure as claimed in claim 1, wherein the gate electrode layer includes an extension extending between a sidewall of the conductive filling layer and a sidewall of the trench. 如請求項1之半導體結構,其中該閘極介電層圍繞該閘極電極層,使得該閘極電極層與該介電間隔層及該磊晶層兩者分隔。A semiconductor structure as claimed in claim 1, wherein the gate dielectric layer surrounds the gate electrode layer so that the gate electrode layer is separated from both the dielectric spacer layer and the epitaxial layer. 如請求項1之半導體結構,其中該閘極電極層的一底表面低於該導電填充層的頂表面。A semiconductor structure as claimed in claim 1, wherein a bottom surface of the gate electrode layer is lower than a top surface of the conductive filling layer. 如請求項1之半導體結構,其中該閘極介電層在該導電填充層與該閘極電極層的側壁之間具有一第一厚度且在該閘極電極層與該溝槽的側壁之間具有一第二厚度,且該第一厚度大於該第二厚度。A semiconductor structure as claimed in claim 1, wherein the gate dielectric layer has a first thickness between the conductive filling layer and the sidewall of the gate electrode layer and a second thickness between the gate electrode layer and the sidewall of the trench, and the first thickness is greater than the second thickness. 如請求項1之半導體結構,其中該閘極介電層包括在該導電填充層的一頂表面與該閘極電極層的一底表面之間橫向延伸的一橫向部分。A semiconductor structure as claimed in claim 1, wherein the gate dielectric layer includes a lateral portion extending laterally between a top surface of the conductive fill layer and a bottom surface of the gate electrode layer. 如請求項7之半導體結構,其中該橫向部分的厚度大於該閘極介電層之覆蓋該溝槽的側壁的部分的厚度。A semiconductor structure as claimed in claim 7, wherein the thickness of the lateral portion is greater than the thickness of a portion of the gate dielectric layer covering the sidewall of the trench. 如請求項7之半導體結構,其中該閘極電極層的寬度大於該導電填充層的寬度。A semiconductor structure as claimed in claim 7, wherein the width of the gate electrode layer is greater than the width of the conductive filling layer. 如請求項1之半導體結構,其中該閘極電極層被該導電填充層橫向分隔為多個部分。A semiconductor structure as claimed in claim 1, wherein the gate electrode layer is laterally divided into multiple parts by the conductive filling layer. 如請求項10之半導體結構,其中該閘極介電層包括在該導電填充層的一頂表面橫向延伸的一橫向部分,且該閘極電極層的頂表面低於該橫向部分的頂表面。A semiconductor structure as claimed in claim 10, wherein the gate dielectric layer includes a lateral portion extending laterally from a top surface of the conductive filling layer, and the top surface of the gate electrode layer is lower than the top surface of the lateral portion. 如請求項10之半導體結構,其中該閘極電極層的頂表面低於該導電填充層的頂表面。A semiconductor structure as claimed in claim 10, wherein a top surface of the gate electrode layer is lower than a top surface of the conductive filling layer. 一種半導體結構的形成方法,包括: 在一磊晶層的一溝槽中形成一介電間隔層; 在該溝槽中形成一導電填充層; 進行一摻雜製程以使該導電填充層包括一摻質; 在該導電填充層上形成一閘極介電層;以及 在該溝槽中形成一閘極電極層,且該閘極電極層藉由該閘極介電層與該導電填充層分隔; 其中該摻質在該導電填充層中具有漸變的一摻雜濃度。 A method for forming a semiconductor structure, comprising: forming a dielectric spacer layer in a trench of an epitaxial layer; forming a conductive filling layer in the trench; performing a doping process so that the conductive filling layer includes a dopant; forming a gate dielectric layer on the conductive filling layer; and forming a gate electrode layer in the trench, and the gate electrode layer is separated from the conductive filling layer by the gate dielectric layer; wherein the dopant has a gradient doping concentration in the conductive filling layer. 如請求項13之半導體結構的形成方法,更包括: 在該磊晶層上方以及該溝槽中沉積該介電間隔層; 在該介電間隔層上形成該導電填充層;以及 部分移除該介電間隔層以露出該溝槽的側壁的一部分。 The method for forming a semiconductor structure as claimed in claim 13 further includes: Depositing the dielectric spacer layer above the epitaxial layer and in the trench; Forming the conductive filling layer on the dielectric spacer layer; and Partially removing the dielectric spacer layer to expose a portion of the sidewall of the trench. 如請求項13之半導體結構的形成方法,其中該摻雜製程包括從該導電填充層的頂表面及/或側壁將該摻質引入該導電填充層。A method for forming a semiconductor structure as claimed in claim 13, wherein the doping process includes introducing the dopant into the conductive filling layer from the top surface and/or sidewall of the conductive filling layer. 如請求項13之半導體結構的形成方法,其中該摻雜製程是離子佈植製程。A method for forming a semiconductor structure as claimed in claim 13, wherein the doping process is an ion implantation process. 如請求項13之半導體結構的形成方法,其中該摻雜製程包括使用含磷的前驅物進行熱擴散。A method for forming a semiconductor structure as claimed in claim 13, wherein the doping process includes thermal diffusion using a phosphorus-containing precursor. 如請求項13之半導體結構的形成方法,更包括在該導電填充層、該介電間隔物、及該磊晶層上順應性地(conformally)沉積該閘極介電層。The method for forming a semiconductor structure as claimed in claim 13 further includes conformally depositing the gate dielectric layer on the conductive filling layer, the dielectric spacer, and the epitaxial layer. 如請求項13之半導體結構的形成方法,其中該閘極電極層的形成包括: 在該閘極電極層上沉積一導電材料;以及 對該導電材料進行一蝕刻製程以形成該閘極電極層。 A method for forming a semiconductor structure as claimed in claim 13, wherein the formation of the gate electrode layer comprises: Depositing a conductive material on the gate electrode layer; and Performing an etching process on the conductive material to form the gate electrode layer. 如請求項19之半導體結構的形成方法,其中該導電材料在該蝕刻製程之後成為具有被該導電填充層橫向分隔的多個部分的該閘極電極層。A method for forming a semiconductor structure as claimed in claim 19, wherein the conductive material becomes the gate electrode layer having multiple parts laterally separated by the conductive filling layer after the etching process.
TW112128692A 2023-07-31 2023-07-31 Semiconductor structure and method for forming the same TWI862051B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW112128692A TWI862051B (en) 2023-07-31 2023-07-31 Semiconductor structure and method for forming the same
CN202410202982.6A CN119451176A (en) 2023-07-31 2024-02-23 Semiconductor structure and method for forming the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW112128692A TWI862051B (en) 2023-07-31 2023-07-31 Semiconductor structure and method for forming the same

Publications (2)

Publication Number Publication Date
TWI862051B TWI862051B (en) 2024-11-11
TW202507815A true TW202507815A (en) 2025-02-16

Family

ID=94379677

Family Applications (1)

Application Number Title Priority Date Filing Date
TW112128692A TWI862051B (en) 2023-07-31 2023-07-31 Semiconductor structure and method for forming the same

Country Status (2)

Country Link
CN (1) CN119451176A (en)
TW (1) TWI862051B (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8587054B2 (en) * 2011-12-30 2013-11-19 Force Mos Technology Co., Ltd. Trench MOSFET with resurf stepped oxide and diffused drift region
EP3474314A1 (en) * 2017-10-20 2019-04-24 Infineon Technologies Austria AG Semiconductor device and method for manufacturing a semiconductor method
TWI788100B (en) * 2021-11-16 2022-12-21 新唐科技股份有限公司 Semiconductor structure and method of forming the same
CN114678275B (en) * 2021-12-29 2024-07-30 杭州芯迈半导体技术有限公司 Split-gate MOSFET and method of manufacturing the same
CN116093161A (en) * 2022-12-21 2023-05-09 无锡先瞳半导体科技有限公司 Shielded Gate Field Effect Transistor

Similar Documents

Publication Publication Date Title
JP4188234B2 (en) Trench gate semiconductor device and its manufacture
US6489204B1 (en) Save MOS device
US11903192B2 (en) Semiconductor device and method of manufacturing
US9236431B2 (en) Semiconductor device and termination region structure thereof
TW201725728A (en) Source-gate region architecture in vertical power semiconductor devices
KR20210115016A (en) Trench field effect transistor structure and manufacturing method thereof
CN113053738A (en) Split gate type groove MOS device and preparation method thereof
CN111048420A (en) Manufacturing method of lateral double diffused transistor
CN111710719A (en) Lateral double diffused transistor and method of making the same
CN110957370A (en) Manufacturing method of lateral double diffused transistor
CN113314610B (en) Transistor device and method for manufacturing the same
US20240282808A1 (en) Ldmos having multiple field plates and associated manufacturing method
CN211700291U (en) Self-aligned trench field effect transistor
TWI844185B (en) Semiconductor structure and method for forming the same
TWI862051B (en) Semiconductor structure and method for forming the same
US20230093383A1 (en) Super-junction device and manufacturing method thereof
TWI812995B (en) Sic mosfet device and manufacturing method thereof
US20230326979A1 (en) Contact field plate
TW202507815A (en) Semiconductor structure and method for forming the same
CN114038757A (en) Preparation method of SIC MOSFET device
TWI866588B (en) Semiconductor rectifier and manufacturing method of the same
CN109860056A (en) A kind of VDMOS device and preparation method thereof
TWI566421B (en) Vertical diode and fabrication method thereof
TWI863579B (en) Semiconductor device
US12261046B1 (en) Semiconductor structures and manufacturing methods thereof