TW202449182A - Alloy materials and contact probes - Google Patents
Alloy materials and contact probes Download PDFInfo
- Publication number
- TW202449182A TW202449182A TW112148790A TW112148790A TW202449182A TW 202449182 A TW202449182 A TW 202449182A TW 112148790 A TW112148790 A TW 112148790A TW 112148790 A TW112148790 A TW 112148790A TW 202449182 A TW202449182 A TW 202449182A
- Authority
- TW
- Taiwan
- Prior art keywords
- alloy material
- plunger
- probe
- line segment
- test
- Prior art date
Links
- 239000000523 sample Substances 0.000 title claims abstract description 59
- 239000000956 alloy Substances 0.000 title claims description 37
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims abstract description 40
- 239000010949 copper Substances 0.000 claims abstract description 34
- 239000000203 mixture Substances 0.000 claims abstract description 30
- 229910052802 copper Inorganic materials 0.000 claims abstract description 15
- 229910052709 silver Inorganic materials 0.000 claims abstract description 15
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims abstract description 10
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims abstract description 10
- 229910052697 platinum Inorganic materials 0.000 claims abstract description 10
- 239000004332 silver Substances 0.000 claims abstract description 10
- 239000012535 impurity Substances 0.000 claims abstract description 5
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 claims description 36
- 229910052718 tin Inorganic materials 0.000 claims description 17
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims description 15
- 229910052763 palladium Inorganic materials 0.000 claims description 10
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 9
- 239000010936 titanium Substances 0.000 claims description 6
- 229910052738 indium Inorganic materials 0.000 claims description 4
- 239000011573 trace mineral Substances 0.000 claims description 4
- 235000013619 trace mineral Nutrition 0.000 claims description 4
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 3
- 229910052782 aluminium Inorganic materials 0.000 claims description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 3
- 229910017052 cobalt Inorganic materials 0.000 claims description 3
- 239000010941 cobalt Substances 0.000 claims description 3
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 3
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 claims description 3
- 229910052741 iridium Inorganic materials 0.000 claims description 3
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 claims description 3
- 229910052759 nickel Inorganic materials 0.000 claims description 3
- 229910052719 titanium Inorganic materials 0.000 claims description 3
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims description 3
- 229910052721 tungsten Inorganic materials 0.000 claims description 3
- 239000010937 tungsten Substances 0.000 claims description 3
- 238000012360 testing method Methods 0.000 description 42
- 239000004065 semiconductor Substances 0.000 description 24
- 238000006243 chemical reaction Methods 0.000 description 21
- 230000009257 reactivity Effects 0.000 description 19
- 238000007689 inspection Methods 0.000 description 12
- 230000000052 comparative effect Effects 0.000 description 11
- 229910000679 solder Inorganic materials 0.000 description 11
- 238000010586 diagram Methods 0.000 description 9
- 239000000758 substrate Substances 0.000 description 7
- 238000000034 method Methods 0.000 description 6
- 239000000126 substance Substances 0.000 description 6
- 230000008602 contraction Effects 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 238000005096 rolling process Methods 0.000 description 3
- 229910001252 Pd alloy Inorganic materials 0.000 description 2
- 101100012902 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FIG2 gene Proteins 0.000 description 2
- 229910002855 Sn-Pd Inorganic materials 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 239000004973 liquid crystal related substance Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 238000004804 winding Methods 0.000 description 2
- 229910017885 Cu—Pt Inorganic materials 0.000 description 1
- 101000827703 Homo sapiens Polyphosphoinositide phosphatase Proteins 0.000 description 1
- 102100023591 Polyphosphoinositide phosphatase Human genes 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 210000000078 claw Anatomy 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000007542 hardness measurement Methods 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000010944 silver (metal) Substances 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C30/00—Alloys containing less than 50% by weight of each constituent
- C22C30/02—Alloys containing less than 50% by weight of each constituent containing copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C5/00—Alloys based on noble metals
- C22C5/04—Alloys based on a platinum group metal
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C5/00—Alloys based on noble metals
- C22C5/06—Alloys based on silver
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R1/00—Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
- G01R1/02—General constructional details
- G01R1/06—Measuring leads; Measuring probes
- G01R1/067—Measuring probes
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Measuring Leads Or Probes (AREA)
- Conductive Materials (AREA)
Abstract
Description
本發明係關於一種合金材料及接觸式探針。The present invention relates to an alloy material and a contact probe.
以往,對半導體積體電路或液晶面板等檢查對象進行導通狀態檢查或動作特性檢查時,會使用導電性之接觸式探針,來試圖將檢查對象與具有用於輸出檢查用信號之電路基板之信號處理裝置之間電性連接。為了進行準確之導通狀態檢查或動作特性檢查,要求確實地經由接觸式探針來輸入輸出檢查用信號。In the past, when conducting a continuity test or operating characteristic test on an inspection object such as a semiconductor integrated circuit or a liquid crystal panel, a conductive contact probe was used to attempt to electrically connect the inspection object to a signal processing device on a circuit board that outputs a test signal. In order to conduct an accurate continuity test or operating characteristic test, it is required to accurately input and output the test signal through the contact probe.
接觸式探針反覆與半導體積體電路或液晶顯示裝置等檢查對象物接觸來使用。若接觸式探針因反覆使用而被氧化或磨損等導致劣化,則會對檢查結果造成影響。因此,要求用於接觸式探針之材料具有較高之導電性、耐蝕性、良好之抗氧化性。已知為了滿足該等特性而使用包含20~50質量%之鈀(Pd)之材料來提高硬度(例如參照專利文獻1、2)。The contact probe is used to repeatedly contact the inspection object such as semiconductor integrated circuits or liquid crystal display devices. If the contact probe is degraded due to oxidation or wear due to repeated use, it will affect the inspection results. Therefore, the material used for the contact probe is required to have high electrical conductivity, corrosion resistance, and good oxidation resistance. It is known that in order to meet these characteristics, a material containing 20 to 50 mass% of palladium (Pd) is used to increase the hardness (for example, refer to patent documents 1 and 2).
專利文獻1:國際公開第2013/099682號 專利文獻2:日本專利第4878401號公報 Patent document 1: International Publication No. 2013/099682 Patent document 2: Japanese Patent Gazette No. 4878401
然而,於接觸式探針之接觸目標為包含錫(Sn)之製品(例如BGA(Ball Grid Array,球柵陣列)等)之情形時,若在例如175℃左右之高溫下進行檢查,則相比機械磨損而言,焊料中之錫(Sn)與Pd發生反應而產生之化學磨損之影響更大。However, when the contact target of the contact probe is a product containing tin (Sn) (such as BGA (Ball Grid Array), etc.), if the inspection is performed at a high temperature of, for example, around 175°C, the chemical wear caused by the reaction between tin (Sn) and Pd in the solder will have a greater impact than mechanical wear.
本發明係鑒於上述情況而完成者,其目的在於提供一種耐Sn反應性較高且能夠抑制化學磨損之合金材料及接觸式探針。The present invention is made in view of the above situation, and its purpose is to provide an alloy material and a contact probe that have high Sn reactivity resistance and can inhibit chemical wear.
為了解決上述問題以達到目的,本發明之合金材料中,將銀(Ag)之重量比設為X重量%,將銅(Cu)之重量比設為Y重量%,將鉑(Pt)之重量比設為Z重量%時,X、Y、Z處於由將以下組成(X=75、Y=5、Z=20)、(X=20、Y=5、Z=75)、(X=5、Y=20、Z=75)、(X=5、Y=60、Z=35)、(X=75、Y=13、Z=12)之各點連結而成之線段所圍成且包含線段上之值的組成範圍內,其餘部分由不可避免之雜質構成。In order to solve the above problems and achieve the purpose, in the alloy material of the present invention, when the weight ratio of silver (Ag) is set to X weight%, the weight ratio of copper (Cu) is set to Y weight%, and the weight ratio of platinum (Pt) is set to Z weight%, X, Y, and Z are in a composition range surrounded by a line segment connecting the points of the following compositions (X=75, Y=5, Z=20), (X=20, Y=5, Z=75), (X=5, Y=20, Z=75), (X=5, Y=60, Z=35), (X=75, Y=13, Z=12) and including the values on the line segment, and the rest is composed of inevitable impurities.
又,本發明之合金材料於上述發明中,X、Y、Z處於由將以下組成(X=75、Y=13、Z=12)、(X=75、Y=5、Z=20)、(X=60、Y=5、Z=35)、(X=27、Y=13、Z=60)、(X=5、Y=35、Z=60)、(X=5、Y=40、Z=55)、(X=35、Y=40、Z=25)之各點連結而成之線段所圍成且包含線段上之值的組成範圍內。In addition, in the alloy material of the present invention in the above invention, X, Y, and Z are within a composition range enclosed by a line segment connecting the points of the following compositions: (X=75, Y=13, Z=12), (X=75, Y=5, Z=20), (X=60, Y=5, Z=35), (X=27, Y=13, Z=60), (X=5, Y=35, Z=60), (X=5, Y=40, Z=55), and (X=35, Y=40, Z=25), and including the values on the line segment.
又,本發明之合金材料於上述發明中,X、Y、Z處於由將以下組成(X=68、Y=11、Z=21)、(X=35、Y=11、Z=54)、(X=21、Y=25、Z=54)、(X=21、Y=39、Z=40)、(X=36、Y=39、Z=25)、(X=48、Y=31、Z=21)之各點連結而成之線段所圍成且包含線段上之值的組成範圍內。In addition, in the alloy material of the present invention in the above invention, X, Y, and Z are within a composition range enclosed by a line segment connecting the points of the following compositions: (X=68, Y=11, Z=21), (X=35, Y=11, Z=54), (X=21, Y=25, Z=54), (X=21, Y=39, Z=40), (X=36, Y=39, Z=25), and (X=48, Y=31, Z=21), and including the values on the line segment.
又,本發明之合金材料於上述發明中,進而包含0.01重量%以上且5.0重量%以下之銦(In)。In addition, the alloy material of the present invention further contains 0.01 wt % or more and 5.0 wt % or less of indium (In) in the above invention.
又,本發明之合金材料於上述發明中,進而包含10重量%以下之鈀(Pd)。In addition, the alloy material of the present invention further contains 10 wt % or less of palladium (Pd) in the above invention.
又,本發明之合金材料於上述發明中,包含由鎳(Ni)、鎢(W)、鈦(Ti)、鈷(Co)、鋁(Al)、錫(Sn)及銥(Ir)構成之微量元素群中之至少一種,且合計含量為0.01重量%以上且3.0重量%以下之範圍內。Furthermore, the alloy material of the present invention in the above invention contains at least one of the trace elements group consisting of nickel (Ni), tungsten (W), titanium (Ti), cobalt (Co), aluminum (Al), tin (Sn) and iridium (Ir), and the total content is in the range of 0.01 wt% or more and 3.0 wt% or less.
又,本發明之接觸式探針係與零件接觸者,且至少與前述零件接觸之部分由上述發明之合金材料形成。Furthermore, the contact probe of the present invention is in contact with a component, and at least the portion in contact with the component is formed of the alloy material of the present invention.
根據本發明,具有耐Sn反應性較高,能夠抑制化學磨損之效果。According to the present invention, the Sn reaction resistance is high and the chemical wear can be suppressed.
以下,參照圖式詳細地對用於實施本發明之方式進行說明。再者,本發明不受以下實施方式限定。又,以下說明中所參照之各圖不過是以能夠理解本發明之內容之程度來概略性地表示形狀、大小及位置關係,故而本發明不僅限定於各圖中所例示之形狀、大小及位置關係。The following is a detailed description of the method for implementing the present invention with reference to the drawings. Furthermore, the present invention is not limited to the following implementation method. In addition, the figures referred to in the following description are only used to roughly represent the shape, size and position relationship to the extent that the content of the present invention can be understood, so the present invention is not limited to the shape, size and position relationship illustrated in each figure.
實施方式 圖1係表示本發明之一實施方式之探針單元之構成的立體圖。圖1所示之探針單元1係對作為檢查對象物之半導體積體電路100進行電特性檢查時所使用之裝置,且係將半導體積體電路100與用於向半導體積體電路100輸出檢查用信號之電路基板200之間電性連接之裝置。 Implementation method FIG. 1 is a three-dimensional diagram showing the structure of a probe unit of one implementation method of the present invention. The probe unit 1 shown in FIG. 1 is a device used when inspecting the electrical characteristics of a semiconductor integrated circuit 100 as an inspection object, and is a device for electrically connecting the semiconductor integrated circuit 100 and a circuit substrate 200 for outputting an inspection signal to the semiconductor integrated circuit 100.
探針單元1具備:導電性之接觸式探針2(以下,簡稱為「探針2」),其於長度方向之兩端與互不相同之兩個被接觸體即半導體積體電路100及電路基板200之電極接觸;探針座3,其將複數個探針2按照預設圖案收容而加以保持;及座構件4,其設置於探針座3之周圍,用於抑制檢查時與複數個探針2接觸之半導體積體電路100發生位置偏移。 於本實施方式中,半導體積體電路100之電極係使用焊料形成之BGA(Ball Grid Array)。 The probe unit 1 comprises: a conductive contact probe 2 (hereinafter referred to as "probe 2"), which contacts the electrodes of two different contact objects, namely, the semiconductor integrated circuit 100 and the circuit substrate 200, at both ends in the length direction; a probe holder 3, which holds and retains a plurality of probes 2 according to a preset pattern; and a seat member 4, which is arranged around the probe holder 3 and is used to suppress the positional displacement of the semiconductor integrated circuit 100 contacted by the plurality of probes 2 during inspection. In this embodiment, the electrodes of the semiconductor integrated circuit 100 are BGA (Ball Grid Array) formed using solder.
圖2係表示本發明之一實施方式之探針單元之主要部分之構成的剖視圖。探針2,其係使用導電性材料而形成,且具備:第一柱塞21,其於進行半導體積體電路100之檢查時與該半導體積體電路100之電極接觸;第二柱塞22,其與具備檢查電路之電路基板200之電極接觸;及螺旋彈簧23,其設置於第一柱塞21與第二柱塞22之間,將第一柱塞21與第二柱塞22以進退自如之方式連結。於圖2中,構成探針2之第一柱塞21、第二柱塞22及螺旋彈簧23具有同一條軸線。即,第一柱塞21、第二柱塞22及螺旋彈簧23各自之中心軸位於同一條直線上。再者,「同一條軸線」包括構件個體之應變或製造上之誤差等所導致之偏差。探針2於半導體積體電路100與之接觸時,藉由螺旋彈簧23於軸線方向上伸縮,能夠緩和對半導體積體電路100之電極之衝擊,並且對半導體積體電路100及電路基板200施加載荷。FIG2 is a cross-sectional view showing the structure of the main part of the probe unit of one embodiment of the present invention. The probe 2 is formed using a conductive material and has: a first plunger 21, which contacts the electrode of the semiconductor integrated circuit 100 when the semiconductor integrated circuit 100 is inspected; a second plunger 22, which contacts the electrode of the circuit substrate 200 having the inspection circuit; and a coil spring 23, which is arranged between the first plunger 21 and the second plunger 22 and connects the first plunger 21 and the second plunger 22 in a manner that allows them to move forward and backward freely. In FIG2, the first plunger 21, the second plunger 22 and the coil spring 23 constituting the probe 2 have the same axis. That is, the center axes of the first plunger 21, the second plunger 22, and the coil spring 23 are located on the same straight line. Furthermore, "the same axis" includes deviations caused by strain of individual components or manufacturing errors. When the probe 2 contacts the semiconductor integrated circuit 100, the coil spring 23 expands and contracts in the axial direction, which can alleviate the impact on the electrode of the semiconductor integrated circuit 100 and apply a load to the semiconductor integrated circuit 100 and the circuit substrate 200.
第一柱塞21具有前端部21a,該前端部21a呈尖細之前端形狀,與半導體積體電路100之電極接觸。第一柱塞21能夠藉由螺旋彈簧23之伸縮作用而於軸線方向上移動,藉由螺旋彈簧23之彈力而被施加向半導體積體電路100方向之力,從而與半導體積體電路100之電極接觸。 於本實施方式中,對前端部21a係呈具有複數個爪部之冠狀者進行說明,但前端部21a亦可以呈錐狀或球面狀等其他形狀。 The first plunger 21 has a front end 21a, which is in a pointed front end shape and contacts the electrode of the semiconductor integrated circuit 100. The first plunger 21 can move in the axial direction by the expansion and contraction of the coil spring 23, and is applied with a force in the direction of the semiconductor integrated circuit 100 by the elastic force of the coil spring 23, thereby contacting the electrode of the semiconductor integrated circuit 100. In this embodiment, the front end 21a is described as a crown having a plurality of claws, but the front end 21a may also be in other shapes such as a cone or a spherical shape.
第一柱塞21係使用合金材料而形成。該合金材料中,將銀(Ag)之重量比設為X重量%,將銅(Cu)之重量比設為Y重量%,將鉑(Pt)之重量比設為Z重量%時,X、Y、Z處於由將以下組成(X=75、Y=5、Z=20)、(X=20、Y=5、Z=75)、(X=5、Y=20、Z=75)、(X=5、Y=60、Z=35)、(X=75、Y=13、Z=12)之各點連結而成之線段所圍成且包含線段上之值的組成範圍(區域R)內,其餘部分由不可避免之雜質構成。關於該組成範圍,較佳為X、Y、Z處於由將以下組成(X=75、Y=13、Z=12)、(X=75、Y=5、Z=20)、(X=60、Y=5、Z=35)、(X=27、Y=13、Z=60)、(X=5、Y=35、Z=60)、(X=5、Y=40、Z=55)、(X=35、Y=40、Z=25)之各點連結而成之線段所圍成之範圍(區域R')內。進而較佳為X、Y、Z處於由將以下組成(X=68、Y=11、Z=21)、(X=35、Y=11、Z=54)、(X=21、Y=25、Z=54)、(X=21、Y=39、Z=40)、(X=36、Y=39、Z=25)、(X=48、Y=31、Z=21)之各點連結而成之線段所圍成之範圍(區域R")內。例如,區域R'及R"與區域R相比,除了獲得較高之耐Sn反應性以外,還能夠獲得較高之加工性。The first plunger 21 is formed using an alloy material. In the alloy material, when the weight ratio of silver (Ag) is set to X weight %, the weight ratio of copper (Cu) is set to Y weight %, and the weight ratio of platinum (Pt) is set to Z weight %, X, Y, and Z are within a composition range (region R) surrounded by a line segment connecting points of the following compositions (X=75, Y=5, Z=20), (X=20, Y=5, Z=75), (X=5, Y=20, Z=75), (X=5, Y=60, Z=35), and (X=75, Y=13, Z=12) and including the values on the line segment, and the remainder is composed of inevitable impurities. Regarding the composition range, it is preferred that X, Y, and Z are within the range (region R') enclosed by the line segments connecting the points of the following compositions (X=75, Y=13, Z=12), (X=75, Y=5, Z=20), (X=60, Y=5, Z=35), (X=27, Y=13, Z=60), (X=5, Y=35, Z=60), (X=5, Y=40, Z=55), and (X=35, Y=40, Z=25). It is further preferred that X, Y, and Z are within a range (region R") enclosed by a line segment connecting the following points: (X=68, Y=11, Z=21), (X=35, Y=11, Z=54), (X=21, Y=25, Z=54), (X=21, Y=39, Z=40), (X=36, Y=39, Z=25), and (X=48, Y=31, Z=21). For example, regions R' and R" can obtain higher Sn reaction resistance and higher processability than region R.
又,合金材料亦可以包含10重量%以下之範圍內之Pd。又,合金材料亦可以包含0.01重量%以上且5.0重量%以下之範圍內之銦(In)。此時,合金材料可以包含Pd與In兩者,亦可以包含其中任一者。 進而,合金材料亦可以包含由鎳(Ni)、鎢(W)、鈦(Ti)、鈷(Co)、鋁(Al)、錫(Sn)及銥(Ir)構成之微量元素群中之至少一種,且合計含量為0.01重量%以上且3.0重量%以下之範圍內。於本實施方式中,微量元素是指耐Sn反應性較高,使硬度提高或使晶粒微細化之元素。 Furthermore, the alloy material may also contain Pd within a range of 10 wt% or less. Furthermore, the alloy material may also contain indium (In) within a range of 0.01 wt% or more and 5.0 wt% or less. In this case, the alloy material may contain both Pd and In, or may contain either one of them. Furthermore, the alloy material may also contain at least one of the trace element group consisting of nickel (Ni), tungsten (W), titanium (Ti), cobalt (Co), aluminum (Al), tin (Sn) and iridium (Ir), and the total content is within a range of 0.01 wt% or more and 3.0 wt% or less. In this embodiment, the trace element refers to an element that has a higher resistance to Sn reactivity, increases hardness or refines grains.
此處,若合金材料包含多於75重量%之Ag,則耐Sn反應性降低。與此相對,若Ag未達5重量%,則電阻值增大。 又,若合金材料包含多於60重量%之Cu,則有高溫(此處為175℃左右)下易被氧化而導致外觀不良之虞。與此相對,若Cu未達5重量%,則析出相變少,硬度降低。 又,若合金材料包含多於75重量%之Pt,則Pt之電阻高於Ag及Cu,故而作為合金材料之電阻值增大。與此相對,若Pt未達10重量%,則析出相變少,硬度降低。 又,合金材料藉由包含上述範圍內之In而硬度變高,對抗機械磨損之強度提高。 Here, if the alloy material contains more than 75 wt% of Ag, the resistance to Sn reactivity decreases. On the other hand, if Ag does not reach 5 wt%, the resistance value increases. Also, if the alloy material contains more than 60 wt% of Cu, there is a risk of being easily oxidized at high temperatures (here, about 175°C) and causing poor appearance. On the other hand, if Cu does not reach 5 wt%, the precipitation phase becomes less and the hardness decreases. Also, if the alloy material contains more than 75 wt% of Pt, the resistance of Pt is higher than that of Ag and Cu, so the resistance value of the alloy material increases. On the other hand, if Pt does not reach 10 wt%, the precipitation phase becomes less and the hardness decreases. Also, the alloy material becomes harder by containing In within the above range, and the strength against mechanical wear is improved.
圖3係用於對本發明之一實施方式中之銅(Cu)、銀(Ag)及鉑(Pt)之含有比進行說明的圖。作為形成第一柱塞21之合金材料,Ag-Cu-Pt之組成設為圖3所示之區域R內之組合。Fig. 3 is a diagram for explaining the content ratio of copper (Cu), silver (Ag) and platinum (Pt) in one embodiment of the present invention. As the alloy material forming the first plug 21, the composition of Ag-Cu-Pt is set to be a combination within the region R shown in Fig. 3.
第二柱塞22呈尖細之前端形狀,該前端與電路基板200之電極接觸。第二柱塞22藉由螺旋彈簧23之伸縮作用而能夠於軸線方向上移動,藉由螺旋彈簧23之彈力而被施加向電路基板200方向之力,從而與電路基板200之電極接觸。The second plunger 22 has a pointed front end, which contacts the electrode of the circuit board 200. The second plunger 22 can move in the axial direction by the expansion and contraction of the coil spring 23, and is applied with a force toward the circuit board 200 by the elastic force of the coil spring 23, thereby contacting the electrode of the circuit board 200.
螺旋彈簧23具有:緊密捲繞之緊密捲繞部23a,其安裝於第一柱塞21之基端側;及稀疏捲繞部23b,其安裝於第二柱塞22之基端側,且隔開預設間隔而捲繞。螺旋彈簧23例如是將一根導電性線材捲繞而成。The coil spring 23 has a tightly wound portion 23a which is mounted on the base end side of the first plunger 21 and a sparsely wound portion 23b which is mounted on the base end side of the second plunger 22 and is wound at predetermined intervals. The coil spring 23 is formed by winding a conductive wire, for example.
緊密捲繞部23a之端部例如被壓入至第一柱塞21之基端側。另一方面,稀疏捲繞部23b之端部被壓入至第二柱塞22之基端側。又,第一柱塞21及第二柱塞22與螺旋彈簧23係藉由彈簧之捲繞力及/或焊接而接合。藉由稀疏捲繞部23b之伸縮,探針2於軸線方向上伸縮。The end of the tightly wound portion 23a is pressed, for example, into the base end side of the first plunger 21. On the other hand, the end of the sparsely wound portion 23b is pressed into the base end side of the second plunger 22. The first plunger 21 and the second plunger 22 are joined to the coil spring 23 by the winding force of the spring and/or welding. The probe 2 is extended and contracted in the axial direction by the extension and contraction of the sparsely wound portion 23b.
探針座3係使用樹脂、可加工陶瓷、矽等絕緣性材料形成,由圖2之位於上側之第一構件31與位於下側之第二構件32積層而成。於第一構件31及第二構件32分別形成相同數量之用於收容複數個探針2之座孔33及座孔34,用於收容探針2之座孔33及座孔34係以彼此之軸線一致之方式形成。座孔33及座孔34之形成位置根據半導體積體電路100之配線圖案而定。The probe holder 3 is formed of insulating materials such as resin, machinable ceramics, and silicon, and is formed by laminating the first component 31 located on the upper side and the second component 32 located on the lower side in FIG. The first component 31 and the second component 32 are respectively formed with the same number of seat holes 33 and seat holes 34 for accommodating a plurality of probes 2, and the seat holes 33 and seat holes 34 for accommodating the probes 2 are formed in a manner that their axes are consistent with each other. The formation positions of the seat holes 33 and the seat holes 34 are determined according to the wiring pattern of the semiconductor integrated circuit 100.
座孔33及座孔34均呈沿著貫通方向直徑有所不同之帶有台階之孔狀。即,座孔33包含小徑部33a及大徑部33b,小徑部33a於探針座3之上端面具有開口,大徑部33b之直徑較該小徑部33a大。另一方面,座孔34包含小徑部34a及大徑部34b,小徑部34a於探針座3之下端面具有開口,大徑部34b之直徑較該小徑部34a大。該等座孔33及座孔34之形狀根據所收容之探針2之構成而定。The seat hole 33 and the seat hole 34 are both stepped holes with different diameters along the through direction. That is, the seat hole 33 includes a small diameter portion 33a and a large diameter portion 33b, the small diameter portion 33a has an opening on the upper end surface of the probe seat 3, and the diameter of the large diameter portion 33b is larger than the small diameter portion 33a. On the other hand, the seat hole 34 includes a small diameter portion 34a and a large diameter portion 34b, the small diameter portion 34a has an opening on the lower end surface of the probe seat 3, and the diameter of the large diameter portion 34b is larger than the small diameter portion 34a. The shapes of the seat holes 33 and the seat holes 34 are determined according to the structure of the probe 2 accommodated.
圖4係表示使用探針座3檢查半導體積體電路100時之狀態之圖。檢查半導體積體電路100時,藉由來自半導體積體電路100及電路基板200之接觸載荷,螺旋彈簧23呈沿著長度方向被壓縮之狀態。檢查時自電路基板200供給至半導體積體電路100之檢查用信號,自電路基板200之電極201經由探針2之第二柱塞22、緊密捲繞部23a、第一柱塞21而到達半導體積體電路100之連接用電極101。FIG4 is a diagram showing the state of inspecting the semiconductor integrated circuit 100 using the probe holder 3. When inspecting the semiconductor integrated circuit 100, the coil spring 23 is compressed in the length direction by the contact load from the semiconductor integrated circuit 100 and the circuit substrate 200. During the inspection, the inspection signal supplied from the circuit substrate 200 to the semiconductor integrated circuit 100 passes from the electrode 201 of the circuit substrate 200 through the second plunger 22 of the probe 2, the tightly wound portion 23a, and the first plunger 21 to reach the connection electrode 101 of the semiconductor integrated circuit 100.
此處,參照圖5及圖6對與BGA反覆接觸之第一柱塞21之前端磨損進行說明。圖5係對使用前與反覆使用後之接觸式探針之前端部300之形狀進行說明的圖。圖6係用於對Pd與Sn之反應進行說明之圖。Here, the wear of the front end of the first plunger 21 repeatedly contacting the BGA is described with reference to Figures 5 and 6. Figure 5 is a diagram for explaining the shape of the front end portion 300 of the contact probe before use and after repeated use. Figure 6 is a diagram for explaining the reaction between Pd and Sn.
若先前之包含相對較多之Pd之柱塞例如於175℃左右之高溫下進行檢查時與BGA反覆接觸,則前端會磨損,形狀發生變化。例如,圖5之(a)所示之狀態之前端部300因反覆使用而前端磨損,伴隨磨損而產生變形(參照圖5之(b))。If the plunger containing relatively more Pd is repeatedly in contact with the BGA during inspection at a high temperature of about 175°C, the tip will be worn and the shape will change. For example, the tip 300 shown in FIG5(a) is worn due to repeated use, and deformation occurs along with the wear (see FIG5(b)).
於因柱塞與BGA接觸而導致前端磨損之情形時,與機械磨損相比,焊料中之錫(Sn)與柱塞中之Pd發生反應而產生之化學磨損之影響更大。如圖6所示,此時發生之化學反應為焊料L S中之Sn與柱塞L P中之Pd之反應,因焊料與柱塞之間形成Sn-Pd層L R,而發生柱塞之擴散磨損。該擴散磨損會導致柱塞前端變形。 When the plunger contacts the BGA and causes the front end to wear, the chemical wear caused by the reaction between the tin (Sn) in the solder and the Pd in the plunger is more important than the mechanical wear. As shown in Figure 6, the chemical reaction at this time is the reaction between the Sn in the solder LS and the Pd in the plunger LP . Because the Sn-Pd layer LR is formed between the solder and the plunger, the diffuse wear of the plunger occurs. This diffuse wear will cause the front end of the plunger to deform.
對此,於本實施方式中,使用採用如下合金材料製作之第一柱塞21與由焊料製成之電極接觸,上述合金材料為,將銀(Ag)之重量比設為X重量%,將銅(Cu)之重量比設為Y重量%,將鉑(Pt)之重量比設為Z重量%時,X、Y、Z處於由將以下組成(X=75、Y=5、Z=20)、(X=20、Y=5、Z=75)、(X=5、Y=20、Z=75)、(X=5、Y=60、Z=35)、(X=75、Y=13、Z=12)之各點連結而成之線段所圍成且包含線段上之值的組成範圍內,其餘部分由不可避免之雜質構成。藉由採用該合金材料,能夠抑制與焊料中之Sn發生反應。根據本實施方式,耐Sn反應性較高,能夠抑制化學磨損。 實施例 In this regard, in the present embodiment, a first plunger 21 made of the following alloy material is used in contact with an electrode made of solder. The alloy material is, when the weight ratio of silver (Ag) is set to X weight %, the weight ratio of copper (Cu) is set to Y weight %, and the weight ratio of platinum (Pt) is set to Z weight %, X, Y, and Z are in a composition range surrounded by a line segment connecting the points of the following compositions (X=75, Y=5, Z=20), (X=20, Y=5, Z=75), (X=5, Y=20, Z=75), (X=5, Y=60, Z=35), and (X=75, Y=13, Z=12) and including the values on the line segment, and the remainder is composed of inevitable impurities. By using this alloy material, it is possible to suppress the reaction with Sn in the solder. According to this embodiment, the Sn reactivity resistance is higher and chemical wear can be suppressed. Example
以下,對本發明之實施例進行說明。再者,本發明並不限定於該等實施例。The following describes the embodiments of the present invention. However, the present invention is not limited to the embodiments.
耐Sn反應性試驗 首先,進行耐Sn反應性試驗,確認與Sn發生反應而形成之Sn反應層之大小。該耐Sn反應性試驗中,於175℃下使純金屬與片狀焊料接觸,施加規定載荷並加以保持,測量是否形成Sn反應層或該層之厚度。此處,本試驗中所使用之純金屬為鉑(Pt)、銀(Ag)、銅(Cu)、鈀(Pd)。 Sn reactivity test First, the Sn reactivity test is performed to confirm the size of the Sn reaction layer formed by the reaction with Sn. In the Sn reactivity test, pure metal is brought into contact with sheet solder at 175°C, a specified load is applied and maintained, and whether a Sn reaction layer is formed or the thickness of the layer is measured. Here, the pure metals used in this test are platinum (Pt), silver (Ag), copper (Cu), and palladium (Pd).
圖7係表示鉑(Pt)之耐Sn反應性試驗之結果之圖。圖8係表示銀(Ag)之耐Sn反應性試驗之結果之圖。圖9係表示銅(Cu)之耐Sn反應性試驗之結果之圖。圖10係表示鈀(Pd)之耐Sn反應性試驗之結果之圖。耐Sn反應性試驗之結果為,使用Pt時,於Pt層M Pt與焊料層M S之間未產生混合層(Sn反應層)。另一方面,使用Ag、Cu及Pd時,於Ag層M Ag、Cu層M Cu、Pd層M Pd與焊料層M S之間分別形成混合層(Sn反應層)M MIX,使用Ag時之厚度R Ag為4 μm,使用Cu時之厚度R Cu為2 μm,使用Pd時之厚度R Pd為54 μm。根據圖7~圖10之試驗結果獲得了如下結果:Pt對抗Sn之耐Sn反應性最高,接著,耐Sn反應性由高到低依次為Cu、Ag。 FIG. 7 is a graph showing the results of the Sn reactivity test of platinum (Pt). FIG. 8 is a graph showing the results of the Sn reactivity test of silver (Ag). FIG. 9 is a graph showing the results of the Sn reactivity test of copper (Cu). FIG. 10 is a graph showing the results of the Sn reactivity test of palladium (Pd). The results of the Sn reactivity test showed that when Pt was used, a mixed layer (Sn reaction layer) was not generated between the Pt layer MPt and the solder layer MS . On the other hand, when Ag, Cu and Pd are used, mixed layers (Sn reaction layers) M MIX are formed between the Ag layer M Ag , Cu layer M Cu , Pd layer M Pd and solder layer MS, respectively. When Ag is used, the thickness R Ag is 4 μm, when Cu is used, the thickness R Cu is 2 μm, and when Pd is used, the thickness R Pd is 54 μm. Based on the test results of Figures 7 to 10, the following results were obtained: Pt has the highest resistance to Sn reactivity against Sn, followed by Cu and Ag in descending order of Sn reactivity resistance.
實施例1~21、比較例1、2 製作由表1所示之各組成之合金構成之試驗片。試驗片係前端呈尖細形狀之棒狀構件。實施例1~21之試驗片係耐Sn反應性及導電性較高之以Ag及Cu為主要元素者、或以Pt為主要元素者。又,對各試驗片實施維氏硬度之測定、耐磨性試驗及電阻試驗。維氏硬度係將載荷設為300 gf,將保持時間設為15秒而測定。 Examples 1 to 21, Comparative Examples 1 and 2 Test pieces made of alloys of the compositions shown in Table 1 were prepared. The test pieces were rod-shaped components with a pointed tip. The test pieces of Examples 1 to 21 were those with high Sn reactivity resistance and conductivity, with Ag and Cu as the main elements, or with Pt as the main element. In addition, each test piece was subjected to Vickers hardness measurement, wear resistance test, and resistance test. The Vickers hardness was measured by setting the load to 300 gf and the holding time to 15 seconds.
耐磨性(耐錫性)試驗 對各實施例進行上述耐Sn反應性試驗,於Sn反應層(擴散層)較比較例2中之Pd合金之Sn反應層薄之情形時,耐錫性設為良好(○),於Sn反應層(擴散層)之厚度為Pd合金之Sn反應層之厚度以上之情形時,耐錫性設為不良(×)。 Wear resistance (tin resistance) test The above Sn reaction resistance test was performed on each embodiment. When the Sn reaction layer (diffusion layer) was thinner than the Sn reaction layer of the Pd alloy in Comparative Example 2, the tin resistance was set to good (○), and when the thickness of the Sn reaction layer (diffusion layer) was greater than the thickness of the Sn reaction layer of the Pd alloy, the tin resistance was set to poor (×).
加工性評估 利用輥槽壓延機將試驗片加工成四稜柱狀,於壓延後之四稜柱截面之一邊之長度能夠加工至6.1 mm以下的情形時,加工性設為特別良好(◎),於壓延後之四稜柱截面之一邊之長度能夠加工成大於6.1 mm且為6.6 mm以下的情形時,加工性設為良好(○),能夠加工之壓延後之四稜柱截面之一邊之長度大於6.6 mm的情形時,加工性設為稍好(△)。 Processability evaluation The test piece was processed into a four-prism shape using a roller calender. When the length of one side of the four-prism section after rolling can be processed to less than 6.1 mm, the processability is set to be particularly good (◎), when the length of one side of the four-prism section after rolling can be processed to more than 6.1 mm and less than 6.6 mm, the processability is set to be good (○), and when the length of one side of the four-prism section after rolling can be processed to more than 6.6 mm, the processability is set to be slightly good (△).
於表1中示出各實施例1~24及比較例1、2之組成及試驗結果。
圖11係表示實施例1之接觸式探針之耐磨性試驗之結果的圖。圖12係表示實施例2之接觸式探針之耐磨性試驗之結果的圖。圖13係表示實施例21之接觸式探針之耐磨性試驗之結果的圖。圖14係表示比較例2之接觸式探針之耐磨性試驗之結果的圖。圖11~圖14示出拍攝試驗片之前端所得的上表面之圖像(a)及拍攝試驗片之側面所得的圖像(b)。於耐磨性試驗中,測定試驗片之前端面之潰縮寬度作為磨損寬度,該磨損寬度越小,則可以評估為磨損越小。FIG. 11 is a diagram showing the results of the wear resistance test of the contact probe of Example 1. FIG. 12 is a diagram showing the results of the wear resistance test of the contact probe of Example 2. FIG. 13 is a diagram showing the results of the wear resistance test of the contact probe of Example 21. FIG. 14 is a diagram showing the results of the wear resistance test of the contact probe of Comparative Example 2. FIG. 11 to FIG. 14 show an image of the upper surface obtained by photographing the front end of the test piece (a) and an image obtained by photographing the side surface of the test piece (b). In the wear resistance test, the contraction width of the front end surface of the test piece is measured as the wear width, and the smaller the wear width is, the smaller the wear can be evaluated.
實施例1、2、21與比較例2相比,維氏硬度較小,另一方面,如圖11~圖14所示,實施例1、2、21之磨損寬度H 1~H 3小於比較例2之磨損寬度H 4。因此,可以認為實施例1、2、21之組成與比較例2之組成相比具有耐磨性(耐錫性)。至於實施例1、2、21與比較例2相比耐磨性良好之原因,可例舉Pd之添加量較少。進而認為,比較例1之組成中Ag所占之比率較高,導致耐磨性(耐錫性)降低。根據該等結果,可以認為實施例1~21與比較例1、2之組成相比具有耐磨性(耐錫性)。 又,可以認為添加In之實施例22、24與Ag及Cu之比率相同之實施例2之組成相比硬度較高,既維持了耐磨性(耐錫性)、加工性,又具有較高之硬度。又,可以認為於添加In之實施例23中,與Ag及Cu之比率相同之實施例3之組成相比硬度亦較高,既維持了耐磨性(耐錫性)、加工性,又具有較高之硬度。 Compared with Comparative Example 2, Examples 1, 2, and 21 have lower Vickers hardness. On the other hand, as shown in FIGS. 11 to 14 , the wear widths H 1 to H 3 of Examples 1, 2, and 21 are smaller than the wear width H 4 of Comparative Example 2. Therefore, it can be considered that the compositions of Examples 1, 2, and 21 have better wear resistance (tin resistance) than the composition of Comparative Example 2. As for the reason why Examples 1, 2, and 21 have better wear resistance than Comparative Example 2, the amount of added Pd is smaller. It is further considered that the ratio of Ag in the composition of Comparative Example 1 is higher, resulting in a decrease in wear resistance (tin resistance). Based on these results, it can be considered that Examples 1 to 21 have wear resistance (tin resistance) compared with the compositions of Comparative Examples 1 and 2. In addition, it can be considered that Examples 22 and 24 to which In is added have higher hardness than the composition of Example 2 in which the ratio of Ag to Cu is the same, and have higher hardness while maintaining wear resistance (tin resistance) and processability. In addition, it can be considered that in Example 23 to which In is added, the hardness is also higher than the composition of Example 3 in which the ratio of Ag to Cu is the same, and have higher hardness while maintaining wear resistance (tin resistance) and processability.
以上,對用於實施本發明之方式進行了說明,但本發明不應僅由上述實施方式限定。於實施方式中,以接觸式探針為例進行了說明,但例如只要是與包含Sn之零件接觸之電氣、電子機器用之構件,便可以應用本發明之合金材料。此時,該構件只要是至少與零件接觸之部分由本發明之合金材料形成即可。The above is a description of the method for implementing the present invention, but the present invention should not be limited to the above-mentioned embodiment. In the embodiment, the contact probe is used as an example for description, but for example, as long as it is a component for electrical or electronic equipment that contacts a part containing Sn, the alloy material of the present invention can be applied. In this case, the component only needs to be formed of the alloy material of the present invention at least in the part that contacts the part.
又,實施方式中所說明之探針2之結構僅為一例,能夠將上述合金材料應用於以往已知之各種探針。例如,不限於如上所述之由柱塞及螺旋彈簧構成之探針,亦可以為具備管構件之探針、彈簧針、或者將金屬線彎曲成弓形而獲得載荷之線型探針或將電接點彼此連接之連接端子(連接器)。Furthermore, the structure of the probe 2 described in the embodiment is only an example, and the above alloy material can be applied to various known probes. For example, it is not limited to the probe composed of the plunger and the coil spring as described above, but can also be a probe with a tube member, a spring needle, or a linear probe that obtains a load by bending a metal wire into a bow shape, or a connection terminal (connector) that connects electrical contacts to each other.
如此,本發明可以包含此處未記載之各種實施方式等,能夠於不脫離由申請專利範圍特定之技術思想之範圍內實施各種設計變更等。Thus, the present invention may include various implementation methods not described herein, and various design changes may be implemented within the scope of the technical concept specified by the patent application scope.
如以上所說明,本發明之合金材料及接觸式探針具有較高之耐Sn反應性,適於抑制化學磨損。As described above, the alloy material and contact probe of the present invention have high resistance to Sn reaction and are suitable for inhibiting chemical wear.
1:探針單元 2:接觸式探針(探針) 3:探針座 4:座構件 21:第一柱塞 21a:前端部 22:第二柱塞 23:螺旋彈簧 23a:緊密捲繞部 23b:稀疏捲繞部 31:第一構件 32:第二構件 33、34:座孔 33a:小徑部 33b:大徑部 34a:小徑部 34b:大徑部 100:半導體積體電路 101:連接用電極 200:電路基板 201:電極 300:前端部 H 1:磨損寬度 H 2:磨損寬度 H 3:磨損寬度 H 4:磨損寬度 L R:Sn-Pd層 L S:焊料 L P:柱塞 M Ag:Ag層 M Cu:Cu層 M MIX:混合層(Sn反應層) M S:焊料層 M Pd:Pd層 M Pt:Pt層 R:區域 R':區域 R":區域 R Ag:厚度 R Cu:厚度 R Pd:厚度 1: Probe unit 2: Contact probe (probe) 3: Probe seat 4: Seat member 21: First plunger 21a: Front end 22: Second plunger 23: Coil spring 23a: Closely wound portion 23b: Sparsely wound portion 31: First member 32: Second member 33, 34: Seat hole 33a: Small diameter portion 33b: Large diameter portion 34a: Small diameter portion 34b: Large diameter portion 100: Semiconductor integrated circuit 101: Connection electrode 200: Circuit board 201: Electrode 300: Front end H1 : Wear width H2 : Wear width H3 : Wear width H4 : Wear width LR : Sn-Pd layer LS : Solder LP : Plug M Ag : Ag layer M Cu : Cu layer M MIX : Mixed layer (Sn reaction layer) M S : Solder layer M Pd : Pd layer M Pt : Pt layer R : Region R': Region R": Region R Ag : Thickness R Cu : Thickness R Pd : Thickness
圖1係表示本發明之一實施方式之探針單元之構成的立體圖。 圖2係表示本發明之一實施方式之探針單元之主要部分之構成的剖視圖。 圖3係用於對本發明之一實施方式中之銅(Cu)、銀(Ag)及鉑(Pt)之含有比進行說明的圖。 圖4係表示檢查半導體積體電路時探針單元之主要部分之構成之局部剖視圖。 圖5係對使用前與反覆使用後之接觸式探針之前端部之形狀進行說明的圖。 圖6係用於對Pd與Sn之反應進行說明之圖。 圖7係表示鉑(Pt)之耐Sn反應性試驗之結果之圖。 圖8係表示銀(Ag)之耐Sn反應性試驗之結果之圖。 圖9係表示銅(Cu)之耐Sn反應性試驗之結果之圖。 圖10係表示鈀(Pd)之耐Sn反應性試驗之結果之圖。 圖11係表示實施例1之接觸式探針之耐磨性試驗之結果的圖。 圖12係表示實施例2之接觸式探針之耐磨性試驗之結果的圖。 圖13係表示實施例21之接觸式探針之耐磨性試驗之結果的圖。 圖14係表示比較例2之接觸式探針之耐磨性試驗之結果的圖。 FIG. 1 is a perspective view showing the structure of a probe unit in one embodiment of the present invention. FIG. 2 is a cross-sectional view showing the structure of the main part of the probe unit in one embodiment of the present invention. FIG. 3 is a view for explaining the content ratio of copper (Cu), silver (Ag) and platinum (Pt) in one embodiment of the present invention. FIG. 4 is a partial cross-sectional view showing the structure of the main part of the probe unit when inspecting a semiconductor integrated circuit. FIG. 5 is a view for explaining the shape of the front end of the contact probe before use and after repeated use. FIG. 6 is a view for explaining the reaction between Pd and Sn. FIG. 7 is a view showing the results of the Sn reactivity test of platinum (Pt). FIG8 is a graph showing the results of the Sn reactivity test of silver (Ag). FIG9 is a graph showing the results of the Sn reactivity test of copper (Cu). FIG10 is a graph showing the results of the Sn reactivity test of palladium (Pd). FIG11 is a graph showing the results of the wear resistance test of the contact probe of Example 1. FIG12 is a graph showing the results of the wear resistance test of the contact probe of Example 2. FIG13 is a graph showing the results of the wear resistance test of the contact probe of Example 21. FIG14 is a graph showing the results of the wear resistance test of the contact probe of Comparative Example 2.
Claims (7)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022211785 | 2022-12-28 | ||
JP2022-211785 | 2022-12-28 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW202449182A true TW202449182A (en) | 2024-12-16 |
TWI874046B TWI874046B (en) | 2025-02-21 |
Family
ID=91717504
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW112148790A TWI874046B (en) | 2022-12-28 | 2023-12-14 | Alloy materials and contact probes |
Country Status (3)
Country | Link |
---|---|
JP (1) | JPWO2024142878A1 (en) |
TW (1) | TWI874046B (en) |
WO (1) | WO2024142878A1 (en) |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61281837A (en) * | 1985-06-07 | 1986-12-12 | Tanaka Kikinzoku Kogyo Kk | Platinum alloy for ornament |
JPH03100159A (en) * | 1989-09-12 | 1991-04-25 | Agency Of Ind Science & Technol | Platinum alloy to be brightly blackened and method for blackening the same |
JP3347665B2 (en) * | 1997-11-27 | 2002-11-20 | 京セラ株式会社 | Silver alloy for ornaments |
JP3228730B2 (en) * | 1999-07-29 | 2001-11-12 | 京セラ株式会社 | Decorative silver alloy |
JP4344439B2 (en) * | 1999-10-29 | 2009-10-14 | 京セラ株式会社 | Silver alloy |
TW201009850A (en) * | 2008-08-28 | 2010-03-01 | King Yuan Electronics Co Ltd | An alloy material for electrical contact and probe thereof |
EP3177747B1 (en) * | 2014-11-13 | 2018-01-10 | C. Hafner GmbH + Co. KG | Amorphously solidifying noble metal-based noble metal alloy |
JP6647075B2 (en) * | 2016-02-19 | 2020-02-14 | 日本発條株式会社 | Alloy materials, contact probes and connection terminals |
CN114318048A (en) * | 2021-12-16 | 2022-04-12 | 镇江市镇特合金材料有限公司 | Copper alloy for conductive tile with high welding performance and preparation method thereof |
-
2023
- 2023-12-11 WO PCT/JP2023/044187 patent/WO2024142878A1/en active Application Filing
- 2023-12-11 JP JP2024567410A patent/JPWO2024142878A1/ja active Pending
- 2023-12-14 TW TW112148790A patent/TWI874046B/en active
Also Published As
Publication number | Publication date |
---|---|
JPWO2024142878A1 (en) | 2024-07-04 |
WO2024142878A1 (en) | 2024-07-04 |
TWI874046B (en) | 2025-02-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9804198B2 (en) | Alloy material, contact probe, and connection terminal | |
JP6112792B2 (en) | Method of using electrical contact and electrical contact | |
JP6647075B2 (en) | Alloy materials, contact probes and connection terminals | |
JP2008021501A (en) | WIRING ELECTRICAL COMPONENT, TERMINAL CONNECTION UNIT, AND WIRING ELECTRIC COMPONENT PRODUCING METHOD | |
JP6728057B2 (en) | Alloy materials, contact probes and connection terminals | |
JP6550457B2 (en) | Alloy material, contact probe and connection terminal | |
US20100176833A1 (en) | Probe pin | |
KR20060096250A (en) | Probe Pin Material | |
CN113223754B (en) | Clad wire and method for producing clad wire | |
TWI874046B (en) | Alloy materials and contact probes | |
EP2436790B1 (en) | Silver alloy that is appropriately usable in probe pins having excellent contact resistance and excellent anti-stain properties | |
TWI305839B (en) | Contact-making apparatus and method for production of at least one contact element of a contact-making apparatus | |
JP5966506B2 (en) | Manufacturing method of electrical contacts | |
JP2005114393A (en) | Contact probe with lead wire and manufacturing method thereof | |
EP4317491A1 (en) | Alloy material for probe pins | |
JP7008529B2 (en) | Lead wires for inspection equipment, lead wire mounting parts, and inspection jigs | |
KR20250065333A (en) | Probe | |
JPH05203670A (en) | Contact probe | |
CN117015625A (en) | Alloy material for probe | |
WO2024053552A1 (en) | Alloy material for probe pins | |
HK1210232B (en) | Alloy material, contact probe, and connection terminal | |
JP2007141505A (en) | Flexible flat cable terminal part |