[go: up one dir, main page]

TW202448435A - Substituted thiadiazolyl compounds - Google Patents

Substituted thiadiazolyl compounds Download PDF

Info

Publication number
TW202448435A
TW202448435A TW113107083A TW113107083A TW202448435A TW 202448435 A TW202448435 A TW 202448435A TW 113107083 A TW113107083 A TW 113107083A TW 113107083 A TW113107083 A TW 113107083A TW 202448435 A TW202448435 A TW 202448435A
Authority
TW
Taiwan
Prior art keywords
compound
mmol
alkyl
membered
ring
Prior art date
Application number
TW113107083A
Other languages
Chinese (zh)
Inventor
艾伯斯 亞多利
薩維爾 巴別
艾德爾哈雷克 班傑瑪
安東尼 卡隆
丹尼爾 蓋
權昊 洪
聖馬克 拉比爾
彥彬 劉
萊恩 希瑪德
希宜德 泰摩瑞
亞卡迪 維斯伯格
Original Assignee
美商賽堤爾醫療公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商賽堤爾醫療公司 filed Critical 美商賽堤爾醫療公司
Publication of TW202448435A publication Critical patent/TW202448435A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
    • C07D471/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/14Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing three or more hetero rings

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

This application is directed to inhibitors of DNA Polymerase Theta (Polθ) activity represented by the following structural formula,

Description

經取代之噻二唑基化合物Substituted thiadiazole compounds

在此揭露的是抑制DNA聚合酶θ(Polθ)活性,尤其抑制Polθ之解旋酶結構域的活性之特定經取代的噻二唑基化合物。 相關申請案的交互參照 此申請案主張於2023年2月28日申請之美國臨時申請案號63/448,768的優先權及權益,在此以引用方式納入其整體內容。 Disclosed herein are specific substituted thiadiazolyl compounds that inhibit DNA polymerase θ (Polθ) activity, particularly the activity of the helicase domain of Polθ. Cross-reference to related applications This application claims priority to and the benefit of U.S. Provisional Application No. 63/448,768, filed on February 28, 2023, the entire contents of which are hereby incorporated by reference.

作為外源性與內源性DNA損傷劑的結果,可出現DNA損傷。為了維持基因體穩定性並限制DNA損傷的進展,細胞發展出DNA損傷反應(DNA damage response, DDR)機制。雙股斷裂(Double-strand breaks, DSBs)由兩個主要途徑所修復:同源重組(homologous recombination, HR)與非同源性末端接合(non-homologous end-joining, NHEJ)。當NHEJ或HR受損時,替代性末端接合(alternative end-joining, alt-EJ),亦已知為微同源性末端接合(microhomology-mediated end-joining, MMEJ)途徑能夠作為備用修復途徑。 DNA聚合酶θ(Polθ)是由POLQ基因所編碼的A家族聚合酶。其為展現出C末端DNA聚合酶結構域(Polθ-pol)、中間結構域、與N末端解旋酶結構域(Polθ-hel)的多功能性蛋白質。其為促進高等生物體中MMEJ的錯誤傾向(error-prone)聚合酶。Polθ-hel結構域是SF2解旋酶的一個成員。在其具有能夠從單股DNA移除複製蛋白(Replication Protein A, RPA)之單股DNA依賴性ATP酶活性的同時,在輻射暴露後其可藉由干擾Rad51核蛋白複合體形成而抑制HR途徑。Polθ的這個抗重組酶活性促進alt-EJ途徑。 Polθ的解旋酶結構域能夠橋接造成微同源性介導之股黏合的兩個單股DNA序列。具體地,Polθ藉由採用此黏合活性促進alt-EJ途徑中的末端接合,即使當單股DNA突出(overhangs)具有有限的同源性時。在重黏合過程期間,Rad51交互作用之後伴隨ATP酶介導之Rad51從DSB損傷位點之置換。一旦黏合後,DNA的引子股(primer strand)被Polθ的聚合酶結構域延伸。 已經顯示出具有HR、NHEJ缺失或共濟失調微血管擴張症候群突變(ataxia telangiectasia-mutated, ATM)的癌症細胞係高度依賴於Polθ表達。Polθ在正常細胞中的表達受限,但在多種癌症細胞中過表達。Polθ的缺失能夠損害細胞活力並能夠導致癌症細胞的合成致死。因此,Polθ是用於含有DNA修復缺陷之癌症的新穎合成致死療法之有興趣目標。 基於在癌症細胞中Polθ的過表達之間的關聯,存在對抑制Polθ解旋酶活性之化合物的需求。本申請案解決了此需求。 DNA damage can occur as a result of exogenous and endogenous DNA damaging agents. To maintain genome stability and limit the progression of DNA damage, cells have developed DNA damage response (DDR) mechanisms. Double-strand breaks (DSBs) are repaired by two major pathways: homologous recombination (HR) and non-homologous end-joining (NHEJ). When NHEJ or HR is impaired, the alternative end-joining (alt-EJ), also known as microhomology-mediated end-joining (MMEJ) pathway can serve as a backup repair pathway. DNA polymerase θ (Polθ) is an A-family polymerase encoded by the POLQ gene. It is a multifunctional protein that exhibits a C-terminal DNA polymerase domain (Polθ-pol), an intermediate domain, and an N-terminal helicase domain (Polθ-hel). It is an error-prone polymerase that promotes MMEJ in higher organisms. The Polθ-hel domain is a member of the SF2 helicase. While it has single-strand DNA-dependent ATPase activity that can remove replication protein A (RPA) from single-stranded DNA, it can inhibit the HR pathway by interfering with the formation of the Rad51 nucleoprotein complex after radiation exposure. This anti-recombinase activity of Polθ promotes the alt-EJ pathway. The helicase domain of Polθ is able to bridge two single-stranded DNA sequences resulting in microhomology-mediated strand adhesion. Specifically, Polθ promotes end joining in the alt-EJ pathway by employing this adhesion activity even when the single-stranded DNA overhangs have limited homology. During the re-adhesion process, Rad51 interaction is followed by ATPase-mediated displacement of Rad51 from the DSB damage site. Once annealed, the primer strand of the DNA is extended by the polymerase domain of Polθ. Cancer cells with HR, NHEJ deficiency, or ataxia telangiectasia-mutated (ATM) have been shown to be highly dependent on Polθ expression. Polθ has limited expression in normal cells but is overexpressed in a variety of cancer cells. Loss of Polθ can impair cell viability and can lead to synthetic lethality in cancer cells. Therefore, Polθ is an interesting target for novel synthetic lethal therapies for cancers with DNA repair defects. Based on the association between overexpression of Polθ in cancer cells, there is a need for compounds that inhibit Polθ helicase activity. This application addresses this need.

在此揭露的是抑制DNA聚合酶θ(Polθ)活性,尤其抑制Polθ之解旋酶結構域的活性之特定經取代的噻二唑基化合物。 在一個態樣中,本文所述的是一種式I化合物: 或其醫藥上可接受的鹽或溶劑合物,其中本文所述環A、Ar、R A、m、R N、L 1、L 2、與T。 此外揭露的是包含此化合物的醫藥組成物及治療及/或預防可藉由抑制Polθ治療之疾病例如癌症的方法,包括同源重組(HR)缺失癌症。 亦揭露的是包含此化合物的醫藥組成物以及治療及/或預防疾病的方法,例如可藉由抑制Polθ治療之疾病諸如癌症,包括同源重組(HR)缺失癌症。 在另一個態樣中,本文所述的是一種用於治療及/或預防個體中疾病的方法,例如由Polθ解旋酶之過表達/過度活性所表徵的癌症,包含投予治療有效量之本文所述之化合物或其醫藥上可接受的鹽或溶劑合物至個體。 在另一個態樣中,本文所述的是一種用於治療及/或預防個體中癌症(例如由同源重組(HR)缺失或由BRCA基因表達之減少或不存在、BRAC基因之不存在、或BRCA蛋白質之功能減少所表徵的癌症)的方法,包含投予治療有效量之本文所述之化合物或其醫藥上可接受的鹽或溶劑合物至個體。 在另一個態樣中,本文所述的是一種用於抑制細胞中藉由Polθ之DNA修復的方法,包含使細胞接觸有效量之本文所述之化合物或其醫藥上可接受的鹽或溶劑合物。在一些實施方式中,細胞為HR缺失。 在另一個態樣中,本文提供的是一種用於抑制細胞中藉由Polθ之DNA修復的本文所述之化合物或其醫藥上可接受的鹽或溶劑合物。在一些實施方式中,細胞為HR缺失。 在另一個態樣中,本文所述的是一種用於治療及/或預防個體中疾病的本文所述之化合物或其醫藥上可接受的鹽或溶劑合物,例如可藉由抑制Polθ治療之疾病例如癌症,包括同源重組(HR)缺失癌症。 在另一個態樣中,本文所述的是一種用於治療及/或預防個體中疾病的本文所述之化合物或其醫藥上可接受的鹽或溶劑合物,例如由Polθ解旋酶之過表達/過度活性、由同源重組(HR)缺失、或由BRAC基因表達之減少或不存在、BRAC基因之不存在、或BRAC蛋白質之功能減少所表徵的癌症。 在另一個態樣中,本文提供的是一種用於製造用於抑制細胞中藉由Polθ之DNA修復的藥劑之本文所述之化合物或其醫藥上可接受的鹽或溶劑合物。在一些實施方式中,細胞為HR缺失。 在另一個態樣中,本文所述的是一種用於製造用於治療及/或預防個體中疾病之藥劑的本文所述之化合物或其醫藥上可接受的鹽或溶劑合物,例如可藉由抑制Polθ治療之疾病諸如癌症,包括同源重組(HR)缺失癌症。 在另一個態樣中,本文所述的是一種用於製造用於治療及/或預防個體中疾病之藥劑的本文所述之化合物或其醫藥上可接受的鹽或溶劑合物,例如由Polθ解旋酶之過表達/過度活性、由同源重組(HR)缺失、或由BRAC基因表達之減少或不存在、BRAC基因之不存在、或BRAC蛋白質之功能減少所表徵的癌症。 在另一個態樣中,本文所述的是一種用於治療及/或預防個體中對聚(ADP-核糖)聚合酶(PARP)抑制劑療法具有耐受性的癌症之本文所述之化合物或其醫藥上可接受的鹽或溶劑合物。對PARP-抑制劑具有耐受性的癌症的例子包括但不限於乳癌、卵巢癌、肺癌、膀胱癌、肝癌、頭頸癌、胰臟癌、胃腸癌、與大腸直腸癌。 本揭示案的細節闡述於以下伴隨的說明中。現在記載示例性的方法與材料,雖在本揭示案的實踐或測試中能夠使用相似或相等於本文所述者的方法與材料。從說明書及申請專利範圍將更為清楚本揭示案的其他特徵、目的、及優勢。在說明書與所附申請專利範圍中,單數形式亦包括複數,除非上下文另有明確指明。除非另有定義,所有在此使用的技術性與科學性術語具有本揭示案所屬領域中具有通常知識者通常上所理解的意義。此說明書中提及的所有專利案與公開案在此以引用方式納入彼等的全部。 具體實施方式 本揭示案的化合物本揭示案關於一種式I化合物: 或其醫藥上可接受的鹽或溶劑合物,其中: 環A為包含一個或兩個5員或6員環與選自N、O、及S之1至4個雜原子的C 6-C 10芳基或雜芳基; 每個R A獨立地為C 1-C 6烷基、C 1-C 6鹵烷基、C 1-C 6羥烷基、C 1-C 6烷氧基、C 1-C 6鹵烷氧基、-OH、-NR a3R a4、-CN、鹵素、側氧基、-C(X)R a1、-C(X)OR a1、-C(X)NR a3R a4、-NR a2C(X)R a1、-NR a2C(X)OR a1、或-NR a2C(X)NR a3R a4; X為NR N、O、或S; m為0、1、2、3、4、5、或6; Ar為包含一個或兩個5員或6員環與選自N、O、及S之1至4個雜原子的C 6-C 10芳基或雜芳基,其中芳基或雜芳基係可選地經1至4個R Ar取代; 每個R Ar獨立地為C 1-C 6烷基、C 1-C 6鹵烷基、C 1-C 6羥烷基、C 1-C 6烷氧基、C 1-C 6鹵烷氧基、-OH、 -O(CR C1R C2) 1-3R O、-NR a3R a4、-CN、鹵素、側氧基、 -C(X)R a1、-C(X)OR a1、-C(X)NR a3R a4、-NR a2C(X)R a1、 -NR a2C(X)OR a1、或-NR a2C(X)NR a3R a4; R C1與R C2各自獨立地為H或-CH 3; R O為-OH、-NH 2、-NR a2(C 1-C 6烷基)、C 3-C 8環烷基、包含一個3員至6員環與選自N、O、及S之1至2個雜原子的雜環基、C 6芳基、或包含一個5員或6員環與選自N、O、及S之1至2個雜原子的雜芳基,其中環烷基、雜環基、芳基、或雜芳基係可選地經獨立地選自C 1-C 6烷基、C 1-C 6鹵烷基、C 1-C 6羥烷基、C 1-C 6烷氧基、C 1-C 6鹵烷氧基、 -OH、-NH 2、-NR a2(C 1-C 6烷基)、-CN、鹵素、與側氧基之一個或多個基團取代; R N為H或C 1-C 6烷基; L 1為不存在、-O-、-N(R N)-、-S-、-S(=O) 2-、或 -N(S(=O) 2R N)-; L 2為不存在、C 1-C 6伸烷基(alkylenyl)、C 2-C 6伸烯基(alkenylenyl)、或C 2-C 6伸炔基(alkynylenyl); T為C 1-C 6烷基、C 1-C 6鹵烷基、C 1-C 6羥烷基、 -C(X)R a1、-C(X)OR a1、-C(X)NR a3R a4、R T、或-XR T; 先決條件是 當L 1為-O-,且L 2為C 1-C 6伸烷基時,則T不為R T, 當L 1為-O-,且L 2為不存在或C 1-C 6伸烷基時,則T不為C 1-C 6烷基、C 1-C 6鹵烷基、C 1-C 6羥烷基、C 3-C 8環烷基、或包含一個3員至6員環與選自N、O、及S之1至2個雜原子的雜環基; R T為C 3-C 8環烷基、包含一個3員至6員環與選自N、O、及S之1至2個雜原子的雜環基、C 6芳基、或包含一個5員或6員環與選自N、O、及S之1至2個雜原子的雜芳基,其中環烷基、雜環基、芳基、或雜芳基係可選地經一個或多個R t取代; 每個R t獨立地為C 1-C 6烷基、C 1-C 6鹵烷基、C 1-C 6羥烷基、C 1-C 6烷氧基、C 1-C 6鹵烷氧基、-OH、-NR a3R a4、-CN、鹵素、側氧基、-C(X)R a1、-C(X)OR a1、-C(X)NR a3R a4、-NR a2C(X)R a1、-NR a2C(X)OR a1、-NR a2C(X)NR a3R a4、C 3-C 8環烷基、包含一個3員至6員環與選自N、O、及S之1至2個雜原子的雜環基、C 6芳基、或包含一個5員或6員環與選自N、O、及S之1至2個雜原子的雜芳基,其中環烷基、雜環基、芳基、或雜芳基係可選地經獨立地選自C 1-C 6烷基、C 1-C 6鹵烷基、C 1-C 6羥烷基、C 1-C 6烷氧基、C 1-C 6鹵烷氧基、-OH、-NH 2、-NR a2(C 1-C 6烷基)、-CN、鹵素、與側氧基之一個或多個基團取代; 每個R a1獨立地為H、C 1-C 6烷基、C 1-C 6鹵烷基、C 1-C 6烷基-C 6-C 10芳基、或C 1-C 6烷基-雜芳基,其中雜芳基包含5員或6員環與選自N、O、及S之1至4個雜原子,其中芳基或雜芳基係可選地經獨立地選自C 1-C 6烷基、C 1-C 6鹵烷基、C 1-C 6烷氧基、C 1-C 6鹵烷氧基、-OH、-NH 2、 -NR a2(C 1-C 6烷基)、-CN、鹵素、側氧基、-C(X)R a1、 -C(X)OR a1、-C(X)NR a1R a2、-NR a2C(X)R a1、 -NR a2C(X)OR a1、與-NR a2C(X)NR a1R a2之一個或多個基團取代; 每個R a2獨立地為H或C 1-C 6烷基;以及 R a3與R a4各自獨立地為H、C 1-C 6烷基、C 1-C 6鹵烷基、C 1-C 6羥烷基、C 3-C 8環烷基、包含一個3員至6員環與選自N、O、及S之1至2個雜原子的雜環基、C 6芳基、或包含一個5員或6員環與選自N、O、及S之1至2個雜原子的雜芳基,其中環烷基、雜環基、芳基、或雜芳基係可選地經獨立地選自C 1-C 6烷基、C 1-C 6鹵烷基、C 1-C 6羥烷基、C 1-C 6烷氧基、C 1-C 6鹵烷氧基、-OH、-NH 2、-NR a2(C 1-C 6烷基)、-CN、鹵素、與側氧基之一個或多個基團取代;或 R a3與R a4連同彼等所鍵結的氮原子一起形成可選地包含選自N、O、及S之1至2個額外的雜原子與可選地經獨立地選自C 1-C 6烷基、C 1-C 6鹵烷基、C 1-C 6羥烷基、C 1-C 6烷氧基、C 1-C 6鹵烷氧基、-OH、-NH 2、-NR a2(C 1-C 6烷基)、 -CN、與鹵素之一個或多個基團取代的5員或6員雜環基環, 其中環烷基或雜環基環可以是非橋聯與非螺環(non-spiro)、螺環(spirocyclic)、或橋聯環系統。 本文所述本揭示案化合物的多種實施方式,包括對環A、R A、m、Ar、R Ar、X、L 1、L 2、T、R N、R O、R T、R C1、R C2、R t、R a1、R a2、R a3、與R a4的任一者所定義的多種基團的實施方式,例如以下。當理解的是在此對環A、R A、m、Ar、R Ar、X、L 1、L 2、T、R N、R O、R T、R C1、R C2、R t、R a1、R a2、R a3、與R a4的任一者所記載的任何基團或實施方式能夠結合於在此對環A、R A、m、Ar、R Ar、X、L 1、L 2、T、R N、R O、R T、R C1、R C2、R t、R a1、R a2、R a3、與R a4的一個或多個其餘者所記載的一個或多個基團或實施方式。 Disclosed herein are specific substituted thiadiazolyl compounds that inhibit DNA polymerase θ (Polθ) activity, particularly the activity of the helicase domain of Polθ. In one aspect, described herein is a compound of formula I: or a pharmaceutically acceptable salt or solvent complex thereof, wherein Ring A, Ar, RA , m, RN , L1 , L2 , and T as described herein. Also disclosed are pharmaceutical compositions comprising the compound and methods for treating and/or preventing diseases that can be treated by inhibiting Polθ, such as cancer, including homologous recombination (HR)-deficient cancers. Also disclosed are pharmaceutical compositions comprising the compound and methods for treating and/or preventing diseases, such as diseases that can be treated by inhibiting Polθ, such as cancer, including homologous recombination (HR)-deficient cancers. In another aspect, described herein is a method for treating and/or preventing a disease in an individual, such as a cancer characterized by overexpression/overactivity of Polθ helicase, comprising administering a therapeutically effective amount of a compound described herein or a pharmaceutically acceptable salt or solvent complex thereof to the individual. In another aspect, described herein is a method for treating and/or preventing cancer in an individual (e.g., a cancer characterized by homologous recombination (HR) deficiency or by reduced or absent expression of BRCA genes, absent BRAC genes, or reduced function of BRCA proteins), comprising administering a therapeutically effective amount of a compound described herein or a pharmaceutically acceptable salt or solvent complex thereof to the individual. In another aspect, described herein is a method for inhibiting DNA repair by Pol θ in a cell, comprising contacting the cell with an effective amount of a compound described herein or a pharmaceutically acceptable salt or solvent complex thereof. In some embodiments, the cell is HR deficient. In another aspect, provided herein is a compound described herein or a pharmaceutically acceptable salt or solvent complex thereof for inhibiting DNA repair by Pol θ in a cell. In some embodiments, the cell is HR deficient. In another aspect, described herein is a compound described herein or a pharmaceutically acceptable salt or solvent complex thereof for treating and/or preventing a disease in an individual, such as a disease treatable by inhibiting Pol θ, such as cancer, including homologous recombination (HR) deficient cancer. In another aspect, described herein is a compound described herein or a pharmaceutically acceptable salt or solvent complex thereof for treating and/or preventing a disease in an individual, such as a cancer characterized by overexpression/overactivity of Pol θ helicase, by homologous recombination (HR) deficiency, or by reduced or absent expression of BRAC genes, absence of BRAC genes, or reduced function of BRAC proteins. In another aspect, provided herein is a compound described herein or a pharmaceutically acceptable salt or solvent complex thereof for use in the manufacture of a medicament for inhibiting DNA repair by Pol θ in a cell. In some embodiments, the cell is HR deficient. In another aspect, described herein is a compound described herein or a pharmaceutically acceptable salt or solvent complex thereof for use in the manufacture of a medicament for treating and/or preventing a disease in an individual, such as a disease treatable by inhibiting Pol θ, such as cancer, including homologous recombination (HR) deficient cancer. In another aspect, described herein is a compound described herein or a pharmaceutically acceptable salt or solvent combination thereof for use in the manufacture of a medicament for treating and/or preventing a disease in an individual, such as a cancer characterized by overexpression/overactivity of Pol θ helicase, by homologous recombination (HR) deficiency, or by reduced or absent expression of BRAC genes, absent BRAC genes, or reduced function of BRAC proteins. In another aspect, described herein is a compound described herein or a pharmaceutically acceptable salt or solvent combination thereof for use in treating and/or preventing a cancer resistant to poly (ADP-ribose) polymerase (PARP) inhibitor therapy in an individual. Examples of cancers that are resistant to PARP-inhibitors include, but are not limited to, breast cancer, ovarian cancer, lung cancer, bladder cancer, liver cancer, head and neck cancer, pancreatic cancer, gastrointestinal cancer, and colorectal cancer. The details of the present disclosure are set forth in the accompanying description below. Exemplary methods and materials are now described, although methods and materials similar or equivalent to those described herein can be used in the practice or testing of the present disclosure. Other features, objects, and advantages of the present disclosure will become more apparent from the specification and the appended claims. In the specification and the appended claims, the singular also includes the plural unless the context clearly indicates otherwise. Unless otherwise defined, all technical and scientific terms used herein have the meanings commonly understood by those of ordinary skill in the art to which the present disclosure belongs. All patents and publications mentioned in this specification are hereby incorporated by reference in their entirety. Specific embodiments of the present disclosure The present disclosure relates to a compound of formula I: or a pharmaceutically acceptable salt or solvent thereof, wherein: Ring A is a C 6 -C 10 aryl or heteroaryl group comprising one or two 5-membered or 6-membered rings and 1 to 4 heteroatoms selected from N, O, and S; each RA is independently C 1 -C 6 alkyl, C 1 -C 6 halogenalkyl, C 1 -C 6 hydroxyalkyl, C 1 -C 6 alkoxy , C 1 -C 6 halogenalkoxy, -OH, -NR a3 R a4 , -CN, halogen, oxo, -C(X)R a1 , -C(X)OR a1 , -C(X)NR a3 R a4 , -NR a2 C(X)R a1 , -NR a2 C(X)OR a1 , or -NR a2 C(X)NR a3 R a4 ; X is NR N , O, or S; m is 0, 1, 2, 3, 4, 5, or 6; Ar is a C 6 -C 10 aryl or heteroaryl group comprising one or two 5-membered or 6-membered rings and 1 to 4 heteroatoms selected from N, O, and S, wherein the aryl or heteroaryl group is optionally substituted by 1 to 4 R Ar ; each R Ar is independently C 1 -C 6 alkyl, C 1 -C 6 halogenalkyl, C 1 -C 6 hydroxyalkyl, C 1 -C 6 alkoxy, C 1 -C 6 halogenalkoxy, -OH, -O(CR C1 R C2 ) 1-3 R O , -NR a3 R a4 , -CN, halogen, oxo, -C(X)R a1 , -C(X)OR a1 , -C(X)NR a3 R a4 , -NR a2 C(X)R a1 , -NR a2 C(X)OR a1 , or -NR a2 C(X)NR a3 R a4 ; RC1 and RC2 are each independently H or -CH 3 ; RO is -OH, -NH 2 , -NR a2 (C 1 -C 6 alkyl), C 3 -C 8 cycloalkyl, a heterocyclic group containing a 3- to 6-membered ring and 1 to 2 heteroatoms selected from N, O, and S, a C 6 aryl, or a heteroaryl group containing a 5- or 6-membered ring and 1 to 2 heteroatoms selected from N, O, and S, wherein the cycloalkyl, heterocyclic group, aryl, or heteroaryl group is optionally independently selected from C 1 -C 6 alkyl, C 1 -C 6 halogenalkyl, C 1 -C 6 hydroxyalkyl, C 3 -C 8 The group is substituted by one or more of: -1 -C 6 alkoxy, -1 - C 6 halogen alkoxy, -OH, -NH 2 , -NR a2 (C 1 -C 6 alkyl), -CN, halogen, and pendoxy; RN is H or C 1 -C 6 alkyl; L 1 is absent, -O-, -N( RN )-, -S-, -S(=O) 2 -, or -N(S(=O) 2 R N )-; L 2 is absent, C 1 -C 6 alkylenyl, C 2 -C 6 alkenyl, or C 2 -C 6 alkynylenyl; T is C 1 -C 6 alkyl, C 1 -C 6 halogen alkyl, C 1 -C 6 hydroxyalkyl, -C(X)R a1 , -C(X)OR a1 , -C(X)NR a3 R a4 , RT , or -XRT ; provided that when L 1 is -O- and L 2 is C 1 -C 6 alkylene, then T is not RT ; when L 1 is -O- and L 2 is absent or C 1 -C 6 alkylene, then T is not C 1 -C 6 alkyl, C 1 -C 6 halogenalkyl, C 1 -C 6 hydroxyalkyl, C 3 -C 8 cycloalkyl, or a heterocyclic group containing a 3- to 6-membered ring and 1 to 2 heteroatoms selected from N, O, and S; RT is C 3 -C 8 cycloalkyl, a heterocyclic group containing a 3- to 6-membered ring and 1 to 2 heteroatoms selected from N, O, and S, C 6 aryl, or a heteroaryl group comprising a 5-membered or 6-membered ring and 1 to 2 heteroatoms selected from N, O, and S, wherein the cycloalkyl, heterocycloalkyl, aryl, or heteroaryl group is optionally substituted by one or more R t ; each R t is independently C 1 -C 6 alkyl, C 1 -C 6 halogenalkyl, C 1 -C 6 hydroxyalkyl, C 1 -C 6 alkoxy, C 1 -C 6 halogenalkoxy, -OH, -NR a3 R a4 , -CN, halogen, oxo, -C(X)R a1 , -C(X)OR a1 , -C(X)NR a3 R a4 , -NR a2 C(X)R a1 , -NR a2 C(X)OR a1 , -NR a2 C(X)NR a3 R a4 , C wherein the cycloalkyl, heterocyclic group, aryl, or heteroaryl group is optionally substituted with one or more groups independently selected from C 1 -C 6 alkyl, C 1 -C 6 halogenalkyl, C 1 -C 6 hydroxyalkyl, C 1 -C 6 alkoxy, C 1 -C 6 halogenalkoxy, -OH, -NH 2 , -NR a2 (C 1 -C 6 alkyl), -CN, halogen, and pendoxy; and each R a1 is independently H, C 1 -C 6 alkyl, C 1 -C 6 hydroxyalkyl, C 1 -C 6 alkoxy, C 1 -C 6 halogenalkoxy, -OH, -NH 2 , -NR a2 (C 1 -C 6 alkyl), -CN , halogen, and pendoxy; C 1 -C 6 alkyl, C 1 -C 6 halogenalkyl, C 1 -C 6 alkyl- C 6 -C 10 aryl, or C 1 -C 6 alkyl-heteroaryl, wherein the heteroaryl comprises a 5-membered or 6-membered ring and 1 to 4 heteroatoms selected from N, O, and S, wherein the aryl or heteroaryl is optionally independently selected from C 1 -C 6 alkyl, C 1 -C 6 halogenalkyl, C 1 -C 6 alkoxy, C 1 -C 6 halogenalkoxy, -OH, -NH 2 , -NR a2 (C 1 -C 6 alkyl), -CN, halogen, oxo, -C(X)R a1 , -C(X)OR a1 , -C(X)NR a1 R a2 , -NR a2 C(X)R a1 , -NR a2 C(X)OR a1 , and one or more of -NR a2 C(X)NR a1 R a2 ; each R a2 is independently H or C 1 -C 6 alkyl; and R a3 and R a4 are each independently H, C 1 -C 6 alkyl, C 1 -C 6 halogenalkyl, C 1 -C 6 hydroxyalkyl, C 3 -C 8 cycloalkyl, a heterocyclic group containing a 3- to 6-membered ring and 1 to 2 heteroatoms selected from N, O, and S, a C 6 aryl, or a heteroaryl group containing a 5- or 6-membered ring and 1 to 2 heteroatoms selected from N, O, and S, wherein the cycloalkyl, heterocyclic group, aryl, or heteroaryl group is optionally independently selected from C 1 -C 6 alkyl, C 1 -C 6 halogenalkyl, C 1 -C 6 hydroxyalkyl, C 3 -C 8 cycloalkyl, a heterocyclic group containing a 3- to 6-membered ring and 1 to 2 heteroatoms selected from N, O, and S, wherein the cycloalkyl, heterocyclic group, aryl, or heteroaryl group is optionally independently selected from C 1 -C 6 alkyl, C 1 -C 6 halogenalkyl, C 1 -C or R a3 and R a4 together with the nitrogen atom to which they are bound form a 5- or 6 -membered heterocyclic ring which optionally comprises 1 to 2 additional heteroatoms selected from N, O, and S and which is optionally substituted by one or more groups independently selected from C 1 -C 6 alkyl, C 1 -C 6 halogenalkyl , C 1 -C 6 hydroxyalkyl, C 1 -C 6 alkoxy, C 1 -C 6 halogenalkoxy, -OH, -NH 2 , -NR a2 (C 1 -C 6 alkyl), -CN, and halogen, Wherein the cycloalkyl or heterocyclic ring can be non-bridged and non-spiro, spirocyclic, or bridged ring system. Various embodiments of the compounds of the present disclosure described herein include various embodiments of groups defined for any one of Ring A, RA , m, Ar, RAr , X, L1 , L2 , T , RN, RO , RT , RC1 , RC2 , Rt , Ra1 , Ra2 , Ra3 , and Ra4 , such as the following. It is understood that any group or embodiment described herein for any of Ring A, RA , m , Ar, RAr , X, L1 , L2, T , RN, RO, RT , RC1 , RC2, Rt , Ra1 , Ra2 , Ra3 , and Ra4 can be combined with one or more groups or embodiments described herein for one or more of the rest of Ring A, RA , m, Ar , RAr , X, L1 , L2 , T , RN , RO, RT , RC1 , RC2 , Rt, Ra1 , Ra2 , Ra3 , and Ra4 .

本揭示案的實施方式 實施方式1. 一種式I化合物: 或其醫藥上可接受的鹽或溶劑合物,如以上所述。 實施方式2. 如實施方式1之化合物,其中環A為C 6-C 10芳基。 實施方式3. 如實施方式1或2之化合物,其中環A為苯基。 實施方式4. 如實施方式1之化合物,其中環A為包含一個或兩個5員或6員環與選自N、O、及S之1至4個雜原子的雜芳基。 實施方式5. 在前述實施方式的任一項的化合物適用的範圍內,其中環A為包含一個5員或6員環與選自N、O、及S之1至4個雜原子的雜芳基。 實施方式6. 在前述實施方式的任一項的化合物適用的範圍內,其中環A為包含一個5員或6員環與選自N、O、及S之1至2個雜原子的雜芳基。 實施方式6a. 在前述實施方式的任一項的化合物適用的範圍內,其中環A為包含一個5員環與選自N、O、及S之1至2個雜原子的雜芳基。 實施方式6b. 在前述實施方式的任一項的化合物適用的範圍內,其中環A為包含一個6員環與選自N、O、及S之1至2個雜原子的雜芳基。 實施方式7. 在前述實施方式的任一項的化合物適用的範圍內,其中環A為包含一個5員或6員環與1至2個氮原子的雜芳基。 實施方式8. 在前述實施方式的任一項的化合物適用的範圍內,其中環A為包含一個6員環與1至2個氮原子的雜芳基。 實施方式8’. 在前述實施方式的任一項的化合物適用的範圍內,其中環A為包含一個5員環與1至2個氮原子的雜芳基。 實施方式9. 如實施方式1之化合物,其為式II: 或其醫藥上可接受的鹽或溶劑合物,其中A 1、A 2、A 3、A 4、與A 5各自獨立地為N、CH、或CR A,或當A 1、A 2、A 3、A 4、或A 5係鍵結至Ar時,彼等為C。 實施方式10. 如實施方式9之化合物,其中A 1係與Ar鍵結。 實施方式11. 如實施方式9之化合物,其中A 2係與Ar鍵結。 實施方式12. 如實施方式9之化合物,其中A 3係與Ar鍵結。 實施方式13. 如實施方式9之化合物,其中A 4係與Ar鍵結。 實施方式14. 如實施方式9之化合物,其中A 5係與Ar鍵結。 實施方式15. 在前述實施方式的任一項的化合物適用的範圍內,其為式IIa: 或其醫藥上可接受的鹽或溶劑合物,其中A 2、A 3、A 4、與A 5各自獨立地為N、CH、或CR A。 實施方式16. 在前述實施方式的任一項的化合物適用的範圍內,其中Ar為可選地經1至4個R Ar取代的C 6-C 10芳基。 實施方式17. 在前述實施方式的任一項的化合物適用的範圍內,其中Ar為可選地經1至4個R Ar取代的苯基。 實施方式18. 在前述實施方式的任一項的化合物適用的範圍內,其中Ar為包含一個或兩個5員或6員環與選自N、O、及S之1至4個雜原子的雜芳基,其可選地經1至4個R Ar取代。 實施方式19. 在前述實施方式的任一項的化合物適用的範圍內,其中Ar為包含一個5員或6員環與選自N、O、及S之1至4個雜原子的雜芳基,其可選地經1至4個R Ar取代。 實施方式19’. 在前述實施方式的任一項的化合物適用的範圍內,其中Ar為包含兩個5員或6員環與選自N、O、及S之1至4個雜原子的雜芳基,其可選地經1至4個R Ar取代。 實施方式20. 在前述實施方式的任一項的化合物適用的範圍內,其中Ar為包含一個5員或6員環與選自N、O、及S之1至2個雜原子的雜芳基,其可選地經1至4個R Ar取代。 實施方式21. 在前述實施方式的任一項的化合物適用的範圍內,其中Ar為包含一個5員或6員環與1至2個氮原子的雜芳基,其可選地經1至4個R Ar取代。 實施方式21a. 在前述實施方式的任一項的化合物適用的範圍內,其中Ar為包含一個5員環與1至2個氮原子的雜芳基,其可選地經1至4個R Ar取代。 實施方式21b. 在前述實施方式的任一項的化合物適用的範圍內,其中Ar為包含一個6員環與1至2個氮原子的雜芳基,其可選地經1至4個R Ar取代。 實施方式22. 在前述實施方式的任一項的化合物適用的範圍內,其為式III: 或其醫藥上可接受的鹽或溶劑合物,其中: A 2、A 3、A 4、與A 5各自獨立地為N、CH、或CR A;以及 A 6、A 7、A 8、A 9、與A 10各自獨立地為N、CH、或CR Ar。 實施方式23. 在前述實施方式的任一項的化合物適用的範圍內,其為式IIIa或IIIb: 或其醫藥上可接受的鹽或溶劑合物,其中A 2、A 3、A 4、與A 5各自獨立地為N、CH、或CR A。 實施方式24. 在前述實施方式的任一項的化合物適用的範圍內,其為式IV: 或其醫藥上可接受的鹽或溶劑合物,其中: A 2、A 3、A 4、與A 5各自獨立地為N、CH、或CR A;以及 A 8、A 9、A 10、A 11、A 12、A 13、與A 14各自獨立地為N、CH、或CR Ar。 實施方式25. 在前述實施方式的任一項的化合物適用的範圍內,其為式IVa、IVb、或IVc: 或其醫藥上可接受的鹽或溶劑合物,其中: A 2、A 3、A 4、與A 5各自獨立地為N、CH、或CR A;以及 A 8、A 9、與A 10各自獨立地為N、CH、或CR Ar。 實施方式26. 在前述實施方式的任一項的化合物適用的範圍內,其中A 1、A 2、A 3、A 4、與A 5中的一者為N。 實施方式27. 在前述實施方式的任一項的化合物適用的範圍內,其中A 1為N。 實施方式28. 在前述實施方式的任一項的化合物適用的範圍內,其中A 2為N。 實施方式29. 在前述實施方式的任一項的化合物適用的範圍內,其中A 3為N。 實施方式30. 在前述實施方式的任一項的化合物適用的範圍內,其中A 4為N。 實施方式31. 在前述實施方式的任一項的化合物適用的範圍內,其中A 5為N。 實施方式32. 在前述實施方式的任一項的化合物適用的範圍內,其中A 1、A 2、A 3、A 4、與A 5中的兩者為N。 實施方式33. 在前述實施方式的任一項的化合物適用的範圍內,其中A 1與A 2為N。 實施方式34. 在前述實施方式的任一項的化合物適用的範圍內,其中A 1與A 3為N。 實施方式35. 在前述實施方式的任一項的化合物適用的範圍內,其中A 1與A 4為N。 實施方式36. 在前述實施方式的任一項的化合物適用的範圍內,其中A 1與A 5為N。 實施方式37. 在前述實施方式的任一項的化合物適用的範圍內,其中A 2與A 3為N。 實施方式38. 在前述實施方式的任一項的化合物適用的範圍內,其中A 2與A 4為N。 實施方式39. 在前述實施方式的任一項的化合物適用的範圍內,其中A 2與A 5為N。 實施方式40. 在前述實施方式的任一項的化合物適用的範圍內,其中A 3與A 4為N。 實施方式41. 在前述實施方式的任一項的化合物適用的範圍內,其中A 3與A 5為N。 實施方式42. 在前述實施方式的任一項的化合物適用的範圍內,其中A 4與A 5為N。 實施方式43. 在前述實施方式的任一項的化合物適用的範圍內,其中A 1、A 2、A 3、A 4、與A 5中的三者為N。 實施方式44. 在前述實施方式的任一項的化合物適用的範圍內,其中A 1、A 2、A 3、A 4、與A 5中的四者為N。 實施方式45. 在前述實施方式的任一項的化合物適用的範圍內,其中A 6、A 7、A 8、A 9、A 10、A 11、A 12、A 13、與A 14中的一者為N。 實施方式46. 在前述實施方式的任一項的化合物適用的範圍內,其中A 6、A 7、A 8、A 9、A 10、A 11、A 12、A 13、與A 14中的兩者為N。 實施方式47. 在前述實施方式的任一項的化合物適用的範圍內,其中A 6、A 7、A 8、A 9、A 10、A 11、A 12、A 13、與A 14中的三者為N。 實施方式48. 在前述實施方式的任一項的化合物適用的範圍內,其中L 1為不存在,且L 2為不存在。 實施方式49. 在前述實施方式的任一項的化合物適用的範圍內,其中L 1為不存在,且L 2為C 1-C 6伸烷基、C 2-C 6伸烯基、或C 2-C 6伸炔基。 實施方式50. 在前述實施方式的任一項的化合物適用的範圍內,其中L 1為-O-,且L 2為不存在。 實施方式51. 在前述實施方式的任一項的化合物適用的範圍內,其中L 1為-O-,且L 2為C 1-C 6伸烷基、C 2-C 6伸烯基、或C 2-C 6伸炔基。 實施方式52. 在前述實施方式的任一項的化合物適用的範圍內,其中L 1為-N(R N)-,且L 2為不存在。 實施方式53. 在前述實施方式的任一項的化合物適用的範圍內,其中L 1為-N(R N)-,且L 2為C 1-C 6伸烷基、C 2-C 6伸烯基、或C 2-C 6伸炔基。 實施方式54. 在前述實施方式的任一項的化合物適用的範圍內,其中L 1為-S-,且L 2為不存在。 實施方式55. 在前述實施方式的任一項的化合物適用的範圍內,其中L 1為-S-,且L 2為C 1-C 6伸烷基、C 2-C 6伸烯基、或C 2-C 6伸炔基。 實施方式56. 在前述實施方式的任一項的化合物適用的範圍內,其中L 1為-S(=O) 2-,且L 2為不存在。 實施方式57. 在前述實施方式的任一項的化合物適用的範圍內,其中L 1為-S(=O) 2-,且L 2為C 1-C 6伸烷基、C 2-C 6伸烯基、或C 2-C 6伸炔基。 實施方式58. 在前述實施方式的任一項的化合物適用的範圍內,其中L 1為-N(S(=O) 2R N)-,且L 2為不存在。 實施方式59. 在前述實施方式的任一項的化合物適用的範圍內,其中L 1為-N(S(=O) 2R N)-,且L 2為C 1-C 6伸烷基、C 2-C 6伸烯基、或C 2-C 6伸炔基。 實施方式60. 在前述實施方式的任一項的化合物適用的範圍內,其中L 2為C 1-C 6伸烷基。 實施方式61. 在前述實施方式的任一項的化合物適用的範圍內,其中R N為H。 實施方式62. 在前述實施方式的任一項的化合物適用的範圍內,其中R N為C 1-C 6烷基。 實施方式63. 在前述實施方式的任一項的化合物適用的範圍內,其中T為C 1-C 6烷基、C 1-C 6鹵烷基、或C 1-C 6羥烷基。 實施方式64. 在前述實施方式的任一項的化合物適用的範圍內,其中T為-C(X)R a1、-C(X)OR a1、或 -C(X)NR a3R a4。 實施方式65. 在前述實施方式的任一項的化合物適用的範圍內,其中T為R T、或-XR T。 實施方式65a. 在前述實施方式的任一項的化合物適用的範圍內,其中T為R T。 實施方式65b. 在前述實施方式的任一項的化合物適用的範圍內,其中T為-XR T。 實施方式66. 在前述實施方式的任一項的化合物適用的範圍內,其中R T為C 3-C 8環烷基,其可選地經一個或多個R t取代。 實施方式66a. 在前述實施方式的任一項的化合物適用的範圍內,其中R T為包含非橋聯與非螺環的C 3-C 8環烷基,其可選地經一個或多個R t取代。 實施方式66b. 在前述實施方式的任一項的化合物適用的範圍內,其中R T為包含橋聯環的C 3-C 8環烷基,其可選地經一個或多個R t取代。 實施方式66c. 在前述實施方式的任一項的化合物適用的範圍內,其中R T為包含螺環的C 3-C 8環烷基,其可選地經一個或多個R t取代。 實施方式67. 在前述實施方式的任一項的化合物適用的範圍內,其中R T為包含一個3員至6員環與選自N、O、及S之1至2個雜原子的雜環基,其可選地經一個或多個R t取代。 實施方式67a. 在前述實施方式的任一項的化合物適用的範圍內,其中R T為包含一個3員至6員環與選自N、O、及S之1至2個雜原子並包含非橋聯與非螺環的雜環基,其可選地經一個或多個R t取代。 實施方式67b. 在前述實施方式的任一項的化合物適用的範圍內,其中R T為包含一個3員至6員環與選自N、O、及S之1至2個雜原子並包含橋聯環的雜環基,其可選地經一個或多個R t取代。 實施方式67c. 在前述實施方式的任一項的化合物適用的範圍內,其中R T為包含一個3員至6員環與選自N、O、及S之1至2個雜原子並包含螺環的雜環基,其可選地經一個或多個R t取代。 實施方式68. 在前述實施方式的任一項的化合物適用的範圍內,其中R T為C 6芳基,其可選地經一個或多個R t取代。 實施方式69. 在前述實施方式的任一項的化合物適用的範圍內,其中R T為包含一個5員或6員環與選自N、O、及S之1至2個雜原子的雜芳基,其可選地經一個或多個R t取代。 實施方式69a. 在前述實施方式的任一項的化合物適用的範圍內,其中R T為包含一個5員環與選自N、O、及S之1至2個雜原子的雜芳基,其可選地經一個或多個R t取代。 實施方式69b. 在前述實施方式的任一項的化合物適用的範圍內,其中R T為包含一個5員環與選自N及O之1至2個雜原子的雜芳基,其可選地經一個或多個R t取代。 實施方式69c. 在前述實施方式的任一項的化合物適用的範圍內,其中R T為包含一個6員環與選自N、O、及S之1至2個雜原子的雜芳基,其可選地經一個或多個R t取代。 實施方式69d. 在前述實施方式的任一項的化合物適用的範圍內,其中R T為包含一個6員環與選自N及O之1至2個雜原子的雜芳基,其可選地經一個或多個R t取代。 實施方式70. 在前述實施方式的任一項的化合物適用的範圍內,其中至少一個R A為C 1-C 6烷基、C 1-C 6鹵烷基、C 1-C 6羥烷基、C 1-C 6烷氧基、或C 1-C 6鹵烷氧基。 實施方式71. 在前述實施方式的任一項的化合物適用的範圍內,其中至少一個R A為-OH、-NR a3R a4、-CN、鹵素、或側氧基。 實施方式72. 在前述實施方式的任一項的化合物適用的範圍內,其中至少一個R A為-C(X)R a1、-C(X)OR a1、 -C(X)NR a3R a4、-NR a2C(X)R a1、-NR a2C(X)OR a1、或 -NR a2C(X)NR a3R a4。 實施方式73. 在前述實施方式的任一項的化合物適用的範圍內,其中至少一個R Ar為C 1-C 6烷基、C 1-C 6鹵烷基、C 1-C 6羥烷基、C 1-C 6烷氧基、或C 1-C 6鹵烷氧基。 實施方式74. 在前述實施方式的任一項的化合物適用的範圍內,其中至少一個R Ar為-OH、-NR a3R a4、-CN、鹵素、或側氧基。 實施方式75. 在前述實施方式的任一項的化合物適用的範圍內,其中至少一個R Ar為-C(X)R a1、-C(X)OR a1、 -C(X)NR a3R a4、-NR a2C(X)R a1、-NR a2C(X)OR a1、或 -NR a2C(X)NR a3R a4。 實施方式76. 在前述實施方式的任一項的化合物適用的範圍內,其中R C1與R C2各自為H。 實施方式77. 在前述實施方式的任一項的化合物適用的範圍內,其中R C1與R C2各自為-CH 3。 實施方式78. 在前述實施方式的任一項的化合物適用的範圍內,其中R C1與R C2中的一者為H,而另一者為-CH 3。 實施方式79. 在前述實施方式的任一項的化合物適用的範圍內,其中R O為-OH、-NH 2、或-NR a2(C 1-C 6烷基)。 實施方式80. 在前述實施方式的任一項的化合物適用的範圍內,其中R O為C 3-C 8環烷基,其可選地經獨立地選自C 1-C 6烷基、C 1-C 6鹵烷基、C 1-C 6羥烷基、C 1-C 6烷氧基、C 1-C 6鹵烷氧基、-OH、-NH 2、-NR a2(C 1-C 6烷基)、 -CN、鹵素、與側氧基之一個或多個基團取代。 實施方式81. 在前述實施方式的任一項的化合物適用的範圍內,其中R O為包含一個3員至6員環與選自N、O、及S之1至2個雜原子的雜環基,其可選地經獨立地選自C 1-C 6烷基、C 1-C 6鹵烷基、C 1-C 6羥烷基、C 1-C 6烷氧基、C 1-C 6鹵烷氧基、-OH、-NH 2、-NR a2(C 1-C 6烷基)、-CN、鹵素、與側氧基之一個或多個基團取代。 實施方式82. 在前述實施方式的任一項的化合物適用的範圍內,其中R O為C 6芳基,其可選地經獨立地選自C 1-C 6烷基、C 1-C 6鹵烷基、C 1-C 6羥烷基、C 1-C 6烷氧基、C 1-C 6鹵烷氧基、-OH、-NH 2、-NR a2(C 1-C 6烷基)、-CN、鹵素、與側氧基之一個或多個基團取代。 實施方式83. 在前述實施方式的任一項的化合物適用的範圍內,其中R O為包含一個5員或6員環與選自N、O、及S之1至2個雜原子的雜芳基,其可選地經獨立地選自C 1-C 6烷基、C 1-C 6鹵烷基、C 1-C 6羥烷基、C 1-C 6烷氧基、C 1-C 6鹵烷氧基、-OH、-NH 2、-NR a2(C 1-C 6烷基)、-CN、鹵素、與側氧基之一個或多個基團取代。 實施方式84. 在前述實施方式的任一項的化合物適用的範圍內,其中至少一個R t為C 1-C 6烷基、C 1-C 6鹵烷基、C 1-C 6羥烷基、C 1-C 6烷氧基、或C 1-C 6鹵烷氧基。 實施方式85. 在前述實施方式的任一項的化合物適用的範圍內,其中至少一個R t為-OH、-NR a3R a4、-CN、鹵素、或側氧基。 實施方式86. 在前述實施方式的任一項的化合物適用的範圍內,其中至少一個R t為-C(X)R a1、-C(X)OR a1、 -C(X)NR a3R a4、-NR a2C(X)R a1、-NR a2C(X)OR a1、或 -NR a2C(X)NR a3R a4。 實施方式87. 在前述實施方式的任一項的化合物適用的範圍內,其中至少一個R t為C 3-C 8環烷基,包含一個3員至6員環與選自N、O、及S之1至2個雜原子的雜環基、C 6芳基、或包含一個5員或6員環與選自N、O、及S之1至2個雜原子的雜芳基,其中環烷基、雜環基、芳基、或雜芳基係可選地經獨立地選自C 1-C 6烷基、C 1-C 6鹵烷基、C 1-C 6羥烷基、C 1-C 6烷氧基、C 1-C 6鹵烷氧基、-OH、-NH 2、 -NR a2(C 1-C 6烷基)、-CN、鹵素、與側氧基之一個或多個基團取代。 實施方式87a. 在前述實施方式的任一項的化合物適用的範圍內,其中至少一個R t為C 3-C 8環烷基,其可選地經獨立地選自C 1-C 6烷基、C 1-C 6鹵烷基、C 1-C 6羥烷基、C 1-C 6烷氧基、C 1-C 6鹵烷氧基、-OH、-NH 2、-NR a2(C 1-C 6烷基)、-CN、鹵素、與側氧基之一個或多個基團取代。 實施方式87a1. 在前述實施方式的任一項的化合物適用的範圍內,其中至少一個R t為包含非橋聯與非螺環的C 3-C 8環烷基,其可選地經獨立地選自C 1-C 6烷基、C 1-C 6鹵烷基、C 1-C 6羥烷基、C 1-C 6烷氧基、C 1-C 6鹵烷氧基、-OH、-NH 2、-NR a2(C 1-C 6烷基)、-CN、鹵素、與側氧基之一個或多個基團取代。 實施方式87a2. 在前述實施方式的任一項的化合物適用的範圍內,其中至少一個R t為包含橋聯環的C 3-C 8環烷基,其可選地經獨立地選自C 1-C 6烷基、C 1-C 6鹵烷基、C 1-C 6羥烷基、C 1-C 6烷氧基、C 1-C 6鹵烷氧基、-OH、-NH 2、 -NR a2(C 1-C 6烷基)、-CN、鹵素、與側氧基之一個或多個基團取代。 實施方式87a3. 在前述實施方式的任一項的化合物適用的範圍內,其中至少一個R t為包含螺環的C 3-C 8環烷基,其可選地經獨立地選自C 1-C 6烷基、C 1-C 6鹵烷基、C 1-C 6羥烷基、C 1-C 6烷氧基、C 1-C 6鹵烷氧基、-OH、-NH 2、 -NR a2(C 1-C 6烷基)、-CN、鹵素、與側氧基之一個或多個基團取代。 實施方式87b. 在前述實施方式的任一項的化合物適用的範圍內,其中至少一個R t為包含一個3員至6員環與選自N、O、及S之1至2個雜原子的雜環基,其可選地經獨立地選自C 1-C 6烷基、C 1-C 6鹵烷基、C 1-C 6羥烷基、C 1-C 6烷氧基、C 1-C 6鹵烷氧基、-OH、-NH 2、-NR a2(C 1-C 6烷基)、 -CN、鹵素、與側氧基之一個或多個基團取代。 實施方式87b1. 在前述實施方式的任一項的化合物適用的範圍內,其中至少一個R t為包含一個3員至6員環與選自N、O、及S之1至2個雜原子並包含非橋聯與非螺環的雜環基,其可選地經獨立地選自C 1-C 6烷基、C 1-C 6鹵烷基、C 1-C 6羥烷基、C 1-C 6烷氧基、C 1-C 6鹵烷氧基、-OH、-NH 2、-NR a2(C 1-C 6烷基)、-CN、鹵素、與側氧基之一個或多個基團取代。 實施方式87b2. 在前述實施方式的任一項的化合物適用的範圍內,其中至少一個R t為包含一個3員至6員環與選自N、O、及S之1至2個雜原子並包含橋聯環的雜環基,其可選地經獨立地選自C 1-C 6烷基、C 1-C 6鹵烷基、C 1-C 6羥烷基、C 1-C 6烷氧基、C 1-C 6鹵烷氧基、-OH、-NH 2、 -NR a2(C 1-C 6烷基)、-CN、鹵素、與側氧基之一個或多個基團取代。 實施方式87b3. 在前述實施方式的任一項的化合物適用的範圍內,其中至少一個R t為包含一個3員至6員環與選自N、O、及S之1至2個雜原子並包含螺環的雜環基,其可選地經獨立地選自C 1-C 6烷基、C 1-C 6鹵烷基、C 1-C 6羥烷基、C 1-C 6烷氧基、C 1-C 6鹵烷氧基、-OH、-NH 2、 -NR a2(C 1-C 6烷基)、-CN、鹵素、與側氧基之一個或多個基團取代。 實施方式87c. 在前述實施方式的任一項的化合物適用的範圍內,其中至少一個R t為C 6芳基,其可選地經獨立地選自C 1-C 6烷基、C 1-C 6鹵烷基、C 1-C 6羥烷基、C 1-C 6烷氧基、C 1-C 6鹵烷氧基、-OH、-NH 2、-NR a2(C 1-C 6烷基)、 -CN、鹵素、與側氧基之一個或多個基團取代。 實施方式87d. 在前述實施方式的任一項的化合物適用的範圍內,其中至少一個R t為包含一個5員或6員環與選自N、O、及S之1至2個雜原子的雜芳基,其可選地經獨立地選自C 1-C 6烷基、C 1-C 6鹵烷基、C 1-C 6羥烷基、C 1-C 6烷氧基、C 1-C 6鹵烷氧基、-OH、-NH 2、-NR a2(C 1-C 6烷基)、 -CN、鹵素、與側氧基之一個或多個基團取代。 實施方式88. 在前述實施方式的任一項的化合物適用的範圍內,其中R a1為H。 實施方式89. 在前述實施方式的任一項的化合物適用的範圍內,其中R a1為C 1-C 6烷基(例如甲基、乙基、丙基、異丙基、正丁基、異丁基、二級丁基、三級丁基、戊基、或己基)或C 1-C 6鹵烷基(例如甲基、乙基、丙基、異丙基、正丁基、異丁基、二級丁基、三級丁基、戊基、或己基,其經一個或多個鹵素取代(例如F、Cl、Br、或I)。 實施方式90. 在前述實施方式的任一項的化合物適用的範圍內,其中R a1為C 1-C 6烷基-C 6-C 10芳基、或C 1-C 6烷基-雜芳基,其中雜芳基包含5員或6員環與選自N、O、及S之1至4個雜原子,其中芳基或雜芳基係可選地經獨立地選自C 1-C 6烷基、C 1-C 6鹵烷基、C 1-C 6烷氧基、C 1-C 6鹵烷氧基、-OH、-NH 2、-NR a2(C 1-C 6烷基)、-CN、鹵素、側氧基、-C(X)R a1、-C(X)OR a1、-C(X)NR a1R a2、-NR a2C(X)R a1、 -NR a2C(X)OR a1、與-NR a2C(X)NR a1R a2之一個或多個基團取代。 實施方式90a. 在前述實施方式的任一項的化合物適用的範圍內,其中R a1為C 1-C 6烷基-C 6-C 10芳基,其中芳基係可選地經獨立地選自C 1-C 6烷基、C 1-C 6鹵烷基、C 1-C 6烷氧基、C 1-C 6鹵烷氧基、-OH、-NH 2、-NR a2(C 1-C 6烷基)、 -CN、鹵素、側氧基、-C(X)R a1、-C(X)OR a1、 -C(X)NR a1R a2、-NR a2C(X)R a1、-NR a2C(X)OR a1、與 -NR a2C(X)NR a1R a2之一個或多個基團取代。 實施方式90b. 在前述實施方式的任一項的化合物適用的範圍內,其中R a1為C 1-C 6烷基-雜芳基,其中雜芳基包含5員或6員環與選自N、O、及S之1至4個雜原子,其中雜芳基係可選地經獨立地選自C 1-C 6烷基、C 1-C 6鹵烷基、C 1-C 6烷氧基、C 1-C 6鹵烷氧基、-OH、-NH 2、-NR a2(C 1-C 6烷基)、-CN、鹵素、側氧基、-C(X)R a1、-C(X)OR a1、 -C(X)NR a1R a2、-NR a2C(X)R a1、-NR a2C(X)OR a1、與 -NR a2C(X)NR a1R a2之一個或多個基團取代。 實施方式91. 在前述實施方式的任一項的化合物適用的範圍內,其中R a2為H。 實施方式92. 在前述實施方式的任一項的化合物適用的範圍內,其中至少一個R a2為C 1-C 6烷基(例如甲基、乙基、丙基、異丙基、正丁基、異丁基、二級丁基、三級丁基、戊基、或己基)。 實施方式93. 在前述實施方式的任一項的化合物適用的範圍內,其中R a3與R a4各自為H。 實施方式94. 在前述實施方式的任一項的化合物適用的範圍內,其中R a3與R a4的至少一者為C 1-C 6烷基(例如甲基、乙基、丙基、異丙基、正丁基、異丁基、二級丁基、三級丁基、戊基、或己基)、C 1-C 6羥烷基、或C 1-C 6鹵烷基(例如甲基、乙基、丙基、異丙基、正丁基、異丁基、二級丁基、三級丁基、戊基、或己基,其經一個或多個鹵素取代(例如F、Cl、Br、或I)。 實施方式95. 在前述實施方式的任一項的化合物適用的範圍內,其中R a3與R a4的至少一者為C 3-C 8環烷基、包含一個3員至6員環與選自N、O、及S之1至2個雜原子的雜環基、C 6芳基、或包含一個5員或6員環與選自N、O、及S之1至2個雜原子的雜芳基,其中環烷基、雜環基、芳基、或雜芳基係可選地經獨立地選自C 1-C 6烷基、C 1-C 6鹵烷基、C 1-C 6羥烷基、C 1-C 6烷氧基、C 1-C 6鹵烷氧基、-OH、-NH 2、-NR a2(C 1-C 6烷基)、-CN、鹵素、與側氧基之一個或多個基團取代。 實施方式95a. 在前述實施方式的任一項的化合物適用的範圍內,其中R a3與R a4的至少一者為C 3-C 8環烷基,其可選地經獨立地選自C 1-C 6烷基、C 1-C 6鹵烷基、C 1-C 6羥烷基、C 1-C 6烷氧基、C 1-C 6鹵烷氧基、-OH、-NH 2、 -NR a2(C 1-C 6烷基)、-CN、鹵素、與側氧基之一個或多個基團取代。 實施方式95b. 在前述實施方式的任一項的化合物適用的範圍內,其中R a3與R a4的至少一者為包含一個3員至6員環與選自N、O、及S之1至2個雜原子的雜環基,其可選地經獨立地選自C 1-C 6烷基、C 1-C 6鹵烷基、C 1-C 6羥烷基、C 1-C 6烷氧基、C 1-C 6鹵烷氧基、-OH、-NH 2、-NR a2(C 1-C 6烷基)、-CN、鹵素、與側氧基之一個或多個基團取代。 實施方式95c. 在前述實施方式的任一項的化合物適用的範圍內,其中R a3與R a4的至少一者為C 6芳基,其可選地經獨立地選自C 1-C 6烷基、C 1-C 6鹵烷基、C 1-C 6羥烷基、C 1-C 6烷氧基、C 1-C 6鹵烷氧基、-OH、-NH 2、-NR a2(C 1-C 6烷基)、-CN、鹵素、與側氧基之一個或多個基團取代。 實施方式95d. 在前述實施方式的任一項的化合物適用的範圍內,其中R a3與R a4的至少一者為包含一個5員或6員環與選自N、O、及S之1至2個雜原子的雜芳基,其可選地經獨立地選自C 1-C 6烷基、C 1-C 6鹵烷基、C 1-C 6羥烷基、C 1-C 6烷氧基、C 1-C 6鹵烷氧基、-OH、-NH 2、-NR a2(C 1-C 6烷基)、-CN、鹵素、與側氧基之一個或多個基團取代。 實施方式96. 在前述實施方式的任一項的化合物適用的範圍內,其中R a3與R a4連同彼等所鍵結的氮原子一起形成可選地包含選自N、O、及S之1至2個額外的雜原子與可選地經獨立地選自C 1-C 6烷基、C 1-C 6鹵烷基、C 1-C 6羥烷基、C 1-C 6烷氧基、C 1-C 6鹵烷氧基、-OH、-NH 2、 -NR a2(C 1-C 6烷基)、-CN、與鹵素之一個或多個基團取代的5員或6員雜環基環。 實施方式96a. 在前述實施方式的任一項的化合物適用的範圍內,其中R a3與R a4連同彼等所鍵結的氮原子一起形成可選地包含選自N、O、及S之1至2個額外的雜原子與可選地經獨立地選自C 1-C 6烷基、C 1-C 6鹵烷基、C 1-C 6羥烷基、C 1-C 6烷氧基、C 1-C 6鹵烷氧基、-OH、-NH 2、 -NR a2(C 1-C 6烷基)、-CN、與鹵素之一個或多個基團取代的5員雜環基環。 實施方式96b. 在前述實施方式的任一項的化合物適用的範圍內,其中R a3與R a4連同彼等所鍵結的氮原子一起形成可選地包含選自N、O、及S之1至2個額外的雜原子與可選地經獨立地選自C 1-C 6烷基、C 1-C 6鹵烷基、C 1-C 6羥烷基、C 1-C 6烷氧基、C 1-C 6鹵烷氧基、-OH、-NH 2、 -NR a2(C 1-C 6烷基)、-CN、與鹵素之一個或多個基團取代的6員雜環基環。 實施方式97. 在前述實施方式的任一項的化合物適用的範圍內,其中X為O。 實施方式98. 在前述實施方式的任一項的化合物適用的範圍內,其中X為S。 實施方式99. 在前述實施方式的任一項的化合物適用的範圍內,其中X為NR N。 實施方式100. 在前述實施方式的任一項的化合物適用的範圍內,其中R N為H。 實施方式101. 在前述實施方式的任一項的化合物適用的範圍內,其中R N為C 1-C 6烷基。 實施方式102. 在前述實施方式的任一項的化合物適用的範圍內,其中在可應用之對於在此任何變量所定義的任何基團中,C 1-C 6烷基為甲基、乙基、丙基、異丙基、正丁基、異丁基、二級丁基、三級丁基、戊基、或己基。 實施方式102a. 在前述實施方式的任一項的化合物適用的範圍內,其中在可應用之對於在此任何變量所定義的任何基團中,C 1-C 6烷基為甲基、乙基、或丙基、或異丙基。 實施方式103. 在前述實施方式的任一項的化合物適用的範圍內,其中在可應用之對於在此任何變量所定義的任何基團中,C 1-C 6鹵烷基為甲基、乙基、丙基、異丙基、正丁基、異丁基、二級丁基、三級丁基、戊基、或己基,其經一個或多個鹵素取代(例如F、Cl、Br、或I)。 實施方式103a. 在前述實施方式的任一項的化合物適用的範圍內,其中在可應用之對於在此任何變量所定義的任何基團中,C 1-C 6鹵烷基為甲基、乙基、丙基、或異丙基,其經一個或多個鹵素取代(例如F、Cl、Br、或I)。 實施方式104. 在前述實施方式的任一項的化合物適用的範圍內,其中在可應用之對於在此任何變量所定義的任何基團中,C 1-C 6烷氧基為甲氧基、乙氧基、丙氧基、異丙氧基、正丁氧基、異丁氧基、二級丁氧基、三級丁氧基、戊氧基、或己氧基。 實施方式104a. 在前述實施方式的任一項的化合物適用的範圍內,其中在可應用之對於在此任何變量所定義的任何基團中,C 1-C 6烷氧基為甲氧基、乙氧基、丙氧基、或異丙氧基。 實施方式105. 在前述實施方式的任一項的化合物適用的範圍內,其中在可應用之對於在此任何變量所定義的任何基團中,C 1-C 6鹵烷氧基為甲氧基、乙氧基、丙氧基、或異丙氧基、正丁氧基、異丁氧基、二級-丁氧基、三級-丁氧基、戊氧基、或己氧基,其經一個或多個鹵素取代(例如F、Cl、Br、或I)。 實施方式105a. 在前述實施方式的任一項的化合物適用的範圍內,其中在可應用之對於在此任何變量所定義的任何基團中,C 1-C 6鹵烷氧基為甲氧基、乙氧基、丙氧基、或異丙氧基,其經一個或多個鹵素取代(例如F、Cl、Br、或I)。 實施方式106. 在前述實施方式的任一項的化合物適用的範圍內,其中在可應用之對於在此任何變量所定義的任何基團中,鹵素為F、Cl、Br、或I。 實施方式106a. 在前述實施方式的任一項的化合物適用的範圍內,其中在可應用之對於在此任何變量所定義的任何基團中,鹵素為F。 實施方式106b. 在前述實施方式的任一項的化合物適用的範圍內,其中在可應用之對於在此任何變量所定義的任何基團中,鹵素為Cl。 實施方式107. 在前述實施方式的任一項的化合物適用的範圍內,其中在可應用之對於在此任何變量所定義的任何基團中,C 3-C 8環烷基為環丙基、環丁基、環戊基、環己基、環庚基、或環辛基。 實施方式108. 在前述實施方式的任一項的化合物適用的範圍內,其中在可應用之對於在此任何變量所定義的任何基團中,C 3-C 8環烷基包含非橋聯與非螺環系統、橋聯環系統、或螺環系統。 實施方式108a. 在前述實施方式的任一項的化合物適用的範圍內,其中在可應用之對於在此任何變量所定義的任何基團中,C 3-C 8環烷基包含非橋聯與非螺環系統。 實施方式108b. 在前述實施方式的任一項的化合物適用的範圍內,其中在可應用之對於在此任何變量所定義的任何基團中,C 3-C 8環烷基包含橋聯環系統。 實施方式108c. 在前述實施方式的任一項的化合物適用的範圍內,其中在可應用之對於在此任何變量所定義的任何基團中,C 3-C 8環烷基包含螺環系統。 實施方式109. 在前述實施方式的任一項的化合物適用的範圍內,其中在可應用之對於在此任何變量所定義的任何基團中,雜環基包含非橋聯與非螺環系統、橋聯環系統、或螺環系統。 實施方式109a. 在前述實施方式的任一項的化合物適用的範圍內,其中在可應用之對於在此任何變量所定義的任何基團中,雜環基包含非橋聯與非螺環系統。 實施方式109b. 在前述實施方式的任一項的化合物適用的範圍內,其中在可應用之對於在此任何變量所定義的任何基團中,雜環基包含橋聯環系統。 實施方式109c. 在前述實施方式的任一項的化合物適用的範圍內,其中在可應用之對於在此任何變量所定義的任何基團中,雜環基包含螺環系統。 在一些實施方式中,本揭示案的非限制性示例性化合物列於表1。 1:本揭示案的化合物 化合物# 結構 名稱 1 N-(5-((4-氯苄基)硫基)-1,3,4-噻二唑-2-基)-3-(2-甲氧基苯基)異菸鹼醯胺 2 N-(5-((4-氯苄基)胺基)-1,3,4-噻二唑-2-基)-3-(2-甲氧基苯基)異菸鹼醯胺 3 (E)-N-(5-(4-氯苯乙烯基)-1,3,4-噻二唑-2-基)-3-(2-甲氧基苯基)異菸鹼醯胺 4 N-(5-(4-氯苯乙基)-1,3,4-噻二唑-2-基)-3-(2-甲氧基苯基)異菸鹼醯胺 5 N-(5-((4-氯苄基)磺醯基)-1,3,4-噻二唑-2-基)-3-(2-甲氧基苯基)異菸鹼醯胺 6 N-(5-((4-氯苄基)(甲基)胺基)-1,3,4-噻二唑-2-基)-3-(2-甲氧基苯基)異菸鹼醯胺 7 N-(5-((4-氯苄基)(乙基)胺基)-1,3,4-噻二唑-2-基)-3-(2-甲氧基苯基)異菸鹼醯胺 8 2-((5-(3-(2-甲氧基苯基)異菸鹼醯胺基)-1,3,4-噻二唑-2-基)氧基)乙酸乙酯 9 2-((5-(3-(2-甲氧基苯基)異菸鹼醯胺基)-1,3,4-噻二唑-2-基)氧基)乙酸 10 3-(2-甲氧基苯基)-N-(5-(2- 啉基-2-側氧基乙氧基)-1,3,4-噻二唑-2-基)異菸鹼醯胺 11 3-(2-甲氧基苯基)-N-(5-(2-側氧基-2-((四氫-2H-哌喃-4-基)胺基)乙氧基)-1,3,4-噻二唑-2-基)異菸鹼醯胺 12 3-(2-甲氧基苯基)-N-(5-(2-(甲基(苯基)胺基)-2-側氧基乙氧基)-1,3,4-噻二唑-2-基)異菸鹼醯胺 13 3-(2-甲氧基苯基)-N-(5-(2-側氧基-2-(吡啶-3-基胺基)乙氧基)-1,3,4-噻二唑-2-基)異菸鹼醯胺 14 N-(5-(2-(環丙基胺基)-2-側氧基乙氧基)-1,3,4-噻二唑-2-基)-3-(2-甲氧基苯基)異菸鹼醯胺 15 N-(5-(2-(環丙基(甲基)胺基)-2-側氧基乙氧基)-1,3,4-噻二唑-2-基)-3-(2-甲氧基苯基)異菸鹼醯胺 16 3-(2-甲氧基苯基)-N-(5-(氧環丁烷-3-基氧基)-1,3,4-噻二唑-2-基)異菸鹼醯胺 17 N-(5-(N-(4-氯苄基)甲基磺醯胺基)-1,3,4-噻二唑-2-基)-3-(2-甲氧基苯基)異菸鹼醯胺 18 N-(5-(3,3-二氟環丁氧基)-1,3,4-噻二唑-2-基)-3-(2-甲氧基苯基)異菸鹼醯胺 19 N-(5-((4-氯苯基)乙炔基)-1,3,4-噻二唑-2-基)-3-(2-甲氧基苯基)異菸鹼醯胺 20 3-(2-甲氧基苯基)-N-(5-(4-苯基丁-1-炔-1-基)-1,3,4-噻二唑-2-基)異菸鹼醯胺 21 3-(2-甲氧基苯基)-N-(5-(3-苯氧基丙-1-炔-1-基)-1,3,4-噻二唑-2-基)異菸鹼醯胺 22 三級丁基4-((5-(3-(2-甲氧基苯基)異菸鹼醯胺基)-1,3,4-噻二唑-2-基)氧基)哌啶-1-甲酸酯 23 3-(2-甲氧基苯基)-N-(5-(哌啶-4-基氧基)-1,3,4-噻二唑-2-基)異菸鹼醯胺 24 N-(5-((1-乙醯基哌啶-4-基)氧基)-1,3,4-噻二唑-2-基)-3-(2-甲氧基苯基)異菸鹼醯胺 25 N-(5-(2-(4-溴苯氧基)乙氧基)-1,3,4-噻二唑-2-基)-3-(2-甲氧基苯基)異菸鹼醯胺 26 N-(5-(2-(4-氯苯氧基)乙氧基)-1,3,4-噻二唑-2-基)-3-(2-甲氧基苯基)異菸鹼醯胺 27 3-(2-甲氧基苯基)-N-(5-(2-苯氧基乙氧基)-1,3,4-噻二唑-2-基)異菸鹼醯胺 28 3-(2-甲氧基苯基)-N-(5-((1-苯基環丙基)乙炔基)-1,3,4-噻二唑-2-基)異菸鹼醯胺 29 (rac)-3-(2-甲氧基苯基)-N-(5-((1-苯氧基丙烷-2-基)氧基)-1,3,4-噻二唑-2-基)異菸鹼醯胺 30 N-(5-(3-羥基-3-甲基丁-1-炔-1-基)-1,3,4-噻二唑-2-基)-3-(2-甲氧基苯基)異菸鹼醯胺 31 N-(5-((4-氯苯氧基)甲基)-1,3,4-噻二唑-2-基)-3-(2-甲氧基苯基)異菸鹼醯胺 32 N-(5-((4-氯苄基)胺基)-1,3,4-噻二唑-2-基)-3-(萘基-1-基)異菸鹼醯胺 33 N-(5-((4-氯苄基)硫基)-1,3,4-噻二唑-2-基)-3-(萘基-1-基)異菸鹼醯胺 34 (E)-N-(5-(4-氯苯乙烯基)-1,3,4-噻二唑-2-基)-3-(萘基-1-基)異菸鹼醯胺 35 N-(5-(4-氯苯乙基)-1,3,4-噻二唑-2-基)-3-(萘基-1-基)異菸鹼醯胺 36 N-(5-((4-氯苯基)乙炔基)-1,3,4-噻二唑-2-基)-3-(萘基-1-基)異菸鹼醯胺 37 N-(5-((4-氯苯基)乙炔基)-1,3,4-噻二唑-2-基)-3-(喹啉-4-基)異菸鹼醯胺 38 N-(5-((4-氯苯基)乙炔基)-1,3,4-噻二唑-2-基)-3-(異喹啉-4-基)異菸鹼醯胺 39 3-(2-甲氧基苯基)-N-(5-(4-苯基丁基)-1,3,4-噻二唑-2-基)異菸鹼醯胺 40 3-(2-甲氧基苯基)-N-(5-(3-苯氧基丙基)-1,3,4-噻二唑-2-基)異菸鹼醯胺 41 N-(5-((4-氯苯基)乙炔基)-1,3,4-噻二唑-2-基)-1-(2-甲氧基苯基)-1H-咪唑-5-羧醯胺 42 3-(2-甲氧基苯基)-N-(5-甲基-1,3,4-噻二唑-2-基)異菸鹼醯胺 43 N-(5-((4-氯苯基)乙炔基)-1,3,4-噻二唑-2-基)-3-(2-氟-6-(2- 啉基乙氧基) 苯基)異菸鹼醯胺 44 N-(5-((4-氯苯基)乙炔基)-1,3,4-噻二唑-2-基)-3-(3-(2- 啉基乙氧基)苯基)異菸鹼醯胺 45 N-(5-((4-氯苯基)乙炔基)-1,3,4-噻二唑-2-基)-3-(3-(2-(二甲基胺基)乙氧基)苯基)異菸鹼醯胺 46 (rac)-苄基3-((5-(3-(2-甲氧基苯基)異菸鹼醯胺基)-1,3,4-噻二唑-2-基)氧基)吡咯啶-1-甲酸酯 47 (rac)-3-(2-甲氧基苯基)-N-(5-(吡咯啶-3-基氧基)-1,3,4-噻二唑-2-基)異菸鹼醯胺 48 (rac)-3-(2-甲氧基苯基)-N-(5-(哌啶-3-基氧基)-1,3,4-噻二唑-2-基)異菸鹼醯胺 49 3-(2-甲氧基苯基)-N-(5-(3-(三氟甲基)雙環[1.1.1]戊烷-1-基)-1,3,4-噻二唑-2-基)異菸鹼醯胺 50 3-(2-甲氧基苯基)-N-(5-(3-苯基雙環[1.1.1]戊烷-1-基)-1,3,4-噻二唑-2-基)異菸鹼醯胺 51 N-(5-(3-(4-氯苯基)雙環[1.1.1]戊烷-1-基)-1,3,4-噻二唑-2-基)-3-(2-甲氧基苯基)異菸鹼醯胺 52 N-(5-(3-(4-氯苯基)雙環[1.1.1]戊烷-1-基)-1,3,4-噻二唑-2-基)-3-(2-氟-5-(2- 啉基乙氧基)苯基)異菸鹼醯胺 53 3-(2-甲氧基苯基)-N-(5-((四氫-2H-哌喃-4-基)氧基)-1,3,4-噻二唑-2-基)異菸鹼醯胺 54 N-(5-(4-氯苯氧基)-1,3,4-噻二唑-2-基)-3-(2-甲氧基苯基)異菸鹼醯胺 55 3-(萘基-1-基)-N-(5-((四氫-2H-哌喃-4-基)氧基)-1,3,4-噻二唑-2-基)異菸鹼醯胺 在一些實施方式中,本揭示案的化合物(例如在此揭露的任何式的化合物或任何獨立化合物)為醫藥上可接受的鹽。在一些實施方式中,本揭示案的化合物(例如在此揭露的任何式的化合物或任何獨立化合物)為溶劑合物。在一些實施方式中,本揭示案的化合物(例如在此揭露的任何式的化合物或任何獨立化合物)為水合物。 本揭示案的化合物可形成鹽類,彼等亦位於此揭示案範疇內。對在此的式子的化合物的指稱係理解為包括指稱其鹽類,除非另有指明。 代表性的“醫藥上可接受的鹽類”例如包括可溶於水及不溶於水的鹽類,例如乙酸鹽、安索酸鹽(amsonate)(4,4-二胺基芪-2,2-二磺酸鹽)、苯磺酸鹽、苯甲酸鹽、碳酸氫鹽、硫酸氫鹽、酒石酸氫鹽、硼酸鹽、溴化物、丁酸鹽、鈣、依地酸鈣(calcium edetate)、右旋樟腦磺酸鹽(camsylate)、碳酸鹽、氯化物、檸檬酸鹽、克拉維酸鹽(clavulariate)、二鹽酸鹽、依地酸鹽、乙二磺酸鹽(edisylate)、丙酸酯十二烷基硫酸鹽(estolate)、乙磺酸鹽(esylate)、富馬酸鹽(fumerate)、延胡索酸鹽(fiunarate)、葡庚糖酸鹽(gluceptate)、葡萄糖酸鹽、穀胺酸鹽、乙醇醯基苯胺砷酸鹽(glycollylarsanilate)、六氟磷酸鹽、己基間苯二酚酸鹽(hexylresorcinate)、海巴明(hydrabamine)、氫溴酸鹽、鹽酸鹽、羥基萘甲酸鹽、碘化物、異硫磺酸鹽(isothionate)、乳酸鹽、乳糖酸鹽、月桂酸鹽、鎂、蘋果酸鹽、馬來酸鹽、扁桃酸鹽、甲磺酸鹽、甲基溴化物、甲基硝酸鹽、甲基硫酸鹽、黏酸鹽(mucate)、萘磺酸鹽、硝酸鹽、N-甲基葡糖胺銨鹽、3-羥基-2-萘甲酸鹽、油酸鹽、草酸鹽、棕櫚酸鹽、帕莫酸鹽(pamoate)(1,1-亞甲基-雙-2-羥基-3-萘甲酸鹽,依伯酸鹽(einbonate))、泛酸鹽、磷酸鹽/二磷酸鹽、苦味酸鹽、多聚半乳醣醛酸鹽、丙酸鹽、對甲苯磺酸鹽、水楊酸鹽、硬脂酸鹽、次乙酸鹽(subacetate)、琥珀酸鹽、硫酸鹽、磺基水楊酸鹽、蘇拉明酸鹽(suramate)、丹寧酸鹽、酒石酸鹽、茶氯酸鹽(teoclate)、甲苯磺酸鹽、三乙碘化物(triethiodide)與戊酸鹽。 “溶劑合物”表示含有化學計量或非化學計量之溶劑量的溶劑加成形式。一些化合物或鹽類具有在結晶固體態中捕捉固定莫耳比之溶劑分子的傾向,因而形成溶劑合物。若溶劑為水,所形成的溶劑合物為水合物;並且若溶劑為醇,所形成的溶劑合物為醇化物。水合物係由一個或更多個的水分子與一個物質分子的結合而形成,其中水維持其分子狀態為H 2O。 具有一個或更多個手性中心的化合物能夠以多種立體異構性形式存在。立體異構物是差異僅在於彼等空間配置的化合物。立體異構物包括所有的非鏡像異構物性、鏡像異構性、與差向異構性(epimeric)形式以及外消旋物及其混合物。 術語“幾何異構物”係指具有至少兩個取代基的環狀化合物,其中這兩個取代基同時位於環的相同側(順式)或其中取代基各自位於環的相反側(反式)。在指名或以結構繪示所揭露的化合物而沒有指明立體化學時,當理解的是此名稱或結構涵蓋一個或多個可能的立體異構物、或幾何異構物、或所涵蓋之立體異構物或幾何異構物的混合物。在以名稱或結構繪示幾何異構物時,將理解的是所指名或繪示之異構物相較於另一個異構物以較大程度存在,意即所指名或繪示之幾何異構物的幾何異構物純度以重量計係大於50%,例如至少60%、70%、80%、90%、99%、或99.9%的純度。藉由將混合物中所指名或繪示之幾何異構物的重量除以混合物中所有幾何異構物的總重量確定幾何異構物純度。 “手性異構物”表示具有至少一個手性中心的化合物。具有多於一個手性中心的化合物可作為獨立的非鏡像異構物或作為非鏡像異構物的混合物(稱為“非鏡像異構物性混合物”)而存在。當存在一個手性中心時,可由手性中心的絕對組態(R或S)表徵立體異構物。絕對組態係指連接至手性中心的取代基在空間中的配置。連接至所考量的手性中心之取代基係按照Cahn、Ingold和Prelog之順序規則分等級。(Cahn et al., Angew. Chem. Inter. Edit.1966, 5, 385; errata 511; Cahn et al., Angew. Chem.1966, 78, 413; Cahn and Ingold, J. Chem. Soc.1951 (London), 612; Cahn et al., Experientia1956, 12, 81; Cahn, J. Chem. Educ.1964, 41, 116)。 在一些實施方式中,本揭示案的化合物為非鏡像異構物。在一些實施方式中,化合物為同側(syn)非鏡像異構物。在一些實施方式中,化合物為反側(anti)非鏡像異構物。 外消旋混合物表示50%之一個鏡像異構物與50%之其對應的鏡像異構物。在指名或繪示具有一個手性中心的化合物而沒有指出手性中心的立體化學時,當理解的是此名稱或結構涵蓋化合物的兩種可能鏡像異構性形式(例如兩種鏡像異構物純、鏡像異構物富集或外消旋)。在指名或繪示具有兩個或更多個手性中心的化合物而沒有指出手性中心的立體化學時,當理解的是此名稱或結構涵蓋所有可能的非鏡像異構物性形式(例如非鏡像異構物純、非鏡像異構物富集及化合物的一個或更多個非鏡像異構物的等莫耳混合物(例如外消旋混合物)。 可藉由習知方法將鏡像異構性與非鏡像異構物性混合物拆分為彼等的組分鏡像異構物或立體異構物,例如手性相氣相層析、手性相高效液相層析,使化合物結晶為手性鹽錯合物,或使化合物在手性溶劑中結晶。亦能夠藉由已知的不對稱合成方法從非鏡像異構物純或鏡像異構物純的中間物、試劑、與催化劑獲得鏡像異構物與非鏡像異構物。 在以指出單一鏡像異構物的名稱或結構指定化合物時,除非另有指明,化合物為至少60%、70%、80%、90%、99%或99.9%光學上地純(亦稱為“鏡像異構物純”)。光學純度是所指名或繪示之鏡像異構物在混合物中的重量除以在兩種鏡像異構物在混合物中的總重量。 在指名或以結構繪示所揭露的化合物的立體化學時,所指名或繪示之結構涵蓋多於一個立體異構物(例如諸如在非鏡像異構物對中)時,將理解的是包括一個所涵蓋的立體異構物或所涵蓋的立體異構物的任何混合物。將進一步理解的是所指名或繪示之立體異構物的立體異構物純度以重量計為至少60%、70%、80%、90%、99%或99.9%。在此情形中的立體異構物純度係藉由將由在該名稱或結構所涵蓋之立體異構物的混合物中之總重量除以在所有立體異構物的混合物中之總重量來確定。 亦可能的是本揭示案的化合物可存在不同的互變異構物形式(tautomeric form),並且所有這些形式包含於本揭示案的範疇中。“互變異構物”是平衡地存在並容易從一個異構性形式轉變為另一者之兩個或更多個結構異構物中的一者。此轉變造成氫原子之形式遷移,伴隨相鄰共軛雙鍵之轉換。在溶液中互變異構物作為互變異構物組的混合物而存在。在固體形式中,通常一個互變異構物為主要的。在其中可能出現互變異構作用的溶液中,將達到互變異構物的化學平衡。互變異構物的精確比例取決於一些因素,包括溫度、溶劑及pH。互變異構物藉由互變異構作用而為可互相轉換(interconvertable)的概念稱為互變異構。在可能的多種互變異構中,通常觀察到兩個。在酮基-烯醇互變異構中發生電子與氫原子的同時位移。環鏈互變異構為糖鏈份子中的醛基(-CHO)與相同分子中的一個羥基(-OH)進行反應之結果以給出如葡萄糖呈現之環狀(環形)形式。常見的互變異構對為:酮-烯醇、醯胺-腈、內醯胺-內醯亞胺、雜環中(例如核鹼基(例如鳥嘌呤、胸腺嘧啶及胞嘧啶)中)之醯胺-醯亞胺酸互變異構現象、胺-烯胺與烯胺-亞胺。 本揭示案亦考量同位素標記化合物,其相同於本文所述的各式子,除了一個或更多個原子係經具有不同於自然界中最常見的原子質量或質量數之原子質量或質量數的原子所替代的情事外。可納入本揭示案化合物之同位素的例子包括氫、碳、氮、氟的同位素,例如 3H、 11C、 14C、 2H與 18F。 含有前述同位素及/或其他原子的其他同位素之本揭示案化合物位於本揭示案範疇內。本揭示案的同位素標記化合物,例如其中納入放射性的同位素例如 3H、 14C的那些,可用於藥物及/或受質組織分佈分析中。氚化例如 3H與碳14例如 14C同位素由於彼等的製備簡單與可偵測性因而是有用的。 11C與 18F分析分析同位素在PET(正子斷層造影)中有用。PET在腦部顯影中有用。此外以較重的同位素例如氘,例如 2H取代可帶來源自較大的代謝穩定性之特定治療性優勢,例如增加體內半衰期增加或減少劑量需求,並因而在一些情形中可為較佳的。本揭示案的同位素標記化合物一般上能夠藉由進行本文所述之方案及/或實施例中揭露的程序而製備,藉由以容易取得的同位素標記試劑取代非同位素標記試劑。在一些實施方式中,本揭示案的化合物並非經同位素標記。 用於製備化合物的方法可藉由多種方法製造本揭示案的化合物,包括標準化學。合適的合成途徑繪示於以下給出的方案中。 可藉由以下合成方案中部份說明之有機合成領域中已知的方法製備化合物。在以下說明的方案中,當理解的是根據一般原理或化學在必要時使用用於敏感性或反應性基團的保護基。根據有機合成的標準方法操控保護基(T. W. Greene與P. G. M. Wuts, “Protective Groups in Organic Synthesis”,第三版,Wiley, New York 1999)。在化合物合成的適當階段使用本領域中具有通常知識者輕易知曉的方法移除這些基團。選擇過程、以及反應條件及彼等的執行順序應與本揭示案的化合物的製備一致。 本領域中具有通常知識者將了解本揭示案的化合物中是否存在立體中心。因此,本揭示案包括二種可能的立體異構物(除非在合成中指明)並不僅包括外消旋化合物而亦包括獨立的鏡像異構物及/或非鏡像異構物。當意欲使化合物為單一鏡像異構物或非鏡像異構物時,其可藉由立體特異性合成或藉由最終產物或任何適當中間物的拆分而獲得。可藉由本領域中已知的任何適當方法達成最終產物、中間物、或起始材料的拆分。例如參照“Stereochemistry of Organic Compounds” by E. L. Eliel, S. H. Wilen, and L. N. Mander (Wiley-lnterscience, 1994)。 可從可商購的起始材料製造或使用已知的有機、無機、及/或酶過程合成本文所述之化合物。能夠以對有機合成本領域中具有通常知識者為習知的多種方式製備本揭示案的化合物。舉例而言,能夠使用以下記載的方法,連同合成有機化學領域中已知的合成方法,或如本領域中具有通常知識者所理解的其變形而合成本揭示案的化合物。較佳的方法包括但不限於以下記載的那些方法。能夠藉由按照以下一般方案及/或一般方法例如在實施例中彙整的步驟合成本揭示案的化合物(即,式I化合物)。當理解的是可根據本領域中可獲得的技術與知識調整在實施例的一般方法中示出的實驗條件與起始材料及/或中間物。起始材料為可商購或可藉由公開文獻或所示出的已知程序製造。 以下指出用於合成的一般方法作為參考。 一般方法 反應名稱 A 醯胺偶合反應(HATU) B 胺化 C 醯胺偶合反應(TCFH) D 威廉遜(Williamson)醚類合成 E 薗頭(Sonogashira)交叉偶合 F BOC 去保護作用 G 布赫瓦爾德(Buchwald)醯胺交叉偶合 H 鈴木偶合 I 氫化 J 縮合反應 能夠如以下實施例56所記載的或根據本領域中已知的方法測量本揭示案化合物抑制Polq的能力。 定義在此揭示案中使用冠詞“一(a)”與“一(an)”以指出此冠詞之一個或多於一個(即,至少一個)的文法受詞。舉例而言,“一元件”表示一個元件或多於一個元件。 除非另有指明,在此揭示案中使用術語“及/或”表示“及”或者“或”。 如在本文中所用,術語“烷基”係指在一些實施方式中,含有一個與六個碳原子之間的飽和、直鏈或支鏈烴基團。C 1-C 8烷基基團的例子包括但不限於甲基、乙基、丙基、異丙基、正丁基、三級丁基、新戊基、正己基、正庚基、與正辛基基團。C 1-C 6烷基基團的例子包括但不限於甲基、乙基、丙基、異丙基、正丁基、三級丁基、新戊基、與正己基基團。 術語“烷基磺醯基”表示-SO 2R基團,其中R為如以上定義之烷基,例如甲基磺醯基、乙基磺醯基、2-丙基磺醯基等。 術語“烷氧基”表示透過氧連接原子所接的烷基基團,由-O-烷基所表示。例如,“(C 1-C 4)烷氧基”包括甲氧基、乙氧基、丙氧基、與丁氧基。 術語“烷氧基羰基”表示-COOR基團,其中R為如以上定義之烷基,例如,甲氧基羰基、乙氧基羰基、丙氧基、或2-丙氧基羰基、或三級丁氧基羰基等。 術語“烷氧基烷基”表示經如以上所定義之一個烷氧基基團取代的一至六個碳原子之線性單價烴基團或三至六個碳之支鏈單價烴基團,例如,2-甲氧基乙基、1-,2-,或3-甲氧基丙基、2-乙氧基乙基等。 術語“醯基”表示-C(O)R基團,其中R為如在此定義之烷基,例如,甲羰基、乙羰基等。 術語“醯基胺基”表示-NHC(O)R基團,其中R為如在此定義之烷基,例如,甲羰基胺基、乙羰基胺基等。 術語“胺基”表示-NH 2。 術語“鹵烷基”與“鹵烷氧基”表示經一個或多個鹵素原子取代的視情況之烷基或烷氧基。 除非另有說明,術語“伸烷基(alkylene)”表示一個至六個碳原子之線性飽和二價烴基團或三至六個碳原子之支鏈飽和二價烴基團,例如,亞甲基、伸乙基、伸丙基、1-甲基伸丙基、2-甲基伸丙基、伸丁基、伸戊基等。 “伸烷基基團”是飽和脂族支鏈或直鏈二價烴基團。除非另有註明,伸烷基基團典型地具有1至6個碳原子,例如(C 1-C 6)伸烷基。 術語“芳基”表示6至10個環原子之單價單環的或雙環的芳族烴基團,例如苯基或萘基。 術語“雙環的雜環基”表示稠合至苯基、五員或六員雜芳基或雜環基之具有4至7個環碳環原子之飽和單環的環(其中一個或兩個環碳原子係經選自N、O、或S(O)n(其中n為從0至2的整數)之雜原子替代),各自如在此所定義。示例性雙環的雜環基基團包括但不限於 等。 術語“環烷基”表示單環的飽和烴環系統。例如,C 3-C 7環烷基包括環丙基、環丁基、環戊基、與環己基、環庚基。 橋聯環烷基表示雙環的烴環系統,其中兩個環共享至少三個相鄰的環碳原子。例如,橋聯環烷基具有6至12個環碳原子。例子包括但不限於雙環[2.1.1]己基、雙環[2.2.1]庚基、雙環[2.2.2]辛基、雙環[3.2.1]辛基、雙環[4.3.1]癸基、雙環[3.3.1]壬基、 基(bornyl)、 烯基、降莰基、降莰烯基(norbornenyl)、6,6-二甲基雙環[3.1.1]庚基、與金剛烷基。 術語“雜環基(heterocyclyl)”、“雜環狀環(heterocyclic ring)”、與“雜環狀基(heterocylic group)”在此可互換地使用,並表示含有可以是相同或不同的選自N、O、或S之1至4個環雜原子的飽和或不飽和非芳族4至10員環基團。其可以是單環的、雙環的或三環的(例如稠合或橋聯雙環或三環的環)。例子包括但不限於氮呾基、嗎福林基、硫嗎福林基、吡咯啶酮基、吡咯啶基、哌啶基、哌𠯤基、乙內醯脲基、戊內醯胺基(valerolactamyl)、氧𠰂基、氧呾基、二氫咪唑、二氫呋喃基、二氫哌喃基、二氫吡啶基、二氫嘧啶基、二氫噻吩基、二氫硫苯基、二氫硫哌喃基、四氫咪唑、四氫呋喃基、四氫哌喃基、四氫噻吩基、四氫吡啶基、四氫嘧啶基、四氫硫苯基、與四氫硫哌喃基。雜環狀環可選地含有一個或多個雙鍵及/或可選地與一個或多個芳族環稠合(例如四氫萘啶、吲哚啉酮、二氫吡咯并三唑、咪唑并嘧啶、喹啉酮、二氧雜螺癸烷)。3-7員單環的雜環狀環的例子包括但不限於氮呾基、嗎福林基、硫嗎福林基、吡咯啶酮基、吡咯啶基、哌啶基、哌𠯤基、乙內醯脲基、戊內醯胺基、氧𠰂基、氧呾基、二氫咪唑、二氫呋喃基、二氫哌喃基、二氫吡啶基、二氫嘧啶基、二氫噻吩基、二氫硫苯基、二氫硫哌喃基、四氫咪唑、四氫呋喃基、四氫哌喃基、四氫噻吩基、四氫吡啶基、四氫嘧啶基、四氫硫苯基、與四氫硫哌喃基。 術語“橋聯雜環基”表示具有5至7個環碳環原子之飽和單環的環,其中兩個非相鄰的環原子由(CRR’)n基團(其中n為1至3)所連接,並且每個R與R’獨立地為H或甲基(在此亦可稱為“橋聯”基團),並且此外其中一個或兩個環碳原子(包括橋聯基團中的原子)係經選自N、O、或S(O)n(其中n為從0至2的整數)之雜原子替代。 橋聯雜環基係可選地經獨立地選自烷基、鹵素、烷氧基、羥基、或氰基的一個或兩個取代基取代。例子包括但不限於2-氮雜雙環[2.2.2]辛烷、 啶(quinuclidine)、7-氧雜雙環[2.2.1]庚烷等。 橋聯雜環基表示含有1至4個環雜原子的雙環的環系統,其中兩個環共享至少三個相鄰的環原子。例如,橋聯雜環基具有6至12個環原子。例子包括但不限於氮雜降莰基、 啶基、異 啶基、莨菪烷基(tropanyl)、氮雜雙環[3.2.1]辛烷基、氮雜雙環[2.2.1]庚烷基、2-氮雜雙環[3.2.1]辛烷基、氮雜雙環[3.2.1]辛烷基、氮雜雙環[3.2.2]壬烷基、氮雜雙環[3.3.0]壬烷基、和氮雜雙環[3.3.1]壬烷基。 術語“氘化烷基(deuteroalkyl)”表示為如以上定義之烷基基團,其中烷基基團中的一個至六個氫原子係經氘替代,例如-CD 3、-CH 2CD 3等。 術語“二烷基胺基”表示-NRR’基團,其中R與R’獨立地為如在此定義之烷基。 術語“鹵素”表示氟、氯、溴、或碘,較佳地為氟或氯。 如在本文中所用,術語“側氧基”單獨或組合地係指=(O)。 在此可互換地使用術語“雜芳基”、“雜芳族”、“雜芳基環”、“雜芳基基團”、“雜芳環”、與“雜芳族基團”。“雜芳基”,當單獨使用或作為較大部分(如“雜芳烷基”或“雜芳烷氧基”)中之一部分使用時,係指具有選自碳與至少一個(典型地1至4個,更典型地1或2個)雜原子(例如氧、氮、或硫)之五至十個環原子的芳族環基。“雜芳基”包括單環的環與多環的環,其中單環的雜芳環係稠合至一個或多個其他芳環或雜芳環。“雜芳基”包括單環的與雙環的環系統。 “單環的5-6員雜芳環(或雜芳基)”表示具有選自碳與至少一個(典型地1至3個,更典型地1或2個)雜原子(例如氧、氮、或硫)之五個或六個環原子的單環的雜芳環。單環的5-6員雜芳環基的例子包括呋喃基(例如2-呋喃基、3-呋喃基)、咪唑基(例如N-咪唑基、2-咪唑基、4-咪唑基、5-咪唑基)、異㗁唑基(例如3-異㗁唑基、4-異㗁唑基、5-異㗁唑基)、㗁二唑基(例如2-㗁二唑基、5-㗁二唑基)、㗁唑基(例如2-㗁唑基、4-㗁唑基、5-㗁唑基)、吡唑基(例如3-吡唑基、4-吡唑基)、吡咯基(例如1-吡咯基、2-吡咯基、3-吡咯基)、吡啶基(例如2-吡啶基、3-吡啶基、4-吡啶基)、嘧啶基(例如2-嘧啶基、4-嘧啶基、5-嘧啶基)、嗒𠯤基(例如3-嗒𠯤基)、噻唑基(例如2-噻唑基、4-噻唑基、5-噻唑基)、異噻唑基、三唑基(例如2-三唑基、5-三唑基)、四唑基(例如四唑基)、與噻吩基(例如2-噻吩基、3-噻吩基)。 如將基團記載為係“經取代”,非氫取代基取代碳或氮上的氫原子。因此,舉例而言,經取代之烷基為其中至少一個非氫取代基係位於烷基取代基上氫原子所處位置上的烷基。示範起見,單氟烷基是經一個氟取代基取代的烷基,而二氟烷基是經兩個氟取代基取代的烷基。應瞭解,若取代基上有超過一個取代,各個非氫取代基可以是相同或不同(除非另有說明)。如在本文中所用,許多部分(例如烷基、環烷基、或雜環狀環)係稱為“經取代”或“可選地經取代”。將瞭解的是用語“可選地經取代”與用語“經取代或未經取代”可互換地使用。當部分經此等術語中之一者修飾時,除非另有說明,否則其表示熟習此項技術者已知可用於取代的該部分之任何一部分可經取代,其包括一或多個取代基。若存在多於一個取代基,則各取代基係經獨立選擇。該等取代方法為為本領域中已知的及/或由本揭示案所教示。可選的取代基可以是適合於與該部分連接之任何取代基。本領域中具有通常知識者將瞭解的是化合物及所提供的定義並不包括不允許的取代基態樣(例如經5個不同基團取代的甲基等)。本領域中具有通常知識者清楚地瞭解此不允許的取代態樣。當基團被記載為可選地經“一個或多個”取代基取代時,其表示基團可選地經一個、兩個、三個、四個、五個或六個取代基取代。在一些實施方式中,基團可選地經1至3個取代基取代。在一些實施方式中,基團可選地經1至2個取代基取代。在一些實施方式中,基團可選地經一個取代基取代。 合適的取代基是對化合物的能力沒有顯著負面影響的那些。在沒有具體地列出合適的取代基時,示例性取代基包括但不限於鹵素、CN、烷基、烷氧基、鹵甲基、鹵甲氧基、(C 1-C 5)烷基、鹵(C 1-C 5)烷基、(C 1-C 5)烷氧基、NO 2、OR c’、NR a’R b’、S(O) iR a’、NR aS(O) iR b’、 S(O) iNR a’R b’、C(=O)OR a’、OC(=O)OR a’、C(=S)OR a’、 O(C=S)R a’、C(=O)NR a’R b’、NR a’C(=O)R b’、 C(=S)NR a’R b’、NR a’C(=S)R b’、NR a’(C=O)OR b’、 O(C=O)NR a’R b’、NR a’(C=S)OR b’、O(C=S)NR a’R b’、 NR a’(C=O)NR a’R b’、NR a’(C=S)NR a’R b’、C(=S)R a’、 C(=O)R a’、(C 3-C 6)環烷基、單環的雜芳基、與苯基,其中(C 3-C 6)環烷基、單環的雜芳基、與苯基取代基係可選地且獨立地經例如CH 3、鹵甲基、鹵素、甲氧基、或鹵甲氧基取代。每個R a’與每個R b’獨立地為H或(C 1-C 6)烷基,其中由R a’或R b’的所表示(C 1-C 6)烷基係可選地經例如羥基或(C 1-C 3)烷氧基取代;R c’為H、鹵(C 1-C 6)烷基、或(C 1-C 6)烷基,其中由R c所表示的(C 1-C 6)烷基係可選地經例如羥基或(C 1-C 3)烷氧基取代;以及i為0、1、或2。=O亦為用於烷基、環烷基、與雜環狀環的之合適的取代基。 合適的取代基亦可包括:-F、-Cl、-Br、-I、-OH、受保護的羥基、-NO 2、-CN、-NH 2、受保護的胺基、 -NH-C 1-C 12-烷基、-NH-C 2-C 12-烯基、-NH-C 2-C 12-烯基、 -NH-C 3-C 12-環烷基、-NH-芳基、-NH-雜芳基、-NH-雜環烷基、-二烷基胺基、-二芳基胺基、-二雜芳基胺基、 -O-C 1-C 12-烷基、-O-C 2-C 12-烯基、-O-C 2-C 12-烯基、 -O-C 3-C 12-環烷基、-O-芳基、-O-雜芳基、-O-雜環烷基、 -C(O)-C 1-C 12-烷基、-C(O)-C 2-C 12-烯基、-C(O)-C 2-C 12-烯基、-C(O)-C 3-C 12-環烷基、-C(O)-芳基、-C(O)-雜芳基、 -C(O)-雜環烷基、-CONH 2、-CONH-C 1-C 12-烷基、 -CONH-C 2-C 12-烯基、-CONH-C 2-C 12-烯基、 -CONH-C 3-C 12-環烷基、-CONH-芳基、-CONH-雜芳基、 -CONH-雜環烷基、-OCO 2-C 1-C 12-烷基、-OCO 2-C 2-C 12-烯基、-OCO 2-C 2-C 12-烯基、-OCO 2-C 3-C 12-環烷基、 -OCO 2-芳基、-OCO 2-雜芳基、-OCO 2-雜環烷基、 -OCONH 2、-OCONH-C 1-C 12-烷基、-OCONH-C 2-C 12-烯基、-OCONH- C 2-C 12-烯基、-OCONH-C 3-C 12-環烷基、 -OCONH-芳基、-OCONH-雜芳基、-OCONH-雜環烷基、 -NHC(O)-C 1-C 12-烷基、-NHC(O)-C 2-C 12-烯基、 -NHC(O)-C 2-C 12-烯基、-NHC(O)-C 3-C 12-環烷基、 -NHC(O)-芳基、-NHC(O)-雜芳基、-NHC(O)-雜環烷基、 -NHCO 2-C 1-C 12-烷基、-NHCO 2-C 2-C 12-烯基、 -NHCO 2-C 2-C 12-烯基、-NHCO 2-C 3-C 12-環烷基、 -NHCO 2-芳基、-NHCO 2-雜芳基、-NHCO 2-雜環烷基、 -NHC(O)NH 2、-NHC(O)NH-C 1-C 12-烷基、 -NHC(O)NH-C 2-C 12-烯基、-NHC(O)NH-C 2-C 12-烯基、 -NHC(O)NH-C 3-C 12-環烷基、-NHC(O)NH-芳基、 -NHC(O)NH-雜芳基、NHC(O)NH-雜環烷基、 -NHC(S)NH 2、-NHC(S)NH-C 1-C 12-烷基、 -NHC(S)NH-C 2-C 12-烯基、-NHC(S)NH-C 2-C 12-烯基、 -NHC(S)NH-C 3-C 12-環烷基、-NHC(S)NH-芳基、 -NHC(S)NH-雜芳基、-NHC(S)NH-雜環烷基、 -NHC(NH)NH 2、-NHC(NH)NH-C 1-C 12-烷基、 -NHC(NH)NH-C 2-C 12-烯基、-NHC(NH)NH-C 2-C 12-烯基、 -NHC(NH)NH-C 3-C 12-環烷基、-NHC(NH)NH-芳基、 -NHC(NH)NH-雜芳基、-NHC(NH)NH雜環烷基、 -NHC(NH)-C 1-C 12-烷基、-NHC(NH)-C 2-C 12-烯基、 -NHC(NH)-C 2-C 12-烯基、-NHC(NH)-C 3-C 12-環烷基、 -NHC(NH)-芳基、-NHC(NH)-雜芳基、-NHC(NH)-雜環烷基、-C(NH)NH-C 1-C 12-烷基、-C(NH)NH-C 2-C 12-烯基、 -C(NH)NH-C 2-C 12-烯基、C(NH)NH-C 3-C 12-環烷基、 -C(NH)NH-芳基、-C(NH)NH-雜芳基、-C(NH)NH雜環烷基、-S(O)-C 1-C 12-烷基、-S(O)-C 2-C 12-烯基、 -S(O)-C 2-C 12-烯基、-S(O)-C 3-C 12-環烷基、-S(O)-芳基、 -S(O)-雜芳基、-S(O)-雜環烷基-SO 2NH 2、 -SO 2NH-C 1-C 12-烷基、-SO 2NH-C 2-C 12-烯基、 -SO 2NH-C 2-C 12-烯基、-SO 2NH-C 3-C 12-環烷基、 -SO 2NH-芳基、-SO 2NH-雜芳基、-SO 2NH-雜環烷基、 -NHSO 2-C 1-C 12-烷基、-NHSO 2-C 2-C 12-烯基、 -NHSO 2-C 2-C 12-烯基、-NHSO 2-C 3-C 12-環烷基、 -NHSO 2-芳基、-NHSO 2-雜芳基、-NHSO 2-雜環烷基、 -CH 2NH 2、-CH 2SO 2CH 3、-芳基、-芳烷基、-雜芳基、-雜芳烷基、-雜環烷基、-C 3-C 12-環烷基、聚烷氧基烷基、聚烷氧基、-甲氧基甲氧基、-甲氧基乙氧基、-SH、 -S-C 1-C 12-烷基、-S-C 2-C 12-烯基、-S-C 2-C 12-烯基、 -S-C 3-C 12-環烷基、-S-芳基、-S-雜芳基、-S-雜環烷基、或甲基硫甲基。 “病患”或“個體”為為哺乳動物,例如人類、小鼠、大鼠、豚鼠、狗、貓、馬、牛,豬或非人類靈長類動物,諸如猴子、黑猩猩、狒狒或恆河猴。 “有效量”或“治療有效量”在有關於化合物或醫藥組成物使用時是本文所述之個體中有效治療或預防疾病之量。 關於個體的術語“治療”係指改善個體的病症之至少一個症狀。治療包括治癒(curing)、改善、或至少部分地改善(ameliorating)病症。 亦能夠使用本揭示案的化合物或其醫藥上可接受的鹽或溶劑合物以預防疾病(disease)、病況(condition)或病症(disorder)。如在本文中所用,“預防(preventing, prevent)”說明降低或消除疾病、病況或病症之症狀(symptoms)或併發症(complications)的發作。 在此揭示案中使用術語“病症”以表示以及可互換地與術語疾病、病況、或患病使用,除非另有指明。 如在本文中所用,術語其中Polθ解旋酶發揮作用的疾病或病症表示其中已知Polθ解旋酶發揮作用的任何疾病或其他有害病況。因此,本申請案的另一個實施方式關於治療或減輕其中已知Polθ解旋酶發揮作用的一個或多個疾病之嚴重程度。 醫藥組成物在此揭露的化合物為Polθ解旋酶抑制劑。本申請案的醫藥組成物包含一或多種Polθ解旋酶抑制劑或其醫藥上可接受的鹽或溶劑合物、以及醫藥上可接受的載體或稀釋劑。 “醫藥組成物”為適合投予至個體之形式的含有本揭示案化合物的調配物。在一些實施方式中,醫藥組成物係呈散裝形式或單位劑型形式。單位劑型形式為多種形式的任一個,例如包括膠囊、IV袋、錠劑、在氣霧劑吸入器或小瓶上的單泵。在組成物之單位劑型中活性成分的量(例如所揭露的化合物或其醫藥上可接受的鹽或溶劑合物之調配物)是為有效量並根據所涉及的具體治療而變化。本領域中具有通常知識者將理解的是有時需要根據病患的年齡與病況而對劑量進行常規變化。劑量亦將取決於投予途徑。考量多種途徑,包括口服、肺、直腸、腸胃外、經皮、皮下、靜脈內、肌肉內、腹膜內、吸入、經頰、舌下、胸膜腔內、鞘內、鼻內等。用於此揭示案化合物之局部或經皮投予的劑型包括粉劑、噴霧劑、軟膏、糊劑、乳霜、洗劑、凝膠、溶液、貼片和吸入劑。在一些實施方式中,在無菌條件下混合活性化合物與醫藥上可接受的載體、以及所需的任何防腐劑、緩衝劑或推進劑。 如在本文中所用,用語“醫藥上可接受的”係指那些化合物、材料、組成物、載體、及/或劑型,彼等在合理的醫學判斷範圍內適合用於接觸人體與動物組織而並不具有過度的毒性、刺激、過敏反應、或其他問題或併發症,且有相稱合理的效益/風險比。 “醫藥上可接受的載體”與“醫藥上可接受的稀釋劑”係指有助於活性劑之調配及/或投予至個體及/或由個體吸收,且可包含於本揭示案之組成物中而不會造成對該個體的顯著不良毒理作用。醫藥上可接受的載劑及/或稀釋劑之非限制性實例包括水、NaCl、生理鹽溶液、乳酸化林格氏液(lactated Ringer’s)、正常蔗糖、正常葡萄糖、黏合劑、填充劑、崩散劑、潤滑劑、塗料、甜味劑、調味劑、鹽溶液(諸如林格氏溶液(Ringer’s solution))、醇、油、明膠、碳水化合物(諸如乳糖、直鏈澱粉或澱粉)、脂肪酸酯、羥甲基纖維素、聚乙烯吡咯啶及顏料等等。該等製劑可經滅菌,且若需要,可與不會與本文所提供之化合物發生有害反應或干擾其活性之輔助劑(諸如潤滑劑、防腐劑、穩定劑、潤濕劑、乳化劑、影響滲透壓之鹽、緩衝劑、著色劑及/或芳香物質等等)混合。一般技藝人士將認知其他醫藥賦形劑係適合於與所揭示化合物一起使用。 在此揭示案中使用的術語“載體”涵蓋載體、賦形劑、與稀釋劑並表示涉及從個體的一個器官或身體部分載送或運輸醫藥劑至另一個器官或身體部分之材料、組成物或媒液,例如液體或固體填料、稀釋劑、賦形劑、溶劑或包封材料。 本教示的醫藥組成物可選地包括用於其的一個或多個醫藥上可接受的載體及/或稀釋劑,例如乳糖、澱粉、纖維素及右旋糖。亦可包括其他賦形劑,例如調味劑;甜味劑;以及防腐劑,例如對羥基苯甲酸甲酯、對羥基苯甲酸乙酯、對羥基苯甲酸丙酯及對羥基苯甲酸丁酯。適當賦形劑的更完整列表可見於醫藥賦形劑手冊(Handbook of Pharmaceutical Excipients)(第5版,Pharmaceutical Press (2005))。本領域中具有通常知識者將知曉如何製備適合多種投予途徑的調配物。用於合適調配物之選擇與製備的傳統程序與成分例如記載於Remington’s Pharmaceutical Sciences(2003-20th edition)與1999年出版之The United States Pharmacopeia: The National Formulary(USP 24 NF19)中。載劑、稀釋劑及/或賦形劑就與醫藥組成物之其他成分相容且對其接受者無害之意義而言為“可接受的”。 本揭示案的醫藥組成物係調配成與其所欲之投予途徑相容。投予途徑的實例包括腸胃外,例如靜脈內、皮內、皮下、口服(例如吸入)、經皮(局部)、和經黏膜投予。用於腸胃外、皮內、或皮下施用之溶液或懸浮液可包括下列組分:無菌稀釋劑(諸如,用於注射之水、食鹽水溶液、非揮發性油、聚乙二醇、甘油、丙二醇或其他合成溶劑);抗菌劑(例如苯甲醇或對羥基苯甲酸甲酯);抗氧化劑(諸如,抗壞血酸或亞硫酸氫鈉);螯合劑(諸如,伸乙二胺四乙酸);緩衝劑(諸如,乙酸鹽、檸檬酸鹽或磷酸鹽)、和用於調整張力之試劑(諸如,氯化鈉或右旋糖)。pH可用酸或鹼(諸如,鹽酸或氫氧化鈉)予以調整。腸胃外製劑可封入由玻璃或塑料製成之安瓿、拋棄式注射器或多劑量小瓶中。 本揭示案之化合物或醫藥組成物可以現行用於化學治療之許多已知方法投予至個體。例如,關於癌症的治療,本揭示案之化合物可直接注射至腫瘤中、注射至血流或體腔中、或口服、或以貼片透過皮膚施用。所選擇的劑量應足以構成有效治療,但未高至造成無法接受的副作用。疾病狀況的狀態(例如癌症、癌前等)和患者的健康較佳地應在治療期間或治療之後一段合理時間嚴密地監測。 術語“治療有效量”,如本文所用,係指為治療、改善、或預防已確認之疾病或病症、或顯現可檢測之治療或或抑制效果之醫藥劑的量。效果可藉由該技術已知之任何分析方法予以檢測。個體的精確有效量將取決於個體的體重、尺寸、和健康;病況之性質和程度;及針對投予而所選擇之療法或療法組合。針對給定之情況的治療有效量可藉由在臨床醫師的專業和判斷範圍內的例行實驗而測定。 關於任何化合物,治療有效量最初可例如以腫瘤細胞的細胞培養分析,或以動物模式(通常為大鼠、小鼠、兔子、狗、或豬)評估。動物模式亦可用於測定投予的適當濃度範圍和途徑。該資訊之後可用於測定人類投予的有用劑量和途徑。治療/預防功效和毒性可藉由標準醫藥程序於細胞培養或實驗動物中予以測定,例如,ED 50(在50%總數中治療有效的劑量)和LD 50(使50%總數致死的劑量)。介於毒性和治療效果的劑量比為治療指數,且其可以比率LD 50/ED 50表示。顯示大治療指數之醫藥組成物為較佳的。劑量可取決於所使用之劑量、患者的敏感性、和投予途徑而在此範圍內變化。 調整劑量和投予,以提供足夠含量的活性劑或以維持所欲之效果。可考慮的因子包括疾病狀態的嚴重性,個體的一般健康,個體的年紀、體重和性別,飲食、投予的時間和頻率,藥物組合,反應敏感性,和對療法的耐受性/反應。長效醫藥組成物可每3至4天、每星期、或每兩星期一次投予,取決於特定調配物的半衰期和清除率。 含有本揭示案之活性化合物(即,式(I)化合物)的醫藥組成物可以通常已知的方式製造,例如使用習知的混合、溶解、造粒、糖衣化、磨細、乳化、膠囊化、截留、或凍乾方法。醫藥組成物可使用一或多種醫藥上可接受的載劑(其包含有助於使活性化合物加工成可醫藥上使用之製劑的賦形劑及/或助劑)以習知的方式調配。當然,適當調配物係取決於所選擇之投予途徑。 適合注射使用之醫藥組成物包括無菌水溶液(其中水可溶的)或分散液,和用於即時調配無菌注射溶液或分散液的無菌粉末。關於靜脈內投予,適當載劑包括生理食鹽水、抑菌水、Cremophor EL™(BASF, Parsippany, N.J.)或磷酸鹽緩衝食鹽水(PBS)。在所有情況下,組成物必須為無菌且應為易以可注射性程度存在之流體。其在製造和儲存條件下必須是安定的,且必須抗微生物(諸如細菌和真菌)的污染作用。載劑可為溶劑或分散液介質,其含有例如水、乙醇、多元醇(例如甘油、丙二醇、和液體聚乙二醇等等)及其適合的混合物。適當的流動性可(例如)藉由使用塗料諸如卵磷脂、在分散液的情況下藉由所要求的顆粒尺寸的維持和藉由使用界面活性劑而予以維持。微生物作用的預防可藉由各種抗菌劑和抗真菌劑(例如對羥苯甲酸酯、氯丁醇、酚、抗壞血酸、乙汞硫柳酸鈉等等)而達成的。在許多情況下,組成物中包括等張劑(例如糖、多元醇諸如甘露醇、山梨醇、和氯化鈉)將是較佳的。可藉由在組成物中包括延緩吸收之試劑(例如單硬脂酸鋁和明膠)而導致注射組成物的延長吸收。 無菌注射溶液可藉由將活性化合物以所需量在適當溶劑中與上文所列舉之成分中的一者或組合物組合,如需要,接著過濾殺菌,而予以製備。通常,分散液係藉由將活性化合物併入含有基礎分散介質和來自上文所列舉者之所需其他成分的無菌媒液中而製備。在用於製備無菌可注射溶液之無菌粉末的情況下,製備之方法為真空乾燥和冷凍乾燥,其從其先前無菌過濾溶液產生活性成分加上任何額外所欲之成分的粉末。 口服組成物通常包括惰性稀釋劑或可食用之醫藥上可接受的載劑。彼等可被封入明膠膠囊中或壓縮成錠劑。為了口服治療投予之目的,活性化合物可與賦形劑混合且以錠劑、片劑、或膠囊形式使用。口服組成物亦可使用流體載劑製備而用作為漱口水,其中流體載劑中的化合物係經口施用和漱口且吐出或吞下。可包括醫藥上可相容的黏合劑及/或佐劑材料作為組成物的一部份。錠劑、丸劑、膠囊、片劑等等可包含下列成分、或類似性質之化合物中之任一者:黏合劑,諸如微晶纖維素、黃蓍膠或明膠;賦形劑,諸如澱粉或乳糖:崩散劑,諸如海藻酸、羧甲基澱粉鈉鹽(Primogel)、或玉米澱粉;潤滑劑,諸如硬脂酸鎂或Sterotes;助流劑,諸如膠體二氧化矽;甜味劑,諸如蔗糖或糖精;或調味劑,諸如薄荷、水楊酸甲酯、或柳橙風味。 關於藉由吸入投予,化合物係從含有適當推進劑(例如氣體諸如二氧化碳)之加壓容器或分配器,或噴霧器以氣霧劑噴霧形式予以遞送。 全身性投予亦可藉由經黏膜或經皮方式。關於經黏膜或經皮投予,適合於待滲透之障礙物的滲透劑係用於調配物中。該等滲透劑通常為該項技術已知的,且包括(例如)用於黏膜投予,清潔劑、膽鹽、和梭鏈孢酸衍生物,以用於經黏膜投予。經黏膜投予可透過使用鼻噴霧或栓劑而完成。關於經皮投予,活性化合物係調配成如通常為該技術已知的軟膏、油膏、凝膠、或乳霜。 活性化合物可與醫藥上可接受的載劑一起製備,該載劑防止化合物從身體快速消除,例如,控制釋出調配物,包括植入物和微膠囊化輸送系統。可以使用生物可降解、生物可相容之聚合物,例如,乙烯乙酸乙烯酯、聚酸酐、聚乙醇酸、膠原、聚原酸酯、和聚乳酸。製備該等調配物之方法對熟習該項技術者將為顯而易見的。該等材料亦可以從Alza Corporation和Nova Pharmaceuticals, Inc.商業上獲得。脂質體懸浮液(包括靶向具有針對病毒抗原的單株抗體的感染細胞的脂質體)亦可用作為醫藥上可接受的載劑。此等可根據熟習該項技術者已知的方法(例如如描述於U.S專利案第4,522,811號)製備。 為了容易投予和劑量一致性,劑量單位形式之口服或腸胃外組成物是特別有利的。如本文所用之劑量單位形式係指適合作為欲治療之個體之單位劑量的物理不連續單位;各單位含有產生所欲治療效果之經計算的預定量之活性化合物結合所需要之醫藥載劑。本揭示案之劑量單位形式的說明係由活性化合物的獨特性質和欲達成之特定治療效果所指定或直接取決於活性化合物的獨特性質和欲達成之特定治療效果。 在治療揭示中,在影響所選擇之劑量的其他因子中,根據本揭示案使用之醫藥組成物的劑量取決於藥劑、接受的患者的年紀、體重、和臨床狀況,及投予療法之臨床醫師或執業者的經驗和判斷而改變。通常,劑量應足以導致減慢,和較佳地退化腫瘤的生長,且亦較佳地造成癌症的完全退化。劑量範圍可從每天約0.01mg/kg天至每天約5000mg/kg。醫藥劑之有效量為其提供臨床醫師或其他有資格之觀察者所注意到的客觀可確認的改善之量。例如,個體中腫瘤的退化可參考腫瘤直徑而予以測量。腫瘤直徑的減小表示退化。退化亦藉由在停止治療之後腫瘤不會再發生而表示。如本文所用,術語“劑量有效方式”係指活性化合物在個體或細胞中產生所欲之生物作用的量。 醫藥組成物可與投予指示一起包括在容器、包裝、或分配器中。 根據多種因素選擇利用化合物之劑量方案,包括病患的類型、種族、年齡、重量、性別與醫療狀況;待治療病況的嚴重程度;投予途徑;病患的腎臟與肝臟功能;以及所採用的具體化合物或其醫藥上可接受的鹽或溶劑合物。具有通常技藝之醫師或獸醫師能夠容易地確定並開立有效量的所需藥物以預防、反抗(counter)或阻止(arrest)病況的進展。 用於本揭示案所揭露化合物之調配與投予的技術可見於 Remington: the Science and Practice of Pharmacy, 19 thedition, Mack Publishing Co., Easton, PA(1995)。在一些實施方式中,本文所述之化合物與其醫藥上可接受的鹽或溶劑合物與醫藥上可接受的載體或稀釋劑組合用於醫藥製劑中。適當醫藥上可接受的載體包括惰性固體填料或稀釋劑與無菌水性或有機溶液。化合物或其醫藥上可接受的鹽或溶劑合物將以足以提供位於本文所述之範圍內的所欲劑量之量存在於該等醫藥組成物中。 除非另有指明,在此使用的所有百分比與比係以重量計。本揭示案的其他特徵與優勢從不同例子為顯而易見的。所提供的例子示出可用於實踐本揭示案的不同組分與方法。例子並不限制所請的揭示案。本領域中技藝人士能夠基於本揭示案鑑別並採用有用於實踐本揭示案的其他組分與方法。 使用化合物的方法本申請案提供一種治療患有可藉由抑制Polθ解旋酶改善之疾病或病症之個體的方法,其藉由將有效量之一個或多個所揭露的化合物、或其醫藥上可接受的鹽或溶劑合物、或對應的醫藥組成物投予至個體。可藉由抑制Polθ解旋酶改善之疾病包括治療癌症。 本申請案進一步關於一種治療其中Polθ解旋酶發揮作用的疾病或病症(例如癌症)的方法。方法包含投予有效量之在此揭露之化合物或其醫藥上可接受的鹽或溶劑合物或在此揭露的醫藥組成物至有其需要個體。 在一個態樣中,本文所述的是一種用於治療及/或預防個體中疾病的方法,例如由Polθ解旋酶之過表達/過度活性所表徵的癌症,包含投予治療有效量之本文所述之化合物或其醫藥上可接受的鹽或溶劑合物至個體。 在另一個態樣中,本文所述的是一種用於治療及/或預防個體中癌症的方法,例如由同源重組(HR)缺失或由BRCA基因表達之減少或不存在、BRAC基因之不存在、或BRCA蛋白質之功能減少所表徵的癌症,包含投予治療有效量之本文所述之化合物或其醫藥上可接受的鹽或溶劑合物至個體。 在另一個態樣中,本文所述的是一種用於抑制細胞中藉由Polθ之DNA修復的方法,包含使細胞接觸有效量之本文所述之化合物或其醫藥上可接受的鹽或溶劑合物。在一些實施方式中,細胞為HR缺失。 在另一個態樣中,本文提供的是一種用於抑制細胞中藉由Polθ之DNA修復的本文所述之化合物或其醫藥上可接受的鹽或溶劑合物。在一些實施方式中,細胞為HR缺失。 在另一個態樣中,本文所述的是一種用於治療及/或預防個體中疾病的本文所述之化合物或其醫藥上可接受的鹽或溶劑合物,例如可藉由抑制Polθ治療之疾病諸如癌症,包括同源重組(HR)缺失癌症。 在另一個態樣中,本文所述的是一種用於治療及/或預防個體中疾病的本文所述之化合物或其醫藥上可接受的鹽或溶劑合物,例如由Polθ解旋酶之過表達/過度活性、由同源重組(HR)缺失、或由BRAC基因表達之減少或不存在、BRAC基因之不存在、或BRAC蛋白質之功能減少所表徵的癌症。 在另一個態樣中,本文提供的是一種用於製造用於抑制細胞中藉由Polθ之DNA修復之藥劑的本文所述之化合物或其醫藥上可接受的鹽或溶劑合物。在一些實施方式中,細胞為HR缺失。 在另一個態樣中,本文所述的是一種用於製造用於治療及/或預防個體中疾病之藥劑的本文所述之化合物或其醫藥上可接受的鹽或溶劑合物,例如可藉由抑制Polθ治療之疾病諸如癌症,包括同源重組(HR)缺失癌症。 在另一個態樣中,本文所述的是一種用於製造用於治療及/或預防個體中疾病之藥劑的本文所述之化合物或其醫藥上可接受的鹽或溶劑合物,例如由Polθ解旋酶之過表達/過度活性、由同源重組(HR)缺失、或由BRAC基因表達之減少或不存在、BRAC基因之不存在、或BRAC蛋白質之功能減少所表徵的癌症。 在另一個態樣中,本文所述的是一種用於治療及/或預防個體中對聚(ADP-核糖)聚合酶(PARP)抑制劑療法具有耐受性的癌症之本文所述之化合物或其醫藥上可接受的鹽或溶劑合物。對PARP-抑制劑具有耐受性的癌症的例子包括但不限於乳癌、卵巢癌、肺癌、膀胱癌、肝癌、頭頸癌、胰臟癌、胃腸癌、與大腸直腸癌。 在一個態樣中,本文所述的是一種治療癌症的方法,方法包含投予治療有效劑量之如本文所述的組成物(例如包含本揭示案化合物的組成物)至有治療癌症需要的個體。 本揭示案進一步關於一種在此揭露之化合物、或其醫藥上可接受的鹽或溶劑合物、或在此揭露的醫藥組成物於製造用於治療其中Polθ解旋酶發揮作用的疾病或病症(例如癌症)之藥劑的用途。 本揭示案提供一種在此揭露之化合物、或其醫藥上可接受的鹽或溶劑合物、或在此揭露的醫藥組成物於製造用於治療可藉由抑制Polθ解旋酶改善之疾病或病症之藥劑的用途。 在一個態樣中,本文所述的是在此揭露之化合物、或其醫藥上可接受的鹽或溶劑合物、或在此揭露的醫藥組成物於製造用於癌症治療之藥劑的用途。 本揭示案進一步關於一種用於治療其中Polθ解旋酶發揮作用的疾病或病症(例如癌症)的在此揭露之化合物、或其醫藥上可接受的鹽或溶劑合物、或在此揭露的醫藥組成物。 本揭示案提供一種用於治療可藉由抑制Polθ解旋酶改善之疾病或病症在此揭露之化合物、或其醫藥上可接受的鹽或溶劑合物、或在此揭露的醫藥組成物。 在另一個態樣中,本文所述的是一種用於治療及/或預防病患中Polθ解旋酶的過表達所表徵之疾病的方法,例如癌症,包含投予治療有效量之本揭示案的化合物或其醫藥上可接受的鹽或溶劑合物至病患。 在一些實施方式中,本文所述的是一種用於治療及/或預防病患中的同源重組(HR)缺失癌症的方法,包含投予治療有效量之本文所述之化合物或其醫藥上可接受的鹽或溶劑合物至病患。 在一些實施方式中,本文所述的是一種用於抑制癌症細胞中藉由Polθ之DNA修復的方法,包含使細胞接觸有效量之本文所述之化合物或其醫藥上可接受的鹽或溶劑合物。在一些實施方式中,癌症為HR缺失癌症。 在一些實施方式中,本文所述的是一種用於治療及/或預防病患中癌症的方法,其中癌症係由由BRCA基因表達之減少或不存在、BRAC基因之不存在、或BRCA蛋白質之功能減少所表徵,包含投予治療有效量之本文所述之化合物或其醫藥上可接受的鹽或溶劑合物(可選地在醫藥組成物中)至個體。 在一些實施方式中,癌症為淋巴瘤、白血病、多發性骨髓瘤、軟組織癌、橫紋肌腫瘤、橫紋肌肉瘤、中央神經系統癌、周圍神經系統癌、骨癌、子宮癌、卵巢癌、上呼吸消化道癌、食道癌、胃癌、胃腸癌、大腸直腸癌、惡性間皮瘤、乳癌、肺癌、膀胱癌、肝癌、頭頸癌、纖維母細胞癌、泌尿道癌、腎癌、皮膚癌、攝護腺癌、與胰臟癌。 在一些實施方式中,HR-缺失癌症為乳癌。乳癌包括但不限於小葉原位癌(lobular carcinoma in situ,LCIS)、乳管原位癌(ductal carcinoma in situ,DCIS)、侵襲性乳管癌(invasive ductal carcinoma, IDC)、炎性乳癌、乳頭柏哲德氏病(Paget’s disease)、葉狀腫瘤、血管肉瘤、腺樣囊性癌、低級別腺鱗癌、髓樣癌、黏液腺癌、乳頭狀癌、管狀癌、化生性乳癌、微小乳突狀癌、混合型癌、與其他乳癌,包括但不限於三陰性、HER陽性、雌激素受體陽性、黃體素受體陽性、HER與雌激素受體陽性、HER與黃體素受體陽性、雌激素與黃體素受體陽性、及/或HER與雌激素與黃體素受體陽性的乳癌。 在一些實施方式中,HR-缺失癌症為卵巢癌,包括但不限於上皮性卵巢癌(epithelial ovarian carcinomas, EOC)、成熟型畸胎瘤、無性細胞瘤、內胚層竇腫瘤、卵巢顆粒細胞瘤、支持間質細胞瘤、與原發性腹膜癌。 在一些實施態樣中,可藉由所揭示之方法進行治療的癌症包括膀胱、血液、骨、骨髓、腦、乳房、結腸、食道、胃腸、牙齦、頭、腎、肝、肺、鼻咽、頸、卵巢、前列腺、皮膚、胃、睾丸、舌頭或子宮之癌症。此外,該癌症可具體地為以下組織學類型,雖然不限於此等:惡性腫瘤;腫瘤;癌;未分化癌;巨細胞及梭形細胞癌;肉瘤;小細胞癌;乳頭狀癌;鱗狀細胞癌;淋巴上皮癌;基底細胞癌;毛母質(pilomatrix)癌;移行細胞癌;乳頭狀移行細胞癌;腺癌;惡性胃泌素瘤;膽管癌;肝細胞癌;合併肝細胞癌及膽管癌;小梁腺癌;腺樣囊性癌;腺瘤性息肉中之腺癌;腺癌,家族性結腸息肉;實體癌;惡性類癌瘤;支氣管肺泡腺癌;乳頭狀腺癌;嫌色細胞癌;嗜酸性球癌;嗜酸性腺癌;嗜鹼性球癌;透明細胞腺癌;顆粒細胞癌;濾泡性腺癌;乳頭狀及濾泡狀腺癌;無包膜形成的硬化性腺癌;腎上腺皮質癌;子宮內膜樣癌;皮膚附屬物癌;大汗腺腺癌;皮脂腺癌;耵聹腺癌;黏液表皮樣癌;囊腺癌;乳頭狀囊腺癌;乳頭狀漿液性囊腺癌;黏液性囊腺癌;黏液腺癌;戒環細胞癌;浸潤性導管癌;髓樣癌;小葉癌;炎性癌;乳房柏哲德氏病(Paget’s disease);腺泡細胞癌;腺鱗癌;腺癌伴鱗狀化生;惡性胸腺瘤;惡性卵巢間質瘤;惡性肉瘤;惡性顆粒細胞瘤;雄胚瘤;史托利(sertoli)細胞癌;惡性雷迪格(leydig)細胞瘤;惡性脂質細胞瘤;惡性副神經節瘤;惡性乳房外副神經節瘤;嗜鉻細胞瘤;血管球肉瘤;惡性黑色素瘤;無黑色素瘤;淺表擴散性黑色素瘤;巨大色素痣中之惡性黑色素瘤;上皮樣細胞黑色素瘤;惡性藍色痣;肉瘤;纖維肉瘤;惡性纖維組織細胞瘤;黏液肉瘤;脂肪肉瘤;平滑肌肉瘤;橫紋肌肉瘤;胚胎性橫紋肌肉瘤;肺泡橫紋肌肉瘤;間質肉瘤;惡性混合瘤;穆勒(mullerian)混合瘤;腎母細胞瘤;肝母細胞瘤;癌肉瘤;惡性間質瘤;惡性布倫納(Brenner)腫瘤;惡性葉狀腫瘤;滑膜肉瘤;惡性間皮瘤;無性胚胎瘤;胚胎癌;惡性畸胎瘤;惡性甲狀腺腫樣卵巢瘤;絨毛膜癌;惡性中腎瘤;血管肉瘤;惡性血管內皮瘤;卡波西肉瘤(Kaposi’s sarcoma);惡性血管外皮細胞瘤;淋巴管肉瘤;骨肉瘤;近皮質骨肉瘤;軟骨肉瘤;惡性軟骨母細胞瘤;間充質軟骨肉瘤;骨之巨細胞瘤;尤文氏肉瘤(Ewing’s sarcoma);惡性牙源性腫瘤;釉質母細胞牙肉瘤(ameloblastic odontosarcoma);惡性釉質母細胞瘤;釉質母細胞纖維肉瘤;惡性松果體瘤;脊索瘤;惡性膠質瘤;室管膜瘤;星形細胞瘤;原生質星形細胞瘤;原纖維性星形細胞瘤;星形母細胞瘤;神經膠質母細胞瘤;寡樹突神經膠細胞瘤;寡樹突神經膠母細胞瘤;原始神經外胚層;小腦肉瘤;神經節神經母細胞瘤;神經母細胞瘤;視網膜母細胞瘤;嗅神經源性腫瘤;惡性腦膜瘤;神經纖維肉瘤;惡性神經鞘瘤;惡性顆粒細胞瘤;惡性淋巴瘤;霍奇金氏病;霍奇金氏;副肉芽腫(paragranuloma);小淋巴球性惡性淋巴瘤;大細胞瀰漫性惡性淋巴瘤;濾泡性惡性淋巴瘤;蕈狀肉芽腫;其他指定非霍奇金氏淋巴瘤;惡性組織細胞病;多發性骨髓瘤;肥大細胞肉瘤;免疫增殖性小腸疾病;白血病;淋巴樣白血病;漿細胞白血病;紅白血病;淋巴肉瘤細胞白血病;骨髓性白血病;嗜鹼性球白血病;嗜酸性球白血病;單核細胞白血病;肥大細胞白血病;巨核母細胞白血病;骨髓肉瘤;及毛細胞白血病。 術語疾病的“治療”或“治療”包括抑制疾病,例如,阻止(arresting)或減少(reducing)疾病或其臨床症狀的發展;或緩解(relieving)疾病,例如導致疾病或其臨床症狀的消退。 有關於Polθ之術語“抑制(inhibiting)”、“減少(reducing)”、或這些術語的任何變包括任何可測量的降低或完全抑制以達成所欲結果。例如,相較於其正常活性,可以降低約,至多約,或至少約5%、10%、15%、20%、25%、30%、35%、40%、45%、50%、55%、60%、65%、70%、75%、80%、85%、90%、95%、99%、或更高、或從其內可衍生的任何範圍之Polθ活性之減少。 術語“預防”係指導致在可能暴露至或傾向於疾病但尚未經歷或展現疾病的症狀之哺乳類中沒有發展疾病的臨床症狀。 術語“同源重組”係指基因重組的細胞過程(cellular process),其中兩個相似或相同DNA之間交換核苷酸序列。 術語“同源重組(HR)缺失癌症”係指由功能性HR修復途徑之減少或不存在所表徵的癌症。HR缺失可源自一個或多個HR相關基因之不存在或在一個或多個HR相關基因中一個或多個突變的存在。HR相關基因的例子包括BRCA1、BRCA2、RAD54、RAD51B、CtlP(膽鹼運輸樣蛋白(Choline Transporter-Like Protein))、PALB2(BRCA2的另一半與定位(Partner and Localizer of BRCA2))、XRCC2 (中國倉鼠細胞2中的X-ray修復互補性缺陷性修復)、RECQL4(RecQ蛋白樣4)、BLM(布盧姆綜合症(Bloom syndrome)、RecQ解旋酶樣)、WRN(維爾納綜合症(Werner syndrome)、一個或多個HR相關基因)Nbs 1(Nibrin)、與編碼范可尼氏貧血症(Fanconi anemia, FA)蛋白的基因或FA樣基因例如,FANCA、FANCB、FANCC、FANCD1(BRCA2)、FANCD2、FANCE、FANCF、FANCG、FANCI、FANJ(BRIP1)、FANCL、FANCM、FANCN (RALB2)、FANCP(SLX4)、FANCS(BRCA1)、RAD51C、與XPF。 術語“Polθ過表達”係指相對於在正常細胞中Polθ的表達或活性(例如相同種類的非疾病細胞),在疾病細胞(例如癌性細胞)中Polθ的表達或活性增加。相對於在正常細胞中的Polθ表達,Polθ的量可以是至少2倍、至少3倍、至少4倍、至少5倍、至少10倍、或更高。Polθ癌症的例子包括但不限於乳房、卵巢、子宮頸、肺、大腸直腸、胃、膀胱與攝護腺癌症。 此外,本揭示案的化合物能夠與其他治療劑共同投予。在一些實施方式中,其他治療劑包括本領域中已知的化療劑,例如DNA修復途徑的抑制劑(例如HR與NHEJ)與免疫調節劑。如在本文中所用,術語“共同投予”、“組合投予”及彼等的文法均等物意在涵蓋投予兩個或更多個治療劑至單一個體,並旨在包括其中藉由相同或不同投予途徑或相同或不同次數投予用劑的治療方案。這些術語涵蓋投予兩個或更多個用劑至個體使得在個體中同時存在用劑及/或彼等的代謝物兩者。彼等包括於分別的組成物同時投予,於分別的組成物在不同時間投予,及/或於其中存在兩個用劑的組成物投予。因此,在一些實施方式中,本文所述之化合物與其他用劑係以單一組成物投予。在一些實施方式中,本文所述之化合物與其他用劑混合於組成物中。 實施例 化合物製備從商業來源購買試劑級化學品與無水溶劑並且在沒有進一步純化下使用,除非另有提及。化合物的製備是可商購或文獻中已知的,如參照資料所呈現的。使用ChemDraw(PerkinElmer)以確定產物名稱。在記載相似於先前實施例或中間物而製備化合物的情形中,反應時間、試劑當量、溫度、後續處理(work-up)、與純化技術可稍有變動。 純化於下列進行層析分離: -   泰萊達(Teledyne)ISCO CombiFlash快速層析(flash chromatography)系統,使用預充填的SiO 2或C18管柱 -   泰萊達(Teledyne)ISCO ACCQPrep高壓製備液相層析系統;管柱:Gemini 5 um C18 110 Å, 150×30 mm -   Biotage Isolera快速層析系統,使用預充填的SiO 2或C18管柱。 -   沃特斯(Waters) Mass Trigger Semi-Prep HPLC;管柱:Gemini 5 um NX-C18 110Å, 100×30 mm 分析方法-在Waters UPLC-MS上進行LC-MS;管柱:Acquity UPLC, CSH C 18, 1.7 um, 2.1×30 mm;方法:於2分鐘內在具有0.1%(v/v)甲酸之H 2O中的從5%至95%之CH 3CN或於2分鐘內在10 mM 碳酸氫銨中的從5%至95%之CH 3CN。 -使用具有Inova介面的Varian NMR(AS 400) 400 MHz光譜儀進行NMR光譜分析。在所有情形中,NMR數據與所提出的結構一致。使用傳統對於峰的命名縮寫以每百萬分給出特徵化學位移(δ):例如s, 單峰;d, 雙峰;t;三重峰;q, 四重峰;dd, 雙重雙重峰(doublet of doublets);dt, 雙重三重峰(doublet of triplets);b, 廣峰(broad);等。 所使用的縮寫: 9-BBN               9-硼雙環[3.3.1]壬烷 δ                     化學位移 Å                    埃(Angström) Ac                   乙醯基 ACN                  乙腈 Bn                   苄基 Boc                  三級丁氧基羰基 b                    廣峰單峰 Bu                   丁基 Calcd                 計算值 d                      峰 DAST                (二乙胺基)三氟化硫 dd                     雙重雙重峰 dt                     雙重三重峰 DCM                 二氯甲烷 DDQ                  2,3-二氯-5,6-二氰基-對苯醌 DIBALH             二異丁基氫化鋁 DIPA N, N-二異丙基胺 DIPEA N,N-二異丙基乙胺 DMAP              4-二甲基胺基吡啶 DMF N,N-二甲基甲醯胺 DMP                  戴斯-馬丁氧化劑(Dess-Martin periodinane) DMSO                二甲基亞碸 Dppf                  1,1’-二茂鐵二基-雙(二苯基膦) EA                    乙酸乙酯 ee                     鏡像異構物過量值 Et                    乙基 EtOH                 乙醇 Et 3N                  三乙基胺 eq                   當量 g                     克 Hour                  小時(h) HATU         1-[雙(二甲基胺基)亞甲基]-1 H-1,2,3-三唑[4,5- b]吡啶鎓3-氧化物六氟磷酸鹽 Hz                     赫(Hertz) HPLC               高效液相層析 i-Pr                  異丙基 J偶合常數 L                     公升 LC-MS               液相層析-質譜 LDA                  二異丙基醯胺鋰 LiHMDS             雙(三甲基矽基)醯胺鋰 M                      莫耳 m                      多重峰 mCPBA              間氯過氧苯甲酸 Me                   甲基 MeTHF               2-甲基四氫呋喃 MeOH                甲醇 mg                   毫克 MHz                 百萬赫 min                  分鐘 mL                  毫升 mm                    毫米 mmol                毫莫耳 mol                  莫耳 MS                    質譜 N                      正(Normal) NBS N-溴化琥珀醯亞胺 PCC                  吡啶氯鉻酸鹽 Pd 2(dba) 3三(二苄基茚丙酮)二鈀(0) Pd(PPh 3) 4四(三苯基膦)鈀(0) Pd(dppf)Cl 2.DCM [1,1’-雙(二苯基膦基)二茂鐵]二氯鈀(II),與二氯甲烷錯合 Pd(dppf)Cl 2[1,1’-雙(二苯基膦基)二茂鐵]二氯鈀(II) pH                    氫潛勢(Potential of hydrogen) Ph                     苯基 PPh 3三苯基膦 ppm                 每百萬分 PyBOP               苯并三唑基-1-基氧基三吡咯烷基鏻六氟磷酸鹽 q                      四重峰 RT                    室溫 NMR                 核磁共振 s                       單峰 sat                    飽和 sxt                    六重峰(Sextuplet) t三級 t                       三重峰 tt                      三重三重峰(Triplet of triplet) t-Bu                 三級丁基 TCFH                氯- N, N, N’, N’-四甲基甲脒六氟磷酸鹽 TMS                  三甲基矽基 TFA                 三氟乙酸 THF                 四氫呋喃 Ts                     甲苯磺醯基 mol                   微莫耳 v/v                    體積/體積 XantPhos            4,5-雙(二苯基膦基)-9,9-二甲基 °                       度 %                      百分比 以下指出用於合成的一般方法作為參考。 一般方法 反應名稱 A 醯胺偶合反應(HATU) B 胺化 C 醯胺偶合反應(TCFH) D 威廉遜(Williamson)醚類合成 E 薗頭(Sonogashira)交叉偶合 F BOC去保護作用 G 布赫瓦爾德(Buchwald)醯胺交叉偶合 H 鈴木偶合 I 氫化 J 縮合反應 實施例 1. N-(5-((4- 氯苄基 ) 硫基 )-1,3,4- 噻二唑 -2- )-3-(2- 甲氧基苯基 ) 異菸鹼醯胺 ( 化合物 1) 之製備 步驟 1 5-((4- 氯苄基 ) 硫基 )-1,3,4- 噻二唑基 -2- 胺之合成於0℃添加0.1 N氫氧化鈉(38 mL, 3.75 mmol)之溶液至5-胺基-1,3,4-噻二唑-2-硫醇(1 g, 7.51 mmol)與4-氯苄基溴(1.57 g, 7.51 mmol)於EtOH(100 mL)中的混合物。在攪拌15分鐘後,讓反應混合物加熱至室溫並攪拌24 h。以真空過濾收集所產生的沈澱物並以水與EtOH清洗以提供5-((4-氯苄基)硫基)-1,3,4-噻二唑基-2-胺(1.4 g, 72%產率),呈白色固體。MS (ESI): m/z 257.0(計算值), 258.0(M+H +, 實際值)。 步驟 2 N-(5-((4- 氯苄基 ) 硫基 )-1,3,4- 噻二唑 -2- )-3-(2- 甲氧基苯基 ) 異菸鹼醯胺 ( 化合物 1 ) 之合成 一般方法 A對5-((4-氯苄基)硫基)-1,3,4-噻二唑基-2-胺(100 mg, 0.39 mmol)與3-(2-甲氧基苯基)異菸鹼酸(89 mg, 0.39 mmol, WO 2020/243459, p. 84)在乾燥DMF(5 mL)中之攪拌溶液,加入HATU(226 mg, 0.58 mmol)與DIPEA(203 mL, 1.16 mmol)。於室溫在氬氣氛下攪拌反應混合物3 h。以水稀釋並以EA(3×10 mL)萃取反應混合物。所結合的有機層在無水Na 2SO 4上乾燥,過濾,並濃縮至乾燥。藉由快速層析法(在己烷類(hexanes)中從0%至50%之EA的溶析液梯度)純化殘留物。將單離產物溶解於ACN(1 mL)中,以水(4 mL)稀釋,及冷凍乾燥以提供N-(5-((4-氯苄基)硫基)-1,3,4-噻二唑-2-基)-3-(2-甲氧基苯基)異菸鹼醯胺( 化合物 1)(105 mg, 58%產率),呈白色固體。 1H NMR (400 MHz, DMSO- d 6) δ ppm 3.42 (3H, s), 4.47 (2H, s), 6.96 (1H, d, J = 8.1 Hz), 7.06 (1H, td, J = 7.5, 1.0 Hz), 7.41-7.34 (6H, m), 7.64 (1H, d, J = 4.9 Hz), 8.61 (1H, s), 8.71 (1H, d, J = 4.9 Hz), 13.17 (1H, s). MS (ESI): m/z 468.0(計算值), 469.1(M+H +, 實際值)。 實施例 2. N-(5-((4- 氯苄基 ) 胺基 )-1,3,4- 噻二唑 -2- )-3-(2- 甲氧基苯基 ) 異菸鹼醯胺 ( 化合物 2) 之製備 步驟 1 N 2-(4- 氯苄基 )-1,3,4- 噻二唑 -2,5- 二胺之合成 一般方法 B對於2-胺基-5-溴-1,3,4-噻二唑(1 g, 5.55 mmol)在乾燥THF(15 mL)中之懸浮液,加入Et 3N(2 mL, 13.9 mmol)與4-氯苄基胺(676 mL, 5.55 mmol)。反應混合物回流2 h,冷卻至室溫並在減壓下移除揮發物。加入EtOH(10 mL),以真空過濾收集所產生的沈澱物並以DCM(2×10 mL)清洗以提供N 2-(4-氯苄基)-1,3,4-噻二唑-2,5-二胺(1.34 g, 82%產率),呈灰色固體。MS (ESI): m/z 240.0(計算值), 241.1 (M+H +, 實際值)。 步驟 2 N-(5-((4- 氯苄基 ) 胺基 )-1,3,4- 噻二唑 -2- )-3-(2- 甲氧基苯基 ) 異菸鹼醯胺 ( 化合物 2 ) 之合成按照一般方法 AN 2-(4-氯苄基)-1,3,4-噻二唑-2,5-二胺(100 mg, 0.42 mmol)、3-(2-甲氧基苯基)異菸鹼酸(95 mg, 0.42 mmol)、HATU(237 mg, 0.62 mmol)與DIPEA(217 mL, 1.25 mmol)在DMF(5 mL)中獲得標題化合物。藉由快速層析法(在己烷類中0%至50%之EA的溶析液梯度)純化粗產物。將單離產物溶解於ACN(1 mL)中,以水(4 mL)稀釋,及冷凍乾燥以提供N-(5-((4-氯苄基)胺基)-1,3,4-噻二唑-2-基)-3-(2-甲氧基苯基)異菸鹼醯胺( 化合物 2)(37 mg, 20%產率),呈白色固體。 1H NMR (400 MHz, DMSO- d 6) δ ppm 3.52 (3H, s), 4.44 (2H, d, J = 5.8 Hz), 6.99 (1H, d, J = 8.2 Hz), 7.05 (1H, t, J = 7.5 Hz), 7.39-7.32 (6H, m), 7.58 (1H, d, J = 5.0 Hz), 7.88 (1H, t, J = 5.8 Hz), 8.58 (1H, s), 8.68 (1H, d, J = 5.0 Hz), 12.43 (1H, s). MS (ESI): m/z 451.1(計算值), 452.2(M+H +, 實際值)。 實施例 3. ( E)-N-(5-(4- 氯苯乙烯基 )-1,3,4- 噻二唑 -2- )-3-(2- 甲氧基苯基 ) 異菸鹼醯胺 ( 化合物 3) 之製備 步驟 1 ( E)-5-(4- 氯苯乙烯基 )-1,3,4- 噻二唑基 -2- 胺之合成使硫半卡肼(500 mg, 5.48 mmol)、4-氯桂皮酸(1 g, 5.48 mmol)與POCl 3(3 mL, 31.9 mmol)之攪拌混合物回流0.5 h。在冷卻至室溫後,加入水(4 mL, 222 mmol),並使所產生的混合物回流4 h。在冷卻至室溫後,藉由在攪拌下加入50% NaOH水溶液將反應混合物鹼化(basified)至pH = 8-9。過濾所產生的沈澱物並以EtOH清洗兩次以提供( E)-5-(4-氯苯乙烯基)-1,3,4-噻二唑基-2-胺(1.15 g, 88%產率),呈淡黃色固體。MS (ESI): m/z 237.0.0(計算值), 238.1 (M+H +, 實際值)。 步驟 2 ( E)-N-(5-(4- 氯苯乙烯基 )-1,3,4- 噻二唑 -2- )-3-(2- 甲氧基苯基 ) 異菸鹼醯胺 ( 化合物 3 ) 之合成 - 一般方法 C對( E)-5-(4-氯苯乙烯基)-1,3,4-噻二唑基-2-胺(50 mg, 0.21 mmol)與3-(2-甲氧基苯基)異菸鹼酸(48 mg, 0.21 mmol)在乾燥DMF(2 mL)中之攪拌溶液加入1-甲基咪唑(61 mL, 0.74 mmol)。在5分鐘後,滴加TCFH(60.2 mg, 0.21 mmol)在乾燥DMF(1 mL)中之溶液。於室溫在氬氣氛下攪拌反應混合物3 h。加入水(5 mL),接著藉由真空過濾收集所產生的白色沈澱物,以水(2×10 mL)、MeOH(2×10 mL)與ACN (2×10 mL)清洗以提供( E)- N-(5-(4-氯苯乙烯基)-1,3,4-噻二唑-2-基)-3-(2-甲氧基苯基)異菸鹼醯胺( 化合物 3)(53 mg, 56%產率),呈白色固體。 1H NMR (400 MHz, DMSO- d 6) δ ppm 3.49 (3H, s), 6.98 (1H, d, J = 8.2 Hz), 7.08 (1H, t, J = 7.5 Hz), 7.40-7.36 (2H, m), 7.50-7.45 (3H, m), 7.58-7.54 (1H, m), 7.69 (1H, d, J = 4.9 Hz), 7.74 (2H, d, J = 8.4 Hz), 8.63 (1H, s), 8.74 (1H, d, J = 5.0 Hz), 13.18 (1H, br s). MS (ESI): m/z 448.1(計算值), 449.1(M+H +, 實際值)。 實施例 4. N-(5-(4- 氯苯乙基 )-1,3,4- 噻二唑 -2- )-3-(2- 甲氧基苯基 ) 異菸鹼醯胺 ( 化合物 4) 之製備 對( E)-N-(5-(4-氯苯乙烯基)-1,3,4-噻二唑-2-基)-3-(2-甲氧基苯基)異菸鹼醯胺( 3, 20 mg, 0.05 mmol)在DMA(1 mL)中之攪拌溶液,加入負載於碳(5 mg, 0.005 mmol)上的Pd(10 wt.%)。在減壓下以氫氣逆流對反應混合物除氣(3次)並在標準氫氣氣氛下攪拌18 h。藉由過濾通過矽藻土移除催化劑,並在減壓下濃縮濾液。藉由快速層析法(在己烷類中從0%至100%之EA的溶析液梯度)純化殘留物。將單離產物溶解於ACN(1 mL)中,以水(4 mL)稀釋,及冷凍乾燥以提供N-(5-(4-氯苯乙基)-1,3,4-噻二唑-2-基)-3-(2-甲氧基苯基)異菸鹼醯胺( 化合物 4)(15 mg, 75%產率),呈白色固體。 1H NMR (400 MHz, DMSO- d 6) δ ppm 3.03 (2H, t, J = 7.5 Hz), 3.30 (2H, t, J = 7.5 Hz), 3.41 (3H, s), 6.96 (1H, d, J = 8.1 Hz), 7.06 (1H, t, J = 7.4 Hz), 7.27-2.25 (2H, m), 7.39-7.31 (4H, m), 7.63 (1H, d, J = 5.0 Hz), 8.61 (1H, s), 8.71 (1H, d, J = 5.0 Hz), 12.92 (1H, s). MS (ESI): m/z 450.1 (計算值), 451.2(M+H +, 實際值)。 實施例 5. N-(5-((4- 氯苄基 ) 磺醯基 )-1,3,4- 噻二唑 -2- )-3-(2- 甲氧基苯基 ) 異菸鹼醯胺 ( 化合物 5) 之製備 於室溫將4% KMnO 4(67 mg, 0.43 mmol)的水溶液滴加至N-(5-((4-氯苄基)硫基)-1,3,4-噻二唑-2-基)-3-(2-甲氧基苯基)異菸鹼醯胺( 1, 100 mg, 0.21 mmol)在乙酸(4 mL)中之攪拌溶液。持續加入KMnO 4直至紫色持續並攪拌反應混合物30分鐘。使反應混合物冷卻至5℃並加入飽和亞硫酸鈉溶液直到棕色消失。藉由真空過濾收集沈澱物,以水(3×10 mL)清洗並乾燥。藉由快速層析法(在己烷類中從0%至100%之EA的溶析液梯度)純化乾燥的固體。將單離產物溶解於ACN(1 mL)中,以水(4 mL)稀釋,及冷凍乾燥以提供N-(5-((4-氯苄基)磺醯基)-1,3,4-噻二唑-2-基)-3-(2-甲氧基苯基)異菸鹼醯胺( 化合物 5)(75 mg, 70%產率),呈白色固體。 1H NMR (400 MHz, DMSO- d 6) δ ppm 3.37 (3H, s), 5.11 (2H, s), 6.96 (1H, d, J = 8.6 Hz), 7.09 (1H, t, J = 7.5 Hz), 7.30-7.28 (2H, m), 7.45-7.38 (4H, m), 7.70 (1H, d, J = 5.0 Hz), 8.66 (1H, s), 8.76 (1H, d, J = 5.0 Hz), 13.88 (1H, s). MS (ESI): m/z 500.0(計算值), 501.1(M+H +, 實際值)。 實施例 6. N-(5-((4- 氯苄基 )( 甲基 ) 胺基 )-1,3,4- 噻二唑 -2- )-3-(2 甲氧基苯基 ) 異菸鹼醯胺 ( 化合物 6) 之製備 步驟 1 N 2-(4- 氯苄基 )-N 2- 甲基 -1,3,4- 噻二唑 -2,5- 二胺之合成按照一般方法 B從2-胺基-5-溴-1,3,4-噻二唑(100 mg, 0.56 mmol)、1-(4-氯苯基)-N-甲基甲胺(74 mL, 0.56 mmol)與Et 3N(194 mL, 1.39 mmol)在THF(5 mL)中製備標題化合物。以EtOH(5 mL)與DCM(5 mL)對粗產物的依序研磨提純(trituration)造成N 2-(4-氯苄基)-N 2-甲基-1,3,4-噻二唑-2,5-二胺(63 mg, 45%產率),呈棕色固體。MS (ESI): m/z 254.0 (計算值), 255.2 (M+H +, 實際值)。 步驟 2 N-(5-((4- 氯苄基 )( 甲基 ) 胺基 )-1,3,4- 噻二唑 -2- )-3-(2- 甲氧基苯基 ) 異菸鹼醯胺 ( 化合物 6 ) 之合成按照一般方法 C從N 2-(4-氯苄基)-N 2-甲基-1,3,4-噻二唑-2,5-二胺(60 mg, 0.24 mmol)、3-(2-甲氧基苯基)異菸鹼酸(54 mg, 0.24 mmol)、1-甲基咪唑(66 mL, 0.82 mmol)與TCFH(79 mg, 0.28 mmol)在DMF(2 mL)中獲得標題化合物。藉由快速層析法(在DCM中從0%至5%之MeOH的溶析液梯度),接著藉由Prep-HPLC(管柱:Gemini® 5 um NX-C18 110Å, 100×30 mm)(在10 mM甲酸銨中從40%至100%之ACN的溶析液梯度)純化粗產物。將單離產物溶解於ACN (1 mL)中,以水(4 mL)稀釋,及冷凍乾燥以提供N-(5-((4-氯苄基)(甲基)胺基)-1,3,4-噻二唑-2-基)-3-(2-甲氧基苯基)異菸鹼醯胺( 化合物 6)(52 mg, 47%產率),呈米白色固體。 1H NMR (400 MHz, DMSO- d 6) δ ppm 3.04 (3H, s), 3.52 (3H, s), 4.63 (2H, s), 6.98 (1H, d, J = 8.3 Hz), 7.04 (1H, t, J = 7.5 Hz), 7.39-7.29 (4H, m), 7.42-7.39 (2H, m), 7.59 (1H, d, J = 5.0 Hz), 8.57 (1H, s), 8.68 (1H, d, J = 4.9 Hz), 12.52 (1H, br s). MS (ESI): m/z 465.1 (計算值), 466.2 (M+H +, 實際值)。 實施例 7. N-(5-((4- 氯苄基 )( 乙基 ) 胺基 )-1,3,4- 噻二唑 -2- )-3-(2- 甲氧基苯基 ) 異菸鹼醯胺 ( 化合物 7) 之製備 步驟 1 N 2-(4- 氯苄基 )-N 2- 乙基 -1,3,4- 噻二唑 -2,5- 二胺之合成按照一般方法 B從2-胺基-5-溴-1,3,4-噻二唑(200 mg, 1.11 mmol)、 N-(4-氯苄基)乙胺(207 mL, 1.11 mmol)與Et 3N (389 mL, 2.78 mmol)在THF(10 mL)中獲得標題化合物。藉由快速層析法(在己烷類中從0%至100%之EA的溶析液梯度)純化殘留物以提供N 2-(4-氯苄基)-N 2-乙基-1,3,4-噻二唑-2,5-二胺(290 mg, 97%產率),呈米白色固體。MS (ESI): m/z 268.1 (計算值), 269.2 (M+H +, 實際值)。 步驟 2 N-(5-((4- 氯苄基 )( 乙基 ) 胺基 )-1,3,4- 噻二唑 -2- )-3-(2- 甲氧基苯基 ) 異菸鹼醯胺 ( 化合物 7 ) 之合成按照一般方法 CN 2-(4-氯苄基)- N 2-乙基-1,3,4-噻二唑-2,5-二胺( 20, 70 mg, 0.26 mmol)、3-(2-甲氧基苯基)異菸鹼酸( 4, 60 mg, 0.26 mmol)、1-甲基咪唑(73 mL, 0.91 mmol)與TCFH(82 mg, 0.29 mmol)在DMF(3 mL)中製備標題化合物。藉由快速層析法(在己烷類中從0%至100%之EA的溶析液梯度)純化粗產物。將單離的材料溶解於ACN(1 mL)中,以水(4 mL)稀釋,及冷凍乾燥以提供N-(5-((4-氯苄基)(乙基)胺基)-1,3,4-噻二唑-2-基)-3-(2-甲氧基苯基)異菸鹼醯胺( 化合物 7)(80 mg, 64%產率),呈米白色固體。 1H NMR (400 MHz, DMSO- d 6) δ ppm 1.12 (3H, t, J = 7.0 Hz), 3.46 (2H, q, J = 7.1 Hz), 3.52 (3H, s), 4.63 (2H, s), 6.98 (1H, d, J = 8.3 Hz), 7.05 (1H, td, J = 7.5, 1.0 Hz), 7.37-7.31 (4H, m), 7.41-7.38 (2H, m), 7.59 (1H, d, J = 5.0 Hz), 8.58 (1H, s), 8.68 (1H, d, J = 5.0 Hz), 12.50 (1H, br s). MS (ESI): m/z 479.1(計算值), 480.3(M+H +, 實際值)。 實施例 8. 2-((5-(3-(2- 甲氧基苯基 ) 異菸鹼醯胺基 )-1,3,4- 噻二唑 -2- ) 氧基 ) 乙酸乙酯 ( 化合物 8) 之製備 步驟 1 2-((5- 胺基 -1,3,4- 噻二唑 -2- ) 氧基 ) 乙酸乙酯之合成對2-胺基-5-溴-1,3,4-噻二唑(1 g, 5.55 mmol)在冷卻至0℃的DMF(10 mL)中之攪拌溶液,加入2-羥基乙酸乙酯(2 mL, 22.2 mmol)與Et 3N(2 mL, 13.9 mmol)。將反應混合物加熱至室溫,攪拌6 h以水(20 mL)稀釋並以EA(50 mL × 3)萃取。以鹽水(30 mL)清洗所結合的有機層,在MgSO 4上乾燥,過濾,並在減壓下濃縮。藉由快速層析法(在己烷類中從70%至100% EA的溶析液梯度)純化粗產物以提供2-((5-胺基-1,3,4-噻二唑-2-基)氧基)乙酸乙酯(668 mg, 59%產率),呈淺棕色固體。MS (ESI): m/z 203.0 (計算值), 204.1 (M+H +, 實際值)。 步驟 2 2-((5-(3-(2- 甲氧基苯基 ) 異菸鹼醯胺基 )-1,3,4- 噻二唑 -2- ) 氧基 ) 乙酸乙酯 ( 化合物 8 ) 之合成按照一般方法 C從2-((5-胺基-1,3,4-噻二唑-2-基)氧基)乙酸乙酯(500 mg, 2.46 mmol)、3-(2-甲氧基苯基)異菸鹼酸(564 mg, 2.46 mmol)、1-甲基咪唑(715 µL, 8.61 mmol)、與TCFH(704 mg, 2.46 mmol)在DMF(24 mL)中製備標題化合物。藉由快速層析法(在己烷類中從0%至100%之EA的溶析液梯度)純化粗產物以提供2-((5-(3-(2-甲氧基苯基)異菸鹼醯胺基)-1,3,4-噻二唑-2-基)氧基)乙酸乙酯( 化合物 8)(1 g, 99%產率),呈白色固體。 1H NMR (400 MHz, DMSO- d 6) δ ppm 1.24 (3H, t, J= 7.1 Hz), 3.55 (3H, s), 4.21 (2H, q, J= 7.1 Hz), 5.12 (2H, s), 7.03 (1H, d, J= 8.1 Hz), 7.11 (1H, td, J= 7.5, 1.0 Hz), 7.44-7.40 (2H, m), 7.67 (1H, d, J = 5.0 Hz), 8.65 (1H, s), 8.75 (1H, d, J= 5.0 Hz), 12.96 (1H, s). MS (ESI): m/z 414.1(計算值), 415.2(M+H +, 實際值)。 實施例 9. 2-((5-(3-(2- 甲氧基苯基 ) 異菸鹼醯胺基 )-1,3,4- 噻二唑 -2- ) 氧基 ) 乙酸 ( 化合物 9) 之製備 對2-((5-(3-(2-甲氧基苯基)異菸鹼醯胺基)-1,3,4-噻二唑-2-基)氧基)乙酸乙酯( 8, 750 mg, 1.81 mmol)在冷卻至0℃的水(9 mL)與THF(9 mL)混合物中之攪拌溶液,加入NaOH (74 mg, 1.81 mmol)。將反應混合物加熱至室溫並攪拌30分鐘,在減壓下濃縮,並酸化至pH=2。以真空過濾收集所產生的沈澱物,以水清洗並乾燥以提供2-((5-(3-(2-甲氧基苯基)異菸鹼醯胺基)-1,3,4-噻二唑-2-基)氧基)乙酸( 化合物 9)(581 mg, 83%產率),呈白色固體。 1H NMR (400 MHz, DMSO- d 6) δ ppm 3.52 (3H, s), 4.96 (2H, s), 7.00 (1H, d, J= 8.2 Hz), 7.07 (1H, td, J= 7.5, 1.0 Hz), 7.40-7.35 (2H, m), 7.64 (1H, d, J= 5.0 Hz), 8.61 (1H, s), 8.72 (1H, d, J= 5.0 Hz), 12.93 (1H, br, s), 13.15 (1H, br, s). MS (ESI): m/z 386.1 (計算值), 387.1 (M+H +, 實際值)。 實施例 10. 3-(2- 甲氧基苯基 )- N-(5-(2- 啉基 -2- 側氧基乙氧基 )-1,3,4- 噻二唑 -2- ) 異菸鹼醯胺 ( 化合物 10) 之製備 按照一般方法 C從2-((5-(3-(2-甲氧基苯基)異菸鹼醯胺基)-1,3,4-噻二唑-2-基)氧基)乙酸( 9, 50 mg, 0.13 mmol)、 啉(11 µL, 0.13 mmol)、1-甲基咪唑(38 µL, 0.45 mmol))、與TCFH(37 mg, 0.13 mmol)在DMF(1.3 mL)中獲得標題化合物。藉由快速層析法(在DCM中從0%至10% MeOH的溶析液梯度)純化粗產物。將單離的材料溶解於ACN(1 mL)中,以水(4 mL)稀釋,及冷凍乾燥以提供3-(2-甲氧基苯基)- N-(5-(2- 啉基-2-側氧基乙氧基)-1,3,4-噻二唑-2-基)異菸鹼醯胺( 化合物 10)(15 mg, 25%產率),呈白色固體。 1H NMR (400 MHz, DMSO- d 6) δ ppm 3.43-3.39 (4H, m), 3.53 (3H, s), 3.58 (4H, dt, J= 13.5, 4.7 Hz), 5.21-5.21 (2H, m), 7.07-6.99 (2H, m), 7.39-7.33 (2H, m), 7.64-7.61 (1H, m), 8.77-8.46 (2H, m), 12.91 (1H, s). MS (ESI): m/z 455.1 (計算值), 456.2 (M+H +, 實際值)。 藉由按照上述對化合物 10之合成所說明的程序,使用對應的胺類而非 啉,從化合物 9開始合成化合物 11-15(實施例11-15)。表2中提供化合物 11-15( 實施例 11-15)的特徵。 實施例 16. 3-(2- 甲氧基苯基 )-N-(5-( 氧環丁烷 -3- 基氧基 )-1,3,4- 噻二唑 -2- ) 異菸鹼醯胺 ( 化合物 16) 之製備 步驟 1 5-( 氧環丁烷 -3- 基氧基 )-1,3,4- 噻二唑基 -2- ( 一般方法 D ) 之合成對3-羥基氧環丁烷(82 mg, 1.11 mmol)在冷卻至0℃的乾燥DMF(3 mL)中之攪拌溶液,緩慢地加入NaH(67 mg, 1.67 mmol)(在礦物油中的60%分散液)。於0℃攪拌15分鐘後,滴加在乾燥DMF(1 mL)中的2-胺基-5-溴-1,3,4-噻二唑(200 mg, 1.11 mmol)以及將反應混合物加熱至室溫並攪拌1 h。加入水(5 mL),並以氯仿/異丙醇混合物(3/1)(10 ml×3)萃取混合物。以鹽水清洗所結合的有機層,在無水MgSO 4上乾燥,過濾,並濃縮至乾燥以提供5-(氧環丁烷-3-基氧基)-1,3,4-噻二唑基-2-胺(80 mg, 42%產率),呈淡黃色油。MS (ESI): m/z 173.0 (計算值), 174.1 (M+H +, 實際值)。 步驟 2 3-(2- 甲氧基苯基 )-N-(5-( 氧環丁烷 -3- 基氧基 )-1,3,4- 噻二唑 -2- ) 異菸鹼醯胺 ( 化合物 16 ) 之合成按照一般方法 C從5-(氧環丁烷-3-基氧基)-1,3,4-噻二唑基-2-胺(40 mg, 0.23 mmol)、3-(2-甲氧基苯基)異菸鹼酸(53 mg, 0.23 mmol)、1-甲基咪唑(77 mL, 0.92 mmol)與TCFH(73 mg, 0.25 mmol)在DMF(3 mL)中製備標題化合物。藉由快速層析法(在DCM中從0%至5%之MeOH的溶析液梯度),接著藉由Prep-HPLC(管柱:Gemini® 5 um NX-C18 110 Å, 100×30 mm)(在10 mM甲酸銨中從40%至100%之ACN的溶析液梯度)純化殘留物。將單離產物溶解於ACN (1 mL)中,以水(4 mL)稀釋,及冷凍乾燥以提供3-(2-甲氧基苯基)-N-(5-(氧環丁烷-3-基氧基)-1,3,4-噻二唑-2-基)異菸鹼醯胺( 化合物 16)(21 mg, 24%產率),呈白色固體。 1H NMR (400 MHz, DMSO- d 6) δ ppm 3.51 (3H, s), 4.63 (2H, dd, J= 8.0, 4.8 Hz), 4.91-4.87 (2H, m), 5.68-5.63 (1H, m), 6.99 (1H, d, J= 8.2 Hz), 7.07 (1H, dd, J= 7.8, 6.9 Hz), 7.39-7.34 (2H, m), 7.62 (1H, d, J= 5.0 Hz), 8.61 (1H, s), 8.71 (1H, d, J= 5.0 Hz), 12.94 (1H, s). MS (ESI): m/z 384.1 (計算值), 385.2 (M+H +, 實際值)。 實施例 17. N-(5-(N-(4- 氯苄基 ) 甲基磺醯胺基 )-1,3,4- 噻二唑 -2- )-3-(2- 甲氧基苯基 ) 異菸鹼醯胺 ( 化合物 17) 之製備 步驟 1 N-(4- 氯苄基 ) 甲烷磺醯胺之合成對4-氯苄基胺(430 mL, 3.53 mmol)與Et 3N(594 mL, 4.24 mmol)在冷卻至0℃的乾燥DCM(8 mL)中之攪拌溶液,緩慢地加入甲烷磺醯氯(307 mL, 3.88 mmol)。於0℃攪拌15分鐘後,將反應混合物加熱至室溫並在氬氣氛下攪拌1 h。混合物接著以DCM(20 mL)稀釋並依序以10%檸檬酸水溶液(20 ml×2)與鹽水清洗,最後在無水MgSO 4上乾燥,過濾,並濃縮至乾燥。以EA(20 mL)研磨提純(trituration)粗產物造成N-(4-氯苄基)甲烷磺醯胺(700 mg, 90%產率),呈白色固體。MS(ESI): m/z 219.0(計算值), 218.0(-ESI, [M-H] -, 實際值)。 步驟 2 N-(5- 胺基 -1,3,4- 噻二唑 -2- )-N-(4- 氯苄基 ) 甲烷磺醯胺 之合成按照一般方法 DN-(4-氯苄基)甲烷磺醯胺(200 mg, 0.91 mmol)、2-胺基-5-溴-1,3,4-噻二唑(164 mg, 0.91 mmol)與NaH(54.6 mg, 1.37 mmol)(在礦物油中的60%分散液)在DMF(5 mL)中製備標題化合物以提供 N-(5-胺基-1,3,4-噻二唑-2-基)-N-(4-氯苄基)甲烷磺醯胺(224 mg, 77%產率),呈棕色固體。MS (ESI): m/z 318.0(計算值), 319.1 (M+H +, 實際值)。在沒有進一步純化下於下一個步驟直接使用粗產物。 步驟 3 N -(5-(N-(4- 氯苄基 ) 甲基磺醯胺基 )-1,3,4- 噻二唑 -2- )-3-(2- 甲氧基苯基 ) 異菸鹼醯胺 ( 化合物 17 ) 之合成按照一般方法 C從N-(5-胺基-1,3,4-噻二唑-2-基)- N-(4-氯苄基)甲烷磺醯胺( 35, 80 mg, 0.25 mmol)、3-(2-甲氧基苯基)異菸鹼酸(4, 58 mg, 0.25 mmol)、1-甲基咪唑(83 mL, 1.00 mmol)與TCFH(79 mg, 0.28 mmol)在DMF(3 mL)中獲得標題化合物。藉由快速層析法(在己烷類中從0%至100%之EA的溶析液梯度),接著藉由Prep-HPLC(管柱:Gemini® 5 um NX-C18 110 Å, 100×30 mm)(在10 mM甲酸銨中從40%至100%之ACN的溶析液梯度)純化粗產物。將單離產物溶解於ACN(1 mL)中,以水(4 mL)稀釋,及冷凍乾燥以提供N-(5-(N-(4-氯苄基)甲基磺醯胺基)-1,3,4-噻二唑-2-基)-3-(2-甲氧基苯基)異菸鹼醯胺( 化合物 17)(11 mg, 8%產率),呈白色固體。 1H NMR (400 MHz, DMSO- d 6) δ ppm 3.34 (3H, s), 3.45 (3H, s), 5.09 (2H, s), 6.97 (1H, d, J= 8.3 Hz), 7.05 (1H, t, J= 7.4 Hz), 7.31-7.42 (6H, m), 7.61 (1H, d, J= 4.9 Hz), 8.58 (1H, s), 8.69 (1H, s), 12.96 (1H, s). MS (ESI): m/z 529.1 (計算值), 530.2 (M+H +, 實際值)。 實施例 18. N-(5-(3,3- 二氟環丁氧基 )-1,3,4- 噻二唑 -2- )-3-(2- 甲氧基苯基 ) 異菸鹼醯胺 ( 化合物 18) 之製備 步驟 1 3-(2- 甲氧基苯基 ) 異菸鹼甲腈之合成對3-溴-4-氰基吡啶(1 g, 5.36 mmol)在二㗁烷(10 mL)與水(5 mL)的混合物中之攪拌溶液,加入2-甲氧基苯基硼酸(1 mL, 6.43 mmol)、K 2CO 3(2 g, 16.1 mmol)、與Pd(PPh 3) 4(0.63 g, 0.54 mmol)。在減壓下以氬氣逆流對反應混合物除氣三次,加熱至100℃,並攪拌2 h。反應混合物接著冷卻至室溫並以水與EA稀釋。使層分離,並以鹽水清洗有機層,在MgSO 4上乾燥,過濾,並在減壓下濃縮。藉由快速層析法(在己烷類中從0%至60% EA的溶析液梯度)純化殘留物以提供3-(2-甲氧基苯基)異菸鹼甲腈(1 g, 89%產率),呈白色固體。MS (ESI): m/z 210.1(計算值), 211.2 (M+H +, 實際值)。 步驟 2 3-(2- 甲氧基苯基 ) 異菸鹼醯胺之合成對3-(2-甲氧基苯基)異菸鹼甲腈(180 mg, 0.86 mmol)在EtOH(6 mL)與H 2O(2 mL)的混合物中之攪拌溶液,加入Ghaffar-Parkins催化劑(37 mg, 86 µmol)。將反應混合物加熱至80℃,攪拌2.5 h,接著冷卻至室溫,在矽藻土上過濾,並在減壓下濃縮以提供3-(2-甲氧基苯基)異菸鹼醯胺(195 mg, 99%產率),呈米白色固體。在沒有進一步純化下於下一個步驟直接使用粗產物。 1H NMR(400 MHz, DMSO- d 6) δ ppm 3.69 (3H, s), 7.07-6.99 (2H, m), 7.26 (1H, dd, J= 7.5, 1.7 Hz), 7.36 (2H, t, J= 7.0 Hz), 7.43 (1H, d, J= 5.0 Hz), 7.62 (1H, s), 8.48 (1H, s), 8.59 (1H, d, J= 5.0 Hz). MS (ESI): m/z 228.1(計算值), 229.2(M+H +, 實際值)。 步驟 3 2- -5-(3,3- 二氟環丁氧基 )-1,3,4- 噻二唑之合成按照一般方法 D從2,5-二溴-1,3,4-噻二唑(200 mg, 0.82 mmol)、3,3-二氟環丁醇(89 mg, 0.82 mmol)、NaH(49 mg, 1.23 mmol)(在礦物油中的60%分散液)在DMF(3 mL)中獲得標題化合物。藉由快速層析法(在己烷類中從0%至30%之EA的溶析液梯度)純化殘留物以提供2-溴-5-(3,3-二氟環丁氧基)-1,3,4-噻二唑(200 mg, 90%產率),呈無色的油。MS (ESI): m/z 270.0(計算值), 272.9(M+H +, 實際值)。 步驟 4 N-(5-(3,3- 二氟環丁氧基 )-1,3,4- 噻二唑 -2- )-3-(2 甲氧基苯基 ) 異菸鹼醯胺 ( 化合物 18) 之合成在減壓下以氬氣逆流對2-溴-5-(3,3-二氟環丁氧基)-1,3,4-噻二唑(80 mg, 0.29 mmol)、3-(2-甲氧基苯基)異菸鹼醯胺(67 mg, 0.29 mmol)、Cs 2CO 3(192 mg, 0.59 mmol)與H 2O(3 mL, 0.17 mmol)在二㗁烷(3 mL)中之攪拌溶液除氣15分鐘。接著,加入Pd 2(dba) 3(27 mg, 0.03 mmol)與XantPhos (34 mg, 0.06 mmol)。以氬氣沖洗反應混合物,加熱至100℃,並攪拌4 h。反應混合物接著冷卻至室溫,通過矽藻土片過濾,並在減壓下濃縮。藉由快速層析法(在己烷類中從0%至100%之EA的溶析液梯度)純化殘留物,接著藉由Prep-HPLC(管柱:Gemini® 5 um NX-C18 110 Å, 100×30 mm)(在10 mM甲酸銨中從40%至100%之ACN的溶析液梯度)。將單離產物溶解於ACN(1 mL)中,以水(4 mL)稀釋,及冷凍乾燥以提供N-(5-(3,3-二氟環丁氧基)-1,3,4-噻二唑-2-基)-3-(2 甲氧基苯基)異菸鹼醯胺( 化合物 18)(12 mg, 10%產率),呈白色固體。 1H NMR (400 MHz, DMSO- d 6) δ ppm 2.92-2.80 (2H, m), 3.23-3.12 (2H, m), 3.52 (3H, s), 5.19-5.14 (1H, m), 6.99 (1H, d, J = 8.2 Hz), 7.05 (1H, t, J = 7.5 Hz), 7.38-7.32 (2H, m), 7.62 (1H, d, J = 4.9 Hz), 8.57 (1H, s), 8.68 (1H, d, J = 5.0 Hz). MS (ESI): m/z 418.1 (計算值), 419.1 (M+H +, 實際值)。 實施例 19. N-(5-((4- 氯苯基 ) 乙炔基 )-1,3,4- 噻二唑 -2- )-3-(2- 甲氧基苯基 ) 異菸鹼醯胺 ( 化合物 19) 之製備 步驟 1 三級丁基 (5-((4- 氯苯基 ) 乙炔基 )-1,3,4- 噻二唑 -2- ) 胺基甲酸酯之合成 一般方法 E將乾燥DMF(3 mL)加入至 N-boc-2-胺基-5-溴[1,3,4]噻二唑(300 mg, 1.05 mmol)、1-氯-4-乙炔基苯(146 mg, 1.05 mmol)、碘化銅(20 mg, 0.10 mmol)與四(三苯基膦)鈀(122 mg, 0.11 mmol)之混合物,接著加入乾燥DIPA(147 µL, 1.05 mmol)。對反應混合物除氣三次並在每次除氣後充填氬氣,於60℃攪拌6 h,冷卻至室溫,以水稀釋,並以EA(15 mL×3)萃取。所結合的有機萃取物在無水Na 2SO 4上乾燥,過濾,並在減壓下移除溶劑。藉由快速層析法(在己烷類中從20%至90%之EA的溶析液梯度)純化殘留物以提供 三級丁基(5-((4-氯苯基)乙炔基)-1,3,4-噻二唑-2-基)胺基甲酸酯(300 mg, 85%產率). MS (ESI): m/z 335.1(計算值), 336.1(M+H +, 實際值)。 步驟 2 5-((4- 氯苯基 ) 乙炔基 )-1,3,4- 噻二唑基 -2- 胺之合成 一般方法 F於室溫將三氟乙酸(684 µL, 8.93 mmol)加入至三級丁基(5-((4-氯苯基)乙炔基)-1,3,4-噻二唑-2-基)胺基甲酸酯(300 mg, 0.893 mmol)在DCM(6 mL)中之溶液。攪拌混合物18 h並濃縮至乾燥以提供5-((4-氯苯基)乙炔基)-1,3,4-噻二唑基-2-胺(211 mg, 定量產率),呈橘色固體。在沒有進一步純化下於下一個步驟中使用粗材料。MS (ESI): m/z 235.0(計算值), 236.1(M+H +, 實際值)。 步驟 3 N-(5-((4- 氯苯基 ) 乙炔基 )-1,3,4- 噻二唑 -2- )-3-(2- 甲氧基苯基 ) 異菸鹼醯胺 ( 化合物 19 ) 之合成按照一般方法 C從5-((4-氯苯基)乙炔基)-1,3,4-噻二唑基-2-胺(50 mg, 0.21 mmol)、3-(2-甲氧基苯基)異菸鹼酸(49 mg, 0.21 mmol)、1-甲基咪唑(62 µL, 0.74 mmol)與TCFH (61 mg, 0.21 mmol)在DMF(2 mL)中製備標題化合物。藉由快速層析法(在己烷類中從0%至100%之EA的溶析液梯度)純化粗產物。將單離的材料溶解於ACN(1 mL)中,以水(4 mL)稀釋及冷凍乾燥以提供N-(5-((4-氯苯基)乙炔基)-1,3,4-噻二唑-2-基)-3-(2-甲氧基苯基)異菸鹼醯胺( 化合物 19)(25 mg, 26%產率),呈白色固體。MS (ESI): m/z 446.1(計算值), 447.1(M+H +, 實際值)。 1H NMR ( 400 MHz, DMSO- d 6 ) δ ppm 3.46 (3H, s), 6.98 (1H, d, J= 8.1 Hz), 7.08 (1H, t, J= 7.5 Hz), 7.40-7.36 (2H, m), 7.61-7.55 (2H, m), 7.72-7.70 (3H, m), 8.65 (1H, s), 8.75 (1H, d, J= 5.0 Hz), 13.52 (1H, s). MS (ESI): m/z 446.1(計算值), 447.1(M+H +, 實際值)。 實施例 20. 3-(2- 甲氧基苯基 )-N-(5-(4- 苯基丁 -1- -1- )-1,3,4- 噻二唑 -2- ) 異菸鹼醯胺 ( 化合物 20) 之製備 步驟 1 三級丁基 (5-(4- 苯基丁 -1- -1- )-1,3,4- 噻二唑 -2- ) 胺基甲酸酯之合成按照一般方法 EN-boc-2-胺基-5-溴[1,3,4]噻二唑(300 mg, 1.05 mmol)、4-苯基-1-丁炔(137 mg, 1.05 mmol)、碘化銅(20 mg, 0.10 mmol)、四(三苯基膦)鈀(122 mg, 0.11 mmol)、DIPA(147 µL, 1.05 mmol)在DMF(3 mL)中獲得標題化合物。藉由快速層析法(在己烷中從20%至90%之EA的溶析液梯度)純化粗產物以提供 三級丁基(5-(4-苯基丁-1-炔-1-基)-1,3,4-噻二唑-2-基)胺基甲酸酯(300 mg, 87%產率). MS (ESI): m/z 329.4 (計算值), 330.1 (M+H +, 實際值)。 步驟 2 5-(4- 苯基丁 -1- -1- )-1,3,4- 噻二唑基 -2- 胺之合成按照一般方法 F三級丁基(5-(4-苯基丁-1-炔-1-基)-1,3,4-噻二唑-2-基)胺基甲酸酯(200 mg, 0.61 mmol)、三氟乙酸(465 µL, 6.07 mmol)在DCM(6 mL)中製備標題化合物。將反應混合物濃縮至乾燥以提供5-(4-苯基丁-1-炔-1-基)-1,3,4-噻二唑基-2-胺(139 mg, 定量產率),呈橘色固體。在沒有進一步純化下於下一個步驟中使用粗材料MS (ESI): m/z 229.3(計算值), 230.1(M+H +, 實際值)。 步驟 3 3-(2- 甲氧基苯基 )-N-(5-(4- 苯基丁 -1- -1- )-1,3,4- 噻二唑 -2- ) 異菸鹼醯胺 ( 化合物 20 ) 之合成按照一般方法 C從5-(4-苯基丁-1-炔-1-基)-1,3,4-噻二唑基-2-胺(100 mg, 0.44 mmol)、3-(2-甲氧基苯基)異菸鹼酸(100 mg, 0.44 mmol)、1-甲基咪唑(290 µL, 3.50 mmol)與TCFH(125 mg, 0.44 mmol)在DMF(2 mL)中獲得標題化合物。藉由快速層析法(在己烷類中從0%至100%之EA的溶析液梯度)純化粗產物。將單離產物溶解於ACN(1 mL)中,以水(4 mL)稀釋及冷凍乾燥以提供3-(2-甲氧基苯基)-N-(5-(4-苯基丁-1-炔-1-基)-1,3,4-噻二唑-2-基)異菸鹼醯胺(50 mg, 26%產率),呈白色固體。 1H NMR (400 MHz, DMSO- d 6 ) δppm 2.91-2.82 (4H, m), 3.45 (3H, s), 6.97 (1H, d, J= 8.4 Hz), 7.07 (1H, t, J= 7.4 Hz), 7.24-7.19 (1H, m), 7.31 (4H, m), 7.39-7.36 (2H, m), 7.72-7.63 (1H, s), 8.80-8.61 (2H, br, s), 13.36 (1H, s). MS (ESI): m/z 440.5(計算值), 441.3 (M+H +, 實際值)。 實施例 21. 3-(2- 甲氧基苯基 )-N-(5-(3- 苯氧基丙 -1- -1- )-1,3,4- 噻二唑 -2- ) 異菸鹼醯胺 ( 化合物 21) 之製備 步驟 1 三級丁基 (5-(3- 苯氧基丙 -1- -1- )-1,3,4- 噻二唑 -2- ) 胺基甲酸酯之合成按照一般方法 EN-boc-2-胺基-5-溴[1,3,4]噻二唑(300 mg, 1.05 mmol)、苯基炔丙醚(137 mg, 1.05 mmol)、碘化銅(20 mg, 0.10 mmol)與四(三苯基膦)鈀(122 mg, 0.11 mmol)、DIPA(147 µL, 1.05 mmol)在DMF(3 mL)中製備標題化合物。藉由快速層析法(在己烷類中從20%至90%之EA的溶析液梯度)純化粗產物以提供 三級丁基(5-(3-苯氧基丙-1-炔-1-基)-1,3,4-噻二唑-2-基)胺基甲酸酯(310 mg, 89%產率). MS (ESI): m/z 331.4(計算值), 332.1(M+H +, 實際值)。 步驟 2 5-(3- 苯氧基丙 -1- -1- )-1,3,4- 噻二唑基 -2- 胺之合成按照一般方法 F三級丁基(5-(3-苯氧基丙-1-炔-1-基)-1,3,4-噻二唑-2-基)胺基甲酸酯(200 mg, 0.60 mmol)、三氟乙酸(462 µL, 6.04 mmol)在DCM(6 mL)中製備標題化合物。將反應混合物濃縮至乾燥以提供5-(3-苯氧基丙-1-炔-1-基)-1,3,4-噻二唑基-2-胺(139 mg, 定量產率),呈橘色固體。在沒有進一步純化下於下一個步驟中使用粗產物MS (ESI): m/z 231.3(計算值), 232.1(M+H +, 實際值)。 步驟 3 3-(2- 甲氧基苯基 )-N-(5-(3- 苯氧基丙 -1- -1- )-1,3,4- 噻二唑 -2- ) 異菸鹼醯胺 ( 化合物 21 ) 之合成按照一般方法 C從5-(3-苯氧基丙-1-炔-1-基)-1,3,4-噻二唑基-2-胺(20 mg, 0.09 mmol)、3-(2-甲氧基苯基)異菸鹼酸(20 mg, 0.09 mmol)、1-甲基咪唑(57 µL, 0.69 mmol)與TCFH(25 mg, 0.09 mmol)在DMF(1 mL)中製備標題化合物。藉由快速層析法(在己烷類中從0%至100%之EA的溶析液梯度)純化粗產物。將單離的材料溶解於ACN(1 mL)中,以水(4 mL)稀釋及冷凍乾燥以提供3-(2-甲氧基苯基)-N-(5-(3-苯氧基丙-1-炔-1-基)-1,3,4-噻二唑-2-基)異菸鹼醯胺( 化合物 21)(10 mg, 26%產率),呈白色固體。 1H NMR (400 MHz, DMSO- d 6 ) δ ppm 3.44 (3H, s), 5.17 (2H, s), 7.13- 6.91 (5H, m), 7.40-7.32 (4H, m), 7.68 (1H, d, J= 5.0 Hz), 8.62 (1H, s), 8.72 (1H, d, J= 5.0 Hz), 13.54-13.46 (1H, s). MS (ESI): m/z 442.5(計算值), 443.3(M+H +, 實際值)。 實施例 22. 三級丁基 4-((5-(3-(2- 甲氧基苯基 ) 異菸鹼醯胺基 )-1,3,4- 噻二唑 -2- ) 氧基 ) 哌啶 -1- 甲酸酯 ( 化合物 22) 之製備 步驟 1 三級丁基 4-((5- -1,3,4- 噻二唑 -2- ) 氧基 ) 哌啶 -1- 甲酸酯之合成按照一般方法 D從2,5-二溴-1,3,4-噻二唑(100 mg, 0.41 mmol)、 三級丁基4-羥基-1-哌啶羧酸酯(165 mg, 0.82 mmol)與氫化鈉(在礦物油中的60%分散液)(49.20 mg, 1.23 mmol)在DMF(2 mL)中製備標題化合物。藉由快速層析法(在己烷類中從0%至100%之EA的溶析液梯度)純化粗產物以獲得 三級丁基4-((5-溴-1,3,4-噻二唑-2-基)氧基)哌啶-1-甲酸酯(140 mg, 94%產率),呈白色固體。 步驟 2 三級丁基 4-((5-(3-(2- 甲氧基苯基 ) 異菸鹼醯胺基 )-1,3,4- 噻二唑 -2- ) 氧基 ) 哌啶 -1- 甲酸酯 ( 化合物 22 ) 之合成 - 一般方法 G三級丁基4-((5-溴-1,3,4-噻二唑-2-基)氧基)哌啶-1-甲酸酯(20 mg, 0.06 mmol)在DMF(1 mL)中之攪拌溶液,加入3-(2-甲氧基苯基)異菸鹼醯胺(15 mg, 0.07 mmol)。在加入碳酸銫(36 mg, 0.11 mmol)、 (二苄基茚丙酮)二鈀(5 mg, 0.01 mmol)、與4,5-雙(二苯基膦基)-9,9-二甲基 (7 mg, 0.01 mmol)之前,在氬氣流下對反應混合物除氣5分鐘。在加熱至100℃之前在減壓下以氬氣沖洗反應混合物。攪拌反應混合物3 h冷卻至室溫,通過矽藻土片過濾並在減壓下濃縮。藉由快速層析法(在己烷類中從0%至100%之EA的溶析液梯度)純化粗產物以獲得 三級丁基4-((5-(3-(2-甲氧基苯基)異菸鹼醯胺基)-1,3,4-噻二唑-2-基)氧基)哌啶-1-甲酸酯( 化合物 22)(20 mg, 71%產率),呈白色固體。 1H NMR (400 MHz, DMSO- d 6 ) δppm 1.40 (9H, s), 1.68-1.59 (2H, m), 2.05-1.98 (2H, m), 3.24- 3.14 (2H, m), 3.52 (3H, s), 3.68-3.62 (2H, m), 5.10-5.06 (1H, m), 6.99 (1H, d, J= 8.2 Hz), 7.08- 7.04 (1H, m), 7.39-7.34 (2H, m), 7.62 (1H, d, J= 5.0 Hz), 8.61 (1H, s), 8.71 (1H, d, J= 5.0 Hz), 12.85 (1H, s). MS (ESI): m/z 511.6(計算值), 512.3 (M+H +, 實際值)。 實施例 23. 3-(2- 甲氧基苯基 )-N-(5-( 哌啶 -4- 基氧基 )-1,3,4- 噻二唑 -2- ) 異菸鹼醯胺 ( 化合物 23) 之製備 按照一般方法 F三級丁基4-((5-(3-(2-甲氧基苯基)異菸鹼醯胺基)-1,3,4-噻二唑-2-基)氧基)哌啶-1-甲酸酯( 化合物 22)(7 mg, 0.014 mmol)與三氟乙酸(53 µL, 0.68 mmol)在DCM(1 mL)中製備標題化合物。藉由Prep-HPLC(管柱:Gemini® 5 um NX-C18 110 Å, 100×30 mm)(在10 mM甲酸銨中從25%至100%之MeOH的溶析液梯度)純化粗產物以提供3-(2-甲氧基苯基)-N-(5-(哌啶-4-基氧基)-1,3,4-噻二唑-2-基)異菸鹼醯胺( 化合物 23)(2.3 mg, 41%產率),呈白色固體。 1H NMR (400 MHz, DMSO- d 6 ) δ ppm 1.86 (2H, br, s), 2.17 (2H, br, s), 2.97 (2H, br, s), 3.17 (2H, br, s), 3.53 (3H, s), 5.06 (1H, s), 7.03-6.97 (2H, m), 7.37-7.29 (2H, m), 7.62 (1H, t, J= 4.4 Hz), 8.57 (1H, s), 8.68 (1H, s). MS (ESI): m/z 411.5(計算值), 412.2(M+H +, 實際值)。 實施例 24. N-(5-((1- 乙醯基哌啶 -4- ) 氧基 )-1,3,4- 噻二唑 -2- )-3-(2- 甲氧基苯基 ) 異菸鹼醯胺 ( 化合物 24) 之製備 步驟 1 1-(4-((5- 胺基 -1,3,4- 噻二唑 -2- ) 氧基 ) 哌啶 -1- )1- 乙酮之合成按照一般方法 D從2-胺基-5-溴-1,3,4-噻二唑(50 mg, 0.28 mmol)、1-(4-羥基哌啶-1-基)乙酮(81 mg, 0.56 mmol)與氫化鈉(在礦物油中的60%分散液)(33 mg, 0.83 mmol)在DMF(2 mL)中製備標題化合物。藉由快速層析法(在DCM中從0%至10%之MeOH(0.1% NH 4OH)的溶析液梯度)純化粗產物以獲得1-(4-((5-胺基-1,3,4-噻二唑-2-基)氧基)哌啶-1-基)1-乙酮(13 mg, 19%產率),呈無色的油。MS (ESI): m/z 242.3(計算值), 243.1(M+H +, 實際值)。 步驟 2 N-(5-((1- 乙醯基哌啶 -4- ) 氧基 )-1,3,4- 噻二唑 -2- )-3-(2- 甲氧基苯基 ) 異菸鹼醯胺 ( 化合物 24 ) 之合成按照一般方法 C從1-(4-((5-胺基-1,3,4-噻二唑-2-基)氧基)哌啶-1-基)1-乙(13 mg, 0.05 mmol)、3-(2-甲氧基苯基)異菸鹼酸(12 mg, 0.05 mmol)、1-甲基咪唑(16 µL, 0.19 mmol)與TCFH(15 mg, 0.05 mmol)在DMF(1 mL)中獲得標題化合物。藉由Prep-HPLC(管柱:Gemini® 5 um NX-C18 110 Å, 100×30 mm)(在10 mM碳酸氫銨中從25%至100%之MeOH的溶析液梯度)純化粗產物。將單離產物溶解於ACN (1 mL)中,以水(4 mL)稀釋及冷凍乾燥以提供N-(5-((1-乙醯基哌啶-4-基)氧基)-1,3,4-噻二唑-2-基)-3-(2-甲氧基苯基)異菸鹼醯胺( 化合物 24)(10 mg, 41%產率),呈白色固體。 1H NMR (400 MHz, DMSO- d 6 ) δ ppm 1.78-1.58 (2H, m), 2.09-2.00 (5H, m), 3.25-3.16 (1H, m), 3.36-3.33 (1H, m), 3.53 (3H, s), 3.69-3.62 (1H, m), 3.86-3.79 (1H, m), 5.11-5.05 (1H, m), 6.99 (1H, d, J= 8.9 Hz), 7.03 (1H, td, J= 7.5, 0.8 Hz), 7.36-7.29 (2H, m), 7.62 (1H, d, J= 4.8 Hz), 8.59-8.53 (1H, m), 8.69-8.63 (1H, m), 12.86 (1H, s). MS (ESI): m/z 453.5(計算值), 454.2(M+H +, 實際值)。 實施例 25. N-(5-(2-(4- 溴苯氧基 ) 乙氧基 )-1,3,4- 噻二唑 -2- )-3-(2- 甲氧基苯基 ) 異菸鹼醯胺 ( 化合物 25) 之製備 步驟 1 2- -5-(2-(4- 溴苯氧基 ) 乙氧基 )-1,3,4- 噻二唑之合成按照一般方法 D從2-胺基-5-溴-1,3,4-噻二唑(100 mg, 0.56 mmol)、2-(4-溴苯氧基)乙醇(181 mg, 0.83 mmol)與氫化鈉(在礦物油中的60%分散液)(29 mg, 0.72 mmol)在DMF(2 mL)中獲得標題化合物。藉由快速層析法(在DCM中從0%至10%之MeOH(0.1%NH 4OH)的溶析液梯度)純化粗產物以獲得2-溴-5-(2-(4-溴苯氧基)乙氧基)-1,3,4-噻二唑(150 mg, 85%產率),呈無色的油。MS (ESI): m/z 316.1(計算值), 318.0(M+H +, 實際值)。 步驟 2 N-(5-(2-(4- 溴苯氧基 ) 乙氧基 )-1,3,4- 噻二唑 -2- )-3-(2- 甲氧基苯基 ) 異菸鹼醯胺 ( 化合物 25 ) 之合成按照一般方法 C從2-溴-5-(2-(4-溴苯氧基)乙氧基)-1,3,4-噻二唑(100 mg, 0.32 mmol)、3-(2-甲氧基苯基)異菸鹼酸(73 mg, 0.32 mmol)、1-甲基咪唑(92 µL, 1.11 mmol)與TCFH(91 mg, 0.32 mmol)在DMF(1.50 mL)中獲得標題化合物。藉由Prep-HPLC(管柱:Gemini® 5 um NX-C18 110 Å, 100×30 mm)(在10 mM碳酸氫銨中從25%至100%之ACN的溶析液梯度)純化粗產物。將單離產物溶解於ACN(1 mL)中,以水(4 mL)稀釋及冷凍乾燥以提供N-(5-(2-(4-溴苯氧基)乙氧基)-1,3,4-噻二唑-2-基)-3-(2-甲氧基苯基)異菸鹼醯胺( 化合物 25)(20 mg, 12%產率),呈白色固體。 1H NMR (400 MHz, DMSO- d 6 ) δ ppm 3.51 (3H, s), 4.35-4.33 (2H, m), 4.70-4.67 (2H, m), 7.05-6.95 (4H, m), 7.37-7.30 (2H, m), 7.46-7.43 (2H, m), 7.63 (1H, d, J= 5.0 Hz), 8.55 (1H, s), 8.65 (1H, d, J= 4.9 Hz), 12.87 (1H, s). MS (ESI): m/z 527.4 (計算值), 529.0(M+H +, 實際值)。 實施例 26. N-(5-(2-(4- 氯苯氧基 ) 乙氧基 )-1,3,4- 噻二唑 -2- )-3-(2- 甲氧基苯基 ) 異菸鹼醯胺 ( 化合物 26) 之製備 步驟 1 2- 胺基 -5-(2-(4- 氯苯氧基 ) 乙氧基 )-1,3,4- 噻二唑之合成按照一般方法 D從2-胺基-5-溴-1,3,4-噻二唑(300 mg, 1.67 mmol)、2-(4-氯苯氧基)乙醇(431 mg, 2.50 mmol)與氫化鈉(87 mg, 2.17 mmol)在DMF(3 mL)中獲得標題化合物。藉由快速層析法(在DCM中從0%至10%之MeOH (0.1%NH 4OH)的溶析液梯度)純化粗產物以獲得2-胺基-5-(2-(4-氯苯氧基)乙氧基)-1,3,4-噻二唑(400 mg, 88%產率),呈無色的油。MS (ESI): m/z 271.7(計算值), 272.1(M+H +, 實際值)。 步驟 2 N-(5-(2-(4- 氯苯氧基 ) 乙氧基 )-1,3,4- 噻二唑 -2- )-3-(2- 甲氧基苯基 ) 異菸鹼醯胺 ( 化合物 26 ) 之合成按照一般方法 C從2-胺基-5-(2-(4-氯苯氧基)乙氧基)-1,3,4-噻二唑(100 mg, 0.32 mmol)、3-(2-甲氧基苯基)異菸鹼酸(84 mg, 0.37 mmol)、1-甲基咪唑(107 µL, 1.29 mmol)與TCFH(105 mg, 0.37 mmol)在DMF(1.5 mL)中獲得標題化合物。藉由Prep-HPLC(管柱:Gemini® 5 um NX-C18 110 Å, 100×30 mm)(在10 mM碳酸氫銨中從25%至100%之ACN的溶析液梯度)純化粗產物。將單離的材料溶解於ACN(1 mL)中,以水(4 mL)稀釋及冷凍乾燥以提供N-(5-(2-(4-氯苯氧基)乙氧基)-1,3,4-噻二唑-2-基)-3-(2-甲氧基苯基)異菸鹼醯胺( 化合物 26)(82 mg, 46%產率),呈白色固體。 1H NMR (400 MHz, DMSO- d6) δ ppm 3.51 (3H, s), 4.37-4.35 (2H, m), 4.74- 4.72 (2H, m), 7.08-6.97 (4H, m), 7.39-7.32 (4H, m), 7.63 (1H, d, J= 5.0 Hz), 8.60 (1H, s), 8.71 (1H, d, J= 4.9 Hz), 12.86 (1H, s). MS (ESI): m/z 482.9(計算值), 483.2(M+H +, 實際值)。 實施例 27. 3-(2- 甲氧基苯基 )-N-(5-(2- 苯氧基乙氧基 )-1,3,4- 噻二唑 -2- ) 異菸鹼醯胺 ( 化合物 27) 之製備 步驟 1 2- -5-(2- 苯氧基乙氧基 )-1,3,4- 噻二唑之合成按照一般方法 D從2-胺基-5-溴-1,3,4-噻二唑(300 mg, 1.67 mmol)、2-苯氧基乙醇(345 mg, 1.5 mmol)與氫化鈉 (87 mg, 2.17 mmol)在DMF(3 mL)中獲得標題化合物。藉由快速層析法(在DCM中從0%至10%之MeOH(0.1%NH 4OH)的溶析液梯度)純化粗產物以獲得2-溴-5-(2-苯氧基乙氧基)-1,3,4-噻二唑(300 mg, 76%產率),呈無色的油。MS (ESI): m/z 237.3(計算值), 238.1(M+H +, 實際值)。 步驟 2 3-(2- 甲氧基苯基 )-N-(5-(2- 苯氧基乙氧基 )-1,3,4- 噻二唑 -2- ) 異菸鹼醯胺 ( 化合物 27 ) 之合成按照一般方法 C從2-溴-5-(2-苯氧基乙氧基)-1,3,4-噻二唑(100 mg, 0.32 mmol)、3-(2-甲氧基苯基)異菸鹼酸(97 mg, 0.42 mmol)、1-甲基咪唑(122 µL, 1.48 mmol)與TCFH (121 mg, 0.42 mmol)在DMF(1.5 mL)中獲得標題化合物。藉由Prep-HPLC(管柱:Gemini® 5 um NX-C18 110 Å, 100×30 mm)(在碳酸氫銨10 mM中從25%至100%之ACN的溶析液梯度)純化粗產物。將單離的材料溶解於ACN(1 mL)中,以水(4 mL)稀釋及冷凍乾燥以提供3-(2-甲氧基苯基)-N-(5-(2-苯氧基乙氧基)-1,3,4-噻二唑-2-基)異菸鹼醯胺( 化合物 27) (110 mg, 58%產率),呈白色固體。 1H NMR (400 MHz, DMSO- d 6 ) δ ppm 3.52 (3H, s), 4.35 (2H, m), 4.74 (2H, m), 7.00-6.94 (4H, m), 7.07 (1H, t, J= 7.5 Hz), 7.37-7.28 (4H, m), 7.63 (1H, d, J= 5.0 Hz), 8.61 (1H, s), 8.71 (1H, d, J= 5.0 Hz), 12.86 (1H, s). MS (ESI): m/z 448.5(計算值), 449.2 (M+H +, 實際值)。 實施例 28. 3-(2- 甲氧基苯基 )-N-(5-((1- 苯基環丙基 ) 乙炔基 )-1,3,4- 噻二唑 -2- ) 異菸鹼醯胺 ( 化合物 28) 之製備 步驟 1 三級丁基 (5-((1- 苯基環丙基 ) 乙炔基 )-1,3,4- 噻二唑 -2- ) 胺基甲酸酯之合成按照一般方法 EN-boc-2-胺基-5-溴[1,3,4]噻二唑(300 mg, 1.05 mmol)、(1-乙炔基環丙基)苯(142 mg, 1.05 mmol)、碘化銅(20 mg, 0.10 mmol)、四(三苯基膦)鈀(122 mg, 0.11 mmol)與DIPA(147 µL, 1.05 mmol)在DMF(3 mL)中製備標題化合物。藉由快速層析法(在己烷類中從20%至90%之EA的溶析液梯度)純化粗產物以提供 三級丁基(5-((1-苯基環丙基)乙炔基)-1,3,4-噻二唑-2-基)胺基甲酸酯(280 mg, 78%產率). MS (ESI): m/z 341.43(計算值), 342.1 (M+H +, 實際值)。 步驟 2 5-((1- 苯基環丙基 ) 乙炔基 )-1,3,4- 噻二唑基 -2- 胺之合成按照一般方法 F三級丁基(5-((1-苯基環丙基)乙炔基)-1,3,4-噻二唑-2-基)胺基甲酸酯(280 mg, 0.82 mmol)與三氟乙酸(628 µL, 8.20 mmol)在DCM(6 mL)中獲得標題化合物。將反應混合物濃縮至乾燥以提供5-((1-苯基環丙基)乙炔基)-1,3,4-噻二唑基-2-胺(198 mg, 定量產率),呈橘色固體。在沒有進一步純化下於下一個步驟中使用粗材料MS (ESI): m/z 241.3(計算值), 242.1(M+H +, 實際值)。 步驟 3 3-(2- 甲氧基苯基 )-N-(5-((1- 苯基環丙基 ) 乙炔基 )-1,3,4- 噻二唑 -2- ) 異菸鹼醯胺 ( 化合物 28 ) 之合成按照一般方法 C從5-((1-苯基環丙基)乙炔基)-1,3,4-噻二唑基-2-胺(50 mg, 0.21 mmol)、3-(2-甲氧基苯基)異菸鹼酸(48 mg, 0.21 mmol)、1-甲基咪唑(60 µL, 0.73 mmol)與TCFH(59 mg, 0.21 mmol)在DMF(1.5 mL)中獲得標題化合物。藉由Prep-HPLC(管柱:Gemini® 5 um NX-C18 110 Å, 100×30 mm)(在10 mM碳酸氫銨中從25%至100%之ACN的溶析液梯度)純化粗產物。將純化後的材料溶解於ACN(1 mL)中,以水(4 mL)稀釋及冷凍乾燥以提供3-(2-甲氧基苯基)-N-(5-((1-苯基環丙基)乙炔基)-1,3,4-噻二唑-2-基)異菸鹼醯胺( 化合物 28)(45 mg, 48%產率),呈白色固體。 1H NMR (400 MHz, DMSO- d 6) δ ppm 1.49-1.46 (2H, m), 1.65-1.62 (2H, m), 3.46 (3H, s), 6.97 (1H, d, J= 8.5 Hz), 7.07 (1H, t, J= 7.5 Hz), 7.27-7.23 (1H, m), 7.40-7.33 (6H, m), 7.68 (1H, d, J= 4.9 Hz), 8.62 (1H, s), 8.73 (1H, s), 13.39 (1H, s). MS (ESI): m/z 452.5(計算值), 453.2 (M+H +, 實際值)。 實施例 29. ( rac)-3-(2- 甲氧基苯基 )-N-(5-((1- 苯氧基丙烷 -2- ) 氧基 )-1,3,4- 噻二唑 -2- ) 異菸鹼醯胺 ( 化合物 29) 之製備 步驟 1 5-((1- 苯氧基丙烷 -2- ) 氧基 )-1,3,4- 噻二唑基 -2- 胺之合成按照一般方法 D從2-胺基-5-溴-1,3,4-噻二唑(300 mg, 1.67 mmol)、1-苯氧基-2-丙醇(380 mg, 2.5 mmol)與氫化鈉 (87 mg, 2.17 mmol)在DMF(3 mL)中獲得標題化合物。藉由快速層析法(在DCM中從0%至10%之MeOH(0.1%NH 4OH)的溶析液梯度)純化粗產物以獲得5-((1-苯氧基丙烷-2-基)氧基)-1,3,4-噻二唑基-2-胺(100 mg, 24%),呈無色的油。MS (ESI): m/z 251.3(計算值), 252.2(M+H +, 實際值)。 步驟 2 3-(2- 甲氧基苯基 )-N-(5-((1- 苯氧基丙烷 -2- ) 氧基 )-1,3,4- 噻二唑 -2- ) 異菸鹼醯胺 ( 化合物 29 ) 之合成按照一般方法 C從5-((1-苯氧基丙烷-2-基)氧基)-1,3,4-噻二唑基-2-胺(50 mg, 0.19 mmol)、3-(2-甲氧基苯基)異菸鹼酸(46 mg, 0.20 mmol)、1-甲基咪唑(58 µL, 0.70 mmol)與TCFH(57 mg, 0.20 mmol)在DMF(1 mL)中獲得標題化合物。藉由逆相C18管柱層析(在含有0.1%之FA的水中從0%至100%之ACN的溶析液梯度)純化粗產物。將單離產物溶解於ACN(1 mL)中,以水(4 mL)稀釋及冷凍乾燥以提供3-(2-甲氧基苯基)-N-(5-((1-苯氧基丙烷-2-基)氧基)-1,3,4-噻二唑-2-基)異菸鹼醯胺( 化合物 29)(50 mg, 54%產率),呈白色固體。 1H NMR (400 MHz, DMSO- d 6 ) δ ppm 1.31 (1H, d, J= 6.3 Hz), 1.47 (3H, d, J= 6.4 Hz), 3.50 (1H, s), 3.52 (3H, s), 4.24-4.18 (1H, m), 5.38-5.31 (1H, m), 7.00-6.92 (7H, m), 7.06 (1H, t, J= 7.5 Hz), 7.30- 7.25 (3H, m), 7.40-7.34 (2H, m), 7.63 (2H, t, J= 4.8 Hz), 8.60 (1H, s), 8.70 (1H, d, J= 5.0 Hz), 12.49 (1H, br s). MS (ESI): m/z 462.5(計算值), 463.4(M+H +, 實際值)。 實施例 30. N-(5-(3- 羥基 -3- 甲基丁 -1- -1- )-1,3,4- 噻二唑 -2- )-3-(2- 甲氧基苯基 ) 異菸鹼醯胺 ( 化合物 30) 之製備 步驟 1 三級丁基 (5-(3- 羥基 -3- 甲基丁 -1- -1- )-1,3,4- 噻二唑 -2- ) 胺基甲酸酯之合成將乾燥苯(1 mL)加入至 N-boc-2-胺基-5-溴[1,3,4]噻二唑(300 mg, 1.05 mmol)、2-甲基-3-丁炔-2-醇(88 mg, 1.05 mmol)、碘化銅(20 mg, 0.10 mmol)、二氯雙-(三苯基膦)鈀(II)(15 mg, 0.02 mmol)與三苯基膦(11 mg, 0.04 mmol)之混合物,接著加入Et 3N(2 mL, 15.70 mmol)。對混合物除氣三次並以氬氣充填。於80℃攪拌反應混合物6 h,冷卻至室溫,以水稀釋,並以EA(15 mL×3)萃取。所結合的有機萃取物在無水Na 2SO 4上乾燥,過濾,並在減壓下移除溶劑。藉由快速層析法(在己烷類中從20%至90%之EA的溶析液梯度)純化粗產物以提供 三級丁基(5-(3-羥基-3-甲基丁-1-炔-1-基)-1,3,4-噻二唑-2-基)胺基甲酸酯(113 mg, 38%產率). MS (ESI): m/z 283.3(計算值), 284.1(M+H +, 實際值)。 步驟 2 4-(5- 胺基 -1,3,4- 噻二唑 -2- )-2- 甲基丁 -3- -2- 醇之合成按照一般方法 F三級丁基(5-(3-羥基-3-甲基丁-1-炔-1-基)-1,3,4-噻二唑-2-基)胺基甲酸酯(112 mg, 0.39 mmol)、三氟乙酸(605 µL, 7.91 mmol)在DCM(2 mL)中獲得標題化合物。將反應混合物濃縮至乾燥以提供4-(5-胺基-1,3,4-噻二唑-2-基)-2-甲基丁-3-炔-2-醇(73 mg, 100%產率),呈橘色固體。在沒有進一步純化下於下一個步驟中使用粗材料MS (ESI): m/z 183.2(計算值), 184.1(M+H +, 實際值)。 步驟 3 N -(5-(3- 羥基 -3- 甲基丁 -1- -1- )-1,3,4- 噻二唑 -2- )-3-(2- 甲氧基苯基 ) 異菸鹼醯胺 ( 化合物 30 ) 之合成按照一般方法 C從4-(5-胺基-1,3,4-噻二唑-2-基)-2-甲基丁-3-炔-2-醇(50 mg, 0.27 mmol)、3-(2-甲氧基苯基)異菸鹼酸(63 mg, 0.27 mmol)、1-甲基咪唑(79 µL, 0.96 mmol)與TCFH(78 mg, 0.27 mmol)在DMF(1 mL)中獲得標題化合物。藉由逆相C18管柱層析(在0.1%之FA中從0%至100%之ACN的溶析液梯度)純化粗產物。將單離的材料溶解於ACN(1 mL)中,以水(4 mL)稀釋及冷凍乾燥以提供N-(5-(3-羥基-3-甲基丁-1-炔-1-基)-1,3,4-噻二唑-2-基)-3-(2-甲氧基苯基)異菸鹼醯胺( 化合物 30)(40 mg, 37%產率),呈白色固體。 1H NMR (400 MHz, DMSO- d 6 ) δ ppm 1.48 (6H, s), 3.45 (3H, s), 5.76 (1H, s), 6.97 (1H, d, J= 8.5 Hz), 7.07 (1H, t, J= 7.5 Hz), 7.40-7.36 (2H, m), 7.68 (1H, d, J= 5.0 Hz), 8.63 (1H, s), 8.74 (1H, d, J= 4.9 Hz), 13.40 (1H, s). MS (ESI): m/z 394.4(計算值), 395.2(M+H +, 實際值)。 實施例 31. N-(5-((4- 氯苯基 ) 乙炔基 )-1,3,4- 噻二唑 -2- )-3-(2- 甲氧基苯基 ) 異菸鹼醯胺 ( 化合物 31) 之製備 步驟 1 (5- -1,3,4- 噻二唑 -2- ) 甲醇之合成對5-溴-1,3,4-噻二唑-2-羧酸乙酯(1 g, 4.01 mmol)在冷卻至0℃的MeOH(16 mL)中之攪拌溶液,逐份添加硼氫化鈉。一旦氣體逸出消退,將反應混合物加熱至室溫並攪拌18 h。接著以EA稀釋反應混合物並加入水。使層分離,並以鹽水清洗有機層,在Na 2SO 4上乾燥,過濾,並在減壓下濃縮以提供(5-溴-1,3,4-噻二唑-2-基)甲醇(607 mg, 78%產率),呈黃色固體。在沒有進一步純化下於下一個步驟中使用粗材料。MS (ESI): m/z 193.9 (計算值), 195.1 (M+H +, 實際值)。 步驟 2 (5- -1,3,4- 噻二唑 -2- ) 甲烷磺酸甲酯之合成對(5-溴-1,3,4-噻二唑-2-基)甲醇(0.30 g, 1.54 mmol)在DCM(8 mL)中之攪拌溶液,加入甲烷磺醯氯(0.16 mL, 2.00 mmol)與Et 3N(0.32 mL, 2.31 mmol)。攪拌反應混合物1 h並以水稀釋。使層分離,並以鹽水清洗有機層,在Na 2SO 4上乾燥,過濾,並在減壓下濃縮。藉由快速層析法(在己烷類中從10%至50% EA的溶析液梯度)純化殘留物以提供(5-溴-1,3,4-噻二唑-2-基)甲烷磺酸甲酯(400 mg, 95%產率),呈黃色固體。MS (ESI): m/z 271.9(計算值), 273.1-275-1 (M+H +, 實際值)。 步驟 3 2- -5-((4- 氯苯氧基 ) 甲基 )-1,3,4- 噻二唑之合成對5-溴-1,3,4-噻二唑-2-基)甲烷磺酸甲酯(0.20 g, 0.73 mmol)在DMF(3 mL)中之攪拌溶液,加入4-氯酚(86 mg, 0.67 mmol)與K 2CO 3(0.18 g, 1.33 mmol)。在加入水與EA之前攪拌反應混合物4.5 h。使層分離,並以EA(x3)萃取水層。以鹽水(×3)清洗所結合的有機層並在減壓下與庚烷類 (×2)共蒸發至乾燥。藉由快速層析法(在己烷類中從5%至100% EA的溶析液梯度)純化殘留物以提供2-溴-5-((4-氯苯氧基)甲基)-1,3,4-噻二唑(168 mg, 83%產率),呈白色固體。MS (ESI): m/z 303.9(計算值), 306.9(M+H +, 實際值)。 步驟 4 N-(5-((4- 氯苯氧基 ) 甲基 )-1,3,4- 噻二唑 -2- )-3-(2 甲氧基苯基 ) 異菸鹼醯胺 ( 化合物 31 ) 之合成按照一般方法 G從苄基2-溴-5-((4-氯苯氧基)甲基)-1,3,4-噻二唑(0.26 g, 0.67 mmol)、3-(2-甲氧基苯基)異菸鹼醯胺(56 µL, 0.24 mmol)、Cs 2CO 3(130 mg, 0.39 mmol)、Pd 2(dba) 3(19 mg, 0.02 mmol)、XantPhos(23 mg, 0.04 mmol)、與二㗁烷(0.98 mL)獲得標題化合物。藉由Prep-HPLC(管柱:Gemini® 5 um NX-C18 110 Å, 100×30 mm)(在碳酸氫銨中從50%至100%之MeOH的溶析液梯度)純化而提供N-(5-((4-氯苯氧基)甲基)-1,3,4-噻二唑-2-基)-3-(2 甲氧基苯基)異菸鹼醯胺( 化合物 31)(13 mg, 15%產率),呈白色固體。 1H NMR (400 MHz DMSO- d 6) δ ppm 3.40 (3H, s), 5.47 (2H, s), 6.93-6.91 (1H, m), 7.07-7.01 (3H, m), 7.36-7.32 (4H, m), 7.62 (1H, d, J =5.0 Hz), 8.58 (1H, s), 8.68 (1H, d, J =5.0 Hz), 13.14-13.11 (1H, br s). MS (ESI): m/z 452.1(計算值), 453.3(M+H +, 實際值)。 實施例 32. N-(5-((4- 氯苄基 ) 胺基 )-1,3,4- 噻二唑 -2- )-3-( 萘基 -1- ) 異菸鹼醯胺 ( 化合物 32) 之製備 步驟 1 3-( 萘基 -1- ) 異菸鹼酸乙酯之合成 - 一般方法 H對通入氬氣之在二㗁烷(12 mL)中的3-溴異菸鹼酸甲酯(0.51 mL, 2.31 mmol)之攪拌溶液,加入萘-1-硼酸(400 mg, 2.31 mmol)、Pd(PPh 3) 4(140 mg, 0.11 mmol)、與K 2CO 3(0.80 g, 5.79 mmol)。在減壓下以氬氣逆流對反應混合物除氣三次,加熱至100℃,並攪拌2 h。將反應混合物冷卻至室溫並以水與EA稀釋。使層分離,並以鹽水清洗有機層,在Na 2SO 4上乾燥,過濾,並在減壓下濃縮。藉由快速層析法(在己烷類中從0%至40% EA的溶析液梯度)純化殘留物以提供3-(萘基-1-基)異菸鹼酸乙酯(0.55 g, 90%產率),呈黃色油。MS (ESI): m/z 263.1(計算值), 264.1 (M+H +, 實際值)。 步驟 2 3-( 萘基 -1- ) 異菸鹼酸之合成對3-(萘基-1-基)異菸鹼酸乙酯(450 mg, 1.71 mmol)在THF(4.30 mL)中之溶液加入氫氧化鋰(144 mg, 3.42 mmol)在水(4.30 mL)中之溶液。攪拌反應混合物2 h。分離有機相,收集微黃色水相(pH 8-9)並以HCl 1M酸化直到形成黃色沈澱物(pH 5-4)。藉由過濾收集沈澱物並乾燥以提供3-(萘基-1-基)異菸鹼酸,呈黃色固體(350 mg, 82%產率)。MS (ESI): m/z 249.08(計算值), 250.2(M+H +, 實際值)。 步驟 3 N-(5-((4- 氯苄基 ) 胺基 )-1,3,4- 噻二唑 -2- )-3-( 萘基 -1- ) 異菸鹼醯胺 ( 化合物 32 ) 之合成按照一般方法 C從在DMF(2 mL)中的 N 2-(4-氯苄基)-1,3,4-噻二唑-2,5-二胺(48 mg, 0.20 mmol)、3-(萘基-1-基)異菸鹼酸(50 mg, 0.20 mmol)、1-甲基咪唑(58 µL, 0.70 mmol)、與TCFH(57 mg, 0.20 mmol)獲得標題化合物。藉由快速層析法(在己烷類中從30%至100% EA的溶析液梯度)純化殘留物以提供N-(5-((4-氯苄基)胺基)-1,3,4-噻二唑-2-基)-3-(萘基-1-基)異菸鹼醯胺( 化合物 32)(41 mg, 43%產率),呈白色固體。 1H NMR (400 MHz DMSO- d 6) δ ppm 4.34 (2H, d, J =5.8 Hz), 7.34-7.26 (4H, m), 7.40 (2H, m), 7.53-7.46 (3H, m), 7.71 (1H, d, J =4.9 Hz), 7.94 (2H, t, J =6.9 Hz), 8.61 (1H, s), 8.77 (1H, d, J =5.0 Hz), 12.58 (1H, br, s). MS (ESI): m/z 471.1(計算值), 472.3(M+H +, 實際值)。 實施例 33. N-(5-((4- 氯苄基 ) 硫基 )-1,3,4- 噻二唑 -2- )-3-( 萘基 -1- ) 異菸鹼醯胺 ( 化合物 33) 之製備 按照一般方法 C從在DMF(2 mL)中的5-((4-氯苄基)硫基)-1,3,4-噻二唑基-2-胺(53 mg, 0.20 mmol)、3-(萘基-1-基)異菸鹼酸(50 mg, 0.20 mmol)、1-甲基咪唑(57 µL, 0.70 mmol)、與TCFH(57 mg, 0.20 mmol)獲得標題化合物。藉由快速層析法(在己烷類中從30%至100% EA的溶析液梯度)純化殘留物以提供N-(5-((4-氯苄基)硫基)-1,3,4-噻二唑-2-基)-3-(萘基-1-基)異菸鹼醯胺( 化合物 33)(60 mg, 61%產率),呈白色固體。 1H NMR (400 MHz DMSO- d 6) δ ppm 4.38 (2H, s), 7.42-7.37 (2H, m), 7.53-7.46 (3H, m), 7.79 (1H, dd, J =5.0, 0.8 Hz), 7.95-7.92 (2H, m), 8.66 (1H, s), 8.82 (1H, d, J =5.0 Hz), 13.30 (1H, br, s). MS (ESI): m/z 488.1 (計算值), 489.2(M+H +, 實際值)。 實施例 34. (E)-N-(5-(4- 氯苯乙烯基 )-1,3,4- 噻二唑 -2- )-3-( 萘基 -1- ) 異菸鹼醯胺 ( 化合物 34) 之製備 按照一般方法 C從在DMF(2 mL)中的(E)-5-(4-氯苯乙烯基)-1,3,4-噻二唑基-2-胺(48 mg, 0.20 µmol)、3-(萘基-1-基)異菸鹼酸(50 mg, 0.20 mmol)、1-甲基咪唑(58 µL, 0.70 mmol)、與TCFH(57 mg, 0.20 mmol)獲得標題化合物。藉由快速層析法(在己烷類中從30%至100% EA的溶析液梯度)純化殘留物以提供(E)-N-(5-(4-氯苯乙烯基)-1,3,4-噻二唑-2-基)-3-(萘基-1-基)異菸鹼醯胺( 化合物 34)(86 mg, 91%產率),呈白色固體。 1H NMR (400 MHz DMSO- d 6) δ ppm 7.47-7.37 (6H, m), 7.55-7.46 (3H, m), 7.67-7.64 (2H, m), 7.86 (1H, d, J =5.0 Hz), 7.96 (2H, d, J =8.2 Hz), 8.69 (1H, s), 8.86 (1H, d, J =5.0 Hz), 13.34-13.31 (1H, br, s). MS (ESI): m/z 468.1(計算值), 469.2(M+H +, 實際值)。 實施例 35. N-(5-(4- 氯苯乙基 )-1,3,4- 噻二唑 -2- )-3-( 萘基 -1- ) 異菸鹼醯胺 ( 化合物 35) 之製備 對(E)-N-(5-(4-氯苯乙烯基)-1,3,4-噻二唑-2-基)-3-(萘基-1-基)異菸鹼醯胺( 34, 86 mg, 0.18 mmol)在DMA(4 mL)中之攪拌溶液,加入負載於碳(20 mg, 18 µmol)上的鈀(10 wt.%)。在減壓下以氫氣逆流對反應混合物除氣三次並在標準氫氣氣氛下攪拌36 h。通過矽藻土片過濾反應混合物並在減壓下濃縮。藉由Prep-HPLC(管柱:Gemini® 5 um NX-C18 110Å, 100×30 mm)(在10 mM甲酸銨中從50%至100%之ACN的溶析液梯度)純化而提供N-(5-(4-氯苯乙基)-1,3,4-噻二唑-2-基)-3-(萘基-1-基)異菸鹼醯胺( 化合物 35) (16.5 mg, 19%產率),呈白色固體。 1H NMR (400 MHz DMSO- d 6) δ ppm 2.90 (2H, t, J =7.6 Hz), 3.15 (2H, t, J =7.6 Hz), 7.18 (2H, d, J =8.1 Hz), 7.26 (2H, d, J =8.1 Hz), 7.39 (2H, t, J =7.3 Hz), 7.52-7.45 (3H, m), 7.78 (1H, d, J =5.0 Hz), 7.93 (2H, dd, J =8.2, 4.5 Hz), 8.64 (1H, s), 8.80 (1H, d, J =4.9 Hz), 13.10-13.05 (1H, br, s). MS (ESI): m/z 470.1(計算值), 471.3(M+H +, 實際值)。 實施例 36. N-(5-((4- 氯苯基 ) 乙炔基 )-1,3,4- 噻二唑 -2- )-3-( 萘基 -1- ) 異菸鹼醯胺 ( 化合物 36) 之製備 按照一般方法 C從在DMF(2 mL)中的5-((4-氯苯基)乙炔基)-1,3,4-噻二唑基-2-胺(47 mg, 0.20 mmol)、3-(萘基-1-基)異菸鹼酸(50 mg, 0.20 mmol)、1-甲基咪唑(58 µL, 0.70 mmol)、與TCFH(57 mg, 0.20 mmol)獲得標題化合物。藉由快速層析法(在己烷類中從50%至100% EA的溶析液梯度)純化粗產物以提供N-(5-((4-氯苯基)乙炔基)-1,3,4-噻二唑-2-基)-3-(萘基-1-基)異菸鹼醯胺( 化合物 36)(12.7 mg, 14%產率),呈白色固體。 1H NMR (400 MHz DMSO- d 6) δ ppm 7.43-7.39 (2H, m), 7.55-7.47 (5H, m), 7.62 (2H, d, J =8.3 Hz), 7.85 (1H, d, J =5.0 Hz), 7.94 (2H, d, J =8.2 Hz), 8.69 (1H, s), 8.85 (1H, d, J =5.0 Hz), 13.63 (1H, br, s). MS (ESI): m/z 466.1 (計算值), 467.2 (M+H +, 實際值)。 實施例 37. N-(5-((4- 氯苯基 ) 乙炔基 )-1,3,4- 噻二唑 -2- )-3-( 喹啉 -4- ) 異菸鹼醯胺 ( 化合物 37) 之製備 步驟 1 3-( 喹啉 -4- ) 異菸鹼酸乙酯之合成按照一般方法 H從通入氬氣之在二㗁烷(12 mL)中的3-溴異菸鹼酸甲酯(0.51 mL, 2.31 mmol)、喹啉-4-硼酸(0.4 g, 2.31 mmol)、Pd(PPh 3) 4(0.14 g, 0.12 mmol)、與K 2CO 3(0.8 g, 5.79 mmol)製備標題化合物,除了於100℃攪拌反應混合物18 h之外。藉由快速層析法(在己烷類中從30%至100% EA的溶析液梯度)純化殘留物以提供3-(喹啉-4-基)異菸鹼酸乙酯(167 mg, 27%產率),呈無色的油。MS (ESI): m/z 264.1(計算值), 265.2(M+H +, 實際值)。 步驟 2 3-( 喹啉 -4- ) 異菸鹼酸之合成對3-(喹啉-4-基)異菸鹼酸乙酯(80 mg, 0.30 mmol)在THF(1.30 mL)中之溶液加入氫氧化鋰(37 mg, 1.51 mmol)在水(1.30 mL)中之溶液。攪拌混合物18 h,在減壓下蒸發溶劑並在沒有進一步純化下使用所產生的淺黃色固體。MS (ESI): m/z 250.07(計算值), 251.2(M+H +, 實際值)。 步驟 3 N-(5-((4- 氯苯基 ) 乙炔基 )-1,3,4- 噻二唑 -2- )-3-( 喹啉 -4- ) 異菸鹼醯胺 ( 化合物 37 ) 之合成按照一般方法 C從在DMF(2 mL)中的5-((4-氯苯基)乙炔基)-1,3,4-噻二唑基-2-胺(47 mg, 0.20 mmol)、3-(喹啉-4-基)異菸鹼酸(50 mg, 0.20 mmol)、1-甲基咪唑(58 µL, 0.70 mmol)、與TCFH(57 mg, 0.20 mmol)獲得標題化合物。藉由快速層析法(在DCM中從0%至20% MeOH的溶析液梯度)純化殘留物以提供N-(5-((4-氯苯基)乙炔基)-1,3,4-噻二唑-2-基)-3-(喹啉-4-基)異菸鹼醯胺( 化合物 37)(15 mg, 16%產率),呈黃色固體。 1H NMR (400 MHz DMSO- d 6) δ ppm 7.54-7.44 (5H, m), 7.62-7.59 (2H, m), 7.74-7.70 (1H, m), 7.95 (1H, d, J =5.1 Hz), 8.04 (1H, d, J =8.5 Hz), 8.73 (1H, s), 8.93-8.91 (2H, m), 13.78-13.73 (1H, br, s). MS (ESI): m/z 467.1(計算值), 468.2(M+H +, 實際值)。 實施例 38.N-(5-((4-氯苯基)乙炔基)-1,3,4-噻二唑-2-基)-3-(異喹啉-4-基)異菸鹼醯胺( 化合物 38) 之製備 步驟 1 (3-( 異喹啉 -4- ) 異菸鹼酸乙酯之合成按照一般方法 H從通入氬氣之在二㗁烷(1.54 mL)中3-溴異菸鹼酸甲酯(62 mg, 0.29 mmol)、4-異喹啉硼酸(31 µL, 0.29 mmol)、Pd(PPh 3) 4(17 mg, 15 µmol)、與K 2CO 3(0.10 g, 0.72 mmol)在水(0.39 mL)之溶液獲得標題化合物,除了於90℃攪拌反應混合物4 h之外。藉由快速層析法(在己烷類中從50%至100% EA的溶析液梯度)純化粗產物以提供(3-(異喹啉-4-基)異菸鹼酸乙酯(57 mg, 75%產率),呈白色固體。MS (ESI): m/z 264.1(計算值), 265.2(M+H +, 實際值)。 步驟 2 3-( 異喹啉 -4- ) 異菸鹼酸之合成對3-(異喹啉-4-基)異菸鹼酸乙酯(57 mg, 0.22 mmol)在THF(0.98 mL)中之攪拌溶液,加入LiOH(27 mg, 1.08 mmol)在水(0.98 mL)中之溶液。在減壓下移除揮發物之前攪拌反應混合物18 h以提供3-(異喹啉-4-基)異菸鹼酸(53 mg, 定量產率),呈黃色固體。在沒有進一步純化下於下一個步驟中使用粗材料。MS (ESI): m/z 250.1(計算值), 251.2 (M+H +, 實際值)。 步驟 3 N-(5-((4- 氯苯基 ) 乙炔基 )-1,3,4- 噻二唑 -2- )-3-( 異喹啉 -4- ) 異菸鹼醯胺 ( 化合物 38 ) 之合成按照一般方法 C從在DMF(2 mL)中的5-((4-氯苯基)乙炔基)-1,3,4-噻二唑基-2-胺(48 mg, 0.20 mmol)、3-(異喹啉-4-基)異菸鹼酸(50 mg, 0.20 mmol)、1-甲基咪唑(58 µL, 0.70 mmol)、與TCFH(57 mg, 0.20 mmol)獲得標題化合物。藉由快速層析法(在DCM中從1%至10% MeOH的溶析液梯度)純化粗產物以提供N-(5-((4-氯苯基)乙炔基)-1,3,4-噻二唑-2-基)-3-(異喹啉-4-基)異菸鹼醯胺( 化合物 38)(13 mg, 14%產率),呈白色固體。 1H NMR (400 MHz DMSO- d 6) δ ppm 7.50 (3H, d, J =8.1 Hz), 7.71-7.61 (4H, m), 7.92 (1H, d, J =5.0 Hz), 8.16 (1H, d, J =7.7 Hz), 8.39 (1H, s), 8.75 (1H, s), 8.89 (1H, s), 9.33 (1H, s), 13.73 (1H, br, s). MS (ESI): m/z 467.1(計算值), 468.2(M+H +, 實際值)。 實施例 39.N-(5-((4-氯苯基)乙炔基)-1,3,4-噻二唑-2-基)-3-(異喹啉-4-基)異菸鹼醯胺( 化合物 39) 之製備 - 一般方法 I 對3-(2-甲氧基苯基)-N-(5-(4-苯基丁-1-炔-1-基)-1,3,4-噻二唑-2-基)異菸鹼醯胺( 20, 5 mg, 11 µmol)在DMA(0.11 mL)中之攪拌溶液,加入負載於碳(1.21 mg, 1.14 µmol)上的鈀(10 wt.%)。在減壓下以氫氣逆流對反應混合物除氣三次並在標準氫氣氣氛下攪拌3 h。以EA稀釋反應混合物並添加水。使層分離,並收集有機層,以鹽水清洗,於Na 2SO 4上乾燥,通過矽藻土片過濾,並在減壓下濃縮以提供N-(5-((4-氯苯基)乙炔基)-1,3,4-噻二唑-2-基)-3-(異喹啉-4-基)異菸鹼醯胺( 化合物 39)(5 mg, 定量產率),呈白色固體。 1H NMR (400 MHz DMSO- d 6) δ ppm 1.63-1.58 (2H, m), 1.74-1.65 (2H, m), 2.60 (2H, t, J =1.1 Hz), 2.99 (2H, t, J =7.4 Hz), 3.46 (3H, s), 6.96 (1H, d, J =8.3 Hz), 7.05 (1H, t, J =7.4 Hz), 7.19-7.15 (3H, m), 7.28-7.24 (2H, m), 7.38-7.34 (2H, m), 7.64 (1H, d, J =5.0 Hz), 8.59-8.58 (1H, s), 8.70 (1H, d, J =4.8 Hz), 12.92 (1H, br, s). MS (ESI): m/z 444.2 (計算值), 445.2(M+H +, 實際值)。 實施例 40.N-(5-((4-氯苯基)乙炔基)-1,3,4-噻二唑-2-基)-3-(異喹啉-4-基)異菸鹼醯胺( 化合物 40) 之製備 按照一般方法 I從3-(2-甲氧基苯基)-N-(5-(4-苯基丁-1-炔-1-基)-1,3,4-噻二唑-2-基)異菸鹼醯胺( 21, 5 mg, 11 µmol)與負載於碳(1.21 mg, 1.14 µmol)上的鈀(10 wt.%)在DMA (0.11 mL)中獲得標題化合物以提供N-(5-((4-氯苯基)乙炔基)-1,3,4-噻二唑-2-基)-3-(異喹啉-4-基)異菸鹼醯胺( 化合物 40)(5 mg, 定量產率),呈白色固體。 1H NMR (400 MHz DMSO- d 6) δ ppm 2.19-2.12 (2H, m), 3.17-3.13 (2H, m), 3.46 (3H, s), 4.04-4.01 (2H, m), 6.96-6.90 (4H, m), 7.06 (1H, td, J =7.5, 1.0 Hz), 7.30-7.26 (2H, m), 7.39-7.35 (2H, m), 7.64 (1H, d, J =5.0 Hz), 8.61 (1H, s), 8.71 (1H, d, J =5.0 Hz), 12.96-12.94 (1H, br, s). MS (ESI): m/z 446.1(計算值), 447.3 (M+H +, 實際值)。 實施例 41. N-(5-((4- 氯苯基 ) 乙炔基 )-1,3,4- 噻二唑 -2- )-1-(2- 甲氧基苯基 )-1 H- 咪唑 -5- 羧醯胺 ( 化合物 41) 之製備 步驟 1 (2- 甲氧基苯基 ) 甘胺酸乙酯之合成對溴乙酸乙酯(2 mL, 15.40 mmol)在DMF(46 mL)中之攪拌溶液,加入鄰甲氧苯胺(2 mL, 16.20 mmol)與K 2CO 3(4.48 g, 32.50 mmol)。加熱反應混合物至90℃並攪拌1.5 h。反應混合物接著冷卻至室溫,以EA稀釋,並加入水。使層分離,並收集有機層,以鹽水清洗,於Na 2SO 4上乾燥,過濾,並在減壓下濃縮。藉由快速層析法(在己烷類中從0%至50% EA的溶析液梯度)純化殘留物以提供(2-甲氧基苯基)甘胺酸乙酯(2.42 g, 72%產率),呈無色的油。MS (ESI): m/z 209.1(計算值), 210.2(M+H +, 實際值)。 步驟 2 N- 乙醯基 -N-(2- 甲氧基苯基 ) 甘胺酸乙酯之合成對(2-甲氧基苯基)甘胺酸乙酯(2.42 g, 11.60 mmol)在冷卻至0℃的乾燥THF(29 mL)中之攪拌溶液,滴加乙醯氯(0.99 mL, 13.9 mmol)。在滴加Et 3N(1.62 mL, 11.6 mmol)之前攪拌反應混合物15分鐘。接著加熱反應混合物至室溫並在以EA與水稀釋之前攪拌2 h。使層分離,並收集有機層,以鹽水清洗,於Na 2SO 4上乾燥,過濾,並在減壓下濃縮。藉由快速層析法(在己烷類中從5%至40% EA的溶析液梯度)純化殘留物以提供N-乙醯基-N-(2-甲氧基苯基)甘胺酸乙酯(2.57 g, 88%產率),呈黃色油。MS (ESI): m/z 251.1 (計算值), 252.3 (M+H +, 實際值)。 步驟 3 2- 巰基 -1-(2- 甲氧基苯基 )-1 H- 咪唑 -5- 羧酸乙酯之合成對N-乙醯基-N-(2-甲氧基苯基)甘胺酸乙酯(0.10 g, 0.40 mmol)在冷卻至0℃的苯(0.19 mL)中之攪拌溶液,加入甲酸乙酯(0.11 mL, 1.33 mmol)與KOtBu(45 mg, 0.40 mmol)。在加入水之前於0℃靜置反應混合物18 h。使層分離,以硫氰酸鉀(39 µL, 0.40 mmol)處理水層並濃縮。在加熱至60℃之前加入HCl(0.13 mL, 1.59 mmol)並攪拌2 h。反應混合物接著冷卻至室溫並以EA萃取。在減壓下濃縮有機萃取物。藉由快速層析法(在己烷類中從10%至100% EA的溶析液梯度)純化殘留物以提供2-巰基-1-(2-甲氧基苯基)-1 H-咪唑-5-羧酸乙酯(37 mg, 34%產率),呈黃色固體。MS (ESI): m/z 278.1(計算值), 279.1(M+H +, 實際值)。 步驟 4 1-(2- 甲氧基苯基 )-1 H- 咪唑 -5- 羧酸乙酯之合成對H 2WO 4(2.54 mg, 10.8 µmol)在水(2 mL)與乙醇(2 mL)於0℃的混合物中之溶液,加入過氧化氫(0.19 mL, 1.89 mmol)與2-巰基-1-(2-甲氧基苯基)-1H-咪唑-5-羧酸乙酯(0.15 g, 0.54 mmol)。將反應混合物加熱至室溫並在加入NaHCO 3飽和溶液之前攪拌4.5 h。接著在減壓下濃縮反應混合物並以EA萃取水層。在減壓下濃縮有機萃取物以提供1-(2-甲氧基苯基)-1 H-咪唑-5-羧酸乙酯(0.13 g, 96%),呈黃色油。在沒有進一步純化下於下一個步驟中使用粗材料。MS (ESI): m/z 246.1(計算值), 247.1(M+H +, 實際值)。 步驟 5 1-(2- 甲氧基苯基 )-1 H- 咪唑 -5- 羧酸之合成對1-(2-甲氧基苯基)-1 H-咪唑-5-羧酸乙酯(0.13 g, 0.52 mmol)在THF(1.30 mL)中之攪拌溶液,加入LiOH(37 mg, 1.56 mmol)在水(1.30 mL)中之溶液。在濃縮前攪拌反應混合物18 h。加入HCl,並在減壓下移除揮發物以提供1-(2-甲氧基苯基)-1 H-咪唑-5-羧酸(112 mg, 定量產率),呈白色固體。在沒有進一步純化下於下一個步驟中使用粗材料。MS (ESI): m/z 218.1(計算值), 219.2(M+H +, 實際值)。 步驟 6 N-(5-((4- 氯苯基 ) 乙炔基 )-1,3,4- 噻二唑 -2- )-1-(2- 甲氧基苯基 )-1 H- 咪唑 -5- 羧醯胺 ( 化合物 41 ) 之合成按照一般方法 C從在DMF(0.60 mL)中的5-((4-氯苯基)乙炔基)-1,3,4-噻二唑基-2-胺(14 mg, 64.2 µmol)、1-(2-甲氧基苯基)-1 H-咪唑-5-羧酸(15 mg, 64.20 µmol)、1-甲基咪唑(20 µL, 0.23 mmol)、與TCFH(18 mg, 64.20 µmol)獲得標題化合物。藉由Prep-HPLC(管柱:Gemini® 5 um NX-C18 110 Å, 100×30 mm)(在碳酸氫銨中從70%至100%之ACN的溶析液梯度)的純化提供N-(5-((4-氯苯基)乙炔基)-1,3,4-噻二唑-2-基)-1-(2-甲氧基苯基)-1 H-咪唑-5-羧醯胺( 化合物 41)(13 mg, 14%產率),呈白色固體。 1H NMR (400 MHz DMSO- d 6) δ ppm 3.61 (3H, s), 7.00 (1H, td, J =7.6, 1.2 Hz), 7.12 (1H, dd, J =8.3, 1.2 Hz), 7.27 (1H, dd, J =7.8, 1.7 Hz), 7.41-7.37 (1H, m), 7.49-7.46 (2H, m), 7.58-7.55 (2H, m), 7.71 (2H, s). MS (ESI): m/z 435.1(計算值), 436.1 (M+H +, 實際值)。 實施例 42. 3-(2- 甲氧基苯基 )-N-(5- 甲基 -1,3,4- 噻二唑 -2- ) 異菸鹼醯胺 ( 化合物 42) 之製備 按照一般方法 C從在DMF(2 mL)中的2-胺基-5-甲基-1,3,4-噻二唑(50 mg, 0.44 mmol)、3-(2-甲氧基苯基)異菸鹼酸(0.10 g, 0.44 mmol)、1-甲基咪唑(0.13 mL, 1.53 mmol)、與TCFH(0.13 g, 0.44 mmol)獲得標題化合物。藉由快速層析法(在DCM中從1%至10% MeOH的溶析液梯度)純化殘留物以提供3-(2-甲氧基苯基)-N-(5-甲基-1,3,4-噻二唑-2-基)異菸鹼醯胺( 化合物 42)(99 mg, 70%產率),呈白色固體。 1H NMR (400 MHz DMSO- d 6) δ ppm 2.59 (3H, s), 3.46 (3H, s), 6.96 (1H, d, J =8.6 Hz), 7.06-7.02 (1H, m), 7.37-7.33 (2H, m), 7.63 (1H, d, J =5.0 Hz), 8.60 (1H, s), 8.70 (1H, d, J =5.0 Hz), 12.88 (1H, s). MS (ESI): m/z 326.1(計算值), 327.1(M+H +, 實際值)。 實施例 43. N-(5-((4- 氯苯基 ) 乙炔基 )-1,3,4- 噻二唑 -2- )-3-(2- -6-(2- 啉基乙氧基 ) 苯基 ) 異菸鹼醯胺 ( 化合物 43) 之製備 步驟 1 3-(2- -6- 羥基苯基 ) 異菸鹼酸之合成對通入氬氣之3-溴異菸鹼酸甲酯(0.25 mL, 1.81 mmol)在二㗁烷(9.68 mL)中之攪拌溶液,加入(2-氟-6-羥基苯基)硼酸(0.38 g, 2.36 mmol)、XPhos Pd G4(78 mg, 0.09 mmol)、與K 3PO 4(0.78 g, 3.63 mmol)在水(2.42 mL)中之溶液。在減壓下以氬氣逆流對反應混合物除氣三次,加熱至80℃,並攪拌1 h。反應混合物接著冷卻至室溫,以MeOH稀釋,並通過矽藻土片過濾。蒸發濾液,並以DCM研磨提純殘留物以提供3-(2-氟-6-羥基苯基)異菸鹼酸(308 mg, 73%產率),呈淺棕色固體。MS (ESI): m/z 233.0(計算值), 234.1(M+H +, 實際值)。 步驟 2 3-(2- -6-(2- 基乙氧基 ) 苯基 ) 異菸鹼酸之合成對3-(2-氟-6-羥基苯基)異菸鹼酸(0.18 g, 0.66 mmol)在DMF(2.00 mL)中之攪拌溶液,加入K 2CO 3(0.20 g, 1.46 mmol)與4-(2-氯乙基) 啉(0.38 mL, 2.65 mmol)。將反應混合物加熱至95℃,攪拌3小時,冷卻至室溫並以水(10 mL)及EA(10 mL)稀釋。使層分離,並以EA(2×10 mL)萃取水層。以鹽水(30 mL)清洗所結合的有機層,在MgSO 4上乾燥,過濾,並在減壓下濃縮。將殘留物溶解於水(0.65 mL)與THF(2.35 mL)的混合物中,並加入LiOH(47 mg, 1.96 mmol)。在減壓下移除揮發物之前於室溫攪拌反應混合物1 h。藉由逆相C18管柱層析(在碳酸氫銨10 mM, pH=10中從0%至40%之ACN的溶析液梯度)純化殘留物提供3-(2-氟-6-(2- 啉基乙氧基)苯基)異菸鹼酸(41 mg, 18%產率),呈棕色的油。MS (ESI): m/z 346.1 (計算值), 347.1 (M+H +, 實際值)。 步驟 3 N-(5-((4- 氯苯基 ) 乙炔基 )-1,3,4- 噻二唑 -2- )-3-(2- -6-(2- 啉基乙氧基 ) 苯基 ) 異菸鹼醯胺 ( 化合物 43 ) 之合成對5-((4-氯苯基)乙炔基)-1,3,4-噻二唑基-2-胺( 48, 26 mg, 0.11 mmol)在DMF(0.55 mL)中之攪拌溶液,加入3-(2-氟-6-(2- 啉基乙氧基)苯基)異菸鹼酸(40 mg, 0.11 mmol)與1-甲基咪唑(32 µL, 0.38 mmol)。接著,滴加TCFH(32 mg, 0.11 mmol)在DMF(0.52 mL)中之溶液。於室溫攪拌反應混合物1 h,以水(10 mL)稀釋,並以氯仿/異丙醇(3/1)(2×10 mL)的混合物萃取。所結合的有機層在MgSO 4上乾燥,過濾,並在減壓下濃縮。藉由Prep-HPLC(管柱:Gemini® 5 um NX-C18 110 Å, 100×30 mm)(在10 mM甲酸銨中從50%至100%之MeOH的溶析液梯度)純化殘留物提供N-(5-((4-氯苯基)乙炔基)-1,3,4-噻二唑-2-基)-3-(2-氟-6-(2- 啉基乙氧基)苯基)異菸鹼醯胺( 化合物 43)(4 mg, 6.4%產率),呈淡黃色固體。 1H NMR (400 MHz, DMSO- d 6 ) δ ppm 2.16 (4H, m), 2.37 (2H, m), 3.39 (4H, m), 3.79 (1H, m), 4.02 (1H, m), 6.85 (2H, br s), 7.29 (1H, s), 7.51 (2H, d, J= 8.3 Hz), 7.60 (2H, d, J= 8.2 Hz), 8.04 (1H, br s), 8.51 (2H, br s)。 19F NMR (376 MHz, DMSO- d 6 ) δ ppm -115.0 (1F, s). MS (ESI): m/z 563.1(計算值), 564.3(M+H +, 實際值)。 實施例 44. N-(5-((4- 氯苯基 ) 乙炔基 )-1,3,4- 噻二唑 -2- )-3-(3-(2- 基乙氧基 ) 苯基 ) 異菸鹼醯胺 ( 化合物 44) 之製備 步驟 1 3-(3- 羥基苯基 ) 異菸鹼酸甲酯之合成按照一般方法 H從在二㗁烷(10 mL)中的3-溴異菸鹼酸甲酯(0.25 mL, 1.81 mmol)、3-羥基苯基硼酸(0.33 g, 2.36 mmol)、XPhos Pd G4(78 mg, 0.09 mmol)、與K 3PO 4(0.78 g, 3.63 mmol)在水(2 mL)之溶液獲得標題化合物以提供3-(3-羥基苯基)異菸鹼酸甲酯(416 mg, 99%產率),呈透明的油。MS (ESI): m/z 229.1(計算值), 230.1(M+H +, 實際值)。 步驟 2 3-(3-(2- 啉基乙氧基 ) 苯基 ) 異菸鹼酸甲酯之合成對3-(3-羥基苯基)異菸鹼酸甲酯(0.20 g, 0.91 mmol)在DMF(5 mL)中之攪拌溶液,加入K 2CO 3(0.15 g, 1.09 mmol)與4-(2-氯乙基) 啉(0.17 g, 1.09 mmol)。將反應混合物加熱至95℃並攪拌3 h,冷卻至室溫並以水(10 mL)及DCM (10 mL)稀釋。使層分離,並以DCM(2×10 mL)萃取水層。以鹽水(30 mL)清洗所結合的有機層,在MgSO 4上乾燥,過濾,並在減壓下濃縮。藉由快速層析法(在DCM中從0%至10% MeOH的溶析液梯度(0.1% Et3N))純化殘留物以提供3-(3-(2- 啉基乙氧基)苯基)異菸鹼酸甲酯(0.30 g, 97%產率),呈淡黃色油。MS (ESI): m/z 342.2(計算值), 343.1 (M+H +, 實際值)。 步驟 3 3-(3-(2- 啉基乙氧基 ) 苯基 ) 異菸鹼酸之合成對3-(3-(2- 啉基乙氧基)苯基)異菸鹼酸甲酯(0.20 g, 0.58 mmol)在水(0.58 mL)與THF(2 mL)的混合物中之攪拌溶液,加入LiOH(28 mg, 1.17 mmol)。在減壓下移除揮發物之前於室溫攪拌反應混合物2 h以提供3-(3-(2- 啉基乙氧基)苯基)異菸鹼酸(0.19 g, 99%產率),呈米白色固體。在沒有進一步純化下於下一個步驟中使用粗材料。MS (ESI): m/z 328.1(計算值), 329.1(M+H +, 實際值)。 步驟 4 N-(5-((4- 氯苄基 ) 氧基 )-1,3,4- 噻二唑 -2- )-3-(3-(2- 啉基乙氧基 ) 苯基 ) 異菸鹼醯胺 ( 化合物 44 ) 之合成按照一般方法 C從在DMF(0.64 mL)中的5-((4-氯苯基)乙炔基)-1,3,4-噻二唑基-2-胺(30 mg, 0.13 mmol)、3-(3-(2- 啉基乙氧基)苯基)異菸鹼酸(42 mg, 0.13 mmol)、1-甲基咪唑(37 µL, 0.45 mmol)、與在DMF(0.60 mL)中的TCFH(36 mg, 0.13 mmol)獲得標題化合物。藉由逆相C18管柱層析 (在碳酸氫銨10 mM, pH=10中從5%至38%之ACN的溶析液梯度)純化粗產物提供N-(5-((4-氯苄基)氧基)-1,3,4-噻二唑-2-基)-3-(3-(2- 啉基乙氧基)苯基)異菸鹼醯胺( 化合物 44) (11.6 mg, 17%產率),呈米白色固體。 1H NMR (400 MHz, DMSO- d 6 ) δ ppm 2.46 (4H, m), 2.70 (2H, appt, J= 5.5 Hz), 3.56 (4H, m), 4.03 (2H, appt, J= 5.6 Hz), 6.95-7.00 (3H, m), 7.33 (1H, t, J= 7.7 Hz), 7.57 (2H, d, J= 8.3 Hz), 7.70 (3H, m), 8.74 (1H, d, J= 5.0 Hz), 8.77 (1H, s), 13.32 (1H, br s). MS (ESI): m/z 545.1(計算值), 546.3(M+H +, 實際值)。 實施例 45. N-(5-((4- 氯苯基 ) 乙炔基 )-1,3,4- 噻二唑 -2- )-3-(3-(2-( 二甲基胺基 ) 乙氧基 ) 苯基 ) 異菸鹼醯胺 ( 化合物 45 ) 之製備 步驟 1 3-(3-(2-( 二甲基胺基 ) 乙氧基 ) 苯基 ) 異菸鹼酸之合成對3-(3-羥基苯基)異菸鹼酸甲酯(0.21 g, 0.91 mmol)在DMF(4.54 mL)中之攪拌溶液,加入2-氯- N, N-二甲基乙胺鹽酸(0.16 g, 1.09 mmol)與K 2CO 3(0.28 g, 2.00 mmol)。將反應混合物加熱至95℃並攪拌24 h,冷卻至室溫並以水(10 mL)及DCM(10 mL)稀釋。使層分離,並以DCM(2×10 mL)萃取水層。以鹽水(30 mL)清洗所結合的有機層,在MgSO 4上乾燥,過濾,並在減壓下濃縮。將殘留物溶解於水(0.52 mL)與THF(2 mL)的混合物中,並加入LiOH(25 mg, 1.05 mmol)。在減壓下移除揮發物之前於室溫攪拌反應混合物2 h以提供3-(3-(2-(二甲基胺基)乙氧基)苯基)異菸鹼酸(0.15 g, 57%產率),呈米白色固體。在沒有進一步純化下於下一個步驟中使用粗材料。MS (ESI): m/z 286.1(計算值), 287.2 (M+H +, 實際值)。 步驟 2 N-(5-((4- 氯苄基 ) 氧基 )-1,3,4- 噻二唑 -2- )-3-(3-(2-( 二甲基胺基 ) 乙氧基 ) 苯基 ) 異菸鹼醯胺 ( 化合物 45 ) 之合成按照一般方法 C從在DMF(1 mL)中的5-((4-氯苯基)乙炔基)-1,3,4-噻二唑基-2-胺(40 mg, 0.17 mmol)、3-(3-(2-(二甲基胺基)-乙氧基)苯基)異菸鹼酸(49 mg, 0.17 mmol)、1-甲基咪唑(49 µL, 0.59 mmol)、與在DMF(0.50 mL)中的TCFH(49 mg, 0.17 mmol)獲得標題化合物。藉由逆相C18管柱層析(在碳酸氫銨10 mM中從5%至40%之ACN的溶析液梯度)純化粗產物而提供N-(5-((4-氯苄基)氧基)-1,3,4-噻二唑-2-基)-3-(3-(2-(二甲基胺基)乙氧基)苯基)異菸鹼醯胺( 化合物 45)(11 mg, 13%產率),呈淡黃色固體。 1H NMR (400 MHz, DMSO- d 6 ) δ ppm 2.51 (6H, s), 3.06 (2H, t, J= 4.9 Hz), 4.12 (2H, t, J= 5.3 Hz), 6.94 (1H, dd, J= 8.3, 2.4 Hz), 7.01-7.05 (2H, m), 7.31 (1H, t, J= 7.9 Hz), 7.53-7.58 (3H, m), 7.65 (2H, d, J= 8.4 Hz), 8.63-8.65 (2H, m). MS (ESI): m/z 503.1(計算值), 504.2(M+H +, 實際值)。 實施例 46. 苄基 3-((5-(3-(2- 甲氧基苯基 ) 異菸鹼醯胺基 )-1,3,4- 噻二唑 -2- ) 氧基 ) 吡咯啶 -1- 甲酸酯 ( 化合物 46) 之製備 步驟 1 :苄基 3-((5- -1,3,4- 噻二唑 -2- ) 氧基 ) 吡咯啶 -1- 甲酸酯之合成對2,5-二溴-1,3,4-噻二唑(0.30 g, 1.23 mmol)與苄基3-羥基吡咯啶-1-甲酸酯(0.33 mL, 1.35 mmol)在0℃之DMF(4 mL)中之攪拌溶液,加入NaH(0.10 g, 2.46 mmol)。將反應混合物加熱至室溫並攪拌10分鐘。加入水(10 mL)並以EA (2×10 mL)萃取水層。以鹽水(2×20 mL)清洗所結合的有機層,在MgSO 4上乾燥,過濾,並濃縮至乾燥。藉由快速層析法(在己烷類中從0%至40% EA的溶析液梯度)純化殘留物以提供苄基3-((5-溴-1,3,4-噻二唑-2-基)氧基)吡咯啶-1-甲酸酯(254 mg, 54%產率),呈不透明的油。MS (ESI): m/z 383.0(計算值), 384.1(M+H +, 實際值)。 步驟 2 :苄基 3-((5-(3-(2- 甲氧基苯基 ) 異菸鹼醯胺基 )-1,3,4- 噻二唑 -2- ) 氧基 ) 吡咯啶 -1- 甲酸酯 ( 化合物 46 ) 之合成按照一般方法 G從苄基3-((5-溴-1,3,4-噻二唑-2-基)氧基)吡咯啶-1-甲酸酯(0.26 g, 0.67 mmol)、3-(2-甲氧基苯基)異菸鹼醯胺(0.18 g, 0.80 mmol)、Cs 2CO 3(0.44 g, 1.33 mmol)、Pd 2(dba) 3(63 mg, 0.07 mmol)、與XantPhos(79 mg, 0.13 mmol)獲得標題化合物。藉由逆相C18管柱層析(在碳酸氫銨10 mM, pH=10中從5%至40%之ACN的溶析液梯度)純化而提供苄基3-((5-(3-(2-甲氧基苯基)異菸鹼醯胺基)-1,3,4-噻二唑-2-基)氧基)吡咯啶-1-甲酸酯( 化合物 46)(55 mg, 16%產率),呈米白色固體。 1H NMR (400 MHz, DMSO- d 6 ) δ ppm 2.21 (2H, br s), 3.38-3.67 (7H, m), 5.08 (2H, s), 5.45 (1H, s), 6.98 (1H, d, J= 8.3 Hz), 7.03 (1H, t, J= 7.4 Hz), 7.31-7.37 (7H, m), 7.62 (1H, d, J= 5.0 Hz), 8.56 (1H, s), 8.66 (1H, d, J= 4.9 Hz), 12.87 (1H, br s). MS (ESI): m/z 531.2(計算值), 532.2(M+H +, 實際值)。 實施例 47. 3-(2- 甲氧基苯基 )-N-(5-( 吡咯啶 -3- 基氧基 )-1,3,4- 噻二唑 -2- ) 異菸鹼醯胺 ( 化合物 47) 之製備 對苄基3-((5-(3-(2-甲氧基苯基)異菸鹼醯胺基)-1,3,4-噻二唑-2-基)氧基)吡咯啶-1-甲酸酯(22 mg, 0.04 mmol)在通入氬氣之DCM(0.83 mL)中之攪拌溶液,加入Pd(OAc) 2(11 mg, 0.05 mmol)、Et 3N(14 µL, 0.10 mmol)、與三乙基矽烷(67 µL, 0.41 mmol)。將反應混合物加熱至45℃,攪拌2 h,冷卻至室溫,在矽藻土片上過濾,並在減壓下濃縮。藉由Prep-HPLC(管柱:Gemini® 5 um NX-C18 110 Å, 100 ×30 mm)(在10 mM甲酸銨中從5%至100%之ACN的溶析液梯度)純化粗產物提供3-(2-甲氧基苯基)-N-(5-(吡咯啶-3-基氧基)-1,3,4-噻二唑-2-基)異菸鹼醯胺( 化合物 47)(3 mg, 18%產率),呈白色固體。 1H NMR (400 MHz, DMSO- d 6 ) δ ppm 2.05 (2H, m), 3.14 (4H, br m), 3.53 (3H, s), 5.38 (1H, s), 6.96-7.00 (2H, m), 7.27 (1H, dd, J= 7.4, 1.7 Hz), 7.32 (1H, td, J= 7.8, 1.6 Hz), 7.62 (1H, d, J= 4.8 Hz), 8.26 (1H, br s), 8.48 (1H, s), 8.59 (1H, s). MS (ESI): m/z 397.1(計算值), 398.2 (M+H +, 實際值)。 實施例 48. 3-(2- 甲氧基苯基 )- N-(5-( 哌啶 -3- 基氧基 )-1,3,4- 噻二唑 -2- ) 異菸鹼醯胺 ( 化合物 48) 之製備 步驟 1 三級丁基 3-((5- 胺基 -1,3,4- 噻二唑 -2- ) 氧基 ) 哌啶 -1- 甲酸酯之合成按照一般方法 D三級丁基3-羥基哌啶-1-甲酸酯(0.43 g, 2.16 mmol)、NaH(0.11 g, 2.80 mmol)、DMF(6.16 mL)、與5-溴-1,3,4-噻二唑基-2-胺(0.40 g, 2.16 mmol)獲得標題化合物。藉由快速層析法(在己烷類中從0%至100% EA的溶析液梯度)純化粗產物以提供 三級丁基3-((5-胺基-1,3,4-噻二唑-2-基)氧基)哌啶-1-甲酸酯(30 mg, 4.6%產率),呈黃色油。MS (ESI): m/z 300.1(計算值), 301.2 (M+H +, 實際值)。 步驟 2 三級丁基 3-((5-(3-(2- 甲氧基苯基 ) 異菸鹼醯胺基 )-1,3,4- 噻二唑 -2- ) 氧基 ) 哌啶 -1- 甲酸酯之合成按照一般方法 C從在DMF(1.00 mL)中的 三級丁基3-((5-胺基-1,3,4-噻二唑-2-基)氧基)哌啶-1-甲酸酯(35 mg, 0.11 mmol)、3-(2-甲氧基苯基)異菸鹼酸(29 mg, 0.13 mmol)、1-甲基咪唑(34 µL, 0.41 mmol)、與在DMF(0.50 mL)中的TCFH(37 mg, 0.13 mmol)獲得標題化合物。以真空過濾收集所產生的沈澱物以提供 三級丁基3-((5-(3-(2-甲氧基苯基)異菸鹼醯胺基)-1,3,4-噻二唑-2-基)氧基)哌啶-1-甲酸酯(36 mg, 53%產率),呈淺棕色固體。MS (ESI): m/z 511.2(計算值), 512.3(M+H +, 實際值)。 步驟 3 3-(2- 甲氧基苯基 )-N-(5-( 哌啶 -3- 基氧基 )-1,3,4- 噻二唑 -2- ) 異菸鹼醯胺 ( 化合物 48 ) 之合成三級丁基3-((5-(3-(2-甲氧基苯基)異菸鹼醯胺基)-1,3,4-噻二唑-2-基)氧基)哌啶-1-甲酸酯(36 mg, 0.06 mmol)在DCM(0.31 mL)中之攪拌溶液,加入TFA(47 µL, 0.62 mmol)。在加入Et 3N(0.10 mL)之前攪拌反應混合物30分鐘並在減壓下移除揮發物。藉由逆相C18管柱層析(在10 mM碳酸氫銨中從5%至55%之MeOH的溶析液梯度)純化殘留物提供3-(2-甲氧基苯基)-N-(5-(哌啶-3-基氧基)-1,3,4-噻二唑-2-基)異菸鹼醯胺( 化合物 48)(16 mg, 62%產率),呈白色固體。 1H NMR (400 MHz, DMSO- d 6 ) δ ppm 1.44-1.51 (1H, m), 1.65-1.73 (2H, m), 2.01-2.07 (1H, m), 2.61-2.67 (1H, m), 2.77-2.84 (2H, m), 3.16-3.21 (1H, m), 3.53 (3H, s), 4.83-4.88 (1H, m), 6.97-7.04 (2H, m), 7.29-7.36 (2H, m), 7.61 (1H, d, J= 5.0 Hz), 8.53-8.54 (1H, m), 8.64 (1H, d, J= 5.0 Hz). MS (ESI): m/z 411.1(計算值), 412.3(M+H +, 實際值)。 實施例 49. 3-(2- 甲氧基苯基 )-N-(5-(3-( 三氟甲基 ) 雙環 [1.1.1] 戊烷 -1- )-1,3,4- 噻二唑 -2- ) 異菸鹼醯胺 ( 化合物 49) 之製備 步驟 1 5-(3-( 三氟甲基 ) 雙環 [1.1.1] 戊烷 -1- )-1,3,4- 噻二唑基 -2- 胺之合成 - 一般方法 J對於具有3-(三氟甲基)-雙環[1.1.1]戊烷-1-羧酸(0.10 g, 0.56 mmol)與肼碳硫醯胺(54 mg, 0.58 mmol)的燒瓶,加入POCl 3(0.55 mL, 5.83 mmol)。將反應混合物加熱至75℃,攪拌3 h,冷卻至0℃並以水(10 mL)驟冷。以NaOH (2M)溶液使得溶液呈鹼性,以真空過濾收集所產生的沈澱物並乾燥以提供5-(3-(三氟甲基)雙環[1.1.1]戊烷-1-基)-1,3,4-噻二唑基-2-胺(116 mg, 89%產率),呈白色固體。 1H NMR (400 MHz, DMSO- d 6) δ ppm 2.34 (6H, s), 7.24 (2H, s)。 19F NMR (376 MHz, DMSO- d 6) δ ppm -71.3 (3F, S). MS (ESI): m/z 235.0(計算值), 236.1(M+H +, 實際值)。 步驟 2 3-(2- 甲氧基苯基 )-N-(5-(3-( 三氟甲基 ) 雙環 [1.1.1] 戊烷 -1- )-1,3,4- 噻二唑 -2- ) 異菸鹼醯胺 ( 化合物 49 ) 之合成按照一般方法 C從在DMF(1.54 mL)中的5-(3-(三氟甲基)雙環[1.1.1]戊烷-1-基)-1,3,4-噻二唑基-2-胺(60 mg, 0.26 mmol)、3-(2-甲氧基苯基)異菸鹼酸(70 mg, 0.31 mmol)、1-甲基咪唑(74 µL, 0.89 mmol)、與在DMF(0.77 mL)中的TCFH(80 mg, 0.28 mmol)獲得標題化合物。藉由逆相C18管柱層析(在H 2O(0.1% FA)中從5%至80%之ACN的溶析液梯度)純化粗產物提供3-(2-甲氧基苯基)-N-(5-(3-(三氟甲基)雙環[1.1.1]戊烷-1-基)-1,3,4-噻二唑-2-基)異菸鹼醯胺( 化合物 49)(15.8 mg, 62%產率),呈白色固體。 1H NMR (400 MHz, DMSO- d 6 ) δ ppm 2.45 (6H, s), 3.47 (3H, s), 6.98 (1H, d, J= 8.5 Hz), 7.06 (1H, t, J= 7.5 Hz), 7.37 (2H, t, J = 7.3 Hz), 7.64 (1H, d, J= 5.0 Hz), 8.62 (1H, s), 8.72 (1H, d, J= 5.0 Hz), 13.15 (1H, s)。 19F NMR (376 MHz, DMSO- d 6) δ ppm -71.3 (3F, S). MS (ESI): m/z 446.1(計算值), 447.2 (M+H +, 實際值)。 實施例 50. 3-(2- 甲氧基苯基 )-N-(5-(3- 苯基雙環 [1.1.1] 戊烷 -1- )-1,3,4- 噻二唑 -2- ) 異菸鹼醯胺 ( 化合物 50) 之製備 步驟 1 3- 苯基雙環 [1.1.1] 戊烷 -1- 羧酸甲酯之合成對於具有f [1.1.1]螺槳烷(3.00 mL, 1.47 mmol, Angew. Chem., Int. Ed. 2017, 56, 12774-12777)在二乙醚(0.49 M)中之攪拌溶液的Ace壓力容器,加入苯基溴化鎂(0.98 mL, 2.94 mmol)在二乙醚(3 M)中之溶液。密封容器,將反應混合物加熱至100℃並攪拌18 h。接著緩慢冷卻反應混合物至-78℃並添加一份的氯甲酸甲酯(0.45 mL, 5.88 mmol)。將反應混合物加熱至室溫超過30分鐘,攪拌1 h,並以二乙醚(20 mL)與NH 4Cl的飽和溶液(30 mL)稀釋。使層分離,並以二乙醚(2×30 mL)萃取水層。所結合的有機層在MgSO 4上乾燥,過濾,並在減壓下濃縮。藉由快速層析法(在己烷類中從0%至5%二乙醚的溶析液梯度)純化殘留物以提供3-苯基雙環[1.1.1]戊烷-1-羧酸甲酯(100 mg, 34%產率),呈淡黃色油。 1H NMR (400 MHz, CHCl 3- d) δ ppm 2.20 (6H, s), 3.58 (3H, s), 7.06-7.12 (3H, m), 7.18 (2H, m)。 步驟 2 3- 苯基雙環 [1.1.1] 戊烷 -1- 羧酸之合成對3-苯基雙環[1.1.1]戊烷-1-羧酸甲酯(95 mg, 0.47 mmol)在水(0.47 mL)與THF(2 mL)的混合物中之攪拌溶液,加入氫氧化鋰(23 mg, 0.94 mmol)。在減壓下移除揮發物之前攪拌反應混合物2 h以及將殘留物溶解於水中並以HCl(2N)酸化。以真空過濾收集所產生的沈澱物並以己烷類清洗以提供3-苯基雙環[1.1.1]戊烷-1-羧酸(57 mg, 64%產率),呈白色固體。 1H NMR (400 MHz, CHCl 3- d) δ ppm 2.37 (6H, s), 7.22-7.26 (3H, m), 7.31-7.35 (2H, m)。 步驟 3 5-(3- 苯基雙環 [1.1.1] 戊烷 -1- )-1,3,4- 噻二唑基 -2- 胺之合成按照一般方法 J從3-苯基雙環[1.1.1]戊烷-1-羧酸(55 mg, 0.29 mmol)、肼碳硫醯胺(28 mg, 0.31 mmol)、與POCl 3(0.50 mL, 5.32 mmol)獲得標題化合物。以真空過濾收集所產生的沈澱物以提供5-(3-苯基雙環[1.1.1]戊烷-1-基)-1,3,4-噻二唑基-2-胺(63 mg, 89%產率),呈白色固體。MS (ESI): m/z 243.1(計算值), 244.2(M+H +, 實際值)。 步驟 4 3-(2- 甲氧基苯基 )-N-(5-(3- 苯基雙環 [1.1.1] 戊烷 -1- )-1,3,4- 噻二唑 -2- ) 異菸鹼醯胺 ( 化合物 50 ) 之合成按照一般方法 C從在DMF(1.56 mL)中的5-(3-苯基雙環[1.1.1]戊烷-1-基)-1,3,4-噻二唑基-2-胺(63 mg, 0.26 mmol)、3-(2-甲氧基苯基)異菸鹼酸(65 mg, 0.29 mmol)、1-甲基咪唑(75 µL, 0.91 mmol)、與在DMF(0.78 mL)中的TCFH(82 mg, 0.29 mmol)獲得標題化合物。藉由快速層析法(在DCM中從0%至3% MeOH的溶析液梯度)純化粗產物以提供3-(2-甲氧基苯基)- N-(5-(3-苯基雙環[1.1.1]戊烷-1-基)-1,3,4-噻二唑-2-基)異菸鹼醯胺( 化合物 50)(74 mg, 63%產率),呈白色固體。 1H NMR (400 MHz, DMSO- d 6 ) δ ppm 2.45 (6H, s), 3.48 (3H, s), 6.99 (1H, d, J = 8.6 Hz), 7.07 (1H, t, J = 7.5 Hz), 7.27-7.42 (7H, m), 7.65 (1H, d, J = 5.0 Hz), 8.62 (1H, s), 8.73 (1H, d, J = 5.0 Hz), 13.10 (1H, s). MS (ESI): m/z 454.1(計算值), 455.3(M+H +, 實際值)。 實施例 51. N-(5-(3-(4- 氯苯基 ) 雙環 [1.1.1] 戊烷 -1- )-1,3,4- 噻二唑 -2- )-3-(2- 甲氧基苯基 ) 異菸鹼醯胺 ( 化合物 51) 之製備 步驟 1 3-(4- 氯苯基 ) 雙環 [1.1.1] 戊烷 -1- 羧酸之合成對於具有[1.1.1]螺槳烷(3.00 mL, 1.47 mmol, Angew. Chem., Int. Ed. 2017, 56, 12774-12777)在二乙醚(0.49 M)中之攪拌溶液的Ace壓力容器,加入4-氯苯基溴化鎂(2.94 mL, 2.94 mmol)在MeTHF(1.0 M)中之溶液。密封容器,將反應混合物加熱至100℃並攪拌18 h。接著緩慢冷卻反應混合物至0℃並使CO 2(於無水CaSO 4上乾燥)發泡通過反應混合物5分鐘。在加入EA(20 mL)與2N HCl(20 mL)之前將反應混合物加熱至室溫並攪拌15分鐘。使層分離,並以EA(2×20 mL)萃取水層。所結合的有機層在MgSO 4上乾燥,過濾,並在減壓下濃縮。藉由快速層析法(在己烷類中從0%至30% EA的溶析液梯度)純化殘留物以提供3-(4-氯苯基)雙環[1.1.1]戊烷-1-羧酸(112 mg, 34%產率),呈米白色固體。 1H NMR (400 MHz, CHCl 3- d) δ ppm 2.35 (6H, s), 7.14 (2H, d, J= 8.3 Hz), 7.28 (1H, d, J = 8.2 Hz)。 步驟 2 5-(3-(4- 氯苯基 ) 雙環 [1.1.1] 戊烷 -1- )-1,3,4- 噻二唑基 -2- 胺之合成按照一般方法 J從3-(4-氯苯基)雙環[1.1.1]戊烷-1-羧酸(0.10 g, 449 µmol)、肼碳硫醯胺(43 mg, 0.47 mmol)、與POCl 3(1.10 mL, 11.7 mmol)獲得標題化合物。以真空過濾收集所產生的沈澱物以提供5-(3-(4-氯苯基)雙環[1.1.1]戊烷-1-基)-1,3,4-噻二唑基-2-胺(114 mg, 92%產率),呈淡黃色固體。MS (ESI): m/z 277.0(計算值), 278.1(M+H +, 實際值)。 步驟 3 N-(5-(3-(4- 氯苯基 ) 雙環 [1.1.1] 戊烷 -1- )-1,3,4- 噻二唑 -2- )-3-(2- 甲氧基苯基 ) 異菸鹼醯胺 ( 化合物 51) 之合成按照一般方法 C從在DMF中(2 mL)的5-(3-(4-氯苯基)雙環[1.1.1]戊烷-1-基)-1,3,4-噻二唑基-2-胺(75 mg, 0.27 mmol)、3-(2-甲氧基苯基)異菸鹼酸(68 mg, 0.30 mmol)、1-甲基咪唑(79 µL, 0.95 mmol)、與在DMF(0.50 mL)中的TCFH(85 mg, 0.30 mmol)獲得標題化合物。藉由快速層析法(在DCM中從0%至3% MeOH的溶析液梯度)純化粗產物以提供N-(5-(3-(4-氯苯基)雙環[1.1.1]戊烷-1-基)-1,3,4-噻二唑-2-基)-3-(2-甲氧基苯基)異菸鹼醯胺( 化合物 51)(68 mg, 52%產率),呈白色固體。 1H NMR (400 MHz, DMSO- d 6 ) δ ppm 2.46 (6H, s), 3.48 (3H, s), 6.99 (1H, d, J= 8.6 Hz), 7.07 (1H, t, J= 7.5 Hz), 7.30-7.41 (6H, m), 7.65 (1H, d, J= 5.0 Hz), 8.62 (1H, s), 8.72 (1H, d, J= 5.0 Hz), 13.08 (1H, s). MS (ESI): m/z 488.1(計算值), 489.3(M+H +, 實際值)。 實施例 52. N-(5-(3-(4- 氯苯基 ) 雙環 [1.1.1] 戊烷 -1- )-1,3,4- 噻二唑 -2- )-3-(2- -5-(2- 基乙氧基 ) 苯基 ) 異菸鹼醯胺 ( 化合物 52) 之製備 步驟 1 3-(2- -5- 羥基苯基 ) 異菸鹼酸 酯之合成按照一般方法 H從在二㗁烷(10 mL)中的3-溴異菸鹼酸甲酯(0.25 mL, 1.81 mmol)、(2-氟-5-羥基苯基)硼酸(0.38 g, 2.36 mmol)、XPhos Pd G4(0.12 g, 0.14 mmol)、與K 3PO 4(0.78 g, 3.63 mmol)在水(2.42 mL)之溶液獲得標題化合物以提供3-(2-氟-5-羥基苯基)異菸鹼酸甲酯(361 mg, 80%產率),呈淺棕色固體。MS (ESI): m/z 247.1(計算值), 248.1 (M+H +, 實際值)。 步驟 2 3-(2- -5-(2- 基乙氧基 ) 苯基 ) 異菸鹼酸 酯之合成對3-(2-氟-5-羥基苯基)異菸鹼酸甲酯(0.25 g, 1.01 mmol)在DMF(3.37 mL)中之攪拌溶液,加入K 2CO 3(0.17 g, 1.21 mmol)與4-(2-氯乙基) 啉(0.19 g, 1.21 mmol)。將反應混合物加熱至95℃並攪拌3 h。將反應混合物冷卻至室溫,以水(10 mL)稀釋,並以DCM(2×10 mL)萃取。以鹽水清洗(30 mL)所結合的有機萃取物,在MgSO 4上乾燥,過濾,並在減壓下濃縮以提供3-(2-氟-5-(2- 啉基乙氧基)苯基)異菸鹼酸甲酯(364 mg, 99%產率),呈淡黃色油。在沒有進一步純化下於下一個步驟中使用粗材料。MS (ESI): m/z 360.1 (計算值), 361.1 (M+H +, 實際值)。 步驟 3 3-(2- -5-(2- 啉基乙氧基 ) 苯基 ) 異菸鹼酸之合成對3-(2-氟-5-(2- 啉基乙氧基)苯基)異菸鹼酸甲酯(0.36 g, 1.00 mmol)在水(1 mL)與THF(4 mL)的混合物中之攪拌溶液,加入LiOH(48 mg, 2.00 mmol)。在減壓下移除揮發物之前於室溫攪拌反應混合物2 h以提供3-(2-氟-5-(2- 啉基乙氧基)苯基)異菸鹼酸(346 mg, 99%產率),呈米白色固體。在沒有進一步純化下於下一個步驟中使用粗材料。MS (ESI): m/z 346.1 (計算值), 347.2 (M+H +, 實際值)。 步驟 4 N-(5-(3-(4- 氯苯基 ) 雙環 [1.1.1] 戊烷 -1- )-1,3,4- 噻二唑 -2- )-3-(2- -5-(2- 啉基乙氧基 ) 苯基 ) 異菸鹼醯胺 ( 化合物 52) 之合成按照一般方法 C從在DMF(0.73 mL)中的5-(3-(4-氯苯基)雙環[1.1.1]戊烷-1-基)-1,3,4-噻二唑基-2-胺(34 mg, 0.12 mmol)、3-(2-氟-5-(2- 啉基乙氧基)苯基)異菸鹼酸(51 mg, 0.15 mmol)、1-甲基咪唑(35 µL, 0.43 mmol)、與在DMF (0.37 mL)中的TCFH(35 mg, 0.12 mmol)獲得標題化合物。藉由快速層析法(在DCM中從0%至6% MeOH的溶析液梯度)純化粗產物以提供N-(5-(3-(4-氯苯基)雙環[1.1.1]戊烷-1-基)-1,3,4-噻二唑-2-基)-3-(2-氟-5-(2- 啉基乙氧基)苯基)異菸鹼醯胺( 化合物 52)(17 mg, 23%產率),呈白色固體。 1H NMR (400 MHz, DMSO- d 6 ) δ ppm 2.46 (10H, m), 2.66 (2H, t, J= 5.7 Hz), 3.56 (4H, t, J= 4.6 Hz), 4.08 (2H, t, J= 5.7 Hz), 6.98-7.04 (2H, m), 7.16 (1H, t, J= 9.4 Hz), 7.32 (2H, d, J= 8.3 Hz), 7.41 (2H, d, J= 8.2 Hz), 7.75 (1H, d, J= 5.0 Hz), 8.75 (1H, s), 8.80 (1H, d, J= 5.0 Hz), 13.28 (1H, br s)。 19F NMR (376 MHz, DMSO- d 6) δ ppm -127.5 (1F, S). MS (ESI): m/z 605.2(計算值), 606.3(M+H +, 實際值)。 實施例 53. 3-(2- 甲氧基苯基 )-N-(5-(( 四氫 -2H- 哌喃 -4- ) 氧基 )-1,3,4- 噻二唑 -2- ) 異菸鹼醯胺 ( 化合物 53) 之製備 步驟 1 5-(( 四氫 -2H- 哌喃 -4- ) 氧基 )-1,3,4- 噻二唑基 -2- 胺之合成對2-胺基-5-溴-1,3,4-噻二唑(1 g, 5.55 mmol)在冷卻至0℃的DMF(20 mL)中之攪拌溶液,加入四氫-4 H-哌喃-4-基(1 g, 11.1 mmol)與Et 3N(2 mL, 13.9 mmol)。將反應混合物加熱至室溫,攪拌6 h以水(20 mL)稀釋並以EA(50 mL×3)萃取。以鹽水(30 mL)清洗所結合的有機層,在MgSO 4上乾燥,過濾,並在減壓下濃縮。藉由快速層析法(在DCM中從0%至20% MeOH(0.1% NH 4OH)的溶析液梯度)純化粗產物以提供5-((四氫-2H-哌喃-4-基)氧基)-1,3,4-噻二唑基-2-胺(157 mg, 14%產率),呈粉紅色固體。MS (ESI): m/z 201.1 (計算值), 202.2(M+H +, 實際值)。 步驟 2 3-(2- 甲氧基苯基 )-N-(5-(( 四氫 -2H- 哌喃 -4- ) 氧基 )-1,3,4- 噻二唑 -2- ) 異菸鹼醯胺 ( 化合物 53 ) 之合成按照一般方法 A從5-((四氫-2H-哌喃-4-基)氧基)-1,3,4-噻二唑基-2-胺(105 mg, 0.52 mmol)、3-(2-甲氧基苯基)異菸鹼酸(60 mg, 0.26 mmol)、HATU(142 mg, 0.37 mmol)與DIPEA(136 mL, 0.78 mmol)在DMF(5 mL)中獲得標題化合物。藉由快速層析法(在己烷類中從0%至100%之EA的溶析液梯度)純化粗產物。將單離的材料溶解於ACN(1 mL)中,以水(4 mL)稀釋,及冷凍乾燥以提供3-(2-甲氧基苯基)-N-(5-((四氫-2H-哌喃-4-基)氧基)-1,3,4-噻二唑-2-基)異菸鹼醯胺( 化合物 53)(35 mg, 16%產率),呈白色固體。 1H NMR (400 MHz, DMSO- d 6) δ ppm 1.72-1.69 (2H, m), 2.11-2.07 (2H, m), 3.52-3.46 (5H, m), 3.86-3.83 (2H, m), 5.09 (1H, s), 6.99 (1H, d, J = 8.2 Hz), 7.07 (1H, dd, J = 7.9, 6.9 Hz), 7.40-7.36 (2H, m), 7.62 (1H, d, J = 5.0 Hz), 8.61 (1H, s), 8.71 (1H, d, J = 5.0 Hz), 12.85 (1H, s). MS (ESI): m/z 412.1(計算值), 413.2(M+H +, 實際值)。 實施例 54. N-(5-(4- 氯苯氧基 )-1,3,4- 噻二唑 -2- )-3-(2- 甲氧基苯基 ) 異菸鹼醯胺 ( 化合物 54) 之製備 對2-胺基-5-溴-1,3,4-噻二唑(100 mg, 0.54 mmol)在冷卻至0℃的DMF(3 mL)中之攪拌溶液,加入4-氯酚(63 mL, 0.65 mmol)與DIPEA(188 mL, 1.08 mmol)。將反應混合物加熱至室溫並攪拌48 h。接著,於室溫在氬氣氛下加入3-(2-甲氧基苯基)異菸鹼酸(123 mg, 0.54 mmol)、HATU(251 mg, 0.65 mmol)與DIPEA(188 mL, 1.08 mmol)。攪拌反應混合物1h,以水稀釋並以EA(3×10 mL)萃取。所結合的萃取物在無水Na 2SO 4上乾燥,過濾,並濃縮至乾燥。藉由Prep-HPLC(管柱:Gemini® 5 um NX-C18 110 Å, 100×30 mm)(在10 mM甲酸銨中從40%至100%之ACN的溶析液梯度)純化粗產物。將單離的材料溶解於ACN(1 mL)中,以水(4 mL)稀釋,及冷凍乾燥以提供N-(5-(4-氯苯氧基)-1,3,4-噻二唑-2-基)-3-(2-甲氧基苯基)異菸鹼醯胺( 化合物 54)(6 mg, 2.5%產率),呈白色固體。 1H NMR (400 MHz, DMSO- d 6) δ ppm 3.52 (3H, s), 7.04-6.97 (2H, m), 7.38-7.31 (4H, m), 7.52 (2H, d, J= 8.7 Hz), 7.65 (1H, d, J= 4.8 Hz), 8.69-8.51 (2H, m), 13.10 (1H, s). MS (ESI): m/z 438.1(計算值), 439.2(M+H +, 實際值)。 實施例 55. 3-( 萘基 -1- )-N-(5-(( 四氫 -2H- 哌喃 -4- ) 氧基 )-1,3,4- 噻二唑 -2- ) 異菸鹼醯胺 ( 化合物 55) 之製備 按照一般方法 C從5-((四氫-2H-哌喃-4-基)氧基)-1,3,4-噻二唑基-2-胺(154, 40 mg, 0.20 mmol)、3-(萘基-1-基)異菸鹼酸(50 mg, 0.20 mmol)、1-甲基咪唑(58 µL, 0.70 mmol)與TCFH(57 mg, 0.20 mmol)在DMF(2 mL)中獲得標題化合物。藉由快速層析法(在己烷類中從50%至100% EA的溶析液梯度)純化粗產物以提供3-(萘基-1-基)-N-(5-((四氫-2H-哌喃-4-基)氧基)-1,3,4-噻二唑-2-基)異菸鹼醯胺( 化合物 55) (64 mg, 55%產率),呈白色固體。 1H NMR(400 MHz DMSO- d 6 ) δ ppm 1.61 (2H, d, J= 11.4 Hz), 1.98 (2H, d, J= 12.4 Hz), 3.40 (2H, t, J= 10.5 Hz), 3.77-3.74 (2H, m), 4.98 (1H, dd, J= 8.0, 6.5 Hz), 7.41 (2H, dd, J= 14.3, 6.9 Hz), 7.54-7.47 (3H, m), 7.76 (1H, d, J = 5.0 Hz), 7.94 (2H, dd, J= 8.2, 3.7 Hz), 8.64 (1H, s), 8.81 (1H, d, J= 5.0 Hz), 12.99 (1H, br, s). MS (ESI): m/z 432.1(計算值), 433.2(M+H +, 實際值)。 實施例 56. 測定式 (I) 化合物抑制 Polθ (1-894) ATP 酶活性的能力之生化分析聚合酶θ解旋酶結構域(胺基酸殘基1至894)在昆蟲細胞中表現為六組胺酸(hexahistidine)融合蛋白,並以金屬親和層析純化。在含有40 mM Tris•HCL 7.5、20 mM MgCl 2、0.1 mg/ml BSA、1mM二硫蘇糖醇(dithiothreitol)的分析緩衝液中測量解旋酶催化ATP酶活性。將溶解在DMSO中的10 mM測試化合物與DMSO的組合添加到測試孔中以產生測試化合物的9點稀釋系列、無活性對照孔、完全活性對照孔以及最終DMSO體積為50nl。將含有2.5 µl 300 nM單股DNA(5’- CCAGTGAATTGTTGCTCGGTACCTGCTAAC-3’)與62.5 µM ATP的底物溶液(在分析緩衝液中)入所有測試孔中。將2.5 µl之含有40 nM聚合酶結構域的分析緩衝液添加到所有孔中(除了無活性對照孔之外),其中添加了2.5 µl之分析緩衝液。將孔覆蓋並在環境溫度下培養40分鐘。使用ADP-glo系統(Promega, Madison WI)測量ADP。將5 µl ADP-glo試劑加入所有孔中,然後覆蓋並在環境溫度下培養40分鐘。在測量化學發光之前,將10 µl激酶檢測溶液加入所有孔中,接著覆蓋並培養30分鐘。以無活性對照孔化學發光作為100%抑制以及完全活性對照孔作為0%抑制來計算測試孔中聚合酶活性的抑制。進行作為抑制劑濃度的函數之抑制的非線性最小平方擬合(Non-linear least squares fitting)以確定最大抑制、最小抑制、IC 50與希爾斜率(Hill slope)。本申請案化合物的生物活性列於以下表3。 均等物在以上所附的說明中闡述本揭示案一個或多個實施方式的細節。雖然在本揭示案的實踐或試驗中能夠使用相似於或均等於本文所述者的任何方法和材料,現在記載較佳的方法及材料。從說明書及申請專利範圍,本揭示案的其他特徵、目的、與優勢將會是明顯的。在說明書與所附申請專利範圍中,單數的形式包括複數的參照物,除非上下文清楚地另有指明。除非另有定義,所有在此使用的技術性與科學性術語具有本揭示案所屬領域中具有通常知識者通常上所理解的意義。以引用方式納入此說明書中提及的所有專利案與公開案。 已呈現前述說明僅為了示例性的目標並不旨在將本揭示案限制為所揭露的精確形式,而是藉由所附的申請專利範圍。 Implementation of the present disclosure Implementation 1. A compound of formula I: Or a pharmaceutically acceptable salt or solvent thereof, as described above. Implementation 2. A compound as in Implementation 1, wherein Ring A is C 6-C 10Aryl. Embodiment 3. The compound of Embodiment 1 or 2, wherein Ring A is phenyl. Embodiment 4. The compound of Embodiment 1, wherein Ring A is a heteroaryl group comprising one or two 5-membered or 6-membered rings and 1 to 4 heteroatoms selected from N, O, and S. Embodiment 5. Within the scope of application of the compound of any of the preceding embodiments, wherein Ring A is a heteroaryl group comprising a 5-membered or 6-membered ring and 1 to 4 heteroatoms selected from N, O, and S. Embodiment 6. Within the scope of application of the compound of any of the preceding embodiments, wherein Ring A is a heteroaryl group comprising a 5-membered or 6-membered ring and 1 to 2 heteroatoms selected from N, O, and S. Embodiment 6a. Within the scope of application of the compound of any of the preceding embodiments, wherein ring A is a heteroaryl group comprising a 5-membered ring and 1 to 2 heteroatoms selected from N, O, and S. Embodiment 6b. Within the scope of application of the compound of any of the preceding embodiments, wherein ring A is a heteroaryl group comprising a 6-membered ring and 1 to 2 heteroatoms selected from N, O, and S. Embodiment 7. Within the scope of application of the compound of any of the preceding embodiments, wherein ring A is a heteroaryl group comprising a 5-membered or 6-membered ring and 1 to 2 nitrogen atoms. Embodiment 8. Within the scope of application of the compound of any of the preceding embodiments, wherein ring A is a heteroaryl group comprising a 6-membered ring and 1 to 2 nitrogen atoms. Embodiment 8'. Within the scope of application of any of the above embodiments, the ring A is a heteroaryl group comprising a 5-membered ring and 1 to 2 nitrogen atoms. Embodiment 9. The compound of embodiment 1, which is of formula II: or a pharmaceutically acceptable salt or solvent thereof, wherein A 1、A 2、A 3、A 4, and A 5Each independently is N, CH, or CR A, or when A 1、A 2、A 3、A 4, or A 5When it is bonded to Ar, they are C. Implementation method 10. The compound as described in implementation method 9, wherein A 1is bonded to Ar. Implementation method 11. A compound as described in Implementation method 9, wherein A 2is bonded to Ar. Implementation method 12. A compound as in Implementation method 9, wherein A 3is bonded to Ar. Implementation method 13. A compound as in Implementation method 9, wherein A 4is bonded to Ar. Implementation method 14. A compound as described in Implementation method 9, wherein A 5It is bonded to Ar. Implementation 15. Within the scope of application of any of the compounds of the aforementioned implementations, it is of formula IIa: or a pharmaceutically acceptable salt or solvent thereof, wherein A 2、A 3、A 4, and A 5Each independently is N, CH, or CR A. Embodiment 16. Within the scope of application of any of the compounds of the preceding embodiments, wherein Ar is optionally substituted with 1 to 4 R ArSubstituted C 6-C 10Aryl. Embodiment 17. Within the scope of application of any of the compounds of the preceding embodiments, wherein Ar is optionally substituted with 1 to 4 RArSubstituted phenyl. Embodiment 18. Within the scope of application of the compound of any of the preceding embodiments, wherein Ar is a heteroaryl group comprising one or two 5-membered or 6-membered rings and 1 to 4 heteroatoms selected from N, O, and S, which is optionally substituted by 1 to 4 R Arsubstituted. Embodiment 19. Within the scope of application of the compound of any of the preceding embodiments, wherein Ar is a heteroaryl group comprising a 5-membered or 6-membered ring and 1 to 4 heteroatoms selected from N, O, and S, which is optionally substituted by 1 to 4 R Arsubstituted. Embodiment 19'. Within the scope of application of the compound of any of the aforementioned embodiments, wherein Ar is a heteroaryl group comprising two 5-membered or 6-membered rings and 1 to 4 heteroatoms selected from N, O, and S, which is optionally substituted by 1 to 4 R Arsubstituted. Embodiment 20. Within the scope of application of the compound of any of the preceding embodiments, wherein Ar is a heteroaryl group comprising a 5-membered or 6-membered ring and 1 to 2 heteroatoms selected from N, O, and S, which is optionally substituted by 1 to 4 R Arsubstituted. Embodiment 21. Within the scope of application of the compound of any of the preceding embodiments, wherein Ar is a heteroaryl group comprising a 5-membered or 6-membered ring and 1 to 2 nitrogen atoms, which is optionally substituted by 1 to 4 R Arsubstituted. Embodiment 21a. Within the scope of application of the compound of any of the preceding embodiments, wherein Ar is a heteroaryl group comprising a 5-membered ring and 1 to 2 nitrogen atoms, which is optionally substituted by 1 to 4 R Arsubstituted. Embodiment 21b. Within the scope of application of the compound of any of the preceding embodiments, wherein Ar is a heteroaryl group comprising a 6-membered ring and 1 to 2 nitrogen atoms, which is optionally substituted by 1 to 4 R ArReplacement. Implementation 22. Within the scope of application of the compound of any of the preceding implementations, it is of formula III: or a pharmaceutically acceptable salt or solvent thereof, wherein: A 2、A 3、A 4, and A 5Each independently is N, CH, or CR A; and A 6、A 7、A 8、A 9, and A 10Each independently is N, CH, or CR Ar. Implementation 23. Within the scope of application of the compound of any of the preceding implementations, it is of formula IIIa or IIIb: or a pharmaceutically acceptable salt or solvent thereof, wherein A 2、A 3、A 4, and A 5Each independently is N, CH, or CR A. Implementation 24. Within the scope of application of the compound of any of the preceding implementations, it is of formula IV: or a pharmaceutically acceptable salt or solvent thereof, wherein: A 2、A 3、A 4, and A 5Each independently is N, CH, or CR A; and A 8、A 9、A 10、A 11、A 12、A 13, and A 14Each independently is N, CH, or CR Ar. Embodiment 25. Within the scope of application of the compound of any of the preceding embodiments, it is of formula IVa, IVb, or IVc: or a pharmaceutically acceptable salt or solvent thereof, wherein: A 2、A 3、A 4, and A 5Each independently is N, CH, or CR A; and A 8、A 9, and A 10Each independently is N, CH, or CR Ar. Implementation method 26. Within the scope of application of the compound of any of the aforementioned implementation methods, wherein A 1、A 2、A 3、A 4, and A 5One of them is N. Implementation 27. Within the scope of application of the compound of any of the aforementioned implementations, wherein A 1is N. Implementation 28. Within the scope of application of the compound of any of the aforementioned implementations, wherein A 2is N. Implementation 29. Within the scope of application of the compound of any of the aforementioned implementations, wherein A 3is N. Implementation method 30. Within the scope of application of the compound of any of the aforementioned implementation methods, wherein A 4is N. Implementation 31. Within the scope of application of the compound of any of the aforementioned implementations, wherein A 5is N. Implementation 32. Within the scope of application of the compound of any of the aforementioned implementations, wherein A 1、A 2、A 3、A 4, and A 5Both of them are N. Implementation method 33. Within the scope of application of the compound of any of the aforementioned implementation methods, wherein A 1with A 2is N. Implementation 34. Within the scope of application of the compound of any of the aforementioned implementations, wherein A 1with A 3is N. Implementation 35. Within the scope of application of the compound of any of the aforementioned implementations, wherein A 1with A 4is N. Implementation 36. Within the scope of application of the compound of any of the aforementioned implementations, wherein A 1with A 5is N. Implementation 37. Within the scope of application of the compound of any of the aforementioned implementations, wherein A 2with A 3is N. Implementation 38. Within the scope of application of the compound of any of the aforementioned implementations, wherein A 2with A 4is N. Implementation 39. Within the scope of application of the compound of any of the aforementioned implementations, wherein A 2with A 5is N. Implementation method 40. Within the scope of application of the compound of any of the aforementioned implementation methods, wherein A 3with A 4is N. Implementation method 41. Within the scope of application of the compound of any of the aforementioned implementation methods, wherein A 3with A 5is N. Implementation 42. Within the scope of application of the compound of any of the aforementioned implementations, wherein A 4with A 5is N. Implementation 43. Within the scope of application of the compound of any of the aforementioned implementations, wherein A 1、A 2、A 3、A 4, and A 5The three of them are N. Implementation method 44. Within the scope of application of the compound of any of the aforementioned implementation methods, wherein A 1、A 2、A 3、A 4, and A 5Four of them are N. Implementation method 45. Within the scope of application of the compound of any of the aforementioned implementation methods, wherein A 6、A 7、A 8、A 9、A 10、A 11、A 12、A 13, and A 14One of them is N. Implementation method 46. Within the scope of application of the compound of any of the aforementioned implementation methods, wherein A 6、A 7、A 8、A 9、A 10、A 11、A 12、A 13, and A 14Both of them are N. Implementation method 47. Within the scope of application of the compound of any of the aforementioned implementation methods, wherein A 6、A 7、A 8、A 9、A 10、A 11、A 12、A 13, and A 14The three of them are N. Implementation method 48. Within the scope of application of the compound of any of the aforementioned implementation methods, wherein L 1is non-existent, and L 2is absent. Implementation method 49. Within the scope of application of the compound of any of the aforementioned implementation methods, wherein L 1is non-existent, and L 2For C1-C 6Alkylene, C 2-C 6Alkenyl, or C 2-C 6Alkyne. Embodiment 50. Within the scope of application of the compound of any of the above embodiments, wherein L 1is -O-, and L 2is absent. Implementation 51. Within the scope of application of the compound of any of the aforementioned implementations, wherein L 1is -O-, and L 2For C1-C 6Alkylene, C 2-C 6Alkenyl, or C 2-C 6Alkyne. Embodiment 52. Within the scope of application of the compound of any of the preceding embodiments, wherein L 1For-N(R N)-, and L 2is absent. Implementation 53. Within the scope of application of the compound of any of the aforementioned implementations, wherein L 1For-N(R N)-, and L 2For C1-C 6Alkylene, C 2-C 6Alkenyl, or C 2-C 6Alkyne. Embodiment 54. Within the scope of application of the compound of any of the above embodiments, wherein L 1is -S-, and L 2is absent. Implementation method 55. Within the scope of application of the compound of any of the aforementioned implementation methods, wherein L 1is -S-, and L 2For C1-C 6Alkylene, C 2-C 6Alkenyl, or C 2-C 6Alkyne. Embodiment 56. Within the scope of application of the compound of any of the preceding embodiments, wherein L 1=-S(=O) 2-, and L 2is absent. Implementation 57. Within the scope of application of the compound of any of the aforementioned implementations, wherein L 1=-S(=O) 2-, and L 2For C1-C 6Alkylene, C 2-C 6Alkenyl, or C 2-C 6Alkyne. Embodiment 58. Within the scope of application of the compound of any of the preceding embodiments, wherein L 1is -N(S(=O) 2R N)-, and L 2is absent. Implementation method 59. Within the scope of application of the compound of any of the aforementioned implementation methods, wherein L 1is -N(S(=O) 2R N)-, and L 2For C1-C 6Alkylene, C 2-C 6Alkenyl, or C 2-C 6Alkyne. Embodiment 60. Within the scope of application of the compound of any of the above embodiments, wherein L 2for C 1-C 6Alkylene. Implementation method 61. Within the scope of application of the compound of any of the aforementioned implementation methods, wherein R Nis H. Implementation 62. Within the scope of application of the compound of any of the aforementioned implementations, wherein R Nfor C 1-C 6Alkyl. Embodiment 63. Within the scope of application of the compound of any of the preceding embodiments, wherein T is C 1-C 6Alkyl, C 1-C 6Halogen alkyl, or C 1-C 6Hydroxylalkyl. Embodiment 64. Within the scope of application of the compound of any of the preceding embodiments, wherein T is -C(X)R a1、-C(X)OR a1, or -C(X)NR a3R a4. Implementation 65. Within the scope of application of the compound of any of the preceding implementations, wherein T is R T, or -XR T. Embodiment 65a. Within the scope of application of the compound of any of the preceding embodiments, wherein T is R T. Embodiment 65b. Within the scope of application of the compound of any of the preceding embodiments, wherein T is -XR T. Implementation method 66. Within the scope of application of the compound of any of the aforementioned implementation methods, wherein R Tfor C 3-C 8Cycloalkyl, which is optionally substituted by one or more RtReplacement. Embodiment 66a. Within the scope of application of the compound of any of the preceding embodiments, wherein R TContains non-bridged and non-spirocyclic C 3-C 8Cycloalkyl, which is optionally substituted by one or more RtReplacement. Embodiment 66b. Within the scope of application of the compound of any of the preceding embodiments, wherein R TFor C containing the bridge ring 3-C 8Cycloalkyl, which is optionally substituted by one or more RtReplacement. Embodiment 66c. Within the scope of application of the compound of any of the preceding embodiments, wherein R TC containing a spiro ring 3-C 8Cycloalkyl, which is optionally substituted by one or more RtReplacement. Implementation 67. Within the scope of application of the compound of any of the preceding implementations, wherein R TA heterocyclic group comprising a 3- to 6-membered ring and 1 to 2 heteroatoms selected from N, O, and S, which is optionally terminated by one or more RtReplacement. Embodiment 67a. Within the scope of application of the compound of any of the preceding embodiments, wherein R TA heterocyclic group containing a 3- to 6-membered ring and 1 to 2 heteroatoms selected from N, O, and S and containing non-bridged and non-spirocyclic rings, which is optionally connected through one or more RtReplacement. Embodiment 67b. Within the scope of application of the compound of any of the preceding embodiments, wherein R TA heterocyclic group comprising a 3- to 6-membered ring and 1 to 2 heteroatoms selected from N, O, and S and comprising a bridged ring, which is optionally connected via one or more R tReplacement. Embodiment 67c. Within the scope of application of the compound of any of the preceding embodiments, wherein R TA heterocyclic group containing a 3- to 6-membered ring and 1 to 2 heteroatoms selected from N, O, and S and containing a spirocycle, which is optionally terminated by one or more RtReplacement. Implementation 68. Within the scope of application of the compound of any of the preceding implementations, wherein R TFor C6Aryl, which may optionally be substituted with one or more RtReplacement. Implementation 69. Within the scope of application of any of the compounds of the aforementioned implementations, wherein R TA heteroaryl group comprising a 5-membered or 6-membered ring and 1 to 2 heteroatoms selected from N, O, and S, which is optionally substituted by one or more RtReplacement. Embodiment 69a. Within the scope of application of the compound of any of the preceding embodiments, wherein R TA heteroaryl group comprising a 5-membered ring and 1 to 2 heteroatoms selected from N, O, and S, which is optionally substituted by one or more RtReplacement. Embodiment 69b. Within the scope of application of the compound of any of the preceding embodiments, wherein R TA heteroaryl group comprising a 5-membered ring and 1 to 2 heteroatoms selected from N and O, which is optionally substituted by one or more RtReplacement. Embodiment 69c. Within the scope of application of the compound of any of the preceding embodiments, wherein R TA heteroaryl group comprising a 6-membered ring and 1 to 2 heteroatoms selected from N, O, and S, which is optionally substituted by one or more RtReplacement. Embodiment 69d. Within the scope of application of the compound of any of the preceding embodiments, wherein R TA heteroaryl group comprising a 6-membered ring and 1 to 2 heteroatoms selected from N and O, which is optionally substituted by one or more Rtsubstituted. Implementation 70. Within the scope of application of the compound of any of the preceding implementations, at least one R AFor C1-C 6Alkyl, C 1-C 6Halogenated, C 1-C 6Hydroxyl, C 1-C 6Alkoxy, or C 1-C 6Halogen alkoxy. Implementation 71. Within the scope of application of any of the above implementations, at least one R A-OH, -NR a3R a4, -CN, halogen, or pendoxy. Implementation 72. Within the scope of application of the compound of any of the preceding implementations, at least one R Ais -C(X)R a1、-C(X)OR a1、 -C(X)NR a3R a4、-NR a2C(X)R a1、-NR a2C(X)OR a1, or -NR a2C(X)NR a3R a4. Implementation method 73. Within the scope of application of any of the above-mentioned implementation methods, at least one R ArFor C1-C 6Alkyl, C 1-C 6Halogenated, C 1-C 6Hydroxyl, C 1-C 6Alkoxy, or C 1-C 6Halogen alkoxy. Implementation 74. Within the scope of application of any of the above implementations, at least one R Ar-OH, -NR a3R a4, -CN, halogen, or pendoxy. Implementation 75. Within the scope of application of the compound of any of the aforementioned implementations, at least one R Aris -C(X)R a1、-C(X)OR a1、 -C(X)NR a3R a4、-NR a2C(X)R a1、-NR a2C(X)OR a1, or -NR a2C(X)NR a3R a4. Implementation method 76. Within the scope of application of the compound of any of the aforementioned implementation methods, wherein R C1with R C2Each is H. Implementation 77. Within the scope of application of the compound of any of the aforementioned implementations, wherein R C1with R C2Each is -CH 3. Implementation method 78. Within the scope of application of the compound of any of the aforementioned implementation methods, wherein R C1with R C2One of them is H and the other is -CH 3. Implementation method 79. Within the scope of application of the compound of any of the aforementioned implementation methods, wherein R O-OH, -NH 2, or -NR a2(C 1-C 6Alkyl). Embodiment 80. Within the scope of application of the compound of any of the aforementioned embodiments, wherein R OFor C3-C 8Cycloalkyl, which is optionally independently selected from C 1-C 6Alkyl, C 1-C 6Halogenated, C 1-C 6Hydroxyl, C 1-C 6Alkoxy, C 1-C 6Halogen alkoxy, -OH, -NH 2、-NR a2(C 1-C 6alkyl), -CN, halogen, and one or more groups of pendoxyl groups. Implementation 81. Within the scope of application of any of the compounds of the aforementioned implementations, wherein R OA heterocyclic group comprising a 3- to 6-membered ring and 1 to 2 heteroatoms selected from N, O, and S, which are optionally independently selected from C1-C 6Alkyl, C 1-C 6Halogenated, C 1-C 6Hydroxyl, C 1-C 6Alkoxy, C 1-C 6Halogen alkoxy, -OH, -NH 2、-NR a2(C 1-C 6alkyl), -CN, halogen, and one or more groups of pendoxyl groups. Implementation 82. Within the scope of application of any of the compounds of the aforementioned implementations, wherein R OFor C6Aryl, which is optionally independently selected from C 1-C 6Alkyl, C 1-C 6Halogenated, C 1-C 6Hydroxyl, C 1-C 6Alkoxy, C 1-C 6Halogen alkoxy, -OH, -NH 2、-NR a2(C 1-C 6alkyl), -CN, halogen, and one or more groups of pendoxyl groups. Implementation 83. Within the scope of application of any of the compounds of the aforementioned implementations, wherein R OA heteroaryl group comprising a 5-membered or 6-membered ring and 1 to 2 heteroatoms selected from N, O, and S, which are optionally independently selected from C1-C 6Alkyl, C 1-C 6Halogenated, C 1-C 6Hydroxyl, C 1-C 6Alkoxy, C 1-C 6Halogen alkoxy, -OH, -NH 2、-NR a2(C 1-C 6alkyl), -CN, halogen, and one or more groups of pendoxyl groups. Implementation 84. Within the scope of application of any of the compounds of the aforementioned implementations, at least one R tFor C1-C 6Alkyl, C 1-C 6Halogenated, C 1-C 6Hydroxyl, C 1-C 6Alkoxy, or C 1-C 6Halogen alkoxy. Implementation 85. Within the scope of application of any of the above implementations, at least one R t-OH, -NR a3R a4, -CN, halogen, or pendoxy. Implementation 86. Within the scope of application of the compound of any of the aforementioned implementations, at least one R tis -C(X)R a1、-C(X)OR a1、 -C(X)NR a3R a4、-NR a2C(X)R a1、-NR a2C(X)OR a1, or -NR a2C(X)NR a3R a4. Implementation 87. Within the scope of application of the compound of any of the aforementioned implementations, at least one R tFor C3-C 8Cycloalkyl, a heterocyclic group containing a 3- to 6-membered ring and 1 to 2 heteroatoms selected from N, O, and S, C 6Aryl, or heteroaryl comprising a 5-membered or 6-membered ring and 1 to 2 heteroatoms selected from N, O, and S, wherein the cycloalkyl, heterocycloalkyl, aryl, or heteroaryl is optionally independently selected from C1-C 6Alkyl, C 1-C 6Halogenated, C 1-C 6Hydroxyl, C 1-C 6Alkoxy, C 1-C 6Halogen alkoxy, -OH, -NH 2、 -NR a2(C 1-C 6alkyl), -CN, halogen, and one or more groups of pendoxyl groups. Implementation 87a. Within the scope of application of any of the compounds of the aforementioned implementations, at least one R tFor C3-C 8Cycloalkyl, which is optionally independently selected from C 1-C 6Alkyl, C 1-C 6Halogenated, C 1-C 6Hydroxyl, C 1-C 6Alkoxy, C 1-C 6Halogen alkoxy, -OH, -NH 2、-NR a2(C 1-C 6alkyl), -CN, halogen, and one or more groups of pendoxyl groups. Implementation 87a1. Within the scope of application of any of the compounds of the aforementioned implementations, at least one R tContains non-bridged and non-spirocyclic C 3-C 8Cycloalkyl, which is optionally independently selected from C 1-C 6Alkyl, C 1-C 6Halogenated, C 1-C 6Hydroxyl, C 1-C 6Alkoxy, C 1-C 6Halogen alkoxy, -OH, -NH 2、-NR a2(C 1-C 6alkyl), -CN, halogen, and one or more groups of pendoxyl groups. Implementation 87a2. Within the scope of application of any of the compounds of the aforementioned implementations, at least one R tFor C containing the bridge ring 3-C 8Cycloalkyl, which is optionally independently selected from C 1-C 6Alkyl, C 1-C 6Halogenated, C 1-C 6Hydroxyl, C 1-C 6Alkoxy, C 1-C 6Halogen alkoxy, -OH, -NH 2、 -NR a2(C 1-C 6alkyl), -CN, halogen, and one or more groups of pendoxyl groups. Implementation 87a3. Within the scope of application of any of the compounds of the aforementioned implementations, at least one R tC containing a spiro ring 3-C 8Cycloalkyl, which is optionally independently selected from C 1-C 6Alkyl, C 1-C 6Halogenated, C 1-C 6Hydroxyl, C 1-C 6Alkoxy, C 1-C 6Halogen alkoxy, -OH, -NH 2、 -NR a2(C 1-C 6alkyl), -CN, halogen, and one or more groups of pendoxyl groups. Implementation 87b. Within the scope of application of any of the compounds of the aforementioned implementations, at least one R tA heterocyclic group comprising a 3- to 6-membered ring and 1 to 2 heteroatoms selected from N, O, and S, which are optionally independently selected from C1-C 6Alkyl, C 1-C 6Halogenated, C 1-C 6Hydroxyl, C 1-C 6Alkoxy, C 1-C 6Halogen alkoxy, -OH, -NH 2、-NR a2(C 1-C 6alkyl), -CN, halogen, and one or more groups of pendoxyl groups. Implementation 87b1. Within the scope of application of any of the compounds of the aforementioned implementations, at least one R tA heterocyclic group comprising a 3- to 6-membered ring and 1 to 2 heteroatoms selected from N, O, and S and comprising a non-bridged and non-spirocyclic ring, which is optionally independently selected from C1-C 6Alkyl, C 1-C 6Halogenated, C 1-C 6Hydroxyl, C 1-C 6Alkoxy, C 1-C 6Halogen alkoxy, -OH, -NH 2、-NR a2(C 1-C 6alkyl), -CN, halogen, and one or more groups of pendoxyl groups. Implementation 87b2. Within the scope of application of any of the compounds of the aforementioned implementations, at least one R tA heterocyclic group comprising a 3- to 6-membered ring and 1 to 2 heteroatoms selected from N, O, and S and comprising a bridged ring, which is optionally independently selected from C 1-C 6Alkyl, C 1-C 6Halogenated, C 1-C 6Hydroxyl, C 1-C 6Alkoxy, C 1-C 6Halogen alkoxy, -OH, -NH 2、 -NR a2(C 1-C 6alkyl), -CN, halogen, and one or more groups of pendoxyl groups. Implementation 87b3. Within the scope of application of any of the compounds of the aforementioned implementations, at least one R tA heterocyclic group comprising a 3- to 6-membered ring and 1 to 2 heteroatoms selected from N, O, and S and comprising a spirocycle, which is optionally independently selected from C1-C 6Alkyl, C 1-C 6Halogenated, C 1-C 6Hydroxyl, C 1-C 6Alkoxy, C 1-C 6Halogen alkoxy, -OH, -NH 2、 -NR a2(C 1-C 6alkyl), -CN, halogen, and one or more groups of pendoxyl groups. Implementation 87c. Within the scope of application of any of the compounds of the aforementioned implementations, at least one R tFor C6Aryl, which is optionally independently selected from C 1-C 6Alkyl, C 1-C 6Halogenated, C 1-C 6Hydroxyl, C 1-C 6Alkoxy, C 1-C 6Halogen alkoxy, -OH, -NH 2、-NR a2(C 1-C 6alkyl), -CN, halogen, and one or more groups of pendoxyl groups. Implementation 87d. Within the scope of application of any of the compounds of the aforementioned implementations, at least one R tA heteroaryl group comprising a 5-membered or 6-membered ring and 1 to 2 heteroatoms selected from N, O, and S, which are optionally independently selected from C1-C 6Alkyl, C 1-C 6Halogenated, C 1-C 6Hydroxyl, C 1-C 6Alkoxy, C 1-C 6Halogen alkoxy, -OH, -NH 2、-NR a2(C 1-C 6alkyl), -CN, halogen, and one or more groups of pendoxyl groups. Implementation 88. Within the scope of application of any of the compounds of the aforementioned implementations, wherein R a1is H. Implementation 89. Within the scope of application of the compound of any of the aforementioned implementations, wherein R a1For C1-C 6Alkyl (e.g., methyl, ethyl, propyl, isopropyl, n-butyl, isobutyl, dibutyl, tertiary butyl, pentyl, or hexyl) or C 1-C 6A halogen alkyl group (e.g., methyl, ethyl, propyl, isopropyl, n-butyl, isobutyl, dibutyl, tertiary butyl, pentyl, or hexyl, which is substituted with one or more halogens (e.g., F, Cl, Br, or I). Embodiment 90. Within the scope of application of the compound of any of the preceding embodiments, wherein R a1For C1-C 6Alkyl-C 6-C 10Aryl, or C 1-C 6Alkyl-heteroaryl, wherein the heteroaryl comprises a 5-membered or 6-membered ring and 1 to 4 heteroatoms selected from N, O, and S, wherein the aryl or heteroaryl is optionally independently selected from C1-C 6Alkyl, C 1-C 6Halogenated, C 1-C 6Alkoxy, C 1-C 6Halogen alkoxy, -OH, -NH 2、-NR a2(C 1-C 6Alkyl), -CN, halogen, pendoxy, -C(X)R a1、-C(X)OR a1、-C(X)NR a1R a2、-NR a2C(X)R a1、 -NR a2C(X)OR a1, and -NR a2C(X)NR a1R a2One or more groups are substituted. Implementation method 90a. Within the scope of application of the compound of any of the aforementioned implementation methods, wherein R a1For C1-C 6Alkyl-C 6-C 10Aryl, wherein the aryl groups are optionally independently selected from C 1-C 6Alkyl, C 1-C 6Halogenated, C 1-C 6Alkoxy, C 1-C 6Halogen alkoxy, -OH, -NH 2、-NR a2(C 1-C 6Alkyl), -CN, halogen, pendoxy, -C(X)R a1、-C(X)OR a1、 -C(X)NR a1R a2、-NR a2C(X)R a1、-NR a2C(X)OR a1、with -NR a2C(X)NR a1R a2One or more groups are substituted. Implementation method 90b. Within the scope of application of the compound of any of the aforementioned implementation methods, wherein R a1For C1-C 6Alkyl-heteroaryl, wherein the heteroaryl comprises a 5-membered or 6-membered ring and 1 to 4 heteroatoms selected from N, O, and S, wherein the heteroaryl is optionally independently selected from C1-C 6Alkyl, C 1-C 6Halogenated, C 1-C 6Alkoxy, C 1-C 6Halogen alkoxy, -OH, -NH 2、-NR a2(C 1-C 6Alkyl), -CN, halogen, pendoxy, -C(X)R a1、-C(X)OR a1、 -C(X)NR a1R a2、-NR a2C(X)R a1、-NR a2C(X)OR a1、with -NR a2C(X)NR a1R a2One or more groups are substituted. Implementation 91. Within the scope of application of the compound of any of the aforementioned implementations, wherein R a2is H. Implementation 92. Within the scope of application of the compound of any of the aforementioned implementations, at least one R a2For C1-C 6Alkyl (e.g., methyl, ethyl, propyl, isopropyl, n-butyl, isobutyl, dibutyl, tertiary butyl, pentyl, or hexyl). Embodiment 93. Within the scope of application of the compound of any of the preceding embodiments, wherein R a3with R a4Each is H. Implementation 94. Within the scope of application of the compound of any of the aforementioned implementations, wherein R a3with R a4At least one of them is C 1-C 6Alkyl (e.g., methyl, ethyl, propyl, isopropyl, n-butyl, isobutyl, dibutyl, tertiary butyl, pentyl, or hexyl), C 1-C 6Hydroxyl, or C 1-C 6A halogen alkyl group (e.g., methyl, ethyl, propyl, isopropyl, n-butyl, isobutyl, dibutyl, tertiary butyl, pentyl, or hexyl, which is substituted with one or more halogens (e.g., F, Cl, Br, or I). Embodiment 95. Within the scope of application of the compound of any of the preceding embodiments, wherein R a3with R a4At least one of them is C 3-C 8Cycloalkyl, heterocyclic group containing a 3- to 6-membered ring and 1 to 2 heteroatoms selected from N, O, and S, C 6Aryl, or heteroaryl comprising a 5-membered or 6-membered ring and 1 to 2 heteroatoms selected from N, O, and S, wherein the cycloalkyl, heterocycloalkyl, aryl, or heteroaryl is optionally independently selected from C1-C 6Alkyl, C 1-C 6Halogenated, C 1-C 6Hydroxyl, C 1-C 6Alkoxy, C 1-C 6Halogen alkoxy, -OH, -NH 2、-NR a2(C 1-C 6alkyl), -CN, halogen, and one or more groups of pendoxyl groups. Implementation 95a. Within the scope of application of any of the compounds of the aforementioned implementations, wherein R a3with R a4At least one of them is C 3-C 8Cycloalkyl, which is optionally independently selected from C 1-C 6Alkyl, C 1-C 6Halogenated, C 1-C 6Hydroxyl, C 1-C 6Alkoxy, C 1-C 6Halogen alkoxy, -OH, -NH 2、 -NR a2(C 1-C 6alkyl), -CN, halogen, and one or more groups of pendoxyl groups. Implementation 95b. Within the scope of application of any of the compounds of the aforementioned implementations, wherein R a3with R a4At least one of the is a heterocyclic group comprising a 3- to 6-membered ring and 1 to 2 heteroatoms selected from N, O, and S, which are optionally independently selected from C 1-C 6Alkyl, C 1-C 6Halogenated, C 1-C 6Hydroxyl, C 1-C 6Alkoxy, C 1-C 6Halogen alkoxy, -OH, -NH 2、-NR a2(C 1-C 6alkyl), -CN, halogen, and one or more groups of pendoxyl groups. Implementation 95c. Within the scope of application of any of the compounds of the aforementioned implementations, wherein R a3with R a4At least one of them is C 6Aryl, which is optionally independently selected from C 1-C 6Alkyl, C 1-C 6Halogenated, C 1-C 6Hydroxyl, C 1-C 6Alkoxy, C 1-C 6Halogen alkoxy, -OH, -NH 2、-NR a2(C 1-C 6alkyl), -CN, halogen, and one or more groups of pendoxyl groups. Implementation 95d. Within the scope of application of any of the compounds of the aforementioned implementations, wherein R a3with R a4At least one of them is a heteroaryl group comprising a 5-membered or 6-membered ring and 1 to 2 heteroatoms selected from N, O, and S, which are optionally independently selected from C 1-C 6Alkyl, C 1-C 6Halogenated, C 1-C 6Hydroxyl, C 1-C 6Alkoxy, C 1-C 6Halogen alkoxy, -OH, -NH 2、-NR a2(C 1-C 6alkyl), -CN, halogen, and one or more groups of pendoxyl groups. Implementation 96. Within the scope of application of any of the compounds of the aforementioned implementations, wherein R a3with R a4Together with the nitrogen atoms to which they are bonded, they form a group which optionally includes 1 to 2 additional impurity atoms selected from N, O, and S and optionally independently selected from C1-C 6Alkyl, C 1-C 6Halogenated, C 1-C 6Hydroxyl, C 1-C 6Alkoxy, C 1-C 6Halogen alkoxy, -OH, -NH 2、 -NR a2(C 1-C 6alkyl), -CN, and a 5-membered or 6-membered heterocyclic ring substituted with one or more halogen groups. Implementation 96a. Within the scope of application of any of the compounds of the aforementioned implementations, wherein R a3with R a4Together with the nitrogen atoms to which they are bonded, they form a group which optionally includes 1 to 2 additional impurity atoms selected from N, O, and S and optionally independently selected from C1-C 6Alkyl, C 1-C 6Halogenated, C 1-C 6Hydroxyl, C 1-C 6Alkoxy, C 1-C 6Halogen alkoxy, -OH, -NH 2、 -NR a2(C 1-C 6alkyl), -CN, and a 5-membered heterocyclic ring substituted with one or more halogen groups. Implementation 96b. Within the scope of application of any of the compounds of the aforementioned implementations, wherein R a3with R a4Together with the nitrogen atoms to which they are bonded, they form a group which optionally includes 1 to 2 additional impurity atoms selected from N, O, and S and optionally independently selected from C1-C 6Alkyl, C 1-C 6Halogenated, C 1-C 6Hydroxyl, C 1-C 6Alkoxy, C 1-C 6Halogen alkoxy, -OH, -NH 2、 -NR a2(C 1-C 6alkyl), -CN, and a 6-membered heterocyclic ring substituted with one or more halogen groups. Embodiment 97. Within the scope of application of the compound of any of the preceding embodiments, wherein X is O. Embodiment 98. Within the scope of application of the compound of any of the preceding embodiments, wherein X is S. Embodiment 99. Within the scope of application of the compound of any of the preceding embodiments, wherein X is NR N. Implementation 100. Within the scope of application of the compound of any of the aforementioned implementations, wherein R Nis H. Implementation 101. Within the scope of application of the compound of any of the aforementioned implementations, wherein R NFor C1-C 6Alkyl. Embodiment 102. Within the scope of the compound of any of the preceding embodiments, wherein in any group defined for any variable herein, C 1-C 6Alkyl is methyl, ethyl, propyl, isopropyl, n-butyl, isobutyl, dibutyl, tertiary butyl, pentyl, or hexyl. Embodiment 102a. Within the scope of the compound of any of the preceding embodiments, wherein in any group defined for any variable herein, C1-C 6Alkyl is methyl, ethyl, or propyl, or isopropyl. Embodiment 103. Within the scope of application of the compound of any of the preceding embodiments, wherein in any group defined for any variable herein, C 1-C 6The halogen alkyl group is methyl, ethyl, propyl, isopropyl, n-butyl, isobutyl, dibutyl, tertiary butyl, pentyl, or hexyl, which is substituted with one or more halogens (e.g., F, Cl, Br, or I). Embodiment 103a. Within the scope of the compound of any of the preceding embodiments, wherein in any group defined for any variable herein, C1-C 6The halogen alkyl group is methyl, ethyl, propyl, or isopropyl, which is substituted with one or more halogens (e.g., F, Cl, Br, or I). Embodiment 104. Within the scope of the compound of any of the preceding embodiments, wherein in any group defined for any variable herein, C1-C 6Alkoxy is methoxy, ethoxy, propoxy, isopropoxy, n-butoxy, isobutoxy, di-butoxy, tertiary-butoxy, pentyloxy, or hexyloxy. Embodiment 104a. Within the scope of the compound of any of the preceding embodiments, wherein in any group defined for any variable herein, C1-C 6Alkoxy is methoxy, ethoxy, propoxy, or isopropoxy. Embodiment 105. Within the scope of the compound of any of the preceding embodiments, wherein in any group defined for any variable herein, C1-C 6Halogen alkoxy is methoxy, ethoxy, propoxy, or isopropoxy, n-butoxy, isobutoxy, di-butoxy, tertiary-butoxy, pentyloxy, or hexyloxy, which is substituted with one or more halogens (e.g., F, Cl, Br, or I). Embodiment 105a. Within the scope of the compounds of any of the preceding embodiments, wherein in any group defined for any variable herein, C1-C 6Halogen alkoxy is methoxy, ethoxy, propoxy, or isopropoxy, which is substituted with one or more halogens (e.g., F, Cl, Br, or I). Embodiment 106. Within the scope of the compound of any of the preceding embodiments, wherein the halogen is F, Cl, Br, or I in any group defined for any variable herein as applicable. Embodiment 106a. Within the scope of the compound of any of the preceding embodiments, wherein the halogen is F in any group defined for any variable herein as applicable. Embodiment 106b. Within the scope of the compound of any of the preceding embodiments, wherein the halogen is Cl in any group defined for any variable herein as applicable. Embodiment 107. Within the scope of the compound of any of the preceding embodiments, wherein in any group defined for any variable herein, C3-C 8Cycloalkyl is cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, or cyclooctyl. Embodiment 108. Within the scope of the compound of any of the preceding embodiments, wherein in any group defined for any variable herein, C3-C 8Cycloalkyl groups include non-bridged and non-spiro ring systems, bridged ring systems, or spiro ring systems. Embodiment 108a. Within the scope of the compounds of any of the preceding embodiments, wherein in any group defined for any variable herein, C3-C 8Cycloalkyl groups include non-bridged and non-spirocyclic systems. Embodiment 108b. Within the scope of the compounds of any of the preceding embodiments, wherein in any group defined for any variable herein, C3-C 8Cycloalkyl groups contain bridged ring systems. Embodiment 108c. Within the scope of the compounds of any of the preceding embodiments, wherein in any group defined for any variable herein, C 3-C 8The cycloalkyl group comprises a spiro ring system. Embodiment 109. Within the scope of the compound of any of the preceding embodiments, wherein in any group defined for any variable herein as applicable, the heterocyclic group comprises a non-bridged and non-spiro ring system, a bridged ring system, or a spiro ring system. Embodiment 109a. Within the scope of the compound of any of the preceding embodiments, wherein in any group defined for any variable herein as applicable, the heterocyclic group comprises a non-bridged and non-spiro ring system. Embodiment 109b. Within the scope of the compound of any of the preceding embodiments, wherein in any group defined for any variable herein as applicable, the heterocyclic group comprises a bridged ring system. Embodiment 109c. Within the scope of the compounds of any of the preceding embodiments, wherein in any group defined for any variable herein as applicable, the heterocyclic group comprises a spiro ring system. In some embodiments, non-limiting exemplary compounds of the present disclosure are listed in Table 1. surface 1:Compounds of the present disclosure Compound# Structure Name 1 N-(5-((4-chlorobenzyl)thio)-1,3,4-thiadiazol-2-yl)-3-(2-methoxyphenyl)isonicotinamide 2 N-(5-((4-chlorobenzyl)amino)-1,3,4-thiadiazol-2-yl)-3-(2-methoxyphenyl)isonicotinamide 3 (E)-N-(5-(4-chlorophenylvinyl)-1,3,4-thiadiazol-2-yl)-3-(2-methoxyphenyl)isosonicotinamide 4 N-(5-(4-chlorophenethyl)-1,3,4-thiadiazol-2-yl)-3-(2-methoxyphenyl)isonicotinamide 5 N-(5-((4-chlorobenzyl)sulfonyl)-1,3,4-thiadiazol-2-yl)-3-(2-methoxyphenyl)isonicotinamide 6 N-(5-((4-chlorobenzyl)(methyl)amino)-1,3,4-thiadiazol-2-yl)-3-(2-methoxyphenyl)isonicotinamide 7 N-(5-((4-chlorobenzyl)(ethyl)amino)-1,3,4-thiadiazol-2-yl)-3-(2-methoxyphenyl)isonicotinamide 8 Ethyl 2-((5-(3-(2-methoxyphenyl)isonicotinoyl)-1,3,4-thiadiazol-2-yl)oxy)acetate 9 2-((5-(3-(2-methoxyphenyl)isonicotinoylamino)-1,3,4-thiadiazol-2-yl)oxy)acetic acid 10 3-(2-methoxyphenyl)-N-(5-(2- (2-( ... 11 3-(2-methoxyphenyl)-N-(5-(2-oxo-2-((tetrahydro-2H-pyran-4-yl)amino)ethoxy)-1,3,4-thiadiazol-2-yl)isonicotinamide 12 3-(2-methoxyphenyl)-N-(5-(2-(methyl(phenyl)amino)-2-oxoethoxy)-1,3,4-thiadiazol-2-yl)isonicotinamide 13 3-(2-methoxyphenyl)-N-(5-(2-oxo-2-(pyridin-3-ylamino)ethoxy)-1,3,4-thiadiazol-2-yl)isonicotinamide 14 N-(5-(2-(cyclopropylamino)-2-oxoethoxy)-1,3,4-thiadiazol-2-yl)-3-(2-methoxyphenyl)isonicotinamide 15 N-(5-(2-(cyclopropyl(methyl)amino)-2-oxoethoxy)-1,3,4-thiadiazol-2-yl)-3-(2-methoxyphenyl)isonicotinamide 16 3-(2-methoxyphenyl)-N-(5-(cyclohexane-3-yloxy)-1,3,4-thiadiazol-2-yl)isonicotinamide 17 N-(5-(N-(4-chlorobenzyl)methylsulfonamido)-1,3,4-thiadiazol-2-yl)-3-(2-methoxyphenyl)isosonicotinamide 18 N-(5-(3,3-difluorocyclobutoxy)-1,3,4-thiadiazol-2-yl)-3-(2-methoxyphenyl)isonicotinamide 19 N-(5-((4-chlorophenyl)ethynyl)-1,3,4-thiadiazol-2-yl)-3-(2-methoxyphenyl)isonicotinamide 20 3-(2-methoxyphenyl)-N-(5-(4-phenylbut-1-yn-1-yl)-1,3,4-thiadiazol-2-yl)isonicotinamide twenty one 3-(2-methoxyphenyl)-N-(5-(3-phenoxyprop-1-yn-1-yl)-1,3,4-thiadiazol-2-yl)isonicotinamide twenty two Tributyl 4-((5-(3-(2-methoxyphenyl)isonicotinoyl)-1,3,4-thiadiazol-2-yl)oxy)piperidine-1-carboxylate twenty three 3-(2-methoxyphenyl)-N-(5-(piperidin-4-yloxy)-1,3,4-thiadiazol-2-yl)isonicotinamide twenty four N-(5-((1-acetylpiperidin-4-yl)oxy)-1,3,4-thiadiazol-2-yl)-3-(2-methoxyphenyl)isonicotinamide 25 N-(5-(2-(4-bromophenoxy)ethoxy)-1,3,4-thiadiazol-2-yl)-3-(2-methoxyphenyl)isonicotinamide 26 N-(5-(2-(4-chlorophenoxy)ethoxy)-1,3,4-thiadiazol-2-yl)-3-(2-methoxyphenyl)isonicotinamide 27 3-(2-methoxyphenyl)-N-(5-(2-phenoxyethoxy)-1,3,4-thiadiazol-2-yl)isonicotinamide 28 3-(2-methoxyphenyl)-N-(5-((1-phenylcyclopropyl)ethynyl)-1,3,4-thiadiazol-2-yl)isonicotinate 29 (rac)-3-(2-methoxyphenyl)-N-(5-((1-phenoxypropane-2-yl)oxy)-1,3,4-thiadiazol-2-yl)isonicotinamide 30 N-(5-(3-hydroxy-3-methylbut-1-yn-1-yl)-1,3,4-thiadiazol-2-yl)-3-(2-methoxyphenyl)isonicotinamide 31 N-(5-((4-chlorophenoxy)methyl)-1,3,4-thiadiazol-2-yl)-3-(2-methoxyphenyl)isonicotinamide 32 N-(5-((4-chlorobenzyl)amino)-1,3,4-thiadiazol-2-yl)-3-(naphthyl-1-yl)isosonicotinamide 33 N-(5-((4-chlorobenzyl)thio)-1,3,4-thiadiazol-2-yl)-3-(naphthyl-1-yl)isosonicotinamide 34 (E)-N-(5-(4-chlorophenylvinyl)-1,3,4-thiadiazol-2-yl)-3-(naphthyl-1-yl)isosonicotinamide 35 N-(5-(4-chlorophenethyl)-1,3,4-thiadiazol-2-yl)-3-(naphthyl-1-yl)isonicotinamide 36 N-(5-((4-chlorophenyl)ethynyl)-1,3,4-thiadiazol-2-yl)-3-(naphthyl-1-yl)isonicotinamide 37 N-(5-((4-chlorophenyl)ethynyl)-1,3,4-thiadiazol-2-yl)-3-(quinolin-4-yl)isonicotinamide 38 N-(5-((4-chlorophenyl)ethynyl)-1,3,4-thiadiazol-2-yl)-3-(isoquinolin-4-yl)isonicotinamide 39 3-(2-methoxyphenyl)-N-(5-(4-phenylbutyl)-1,3,4-thiadiazol-2-yl)isonicotinamide 40 3-(2-methoxyphenyl)-N-(5-(3-phenoxypropyl)-1,3,4-thiadiazol-2-yl)isonicotinamide 41 N-(5-((4-chlorophenyl)ethynyl)-1,3,4-thiadiazol-2-yl)-1-(2-methoxyphenyl)-1H-imidazole-5-carboxamide 42 3-(2-methoxyphenyl)-N-(5-methyl-1,3,4-thiadiazol-2-yl)isonicotinamide 43 N-(5-((4-chlorophenyl)ethynyl)-1,3,4-thiadiazol-2-yl)-3-(2-fluoro-6-(2- (1-(2-(4-(2-(4-phenyl)ethoxy)-1-(2-(4-phenyl)isonicotinamide) 44 N-(5-((4-chlorophenyl)ethynyl)-1,3,4-thiadiazol-2-yl)-3-(3-(2- (1-(2-(4-(2-(4-(2-(4-ethoxy)phenyl)isonicotinate)) 45 N-(5-((4-chlorophenyl)ethynyl)-1,3,4-thiadiazol-2-yl)-3-(3-(2-(dimethylamino)ethoxy)phenyl)isonicotinamide 46 (rac)-Benzyl 3-((5-(3-(2-methoxyphenyl)isonicotinamide)-1,3,4-thiadiazol-2-yl)oxy)pyrrolidine-1-carboxylate 47 (rac)-3-(2-methoxyphenyl)-N-(5-(pyrrolidin-3-yloxy)-1,3,4-thiadiazol-2-yl)isonicotinamide 48 (rac)-3-(2-methoxyphenyl)-N-(5-(piperidin-3-yloxy)-1,3,4-thiadiazol-2-yl)isonicotinamide 49 3-(2-methoxyphenyl)-N-(5-(3-(trifluoromethyl)bicyclo[1.1.1]pentan-1-yl)-1,3,4-thiadiazol-2-yl)isonicotinamide 50 3-(2-methoxyphenyl)-N-(5-(3-phenylbicyclo[1.1.1]pentan-1-yl)-1,3,4-thiadiazol-2-yl)isonicotinamide 51 N-(5-(3-(4-chlorophenyl)bicyclo[1.1.1]pentan-1-yl)-1,3,4-thiadiazol-2-yl)-3-(2-methoxyphenyl)isonicotinamide 52 N-(5-(3-(4-chlorophenyl)bicyclo[1.1.1]pentan-1-yl)-1,3,4-thiadiazol-2-yl)-3-(2-fluoro-5-(2- (1-(2-(4-(2-(4-(2-(4-ethoxy)phenyl)isonicotinate)) 53 3-(2-methoxyphenyl)-N-(5-((tetrahydro-2H-pyran-4-yl)oxy)-1,3,4-thiadiazol-2-yl)isonicotinamide 54 N-(5-(4-chlorophenoxy)-1,3,4-thiadiazol-2-yl)-3-(2-methoxyphenyl)isonicotinamide 55 3-(Naphthyl-1-yl)-N-(5-((tetrahydro-2H-pyran-4-yl)oxy)-1,3,4-thiadiazol-2-yl)isonicotinamide In some embodiments, the compounds of the present disclosure (e.g., compounds of any formula disclosed herein or any independent compound) are pharmaceutically acceptable salts. In some embodiments, the compounds of the present disclosure (e.g., compounds of any formula disclosed herein or any independent compound) are solvates. In some embodiments, the compounds of the present disclosure (e.g., compounds of any formula disclosed herein or any independent compound) are hydrates. The compounds of the present disclosure may form salts, which are also within the scope of this disclosure. References to compounds of the formula herein are understood to include references to their salts unless otherwise indicated. Representative "pharmaceutically acceptable salts" include, for example, water-soluble and water-insoluble salts, such as acetate, amsonate (4,4-diaminostilbene-2,2-disulfonate), benzenesulfonate, benzoate, bicarbonate, bisulfate, bitartrate, borate, bromide, butyrate, calcium, calcium edetate, and the like. edetate), camsylate, carbonate, chloride, citrate, clavulariate, dihydrochloride, edetate, edisylate, estolate, esylate, fumarate, fiunarate, Gluceptate, gluconate, glutamate, glycollylarsanilate, hexafluorophosphate, hexylresorcinate, hydrabamine, hydrobromide, hydrochloride, hydroxynaphthoate, iodide, isothionate, lactate, lactose Acid salt, laurate, magnesium, apple acid salt, maleate, mandelate, methanesulfonate, methyl bromide, methyl nitrate, methyl sulfate, mucate, naphthalenesulfonate, nitrate, N-methylglucosamine ammonium salt, 3-hydroxy-2-naphthoate, oleate, oxalate, palmitate, pamoate (1,1-methylene-bis-2-hydroxy-3-naphthoate, einbonate) ), pantothenate, phosphate/diphosphate, picrate, polygalacturonate, propionate, p-toluenesulfonate, salicylate, stearate, subacetate, succinate, sulfate, sulfosalicylate, suramate, tannate, tartrate, teoclate, toluenesulfonate, triethiodide, and valerate. "Solvate" means a solvent addition form containing a stoichiometric or non-stoichiometric amount of solvent. Some compounds or salts have a tendency to capture a fixed molar ratio of solvent molecules in the crystalline solid state, thereby forming a solvate. If the solvent is water, the solvate formed is a hydrate; and if the solvent is alcohol, the solvate formed is an alcoholate. Hydrates are formed by the combination of one or more water molecules with a molecule of a substance, in which the water maintains its molecular state as H 2O. Compounds with one or more chiral centers can exist in multiple stereoisomeric forms. Stereoisomers are compounds that differ only in their spatial configuration. Stereoisomers include all non-image-wise, image-wise, and epimeric forms as well as racemates and mixtures thereof. The term "geoisomeric" refers to cyclic compounds with at least two substituents, wherein the two substituents are simultaneously located on the same side of the ring (cis) or wherein the substituents are each located on opposite sides of the ring (trans). When a disclosed compound is named or depicted by structure without specifying stereochemistry, it is understood that the name or structure encompasses one or more possible stereoisomers, or geometric isomers, or mixtures of the encompassed stereoisomers or geometric isomers. When geometric isomers are depicted by name or structure, it is understood that the named or depicted isomer is present in a greater degree than another isomer, meaning that the geometric isomer purity of the named or depicted geometric isomer is greater than 50% by weight, such as at least 60%, 70%, 80%, 90%, 99%, or 99.9% pure. The geometric purity is determined by dividing the weight of the named or depicted geometric isomer in the mixture by the total weight of all geometric isomers in the mixture. "Chiral isomer" means a compound having at least one chiral center. Compounds having more than one chiral center may exist as individual non-mirror image isomers or as a mixture of non-mirror image isomers (referred to as a "non-mirror image isomer mixture"). When one chiral center is present, the stereoisomers may be characterized by the absolute configuration (R or S) of the chiral center. Absolute configuration refers to the arrangement in space of the substituents attached to the chiral center in question. Substituents attached to the chiral center in question are ranked according to the order rules of Cahn, Ingold, and Prelog. (Cahn et al., Angew. Chem. Inter. Edit.1966, 5, 385; errata 511; Cahn et al., Angew. Chem.1966, 78, 413; Cahn and Ingold, J. Chem. Soc.1951 (London), 612; Cahn et al., Experientia1956, 12, 81; Cahn, J. Chem. Educ.1964, 41, 116). In some embodiments, the compounds of the present disclosure are non-mirror isomers. In some embodiments, the compounds are syn non-mirror isomers. In some embodiments, the compounds are anti non-mirror isomers. A racemic mixture means 50% of one mirror image isomer and 50% of its corresponding mirror image isomer. When a compound having a chiral center is named or depicted without indicating the stereochemistry of the chiral center, it is understood that the name or structure encompasses both possible mirror image isomer forms of the compound (e.g., both mirror image pure, mirror image enriched, or racemic). When a compound having two or more chiral centers is named or depicted without specifying the stereochemistry of the chiral centers, it is understood that the name or structure encompasses all possible non-imagerally isomeric forms (e.g., non-imagerally pure, non-imagerally enriched, and equimolar mixtures of one or more non-imagerally isomers of the compound (e.g., racemic mixtures). Mirror isomers and non-mirror isomer mixtures can be separated into their component mirror isomers or stereoisomers by known methods, such as chiral phase gas chromatography, chiral phase high performance liquid chromatography, crystallization of the compound as a chiral salt complex, or crystallization of the compound in a chiral solvent. Mirror isomers and non-mirror isomers can also be obtained from non-mirror isomer-pure or mirror isomer-pure intermediates, reagents, and catalysts by known asymmetric synthesis methods. When a compound is designated by a name or structure that refers to a single mirror image isomer, the compound is at least 60%, 70%, 80%, 90%, 99%, or 99.9% optically pure (also referred to as "mirror image pure") unless otherwise indicated. Optical purity is the weight of the named or depicted mirror image in a mixture divided by the total weight of the two mirror image isomers in the mixture. When the stereochemistry of a disclosed compound is named or depicted as a structure, when the named or depicted structure encompasses more than one stereoisomer (e.g., as in a non-mirror isomer pair), it is understood to include one of the encompassed stereoisomers or any mixture of encompassed stereoisomers. It is further understood that the stereoisomeric purity of the named or depicted stereoisomer is at least 60%, 70%, 80%, 90%, 99%, or 99.9% by weight. The stereoisomeric purity in this case is determined by dividing the total weight in the mixture of stereoisomers encompassed by the name or structure by the total weight in the mixture of all stereoisomers. It is also possible that the compounds of the present disclosure may exist in different tautomeric forms (tautomeric isomers). form), and all such forms are included within the scope of the present disclosure. A "tautomer" is one of two or more structural isomers that exist in equilibrium and readily convert from one isomeric form to another. This conversion results in a formal migration of hydrogen atoms accompanied by a switch of adjacent conjugated double bonds. In solution, tautomers exist as a mixture of tautomeric groups. In solid form, usually one tautomer is predominant. In solutions in which tautomerism is possible, a chemical equilibrium of the tautomers will be reached. Tautomerism The exact ratio of the compounds depends on several factors, including temperature, solvent, and pH. The concept of tautomers being interconvertible by tautomerism is called tautomerism. Of the multiple tautomerisms possible, two are usually observed. In keto-enol tautomerism, a simultaneous displacement of electrons and hydrogen atoms occurs. Cyclochain tautomerism is the result of the reaction of an aldehyde group (-CHO) in a sugar chain molecule with a hydroxyl group (-OH) in the same molecule to give a cyclic (ring-shaped) form as seen in glucose. Common tautomeric pairs are: keto-enol, amide-nitrile, lactam-lactam, amide-imidic acid tautomerism in heterocyclic rings, such as in nucleobases (e.g., guanine, thymine, and cytosine), amine-enamine and enamine-imine. The present disclosure also contemplates isotopically labeled compounds, which are identical to the formulae described herein except that one or more atoms are replaced by atoms having an atomic mass or mass number different from the atomic mass or mass number most commonly found in nature. Examples of isotopes that may be incorporated into the compounds of the present disclosure include isotopes of hydrogen, carbon, nitrogen, fluorine, such as 3H. 11C. 14C. 2H and 18F. Compounds of the present disclosure containing the aforementioned isotopes and/or other isotopes of other atoms are within the scope of the present disclosure. Isotope-labeled compounds of the present disclosure, for example, compounds in which radioactive isotopes are incorporated, such as 3H. 14C, which can be used in drug and/or substrate tissue distribution analysis. Tritiation, for example 3H and carbon 14, for example 14C isotopes are useful because of their ease of preparation and detectability. 11C and 18F analysis isotopes are useful in PET (positron tomography). PET is useful in brain imaging. In addition, heavier isotopes such as deuterium, such as 2H substitution may confer certain therapeutic advantages derived from greater metabolic stability, such as increased in vivo half-life or reduced dosage requirements, and thus may be preferred in some circumstances. Isotopically labeled compounds of the present disclosure can generally be prepared by carrying out the procedures disclosed in the schemes and/or examples described herein, by substituting readily available isotopically labeled reagents for non-isotopically labeled reagents. In some embodiments, the compounds of the present disclosure are not isotopically labeled. Methods for preparing compoundsThe compounds of the present disclosure may be made by a variety of methods, including standard chemistry. Suitable synthetic routes are illustrated in the schemes given below. The compounds may be prepared by methods known in the art of organic synthesis as illustrated in some of the following synthetic schemes. In the schemes illustrated below, it is understood that protecting groups for sensitive or reactive groups are used as necessary according to general principles or chemistry. Protecting groups are manipulated according to standard methods of organic synthesis (T. W. Greene and P. G. M. Wuts, "Protective Groups in Organic Synthesis", 3rd edition, Wiley, New York 1999). These groups are removed at appropriate stages of the synthesis of the compound using methods readily known to those having ordinary knowledge in the art. The selection of processes, as well as the reaction conditions and the order in which they are performed should be consistent with the preparation of the compounds of the present disclosure. Those of ordinary skill in the art will understand whether stereocenters exist in the compounds of the present disclosure. Therefore, the present disclosure includes two possible stereoisomers (unless specified in the synthesis) and includes not only racemic compounds but also independent mirror isomers and/or non-mirror isomers. When a compound is intended to be a single mirror isomer or non-mirror isomer, it can be obtained by stereospecific synthesis or by resolution of the final product or any appropriate intermediate. Resolution of the final product, intermediate, or starting material can be achieved by any appropriate method known in the art. For example, refer to "Stereochemistry of Organic Compounds" by E. L. Eliel, S. H. Wilen, and L. N. Mander (Wiley-lnterscience, 1994). The compounds described herein can be made from commercially available starting materials or synthesized using known organic, inorganic, and/or enzymatic processes. The compounds of the present disclosure can be prepared in a variety of ways known to those skilled in the art for organic synthesis. For example, the compounds of the present disclosure can be synthesized using the methods described below, together with synthetic methods known in the field of synthetic organic chemistry, or variations thereof as understood by those skilled in the art. Preferred methods include but are not limited to those described below. The compounds of the present disclosure (i.e., compounds of formula I) can be synthesized by following the steps summarized in the following general schemes and/or general methods, such as those described in the embodiments. It is understood that the experimental conditions and starting materials and/or intermediates shown in the general methods of the embodiments can be adjusted according to the techniques and knowledge available in the art. Starting materials are either commercially available or can be made by known procedures as described in the literature or as shown. General methods for synthesis are indicated below for reference. General approach Reaction Name A Amide coupling reaction (HATU) B Amination C Amidide coupling reaction (TCFH) D Williamson ether synthesis E Sonogashira cross coupling F BOC deprotection G Buchwald amide cross coupling H Suzuki Marionette I Hydrogenation J Condensation reaction The ability of the disclosed compounds to inhibit Polq can be measured as described in Example 56 below or according to methods known in the art. DefinitionThe articles "a" and "an" are used in this disclosure to indicate one or more than one (i.e., at least one) grammatical object of the article. For example, "an element" means one element or more than one element. Unless otherwise indicated, the term "and/or" is used in this disclosure to mean "and" or "or". As used herein, the term "alkyl" refers to a saturated, straight-chain or branched hydrocarbon group containing between one and six carbon atoms in some embodiments. C 1-C 8Examples of alkyl groups include, but are not limited to, methyl, ethyl, propyl, isopropyl, n-butyl, tert-butyl, neopentyl, n-hexyl, n-heptyl, and n-octyl groups. C 1-C 6Examples of alkyl groups include, but are not limited to, methyl, ethyl, propyl, isopropyl, n-butyl, tert-butyl, neopentyl, and n-hexyl groups. The term "alkylsulfonyl" means -SO 2R group, where R is an alkyl group as defined above, such as methylsulfonyl, ethylsulfonyl, 2-propylsulfonyl, etc. The term "alkoxy" refers to an alkyl group connected through an oxygen linking atom, represented by -O-alkyl. For example, "(C 1-C 4)alkoxy" includes methoxy, ethoxy, propoxy, and butoxy. The term "alkoxycarbonyl" refers to a -COOR group, wherein R is an alkyl group as defined above, for example, methoxycarbonyl, ethoxycarbonyl, propoxy, or 2-propoxycarbonyl, or tertiary butoxycarbonyl, etc. The term "alkoxyalkyl" refers to a linear monovalent hydrocarbon group of one to six carbon atoms or a branched monovalent hydrocarbon group of three to six carbon atoms substituted by an alkoxy group as defined above, for example, 2-methoxyethyl, 1-, 2-, or 3-methoxypropyl, 2-ethoxyethyl, etc. The term "acyl" refers to a -C(O)R group, wherein R is an alkyl group as defined herein, for example, methylcarbonyl, ethylcarbonyl, etc. The term "acylamino" refers to a -NHC(O)R group, where R is an alkyl group as defined herein, for example, methylcarbonylamino, ethylcarbonylamino, etc. The term "amino" refers to -NH 2. The terms "haloalkyl" and "haloalkoxy" refer to alkyl or alkoxy groups, as appropriate, substituted with one or more halogen atoms. Unless otherwise specified, the term "alkylene" refers to a linear saturated divalent hydrocarbon group of one to six carbon atoms or a branched saturated divalent hydrocarbon group of three to six carbon atoms, for example, methylene, ethyl, propyl, 1-methylpropyl, 2-methylpropyl, butyl, pentyl, etc. "Alkylene group" is a saturated aliphatic branched or straight chain divalent hydrocarbon group. Unless otherwise specified, an alkylene group typically has 1 to 6 carbon atoms, for example (C 1-C 6)alkylene. The term "aryl" refers to a monovalent monocyclic or bicyclic aromatic hydrocarbon group of 6 to 10 ring atoms, such as phenyl or naphthyl. The term "bicyclic heterocyclic" refers to a saturated monocyclic ring having 4 to 7 ring carbon ring atoms fused to phenyl, a five-membered or six-membered heteroaryl or heterocyclic group, wherein one or two ring carbon atoms are replaced by a heteroatom selected from N, O, or S(O)n (where n is an integer from 0 to 2), each as defined herein. Exemplary bicyclic heterocyclic groups include, but are not limited to etc. The term "cycloalkyl" refers to a monocyclic saturated hydrocarbon ring system. For example, C 3-C 7Cycloalkyl groups include cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, and cycloheptyl. Bridged cycloalkyl groups represent bicyclic hydrocarbon ring systems in which the two rings share at least three adjacent ring carbon atoms. For example, bridged cycloalkyl groups have 6 to 12 ring carbon atoms. Examples include, but are not limited to, bicyclo[2.1.1]hexyl, bicyclo[2.2.1]heptyl, bicyclo[2.2.2]octyl, bicyclo[3.2.1]octyl, bicyclo[4.3.1]decyl, bicyclo[3.3.1]nonyl, Bornyl, Alkenyl, norbornenyl, norbornenyl, 6,6-dimethylbicyclo[3.1.1]heptyl, and adamantyl. The terms "heterocyclyl", "heterocyclic ring", and "heterocylic group" are used interchangeably herein and refer to a saturated or unsaturated non-aromatic 4- to 10-membered cyclic group containing 1 to 4 ring heteroatoms which may be the same or different and selected from N, O, or S. It may be monocyclic, bicyclic or tricyclic (e.g., fused or bridged bicyclic or tricyclic rings). Examples include, but are not limited to, azathiocarboxyl, oxafolyl, thiothiocarboxyl, pyrrolidonyl, pyrrolidinyl, piperidinyl, piperonyl, hydantoinyl, valerolactamyl, oxafolyl, oxafolyl, dihydroimidazole, dihydrofuranyl, dihydropyranyl, dihydropyridinyl, dihydropyrimidinyl, dihydrothiophenyl, dihydrothiopyranyl, tetrahydroimidazole, tetrahydrofuranyl, tetrahydropyranyl, tetrahydrothiophenyl, tetrahydropyrimidinyl, tetrahydrothiophenyl, and tetrahydrothiopyranyl. The heterocyclic ring optionally contains one or more double bonds and/or is optionally fused to one or more aromatic rings (eg, tetrahydronaphthyridine, indolinone, dihydropyrrolotriazole, imidazopyrimidine, quinolinone, dioxaspirodecane). Examples of 3-7 membered monocyclic heterocyclic rings include, but are not limited to, azathiocarboxyl, oxothiocarboxyl, thiothiothiocarboxyl, pyrrolidone, pyrrolidyl, piperidinyl, piperidine, hydantoin, valerolactamyl, oxothiocarboxyl, oxothiocarboxyl, dihydroimidazole, dihydrofuranyl, dihydropyranyl, dihydropyridyl, dihydropyrimidinyl, dihydrothienyl, dihydrothiophenyl, dihydrothiopyranyl, tetrahydroimidazole, tetrahydrofuranyl, tetrahydropyranyl, tetrahydrothiophenyl, tetrahydropyridinyl, tetrahydropyrimidinyl, tetrahydrothiophenyl, and tetrahydrothiopyranyl. The term "bridged heterocyclic group" refers to a saturated monocyclic ring having 5 to 7 ring carbon atoms, wherein two non-adjacent ring atoms are linked by a (CRR')n group (where n is 1 to 3), and each R and R' is independently H or methyl (also referred to herein as a "bridged" group), and further wherein one or two ring carbon atoms (including atoms in the bridged group) are replaced by a heteroatom selected from N, O, or S(O)n (where n is an integer from 0 to 2). Bridged heterocyclic groups are optionally substituted by one or two substituents independently selected from alkyl, halogen, alkoxy, hydroxyl, or cyano. Examples include, but are not limited to, 2-azabicyclo[2.2.2]octane, quinuclidine, 7-oxahedralbicyclo[2.2.1]heptane, etc. A bridged heterocyclic group refers to a bicyclic ring system containing 1 to 4 ring heteroatoms, wherein the two rings share at least three adjacent ring atoms. For example, a bridged heterocyclic group has 6 to 12 ring atoms. Examples include, but are not limited to, aza-heterocyclic groups, Pyridyl, isocyanate Pidinyl, tropanyl, azabicyclo[3.2.1]octanyl, azabicyclo[2.2.1]heptyl, 2-azabicyclo[3.2.1]octanyl, azabicyclo[3.2.1]octanyl, azabicyclo[3.2.2]nonanyl, azabicyclo[3.3.0]nonanyl, and azabicyclo[3.3.1]nonanyl. The term "deuteroalkyl" refers to an alkyl group as defined above wherein one to six hydrogen atoms in the alkyl group are replaced by deuterium, e.g. -CD 3、-CH 2CD 3etc. The term "dialkylamino" refers to a -NRR' group, wherein R and R' are independently alkyl as defined herein. The term "halogen" refers to fluorine, chlorine, bromine, or iodine, preferably fluorine or chlorine. As used herein, the term "pendooxy" refers alone or in combination to =(O). The terms "heteroaryl", "heteroaromatic", "heteroaryl ring", "heteroaryl group", "heteroaromatic ring", and "heteroaromatic group" are used interchangeably herein. "Heteroaryl", when used alone or as part of a larger moiety (such as "heteroaralkyl" or "heteroaralkoxy"), refers to an aromatic cyclic radical having five to ten ring atoms selected from carbon and at least one (typically 1 to 4, more typically 1 or 2) heteroatom (e.g., oxygen, nitrogen, or sulfur). "Heteroaryl" includes monocyclic and polycyclic rings, wherein the monocyclic heteroaromatic ring is fused to one or more other aromatic or heteroaromatic rings. "Heteroaryl" includes monocyclic and bicyclic ring systems. "Monocyclic 5-6 membered heteroaromatic ring (or heteroaryl)" refers to a monocyclic heteroaromatic ring having five or six ring atoms selected from carbon and at least one (typically 1 to 3, more typically 1 or 2) heteroatom (e.g., oxygen, nitrogen, or sulfur). Examples of monocyclic 5-6 membered heteroaryl ring groups include furanyl (e.g., 2-furanyl, 3-furanyl), imidazolyl (e.g., N-imidazolyl, 2-imidazolyl, 4-imidazolyl, 5-imidazolyl), isoxazolyl (e.g., 3-isoxazolyl, 4-isoxazolyl, 5-isoxazolyl), oxadiazolyl (e.g., 2-oxadiazolyl, 5-oxadiazolyl), oxazolyl (e.g., 2-oxadiazolyl, 4-oxazolyl, 5-oxazolyl), pyrazolyl (e.g., 3-pyrazolyl, 4-pyrazolyl), pyrrolyl (e.g., For example, 1-pyrrolyl, 2-pyrrolyl, 3-pyrrolyl), pyridinyl (for example, 2-pyridinyl, 3-pyridinyl, 4-pyridinyl), pyrimidinyl (for example, 2-pyrimidinyl, 4-pyrimidinyl, 5-pyrimidinyl), thiazolyl (for example, 3-thiazolyl), thiazolyl (for example, 2-thiazolyl, 4-thiazolyl, 5-thiazolyl), isothiazolyl, triazolyl (for example, 2-triazolyl, 5-triazolyl), tetrazolyl (for example, tetrazolyl), and thienyl (for example, 2-thienyl, 3-thienyl). If a group is described as "substituted", a non-hydrogen substituent replaces a hydrogen atom on a carbon or nitrogen. Thus, for example, a substituted alkyl group is an alkyl group in which at least one non-hydrogen substituent is located in the position where a hydrogen atom on the alkyl substituent would be located. For purposes of illustration, a monofluoroalkyl group is an alkyl group substituted with one fluorine substituent, and a difluoroalkyl group is an alkyl group substituted with two fluorine substituents. It will be understood that if there is more than one substitution on a substituent, each non-hydrogen substituent may be the same or different (unless otherwise specified). As used herein, many moieties (e.g., alkyl, cycloalkyl, or heterocyclic ring) are referred to as "substituted" or "optionally substituted." It will be understood that the term "optionally substituted" is used interchangeably with the term "substituted or unsubstituted." When a moiety is modified by one of these terms, unless otherwise specified, it means that any portion of the moiety known to those skilled in the art to be available for substitution may be substituted, including one or more substituents. If more than one substituent is present, each substituent is independently selected. Such substitution methods are known in the art and/or taught by the present disclosure. An optional substituent can be any substituent suitable for attachment to the moiety. One of ordinary skill in the art will appreciate that the compounds and the definitions provided do not include impermissible substitution patterns (e.g., a methyl group substituted with 5 different groups, etc.). One of ordinary skill in the art clearly understands this impermissible substitution pattern. When a group is recorded as optionally substituted with "one or more" substituents, it means that the group is optionally substituted with one, two, three, four, five, or six substituents. In some embodiments, the group is optionally substituted with 1 to 3 substituents. In some embodiments, the group is optionally substituted with 1 to 2 substituents. In some embodiments, the group is optionally substituted with one substituent. Suitable substituents are those that do not have a significant negative effect on the ability of the compound. When suitable substituents are not specifically listed, exemplary substituents include, but are not limited to, halogen, CN, alkyl, alkoxy, halogenmethyl, halogenmethoxy, (C1-C 5) alkyl, halogen (C 1-C 5)alkyl, (C 1-C 5)Alkoxy, NO 2、OR c'、NR a'R b'、S(O) iR a'、NR aS(O) iR b'、 S(O) iNR a'R b'、C(=O)OR a'、OC(=O)OR a'、C(=S)OR a'、 O(C=S)R a'、C(=O)NR a'R b'、NR a'C(=O)R b'、 C(=S)NR a'R b'、NR a'C(=S)R b'、NR a'(C=O)OR b'、 O(C=O)NR a'R b'、NR a'(C=S)OR b'、O(C=S)NR a'R b'、 NR a'(C=O)NR a'R b'、NR a'(C=S)NR a'R b'、C(=S)R a'、 C(=O)R a'、(C 3-C 6) cycloalkyl, monocyclic heteroaryl, and phenyl, among which (C 3-C 6) Cycloalkyl, monocyclic heteroaryl, and phenyl substituents are optionally and independently substituted by, for example, CH3, halogenmethyl, halogen, methoxy, or halogenmethoxy. Each R a'With each R b'Independently H or (C 1-C 6) alkyl, where R a'or R b'What is represented (C 1-C 6) The alkyl group may be optionally substituted with, for example, a hydroxyl group or (C1-C 3) Alkoxy substitution; R c'For H, halogen (C 1-C 6) alkyl, or (C 1-C 6) alkyl, where R cRepresented by (C 1-C 6) The alkyl group may be optionally substituted with, for example, a hydroxyl group or (C1-C 3) alkoxy substituted; and i is 0, 1, or 2. =O is also a suitable substituent for alkyl, cycloalkyl, and heterocyclic rings. Suitable substituents may also include: -F, -Cl, -Br, -I, -OH, protected hydroxyl, -NO 2、-CN、-NH 2, protected amine groups, -NH-C 1-C 12-alkyl, -NH-C 2-C 12-Alkenyl, -NH-C 2-C 12-alkenyl, -NH-C 3-C 12-cycloalkyl, -NH-aryl, -NH-heteroaryl, -NH-heterocycloalkyl, -dialkylamine, -diarylamine, -diheteroarylamine, -O-C 1-C 12-Alkyl, -O-C 2-C 12-Alkenyl, -O-C 2-C 12-Alkenyl, -O-C 3-C 12-cycloalkyl, -O-aryl, -O-heteroaryl, -O-heterocycloalkyl, -C(O)-C 1-C 12-alkyl, -C(O)-C 2-C 12-Alkenyl, -C(O)-C 2-C 12-Alkenyl, -C(O)-C 3-C 12-cycloalkyl, -C(O)-aryl, -C(O)-heteroaryl, -C(O)-heterocycloalkyl, -CONH 2、-CONH-C 1-C 12-alkyl, -CONH-C 2-C 12-Alkenyl, -CONH-C 2-C 12-alkenyl, -CONH-C 3-C 12-cycloalkyl, -CONH-aryl, -CONH-heteroaryl, -CONH-heterocycloalkyl, -OCO 2-C 1-C 12-Alkyl, -OCO 2-C 2-C 12-Alkenyl, -OCO 2-C 2-C 12-Alkenyl, -OCO 2-C 3-C 12-cycloalkyl, -OCO 2-Aryl, -OCO 2-Heteroaryl, -OCO 2-heterocycloalkyl, -OCONH 2、-OCONH-C 1-C 12-alkyl, -OCONH-C 2-C 12-Alkenyl, -OCONH- C 2-C 12-Alkenyl, -OCONH-C 3-C 12-cycloalkyl, -OCONH-aryl, -OCONH-heteroaryl, -OCONH-heterocycloalkyl, -NHC(O)-C 1-C 12-alkyl, -NHC(O)-C 2-C 12-alkenyl, -NHC(O)-C 2-C 12-Alkenyl, -NHC(O)-C 3-C 12-cycloalkyl, -NHC(O)-aryl, -NHC(O)-heteroaryl, -NHC(O)-heterocycloalkyl, -NHCO 2-C 1-C 12-Alkyl, -NHCO 2-C 2-C 12-alkenyl, -NHCO 2-C 2-C 12-Alkenyl, -NHCO 2-C 3-C 12-cycloalkyl, -NHCO 2-Aryl, -NHCO 2-Heteroaryl, -NHCO 2-heterocycloalkyl, -NHC(O)NH 2、-NHC(O)NH-C 1-C 12-alkyl, -NHC(O)NH-C 2-C 12-Alkenyl, -NHC(O)NH-C 2-C 12-alkenyl, -NHC(O)NH-C 3-C 12-cycloalkyl, -NHC(O)NH-aryl, -NHC(O)NH-heteroaryl, NHC(O)NH-heterocycloalkyl, -NHC(S)NH 2、-NHC(S)NH-C 1-C 12-alkyl, -NHC(S)NH-C 2-C 12-Alkenyl, -NHC(S)NH-C 2-C 12-alkenyl, -NHC(S)NH-C 3-C 12-cycloalkyl, -NHC(S)NH-aryl, -NHC(S)NH-heteroaryl, -NHC(S)NH-heterocycloalkyl, -NHC(NH)NH 2、-NHC(NH)NH-C 1-C 12-alkyl, -NHC(NH)NH-C 2-C 12-Alkenyl, -NHC(NH)NH-C 2-C 12-alkenyl, -NHC(NH)NH-C 3-C 12-cycloalkyl, -NHC(NH)NH-aryl, -NHC(NH)NH-heteroaryl, -NHC(NH)NH heterocycloalkyl, -NHC(NH)-C 1-C 12-alkyl, -NHC(NH)-C 2-C 12-alkenyl, -NHC(NH)-C 2-C 12-Alkenyl, -NHC(NH)-C 3-C 12-cycloalkyl, -NHC(NH)-aryl, -NHC(NH)-heteroaryl, -NHC(NH)-heterocycloalkyl, -C(NH)NH-C 1-C 12-alkyl, -C(NH)NH-C 2-C 12-alkenyl, -C(NH)NH-C 2-C 12-Alkenyl, C(NH)NH-C 3-C 12-cycloalkyl, -C(NH)NH-aryl, -C(NH)NH-heteroaryl, -C(NH)NH-heterocycloalkyl, -S(O)-C 1-C 12-alkyl, -S(O)-C 2-C 12-alkenyl, -S(O)-C 2-C 12-Alkenyl, -S(O)-C 3-C 12-cycloalkyl, -S(O)-aryl, -S(O)-heteroaryl, -S(O)-heterocycloalkyl-SO 2NH 2、 -SO 2NH-C 1-C 12-Alkyl, -SO 2NH-C 2-C 12-Alkenyl, -SO 2NH-C 2-C 12-Alkenyl, -SO 2NH-C 3-C 12-cycloalkyl, -SO 2NH-aryl, -SO 2NH-heteroaryl, -SO 2NH-heterocycloalkyl, -NHSO 2-C 1-C 12-Alkyl, -NHSO 2-C 2-C 12-alkenyl, -NHSO 2-C 2-C 12-Alkenyl, -NHSO 2-C 3-C 12-cycloalkyl, -NHSO 2-Aryl, -NHSO 2-Heteroaryl, -NHSO 2-heterocycloalkyl, -CH 2NH 2、-CH 2SO 2CH 3, -aryl, -aralkyl, -heteroaryl, -heteroaralkyl, -heterocycloalkyl, -C 3-C 12-cycloalkyl, polyalkoxyalkyl, polyalkoxy, -methoxymethoxy, -methoxyethoxy, -SH, -S-C 1-C 12-alkyl, -S-C 2-C 12-Alkenyl, -S-C 2-C 12-alkenyl, -S-C 3-C 12-cycloalkyl, -S-aryl, -S-heteroaryl, -S-heterocycloalkyl, or methylthiomethyl. "Patient" or "subject" is a mammal, such as a human, mouse, rat, guinea pig, dog, cat, horse, cow, pig, or non-human primate, such as a monkey, chimpanzee, baboon, or Gangetic monkey. "Effective amount" or "therapeutically effective amount" when used in connection with a compound or pharmaceutical composition is an amount effective for treating or preventing a disease in a subject as described herein. The term "treating" with respect to a subject refers to ameliorating at least one symptom of a disease in the subject. Treatment includes curing, ameliorating, or at least partially ameliorating a disease. The compounds of the present disclosure or their pharmaceutically acceptable salts or solvent compositions can also be used to prevent a disease, condition or disorder. As used herein, "preventing" or "preventing" refers to reducing or eliminating the onset of symptoms or complications of a disease, condition or disorder. The term "disorder" is used in this disclosure to refer to and is used interchangeably with the term disease, condition, or illness unless otherwise indicated. As used herein, the term disease or disorder in which Polθ helicase plays a role refers to any disease or other harmful condition in which Polθ helicase is known to play a role. Therefore, another embodiment of the present application relates to treating or reducing the severity of one or more diseases in which Polθ helicase is known to play a role. Pharmaceutical ingredientsThe compounds disclosed herein are Polθ helicase inhibitors. The pharmaceutical composition of the present application comprises one or more Polθ helicase inhibitors or pharmaceutically acceptable salts or solvents thereof, and a pharmaceutically acceptable carrier or diluent. A "pharmaceutical composition" is a formulation containing a compound of the present disclosure in a form suitable for administration to an individual. In some embodiments, the pharmaceutical composition is in bulk form or in unit dosage form. The unit dosage form is any of a variety of forms, including, for example, a capsule, an IV bag, a tablet, a single pump on an aerosol inhaler or a vial. The amount of active ingredient in a unit dosage form of the composition (e.g., a formulation of a disclosed compound or a pharmaceutically acceptable salt or solvent thereof) is an effective amount and varies depending on the specific treatment involved. Those of ordinary skill in the art will appreciate that it is sometimes necessary to routinely vary the dosage depending on the age and condition of the patient. The dosage will also depend on the route of administration. A variety of routes are contemplated, including oral, pulmonary, rectal, parenteral, transdermal, subcutaneous, intravenous, intramuscular, intraperitoneal, inhalation, buccal, sublingual, intrapleural, intrathecal, intranasal, etc. Dosage forms for topical or transdermal administration of the compounds of this disclosure include powders, sprays, ointments, pastes, creams, lotions, gels, solutions, patches, and inhalants. In some embodiments, the active compound is mixed with a pharmaceutically acceptable carrier and any preservatives, buffers or propellants required under sterile conditions. As used herein, the term "pharmaceutically acceptable" refers to those compounds, materials, compositions, carriers, and/or dosage forms that are suitable for contact with human and animal tissues within the scope of reasonable medical judgment without excessive toxicity, irritation, allergic reaction, or other problems or complications, and have a reasonable benefit/risk ratio. "Pharmaceutically acceptable carrier" and "pharmaceutically acceptable diluent" refer to those that facilitate the formulation and/or administration of the active agent to an individual and/or absorption by an individual, and can be included in the composition of the present disclosure without causing significant adverse toxicological effects to the individual. Non-limiting examples of pharmaceutically acceptable carriers and/or diluents include water, NaCl, physiological saline solution, lactated Ringer's, normal sucrose, normal glucose, binders, fillers, disintegrators, lubricants, coatings, sweeteners, flavorings, saline solutions (such as Ringer's solution), alcohols, oils, gelatin, carbohydrates (such as lactose, linear starch or starch), fatty acid esters, hydroxymethylcellulose, polyvinylpyrrolidine and pigments, etc. Such preparations may be sterilized and, if desired, may be mixed with auxiliary agents (such as lubricants, preservatives, stabilizers, wetting agents, emulsifiers, salts affecting osmotic pressure, buffers, colorants and/or aromatic substances, etc.) that do not react adversely with the compounds provided herein or interfere with their activity. A person of ordinary skill in the art will recognize that other pharmaceutical excipients are suitable for use with the disclosed compounds. The term "carrier" as used in this disclosure encompasses carriers, excipients, and diluents and refers to materials, compositions, or vehicles involved in carrying or transporting a pharmaceutical agent from one organ or body part of an individual to another organ or body part, such as a liquid or solid filler, diluent, excipient, solvent, or encapsulating material. The pharmaceutical composition of the present teachings may optionally include one or more pharmaceutically acceptable carriers and/or diluents therefor, such as lactose, starch, cellulose, and dextrose. Other excipients may also be included, such as flavorings; sweeteners; and preservatives, such as methyl, ethyl, propyl, and butyl hydroxybenzoate. A more complete list of suitable excipients can be found in the Handbook of Pharmaceutical Excipients (5th edition, Pharmaceutical Press (2005)). One of ordinary skill in the art will know how to prepare formulations suitable for a variety of routes of administration. Traditional procedures and ingredients for the selection and preparation of suitable formulations are described, for example, in Remington's Pharmaceutical Sciences (2003-20th edition) and The United States Pharmacopeia: The National Formulary (USP 24 NF19), published in 1999. Carriers, diluents and/or excipients are "acceptable" in the sense of being compatible with the other ingredients of the pharmaceutical composition and not deleterious to the recipient thereof. The pharmaceutical compositions of the present disclosure are formulated to be compatible with their intended route of administration. Examples of routes of administration include parenteral, eg, intravenous, intradermal, subcutaneous, oral (eg, inhalation), transdermal (topical), and transmucosal administration. Solutions or suspensions for parenteral, intradermal, or subcutaneous administration may include the following components: a sterile diluent (e.g., water for injection, aqueous saline solution, nonvolatile oils, polyethylene glycol, glycerol, propylene glycol or other synthetic solvents); antibacterial agents (e.g., benzyl alcohol or methyl paraben); antioxidants (e.g., ascorbic acid or sodium bisulfite); chelating agents (e.g., ethylenediaminetetraacetic acid); buffers (e.g., acetate, citrate or phosphate), and agents for adjusting tonicity (e.g., sodium chloride or dextrose). pH may be adjusted with acids or bases (e.g., hydrochloric acid or sodium hydroxide). Parenteral formulations may be enclosed in ampoules, disposable syringes, or multi-dose vials made of glass or plastic. The compounds or pharmaceutical compositions of the present disclosure may be administered to an individual by any of a number of known methods currently used for chemotherapy. For example, in the treatment of cancer, the compounds of the present disclosure may be injected directly into a tumor, injected into the bloodstream or body cavity, or orally, or applied through the skin as a patch. The dose selected should be sufficient to constitute an effective treatment, but not so high as to cause unacceptable side effects. The status of the disease state (e.g., cancer, precancer, etc.) and the patient's health should preferably be closely monitored during treatment or for a reasonable period of time after treatment. The term "therapeutically effective amount," as used herein, refers to the amount of a pharmaceutical agent that is effective to treat, ameliorate, or prevent an identified disease or condition, or to exhibit a detectable therapeutic or inhibitory effect. The effect may be detected by any analytical method known in the art. The precise effective amount for an individual will depend on the individual's weight, size, and health; the nature and extent of the condition; and the therapy or combination of therapies selected for administration. The therapeutically effective amount for a given situation may be determined by routine experimentation within the expertise and judgment of the clinician. For any compound, the therapeutically effective amount may be initially assessed, for example, in a cell culture assay of tumor cells, or in an animal model (usually rats, mice, rabbits, dogs, or pigs). Animal models can also be used to determine appropriate concentration ranges and routes of administration. This information can then be used to determine useful doses and routes of administration in humans. Therapeutic/prophylactic efficacy and toxicity can be determined by standard pharmaceutical procedures in cell culture or experimental animals, e.g., ED 50(the therapeutically effective dose in 50% of the total) and LD 50(The dose that causes 50% of the total lethality). The dose ratio between toxicity and therapeutic effect is the therapeutic index, and it can be expressed as the ratio LD 50/ED 50Indicates. Pharmaceutical compositions that exhibit a large therapeutic index are preferred. Dosages may vary within this range depending on the dose used, patient sensitivity, and route of administration. Dosage and administration are adjusted to provide adequate levels of active agent or to maintain the desired effect. Factors that may be considered include the severity of the disease state, the general health of the individual, the age, weight and sex of the individual, diet, time and frequency of administration, drug combination, reaction sensitivities, and tolerance/response to therapy. Long-acting pharmaceutical compositions may be administered every 3 to 4 days, weekly, or biweekly, depending on the half-life and clearance rate of the particular formulation. Pharmaceutical compositions containing the active compounds of the present disclosure (i.e., compounds of formula (I)) can be prepared in a generally known manner, for example, using known mixing, dissolving, granulating, sugar-coating, grinding, emulsifying, encapsulating, entrapping, or lyophilizing methods. Pharmaceutical compositions can be formulated in a known manner using one or more pharmaceutically acceptable carriers (which include excipients and/or adjuvants that facilitate processing of the active compounds into pharmaceutically usable preparations). Of course, the appropriate formulation depends on the chosen route of administration. Pharmaceutical compositions suitable for injection include sterile aqueous solutions (where water soluble) or dispersions, and sterile powders for the extemporaneous preparation of sterile injection solutions or dispersions. For intravenous administration, suitable carriers include physiological saline, bacteriostatic water, Cremophor EL™ (BASF, Parsippany, N.J.) or phosphate buffered saline (PBS). In all cases, the composition must be sterile and should be fluid to the extent that it can be easily injected. It must be stable under the conditions of manufacture and storage and must resist the contaminating action of microorganisms (such as bacteria and fungi). The carrier can be a solvent or dispersion medium containing, for example, water, ethanol, polyols (such as glycerol, propylene glycol, and liquid polyethylene glycol, etc.) and suitable mixtures thereof. Proper fluidity can be maintained, for example, by the use of coatings such as lecithin, by the maintenance of the required particle size in the case of dispersions, and by the use of surfactants. Prevention of the action of microorganisms can be achieved by various antibacterial and antifungal agents, for example, parabens, chlorobutanol, phenol, ascorbic acid, sodium thiomersalate, and the like. In many cases, it will be advantageous to include in the composition an isotonic agent, for example, sugars, polyalcohols such as mannitol, sorbitol, and sodium chloride. Prolonged absorption of the injectable composition can be brought about by including in the composition an agent which delays absorption, for example, aluminum monostearate and gelatin. Sterile injectable solutions can be prepared by combining the active compound in the required amount in an appropriate solvent with one or a combination of the ingredients listed above, if necessary, followed by filtering and sterilizing. Generally, dispersions are prepared by incorporating the active compound into a sterile vehicle containing a basic dispersion medium and the required other ingredients from those listed above. In the case of sterile powders for the preparation of sterile injectable solutions, the methods of preparation are vacuum drying and freeze drying, which produce a powder of the active ingredient plus any additional desired ingredients from its previous sterile filtered solution. Oral compositions generally include an inert diluent or an edible pharmaceutically acceptable carrier. They can be enclosed in gelatin capsules or compressed into tablets. For the purpose of oral therapeutic administration, the active compound may be mixed with a formulation and used in the form of tablets, troches, or capsules. Oral compositions may also be prepared using a fluid carrier for use as a mouthwash, wherein the compound in the fluid carrier is applied orally and swished and expectorated or swallowed. Pharmaceutically compatible binders and/or adjuvant materials may be included as part of the composition. Tablets, pills, capsules, tablets, etc. may contain any of the following ingredients, or compounds of similar nature: binders such as microcrystalline cellulose, tragacanth, or gelatin; formulators such as starch or lactose; disintegrants such as alginic acid, sodium carboxymethyl starch (Primogel), or corn starch; lubricants such as magnesium stearate or Sterotes; glidants such as colloidal silicon dioxide; sweeteners such as sucrose or saccharin; or flavorings such as mint, methyl salicylate, or orange flavor. For administration by inhalation, the compound is delivered as an aerosol spray from a pressurized container or dispenser containing a suitable propellant (e.g., a gas such as carbon dioxide), or a nebulizer. Systemic administration may also be by transmucosal or transdermal means. For transmucosal or transdermal administration, penetrants appropriate for the barrier to be permeated are used in the formulation. Such penetrants are generally known in the art and include, for example, for mucosal administration, detergents, bile salts, and fusidic acid derivatives for transmucosal administration. Transmucosal administration may be accomplished through the use of nasal sprays or suppositories. For transdermal administration, the active compound is formulated into an ointment, salves, gel, or cream as is generally known in the art. The active compound may be prepared with a pharmaceutically acceptable carrier that prevents rapid elimination of the compound from the body, for example, a controlled release formulation, including implants and microencapsulated delivery systems. Biodegradable, biocompatible polymers may be used, for example, ethylene vinyl acetate, polyanhydrides, polyglycolic acid, collagen, polyorthoesters, and polylactic acid. Methods for preparing such formulations will be apparent to those skilled in the art. Such materials may also be commercially available from Alza Corporation and Nova Pharmaceuticals, Inc. Liposomal suspensions (including liposomes targeted to infected cells with monoclonal antibodies to viral antigens) may also be used as pharmaceutically acceptable carriers. These can be prepared according to methods known to those skilled in the art (e.g., as described in U.S. Patent No. 4,522,811). For ease of administration and dosage consistency, oral or parenteral compositions in dosage unit form are particularly advantageous. As used herein, dosage unit form refers to physically discrete units suitable as unit doses for individuals to be treated; each unit contains a calculated predetermined amount of active compound combined with a pharmaceutical carrier required to produce the desired therapeutic effect. The dosage unit form of the present disclosure is specified by or directly depends on the unique properties of the active compound and the specific therapeutic effect to be achieved. In the treatment disclosure, the dosage of the pharmaceutical composition used according to the present disclosure varies depending on the dosage, the age, weight, and clinical condition of the patient receiving it, and the experience and judgment of the clinician or practitioner administering the therapy, among other factors that affect the dosage selected. Generally, the dosage should be sufficient to cause a slowing down, and preferably regression of the growth of the tumor, and also preferably to cause complete regression of the cancer. The dosage range may be from about 0.01 mg/kg per day to about 5000 mg/kg per day. The effective amount of a pharmaceutical agent is the amount that provides an objectively identifiable improvement noted by a clinician or other qualified observer. For example, the regression of a tumor in an individual can be measured with reference to the diameter of the tumor. Reduction in tumor size indicates regression. Regression is also indicated by the absence of tumor recurrence after cessation of treatment. As used herein, the term "dosage effective manner" refers to the amount of active compound that produces the desired biological effect in an individual or cell. The pharmaceutical composition may be included in a container, package, or dispenser along with instructions for administration. The dosage regimen for utilizing the compound is selected based on a variety of factors, including the type, race, age, weight, sex, and medical condition of the patient; the severity of the condition to be treated; the route of administration; the patient's renal and liver function; and the specific compound or its pharmaceutically acceptable salt or solvent complex employed. A physician or veterinarian of ordinary skill can readily determine and prescribe an effective amount of the necessary medication to prevent, counter, or arrest the progression of the condition. Techniques for the formulation and administration of the compounds disclosed in this disclosure can be found in Remington: the Science and Practice of Pharmacy, 19 thedition, Mack Publishing Co., Easton, PA (1995). In some embodiments, the compounds described herein and their pharmaceutically acceptable salts or solvents are combined with pharmaceutically acceptable carriers or diluents for use in pharmaceutical preparations. Suitable pharmaceutically acceptable carriers include inert solid fillers or diluents and sterile aqueous or organic solutions. The compound or its pharmaceutically acceptable salt or solvent will be present in the pharmaceutical composition in an amount sufficient to provide the desired dosage within the range described herein. Unless otherwise indicated, all percentages and ratios used herein are by weight. Other features and advantages of the present disclosure are apparent from different examples. The examples provided show different components and methods that can be used to practice the present disclosure. The examples do not limit the claimed disclosure. Those skilled in the art will be able to identify and adopt other components and methods useful for practicing the present disclosure based on the present disclosure. Methods of using the compoundThe present application provides a method for treating an individual suffering from a disease or condition that can be improved by inhibiting Polθ helicase, by administering an effective amount of one or more disclosed compounds, or a pharmaceutically acceptable salt or solvent thereof, or a corresponding pharmaceutical composition to the individual. Diseases that can be improved by inhibiting Polθ helicase include the treatment of cancer. The present application further relates to a method for treating a disease or condition (e.g., cancer) in which Polθ helicase plays a role. The method comprises administering an effective amount of a compound disclosed herein, or a pharmaceutically acceptable salt or solvent thereof, or a pharmaceutical composition disclosed herein to an individual in need thereof. In one aspect, described herein is a method for treating and/or preventing a disease in an individual, such as a cancer characterized by overexpression/overactivity of Polθ helicase, comprising administering a therapeutically effective amount of a compound described herein or a pharmaceutically acceptable salt or solvent thereof to the individual. In another aspect, described herein is a method for treating and/or preventing a cancer in an individual, such as a cancer characterized by homologous recombination (HR) deficiency or by reduced or absent expression of a BRCA gene, absent BRAC gene, or reduced function of a BRCA protein, comprising administering a therapeutically effective amount of a compound described herein or a pharmaceutically acceptable salt or solvent thereof to the individual. In another aspect, described herein is a method for inhibiting DNA repair by Polθ in a cell, comprising contacting the cell with an effective amount of a compound described herein or a pharmaceutically acceptable salt or solvent complex thereof. In some embodiments, the cell is HR-deficient. In another aspect, provided herein is a compound described herein or a pharmaceutically acceptable salt or solvent complex thereof for inhibiting DNA repair by Polθ in a cell. In some embodiments, the cell is HR-deficient. In another aspect, described herein is a compound described herein or a pharmaceutically acceptable salt or solvent complex thereof for treating and/or preventing a disease in an individual, such as a disease treatable by inhibiting Polθ, such as cancer, including homologous recombination (HR)-deficient cancer. In another aspect, described herein is a compound described herein or a pharmaceutically acceptable salt or solvent complex thereof for treating and/or preventing a disease in an individual, such as a cancer characterized by overexpression/overactivity of Polθ helicase, by homologous recombination (HR) deficiency, or by reduced or absent expression of BRAC genes, absent BRAC genes, or reduced function of BRAC proteins. In another aspect, provided herein is a compound described herein or a pharmaceutically acceptable salt or solvent complex thereof for use in the manufacture of an agent for inhibiting DNA repair by Polθ in a cell. In some embodiments, the cell is HR deficient. In another aspect, described herein is a compound described herein or a pharmaceutically acceptable salt or solvent complex thereof for use in the manufacture of a medicament for treating and/or preventing a disease in an individual, such as a disease treatable by inhibiting Polθ, such as cancer, including homologous recombination (HR) deficient cancer. In another aspect, described herein is a compound described herein or a pharmaceutically acceptable salt or solvent complex thereof for use in the manufacture of a medicament for treating and/or preventing a disease in an individual, such as a cancer characterized by overexpression/overactivity of Polθ helicase, by homologous recombination (HR) deficiency, or by reduced or absent expression of BRAC genes, absence of BRAC genes, or reduced function of BRAC proteins. In another aspect, described herein is a compound described herein or a pharmaceutically acceptable salt or solvent thereof for treating and/or preventing cancer resistant to poly (ADP-ribose) polymerase (PARP) inhibitor therapy in an individual. Examples of cancers resistant to PARP-inhibitors include, but are not limited to, breast cancer, ovarian cancer, lung cancer, bladder cancer, liver cancer, head and neck cancer, pancreatic cancer, gastrointestinal cancer, and colorectal cancer. In one aspect, described herein is a method for treating cancer, comprising administering a therapeutically effective amount of a composition as described herein (e.g., a composition comprising a compound of the present disclosure) to an individual in need of treating cancer. The present disclosure further relates to the use of a compound disclosed herein, or a pharmaceutically acceptable salt or solvent complex thereof, or a pharmaceutical composition disclosed herein, in the manufacture of a medicament for treating a disease or condition in which Polθ helicase plays a role (e.g., cancer). The present disclosure provides the use of a compound disclosed herein, or a pharmaceutically acceptable salt or solvent complex thereof, or a pharmaceutical composition disclosed herein, in the manufacture of a medicament for treating a disease or condition that can be improved by inhibiting Polθ helicase. In one embodiment, described herein is the use of a compound disclosed herein, or a pharmaceutically acceptable salt or solvent complex thereof, or a pharmaceutical composition disclosed herein, in the manufacture of a medicament for the treatment of cancer. The present disclosure further relates to a compound disclosed herein, or a pharmaceutically acceptable salt or solvent complex thereof, or a pharmaceutical composition disclosed herein, for treating a disease or condition in which Polθ helicase plays a role, such as cancer. The present disclosure provides a compound disclosed herein, or a pharmaceutically acceptable salt or solvent complex thereof, or a pharmaceutical composition disclosed herein, for treating a disease or condition that can be improved by inhibiting Polθ helicase. In another aspect, described herein is a method for treating and/or preventing a disease characterized by overexpression of Polθ helicase in a patient, such as cancer, comprising administering a therapeutically effective amount of a compound disclosed herein, or a pharmaceutically acceptable salt or solvent complex thereof, to the patient. In some embodiments, described herein is a method for treating and/or preventing homologous recombination (HR)-deficient cancer in a patient, comprising administering a therapeutically effective amount of a compound described herein or a pharmaceutically acceptable salt or solvent complex thereof to the patient. In some embodiments, described herein is a method for inhibiting DNA repair by Polθ in cancer cells, comprising contacting the cells with an effective amount of a compound described herein or a pharmaceutically acceptable salt or solvent complex thereof. In some embodiments, the cancer is a HR-deficient cancer. In some embodiments, described herein is a method for treating and/or preventing cancer in a patient, wherein the cancer is characterized by reduced or absent expression of a BRCA gene, absent a BRAC gene, or reduced function of a BRCA protein, comprising administering a therapeutically effective amount of a compound described herein or a pharmaceutically acceptable salt or solvent thereof (optionally in a pharmaceutical composition) to the individual. In some embodiments, the cancer is lymphoma, leukemia, multiple myeloma, soft tissue cancer, rhabdomyosarcoma, rhabdomyosarcoma, central nervous system cancer, peripheral nervous system cancer, bone cancer, uterine cancer, ovarian cancer, upper aerodigestive tract cancer, esophageal cancer, gastric cancer, gastrointestinal cancer, colorectal cancer, malignant mesothelioma, breast cancer, lung cancer, bladder cancer, liver cancer, head and neck cancer, fibroblastic carcinoma, urinary tract cancer, kidney cancer, skin cancer, prostate cancer, and pancreatic cancer. In some embodiments, the HR-deficient cancer is breast cancer. Breast cancer includes but is not limited to lobular carcinoma in situ (lobular carcinoma in situ) in situ,LCIS), ductal carcinoma in situin situ,DCIS), invasive ductal carcinoma (IDC), inflammatory breast cancer, Paget’s disease of the nipple, phyllodes tumor, angiosarcoma, adenoid cystic carcinoma, low-grade adenosquamous carcinoma, medullary carcinoma, mucinous adenocarcinoma, papillary carcinoma, tubular carcinoma, metaplastic breast cancer, micropapillary carcinoma, mixed carcinoma, and other breast cancers, including but not limited to triple-negative, HER-positive, estrogen receptor-positive, progesterone receptor-positive, HER and estrogen receptor-positive, HER and progesterone receptor-positive, estrogen and progesterone receptor-positive, and/or HER and estrogen and progesterone receptor-positive breast cancers. In some embodiments, the HR-deficient cancer is an ovarian cancer, including but not limited to epithelial ovarian carcinomas (EOC), mature teratomas, dysgerminomas, endodermal sinus tumors, ovarian granulomas, Sertoli-stromal cell tumors, and primary peritoneal carcinomas. In some embodiments, cancers that can be treated by the disclosed methods include cancers of the bladder, blood, bone, bone marrow, brain, breast, colon, esophagus, gastrointestinal, gum, head, kidney, liver, lung, nasopharynx, neck, ovary, prostate, skin, stomach, testicle, tongue, or uterus. Furthermore, the cancer may specifically be of the following histological types, although not limited thereto: malignant neoplasm; tumor; carcinoma; undifferentiated carcinoma; giant cell and spindle cell carcinoma; sarcoma; small cell carcinoma; papillary carcinoma; squamous cell carcinoma; lymphoepithelial carcinoma; basal cell carcinoma; pilomatrix carcinoma; transitional cell carcinoma; papillary transitional cell carcinoma; adenocarcinoma; malignant gastrinoma; cholangiocarcinoma; hepatocellular carcinoma; combined hepatocellular carcinoma and cholangiocarcinoma; trabecular adenocarcinoma; adenoid cystic carcinoma; adenocarcinoma in adenomatous polyps; adenocarcinoma, familial colon polyps; solid carcinoma; malignant carcinoid tumor; bronchopulmonary Alveolar carcinoma; Papillary adenocarcinoma; Chromophobe cell carcinoma; Oncocytic carcinoma; Oncocytic adenocarcinoma; Alkaline glomerulosa carcinoma; Clear cell adenocarcinoma; Granular cell carcinoma; Follicular adenocarcinoma; Papillary and follicular adenocarcinoma; Sclerosing adenocarcinoma without capsule formation; Adrenal cortical carcinoma; Endometrioid carcinoma; Carcinoma of skin appendages; Apocrine adenocarcinoma; Sebaceous gland carcinoma; Cerumen gland carcinoma; Mucoepidermoid carcinoma; Cystadenocarcinoma; Papillary cystadenocarcinoma; Papillary serous cystadenocarcinoma; Mucinous cystadenocarcinoma; Mucinous adenocarcinoma; Ring cell carcinoma; Infiltrating ductal carcinoma; Medullary carcinoma; Lobular carcinoma; Inflammatory carcinoma; Paget’s disease of the breast disease); acinar cell carcinoma; adenosquamous carcinoma; adenocarcinoma with squamous metaplasia; malignant thymoma; malignant ovarian stromal tumor; malignant sarcoma; malignant granulocytoma; androgenic tumor; sertoli cell carcinoma; malignant leydig cell tumor; malignant lipocytoma; malignant paraganglioma; malignant extramammary paraganglioma; pheochromocytoma; glomus sarcoma; malignant melanoma; amelanoma; superficial diffuse melanoma; malignant melanoma in giant pigmented nevus; epithelioid cell melanoma; malignant blue nevus; sarcoma; fibrosarcoma; malignant fibrosarcoma Histiocytic tumor; myxosarcoma; liposarcoma; leiomyosarcoma; rhabdomyosarcoma; embryonal rhabdomyosarcoma; alveolar rhabdomyosarcoma; stromal sarcoma; malignant mixed tumor; Mullerian mixed tumor; nephroblastoma; hepatoblastoma; carcinosarcoma; malignant stromal tumor; malignant Brenner tumor; malignant phyllodes tumor; synovial sarcoma; malignant mesothelioma; asexual embryonal tumor; embryonal carcinoma; malignant teratoma; malignant thyrodermatoid ovarian tumor; choriocarcinoma; malignant mesenchymal tumor; angiosarcoma; malignant hemangioendothelioma; Kaposi's sarcoma sarcoma); malignant hemangiopericytoma; lymphangiosarcoma; osteosarcoma; juxtacortical osteosarcoma; chondrosarcoma; malignant chondroblastoma; mesenchymal chondrosarcoma; giant cell tumor of bone; Ewing's sarcoma; malignant odontogenic tumor; ameloblastic odontosarcoma; malignant amelanoblastoma; amelanoblastic fibrosarcoma; malignant pinealoma; chordoma; malignant glioma; ependymoma; astrocytoma; protoplasmic astrocytoma; protofibromatous astrocytoma; astroblastoma; neuroglioblastoma; oligodendroglioma Glioblastoma; Oligodendritic neuroglioblastoma; Primitive neuroectoderm; Cerebellar sarcoma; Ganglioneuroblastoma; Neuroblastoma; Retinoblastoma; Olfactory neurogenic tumor; Malignant meningioma; Neurofibrosarcoma; Malignant schwannoma; Malignant granulocytoma; Malignant lymphoma; Hodgkin's disease ; Hodgkin's; paragranuloma; small lymphocytic malignant lymphoma; large cell diffuse malignant lymphoma; follicular malignant lymphoma; mycosis fungoides; other specified non-Hodgkin's lymphomas; malignant histiocytosis; multiple myeloma; mast cell sarcoma; immunoproliferative small intestinal disease; leukemia; lymphoid leukemia; plasma cell leukemia; erythroleukemia; lymphosarcoma cell leukemia; myeloid leukemia; basophilic leukemia; eosinophilic leukemia; monocytic leukemia; mast cell leukemia; megakaryoblastic leukemia; myeloid sarcoma; and hairy cell leukemia. The terms "treatment" or "treating" of a disease include inhibiting the disease, e.g., arresting or reducing the development of the disease or its clinical symptoms; or relieving the disease, e.g., causing regression of the disease or its clinical symptoms. The terms "inhibiting," "reducing," or any variation of these terms with respect to Polθ include any measurable reduction or complete inhibition to achieve the desired result. For example, the reduction in Polθ activity may be reduced by about, up to about, or at least about 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 99%, or more, or any range derivable therein, compared to its normal activity. The term "prevention" refers to the absence of clinical symptoms of a disease in a mammal that may be exposed to or predisposed to the disease but has not yet experienced or displayed symptoms of the disease. The term "homologous recombination" refers to the cellular process of genetic recombination in which nucleotide sequences are exchanged between two similar or identical DNAs. The term "homologous recombination (HR)-deficient cancer" refers to cancers characterized by a reduction or absence of functional HR repair pathways. HR deficiency can result from the absence of one or more HR-related genes or the presence of one or more mutations in one or more HR-related genes. Examples of HR-related genes include BRCA1, BRCA2, RAD54, RAD51B, CtlP (Choline Transporter-Like Protein), PALB2 (Partner and Localizer of BRCA2), XRCC2 (X-ray repair complement defect in Chinese hamster cells 2), RECQL4 (RecQ protein-like 4), BLM (Bloom syndrome, RecQ helicase-like), WRN (Werner syndrome, one or more HR-related genes) Nbs 1 (Nibrin), and the gene encoding Fanconi anemia, FA) protein genes or FA-like genes, for example, FANCA, FANCB, FANCC, FANCD1 (BRCA2), FANCD2, FANCE, FANCF, FANCG, FANCI, FANJ (BRIP1), FANCL, FANCM, FANCN (RALB2), FANCP (SLX4), FANCS (BRCA1), RAD51C, and XPF. The term "Pol θ overexpression" refers to an increase in the expression or activity of Pol θ in disease cells (e.g., cancerous cells) relative to the expression or activity of Pol θ in normal cells (e.g., non-disease cells of the same type). The amount of Pol θ can be at least 2 times, at least 3 times, at least 4 times, at least 5 times, at least 10 times, or more relative to the expression of Pol θ in normal cells. Examples of Polθ cancers include, but are not limited to, breast, ovarian, cervical, lung, colorectal, gastric, bladder, and prostate cancers. In addition, the compounds of the present disclosure can be co-administered with other therapeutic agents. In some embodiments, the other therapeutic agents include chemotherapeutics known in the art, such as inhibitors of DNA repair pathways (e.g., HR and NHEJ) and immunomodulators. As used herein, the terms "co-administration," "combination administration," and their grammatical equivalents are intended to cover the administration of two or more therapeutic agents to a single individual, and are intended to include treatment regimens in which the agents are administered by the same or different routes of administration or the same or different times. These terms encompass administration of two or more agents to a subject such that both agents and/or their metabolites are present in the subject at the same time. These include simultaneous administration in separate compositions, administration at different times in separate compositions, and/or administration in a composition in which both agents are present. Thus, in some embodiments, the compounds described herein and the other agents are administered in a single composition. In some embodiments, the compounds described herein and the other agents are mixed in a composition. Embodiment Compound preparationReagent grade chemicals and anhydrous solvents were purchased from commercial sources and used without further purification unless otherwise mentioned. Preparations of compounds are either commercially available or known in the literature, as presented in the references. ChemDraw (PerkinElmer) was used to determine product names. In cases where compounds were prepared similarly to previous examples or intermediates, reaction times, reagent equivalents, temperatures, work-ups, and purification techniques may vary slightly. PurificationAnalytical separation was performed on: -   Teledyne ISCO CombiFlash flash chromatography system using pre-filled SiO2or C18 column -   Teledyne ISCO ACCQPrep high pressure preparative liquid chromatography system; column: Gemini 5 um C18 110 Å, 150×30 mm -   Biotage Isolera rapid chromatography system, using pre-packed SiO2Or C18 column. -   Waters Mass Trigger Semi-Prep HPLC; column: Gemini 5 um NX-C18 110Å, 100×30 mm Analytical methods-LC-MS on Waters UPLC-MS; column: Acquity UPLC, CSH C 18, 1.7 um, 2.1×30 mm; Method: In 2 minutes in H containing 0.1% (v/v) formic acid2From 5% to 95% CH in O 3CN or CH from 5% to 95% in 10 mM ammonium bicarbonate within 2 minutes 3CN. -NMR spectroscopy was performed using a Varian NMR (AS 400) 400 MHz spectrometer with an Inova interface. In all cases, the NMR data were consistent with the proposed structures. Characteristic chemical shifts (δ) are given in parts per million using conventional peak nomenclature abbreviations: e.g., s, singlet; d, doublet; t, triplet; q, quartet; dd, doublet of doublets; dt, doublet of triplets; b, broad; etc. Abbreviations used: 9-BBN                   9-Borabicyclo[3.3.1]nonane δ                         Chemical shift Å                      Angström Ac                       Acetyl ACN                      Acetonitrile Bn                       Benzyl Boc                      Butylcarbonyl b                      Broad peak singlet Bu                       Butyl Calcd                 Calculated value d                      Peak DAST                (Diethylamino)sulfur trifluoride dd                     Doublet of doublet dt                     Doublet of triplet DCM                     Dichloromethane DDQ                2,3-Dichloro-5,6-dicyano-p-benzoquinone DIBALH            Diisobutylaluminum hydroxide DIPA N, N-Diisopropylamine DIPEA N,N-Diisopropylethylamine DMAP              4-Dimethylaminopyridine DMF N,N-Dimethylformamide DMP                  Dess-Martin periodinane DMSO                Dimethylsulfoxide Dppf                      1,1’-ferrocenediyl-bis(diphenylphosphine) EA                        Ethyl acetate ee                     Excess of mirror image isomer Et                        Ethyl EtOH                 Ethanol Et 3N                  Triethylamine eq                     Equivalent g                    Gram Hour                  Hour(h) HATU         1-[Bis(dimethylamino)methylene]-1H-1,2,3-triazole[4,5- b]Pyridinium 3-oxide hexafluorophosphate Hz                     Hertz HPLC             High performance liquid chromatography i-Pr                  Isopropyl JCoupling constant L                         Liter LC-MS                   Liquid chromatography-mass spectrometry LDA                  Lithium diisopropylamide LiHMDS                 Lithium bis(trimethylsilyl)amide M                      Mole m                      Multiplet mCPBA                  m-Chloroperbenzoic acid Me                   Methyl MeTHF                   2-Methyltetrahydrofuran MeOH                Methanol mg                   Milligram MHz                     Millihertz min                      Minute mL                      Milliliter mm                    Millimeter mmol                    Millimole mol                     Mole MS                    Mass spectrum N                      Normal NBS N-Succinimidyl bromide PCC                         Pyridine chlorochromate Pd 2(dba) 3Tris(dibenzylindeneacetone)dipalladium(0) Pd(PPh 3) 4Tetrakis(triphenylphosphine)palladium(0) Pd(dppf)Cl 2.DCM [1,1’-Bis(diphenylphosphino)ferrocene]dichloropalladium(II), complexed with dichloromethane Pd(dppf)Cl 2[1,1’-Bis(diphenylphosphino)ferrocene]dichloropalladium(II) pH                        Potential of hydrogen Ph                         Phenyl PPh 3triphenylphosphine ppm                parts per million PyBOP               Benzotriazolyl-1-yloxytripyrrolidinylphosphonium hexafluorophosphate q                      quartet RT                    room temperature NMR                 nuclear magnetic resonance s                       singlet sat                    saturated sxt                    sextuplet tLevel 3 t                       Triplet tt                      Triplet of triplet t-Bu                Tertiary butyl TCFH                Chloro- N, N, N', N'-Tetramethylformamidine hexafluorophosphate TMS                      trimethylsilyl TFA                 trifluoroacetic acid THF                 tetrahydrofuran Ts                     tosyl mol                       micromolar v/v                    volume/volume XantPhos            4,5-bis(diphenylphosphino)-9,9-dimethyl °                       Degree %                      Percentage The general method used for synthesis is indicated below for reference. General approach Reaction Name A Amide coupling reaction (HATU) B Amination C Amidide coupling reaction (TCFH) D Williamson ether synthesis E Sonogashira cross coupling F BOC deprotection G Buchwald amide cross coupling H Suzuki Marionette I Hydrogenation J Condensation reaction Embodiment 1. N-(5-((4- Benzyl chloride ) Sulfur )-1,3,4- Thiadiazole -2- base )-3-(2- Methoxyphenyl ) Iononia ( Compound 1) Preparation Steps 1 : 5-((4- Benzyl chloride ) Sulfur )-1,3,4- Thiadiazole -2- Synthesis of aminesA solution of 0.1 N sodium hydroxide (38 mL, 3.75 mmol) was added to a mixture of 5-amino-1,3,4-thiadiazol-2-thiol (1 g, 7.51 mmol) and 4-chlorobenzyl bromide (1.57 g, 7.51 mmol) in EtOH (100 mL) at 0°C. After stirring for 15 min, the reaction mixture was allowed to warm to room temperature and stirred for 24 h. The resulting precipitate was collected by vacuum filtration and washed with water and EtOH to provide 5-((4-chlorobenzyl)thio)-1,3,4-thiadiazol-2-amine (1.4 g, 72% yield) as a white solid. MS (ESI): m/z 257.0 (calcd), 258.0 (M+H +, actual value). Steps 2 : N-(5-((4- Benzyl chloride ) Sulfur )-1,3,4- Thiadiazole -2- base )-3-(2- Methoxyphenyl ) Iononia ( Compound 1 ) Synthesis General approach AHATU (226 mg, 0.58 mmol) and DIPEA (203 mL, 1.16 mmol) were added to a stirred solution of 5-((4-chlorobenzyl)thio)-1,3,4-thiadiazolyl-2-amine (100 mg, 0.39 mmol) and 3-(2-methoxyphenyl)isonicotinic acid (89 mg, 0.39 mmol, WO 2020/243459, p. 84) in dry DMF (5 mL). The reaction mixture was stirred at room temperature under an argon atmosphere for 3 h. The reaction mixture was diluted with water and extracted with EA (3×10 mL). The combined organic layers were heated in anhydrous Na 2SO 4Dry on ice, filter, and concentrate to dryness. Purify the residue by flash chromatography (elution gradient from 0% to 50% EA in hexanes). The isolated product was dissolved in ACN (1 mL), diluted with water (4 mL), and freeze-dried to provide N-(5-((4-chlorobenzyl)thio)-1,3,4-thiadiazol-2-yl)-3-(2-methoxyphenyl)isonicotinamide ( Compound 1)(105 mg, 58% yield), white solid. 1H NMR (400 MHz, DMSO- d 6) δ ppm 3.42 (3H, s), 4.47 (2H, s), 6.96 (1H, d, J = 8.1 Hz), 7.06 (1H, td, J = 7.5, 1.0 Hz), 7.41-7.34 (6H, m), 7.64 (1H, d, J = 4.9 Hz), 8.61 (1H, s), 8.71 (1H, d, J = 4.9 Hz), 13.17 (1H, s). MS (ESI): m/z 468.0(calculated), 469.1(M+H +, actual value). Embodiment 2. N-(5-((4- Benzyl chloride ) Amine )-1,3,4- Thiadiazole -2- base )-3-(2- Methoxyphenyl ) Iononia ( Compound 2) Preparation Steps 1 : N 2 -(4- Benzyl chloride )-1,3,4- Thiadiazole -2,5- Synthesis of diamines General approach BTo a suspension of 2-amino-5-bromo-1,3,4-thiadiazole (1 g, 5.55 mmol) in dry THF (15 mL), add Et 3N (2 mL, 13.9 mmol) and 4-chlorobenzylamine (676 mL, 5.55 mmol). The reaction mixture was refluxed for 2 h, cooled to room temperature and the volatiles were removed under reduced pressure. EtOH (10 mL) was added, and the resulting precipitate was collected by vacuum filtration and washed with DCM (2×10 mL) to provide N 2-(4-Chlorobenzyl)-1,3,4-thiadiazole-2,5-diamine (1.34 g, 82% yield) as a gray solid. MS (ESI): m/z 240.0 (calculated), 241.1 (M+H +, actual value). Steps 2 : N-(5-((4- Benzyl chloride ) Amine )-1,3,4- Thiadiazole -2- base )-3-(2- Methoxyphenyl ) Iononia ( Compound 2 ) SynthesisAccording to the general method Afrom N 2-(4-Chlorobenzyl)-1,3,4-thiadiazole-2,5-diamine (100 mg, 0.42 mmol), 3-(2-methoxyphenyl)isonicotinic acid (95 mg, 0.42 mmol), HATU (237 mg, 0.62 mmol) and DIPEA (217 mL, 1.25 mmol) in DMF (5 mL) gave the title compound. The crude product was purified by flash chromatography (gradient of eluent 0% to 50% EA in hexanes). The isolated product was dissolved in ACN (1 mL), diluted with water (4 mL), and freeze-dried to provide N-(5-((4-chlorobenzyl)amino)-1,3,4-thiadiazol-2-yl)-3-(2-methoxyphenyl)isonicotinate ( Compound 2)(37 mg, 20% yield), white solid. 1H NMR (400 MHz, DMSO- d 6) δ ppm 3.52 (3H, s), 4.44 (2H, d, J = 5.8 Hz), 6.99 (1H, d, J = 8.2 Hz), 7.05 (1H, t, J = 7.5 Hz), 7.39-7.32 ( 6H, m), 7.58 (1H, d, J = MS (ESI): m/z 451.1(calculated value), 452.2(M+H +, actual value). Embodiment 3. ( E )-N-(5-(4- Chlorothenyl )-1,3,4- Thiadiazole -2- base )-3-(2- Methoxyphenyl ) Iononia ( Compound 3) Preparation Steps 1 : ( E )-5-(4- Chlorothenyl )-1,3,4- Thiadiazole -2- Synthesis of aminesThiosemicarbazide (500 mg, 5.48 mmol), 4-chlorocinnamic acid (1 g, 5.48 mmol) and POCl 3(3 mL, 31.9 mmol) was refluxed for 0.5 h. After cooling to room temperature, water (4 mL, 222 mmol) was added and the resulting mixture was refluxed for 4 h. After cooling to room temperature, the reaction mixture was basified to pH = 8-9 by adding 50% aqueous NaOH solution with stirring. The resulting precipitate was filtered and washed twice with EtOH to provide ( E)-5-(4-chlorophenylvinyl)-1,3,4-thiadiazolyl-2-amine (1.15 g, 88% yield) as a light yellow solid. MS (ESI): m/z 237.0.0 (calculated), 238.1 (M+H +, actual value). Steps 2 : ( E )-N-(5-(4- Chlorothenyl )-1,3,4- Thiadiazole -2- base )-3-(2- Methoxyphenyl ) Iononia ( Compound 3 ) Synthesis - General approach Cright( E)-5-(4-chlorophenylvinyl)-1,3,4-thiadiazolyl-2-amine (50 mg, 0.21 mmol) and 3-(2-methoxyphenyl) isonicotinic acid (48 mg, 0.21 mmol) in dry DMF (2 mL) were stirred and 1-methylimidazole (61 mL, 0.74 mmol) was added. After 5 minutes, a solution of TCFH (60.2 mg, 0.21 mmol) in dry DMF (1 mL) was added dropwise. The reaction mixture was stirred at room temperature under an atmosphere of argon for 3 h. Water (5 mL) was added and the resulting white precipitate was collected by vacuum filtration and washed with water (2×10 mL), MeOH (2×10 mL) and ACN (2×10 mL) to provide ( E)- N-(5-(4-chlorophenylvinyl)-1,3,4-thiadiazole-2-yl)-3-(2-methoxyphenyl)isonicotinamide( Compound 3)(53 mg, 56% yield), white solid. 1H NMR (400 MHz, DMSO- d 6) δ ppm 3.49 (3H, s), 6.98 (1H, d, J = 8.2 Hz), 7.08 (1H, t, J = 7.5 Hz), 7.40-7.36 (2H, m), 7.50-7.45 (3H, m ), 7.58-7.54 (1H, m), 7.69 (1H, d, J = 4.9 Hz), 7.74 (2H, d, J = 8.4 Hz), 8.63 (1H, s), 8.74 (1H, d, J = 5.0 Hz), 13.18 (1H, br s) . MS (ESI): m/z 448.1 (calculated), 449.1(M+H +, actual value). Embodiment 4. N-(5-(4- Chlorophenethyl )-1,3,4- Thiadiazole -2- base )-3-(2- Methoxyphenyl ) Iononia ( Compound 4) Preparation right( E)-N-(5-(4-chlorophenylvinyl)-1,3,4-thiadiazole-2-yl)-3-(2-methoxyphenyl)isosonicotinamide( 3, 20 mg, 0.05 mmol) in DMA (1 mL) was added Pd (10 wt.%) on carbon (5 mg, 0.005 mmol). The reaction mixture was degassed with hydrogen countercurrent under reduced pressure (3 times) and stirred under normal hydrogen atmosphere for 18 h. The catalyst was removed by filtration through celite and the filtrate was concentrated under reduced pressure. The residue was purified by flash chromatography (eluent gradient from 0% to 100% EA in hexanes). The isolated product was dissolved in ACN (1 mL), diluted with water (4 mL), and freeze-dried to provide N-(5-(4-chlorophenethyl)-1,3,4-thiadiazol-2-yl)-3-(2-methoxyphenyl)isonicotinate ( Compound 4)(15 mg, 75% yield), white solid. 1H NMR (400 MHz, DMSO- d 6) δ ppm 3.03 (2H, t, J = 7.5 Hz), 3.30 (2H, t, J = 7.5 Hz), 3.41 (3H, s), 6.96 (1H, d, J = 8.1 Hz), 7.06 (1H, t, J = 7.4 Hz), 7.27-2.25 (2H, m), 7.39-7.31 (4H, m), 7.63 (1H, d, J = 5.0 Hz), 8.61 (1H, s), 8.71 (1H, d, J = 5.0 Hz), 12.92 (1H, s). MS (ESI): m/z 450.1 (calculated), 451.2(M+H +, actual value). Embodiment 5. N-(5-((4- Benzyl chloride ) Sulfonyl )-1,3,4- Thiadiazole -2- base )-3-(2- Methoxyphenyl ) Iononia ( Compound 5) Preparation 4% KMnO at room temperature4(67 mg, 0.43 mmol) aqueous solution was added dropwise to N-(5-((4-chlorobenzyl)thio)-1,3,4-thiadiazol-2-yl)-3-(2-methoxyphenyl)isonicotinamide ( 1, 100 mg, 0.21 mmol) in acetic acid (4 mL). KMnO 4The reaction mixture was stirred for 30 minutes until the purple color persisted. The reaction mixture was cooled to 5 °C and saturated sodium sulfite solution was added until the brown color disappeared. The precipitate was collected by vacuum filtration, washed with water (3×10 mL) and dried. The dried solid was purified by flash chromatography (elution gradient from 0% to 100% EA in hexanes). The isolated product was dissolved in ACN (1 mL), diluted with water (4 mL), and freeze-dried to provide N-(5-((4-chlorobenzyl)sulfonyl)-1,3,4-thiadiazol-2-yl)-3-(2-methoxyphenyl)isonicotinamide ( Compound 5)(75 mg, 70% yield), white solid. 1H NMR (400 MHz, DMSO- d 6) δ ppm 3.37 (3H, s), 5.11 (2H, s), 6.96 (1H, d, J = 8.6 Hz), 7.09 (1H, t, J = 7.5 Hz), 7.30-7.28 (2H, m), 7.45-7.38 (4H, m), 7.70 (1H, d, J = 5.0 Hz), 8.66 (1H, s), 8.76 (1H, d, J = 5.0 Hz), 13.88 (1H, s). MS (ESI): m/z 500.0(calculated), 501.1(M+H +, actual value). Embodiment 6. N-(5-((4- Benzyl chloride )( methyl ) Amine )-1,3,4- Thiadiazole -2- base )-3-(2 Methoxyphenyl ) Iononia ( Compound 6) Preparation Steps 1 : N 2 -(4- Benzyl chloride )-N 2 - methyl -1,3,4- Thiadiazole -2,5- Synthesis of diaminesAccording to the general method BFrom 2-amino-5-bromo-1,3,4-thiadiazole (100 mg, 0.56 mmol), 1-(4-chlorophenyl)-N-methylmethanamine (74 mL, 0.56 mmol) and Et 3N (194 mL, 1.39 mmol) was used to prepare the title compound in THF (5 mL). The crude product was triturated with EtOH (5 mL) and DCM (5 mL) to give N2-(4-chlorobenzyl)-N 2-methyl-1,3,4-thiadiazole-2,5-diamine (63 mg, 45% yield) as a brown solid. MS (ESI): m/z 254.0 (calculated), 255.2 (M+H +, actual value). Steps 2 : N-(5-((4- Benzyl chloride )( methyl ) Amine )-1,3,4- Thiadiazole -2- base )-3-(2- Methoxyphenyl ) Iononia ( Compound 6 ) SynthesisAccording to the general method CFrom N 2-(4-chlorobenzyl)-N 21-Methyl-1,3,4-thiadiazole-2,5-diamine (60 mg, 0.24 mmol), 3-(2-methoxyphenyl)isonicotinic acid (54 mg, 0.24 mmol), 1-methylimidazole (66 mL, 0.82 mmol) and TCFH (79 mg, 0.28 mmol) in DMF (2 mL) gave the title compound. The crude product was purified by flash chromatography (eluent gradient from 0% to 5% MeOH in DCM) followed by Prep-HPLC (column: Gemini® 5 um NX-C18 110Å, 100×30 mm) (eluent gradient from 40% to 100% ACN in 10 mM ammonium formate). The isolated product was dissolved in ACN (1 mL), diluted with water (4 mL), and freeze-dried to provide N-(5-((4-chlorobenzyl)(methyl)amino)-1,3,4-thiadiazol-2-yl)-3-(2-methoxyphenyl)isonicotinamide ( Compound 6)(52 mg, 47% yield), off-white solid. 1H NMR (400 MHz, DMSO- d 6) δ ppm 3.04 (3H, s), 3.52 (3H, s), 4.63 (2H, s), 6.98 (1H, d, J = 8.3 Hz), 7.04 (1H, t, J = 7.5 Hz), 7.39- 7.29 (4H, m), 7.42-7.39 (2H, m), 7.59 (1H, d, J = 5.0 Hz), 8.57 (1H, s), 8.68 (1H, d, J = 4.9 Hz), 12.52 (1H, br s). MS (ESI): m/z 465.1 (calculated), 466.2 (M+H +, actual value). Embodiment 7. N-(5-((4- Benzyl chloride )( Ethyl ) Amine )-1,3,4- Thiadiazole -2- base )-3-(2- Methoxyphenyl ) Iononia ( Compound 7) Preparation Steps 1 : N 2 -(4- Benzyl chloride )-N 2 - Ethyl -1,3,4- Thiadiazole -2,5- Synthesis of diaminesAccording to the general method BFrom 2-amino-5-bromo-1,3,4-thiadiazole (200 mg, 1.11 mmol), N-(4-Chlorobenzyl)ethylamine (207 mL, 1.11 mmol) and Et 3N (389 mL, 2.78 mmol) in THF (10 mL) gave the title compound. The residue was purified by flash chromatography (gradient of eluent from 0% to 100% EA in hexanes) to provide N 2-(4-chlorobenzyl)-N 2-ethyl-1,3,4-thiadiazole-2,5-diamine (290 mg, 97% yield) as an off-white solid. MS (ESI): m/z 268.1 (calculated), 269.2 (M+H +, actual value). Steps 2 : N-(5-((4- Benzyl chloride )( Ethyl ) Amine )-1,3,4- Thiadiazole -2- base )-3-(2- Methoxyphenyl ) Iononia ( Compound 7 ) SynthesisAccording to the general method Cfrom N 2-(4-chlorobenzyl)- N 2-ethyl-1,3,4-thiadiazole-2,5-diamine( 20, 70 mg, 0.26 mmol), 3-(2-methoxyphenyl)isonicotinic acid ( 4, 60 mg, 0.26 mmol), 1-methylimidazole (73 mL, 0.91 mmol) and TCFH (82 mg, 0.29 mmol) in DMF (3 mL) to prepare the title compound. The crude product was purified by flash chromatography (elution gradient from 0% to 100% EA in hexanes). The isolated material was dissolved in ACN (1 mL), diluted with water (4 mL), and freeze-dried to provide N-(5-((4-chlorobenzyl)(ethyl)amino)-1,3,4-thiadiazol-2-yl)-3-(2-methoxyphenyl)isonicotinate ( Compound 7)(80 mg, 64% yield), off-white solid. 1H NMR (400 MHz, DMSO- d 6) δ ppm 1.12 (3H, t, J = 7.0 Hz), 3.46 (2H, q, J = 7.1 Hz), 3.52 (3H, s), 4.63 (2H, s), 6.98 (1H, d, J = 8.3 Hz), 7.05 (1H, td, J = 7.5, 1.0 Hz), 7.37-7.31 (4H, m), 7.41-7.38 (2H, m), 7.59 (1H, d, J = 5.0 Hz), 8.58 (1H, s), 8.68 (1H, d, J = 5.0 Hz), 12.50 (1H, br s). MS (ESI): m/z 479.1 (calculated), 480.3(M+H +, actual value). Embodiment 8. 2-((5-(3-(2- Methoxyphenyl ) Isonicotinamide )-1,3,4- Thiadiazole -2- base ) Oxygen ) Ethyl acetate ( Compound 8) Preparation Steps 1 : 2-((5- Amine -1,3,4- Thiadiazole -2- base ) Oxygen ) Synthesis of Ethyl AcetateTo a stirred solution of 2-amino-5-bromo-1,3,4-thiadiazole (1 g, 5.55 mmol) in DMF (10 mL) cooled to 0°C, ethyl 2-hydroxyacetate (2 mL, 22.2 mmol) and Et 3N (2 mL, 13.9 mmol). The reaction mixture was heated to room temperature, stirred for 6 h, diluted with water (20 mL) and extracted with EA (50 mL × 3). The combined organic layer was washed with brine (30 mL) and precipitated with MgSO 4Dry over medium, filter, and concentrate under reduced pressure. The crude product was purified by flash chromatography (elution gradient from 70% to 100% EA in hexanes) to provide ethyl 2-((5-amino-1,3,4-thiadiazol-2-yl)oxy)acetate (668 mg, 59% yield) as a light brown solid. MS (ESI): m/z 203.0 (calcd), 204.1 (M+H +, actual value). Steps 2 : 2-((5-(3-(2- Methoxyphenyl ) Isonicotinamide )-1,3,4- Thiadiazole -2- base ) Oxygen ) Ethyl acetate ( Compound 8 ) SynthesisAccording to the general method CThe title compound was prepared from ethyl 2-((5-amino-1,3,4-thiadiazol-2-yl)oxy)acetate (500 mg, 2.46 mmol), 3-(2-methoxyphenyl)isonicotinate (564 mg, 2.46 mmol), 1-methylimidazole (715 µL, 8.61 mmol), and TCFH (704 mg, 2.46 mmol) in DMF (24 mL). The crude product was purified by flash chromatography (gradient of eluent from 0% to 100% EA in hexanes) to provide ethyl 2-((5-(3-(2-methoxyphenyl)isonicotinateamido)-1,3,4-thiadiazol-2-yl)oxy)acetate ( Compound 8)(1 g, 99% yield), white solid. 1H NMR (400 MHz, DMSO- d 6) δ ppm 1.24 (3H, t, J= 7.1 Hz), 3.55 (3H, s), 4.21 (2H, q, J= 7.1 Hz), 5.12 (2H, s), 7.03 (1H, d, J= 8.1 Hz), 7.11 (1H, td, J= 7.5, 1.0 Hz), 7.44-7.40 (2H, m), 7.67 (1H, d, J = 5.0 Hz), 8.65 (1H, s), 8.75 (1H, d, J= 5.0 Hz), 12.96 (1H, s). MS (ESI): m/z 414.1(calculated), 415.2(M+H +, actual value). Embodiment 9. 2-((5-(3-(2- Methoxyphenyl ) Isonicotinamide )-1,3,4- Thiadiazole -2- base ) Oxygen ) Acetic acid ( Compound 9) Preparation Ethyl 2-((5-(3-(2-methoxyphenyl)isonicotinoylamino)-1,3,4-thiadiazol-2-yl)oxy)acetate ( 8, 750 mg, 1.81 mmol) in a mixture of water (9 mL) and THF (9 mL) cooled to 0°C, NaOH (74 mg, 1.81 mmol) was added. The reaction mixture was warmed to room temperature and stirred for 30 minutes, concentrated under reduced pressure, and acidified to pH = 2. The resulting precipitate was collected by vacuum filtration, washed with water and dried to provide 2-((5-(3-(2-methoxyphenyl)isonicotinoylamino)-1,3,4-thiadiazol-2-yl)oxy)acetic acid ( Compound 9)(581 mg, 83% yield), white solid. 1H NMR (400 MHz, DMSO- d 6) δ ppm 3.52 (3H, s), 4.96 (2H, s), 7.00 (1H, d, J= 8.2 Hz), 7.07 (1H, td, J= 7.5, 1.0 Hz), 7.40-7.35 (2H, m), 7.64 (1H, d, J= 5.0 Hz), 8.61 (1H, s), 8.72 (1H, d, J= 5.0 Hz), 12.93 (1H, br, s), 13.15 (1H, br, s). MS (ESI): m/z 386.1 (calculated), 387.1 (M+H +, actual value). Embodiment 10. 3-(2- Methoxyphenyl )- N -(5-(2- Phyl -2- Pentoxyethoxy )-1,3,4- Thiadiazole -2- base ) Iononia ( Compound 10) Preparation According to the general method CFrom 2-((5-(3-(2-methoxyphenyl)isonicotinoylamino)-1,3,4-thiadiazol-2-yl)oxy)acetic acid ( 9, 50 mg, 0.13 mmol) The title compound was obtained by mixing 1-(2-methoxyphenyl)-1-nitropropene (11 µL, 0.13 mmol), 1-methylimidazole (38 µL, 0.45 mmol), and TCFH (37 mg, 0.13 mmol) in DMF (1.3 mL). The crude product was purified by flash chromatography (gradient eluent from 0% to 10% MeOH in DCM). The isolated material was dissolved in ACN (1 mL), diluted with water (4 mL), and freeze-dried to provide 3-(2-methoxyphenyl)- N-(5-(2- Phenyl-2-oxoethoxy)-1,3,4-thiadiazol-2-yl)isonicotinamide ( Compound 10)(15 mg, 25% yield), white solid. 1H NMR (400 MHz, DMSO- d 6) δ ppm 3.43-3.39 (4H, m), 3.53 (3H, s), 3.58 (4H, dt, J= 13.5, 4.7 Hz), 5.21-5.21 (2H, m), 7.07-6.99 (2H, m), 7.39-7.33 (2H, m), 7.64-7.61 (1H, m), 8.77-8.46 (2H, m), 12.91 (1H, s). MS (ESI): m/z 455.1 (calculated), 456.2 (M+H +, actual value). By following the above method for the compound 10The procedure described for the synthesis of Phenylidene, from compounds 9Start synthesizing compounds 11-15(Examples 11-15). The compounds are provided in Table 2 11-15( Embodiment 11-15) characteristics. Embodiment 16. 3-(2- Methoxyphenyl )-N-(5-( Cyclobutane -3- Oxy )-1,3,4- Thiadiazole -2- base ) Iononia ( Compound 16) Preparation Steps 1 : 5-( Cyclobutane -3- Oxy )-1,3,4- Thiadiazole -2- amine ( General approach D ) SynthesisTo a stirred solution of 3-hydroxycyclohexane (82 mg, 1.11 mmol) in dry DMF (3 mL) cooled to 0°C, NaH (67 mg, 1.67 mmol) (60% dispersion in mineral oil) was slowly added. After stirring at 0°C for 15 minutes, 2-amino-5-bromo-1,3,4-thiadiazole (200 mg, 1.11 mmol) in dry DMF (1 mL) was added dropwise and the reaction mixture was heated to room temperature and stirred for 1 h. Water (5 mL) was added and the mixture was extracted with a mixture of chloroform/isopropanol (3/1) (10 ml×3). The combined organic layer was washed with brine and precipitated on anhydrous MgSO 4Dry on ice, filter, and concentrate to dryness to provide 5-(cyclohexane-3-yloxy)-1,3,4-thiadiazolyl-2-amine (80 mg, 42% yield) as a light yellow oil. MS (ESI): m/z 173.0 (calcd), 174.1 (M+H +, actual value). Steps 2 : 3-(2- Methoxyphenyl )-N-(5-( Cyclobutane -3- Oxy )-1,3,4- Thiadiazole -2- base ) Iononia ( Compound 16 ) SynthesisAccording to the general method CThe title compound was prepared from 5-(cyclohexane-3-yloxy)-1,3,4-thiadiazolyl-2-amine (40 mg, 0.23 mmol), 3-(2-methoxyphenyl)isonicotinic acid (53 mg, 0.23 mmol), 1-methylimidazole (77 mL, 0.92 mmol) and TCFH (73 mg, 0.25 mmol) in DMF (3 mL). The residue was purified by flash chromatography (eluent gradient from 0% to 5% MeOH in DCM) followed by Prep-HPLC (column: Gemini® 5 um NX-C18 110 Å, 100×30 mm) (eluent gradient from 40% to 100% ACN in 10 mM ammonium formate). The isolated product was dissolved in ACN (1 mL), diluted with water (4 mL), and freeze-dried to provide 3-(2-methoxyphenyl)-N-(5-(cyclohexane-3-yloxy)-1,3,4-thiadiazol-2-yl)isonicotinate ( Compound 16)(21 mg, 24% yield), white solid. 1H NMR (400 MHz, DMSO- d 6) δ ppm 3.51 (3H, s), 4.63 (2H, dd, J= 8.0, 4.8 Hz), 4.91-4.87 (2H, m), 5.68-5.63 (1H, m), 6.99 (1H, d, J= 8.2 Hz), 7.07 (1H, dd, J= 7.8, 6.9 Hz), 7.39-7.34 (2H, m), 7.62 (1H, d, J= 5.0 Hz), 8.61 (1H, s), 8.71 (1H, d, J= 5.0 Hz), 12.94 (1H, s). MS (ESI): m/z 384.1 (calculated), 385.2 (M+H +, actual value). Embodiment 17. N-(5-(N-(4- Benzyl chloride ) Methylsulfonamide )-1,3,4- Thiadiazole -2- base )-3-(2- Methoxyphenyl ) Iononia ( Compound 17) Preparation Steps 1 : N-(4- Benzyl chloride ) Synthesis of methanesulfonamide4-Chlorobenzylamine (430 mL, 3.53 mmol) and Et 3To a stirred solution of N (594 mL, 4.24 mmol) in dry DCM (8 mL) cooled to 0°C, methanesulfonyl chloride (307 mL, 3.88 mmol) was slowly added. After stirring at 0°C for 15 minutes, the reaction mixture was warmed to room temperature and stirred under an argon atmosphere for 1 h. The mixture was then diluted with DCM (20 mL) and washed with 10% aqueous citric acid (20 ml×2) and brine in sequence, and finally washed with anhydrous MgSO4Dry on ice, filter, and concentrate to dryness. Trituration of the crude product with EA (20 mL) gave N-(4-chlorobenzyl)methanesulfonamide (700 mg, 90% yield) as a white solid. MS (ESI): m/z 219.0 (calculated), 218.0 (-ESI, [M-H] -, actual value). Steps 2 : N-(5- Amine -1,3,4- Thiadiazole -2- base )-N-(4- Benzyl chloride ) Methanesulfonamide SynthesisAccording to the general method Dfrom NThe title compound was prepared from 2-(4-chlorobenzyl)methanesulfonamide (200 mg, 0.91 mmol), 2-amino-5-bromo-1,3,4-thiadiazole (164 mg, 0.91 mmol) and NaH (54.6 mg, 1.37 mmol) (60% dispersion in mineral oil) in DMF (5 mL) to provide N-(5-amino-1,3,4-thiadiazol-2-yl)-N-(4-chlorobenzyl)methanesulfonamide (224 mg, 77% yield) as a brown solid. MS (ESI): m/z 318.0 (calculated), 319.1 (M+H +, actual value). The crude product was used directly in the next step without further purification. Steps 3 : N -(5-(N-(4- Benzyl chloride ) Methylsulfonamide )-1,3,4- Thiadiazole -2- base )-3-(2- Methoxyphenyl ) Iononia ( Compound 17 ) SynthesisAccording to the general method CFrom N-(5-amino-1,3,4-thiadiazole-2-yl)- N-(4-Chlorobenzyl)methanesulfonamide( 35, 80 mg, 0.25 mmol), 3-(2-methoxyphenyl)isonicotinic acid (4, 58 mg, 0.25 mmol), 1-methylimidazole (83 mL, 1.00 mmol) and TCFH (79 mg, 0.28 mmol) in DMF (3 mL) gave the title compound. The crude product was purified by flash chromatography (gradient of eluent from 0% to 100% EA in hexanes) followed by Prep-HPLC (column: Gemini® 5 um NX-C18 110 Å, 100×30 mm) (gradient of eluent from 40% to 100% ACN in 10 mM ammonium formate). The isolated product was dissolved in ACN (1 mL), diluted with water (4 mL), and freeze-dried to provide N-(5-(N-(4-chlorobenzyl)methylsulfonamido)-1,3,4-thiadiazol-2-yl)-3-(2-methoxyphenyl)isonicotinate ( Compound 17)(11 mg, 8% yield), white solid. 1H NMR (400 MHz, DMSO- d 6) δ ppm 3.34 (3H, s), 3.45 (3H, s), 5.09 (2H, s), 6.97 (1H, d, J= 8.3 Hz), 7.05 (1H, t, J= 7.4 Hz), 7.31-7.42 (6H, m), 7.61 (1H, d, J= 4.9 Hz), 8.58 (1H, s), 8.69 (1H, s), 12.96 (1H, s). MS (ESI): m/z 529.1 (calculated), 530.2 (M+H +, actual value). Embodiment 18. N-(5-(3,3- Difluorocyclobutoxy )-1,3,4- Thiadiazole -2- base )-3-(2- Methoxyphenyl ) Iononia ( Compound 18) Preparation Steps 1 : 3-(2- Methoxyphenyl ) Synthesis of isonicotinic acid nitrileTo a stirred solution of 3-bromo-4-cyanopyridine (1 g, 5.36 mmol) in a mixture of dioxane (10 mL) and water (5 mL), 2-methoxyphenylboronic acid (1 mL, 6.43 mmol), K 2CO 3(2 g, 16.1 mmol), and Pd(PPh 3) 4(0.63 g, 0.54 mmol). The reaction mixture was degassed three times with argon countercurrent under reduced pressure, heated to 100 °C, and stirred for 2 h. The reaction mixture was then cooled to room temperature and diluted with water and EA. The layers were separated, and the organic layer was washed with brine and precipitated in MgSO4Dry on ice, filter, and concentrate under reduced pressure. The residue was purified by flash chromatography (elution gradient from 0% to 60% EA in hexanes) to provide 3-(2-methoxyphenyl)isonicotinatecarbonitrile (1 g, 89% yield) as a white solid. MS (ESI): m/z 210.1 (calcd), 211.2 (M+H +, actual value). Steps 2 : 3-(2- Methoxyphenyl ) Synthesis of isonicotinamide3-(2-Methoxyphenyl)isonicotinecarbonitrile (180 mg, 0.86 mmol) in EtOH (6 mL) and H 2To the stirred solution in a mixture of 4% CO (2 mL), Ghaffar-Parkins catalyst (37 mg, 86 µmol) was added. The reaction mixture was heated to 80 °C, stirred for 2.5 h, then cooled to room temperature, filtered on celite, and concentrated under reduced pressure to provide 3-(2-methoxyphenyl)isonicotinate (195 mg, 99% yield) as an off-white solid. The crude product was used directly in the next step without further purification. 1H NMR (400 MHz, DMSO- d 6) δ ppm 3.69 (3H, s), 7.07-6.99 (2H, m), 7.26 (1H, dd, J= 7.5, 1.7 Hz), 7.36 (2H, t, J= 7.0 Hz), 7.43 (1H, d, J= 5.0 Hz), 7.62 (1H, s), 8.48 (1H, s), 8.59 (1H, d, J= 5.0 Hz). MS (ESI): m/z 228.1(calculated), 229.2(M+H +, actual value). Steps 3 : 2- bromine -5-(3,3- Difluorocyclobutoxy )-1,3,4- Synthesis of ThiadiazoleAccording to the general method DThe title compound was obtained from 2,5-dibromo-1,3,4-thiadiazole (200 mg, 0.82 mmol), 3,3-difluorocyclobutanol (89 mg, 0.82 mmol), NaH (49 mg, 1.23 mmol) (60% dispersion in mineral oil) in DMF (3 mL). The residue was purified by flash chromatography (elution gradient from 0% to 30% EA in hexanes) to provide 2-bromo-5-(3,3-difluorocyclobutoxy)-1,3,4-thiadiazole (200 mg, 90% yield) as a colorless oil. MS (ESI): m/z 270.0 (calcd), 272.9 (M+H +, actual value). Steps 4 : N-(5-(3,3- Difluorocyclobutoxy )-1,3,4- Thiadiazole -2- base )-3-(2 Methoxyphenyl ) Iononia ( Compound 18) Synthesis2-Bromo-5-(3,3-difluorocyclobutoxy)-1,3,4-thiadiazole (80 mg, 0.29 mmol), 3-(2-methoxyphenyl)isonicotinate (67 mg, 0.29 mmol), Cs 2CO 3(192 mg, 0.59 mmol) and H 2A stirred solution of 2-nitropropene (3 mL, 0.17 mmol) in dioxane (3 mL) was degassed for 15 min. Then, Pd was added.2(dba) 3(27 mg, 0.03 mmol) and XantPhos (34 mg, 0.06 mmol). The reaction mixture was flushed with argon, heated to 100 °C, and stirred for 4 h. The reaction mixture was then cooled to room temperature, filtered through a celite pad, and concentrated under reduced pressure. The residue was purified by flash chromatography (eluent gradient from 0% to 100% EA in hexanes) followed by Prep-HPLC (column: Gemini® 5 um NX-C18 110 Å, 100×30 mm) (eluent gradient from 40% to 100% ACN in 10 mM ammonium formate). The isolated product was dissolved in ACN (1 mL), diluted with water (4 mL), and freeze-dried to provide N-(5-(3,3-difluorocyclobutoxy)-1,3,4-thiadiazol-2-yl)-3-(2-methoxyphenyl)isonicotinate ( Compound 18)(12 mg, 10% yield), white solid. 1H NMR (400 MHz, DMSO- d 6) δ ppm 2.92-2.80 (2H, m), 3.23-3.12 (2H, m), 3.52 (3H, s), 5.19-5.14 (1H, m), 6.99 (1H, d, J = 8.2 Hz), 7.05 (1H, t, J = 7.5 Hz), 7.38-7.32 (2H, m), 7.62 (1H, d, J = 4.9 Hz), 8.57 (1H, s), 8.68 (1H, d, J = 5.0 Hz). MS (ESI): m/z 418.1 (calculated), 419.1 (M+H +, actual value). Embodiment 19. N-(5-((4- Chlorophenyl ) Ethylene )-1,3,4- Thiadiazole -2- base )-3-(2- Methoxyphenyl ) Iononia ( Compound 19) Preparation Steps 1 Tributyl (5-((4- Chlorophenyl ) Ethylene )-1,3,4- Thiadiazole -2- base ) Synthesis of carbamate General approach EAdd dry DMF (3 mL) to N-boc-2-amino-5-bromo[1,3,4]thiadiazole (300 mg, 1.05 mmol), 1-chloro-4-ethynylbenzene (146 mg, 1.05 mmol), copper iodide (20 mg, 0.10 mmol) and tetrakis(triphenylphosphine)palladium (122 mg, 0.11 mmol) were added, followed by the addition of dry DIPA (147 µL, 1.05 mmol). The reaction mixture was degassed three times and filled with argon after each degassing, stirred at 60°C for 6 h, cooled to room temperature, diluted with water, and extracted with EA (15 mL×3). The combined organic extracts were heated in anhydrous Na 2SO 4Dry on ice, filter, and remove the solvent under reduced pressure. The residue was purified by flash chromatography (elution gradient from 20% to 90% EA in hexanes) to provide Tertiary Butyl(5-((4-chlorophenyl)ethynyl)-1,3,4-thiadiazol-2-yl)carbamate (300 mg, 85% yield). MS (ESI): m/z 335.1 (calculated), 336.1 (M+H +, actual value). Steps 2 : 5-((4- Chlorophenyl ) Ethylene )-1,3,4- Thiadiazole -2- Synthesis of amines General approach FTrifluoroacetic acid (684 µL, 8.93 mmol) was added to a solution of tert-butyl (5-((4-chlorophenyl)ethynyl)-1,3,4-thiadiazol-2-yl)carbamate (300 mg, 0.893 mmol) in DCM (6 mL) at room temperature. The mixture was stirred for 18 h and concentrated to dryness to provide 5-((4-chlorophenyl)ethynyl)-1,3,4-thiadiazol-2-amine (211 mg, quantitative yield) as an orange solid. The crude material was used in the next step without further purification. MS (ESI): m/z 235.0 (calcd), 236.1 (M+H +, actual value). Steps 3 : N-(5-((4- Chlorophenyl ) Ethylene )-1,3,4- Thiadiazole -2- base )-3-(2- Methoxyphenyl ) Iononia ( Compound 19 ) SynthesisAccording to the general method CThe title compound was prepared from 5-((4-chlorophenyl)ethynyl)-1,3,4-thiadiazolyl-2-amine (50 mg, 0.21 mmol), 3-(2-methoxyphenyl)isosonicotinic acid (49 mg, 0.21 mmol), 1-methylimidazole (62 µL, 0.74 mmol) and TCFH (61 mg, 0.21 mmol) in DMF (2 mL). The crude product was purified by flash chromatography (eluent gradient from 0% to 100% EA in hexanes). The isolated material was dissolved in ACN (1 mL), diluted with water (4 mL) and freeze-dried to provide N-(5-((4-chlorophenyl)ethynyl)-1,3,4-thiadiazol-2-yl)-3-(2-methoxyphenyl)isonicotinate ( Compound 19)(25 mg, 26% yield), white solid. MS (ESI): m/z 446.1(calculated), 447.1(M+H +, actual value). 1H NMR (400 MHz, DMSO- d 6 ) δ ppm 3.46 (3H, s), 6.98 (1H, d, J= 8.1 Hz), 7.08 (1H, t, J= 7.5 Hz), 7.40-7.36 (2H, m), 7.61-7.55 (2H, m), 7.72-7.70 (3H, m), 8.65 (1H, s), 8.75 (1H, d, J= 5.0 Hz), 13.52 (1H, s). MS (ESI): m/z 446.1(calculated), 447.1(M+H +, actual value). Embodiment 20. 3-(2- Methoxyphenyl )-N-(5-(4- Phenylbutyl -1- Alkyne -1- base )-1,3,4- Thiadiazole -2- base ) Iononia ( Compound 20) Preparation Steps 1 Tributyl (5-(4- Phenylbutyl -1- Alkyne -1- base )-1,3,4- Thiadiazole -2- base ) Synthesis of carbamateAccording to the general method Efrom N-boc-2-amino-5-bromo[1,3,4]thiadiazole (300 mg, 1.05 mmol), 4-phenyl-1-butyne (137 mg, 1.05 mmol), copper iodide (20 mg, 0.10 mmol), tetrakis(triphenylphosphine)palladium (122 mg, 0.11 mmol), DIPA (147 µL, 1.05 mmol) in DMF (3 mL) to obtain the title compound. The crude product was purified by flash chromatography (gradient of eluent from 20% to 90% EA in hexanes) to provide Tertiary Butyl(5-(4-phenylbut-1-yn-1-yl)-1,3,4-thiadiazol-2-yl)carbamate (300 mg, 87% yield). MS (ESI): m/z 329.4 (calcd), 330.1 (M+H +, actual value). Steps 2 : 5-(4- Phenylbutyl -1- Alkyne -1- base )-1,3,4- Thiadiazole -2- Synthesis of aminesAccording to the general method Ffrom Tertiary ButylThe title compound was prepared from (5-(4-phenylbut-1-yn-1-yl)-1,3,4-thiadiazol-2-yl)carbamate (200 mg, 0.61 mmol), trifluoroacetic acid (465 µL, 6.07 mmol) in DCM (6 mL). The reaction mixture was concentrated to dryness to provide 5-(4-phenylbut-1-yn-1-yl)-1,3,4-thiadiazol-2-amine (139 mg, quantitative yield) as an orange solid. The crude material was used in the next step without further purification. MS (ESI): m/z 229.3 (calcd), 230.1 (M+H +, actual value). Steps 3 : 3-(2- Methoxyphenyl )-N-(5-(4- Phenylbutyl -1- Alkyne -1- base )-1,3,4- Thiadiazole -2- base ) Iononia ( Compound 20 ) SynthesisAccording to the general method CThe title compound was obtained from 5-(4-phenylbut-1-yn-1-yl)-1,3,4-thiadiazolyl-2-amine (100 mg, 0.44 mmol), 3-(2-methoxyphenyl)isonicotinic acid (100 mg, 0.44 mmol), 1-methylimidazole (290 µL, 3.50 mmol) and TCFH (125 mg, 0.44 mmol) in DMF (2 mL). The crude product was purified by flash chromatography (eluent gradient from 0% to 100% EA in hexanes). The isolated product was dissolved in ACN (1 mL), diluted with water (4 mL) and freeze-dried to provide 3-(2-methoxyphenyl)-N-(5-(4-phenylbut-1-yn-1-yl)-1,3,4-thiadiazol-2-yl)isonicotinate (50 mg, 26% yield) as a white solid. 1H NMR (400 MHz, DMSO- d 6 ) δppm 2.91-2.82 (4H, m), 3.45 (3H, s), 6.97 (1H, d, J= 8.4 Hz), 7.07 (1H, t, J= 7.4 Hz), 7.24-7.19 (1H, m), 7.31 (4H, m), 7.39-7.36 (2H, m), 7.72-7.63 (1H, s), 8.80-8.61 (2H, br, s), 13.36 (1H, s). MS (ESI): m/z 440.5 (calculated), 441.3 (M+H +, actual value). Embodiment 21. 3-(2- Methoxyphenyl )-N-(5-(3- Phenoxypropyl -1- Alkyne -1- base )-1,3,4- Thiadiazole -2- base ) Iononia ( Compound twenty one) Preparation Steps 1 Tributyl (5-(3- Phenoxypropyl -1- Alkyne -1- base )-1,3,4- Thiadiazole -2- base ) Synthesis of carbamateAccording to the general method Efrom N-boc-2-amino-5-bromo[1,3,4]thiadiazole (300 mg, 1.05 mmol), phenyl propargyl ether (137 mg, 1.05 mmol), copper iodide (20 mg, 0.10 mmol) and tetrakis(triphenylphosphine)palladium (122 mg, 0.11 mmol), DIPA (147 µL, 1.05 mmol) in DMF (3 mL) to prepare the title compound. The crude product was purified by flash chromatography (gradient of eluent from 20% to 90% EA in hexanes) to provide Tertiary Butyl(5-(3-phenoxyprop-1-yn-1-yl)-1,3,4-thiadiazol-2-yl)carbamate (310 mg, 89% yield). MS (ESI): m/z 331.4 (calculated), 332.1 (M+H +, actual value). Steps 2 : 5-(3- Phenoxypropyl -1- Alkyne -1- base )-1,3,4- Thiadiazole -2- Synthesis of aminesAccording to the general method Ffrom Tertiary ButylThe title compound was prepared from (5-(3-phenoxyprop-1-yn-1-yl)-1,3,4-thiadiazol-2-yl)carbamate (200 mg, 0.60 mmol), trifluoroacetic acid (462 µL, 6.04 mmol) in DCM (6 mL). The reaction mixture was concentrated to dryness to provide 5-(3-phenoxyprop-1-yn-1-yl)-1,3,4-thiadiazol-2-amine (139 mg, quantitative yield) as an orange solid. The crude product was used in the next step without further purification. MS (ESI): m/z 231.3 (calcd), 232.1 (M+H +, actual value). Steps 3 : 3-(2- Methoxyphenyl )-N-(5-(3- Phenoxypropyl -1- Alkyne -1- base )-1,3,4- Thiadiazole -2- base ) Iononia ( Compound twenty one ) SynthesisAccording to the general method CThe title compound was prepared from 5-(3-phenoxyprop-1-yn-1-yl)-1,3,4-thiadiazolyl-2-amine (20 mg, 0.09 mmol), 3-(2-methoxyphenyl)isonicotinic acid (20 mg, 0.09 mmol), 1-methylimidazole (57 µL, 0.69 mmol) and TCFH (25 mg, 0.09 mmol) in DMF (1 mL). The crude product was purified by flash chromatography (eluent gradient from 0% to 100% EA in hexanes). The isolated material was dissolved in ACN (1 mL), diluted with water (4 mL) and freeze-dried to provide 3-(2-methoxyphenyl)-N-(5-(3-phenoxyprop-1-yn-1-yl)-1,3,4-thiadiazol-2-yl)isonicotinamide ( Compound twenty one)(10 mg, 26% yield), white solid. 1H NMR (400 MHz, DMSO- d 6 ) δ ppm 3.44 (3H, s), 5.17 (2H, s), 7.13- 6.91 (5H, m), 7.40-7.32 (4H, m), 7.68 (1H, d, J= 5.0 Hz), 8.62 (1H, s), 8.72 (1H, d, J= 5.0 Hz), 13.54-13.46 (1H, s). MS (ESI): m/z 442.5(calculated), 443.3(M+H +, actual value). Embodiment twenty two. Tertiary Butyl 4-((5-(3-(2- Methoxyphenyl ) Isonicotinamide )-1,3,4- Thiadiazole -2- base ) Oxygen ) Piperidine -1- Formate ( Compound twenty two) Preparation Steps 1 Tributyl 4-((5- bromine -1,3,4- Thiadiazole -2- base ) Oxygen ) Piperidine -1- Synthesis of formate estersAccording to the general method DFrom 2,5-dibromo-1,3,4-thiadiazole (100 mg, 0.41 mmol), Tertiary ButylThe title compound was prepared from 4-hydroxy-1-piperidinecarboxylate (165 mg, 0.82 mmol) and sodium hydride (60% dispersion in mineral oil) (49.20 mg, 1.23 mmol) in DMF (2 mL). The crude product was purified by flash chromatography (gradient of eluent from 0% to 100% EA in hexanes) to give Tertiary Butyl4-((5-Bromo-1,3,4-thiadiazol-2-yl)oxy)piperidine-1-carboxylate (140 mg, 94% yield) as a white solid. Steps 2 Tributyl 4-((5-(3-(2- Methoxyphenyl ) Isonicotinamide )-1,3,4- Thiadiazole -2- base ) Oxygen ) Piperidine -1- Formate ( Compound twenty two ) Synthesis - General approach Gright Tertiary ButylTo a stirred solution of 4-((5-bromo-1,3,4-thiadiazol-2-yl)oxy)piperidine-1-carboxylate (20 mg, 0.06 mmol) in DMF (1 mL), add 3-(2-methoxyphenyl)isonicotinate (15 mg, 0.07 mmol). Then add cesium carbonate (36 mg, 0.11 mmol), three(Dibenzylidenacetone) dipalladium (5 mg, 0.01 mmol), and 4,5-bis(diphenylphosphino)-9,9-dimethyl (7 mg, 0.01 mmol) before the reaction mixture was degassed under a stream of argon for 5 min. The reaction mixture was flushed with argon under reduced pressure before heating to 100 °C. The reaction mixture was stirred for 3 h, cooled to room temperature, filtered through a celite pad and concentrated under reduced pressure. The crude product was purified by flash chromatography (gradient of eluent from 0% to 100% EA in hexanes) to obtain Tertiary Butyl4-((5-(3-(2-methoxyphenyl)isonicotinoylamino)-1,3,4-thiadiazol-2-yl)oxy)piperidine-1-carboxylate ( Compound twenty two)(20 mg, 71% yield), white solid. 1H NMR (400 MHz, DMSO- d 6 ) δppm 1.40 (9H, s), 1.68-1.59 (2H, m), 2.05-1.98 (2H, m), 3.24- 3.14 (2H, m), 3.52 (3H, s), 3.68-3.62 (2H, m) ), 5.10-5.06 (1H, m), 6.99 (1H, d, J= 8.2 Hz), 7.08- 7.04 (1H, m), 7.39-7.34 (2H, m), 7.62 (1H, d, J= 5.0 Hz), 8.61 (1H, s), 8.71 (1H, d, J= 5.0 Hz), 12.85 (1H, s). MS (ESI): m/z 511.6 (calculated), 512.3 (M+H +, actual value). Embodiment 23. 3-(2- Methoxyphenyl )-N-(5-( Piperidine -4- Oxy )-1,3,4- Thiadiazole -2- base ) Iononia ( Compound twenty three) Preparation According to the general method Ffrom Tertiary Butyl4-((5-(3-(2-methoxyphenyl)isonicotinoylamino)-1,3,4-thiadiazol-2-yl)oxy)piperidine-1-carboxylate ( Compound twenty two) (7 mg, 0.014 mmol) and trifluoroacetic acid (53 µL, 0.68 mmol) in DCM (1 mL) to prepare the title compound. The crude product was purified by Prep-HPLC (column: Gemini® 5 um NX-C18 110 Å, 100×30 mm) (gradient of eluent from 25% to 100% MeOH in 10 mM ammonium formate) to provide 3-(2-methoxyphenyl)-N-(5-(piperidin-4-yloxy)-1,3,4-thiadiazol-2-yl)isonicotinate ( Compound twenty three)(2.3 mg, 41% yield), white solid. 1H NMR (400 MHz, DMSO- d 6 ) δ ppm 1.86 (2H, br, s), 2.17 (2H, br, s), 2.97 (2H, br, s), 3.17 (2H, br, s), 3.53 (3H, s), 5.06 (1H, s), 7.03-6.97 (2H, m), 7.37-7.29 (2H, m), 7.62 (1H, t, J= 4.4 Hz), 8.57 (1H, s), 8.68 (1H, s). MS (ESI): m/z 411.5 (calculated), 412.2 (M+H +, actual value). Embodiment twenty four. N-(5-((1- Acetylpiperidine -4- base ) Oxygen )-1,3,4- Thiadiazole -2- base )-3-(2- Methoxyphenyl ) Iononia ( Compound twenty four) Preparation Steps 1 : 1-(4-((5- Amine -1,3,4- Thiadiazole -2- base ) Oxygen ) Piperidine -1- base )1- Synthesis of Ethyl KetoneAccording to the general method DThe title compound was prepared from 2-amino-5-bromo-1,3,4-thiadiazole (50 mg, 0.28 mmol), 1-(4-hydroxypiperidin-1-yl)ethanone (81 mg, 0.56 mmol) and sodium hydride (60% dispersion in mineral oil) (33 mg, 0.83 mmol) in DMF (2 mL). The product was purified by flash chromatography (0% to 10% MeOH (0.1% NH4The crude product was purified by elution gradient of 5% 4-nitropropene (5-nitropropene) (4-((5-amino-1,3,4-thiadiazol-2-yl)oxy)piperidin-1-yl)-1-ethanone (13 mg, 19% yield) as a colorless oil. MS (ESI): m/z 242.3 (calculated), 243.1 (M+H +, actual value). Steps 2 : N-(5-((1- Acetylpiperidine -4- base ) Oxygen )-1,3,4- Thiadiazole -2- base )-3-(2- Methoxyphenyl ) Iononia ( Compound twenty four ) SynthesisAccording to the general method CThe title compound was obtained from 1-(4-((5-amino-1,3,4-thiadiazol-2-yl)oxy)piperidin-1-yl)ethyl 1-ol (13 mg, 0.05 mmol), 3-(2-methoxyphenyl)isosonicotinic acid (12 mg, 0.05 mmol), 1-methylimidazole (16 µL, 0.19 mmol) and TCFH (15 mg, 0.05 mmol) in DMF (1 mL). The crude product was purified by Prep-HPLC (column: Gemini® 5 um NX-C18 110 Å, 100×30 mm) (eluent gradient from 25% to 100% MeOH in 10 mM ammonium bicarbonate). The isolated product was dissolved in ACN (1 mL), diluted with water (4 mL) and freeze-dried to provide N-(5-((1-acetylpiperidin-4-yl)oxy)-1,3,4-thiadiazol-2-yl)-3-(2-methoxyphenyl)isonicotinate ( Compound twenty four)(10 mg, 41% yield), white solid. 1H NMR (400 MHz, DMSO- d 6 ) δ ppm 1.78-1.58 (2H, m), 2.09-2.00 (5H, m), 3.25-3.16 (1H, m), 3.36-3.33 (1H, m), 3.53 (3H, s), 3.69-3.62 ( 1H, m), 3.86-3.79 (1H, m), 5.11-5.05 (1H, m), 6.99 (1H, d, J= 8.9 Hz), 7.03 (1H, td, J= 7.5, 0.8 Hz), 7.36-7.29 (2H, m), 7.62 (1H, d, J= 4.8 Hz), 8.59-8.53 (1H, m), 8.69-8.63 (1H, m), 12.86 (1H, s). MS (ESI): m/z 453.5 (calculated), 454.2 (M+H +, actual value). Embodiment 25. N-(5-(2-(4- Bromophenoxy ) Ethoxy )-1,3,4- Thiadiazole -2- base )-3-(2- Methoxyphenyl ) Iononia ( Compound 25) Preparation Steps 1 : 2- bromine -5-(2-(4- Bromophenoxy ) Ethoxy )-1,3,4- Synthesis of ThiadiazoleAccording to the general method DThe title compound was obtained from 2-amino-5-bromo-1,3,4-thiadiazole (100 mg, 0.56 mmol), 2-(4-bromophenoxy)ethanol (181 mg, 0.83 mmol) and sodium hydride (60% dispersion in mineral oil) (29 mg, 0.72 mmol) in DMF (2 mL). The product was purified by flash chromatography (0% to 10% MeOH (0.1% NH4The crude product was purified by elution gradient of 4-(4-bromophenoxy)ethoxy)-1,3,4-thiadiazole (150 mg, 85% yield) as a colorless oil. MS (ESI): m/z 316.1 (calculated), 318.0 (M+H +, actual value). Steps 2 : N-(5-(2-(4- Bromophenoxy ) Ethoxy )-1,3,4- Thiadiazole -2- base )-3-(2- Methoxyphenyl ) Iononia ( Compound 25 ) SynthesisAccording to the general method CThe title compound was obtained from 2-bromo-5-(2-(4-bromophenoxy)ethoxy)-1,3,4-thiadiazole (100 mg, 0.32 mmol), 3-(2-methoxyphenyl)isonicotinic acid (73 mg, 0.32 mmol), 1-methylimidazole (92 µL, 1.11 mmol) and TCFH (91 mg, 0.32 mmol) in DMF (1.50 mL). The crude product was purified by Prep-HPLC (column: Gemini® 5 um NX-C18 110 Å, 100×30 mm) (eluent gradient from 25% to 100% ACN in 10 mM ammonium bicarbonate). The isolated product was dissolved in ACN (1 mL), diluted with water (4 mL) and freeze-dried to provide N-(5-(2-(4-bromophenoxy)ethoxy)-1,3,4-thiadiazol-2-yl)-3-(2-methoxyphenyl)isonicotinate ( Compound 25)(20 mg, 12% yield), white solid. 1H NMR (400 MHz, DMSO- d 6 ) δ ppm 3.51 (3H, s), 4.35-4.33 (2H, m), 4.70-4.67 (2H, m), 7.05-6.95 (4H, m), 7.37-7.30 (2H, m), 7.46-7.43 ( 2H, m), 7.63 (1H, d, J= 5.0 Hz), 8.55 (1H, s), 8.65 (1H, d, J= 4.9 Hz), 12.87 (1H, s). MS (ESI): m/z 527.4 (calculated), 529.0(M+H +, actual value). Embodiment 26. N-(5-(2-(4- Chlorophenoxy ) Ethoxy )-1,3,4- Thiadiazole -2- base )-3-(2- Methoxyphenyl ) Iononia ( Compound 26) Preparation Steps 1 : 2- Amine -5-(2-(4- Chlorophenoxy ) Ethoxy )-1,3,4- Synthesis of ThiadiazoleAccording to the general method DThe title compound was obtained from 2-amino-5-bromo-1,3,4-thiadiazole (300 mg, 1.67 mmol), 2-(4-chlorophenoxy)ethanol (431 mg, 2.50 mmol) and sodium hydride (87 mg, 2.17 mmol) in DMF (3 mL). The product was purified by flash chromatography (0% to 10% MeOH (0.1% NH4The crude product was purified by elution gradient of 5-(4-chlorophenoxy)ethoxy)-1,3,4-thiadiazole (400 mg, 88% yield) as a colorless oil. MS (ESI): m/z 271.7 (calculated), 272.1 (M+H +, actual value). Steps 2 : N-(5-(2-(4- Chlorophenoxy ) Ethoxy )-1,3,4- Thiadiazole -2- base )-3-(2- Methoxyphenyl ) Iononia ( Compound 26 ) SynthesisAccording to the general method CThe title compound was obtained from 2-amino-5-(2-(4-chlorophenoxy)ethoxy)-1,3,4-thiadiazole (100 mg, 0.32 mmol), 3-(2-methoxyphenyl)isonicotinic acid (84 mg, 0.37 mmol), 1-methylimidazole (107 µL, 1.29 mmol) and TCFH (105 mg, 0.37 mmol) in DMF (1.5 mL). The crude product was purified by Prep-HPLC (column: Gemini® 5 um NX-C18 110 Å, 100×30 mm) (eluent gradient from 25% to 100% ACN in 10 mM ammonium bicarbonate). The isolated material was dissolved in ACN (1 mL), diluted with water (4 mL) and freeze-dried to provide N-(5-(2-(4-chlorophenoxy)ethoxy)-1,3,4-thiadiazol-2-yl)-3-(2-methoxyphenyl)isonicotinate ( Compound 26)(82 mg, 46% yield), white solid. 1H NMR (400 MHz, DMSO- d6) δ ppm 3.51 (3H, s), 4.37-4.35 (2H, m), 4.74- 4.72 (2H, m), 7.08-6.97 (4H, m), 7.39-7.32 (4H, m), 7.63 (1H, d, J= 5.0 Hz), 8.60 (1H, s), 8.71 (1H, d, J= 4.9 Hz), 12.86 (1H, s). MS (ESI): m/z 482.9 (calculated), 483.2 (M+H +, actual value). Embodiment 27. 3-(2- Methoxyphenyl )-N-(5-(2- Phenoxyethoxy )-1,3,4- Thiadiazole -2- base ) Iononia ( Compound 27) Preparation Steps 1 : 2- bromine -5-(2- Phenoxyethoxy )-1,3,4- Synthesis of ThiadiazoleAccording to the general method DThe title compound was obtained from 2-amino-5-bromo-1,3,4-thiadiazole (300 mg, 1.67 mmol), 2-phenoxyethanol (345 mg, 1.5 mmol) and sodium hydride (87 mg, 2.17 mmol) in DMF (3 mL). The product was purified by flash chromatography (0% to 10% MeOH (0.1% NH4The crude product was purified by elution gradient of 5-(4-(2-phenoxyethoxy)-1,3,4-thiadiazole (300 mg, 76% yield) as a colorless oil. MS (ESI): m/z 237.3 (calculated), 238.1 (M+H +, actual value). Steps 2 : 3-(2- Methoxyphenyl )-N-(5-(2- Phenoxyethoxy )-1,3,4- Thiadiazole -2- base ) Iononia ( Compound 27 ) SynthesisAccording to the general method CThe title compound was obtained from 2-bromo-5-(2-phenoxyethoxy)-1,3,4-thiadiazole (100 mg, 0.32 mmol), 3-(2-methoxyphenyl)isonicotinate (97 mg, 0.42 mmol), 1-methylimidazole (122 µL, 1.48 mmol) and TCFH (121 mg, 0.42 mmol) in DMF (1.5 mL). The crude product was purified by Prep-HPLC (column: Gemini® 5 um NX-C18 110 Å, 100×30 mm) (eluent gradient from 25% to 100% ACN in 10 mM ammonium bicarbonate). The isolated material was dissolved in ACN (1 mL), diluted with water (4 mL) and freeze-dried to provide 3-(2-methoxyphenyl)-N-(5-(2-phenoxyethoxy)-1,3,4-thiadiazol-2-yl)isonicotinate ( Compound 27) (110 mg, 58% yield) as a white solid. 1H NMR (400 MHz, DMSO- d 6 ) δ ppm 3.52 (3H, s), 4.35 (2H, m), 4.74 (2H, m), 7.00-6.94 (4H, m), 7.07 (1H, t, J= 7.5 Hz), 7.37-7.28 (4H, m), 7.63 (1H, d, J= 5.0 Hz), 8.61 (1H, s), 8.71 (1H, d, J= 5.0 Hz), 12.86 (1H, s). MS (ESI): m/z 448.5 (calculated), 449.2 (M+H +, actual value). Embodiment 28. 3-(2- Methoxyphenyl )-N-(5-((1- Phenylcyclopropyl ) Ethylene )-1,3,4- Thiadiazole -2- base ) Iononia ( Compound 28) Preparation Steps 1 Tributyl (5-((1- Phenylcyclopropyl ) Ethylene )-1,3,4- Thiadiazole -2- base ) Synthesis of carbamateAccording to the general method Efrom N-boc-2-amino-5-bromo[1,3,4]thiadiazole (300 mg, 1.05 mmol), (1-ethynylcyclopropyl)benzene (142 mg, 1.05 mmol), copper iodide (20 mg, 0.10 mmol), tetrakis(triphenylphosphine)palladium (122 mg, 0.11 mmol) and DIPA (147 µL, 1.05 mmol) in DMF (3 mL) to prepare the title compound. The crude product was purified by flash chromatography (elution gradient from 20% to 90% EA in hexanes) to provide Tertiary Butyl(5-((1-phenylcyclopropyl)ethynyl)-1,3,4-thiadiazol-2-yl)carbamate (280 mg, 78% yield). MS (ESI): m/z 341.43 (calculated), 342.1 (M+H +, actual value). Steps 2 : 5-((1- Phenylcyclopropyl ) Ethylene )-1,3,4- Thiadiazole -2- Synthesis of aminesAccording to the general method Ffrom Tertiary Butyl(5-((1-phenylcyclopropyl)ethynyl)-1,3,4-thiadiazol-2-yl)carbamate (280 mg, 0.82 mmol) and trifluoroacetic acid (628 µL, 8.20 mmol) in DCM (6 mL) gave the title compound. The reaction mixture was concentrated to dryness to provide 5-((1-phenylcyclopropyl)ethynyl)-1,3,4-thiadiazol-2-amine (198 mg, quantitative yield) as an orange solid. The crude material was used in the next step without further purification. MS (ESI): m/z 241.3 (calcd), 242.1 (M+H +, actual value). Steps 3 : 3-(2- Methoxyphenyl )-N-(5-((1- Phenylcyclopropyl ) Ethylene )-1,3,4- Thiadiazole -2- base ) Iononia ( Compound 28 ) SynthesisAccording to the general method CThe title compound was obtained from 5-((1-phenylcyclopropyl)ethynyl)-1,3,4-thiadiazolyl-2-amine (50 mg, 0.21 mmol), 3-(2-methoxyphenyl)isonicotinate (48 mg, 0.21 mmol), 1-methylimidazole (60 µL, 0.73 mmol) and TCFH (59 mg, 0.21 mmol) in DMF (1.5 mL). The crude product was purified by Prep-HPLC (column: Gemini® 5 um NX-C18 110 Å, 100×30 mm) (eluent gradient from 25% to 100% ACN in 10 mM ammonium bicarbonate). The purified material was dissolved in ACN (1 mL), diluted with water (4 mL) and freeze-dried to provide 3-(2-methoxyphenyl)-N-(5-((1-phenylcyclopropyl)ethynyl)-1,3,4-thiadiazol-2-yl)isonicotinate ( Compound 28)(45 mg, 48% yield), white solid. 1H NMR (400 MHz, DMSO- d 6) δ ppm 1.49-1.46 (2H, m), 1.65-1.62 (2H, m), 3.46 (3H, s), 6.97 (1H, d, J= 8.5 Hz), 7.07 (1H, t, J= 7.5 Hz), 7.27-7.23 (1H, m), 7.40-7.33 (6H, m), 7.68 (1H, d, J= 4.9 Hz), 8.62 (1H, s), 8.73 (1H, s), 13.39 (1H, s). MS (ESI): m/z 452.5 (calculated), 453.2 (M+H +, actual value). Embodiment 29. ( rac )-3-(2- Methoxyphenyl )-N-(5-((1- Phenoxypropane -2- base ) Oxygen )-1,3,4- Thiadiazole -2- base ) Iononia ( Compound 29) Preparation Steps 1 : 5-((1- Phenoxypropane -2- base ) Oxygen )-1,3,4- Thiadiazole -2- Synthesis of aminesAccording to the general method DThe title compound was obtained from 2-amino-5-bromo-1,3,4-thiadiazole (300 mg, 1.67 mmol), 1-phenoxy-2-propanol (380 mg, 2.5 mmol) and sodium hydride (87 mg, 2.17 mmol) in DMF (3 mL). The product was purified by flash chromatography (0% to 10% MeOH (0.1% NH4The crude product was purified by elution gradient of 4-(4-(4-(2-phenoxypropane-2-yl)oxy)-1,3,4-thiadiazolyl-2-amine (100 mg, 24%) as a colorless oil. MS (ESI): m/z 251.3 (calculated), 252.2 (M+H +, actual value). Steps 2 : 3-(2- Methoxyphenyl )-N-(5-((1- Phenoxypropane -2- base ) Oxygen )-1,3,4- Thiadiazole -2- base ) Iononia ( Compound 29 ) SynthesisAccording to the general method CThe title compound was obtained from 5-((1-phenoxypropan-2-yl)oxy)-1,3,4-thiadiazolyl-2-amine (50 mg, 0.19 mmol), 3-(2-methoxyphenyl)isosonicotinic acid (46 mg, 0.20 mmol), 1-methylimidazole (58 µL, 0.70 mmol) and TCFH (57 mg, 0.20 mmol) in DMF (1 mL). The crude product was purified by reverse phase C18 column chromatography (eluent gradient from 0% to 100% ACN in water containing 0.1% FA). The isolated product was dissolved in ACN (1 mL), diluted with water (4 mL) and freeze-dried to provide 3-(2-methoxyphenyl)-N-(5-((1-phenoxypropane-2-yl)oxy)-1,3,4-thiadiazol-2-yl)isonicotinamide ( Compound 29)(50 mg, 54% yield), white solid. 1H NMR (400 MHz, DMSO- d 6 ) δ ppm 1.31 (1H, d, J= 6.3 Hz), 1.47 (3H, d, J= 6.4 Hz), 3.50 (1H, s), 3.52 (3H, s), 4.24-4.18 (1H, m), 5.38-5.31 (1H, m), 7.00-6.92 (7H, m), 7.06 (1H, t, J= 7.5 Hz), 7.30- 7.25 (3H, m), 7.40-7.34 (2H, m), 7.63 (2H, t, J= 4.8 Hz), 8.60 (1H, s), 8.70 (1H, d, J= 5.0 Hz), 12.49 (1H, br s). MS (ESI): m/z 462.5 (calculated), 463.4 (M+H +, actual value). Embodiment 30. N-(5-(3- Hydroxyl -3- Methylbutyl -1- Alkyne -1- base )-1,3,4- Thiadiazole -2- base )-3-(2- Methoxyphenyl ) Iononia ( Compound 30) Preparation Steps 1 Tributyl (5-(3- Hydroxyl -3- Methylbutyl -1- Alkyne -1- base )-1,3,4- Thiadiazole -2- base ) Synthesis of carbamateAdd dry benzene (1 mL) to N-boc-2-amino-5-bromo[1,3,4]thiadiazole (300 mg, 1.05 mmol), 2-methyl-3-butyn-2-ol (88 mg, 1.05 mmol), copper iodide (20 mg, 0.10 mmol), dichlorobis-(triphenylphosphine)palladium(II) (15 mg, 0.02 mmol) and triphenylphosphine (11 mg, 0.04 mmol), followed by the addition of Et 3N (2 mL, 15.70 mmol). The mixture was degassed three times and filled with argon. The reaction mixture was stirred at 80 °C for 6 h, cooled to room temperature, diluted with water, and extracted with EA (15 mL×3). The combined organic extracts were heated in anhydrous Na 2SO 4Dry on ice, filter, and remove the solvent under reduced pressure. The crude product was purified by flash chromatography (elution gradient from 20% to 90% EA in hexanes) to provide Tertiary Butyl(5-(3-Hydroxy-3-methylbut-1-yn-1-yl)-1,3,4-thiadiazol-2-yl)carbamate (113 mg, 38% yield). MS (ESI): m/z 283.3 (calculated), 284.1 (M+H +, actual value). Steps 2 : 4-(5- Amine -1,3,4- Thiadiazole -2- base )-2- Methylbutyl -3- Alkyne -2- Synthesis of alcoholAccording to the general method Ffrom Tertiary Butyl(5-(3-Hydroxy-3-methylbut-1-yn-1-yl)-1,3,4-thiadiazol-2-yl)carbamate (112 mg, 0.39 mmol), trifluoroacetic acid (605 µL, 7.91 mmol) in DCM (2 mL) gave the title compound. The reaction mixture was concentrated to dryness to provide 4-(5-amino-1,3,4-thiadiazol-2-yl)-2-methylbut-3-yn-2-ol (73 mg, 100% yield) as an orange solid. The crude material was used in the next step without further purification. MS (ESI): m/z 183.2 (calcd), 184.1 (M+H +, actual value). Steps 3 : N -(5-(3- Hydroxyl -3- Methylbutyl -1- Alkyne -1- base )-1,3,4- Thiadiazole -2- base )-3-(2- Methoxyphenyl ) Iononia ( Compound 30 ) SynthesisAccording to the general method CThe title compound was obtained from 4-(5-amino-1,3,4-thiadiazol-2-yl)-2-methylbut-3-yn-2-ol (50 mg, 0.27 mmol), 3-(2-methoxyphenyl)isonicotinic acid (63 mg, 0.27 mmol), 1-methylimidazole (79 µL, 0.96 mmol) and TCFH (78 mg, 0.27 mmol) in DMF (1 mL). The crude product was purified by reverse phase C18 column chromatography (eluent gradient from 0% to 100% ACN in 0.1% FA). The isolated material was dissolved in ACN (1 mL), diluted with water (4 mL) and freeze-dried to provide N-(5-(3-hydroxy-3-methylbut-1-yn-1-yl)-1,3,4-thiadiazol-2-yl)-3-(2-methoxyphenyl)isonicotinate ( Compound 30)(40 mg, 37% yield), white solid. 1H NMR (400 MHz, DMSO- d 6 ) δ ppm 1.48 (6H, s), 3.45 (3H, s), 5.76 (1H, s), 6.97 (1H, d, J= 8.5 Hz), 7.07 (1H, t, J= 7.5 Hz), 7.40-7.36 (2H, m), 7.68 (1H, d, J= 5.0 Hz), 8.63 (1H, s), 8.74 (1H, d, J= 4.9 Hz), 13.40 (1H, s). MS (ESI): m/z 394.4 (calculated), 395.2 (M+H +, actual value). Embodiment 31. N-(5-((4- Chlorophenyl ) Ethylene )-1,3,4- Thiadiazole -2- base )-3-(2- Methoxyphenyl ) Iononia ( Compound 31) Preparation Steps 1 : (5- bromine -1,3,4- Thiadiazole -2- base ) Methanol SynthesisTo a stirred solution of ethyl 5-bromo-1,3,4-thiadiazole-2-carboxylate (1 g, 4.01 mmol) in MeOH (16 mL) cooled to 0°C, sodium borohydride was added portionwise. Once the gas evolution subsided, the reaction mixture was warmed to room temperature and stirred for 18 h. The reaction mixture was then diluted with EA and water was added. The layers were separated and the organic layer was washed with brine and concentrated in Na 2SO 4Dry on ice, filter, and concentrate under reduced pressure to provide (5-bromo-1,3,4-thiadiazol-2-yl)methanol (607 mg, 78% yield) as a yellow solid. The crude material was used in the next step without further purification. MS (ESI): m/z 193.9 (calcd), 195.1 (M+H +, actual value). Steps 2 : (5- bromine -1,3,4- Thiadiazole -2- base ) Synthesis of Methyl MethanesulfonateTo a stirred solution of (5-bromo-1,3,4-thiadiazol-2-yl)methanol (0.30 g, 1.54 mmol) in DCM (8 mL) was added methanesulfonyl chloride (0.16 mL, 2.00 mmol) and Et 3N (0.32 mL, 2.31 mmol). The reaction mixture was stirred for 1 h and diluted with water. The layers were separated and the organic layer was washed with brine and precipitated in Na 2SO 4Dry on ice, filter, and concentrate under reduced pressure. The residue was purified by flash chromatography (elution gradient from 10% to 50% EA in hexanes) to provide methyl (5-bromo-1,3,4-thiadiazol-2-yl)methanesulfonate (400 mg, 95% yield) as a yellow solid. MS (ESI): m/z 271.9 (calcd), 273.1-275-1 (M+H +, actual value). Steps 3 : 2- bromine -5-((4- Chlorophenoxy ) methyl )-1,3,4- Synthesis of ThiadiazoleTo a stirred solution of methyl 5-bromo-1,3,4-thiadiazol-2-yl)methanesulfonate (0.20 g, 0.73 mmol) in DMF (3 mL), 4-chlorophenol (86 mg, 0.67 mmol) and K 2CO 3(0.18 g, 1.33 mmol). The reaction mixture was stirred for 4.5 h before water and EA were added. The layers were separated and the aqueous layer was extracted with EA (x3). The combined organic layers were washed with brine (x3) and co-evaporated to dryness under reduced pressure with heptanes (x2). The residue was purified by flash chromatography (elution gradient from 5% to 100% EA in hexanes) to provide 2-bromo-5-((4-chlorophenoxy)methyl)-1,3,4-thiadiazole (168 mg, 83% yield) as a white solid. MS (ESI): m/z 303.9 (calcd.), 306.9 (M+H +, actual value). Steps 4 : N-(5-((4- Chlorophenoxy ) methyl )-1,3,4- Thiadiazole -2- base )-3-(2 Methoxyphenyl ) Iononia ( Compound 31 ) SynthesisAccording to the general method GFrom benzyl 2-bromo-5-((4-chlorophenoxy)methyl)-1,3,4-thiadiazole (0.26 g, 0.67 mmol), 3-(2-methoxyphenyl)isonicotinate (56 µL, 0.24 mmol), Cs 2CO 3(130 mg, 0.39 mmol), Pd 2(dba) 3(19 mg, 0.02 mmol), XantPhos (23 mg, 0.04 mmol), and dioxane (0.98 mL) to obtain the title compound. Purification by Prep-HPLC (column: Gemini® 5 um NX-C18 110 Å, 100×30 mm) (gradient of eluent from 50% to 100% MeOH in ammonium bicarbonate) provided N-(5-((4-chlorophenoxy)methyl)-1,3,4-thiadiazol-2-yl)-3-(2-methoxyphenyl)isonicotinate ( Compound 31)(13 mg, 15% yield), white solid. 1H NMR (400 MHz DMSO- d 6) δ ppm 3.40 (3H, s), 5.47 (2H, s), 6.93-6.91 (1H, m), 7.07-7.01 (3H, m), 7.36-7.32 (4H, m), 7.62 (1H, d, J =5.0 Hz), 8.58 (1H, s), 8.68 (1H, d, J =5.0 Hz), 13.14-13.11 (1H, br s). MS (ESI): m/z 452.1(calculated), 453.3(M+H +, actual value). Embodiment 32. N-(5-((4- Benzyl chloride ) Amine )-1,3,4- Thiadiazole -2- base )-3-( Naphthyl -1- base ) Iononia ( Compound 32) Preparation Steps 1 : 3-( Naphthyl -1- base ) Synthesis of Ethyl Isonicotinate - General approach HTo a stirred solution of methyl 3-bromoisonicotinate (0.51 mL, 2.31 mmol) in dioxane (12 mL) under hydrogen, naphthalene-1-boric acid (400 mg, 2.31 mmol), Pd(PPh 3) 4(140 mg, 0.11 mmol), and K 2CO 3(0.80 g, 5.79 mmol). The reaction mixture was degassed three times with argon countercurrent under reduced pressure, heated to 100 °C, and stirred for 2 h. The reaction mixture was cooled to room temperature and diluted with water and EA. The layers were separated and the organic layer was washed with brine and precipitated in Na 2SO 4Dry on ice, filter, and concentrate under reduced pressure. The residue was purified by flash chromatography (elution gradient from 0% to 40% EA in hexanes) to provide ethyl 3-(naphthyl-1-yl)isonicotinate (0.55 g, 90% yield) as a yellow oil. MS (ESI): m/z 263.1 (calcd), 264.1 (M+H +, actual value). Steps 2 : 3-( Naphthyl -1- base ) Synthesis of isonicotinic acidTo a solution of ethyl 3-(naphthyl-1-yl) isonicotinate (450 mg, 1.71 mmol) in THF (4.30 mL) was added a solution of lithium hydroxide (144 mg, 3.42 mmol) in water (4.30 mL). The reaction mixture was stirred for 2 h. The organic phase was separated, and the slightly yellow aqueous phase (pH 8-9) was collected and acidified with HCl 1M until a yellow precipitate was formed (pH 5-4). The precipitate was collected by filtration and dried to provide 3-(naphthyl-1-yl) isonicotinate as a yellow solid (350 mg, 82% yield). MS (ESI): m/z 249.08 (calculated), 250.2 (M+H +, actual value). Steps 3 : N-(5-((4- Benzyl chloride ) Amine )-1,3,4- Thiadiazole -2- base )-3-( Naphthyl -1- base ) Iononia ( Compound 32 ) SynthesisAccording to the general method CFrom DMF (2 mL) N 2-(4-chlorobenzyl)-1,3,4-thiadiazole-2,5-diamine (48 mg, 0.20 mmol), 3-(naphthyl-1-yl)isonicotinic acid (50 mg, 0.20 mmol), 1-methylimidazole (58 µL, 0.70 mmol), and TCFH (57 mg, 0.20 mmol) to obtain the title compound. The residue was purified by flash chromatography (gradient of eluent from 30% to 100% EA in hexanes) to provide N-(5-((4-chlorobenzyl)amino)-1,3,4-thiadiazole-2-yl)-3-(naphthyl-1-yl)isonicotinamide ( Compound 32)(41 mg, 43% yield), white solid. 1H NMR (400 MHz DMSO- d 6) δ ppm 4.34 (2H, d, J =5.8 Hz), 7.34-7.26 (4H, m), 7.40 (2H, m), 7.53-7.46 (3H, m), 7.71 (1H, d, J =4.9 Hz), 7.94 (2H, t, J =6.9 Hz), 8.61 (1H, s), 8.77 (1H, d, J =5.0 Hz), 12.58 (1H, br, s). MS (ESI): m/z 471.1(calculated), 472.3(M+H +, actual value). Embodiment 33. N-(5-((4- Benzyl chloride ) Sulfur )-1,3,4- Thiadiazole -2- base )-3-( Naphthyl -1- base ) Iononia ( Compound 33) Preparation According to the general method CThe title compound was obtained from 5-((4-chlorobenzyl)thio)-1,3,4-thiadiazol-2-yl)-3-(naphthyl-1-yl)isonicotinic acid (50 mg, 0.20 mmol), 1-methylimidazole (57 µL, 0.70 mmol), and TCFH (57 mg, 0.20 mmol) in DMF (2 mL). The residue was purified by flash chromatography (gradient of eluent from 30% to 100% EA in hexanes) to provide N-(5-((4-chlorobenzyl)thio)-1,3,4-thiadiazol-2-yl)-3-(naphthyl-1-yl)isonicotinamide ( Compound 33)(60 mg, 61% yield), white solid. 1H NMR (400 MHz DMSO- d 6) δ ppm 4.38 (2H, s), 7.42-7.37 (2H, m), 7.53-7.46 (3H, m), 7.79 (1H, dd, J =5.0, 0.8 Hz), 7.95-7.92 (2H, m), 8.66 (1H, s), 8.82 (1H, d, J =5.0 Hz), 13.30 (1H, br, s). MS (ESI): m/z 488.1 (calculated), 489.2(M+H +, actual value). Embodiment 34. (E)-N-(5-(4- Chlorothenyl )-1,3,4- Thiadiazole -2- base )-3-( Naphthyl -1- base ) Iononia ( Compound 34) Preparation According to the general method CThe title compound was obtained from (E)-5-(4-chlorostyryl)-1,3,4-thiadiazol-2-amine (48 mg, 0.20 µmol), 3-(naphthyl-1-yl)isonicotinic acid (50 mg, 0.20 mmol), 1-methylimidazole (58 µL, 0.70 mmol), and TCFH (57 mg, 0.20 mmol) in DMF (2 mL). The residue was purified by flash chromatography (gradient of eluent from 30% to 100% EA in hexanes) to provide (E)-N-(5-(4-chlorostyryl)-1,3,4-thiadiazol-2-yl)-3-(naphthyl-1-yl)isonicotinamide ( Compound 34)(86 mg, 91% yield), white solid. 1H NMR (400 MHz DMSO- d 6) δ ppm 7.47-7.37 (6H, m), 7.55-7.46 (3H, m), 7.67-7.64 (2H, m), 7.86 (1H, d, J =5.0 Hz), 7.96 (2H, d, J =8.2 Hz), 8.69 (1H, s), 8.86 (1H, d, J =5.0 Hz), 13.34-13.31 (1H, br, s). MS (ESI): m/z 468.1(calculated), 469.2(M+H +, actual value). Embodiment 35. N-(5-(4- Chlorophenethyl )-1,3,4- Thiadiazole -2- base )-3-( Naphthyl -1- base ) Iononia ( Compound 35) Preparation p-(E)-N-(5-(4-chlorophenylvinyl)-1,3,4-thiadiazole-2-yl)-3-(naphthyl-1-yl)isosonicotinamide ( 34, 86 mg, 0.18 mmol) in DMA (4 mL) was added palladium (10 wt.%) on carbon (20 mg, 18 µmol). The reaction mixture was degassed three times with hydrogen countercurrent under reduced pressure and stirred for 36 h under standard hydrogen atmosphere. The reaction mixture was filtered through a celite pad and concentrated under reduced pressure. Purification by Prep-HPLC (column: Gemini® 5 um NX-C18 110Å, 100×30 mm) (elution gradient from 50% to 100% ACN in 10 mM ammonium formate) provided N-(5-(4-chlorophenethyl)-1,3,4-thiadiazol-2-yl)-3-(naphthyl-1-yl)isonicotinamide ( Compound 35) (16.5 mg, 19% yield) as a white solid. 1H NMR (400 MHz DMSO- d 6) δ ppm 2.90 (2H, t, J =7.6 Hz), 3.15 (2H, t, J =7.6 Hz), 7.18 (2H, d, J =8.1 Hz), 7.26 (2H, d, J =8.1 Hz), 7.39 (2H, t, J =7.3 Hz), 7.52-7.45 (3H, m), 7.78 (1H, d, J =5.0 Hz), 7.93 (2H, dd, J =8.2, 4.5 Hz), 8.64 (1H, s), 8.80 (1H, d, J =4.9 Hz), 13.10-13.05 (1H, br, s). MS (ESI): m/z 470.1(calculated), 471.3(M+H +, actual value). Embodiment 36. N-(5-((4- Chlorophenyl ) Ethylene )-1,3,4- Thiadiazole -2- base )-3-( Naphthyl -1- base ) Iononia ( Compound 36) Preparation According to the general method CThe title compound was obtained from 5-((4-chlorophenyl)ethynyl)-1,3,4-thiadiazol-2-yl)-3-(naphthyl-1-yl)isonicotinic acid (50 mg, 0.20 mmol), 1-methylimidazole (58 µL, 0.70 mmol), and TCFH (57 mg, 0.20 mmol) in DMF (2 mL). The crude product was purified by flash chromatography (gradient of eluent from 50% to 100% EA in hexanes) to provide N-(5-((4-chlorophenyl)ethynyl)-1,3,4-thiadiazol-2-yl)-3-(naphthyl-1-yl)isonicotinamide ( Compound 36)(12.7 mg, 14% yield), white solid. 1H NMR (400 MHz DMSO- d 6) δ ppm 7.43-7.39 (2H, m), 7.55-7.47 (5H, m), 7.62 (2H, d, J =8.3 Hz), 7.85 (1H, d, J =5.0 Hz), 7.94 (2H, d, J =8.2 Hz), 8.69 (1H, s), 8.85 (1H, d, J =5.0 Hz), 13.63 (1H, br, s). MS (ESI): m/z 466.1 (calculated), 467.2 (M+H +, actual value). Embodiment 37. N-(5-((4- Chlorophenyl ) Ethylene )-1,3,4- Thiadiazole -2- base )-3-( Quinoline -4- base ) Iononia ( Compound 37) Preparation Steps 1 : 3-( Quinoline -4- base ) Synthesis of Ethyl IsonicotinateAccording to the general method HFrom methyl 3-bromoisonicotinate (0.51 mL, 2.31 mmol), quinoline-4-boronic acid (0.4 g, 2.31 mmol), Pd(PPh 3) 4(0.14 g, 0.12 mmol), and K 2CO 3(0.8 g, 5.79 mmol) was used to prepare the title compound, except that the reaction mixture was stirred at 100 °C for 18 h. The residue was purified by flash chromatography (elution gradient from 30% to 100% EA in hexanes) to provide ethyl 3-(quinolin-4-yl)isonicotinate (167 mg, 27% yield) as a colorless oil. MS (ESI): m/z 264.1 (calcd), 265.2 (M+H +, actual value). Steps 2 : 3-( Quinoline -4- base ) Synthesis of isonicotinic acidTo a solution of ethyl 3-(quinolin-4-yl)isonicotinate (80 mg, 0.30 mmol) in THF (1.30 mL) was added a solution of lithium hydroxide (37 mg, 1.51 mmol) in water (1.30 mL). The mixture was stirred for 18 h, the solvent was evaporated under reduced pressure and the resulting light yellow solid was used without further purification. MS (ESI): m/z 250.07 (calculated), 251.2 (M+H +, actual value). Steps 3 : N-(5-((4- Chlorophenyl ) Ethylene )-1,3,4- Thiadiazole -2- base )-3-( Quinoline -4- base ) Iononia ( Compound 37 ) SynthesisAccording to the general method CThe title compound was obtained from 5-((4-chlorophenyl)ethynyl)-1,3,4-thiadiazol-2-amine (47 mg, 0.20 mmol), 3-(quinolin-4-yl)isonicotinic acid (50 mg, 0.20 mmol), 1-methylimidazole (58 µL, 0.70 mmol), and TCFH (57 mg, 0.20 mmol) in DMF (2 mL). The residue was purified by flash chromatography (gradient of eluent from 0% to 20% MeOH in DCM) to provide N-(5-((4-chlorophenyl)ethynyl)-1,3,4-thiadiazol-2-yl)-3-(quinolin-4-yl)isonicotinamide ( Compound 37)(15 mg, 16% yield), yellow solid. 1H NMR (400 MHz DMSO- d 6) δ ppm 7.54-7.44 (5H, m), 7.62-7.59 (2H, m), 7.74-7.70 (1H, m), 7.95 (1H, d, J =5.1 Hz), 8.04 (1H, d, J =8.5 Hz), 8.73 (1H, s), 8.93-8.91 (2H, m), 13.78-13.73 (1H, br, s). MS (ESI): m/z 467.1(calculated), 468.2(M+H +, actual value). Embodiment 38.N-(5-((4-chlorophenyl)ethynyl)-1,3,4-thiadiazol-2-yl)-3-(isoquinolin-4-yl)isonicotinamide ( Compound 38) Preparation Steps 1 : (3-( Isoquinoline -4- base ) Synthesis of Ethyl IsonicotinateAccording to the general method HMethyl 3-bromoisonicotinate (62 mg, 0.29 mmol), 4-isoquinolineboronic acid (31 µL, 0.29 mmol), Pd(PPh 3) 4(17 mg, 15 µmol), and K 2CO 3(0.10 g, 0.72 mmol) in water (0.39 mL) gave the title compound except that the reaction mixture was stirred at 90 °C for 4 h. The crude product was purified by flash chromatography (eluent gradient from 50% to 100% EA in hexanes) to provide ethyl (3-(isoquinolin-4-yl)isonicotinate (57 mg, 75% yield) as a white solid. MS (ESI): m/z 264.1 (calcd), 265.2 (M+H +, actual value). Steps 2 : 3-( Isoquinoline -4- base ) Synthesis of isonicotinic acidTo a stirred solution of ethyl 3-(isoquinolin-4-yl)isonicotinate (57 mg, 0.22 mmol) in THF (0.98 mL) was added a solution of LiOH (27 mg, 1.08 mmol) in water (0.98 mL). The reaction mixture was stirred for 18 h before the volatiles were removed under reduced pressure to provide 3-(isoquinolin-4-yl)isonicotinate (53 mg, quantitative yield) as a yellow solid. The crude material was used in the next step without further purification. MS (ESI): m/z 250.1 (calcd), 251.2 (M+H +, actual value). Steps 3 : N-(5-((4- Chlorophenyl ) Ethylene )-1,3,4- Thiadiazole -2- base )-3-( Isoquinoline -4- base ) Iononia ( Compound 38 ) SynthesisAccording to the general method CThe title compound was obtained from 5-((4-chlorophenyl)ethynyl)-1,3,4-thiadiazol-2-amine (48 mg, 0.20 mmol), 3-(isoquinolin-4-yl)isonicotinate (50 mg, 0.20 mmol), 1-methylimidazole (58 µL, 0.70 mmol), and TCFH (57 mg, 0.20 mmol) in DMF (2 mL). The crude product was purified by flash chromatography (elution gradient from 1% to 10% MeOH in DCM) to provide N-(5-((4-chlorophenyl)ethynyl)-1,3,4-thiadiazol-2-yl)-3-(isoquinolin-4-yl)isonicotinate ( Compound 38)(13 mg, 14% yield), white solid. 1H NMR (400 MHz DMSO- d 6) δ ppm 7.50 (3H, d, J =8.1 Hz), 7.71-7.61 (4H, m), 7.92 (1H, d, J =5.0 Hz), 8.16 (1H, d, J =7.7 Hz), 8.39 (1H, s), 8.75 (1H, s), 8.89 (1H, s), 9.33 (1H, s), 13.73 (1H, br, s). MS (ESI): m/z 467.1(calculated), 468.2(M+H +, actual value). Embodiment 39.N-(5-((4-chlorophenyl)ethynyl)-1,3,4-thiadiazol-2-yl)-3-(isoquinolin-4-yl)isonicotinamide ( Compound 39) Preparation - General approach I 3-(2-methoxyphenyl)-N-(5-(4-phenylbut-1-yn-1-yl)-1,3,4-thiadiazol-2-yl)isonicotinamide ( 20, 5 mg, 11 µmol) in DMA (0.11 mL) was added palladium (10 wt.%) on carbon (1.21 mg, 1.14 µmol). The reaction mixture was degassed three times with hydrogen countercurrent under reduced pressure and stirred for 3 h under standard hydrogen atmosphere. The reaction mixture was diluted with EA and water was added. The layers were separated and the organic layer was collected, washed with brine, and precipitated in Na 2SO 4The mixture was dried on ice, filtered through a diatomaceous earth pad, and concentrated under reduced pressure to provide N-(5-((4-chlorophenyl)ethynyl)-1,3,4-thiadiazol-2-yl)-3-(isoquinolin-4-yl)isonicotinate ( Compound 39)(5 mg, quantitative yield), white solid. 1H NMR (400 MHz DMSO- d 6) δ ppm 1.63-1.58 (2H, m), 1.74-1.65 (2H, m), 2.60 (2H, t, J =1.1 Hz), 2.99 (2H, t, J =7.4 Hz), 3.46 (3H, s), 6.96 (1H, d, J =8.3 Hz), 7.05 (1H, t, J =7.4 Hz), 7.19-7.15 (3H, m), 7.28-7.24 (2H, m), 7.38-7.34 (2H, m), 7.64 (1H, d, J =5.0 Hz), 8.59-8.58 (1H, s), 8.70 (1H, d, J =4.8 Hz), 12.92 (1H, br, s). MS (ESI): m/z 444.2 (calculated), 445.2(M+H +, actual value). Embodiment 40.N-(5-((4-chlorophenyl)ethynyl)-1,3,4-thiadiazol-2-yl)-3-(isoquinolin-4-yl)isonicotinamide ( Compound 40) Preparation According to the general method IFrom 3-(2-methoxyphenyl)-N-(5-(4-phenylbut-1-yn-1-yl)-1,3,4-thiadiazol-2-yl) isonicotinoylamide ( twenty one, 5 mg, 11 µmol) and palladium on carbon (10 wt.%) (1.21 mg, 1.14 µmol) in DMA (0.11 mL) to give the title compound to provide N-(5-((4-chlorophenyl)ethynyl)-1,3,4-thiadiazol-2-yl)-3-(isoquinolin-4-yl)isonicotinoylamide ( Compound 40)(5 mg, quantitative yield), white solid. 1H NMR (400 MHz DMSO- d 6) δ ppm 2.19-2.12 (2H, m), 3.17-3.13 (2H, m), 3.46 (3H, s), 4.04-4.01 (2H, m), 6.96-6.90 (4H, m), 7.06 (1H, td, J =7.5, 1.0 Hz), 7.30-7.26 (2H, m), 7.39-7.35 (2H, m), 7.64 (1H, d, J =5.0 Hz), 8.61 (1H, s), 8.71 (1H, d, J =5.0 Hz), 12.96-12.94 (1H, br, s). MS (ESI): m/z 446.1(calculated), 447.3 (M+H +, actual value). Embodiment 41. N-(5-((4- Chlorophenyl ) Ethylene )-1,3,4- Thiadiazole -2- base )-1-(2- Methoxyphenyl )-1 H - Imidazole -5- Carboxamide ( Compound 41) Preparation Steps 1 : (2- Methoxyphenyl ) Synthesis of ethyl glycineTo a stirred solution of ethyl bromoacetate (2 mL, 15.40 mmol) in DMF (46 mL), o-anisidine (2 mL, 16.20 mmol) and K 2CO 3(4.48 g, 32.50 mmol). Heat the reaction mixture to 90 °C and stir for 1.5 h. The reaction mixture is then cooled to room temperature, diluted with EA, and water is added. The layers are separated, and the organic layer is collected, washed with brine, and precipitated in Na 2SO 4Dry over medium, filter, and concentrate under reduced pressure. The residue was purified by flash chromatography (elution gradient from 0% to 50% EA in hexanes) to provide ethyl (2-methoxyphenyl)glycine (2.42 g, 72% yield) as a colorless oil. MS (ESI): m/z 209.1 (calcd), 210.2 (M+H +, actual value). Steps 2 : N- Acetyl -N-(2- Methoxyphenyl ) Synthesis of ethyl glycineTo a stirred solution of ethyl (2-methoxyphenyl)glycine (2.42 g, 11.60 mmol) in dry THF (29 mL) cooled to 0°C, add acetyl chloride (0.99 mL, 13.9 mmol) dropwise. Then add Et 3The reaction mixture was stirred for 15 min before adding N (1.62 mL, 11.6 mmol). The reaction mixture was then warmed to room temperature and stirred for 2 h before diluting with EA and water. The layers were separated and the organic layer was collected, washed with brine, and precipitated at 4 °C in Na 2SO 4Dry on ice, filter, and concentrate under reduced pressure. The residue was purified by flash chromatography (elution gradient from 5% to 40% EA in hexanes) to provide ethyl N-acetyl-N-(2-methoxyphenyl)glycine (2.57 g, 88% yield) as a yellow oil. MS (ESI): m/z 251.1 (calculated), 252.3 (M+H +, actual value). Steps 3 : 2- XIANGJI -1-(2- Methoxyphenyl )-1 H - Imidazole -5- Synthesis of Ethyl CarboxylateTo a stirred solution of ethyl N-acetyl-N-(2-methoxyphenyl)glycine (0.10 g, 0.40 mmol) in benzene (0.19 mL) cooled to 0 °C, ethyl formate (0.11 mL, 1.33 mmol) and KOtBu (45 mg, 0.40 mmol) were added. The reaction mixture was allowed to stand at 0 °C for 18 h before water was added. The layers were separated and the aqueous layer was treated with potassium thiocyanate (39 µL, 0.40 mmol) and concentrated. HCl (0.13 mL, 1.59 mmol) was added and stirred for 2 h before heating to 60 °C. The reaction mixture was then cooled to room temperature and extracted with EA. The organic extracts were concentrated under reduced pressure. The residue was purified by flash chromatography (elution gradient from 10% to 100% EA in hexanes) to provide 2-hydroxy-1-(2-methoxyphenyl)-1 H-imidazole-5-carboxylic acid ethyl ester (37 mg, 34% yield) as a yellow solid. MS (ESI): m/z 278.1 (calculated), 279.1 (M+H +, actual value). Steps 4 : 1-(2- Methoxyphenyl )-1 H - Imidazole -5- Synthesis of Ethyl CarboxylateFor H 2WO 4(2.54 mg, 10.8 µmol) in a mixture of water (2 mL) and ethanol (2 mL) at 0°C, add hydrogen peroxide (0.19 mL, 1.89 mmol) and ethyl 2-hydroxy-1-(2-methoxyphenyl)-1H-imidazole-5-carboxylate (0.15 g, 0.54 mmol). The reaction mixture was warmed to room temperature and NaHCO was added.3The solution was stirred for 4.5 h before saturation. The reaction mixture was then concentrated under reduced pressure and the aqueous layer was extracted with EA. The organic extract was concentrated under reduced pressure to provide 1-(2-methoxyphenyl)-1 H-Ethyl imidazole-5-carboxylate (0.13 g, 96%) as a yellow oil. The crude material was used in the next step without further purification. MS (ESI): m/z 246.1 (calcd.), 247.1 (M+H +, actual value). Steps 5 : 1-(2- Methoxyphenyl )-1 H - Imidazole -5- Synthesis of Carboxylic Acids1-(2-methoxyphenyl)-1 HTo a stirred solution of ethyl imidazole-5-carboxylate (0.13 g, 0.52 mmol) in THF (1.30 mL) was added a solution of LiOH (37 mg, 1.56 mmol) in water (1.30 mL). The reaction mixture was stirred for 18 h before concentration. HCl was added and the volatiles were removed under reduced pressure to provide 1-(2-methoxyphenyl)-1 H-imidazole-5-carboxylic acid (112 mg, quantitative yield) as a white solid. The crude material was used in the next step without further purification. MS (ESI): m/z 218.1 (calcd.), 219.2 (M+H +, actual value). Steps 6 : N-(5-((4- Chlorophenyl ) Ethylene )-1,3,4- Thiadiazole -2- base )-1-(2- Methoxyphenyl )-1 H - Imidazole -5- Carboxamide ( Compound 41 ) SynthesisAccording to the general method CFrom 5-((4-chlorophenyl)ethynyl)-1,3,4-thiadiazolyl-2-amine (14 mg, 64.2 µmol), 1-(2-methoxyphenyl)-1 H-imidazole-5-carboxylic acid (15 mg, 64.20 µmol), 1-methylimidazole (20 µL, 0.23 mmol), and TCFH (18 mg, 64.20 µmol) to obtain the title compound. Purification by Prep-HPLC (column: Gemini® 5 um NX-C18 110 Å, 100×30 mm) (gradient of eluent from 70% to 100% ACN in ammonium bicarbonate) provided N-(5-((4-chlorophenyl)ethynyl)-1,3,4-thiadiazol-2-yl)-1-(2-methoxyphenyl)-1 H-Imidazole-5-carboxylic acid amide ( Compound 41)(13 mg, 14% yield), white solid. 1H NMR (400 MHz DMSO- d 6) δ ppm 3.61 (3H, s), 7.00 (1H, td, J =7.6, 1.2 Hz), 7.12 (1H, dd, J =8.3, 1.2 Hz), 7.27 (1H, dd, J =7.8, 1.7 Hz), 7.41-7.37 (1H, m), 7.49-7.46 (2H, m), 7.58-7.55 (2H, m), 7.71 (2H, s). MS (ESI): m/z 435.1 (calculated), 436.1 (M+H +, actual value). Embodiment 42. 3-(2- Methoxyphenyl )-N-(5- methyl -1,3,4- Thiadiazole -2- base ) Iononia ( Compound 42) Preparation According to the general method CThe title compound was obtained from 2-amino-5-methyl-1,3,4-thiadiazole (50 mg, 0.44 mmol), 3-(2-methoxyphenyl) isonicotinoic acid (0.10 g, 0.44 mmol), 1-methylimidazole (0.13 mL, 1.53 mmol), and TCFH (0.13 g, 0.44 mmol) in DMF (2 mL). The residue was purified by flash chromatography (elution gradient from 1% to 10% MeOH in DCM) to provide 3-(2-methoxyphenyl)-N-(5-methyl-1,3,4-thiadiazole-2-yl) isonicotinoic acid amide ( Compound 42)(99 mg, 70% yield), white solid. 1H NMR (400 MHz DMSO- d 6) δ ppm 2.59 (3H, s), 3.46 (3H, s), 6.96 (1H, d, J =8.6 Hz), 7.06-7.02 (1H, m), 7.37-7.33 (2H, m), 7.63 (1H, d, J =5.0 Hz), 8.60 (1H, s), 8.70 (1H, d, J =5.0 Hz), 12.88 (1H, s). MS (ESI): m/z 326.1(calculated), 327.1(M+H +, actual value). Embodiment 43. N-(5-((4- Chlorophenyl ) Ethylene )-1,3,4- Thiadiazole -2- base )-3-(2- fluorine -6-(2- Linoethoxy ) Phenyl ) Iononia ( Compound 43) Preparation Steps 1 : 3-(2- fluorine -6- Hydroxyphenyl ) Synthesis of isonicotinic acidTo a stirred solution of methyl 3-bromoisonicotinate (0.25 mL, 1.81 mmol) in dioxane (9.68 mL) with hydrogen gas, (2-fluoro-6-hydroxyphenyl)boronic acid (0.38 g, 2.36 mmol), XPhos Pd G4 (78 mg, 0.09 mmol), and K 3PO 4(0.78 g, 3.63 mmol) in water (2.42 mL). The reaction mixture was degassed three times with argon countercurrent under reduced pressure, heated to 80 °C, and stirred for 1 h. The reaction mixture was then cooled to room temperature, diluted with MeOH, and filtered through a celite pad. The filtrate was evaporated and the residue was purified by trituration with DCM to provide 3-(2-fluoro-6-hydroxyphenyl)isonicotinate (308 mg, 73% yield) as a light brown solid. MS (ESI): m/z 233.0 (calculated), 234.1 (M+H +, actual value). Steps 2 : 3-(2- fluorine -6-(2- Phytophenone Ethoxy ) Phenyl ) Synthesis of isonicotinic acidTo a stirred solution of 3-(2-fluoro-6-hydroxyphenyl)isonicotinate (0.18 g, 0.66 mmol) in DMF (2.00 mL), add K 2CO 3(0.20 g, 1.46 mmol) and 4-(2-chloroethyl) Phenylpyridinium (0.38 mL, 2.65 mmol). Heat the reaction mixture to 95°C, stir for 3 h, cool to room temperature and dilute with water (10 mL) and EA (10 mL). Separate the layers and extract the aqueous layer with EA (2×10 mL). Wash the combined organic layer with brine (30 mL) and precipitate in MgSO 4The residue was dried over 400 °C, filtered, and concentrated under reduced pressure. The residue was dissolved in a mixture of water (0.65 mL) and THF (2.35 mL), and LiOH (47 mg, 1.96 mmol) was added. The reaction mixture was stirred at room temperature for 1 h before the volatiles were removed under reduced pressure. The residue was purified by reverse phase C18 column chromatography (eluent gradient from 0% to 40% ACN in ammonium bicarbonate 10 mM, pH=10) to provide 3-(2-fluoro-6-(2- (1-(4-( ...+, actual value). Steps 3 : N-(5-((4- Chlorophenyl ) Ethylene )-1,3,4- Thiadiazole -2- base )-3-(2- fluorine -6-(2- Linoethoxy ) Phenyl ) Iononia ( Compound 43 ) Synthesis5-((4-chlorophenyl)ethynyl)-1,3,4-thiadiazolyl-2-amine ( 48, 26 mg, 0.11 mmol) in DMF (0.55 mL) was stirred and 3-(2-fluoro-6-(2- Phenylethoxy)phenyl)isonicotinic acid (40 mg, 0.11 mmol) and 1-methylimidazole (32 µL, 0.38 mmol). Then, a solution of TCFH (32 mg, 0.11 mmol) in DMF (0.52 mL) was added dropwise. The reaction mixture was stirred at room temperature for 1 h, diluted with water (10 mL), and extracted with a mixture of chloroform/isopropanol (3/1) (2×10 mL). The combined organic layer was precipitated on MgSO 4The residue was purified by Prep-HPLC (column: Gemini® 5 um NX-C18 110 Å, 100×30 mm) (eluent gradient from 50% to 100% MeOH in 10 mM ammonium formate) to provide N-(5-((4-chlorophenyl)ethynyl)-1,3,4-thiadiazol-2-yl)-3-(2-fluoro-6-(2- Phenylethoxy)phenyl)isonicotinamide ( Compound 43)(4 mg, 6.4% yield), light yellow solid. 1H NMR (400 MHz, DMSO- d 6 ) δ ppm 2.16 (4H, m), 2.37 (2H, m), 3.39 (4H, m), 3.79 (1H, m), 4.02 (1H, m), 6.85 (2H, br s), 7.29 (1H, s), 7.51 (2H, d, J= 8.3 Hz), 7.60 (2H, d, J= 8.2 Hz), 8.04 (1H, br s), 8.51 (2H, br s). 19F NMR (376 MHz, DMSO- d 6 ) δ ppm -115.0 (1F, s). MS (ESI): m/z 563.1(calculated), 564.3(M+H +, actual value). Embodiment 44. N-(5-((4- Chlorophenyl ) Ethylene )-1,3,4- Thiadiazole -2- base )-3-(3-(2- Phytophenone Ethoxy ) Phenyl ) Iononia ( Compound 44) Preparation Steps 1 : 3-(3- Hydroxyphenyl ) Synthesis of Methyl IsonicotinateAccording to the general method HFrom methyl 3-bromoisonicotinate (0.25 mL, 1.81 mmol), 3-hydroxyphenylboronic acid (0.33 g, 2.36 mmol), XPhos Pd G4 (78 mg, 0.09 mmol), and K 3PO 4(0.78 g, 3.63 mmol) in water (2 mL) to obtain the title compound to provide methyl 3-(3-hydroxyphenyl)isonicotinate (416 mg, 99% yield) as a clear oil. MS (ESI): m/z 229.1 (calculated), 230.1 (M+H +, actual value). Steps 2 : 3-(3-(2- Linoethoxy ) Phenyl ) Synthesis of Methyl IsonicotinateTo a stirred solution of methyl 3-(3-hydroxyphenyl)isonicotinate (0.20 g, 0.91 mmol) in DMF (5 mL), add K 2CO 3(0.15 g, 1.09 mmol) and 4-(2-chloroethyl) Phenyline (0.17 g, 1.09 mmol). The reaction mixture was heated to 95 °C and stirred for 3 h, cooled to room temperature and diluted with water (10 mL) and DCM (10 mL). The layers were separated and the aqueous layer was extracted with DCM (2×10 mL). The combined organic layers were washed with brine (30 mL) and precipitated in MgSO 4The residue was purified by flash chromatography (eluent gradient from 0% to 10% MeOH in DCM (0.1% Et3N)) to provide 3-(3-(2- Methyl (1,2-(2-((1-( ...+, actual value). Steps 3 : 3-(3-(2- Linoethoxy ) Phenyl ) Synthesis of isonicotinic acid3-(3-(2- To a stirred solution of methyl 1-(2-(2-(2-(2-(2-(2-(2-(2-(2-(2-(2-(2-(2- (Phenylethoxy)phenyl)isonicotinic acid (0.19 g, 99% yield) as an off-white solid. The crude material was used in the next step without further purification. MS (ESI): m/z 328.1 (calcd), 329.1 (M+H +, actual value). Steps 4 : N-(5-((4- Benzyl chloride ) Oxygen )-1,3,4- Thiadiazole -2- base )-3-(3-(2- Linoethoxy ) Phenyl ) Iononia ( Compound 44 ) SynthesisAccording to the general method CFrom 5-((4-chlorophenyl)ethynyl)-1,3,4-thiadiazolyl-2-amine (30 mg, 0.13 mmol), 3-(3-(2- The title compound was obtained by mixing 1-(4-( ... Phenylethoxy)phenyl)isonicotinamide ( Compound 44) (11.6 mg, 17% yield), off-white solid. 1H NMR (400 MHz, DMSO- d 6 ) δ ppm 2.46 (4H, m), 2.70 (2H, appt, J= 5.5 Hz), 3.56 (4H, m), 4.03 (2H, appt, J= 5.6 Hz), 6.95-7.00 (3H, m), 7.33 (1H, t, J= 7.7 Hz), 7.57 (2H, d, J= 8.3 Hz), 7.70 (3H, m), 8.74 (1H, d, J= 5.0 Hz), 8.77 (1H, s), 13.32 (1H, br s). MS (ESI): m/z 545.1(calculated), 546.3(M+H +, actual value). Embodiment 45. N-(5-((4- Chlorophenyl ) Ethylene )-1,3,4- Thiadiazole -2- base )-3-(3-(2-( Dimethylamino ) Ethoxy ) Phenyl ) Iononia ( Compound 45 ) Preparation Steps 1 : 3-(3-(2-( Dimethylamino ) Ethoxy ) Phenyl ) Synthesis of isonicotinic acidTo a stirred solution of methyl 3-(3-hydroxyphenyl)isonicotinate (0.21 g, 0.91 mmol) in DMF (4.54 mL), add 2-chloro- N, N-Dimethylethylamine hydrochloride (0.16 g, 1.09 mmol) and K 2CO 3(0.28 g, 2.00 mmol). The reaction mixture was heated to 95 °C and stirred for 24 h, cooled to room temperature and diluted with water (10 mL) and DCM (10 mL). The layers were separated and the aqueous layer was extracted with DCM (2×10 mL). The combined organic layers were washed with brine (30 mL) and precipitated in MgSO4The mixture was dried over 400 °C, filtered, and concentrated under reduced pressure. The residue was dissolved in a mixture of water (0.52 mL) and THF (2 mL), and LiOH (25 mg, 1.05 mmol) was added. The reaction mixture was stirred at room temperature for 2 h before the volatiles were removed under reduced pressure to provide 3-(3-(2-(dimethylamino)ethoxy)phenyl)isonicotinate (0.15 g, 57% yield) as an off-white solid. The crude material was used in the next step without further purification. MS (ESI): m/z 286.1 (calcd), 287.2 (M+H +, actual value). Steps 2 : N-(5-((4- Benzyl chloride ) Oxygen )-1,3,4- Thiadiazole -2- base )-3-(3-(2-( Dimethylamino ) Ethoxy ) Phenyl ) Iononia ( Compound 45 ) SynthesisAccording to the general method CThe title compound was obtained from 5-((4-chlorophenyl)ethynyl)-1,3,4-thiadiazolyl-2-amine (40 mg, 0.17 mmol), 3-(3-(2-(dimethylamino)-ethoxy)phenyl)isonicotinic acid (49 mg, 0.17 mmol), 1-methylimidazole (49 µL, 0.59 mmol), and TCFH (49 mg, 0.17 mmol) in DMF (0.50 mL). The crude product was purified by reverse phase C18 column chromatography (eluent gradient from 5% to 40% ACN in 10 mM ammonium bicarbonate) to provide N-(5-((4-chlorobenzyl)oxy)-1,3,4-thiadiazol-2-yl)-3-(3-(2-(dimethylamino)ethoxy)phenyl)isonicotinate ( Compound 45)(11 mg, 13% yield), light yellow solid. 1H NMR (400 MHz, DMSO- d 6 ) δ ppm 2.51 (6H, s), 3.06 (2H, t, J= 4.9 Hz), 4.12 (2H, t, J= 5.3 Hz), 6.94 (1H, dd, J= 8.3, 2.4 Hz), 7.01-7.05 (2H, m), 7.31 (1H, t, J= 7.9 Hz), 7.53-7.58 (3H, m), 7.65 (2H, d, J= 8.4 Hz), 8.63-8.65 (2H, m). MS (ESI): m/z 503.1(calculated), 504.2(M+H +, actual value). Embodiment 46. Benzyl 3-((5-(3-(2- Methoxyphenyl ) Isonicotinamide )-1,3,4- Thiadiazole -2- base ) Oxygen ) Pyrrolidine -1- Formate ( Compound 46) Preparation Steps 1 : Benzyl 3-((5- bromine -1,3,4- Thiadiazole -2- base ) Oxygen ) Pyrrolidine -1- Synthesis of formate estersTo a stirred solution of 2,5-dibromo-1,3,4-thiadiazole (0.30 g, 1.23 mmol) and benzyl 3-hydroxypyrrolidine-1-carboxylate (0.33 mL, 1.35 mmol) in DMF (4 mL) at 0°C, add NaH (0.10 g, 2.46 mmol). Warm the reaction mixture to room temperature and stir for 10 min. Add water (10 mL) and extract the aqueous layer with EA (2×10 mL). Wash the combined organic layers with brine (2×20 mL) and precipitate over MgSO 4Dry on ice, filter, and concentrate to dryness. The residue was purified by flash chromatography (elution gradient from 0% to 40% EA in hexanes) to provide benzyl 3-((5-bromo-1,3,4-thiadiazol-2-yl)oxy)pyrrolidine-1-carboxylate (254 mg, 54% yield) as an opaque oil. MS (ESI): m/z 383.0 (calcd), 384.1 (M+H +, actual value). Steps 2 : Benzyl 3-((5-(3-(2- Methoxyphenyl ) Isonicotinamide )-1,3,4- Thiadiazole -2- base ) Oxygen ) Pyrrolidine -1- Formate ( Compound 46 ) SynthesisAccording to the general method GFrom benzyl 3-((5-bromo-1,3,4-thiadiazol-2-yl)oxy)pyrrolidine-1-carboxylate (0.26 g, 0.67 mmol), 3-(2-methoxyphenyl)isonicotinate (0.18 g, 0.80 mmol), Cs 2CO 3(0.44 g, 1.33 mmol), Pd 2(dba) 3(63 mg, 0.07 mmol), and XantPhos (79 mg, 0.13 mmol) to obtain the title compound. Purification by reverse phase C18 column chromatography (gradient of eluent from 5% to 40% ACN in 10 mM ammonium bicarbonate, pH=10) provided benzyl 3-((5-(3-(2-methoxyphenyl)isonicotinoylamino)-1,3,4-thiadiazol-2-yl)oxy)pyrrolidine-1-carboxylate ( Compound 46)(55 mg, 16% yield), off-white solid. 1H NMR (400 MHz, DMSO- d 6 ) δ ppm 2.21 (2H, br s), 3.38-3.67 (7H, m), 5.08 (2H, s), 5.45 (1H, s), 6.98 (1H, d, J= 8.3 Hz), 7.03 (1H, t, J= 7.4 Hz), 7.31-7.37 (7H, m), 7.62 (1H, d, J= 5.0 Hz), 8.56 (1H, s), 8.66 (1H, d, J= 4.9 Hz), 12.87 (1H, br s). MS (ESI): m/z 531.2 (calculated), 532.2 (M+H +, actual value). Embodiment 47. 3-(2- Methoxyphenyl )-N-(5-( Pyrrolidine -3- Oxy )-1,3,4- Thiadiazole -2- base ) Iononia ( Compound 47) Preparation Pd(OAc) was added to a stirred solution of benzyl 3-((5-(3-(2-methoxyphenyl)isonicotinoylamino)-1,3,4-thiadiazol-2-yl)oxy)pyrrolidine-1-carboxylate (22 mg, 0.04 mmol) in DCM (0.83 mL) under hydrogen.2(11 mg, 0.05 mmol), Et 3N (14 µL, 0.10 mmol), and triethylsilane (67 µL, 0.41 mmol). The reaction mixture was heated to 45 °C, stirred for 2 h, cooled to room temperature, filtered on a celite pad, and concentrated under reduced pressure. The crude product was purified by Prep-HPLC (column: Gemini® 5 um NX-C18 110 Å, 100 × 30 mm) (elution gradient from 5% to 100% ACN in 10 mM ammonium formate) to provide 3-(2-methoxyphenyl)-N-(5-(pyrrolidin-3-yloxy)-1,3,4-thiadiazol-2-yl)isonicotinate ( Compound 47)(3 mg, 18% yield), white solid. 1H NMR (400 MHz, DMSO- d 6 ) δ ppm 2.05 (2H, m), 3.14 (4H, br m), 3.53 (3H, s), 5.38 (1H, s), 6.96-7.00 (2H, m), 7.27 (1H, dd, J= 7.4, 1.7 Hz), 7.32 (1H, td, J= 7.8, 1.6 Hz), 7.62 (1H, d, J= 4.8 Hz), 8.26 (1H, br s), 8.48 (1H, s), 8.59 (1H, s). MS (ESI): m/z 397.1 (calculated), 398.2 (M+H +, actual value). Embodiment 48. 3-(2- Methoxyphenyl )- N -(5-( Piperidine -3- Oxy )-1,3,4- Thiadiazole -2- base ) Iononia ( Compound 48) Preparation Steps 1 Tributyl 3-((5- Amine -1,3,4- Thiadiazole -2- base ) Oxygen ) Piperidine -1- Synthesis of formate estersAccording to the general method Dfrom Tertiary Butyl3-Hydroxypiperidine-1-carboxylate (0.43 g, 2.16 mmol), NaH (0.11 g, 2.80 mmol), DMF (6.16 mL), and 5-bromo-1,3,4-thiadiazolyl-2-amine (0.40 g, 2.16 mmol) gave the title compound. The crude product was purified by flash chromatography (gradient of eluent from 0% to 100% EA in hexanes) to provide Tertiary Butyl3-((5-amino-1,3,4-thiadiazol-2-yl)oxy)piperidine-1-carboxylate (30 mg, 4.6% yield) as a yellow oil. MS (ESI): m/z 300.1 (calculated), 301.2 (M+H +, actual value). Steps 2 Tributyl 3-((5-(3-(2- Methoxyphenyl ) Isonicotinamide )-1,3,4- Thiadiazole -2- base ) Oxygen ) Piperidine -1- Synthesis of formate estersAccording to the general method CFrom DMF (1.00 mL) Tertiary Butyl3-((5-amino-1,3,4-thiadiazol-2-yl)oxy)piperidine-1-carboxylate (35 mg, 0.11 mmol), 3-(2-methoxyphenyl)isonicotinic acid (29 mg, 0.13 mmol), 1-methylimidazole (34 µL, 0.41 mmol), and TCFH (37 mg, 0.13 mmol) in DMF (0.50 mL) gave the title compound. The resulting precipitate was collected by vacuum filtration to provide Tertiary Butyl3-((5-(3-(2-methoxyphenyl)isonicotinoylamino)-1,3,4-thiadiazol-2-yl)oxy)piperidine-1-carboxylate (36 mg, 53% yield) as a light brown solid. MS (ESI): m/z 511.2 (calculated), 512.3 (M+H +, actual value). Steps 3 : 3-(2- Methoxyphenyl )-N-(5-( Piperidine -3- Oxy )-1,3,4- Thiadiazole -2- base ) Iononia ( Compound 48 ) Synthesisright Tertiary ButylTo a stirred solution of 3-((5-(3-(2-methoxyphenyl)isonicotinoylamino)-1,3,4-thiadiazol-2-yl)oxy)piperidine-1-carboxylate (36 mg, 0.06 mmol) in DCM (0.31 mL), TFA (47 µL, 0.62 mmol) was added. Et 3The reaction mixture was stirred for 30 min before addition of N (0.10 mL) and the volatiles were removed under reduced pressure. The residue was purified by reverse phase C18 column chromatography (eluent gradient from 5% to 55% MeOH in 10 mM ammonium bicarbonate) to provide 3-(2-methoxyphenyl)-N-(5-(piperidin-3-yloxy)-1,3,4-thiadiazol-2-yl)isonicotinate ( Compound 48)(16 mg, 62% yield), white solid. 1H NMR (400 MHz, DMSO- d 6 ) δ ppm 1.44-1.51 (1H, m), 1.65-1.73 (2H, m), 2.01-2.07 (1H, m), 2.61-2.67 (1H, m), 2.77-2.84 (2H, m), 3.16- 3.21 (1H, m), 3.53 (3H, s), 4.83-4.88 (1H, m), 6.97-7.04 (2H, m), 7.29-7.36 (2H, m), 7.61 (1H, d, J= 5.0 Hz), 8.53-8.54 (1H, m), 8.64 (1H, d, J= 5.0 Hz). MS (ESI): m/z 411.1(calculated), 412.3(M+H +, actual value). Embodiment 49. 3-(2- Methoxyphenyl )-N-(5-(3-( Trifluoromethyl ) Double ring [1.1.1] Pentane -1- base )-1,3,4- Thiadiazole -2- base ) Iononia ( Compound 49) Preparation Steps 1 : 5-(3-( Trifluoromethyl ) Double ring [1.1.1] Pentane -1- base )-1,3,4- Thiadiazole -2- Synthesis of amines - General approach JTo a flask containing 3-(trifluoromethyl)-bicyclo[1.1.1]pentane-1-carboxylic acid (0.10 g, 0.56 mmol) and hydrazinecarbosulfamide (54 mg, 0.58 mmol), add POCl 3(0.55 mL, 5.83 mmol). The reaction mixture was heated to 75 °C, stirred for 3 h, cooled to 0 °C and quenched with water (10 mL). The solution was made alkaline with NaOH (2M) solution, and the resulting precipitate was collected by vacuum filtration and dried to provide 5-(3-(trifluoromethyl)bicyclo[1.1.1]pentan-1-yl)-1,3,4-thiadiazolyl-2-amine (116 mg, 89% yield) as a white solid. 1H NMR (400 MHz, DMSO- d 6) δ ppm 2.34 (6H, s), 7.24 (2H, s). 19F NMR (376 MHz, DMSO- d 6) δ ppm -71.3 (3F, S). MS (ESI): m/z 235.0(calculated), 236.1(M+H +, actual value). Steps 2 : 3-(2- Methoxyphenyl )-N-(5-(3-( Trifluoromethyl ) Double ring [1.1.1] Pentane -1- base )-1,3,4- Thiadiazole -2- base ) Iononia ( Compound 49 ) SynthesisAccording to the general method CThe title compound was obtained from 5-(3-(trifluoromethyl)bicyclo[1.1.1]pentan-1-yl)-1,3,4-thiadiazolyl-2-amine (60 mg, 0.26 mmol), 3-(2-methoxyphenyl)isosonicotinic acid (70 mg, 0.31 mmol), 1-methylimidazole (74 µL, 0.89 mmol), and TCFH (80 mg, 0.28 mmol) in DMF (0.77 mL). The product was purified by reverse phase C18 column chromatography (in H 2Purification of the crude product by elution with 5% to 80% ACN in 0.1% FA) provided 3-(2-methoxyphenyl)-N-(5-(3-(trifluoromethyl)bicyclo[1.1.1]pentane-1-yl)-1,3,4-thiadiazol-2-yl)isonicotinate ( Compound 49)(15.8 mg, 62% yield), white solid. 1H NMR (400 MHz, DMSO- d 6 ) δ ppm 2.45 (6H, s), 3.47 (3H, s), 6.98 (1H, d, J= 8.5 Hz), 7.06 (1H, t, J= 7.5 Hz), 7.37 (2H, t, J = 7.3 Hz), 7.64 (1H, d, J= 5.0 Hz), 8.62 (1H, s), 8.72 (1H, d, J= 5.0 Hz), 13.15 (1H, s). 19F NMR (376 MHz, DMSO- d 6) δ ppm -71.3 (3F, S). MS (ESI): m/z 446.1(calculated), 447.2 (M+H +, actual value). Embodiment 50. 3-(2- Methoxyphenyl )-N-(5-(3- Phenyl bicyclic [1.1.1] Pentane -1- base )-1,3,4- Thiadiazole -2- base ) Iononia ( Compound 50) Preparation Steps 1 : 3- Phenyl bicyclic [1.1.1] Pentane -1- Synthesis of methyl carboxylateFor f[1.1.1]spiropropane (3.00 mL, 1.47 mmol, Angew. Chem., Int. Ed. 2017, 56, 12774-12777) in diethyl ether (0.49 M) was added to an Ace pressure vessel with a solution of phenylmagnesium bromide (0.98 mL, 2.94 mmol) in diethyl ether (3 M). The vessel was sealed and the reaction mixture was heated to 100 °C and stirred for 18 h. The reaction mixture was then slowly cooled to -78 °C and a portion of methyl chloroformate (0.45 mL, 5.88 mmol) was added. The reaction mixture was heated to room temperature for more than 30 min, stirred for 1 h, and treated with diethyl ether (20 mL) and NH 4Dilute with a saturated solution of Cl (30 mL). Separate the layers and extract the aqueous layer with diethyl ether (2×30 mL). The combined organic layers are in MgSO4Dry over medium, filter, and concentrate under reduced pressure. The residue was purified by flash chromatography (elution gradient from 0% to 5% diethyl ether in hexanes) to provide methyl 3-phenylbicyclo[1.1.1]pentane-1-carboxylate (100 mg, 34% yield) as a light yellow oil. 1H NMR (400 MHz, CHCl 3- d) δ ppm 2.20 (6H, s), 3.58 (3H, s), 7.06-7.12 (3H, m), 7.18 (2H, m). Steps 2 : 3- Phenyl bicyclic [1.1.1] Pentane -1- Synthesis of Carboxylic AcidsTo a stirred solution of methyl 3-phenylbicyclo[1.1.1]pentane-1-carboxylate (95 mg, 0.47 mmol) in a mixture of water (0.47 mL) and THF (2 mL) was added lithium hydroxide (23 mg, 0.94 mmol). The reaction mixture was stirred for 2 h before the volatiles were removed under reduced pressure and the residue was dissolved in water and acidified with HCl (2N). The resulting precipitate was collected by vacuum filtration and washed with hexanes to provide 3-phenylbicyclo[1.1.1]pentane-1-carboxylic acid (57 mg, 64% yield) as a white solid. 1H NMR (400 MHz, CHCl 3- d) δ ppm 2.37 (6H, s), 7.22-7.26 (3H, m), 7.31-7.35 (2H, m). Steps 3 : 5-(3- Phenyl bicyclic [1.1.1] Pentane -1- base )-1,3,4- Thiadiazole -2- Synthesis of aminesAccording to the general method JFrom 3-phenylbicyclo[1.1.1]pentane-1-carboxylic acid (55 mg, 0.29 mmol), hydrazinecarbosulfamide (28 mg, 0.31 mmol), and POCl 3(0.50 mL, 5.32 mmol) to obtain the title compound. The resulting precipitate was collected by vacuum filtration to provide 5-(3-phenylbicyclo[1.1.1]pentan-1-yl)-1,3,4-thiadiazolyl-2-amine (63 mg, 89% yield) as a white solid. MS (ESI): m/z 243.1 (calculated), 244.2 (M+H +, actual value). Steps 4 : 3-(2- Methoxyphenyl )-N-(5-(3- Phenyl bicyclic [1.1.1] Pentane -1- base )-1,3,4- Thiadiazole -2- base ) Iononia ( Compound 50 ) SynthesisAccording to the general method CThe title compound was obtained from 5-(3-phenylbicyclo[1.1.1]pentan-1-yl)-1,3,4-thiadiazolyl-2-amine (63 mg, 0.26 mmol), 3-(2-methoxyphenyl)isonicotinic acid (65 mg, 0.29 mmol), 1-methylimidazole (75 µL, 0.91 mmol), and TCFH (82 mg, 0.29 mmol) in DMF (0.78 mL). The crude product was purified by flash chromatography (eluent gradient from 0% to 3% MeOH in DCM) to provide 3-(2-methoxyphenyl)- N-(5-(3-phenylbicyclo[1.1.1]pentane-1-yl)-1,3,4-thiadiazole-2-yl)isonicotinamide ( Compound 50)(74 mg, 63% yield), white solid. 1H NMR (400 MHz, DMSO- d 6 ) δ ppm 2.45 (6H, s), 3.48 (3H, s), 6.99 (1H, d, J = 8.6 Hz), 7.07 (1H, t, J = 7.5 Hz), 7.27-7.42 (7H, m), 7.65 (1H, d, J = 5.0 Hz), 8.62 (1H, s), 8.73 (1H, d, J = 5.0 Hz), 13.10 (1H, s). MS (ESI): m/z 454.1 (calculated), 455.3 (M+H +, actual value). Embodiment 51. N-(5-(3-(4- Chlorophenyl ) Double ring [1.1.1] Pentane -1- base )-1,3,4- Thiadiazole -2- base )-3-(2- Methoxyphenyl ) Iononia ( Compound 51) Preparation Steps 1 : 3-(4- Chlorophenyl ) Double ring [1.1.1] Pentane -1- Synthesis of Carboxylic AcidsFor [1.1.1]spiropropane (3.00 mL, 1.47 mmol, Angew. Chem., Int. Ed. 2017, 56, 12774-12777) in diethyl ether (0.49 M) was added to an Ace pressure vessel. A solution of 4-chlorophenylmagnesium bromide (2.94 mL, 2.94 mmol) in MeTHF (1.0 M) was added. The vessel was sealed and the reaction mixture was heated to 100 °C and stirred for 18 h. The reaction mixture was then slowly cooled to 0 °C and CO 2(in anhydrous CaSO 4Dry on ice) was bubbled through the reaction mixture for 5 min. The reaction mixture was warmed to room temperature and stirred for 15 min before EA (20 mL) and 2N HCl (20 mL) were added. The layers were separated and the aqueous layer was extracted with EA (2×20 mL). The combined organic layers were concentrated under reduced pressure in MgSO4Dry on ice, filter, and concentrate under reduced pressure. The residue was purified by flash chromatography (elution gradient from 0% to 30% EA in hexanes) to provide 3-(4-chlorophenyl)bicyclo[1.1.1]pentane-1-carboxylic acid (112 mg, 34% yield) as an off-white solid. 1H NMR (400 MHz, CHCl 3- d) δ ppm 2.35 (6H, s), 7.14 (2H, d, J= 8.3 Hz), 7.28 (1H, d, J = 8.2 Hz). Steps 2 : 5-(3-(4- Chlorophenyl ) Double ring [1.1.1] Pentane -1- base )-1,3,4- Thiadiazole -2- Synthesis of aminesAccording to the general method JFrom 3-(4-chlorophenyl)bicyclo[1.1.1]pentane-1-carboxylic acid (0.10 g, 449 µmol), hydrazinecarbosulfamide (43 mg, 0.47 mmol), and POCl 3(1.10 mL, 11.7 mmol) to obtain the title compound. The resulting precipitate was collected by vacuum filtration to provide 5-(3-(4-chlorophenyl)bicyclo[1.1.1]pentan-1-yl)-1,3,4-thiadiazolyl-2-amine (114 mg, 92% yield) as a light yellow solid. MS (ESI): m/z 277.0 (calculated), 278.1 (M+H +, actual value). Steps 3 : N-(5-(3-(4- Chlorophenyl ) Double ring [1.1.1] Pentane -1- base )-1,3,4- Thiadiazole -2- base )-3-(2- Methoxyphenyl ) Iononia ( Compound 51) SynthesisAccording to the general method CThe title compound was obtained from 5-(3-(4-chlorophenyl)bicyclo[1.1.1]pentan-1-yl)-1,3,4-thiadiazolyl-2-amine (75 mg, 0.27 mmol), 3-(2-methoxyphenyl)isosonicotinic acid (68 mg, 0.30 mmol), 1-methylimidazole (79 µL, 0.95 mmol) in DMF (2 mL) and TCFH (85 mg, 0.30 mmol) in DMF (0.50 mL). The crude product was purified by flash chromatography (eluent gradient from 0% to 3% MeOH in DCM) to provide N-(5-(3-(4-chlorophenyl)bicyclo[1.1.1]pentan-1-yl)-1,3,4-thiadiazol-2-yl)-3-(2-methoxyphenyl)isonicotinate ( Compound 51)(68 mg, 52% yield), white solid. 1H NMR (400 MHz, DMSO- d 6 ) δ ppm 2.46 (6H, s), 3.48 (3H, s), 6.99 (1H, d, J= 8.6 Hz), 7.07 (1H, t, J= 7.5 Hz), 7.30-7.41 (6H, m), 7.65 (1H, d, J= 5.0 Hz), 8.62 (1H, s), 8.72 (1H, d, J= 5.0 Hz), 13.08 (1H, s). MS (ESI): m/z 488.1(calculated), 489.3(M+H +, actual value). Embodiment 52. N-(5-(3-(4- Chlorophenyl ) Double ring [1.1.1] Pentane -1- base )-1,3,4- Thiadiazole -2- base )-3-(2- fluorine -5-(2- Phytophenone Ethoxy ) Phenyl ) Iononia ( Compound 52) Preparation Steps 1 : 3-(2- fluorine -5- Hydroxyphenyl ) Isonicotinic acid First Synthesis of estersAccording to the general method HFrom methyl 3-bromoisonicotinate (0.25 mL, 1.81 mmol), (2-fluoro-5-hydroxyphenyl)boronic acid (0.38 g, 2.36 mmol), XPhos Pd G4 (0.12 g, 0.14 mmol), and K 3PO 4(0.78 g, 3.63 mmol) in water (2.42 mL) to obtain the title compound to provide methyl 3-(2-fluoro-5-hydroxyphenyl) isonicotinate (361 mg, 80% yield) as a light brown solid. MS (ESI): m/z 247.1 (calculated), 248.1 (M+H +, actual value). Steps 2 : 3-(2- fluorine -5-(2- Phytophenone Ethoxy ) Phenyl ) Isonicotinic acid First Synthesis of estersTo a stirred solution of methyl 3-(2-fluoro-5-hydroxyphenyl) isonicotinate (0.25 g, 1.01 mmol) in DMF (3.37 mL), add K 2CO 3(0.17 g, 1.21 mmol) and 4-(2-chloroethyl) Phenylpyridinium (0.19 g, 1.21 mmol). The reaction mixture was heated to 95 °C and stirred for 3 h. The reaction mixture was cooled to room temperature, diluted with water (10 mL), and extracted with DCM (2×10 mL). The combined organic extracts were washed with brine (30 mL) and precipitated in MgSO 4dried, filtered, and concentrated under reduced pressure to provide 3-(2-fluoro-5-(2- Methyl (1,2-dimethoxy)phenyl)isonicotinate (364 mg, 99% yield) as a light yellow oil. The crude material was used in the next step without further purification. MS (ESI): m/z 360.1 (calcd), 361.1 (M+H +, actual value). Steps 3 : 3-(2- fluorine -5-(2- Linoethoxy ) Phenyl ) Synthesis of isonicotinic acid3-(2-fluoro-5-(2- To a stirred solution of methyl 1-(2-(2-(2-fluoro-5-(2-nitro-1-yl)ethoxy)phenyl)isonicotinate (0.36 g, 1.00 mmol) in a mixture of water (1 mL) and THF (4 mL) was added LiOH (48 mg, 2.00 mmol). The reaction mixture was stirred at room temperature for 2 h before the volatiles were removed under reduced pressure to provide 3-(2-fluoro-5-(2-nitro-1-yl)ethoxy)phenyl)isonicotinate. (Phenylethoxy)phenyl)isonicotinic acid (346 mg, 99% yield) as an off-white solid. The crude material was used in the next step without further purification. MS (ESI): m/z 346.1 (calcd), 347.2 (M+H +, actual value). Steps 4 : N-(5-(3-(4- Chlorophenyl ) Double ring [1.1.1] Pentane -1- base )-1,3,4- Thiadiazole -2- base )-3-(2- fluorine -5-(2- Linoethoxy ) Phenyl ) Iononia ( Compound 52) SynthesisAccording to the general method CFrom 5-(3-(4-chlorophenyl)bicyclo[1.1.1]pentan-1-yl)-1,3,4-thiadiazolyl-2-amine (34 mg, 0.12 mmol), 3-(2-fluoro-5-(2- (1-(4-(5-((4-chlorophenyl)bicyclo[1.1.1]pentan-1-yl)-1,3,4-thiadiazol-2-yl)-3-(2-fluoro-5-(2- Phenylethoxy)phenyl)isonicotinamide ( Compound 52)(17 mg, 23% yield), white solid. 1H NMR (400 MHz, DMSO- d 6 ) δ ppm 2.46 (10H, m), 2.66 (2H, t, J= 5.7 Hz), 3.56 (4H, t, J= 4.6 Hz), 4.08 (2H, t, J= 5.7 Hz), 6.98-7.04 (2H, m), 7.16 (1H, t, J= 9.4 Hz), 7.32 (2H, d, J= 8.3 Hz), 7.41 (2H, d, J= 8.2 Hz), 7.75 (1H, d, J= 5.0 Hz), 8.75 (1H, s), 8.80 (1H, d, J= 5.0 Hz), 13.28 (1H, br s). 19F NMR (376 MHz, DMSO- d 6) δ ppm -127.5 (1F, S). MS (ESI): m/z 605.2(calculated), 606.3(M+H +, actual value). Embodiment 53. 3-(2- Methoxyphenyl )-N-(5-(( Tetrahydrogen -2H- Pyran -4- base ) Oxygen )-1,3,4- Thiadiazole -2- base ) Iononia ( Compound 53) Preparation Steps 1 : 5-(( Tetrahydrogen -2H- Pyran -4- base ) Oxygen )-1,3,4- Thiadiazole -2- Synthesis of aminesTo a stirred solution of 2-amino-5-bromo-1,3,4-thiadiazole (1 g, 5.55 mmol) in DMF (20 mL) cooled to 0°C, add tetrahydro-4 H-pyran-4-yl (1 g, 11.1 mmol) and Et 3N (2 mL, 13.9 mmol). The reaction mixture was heated to room temperature, stirred for 6 h, diluted with water (20 mL) and extracted with EA (50 mL×3). The combined organic layer was washed with brine (30 mL) and precipitated with MgSO 4Dry on ice, filter, and concentrate under reduced pressure. Purify by flash chromatography (0% to 20% MeOH (0.1% NH 4The crude product was purified by elution gradient of 4-(4-(4-(4-pyran-4-yl)oxy)-1,3,4-thiadiazolyl-2-amine (157 mg, 14% yield) as a pink solid. MS (ESI): m/z 201.1 (calculated), 202.2 (M+H +, actual value). Steps 2 : 3-(2- Methoxyphenyl )-N-(5-(( Tetrahydrogen -2H- Pyran -4- base ) Oxygen )-1,3,4- Thiadiazole -2- base ) Iononia ( Compound 53 ) SynthesisAccording to the general method AThe title compound was obtained from 5-((tetrahydro-2H-pyran-4-yl)oxy)-1,3,4-thiadiazolyl-2-amine (105 mg, 0.52 mmol), 3-(2-methoxyphenyl)isonicotinate (60 mg, 0.26 mmol), HATU (142 mg, 0.37 mmol) and DIPEA (136 mL, 0.78 mmol) in DMF (5 mL). The crude product was purified by flash chromatography (eluent gradient from 0% to 100% EA in hexanes). The isolated material was dissolved in ACN (1 mL), diluted with water (4 mL), and freeze-dried to provide 3-(2-methoxyphenyl)-N-(5-((tetrahydro-2H-pyran-4-yl)oxy)-1,3,4-thiadiazol-2-yl)isonicotinate ( Compound 53)(35 mg, 16% yield), white solid. 1H NMR (400 MHz, DMSO- d 6) δ ppm 1.72-1.69 (2H, m), 2.11-2.07 (2H, m), 3.52-3.46 (5H, m), 3.86-3.83 (2H, m), 5.09 (1H, s), 6.99 (1H, d, J = 8.2 Hz), 7.07 (1H, dd, J = 7.9, 6.9 Hz), 7.40-7.36 (2H, m), 7.62 (1H, d, J = 5.0 Hz), 8.61 (1H, s), 8.71 (1H, d, J = 5.0 Hz), 12.85 (1H, s). MS (ESI): m/z 412.1(calculated value), 413.2(M+H +, actual value). Embodiment 54. N-(5-(4- Chlorophenoxy )-1,3,4- Thiadiazole -2- base )-3-(2- Methoxyphenyl ) Iononia ( Compound 54) Preparation To a stirred solution of 2-amino-5-bromo-1,3,4-thiadiazole (100 mg, 0.54 mmol) in DMF (3 mL) cooled to 0°C, 4-chlorophenol (63 mL, 0.65 mmol) and DIPEA (188 mL, 1.08 mmol) were added. The reaction mixture was warmed to room temperature and stirred for 48 h. Then, 3-(2-methoxyphenyl)isonicotinate (123 mg, 0.54 mmol), HATU (251 mg, 0.65 mmol) and DIPEA (188 mL, 1.08 mmol) were added at room temperature under an argon atmosphere. The reaction mixture was stirred for 1 h, diluted with water and extracted with EA (3×10 mL). The combined extracts were heated in anhydrous Na 2SO 4Dry on ice, filter, and concentrate to dryness. The crude product was purified by Prep-HPLC (column: Gemini® 5 um NX-C18 110 Å, 100×30 mm) (elution gradient from 40% to 100% ACN in 10 mM ammonium formate). The isolated material was dissolved in ACN (1 mL), diluted with water (4 mL), and freeze-dried to provide N-(5-(4-chlorophenoxy)-1,3,4-thiadiazol-2-yl)-3-(2-methoxyphenyl)isonicotinate ( Compound 54)(6 mg, 2.5% yield), white solid. 1H NMR (400 MHz, DMSO- d 6) δ ppm 3.52 (3H, s), 7.04-6.97 (2H, m), 7.38-7.31 (4H, m), 7.52 (2H, d, J= 8.7 Hz), 7.65 (1H, d, J= 4.8 Hz), 8.69-8.51 (2H, m), 13.10 (1H, s). MS (ESI): m/z 438.1(calculated), 439.2(M+H +, actual value). Embodiment 55. 3-( Naphthyl -1- base )-N-(5-(( Tetrahydrogen -2H- Pyran -4- base ) Oxygen )-1,3,4- Thiadiazole -2- base ) Iononia ( Compound 55) Preparation According to the general method CThe title compound was obtained from 5-((tetrahydro-2H-pyran-4-yl)oxy)-1,3,4-thiadiazolyl-2-amine (154, 40 mg, 0.20 mmol), 3-(naphthyl-1-yl)isosonicotinic acid (50 mg, 0.20 mmol), 1-methylimidazole (58 µL, 0.70 mmol) and TCFH (57 mg, 0.20 mmol) in DMF (2 mL). The crude product was purified by flash chromatography (eluent gradient from 50% to 100% EA in hexanes) to provide 3-(naphthyl-1-yl)-N-(5-((tetrahydro-2H-pyran-4-yl)oxy)-1,3,4-thiadiazol-2-yl)isonicotinate ( Compound 55) (64 mg, 55% yield) as a white solid. 1H NMR (400 MHz DMSO- d 6 ) δ ppm 1.61 (2H, d, J= 11.4 Hz), 1.98 (2H, d, J= 12.4 Hz), 3.40 (2H, t, J= 10.5 Hz), 3.77-3.74 (2H, m), 4.98 (1H, dd, J= 8.0, 6.5 Hz), 7.41 (2H, dd, J= 14.3, 6.9 Hz), 7.54-7.47 (3H, m), 7.76 (1H, d, J = 5.0 Hz), 7.94 (2H, dd, J= 8.2, 3.7 Hz), 8.64 (1H, s), 8.81 (1H, d, J= 5.0 Hz), 12.99 (1H, br, s). MS (ESI): m/z 432.1(calculated), 433.2(M+H +, actual value). Embodiment 56. Test type (I) Compound inhibition Polθ (1-894) Of ATP Biochemical analysis of enzyme activityThe polymerase θ helicase domain (amino acid residues 1 to 894) was expressed as a hexahistidine fusion protein in insect cells and purified by metal affinity chromatography. In a medium containing 40 mM Tris•HCL 7.5, 20 mM MgCl 2Helicase catalytic ATPase activity was measured in assay buffer containing 10 mM test compound dissolved in DMSO and 1 mM dithiothreitol. A combination of 10 mM test compound dissolved in DMSO and DMSO was added to the assay wells to generate a 9-point dilution series of test compound, inactive control wells, fully active control wells, and a final DMSO volume of 50 nl. A substrate solution containing 2.5 µl of 300 nM single-stranded DNA (5’- CCAGTGAATTGTTGCTCGGTACCTGCTAAC-3’) and 62.5 µM ATP in assay buffer was added to all assay wells. 2.5 µl of assay buffer containing 40 nM polymerase domain was added to all wells except the inactive control wells, to which 2.5 µl of assay buffer was added. The wells were covered and incubated at ambient temperature for 40 minutes. ADP was measured using the ADP-glo system (Promega, Madison WI). 5 µl of ADP-glo reagent was added to all wells, which were then covered and incubated at ambient temperature for 40 minutes. Prior to measuring chemiluminescence, 10 µl of kinase assay solution was added to all wells, which were then covered and incubated for 30 minutes. Inhibition of polymerase activity in the assay wells was calculated using the chemiluminescence of the inactive control wells as 100% inhibition and the fully active control wells as 0% inhibition. Non-linear least squares fitting of inhibition as a function of inhibitor concentration was performed to determine maximum inhibition, minimum inhibition, IC 50and Hill slope. The biological activities of the compounds in this application are listed in Table 3 below. EquivalentThe details of one or more embodiments of the present disclosure are described in the description attached above. Although any methods and materials similar to or equivalent to those described herein can be used in the practice or testing of the present disclosure, the preferred methods and materials are now described. Other features, purposes, and advantages of the present disclosure will be apparent from the specification and the patent application. In the specification and the attached patent application, the singular form includes plural references unless the context clearly indicates otherwise. Unless otherwise defined, all technical and scientific terms used herein have the meanings commonly understood by those with ordinary knowledge in the field to which the present disclosure belongs. All patents and publications mentioned in this specification are incorporated by reference. The foregoing description has been presented for exemplary purposes only and is not intended to limit the present disclosure to the precise form disclosed, except as defined by the appended claims.

Claims (58)

一種式I化合物: 或其醫藥上可接受的鹽或溶劑合物,其中: 環A為包含一個或兩個5員或6員環與選自N、O、及S之1至4個雜原子的C 6-C 10芳基或雜芳基; 每個R A獨立地為C 1-C 6烷基、C 1-C 6鹵烷基、C 1-C 6羥烷基、C 1-C 6烷氧基、C 1-C 6鹵烷氧基、-OH、-NR a3R a4、-CN、鹵素、側氧基、-C(X)R a1、-C(X)OR a1、-C(X)NR a3R a4、-NR a2C(X)R a1、-NR a2C(X)OR a1、或-NR a2C(X)NR a3R a4; X為NR N、O、或S; m為0、1、2、3、4、5、或6; Ar為包含一個或兩個5員或6員環與選自N、O、及S之1至4個雜原子的C 6-C 10芳基或雜芳基,其中該芳基或雜芳基係可選地經1至4個R Ar取代; 每個R Ar獨立地為C 1-C 6烷基、C 1-C 6鹵烷基、C 1-C 6羥烷基、C 1-C 6烷氧基、C 1-C 6鹵烷氧基、-OH、 -O(CR C1R C2) 1-3R O、-NR a3R a4、-CN、鹵素、側氧基、 -C(X)R a1、-C(X)OR a1、-C(X)NR a3R a4、-NR a2C(X)R a1、 -NR a2C(X)OR a1、或-NR a2C(X)NR a3R a4; R C1與R C2各自獨立地為H或-CH 3; R O為-OH、-NH 2、-NR a2(C 1-C 6烷基)、C 3-C 8環烷基、包含一個3員至6員環與選自N、O、及S之1至2個雜原子的雜環基、C 6芳基、或包含一個5員或6員環與選自N、O、及S之1至2個雜原子的雜芳基,其中該環烷基、雜環基、芳基、或雜芳基係可選地經獨立地選自C 1-C 6烷基、C 1-C 6鹵烷基、C 1-C 6羥烷基、C 1-C 6烷氧基、C 1-C 6鹵烷氧基、 -OH、-NH 2、-NR a2(C 1-C 6烷基)、-CN、鹵素、與側氧基之一個或多個基團取代; R N為H或C 1-C 6烷基; L 1為不存在、-O-、-N(R N)-、-S-、-S(=O) 2-、或 -N(S(=O) 2R N)-; L 2為不存在、C 1-C 6伸烷基、C 2-C 6伸烯基、或C 2-C 6伸炔基; T為C 1-C 6烷基、C 1-C 6鹵烷基、C 1-C 6羥烷基、 -C(X)R a1、-C(X)OR a1、-C(X)NR a3R a4、R T、或-XR T; 先決條件是 當L 1為-O-,且L 2為C 1-C 6伸烷基時,則T不為R T, 當L 1為-O-,且L 2為不存在或C 1-C 6伸烷基時,則T不為C 1-C 6烷基、C 1-C 6鹵烷基、C 1-C 6羥烷基、C 3-C 8環烷基、或包含一個3員至6員環與選自N、O、及S之1至2個雜原子的雜環基; R T為C 3-C 8環烷基、包含一個3員至6員環與選自N、O、及S之1至2個雜原子的雜環基、C 6芳基、或包含一個5員或6員環與選自N、O、及S之1至2個雜原子的雜芳基,其中該環烷基、雜環基、芳基、或雜芳基係可選地經一個或多個R t取代; 每個R t獨立地為C 1-C 6烷基、C 1-C 6鹵烷基、C 1-C 6羥烷基、C 1-C 6烷氧基、C 1-C 6鹵烷氧基、-OH、-NR a3R a4、-CN、鹵素、側氧基、-C(X)R a1、-C(X)OR a1、-C(X)NR a3R a4、-NR a2C(X)R a1、-NR a2C(X)OR a1、-NR a2C(X)NR a3R a4、C 3-C 8環烷基、包含一個3員至6員環與選自N、O、及S之1至2個雜原子的雜環基、C 6芳基、或包含一個5員或6員環與選自N、O、及S之1至2個雜原子的雜芳基,其中該環烷基、雜環基、芳基、或雜芳基係可選地經獨立地選自C 1-C 6烷基、C 1-C 6鹵烷基、C 1-C 6羥烷基、C 1-C 6烷氧基、C 1-C 6鹵烷氧基、-OH、-NH 2、-NR a2(C 1-C 6烷基)、-CN、鹵素、與側氧基之一個或多個基團取代; 每個R a1獨立地為H、C 1-C 6烷基、C 1-C 6鹵烷基、C 1-C 6烷基-C 6-C 10芳基、或C 1-C 6烷基-雜芳基,其中該雜芳基包含5員或6員環與選自N、O、及S之1至4個雜原子,其中該芳基或雜芳基係可選地經獨立地選自C 1-C 6烷基、C 1-C 6鹵烷基、C 1-C 6烷氧基、C 1-C 6鹵烷氧基、-OH、-NH 2、 -NR a2(C 1-C 6烷基)、-CN、鹵素、側氧基、-C(X)R a1、 -C(X)OR a1、-C(X)NR a1R a2、-NR a2C(X)R a1、 -NR a2C(X)OR a1、與-NR a2C(X)NR a1R a2之一個或多個基團取代; 每個R a2獨立地為H或C 1-C 6烷基;以及 R a3與R a4各自獨立地為H、C 1-C 6烷基、C 1-C 6鹵烷基、C 1-C 6羥烷基、C 3-C 8環烷基、包含一個3員至6員環與選自N、O、及S之1至2個雜原子的雜環基、C 6芳基、或包含一個5員或6員環與選自N、O、及S之1至2個雜原子的雜芳基,其中該環烷基、雜環基、芳基、或雜芳基係可選地經獨立地選自C 1-C 6烷基、C 1-C 6鹵烷基、C 1-C 6羥烷基、C 1-C 6烷氧基、C 1-C 6鹵烷氧基、-OH、-NH 2、-NR a2(C 1-C 6烷基)、-CN、鹵素、與側氧基之一個或多個基團取代;或 R a3與R a4連同彼等所鍵結的氮原子一起形成可選地包含選自N、O、及S之1至2個額外的雜原子與可選地經獨立地選自C 1-C 6烷基、C 1-C 6鹵烷基、C 1-C 6羥烷基、C 1-C 6烷氧基、C 1-C 6鹵烷氧基、-OH、-NH 2、-NR a2(C 1-C 6烷基)、 -CN、與鹵素之一個或多個基團取代的5員或6員雜環基環, 其中該環烷基或雜環基環可以是非橋聯與非螺環(non-spiro)、螺環(spirocyclic)、或橋聯環系統。 A compound of formula I: or a pharmaceutically acceptable salt or solvent thereof, wherein: Ring A is a C 6 -C 10 aryl or heteroaryl group comprising one or two 5-membered or 6-membered rings and 1 to 4 heteroatoms selected from N, O, and S; each RA is independently C 1 -C 6 alkyl, C 1 -C 6 halogenalkyl, C 1 -C 6 hydroxyalkyl, C 1 -C 6 alkoxy , C 1 -C 6 halogenalkoxy, -OH, -NR a3 R a4 , -CN, halogen, oxo, -C(X)R a1 , -C(X)OR a1 , -C(X)NR a3 R a4 , -NR a2 C(X)R a1 , -NR a2 C(X)OR a1 , or -NR a2 C(X)NR a3 R a4 ; X is NR N , O, or S; m is 0, 1, 2, 3, 4, 5, or 6; Ar is a C 6 -C 10 aryl or heteroaryl group comprising one or two 5-membered or 6-membered rings and 1 to 4 heteroatoms selected from N, O, and S, wherein the aryl or heteroaryl group is optionally substituted by 1 to 4 R Ar ; each R Ar is independently C 1 -C 6 alkyl, C 1 -C 6 halogenalkyl, C 1 -C 6 hydroxyalkyl, C 1 -C 6 alkoxy, C 1 -C 6 halogenalkoxy, -OH, -O(CR C1 R C2 ) 1-3 R O , -NR a3 R a4 , -CN, halogen, oxo, -C(X)R a1 , -C(X)OR a1 , -C(X)NR a3 R a4 , -NR a2 C(X)R a1 , -NR a2 C(X)OR a1 , or -NR a2 C(X)NR a3 R a4 ; RC1 and RC2 are each independently H or -CH 3 ; RO is -OH, -NH 2 , -NR a2 (C 1 -C 6 alkyl), C 3 -C 8 cycloalkyl, a heterocyclic group containing a 3- to 6-membered ring and 1 to 2 heteroatoms selected from N, O, and S, a C 6 aryl, or a heteroaryl group containing a 5- or 6-membered ring and 1 to 2 heteroatoms selected from N, O, and S, wherein the cycloalkyl, heterocyclic group, aryl, or heteroaryl group is optionally independently selected from C 1 -C 6 alkyl, C 1 -C 6 halogenalkyl, C 1 -C 6 hydroxyalkyl, C 3 -C 8 The group is substituted by one or more of: -1 -C 6 alkoxy, -1 - C 6 halogen alkoxy, -OH, -NH 2 , -NR a2 (C 1 -C 6 alkyl), -CN, halogen, and pendoxy; RN is H or C 1 -C 6 alkyl; L 1 is absent, -O-, -N( RN )-, -S-, -S(=O) 2 -, or -N(S(=O) 2RN )-; L 2 is absent, C 1 -C 6 alkylene, C 2 -C 6 alkenylene, or C 2 -C 6 alkynylene ; T is C 1 -C 6 alkyl, C 1 -C 6 halogen alkyl, C 1 -C 6 hydroxyalkyl, -C(X)R a1 , -C(X)OR a1 , -C(X)NR a3 R a4 , RT , or -XR T ; provided that when L 1 is -O- and L 2 is C 1 -C 6 alkylene, then T is not RT ; when L 1 is -O- and L 2 is absent or C 1 -C 6 alkylene, then T is not C 1 -C 6 alkyl, C 1 -C 6 halogenalkyl, C 1 -C 6 hydroxyalkyl, C 3 -C 8 cycloalkyl, or a heterocyclic group containing a 3- to 6-membered ring and 1 to 2 heteroatoms selected from N, O, and S; RT is C 3 -C 8 cycloalkyl , a heterocyclic group containing a 3- to 6-membered ring and 1 to 2 heteroatoms selected from N, O, and S, C 6 aryl, or a heteroaryl comprising a 5-membered or 6-membered ring and 1 to 2 heteroatoms selected from N, O, and S, wherein the cycloalkyl, heterocycloalkyl, aryl, or heteroaryl is optionally substituted by one or more R t ; each R t is independently C 1 -C 6 alkyl, C 1 -C 6 halogenalkyl, C 1 -C 6 hydroxyalkyl, C 1 -C 6 alkoxy, C 1 -C 6 halogenalkoxy, -OH, -NR a3 R a4 , -CN, halogen, oxo, -C(X)R a1 , -C(X)OR a1 , -C(X)NR a3 R a4 , -NR a2 C(X)R a1 , -NR a2 C(X)OR a1 , -NR a2 C(X)NR a3 R a4 , C 3 -C 8 cycloalkyl, a heterocyclic group containing a 3- to 6-membered ring and 1 to 2 heteroatoms selected from N, O, and S, a C 6 aryl group, or a heteroaryl group containing a 5- or 6-membered ring and 1 to 2 heteroatoms selected from N, O, and S, wherein the cycloalkyl, heterocyclic group, aryl group, or heteroaryl group is optionally substituted with one or more groups independently selected from C 1 -C 6 alkyl, C 1 -C 6 halogenalkyl, C 1 -C 6 hydroxyalkyl, C 1 -C 6 alkoxy, C 1 -C 6 halogenalkoxy, -OH, -NH 2 , -NR a2 (C 1 -C 6 alkyl), -CN, halogen, and pendoxy; each R a1 is independently H, C 1 -C 6 C 1 -C 6 alkyl, C 1 -C 6 halogenalkyl, C 1 -C 6 alkyl- C 6 -C 10 aryl, or C 1 -C 6 alkyl-heteroaryl, wherein the heteroaryl comprises a 5-membered or 6-membered ring and 1 to 4 heteroatoms selected from N, O, and S, wherein the aryl or heteroaryl is optionally independently selected from C 1 -C 6 alkyl, C 1 -C 6 halogenalkyl, C 1 -C 6 alkoxy, C 1 -C 6 halogenalkoxy, -OH, -NH 2 , -NR a2 (C 1 -C 6 alkyl), -CN, halogen, oxo, -C(X)R a1 , -C(X)OR a1 , -C(X)NR a1 R a2 , -NR a2 C(X)R a1 , -NR a2 C(X)OR a1 , and one or more of -NR a2 C(X)NR a1 R a2 ; each R a2 is independently H or C 1 -C 6 alkyl; and R a3 and R a4 are each independently H, C 1 -C 6 alkyl, C 1 -C 6 halogenalkyl, C 1 -C 6 hydroxyalkyl, C 3 -C 8 cycloalkyl, a heterocyclic group containing a 3- to 6-membered ring and 1 to 2 heteroatoms selected from N, O, and S, a C 6 aryl, or a heteroaryl group containing a 5- or 6-membered ring and 1 to 2 heteroatoms selected from N, O, and S, wherein the cycloalkyl, heterocyclic group, aryl, or heteroaryl group is optionally independently selected from C 1 -C 6 alkyl, C 1 -C 6 halogenalkyl, C 1 -C 6 hydroxyalkyl, C 1 -C 6 alkoxy, C 1 -C 6 halogenalkyl, -OH, -NH 2 , -NR a2 (C 1 -C 6 alkyl), -CN, halogen, and pendoxy group; or R a3 and R a4 together with the nitrogen atom to which they are bound form a group which optionally comprises 1 to 2 additional heteroatoms selected from N, O, and S and is optionally independently selected from C 1 -C 6 alkyl, C 1 -C 6 halogenalkyl, C 1 -C 6 hydroxyalkyl, C 1 -C 6 alkoxy, C 1 -C 6 halogenalkyl, -OH, -NH 2 , -NR a2 (C 1 -C 6 alkyl), -CN, halogen, and pendoxy group. -CN, and a 5- or 6-membered heterocyclic ring substituted with one or more halogen groups, wherein the cycloalkyl or heterocyclic ring can be a non-bridged and non-spiro, spirocyclic, or bridged ring system. 如請求項1之化合物,其中環A為C 6-C 10芳基。 The compound of claim 1, wherein ring A is a C 6 -C 10 aryl group. 如請求項1或2之化合物,其中環A為苯基。The compound of claim 1 or 2, wherein ring A is phenyl. 如請求項1之化合物,其中環A為包含一個或兩個5員或6員環與選自N、O、及S之1至4個雜原子的雜芳基。The compound of claim 1, wherein ring A is a heteroaryl group comprising one or two 5-membered or 6-membered rings and 1 to 4 heteroatoms selected from N, O, and S. 如請求項1或4之化合物,其中環A為包含一個5員或6員環與選自N、O、及S之1至4個雜原子的雜芳基。The compound of claim 1 or 4, wherein ring A is a heteroaryl group comprising a 5-membered or 6-membered ring and 1 to 4 heteroatoms selected from N, O, and S. 如請求項1、4、或5之化合物,其中環A為包含一個5員或6員環與選自N、O、及S之1至2個雜原子的雜芳基。The compound of claim 1, 4, or 5, wherein ring A is a heteroaryl group comprising a 5-membered or 6-membered ring and 1 to 2 heteroatoms selected from N, O, and S. 如請求項1及4至6之任一項的化合物,其中環A為包含一個5員或6員環與1至2個氮原子的雜芳基。The compound of any one of claims 1 and 4 to 6, wherein Ring A is a heteroaryl group comprising a 5- or 6-membered ring and 1 to 2 nitrogen atoms. 如請求項1及4至7之任一項的化合物,其中環A為包含一個6員環與1至2個氮原子的雜芳基。The compound of any one of claims 1 and 4 to 7, wherein Ring A is a heteroaryl group comprising a 6-membered ring and 1 to 2 nitrogen atoms. 如請求項1之化合物,其為式II: 或其醫藥上可接受的鹽或溶劑合物,其中A 1、A 2、A 3、A 4、與A 5各自獨立地為N、CH、或CR A,或當A 1、A 2、A 3、A 4、或A 5係鍵結至Ar時,彼等為C。 The compound of claim 1 is of formula II: or a pharmaceutically acceptable salt or solvent thereof, wherein A1 , A2 , A3 , A4 , and A5 are each independently N, CH, or CR A , or are C when A1 , A2 , A3 , A4 , or A5 is bonded to Ar. 如請求項9之化合物,其中A 1係與Ar鍵結。 The compound of claim 9, wherein A1 is bonded to Ar. 如請求項9之化合物,其中A 2係與Ar鍵結。 The compound of claim 9, wherein A2 is bonded to Ar. 如請求項9之化合物,其中A 3係與Ar鍵結。 The compound of claim 9, wherein A3 is bonded to Ar. 如請求項9之化合物,其中A 4係與Ar鍵結。 The compound of claim 9, wherein A4 is bonded to Ar. 如請求項9之化合物,其中A 5係與Ar鍵結。 The compound of claim 9, wherein A5 is bonded to Ar. 如請求項1或9之化合物,其為式IIa: 或其醫藥上可接受的鹽或溶劑合物,其中A 2、A 3、A 4、與A 5各自獨立地為N、CH、或CR AThe compound of claim 1 or 9, which is of formula IIa: or a pharmaceutically acceptable salt or solvent thereof, wherein A 2 , A 3 , A 4 , and A 5 are each independently N, CH, or CR A . 如請求項1至15之任一項的化合物,其中Ar為可選地經1至4個R Ar取代的C 6-C 10芳基。 The compound of any one of claims 1 to 15, wherein Ar is C 6 -C 10 aryl optionally substituted with 1 to 4 R Ar . 如請求項1至16之任一項的化合物,其中Ar為可選地經1至4個R Ar取代的苯基。 The compound of any one of claims 1 to 16, wherein Ar is phenyl optionally substituted with 1 to 4 R Ar . 如請求項1至15之任一項的化合物,其中Ar為包含一個或兩個5員或6員環與選自N、O、及S之1至4個雜原子的雜芳基,其可選地經1至4個R Ar取代。 The compound of any one of claims 1 to 15, wherein Ar is a heteroaryl group comprising one or two 5- or 6-membered rings and 1 to 4 heteroatoms selected from N, O, and S, which is optionally substituted with 1 to 4 R Ar . 如請求項1至15及18之任一項的化合物,其中Ar為包含一個5員或6員環與選自N、O、及S之1至4個雜原子的雜芳基,其可選地經1至4個R Ar取代。 The compound of any one of claims 1 to 15 and 18, wherein Ar is a heteroaryl group comprising a 5- or 6-membered ring and 1 to 4 heteroatoms selected from N, O, and S, which is optionally substituted with 1 to 4 R Ar . 如請求項1至15、18、及19之任一項的化合物,其中Ar為包含一個5員或6員環與選自N、O、及S之1至2個雜原子的雜芳基,其可選地經1至4個R Ar取代。 The compound of any one of claims 1 to 15, 18, and 19, wherein Ar is a heteroaryl group comprising a 5-membered or 6-membered ring and 1 to 2 heteroatoms selected from N, O, and S, which is optionally substituted with 1 to 4 R Ar . 如請求項1至15及18至20之任一項的化合物,其中Ar為包含一個5員或6員環與1至2個氮原子的雜芳基,其可選地經1至4個R Ar取代。 The compound of any one of claims 1 to 15 and 18 to 20, wherein Ar is a heteroaryl group comprising a 5- or 6-membered ring and 1 to 2 nitrogen atoms, which is optionally substituted with 1 to 4 R Ar . 如請求項1、9、或15之化合物,其為式III: 或其醫藥上可接受的鹽或溶劑合物,其中: A 2、A 3、A 4、與A 5各自獨立地為N、CH、或CR A;以及 A 6、A 7、A 8、A 9、與A 10各自獨立地為N、CH、或CR ArThe compound of claim 1, 9, or 15, which is of formula III: or a pharmaceutically acceptable salt or solvent thereof, wherein: A 2 , A 3 , A 4 , and A 5 are each independently N, CH, or CR A ; and A 6 , A 7 , A 8 , A 9 , and A 10 are each independently N, CH, or CR Ar . 如請求項1、9、15、或22之化合物,其為式IIIa或IIIb: 或其醫藥上可接受的鹽或溶劑合物,其中A 2、A 3、A 4、與A 5各自獨立地為N、CH、或CR AThe compound of claim 1, 9, 15, or 22, which is of formula IIIa or IIIb: or a pharmaceutically acceptable salt or solvent thereof, wherein A 2 , A 3 , A 4 , and A 5 are each independently N, CH, or CR A . 如請求項1、9、或15之化合物,其為式IV: 或其醫藥上可接受的鹽或溶劑合物,其中: A 2、A 3、A 4、與A 5各自獨立地為N、CH、或CR A;以及 A 8、A 9、A 10、A 11、A 12、A 13、與A 14各自獨立地為N、CH、或CR ArThe compound of claim 1, 9, or 15, which is of formula IV: or a pharmaceutically acceptable salt or solvent thereof, wherein: A2 , A3 , A4 , and A5 are each independently N, CH, or CR A ; and A8 , A9, A10 , A11 , A12 , A13 , and A14 are each independently N, CH, or CR Ar . 如請求項1、9、15、或24之化合物,其為式IVa、IVb、或IVc: 或其醫藥上可接受的鹽或溶劑合物,其中: A 2、A 3、A 4、與A 5各自獨立地為N、CH、或CR A;以及 A 8、A 9、與A 10各自獨立地為N、CH、或CR ArThe compound of claim 1, 9, 15, or 24, which is of formula IVa, IVb, or IVc: or a pharmaceutically acceptable salt or solvent thereof, wherein: A 2 , A 3 , A 4 , and A 5 are each independently N, CH, or CR A ; and A 8 , A 9 , and A 10 are each independently N, CH, or CR Ar . 如請求項9、15、及22至25之任一項的化合物,其中A 1、A 2、A 3、A 4、與A 5中的一者為N。 The compound of any one of claims 9, 15, and 22 to 25, wherein one of A 1 , A 2 , A 3 , A 4 , and A 5 is N. 如請求項9、15、及22至25之任一項的化合物,其中A 1、A 2、A 3、A 4、與A 5中的兩者為N。 The compound of any one of claims 9, 15, and 22 to 25, wherein two of A 1 , A 2 , A 3 , A 4 , and A 5 are N. 如請求項9、15、及22-25之任一項的化合物,其中A 1、A 2、A 3、A 4、與A 5中的三者為N。 The compound of any one of claims 9, 15, and 22-25, wherein three of A 1 , A 2 , A 3 , A 4 , and A 5 are N. 如請求項9、15、及22至25之任一項的化合物,其中A 1、A 2、A 3、A 4、與A 5中的四者為N。 The compound of any one of claims 9, 15, and 22 to 25, wherein four of A 1 , A 2 , A 3 , A 4 , and A 5 are N. 如請求項22、24、或25之化合物,其中A 6、A 7、A 8、A 9、A 10、A 11、A 12、A 13、與A 14中的一者為N。 The compound of claim 22, 24, or 25, wherein one of A 6 , A 7 , A 8 , A 9 , A 10 , A 11 , A 12 , A 13 , and A 14 is N. 如請求項22、24、或25之化合物,其中A 6、A 7、A 8、A 9、A 10、A 11、A 12、A 13、與A 14中的兩者為N。 The compound of claim 22, 24, or 25, wherein two of A 6 , A 7 , A 8 , A 9 , A 10 , A 11 , A 12 , A 13 , and A 14 are N. 如請求項22、24、或25之化合物,其中A 6、A 7、A 8、A 9、A 10、A 11、A 12、A 13、與A 14中的三者為N。 The compound of claim 22, 24, or 25, wherein three of A 6 , A 7 , A 8 , A 9 , A 10 , A 11 , A 12 , A 13 , and A 14 are N. 如請求項1至32之任一項的化合物,其中L 1為不存在,且L 2為不存在。 The compound of any one of claims 1 to 32, wherein L1 is absent, and L2 is absent. 如請求項1至32之任一項的化合物,其中L 1為不存在,且L 2為C 1-C 6伸烷基、C 2-C 6伸烯基、或C 2-C 6伸炔基。 The compound of any one of claims 1 to 32, wherein L 1 is absent, and L 2 is C 1 -C 6 alkylene, C 2 -C 6 alkenylene, or C 2 -C 6 alkynylene. 如請求項1至32之任一項的化合物,其中L 1為-O-,且L 2為不存在。 The compound of any one of claims 1 to 32, wherein L 1 is -O-, and L 2 is absent. 如請求項1至32之任一項的化合物,其中L 1為-O-,且L 2為C 1-C 6伸烷基、C 2-C 6伸烯基、或C 2-C 6伸炔基。 The compound of any one of claims 1 to 32, wherein L 1 is -O-, and L 2 is C 1 -C 6 alkylene, C 2 -C 6 alkenylene, or C 2 -C 6 alkynylene. 如請求項1至32之任一項的化合物,其中L 1為-N(R N)-,且L 2為不存在。 The compound of any one of claims 1 to 32, wherein L 1 is -N( RN )-, and L 2 is absent. 如請求項1至32之任一項的化合物,其中L 1為-N(R N)-,且L 2為C 1-C 6伸烷基、C 2-C 6伸烯基、或C 2-C 6伸炔基。 The compound of any one of claims 1 to 32, wherein L 1 is -N( RN )-, and L 2 is C 1 -C 6 alkylene, C 2 -C 6 alkenylene, or C 2 -C 6 alkynylene. 如請求項1至32之任一項的化合物,其中L 1為-S-,且L 2為不存在。 The compound of any one of claims 1 to 32, wherein L 1 is -S-, and L 2 is absent. 如請求項1至32之任一項的化合物,其中L 1為-S-,且L 2為C 1-C 6伸烷基、C 2-C 6伸烯基、或C 2-C 6伸炔基。 The compound of any one of claims 1 to 32, wherein L 1 is -S-, and L 2 is C 1 -C 6 alkylene, C 2 -C 6 alkenylene, or C 2 -C 6 alkynylene. 如請求項1至32之任一項的化合物,其中L 1為-S(=O) 2-,且L 2為不存在。 The compound of any one of claims 1 to 32, wherein L 1 is -S(=O) 2 -, and L 2 is absent. 如請求項1至32之任一項的化合物,其中L 1為-S(=O) 2-,且L 2為C 1-C 6伸烷基、C 2-C 6伸烯基、或C 2-C 6伸炔基。 The compound of any one of claims 1 to 32, wherein L 1 is -S(=O) 2 -, and L 2 is C 1 -C 6 alkylene, C 2 -C 6 alkenylene, or C 2 -C 6 alkynylene. 如請求項1至32之任一項的化合物,其中L 1為-N(S(=O) 2R N)-,且L 2為不存在。 The compound of any one of claims 1 to 32, wherein L 1 is -N(S(=O) 2 RN )-, and L 2 is absent. 如請求項1至32之任一項的化合物,其中L 1為-N(S(=O) 2R N)-、與L 2為C 1-C 6伸烷基、C 2-C 6伸烯基、或C 2-C 6伸炔基。 The compound of any one of claims 1 to 32, wherein L 1 is -N(S(=O) 2 R N )-, and L 2 is C 1 -C 6 alkylene, C 2 -C 6 alkenylene, or C 2 -C 6 alkynylene. 如請求項34、36、38、40、42、或44之化合物,其中L 2為C 1-C 6伸烷基。 The compound of claim 34, 36, 38, 40, 42, or 44, wherein L 2 is C 1 -C 6 alkylene. 如請求項1至45之任一項的化合物,其中R N為H。 A compound as claimed in any one of claims 1 to 45, wherein RN is H. 如請求項1至45之任一項的化合物,其中R N為C 1-C 6烷基。 The compound of any one of claims 1 to 45, wherein RN is C 1 -C 6 alkyl. 如請求項1至47之任一項的化合物,其中T為C 1-C 6烷基、C 1-C 6鹵烷基、或C 1-C 6羥烷基。 The compound of any one of claims 1 to 47, wherein T is C 1 -C 6 alkyl, C 1 -C 6 halogenalkyl, or C 1 -C 6 hydroxyalkyl. 如請求項1至47之任一項的化合物,其中T為-C(X)R a1、-C(X)OR a1、或-C(X)NR a3R a4The compound of any one of claims 1 to 47, wherein T is -C(X)R a1 , -C(X)OR a1 , or -C(X)NR a3 R a4 . 如請求項1至47之任一項的化合物,其中T為R T、或-XR TThe compound of any one of claims 1 to 47, wherein T is RT , or -XRT . 如請求項1至50之任一項的化合物,其中R T為C 3-C 8環烷基,其可選地經一個或多個R t取代。 The compound of any one of claims 1 to 50, wherein RT is C3 - C8 cycloalkyl, which is optionally substituted with one or more Rt . 如請求項1至50之任一項的化合物,其中R T為包含一個3員至6員環與選自N、O、及S之1至2個雜原子的雜環基,其可選地經一個或多個R t取代。 The compound of any one of claims 1 to 50, wherein RT is a heterocyclic group comprising a 3- to 6-membered ring and 1 to 2 heteroatoms selected from N, O, and S, which is optionally substituted with one or more Rt . 如請求項1至50之任一項的化合物,其中R T為C 6芳基,其可選地經一個或多個R t取代。 A compound as claimed in any one of claims 1 to 50, wherein RT is C6 aryl, which is optionally substituted with one or more Rt . 如請求項1至50之任一項的化合物,其中R T為包含一個5員或6員環與選自N、O、及S之1至2個雜原子的雜芳基,其可選地經一個或多個R t取代。 The compound of any one of claims 1 to 50, wherein RT is a heteroaryl group comprising a 5-membered or 6-membered ring and 1 to 2 heteroatoms selected from N, O, and S, which is optionally substituted by one or more Rt . 一種醫藥組成物,其包含如請求項1至54之任一項的化合物或其醫藥上可接受的鹽或溶劑合物,以及醫藥上可接受的載體或賦形劑。A pharmaceutical composition comprising a compound according to any one of claims 1 to 54 or a pharmaceutically acceptable salt or solvent thereof, and a pharmaceutically acceptable carrier or excipient. 一種治療或預防有其需要個體中疾病的方法,其包含投予治療有效量之如請求項1至54之任一項的化合物或其醫藥上可接受的鹽或溶劑合物至該個體。A method for treating or preventing a disease in a subject in need thereof, comprising administering a therapeutically effective amount of a compound of any one of claims 1 to 54 or a pharmaceutically acceptable salt or solvent thereof to the subject. 一種如請求項1至54之任一項的化合物或其醫藥上可接受的鹽或溶劑合物於製造用於治療或預防疾病之藥劑的用途。Use of a compound according to any one of claims 1 to 54 or a pharmaceutically acceptable salt or solvent thereof in the manufacture of a medicament for treating or preventing a disease. 一種用於治療或預防疾病的如請求項1至54之任一項的化合物或其醫藥上可接受的鹽或溶劑合物。A compound according to any one of claims 1 to 54 or a pharmaceutically acceptable salt or solvent thereof for use in treating or preventing a disease.
TW113107083A 2023-02-28 2024-02-27 Substituted thiadiazolyl compounds TW202448435A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202363448768P 2023-02-28 2023-02-28
US63/448,768 2023-02-28

Publications (1)

Publication Number Publication Date
TW202448435A true TW202448435A (en) 2024-12-16

Family

ID=92590385

Family Applications (1)

Application Number Title Priority Date Filing Date
TW113107083A TW202448435A (en) 2023-02-28 2024-02-27 Substituted thiadiazolyl compounds

Country Status (2)

Country Link
TW (1) TW202448435A (en)
WO (1) WO2024182380A2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2002317377A1 (en) * 2001-07-20 2003-03-03 Cancer Research Technology Limited Biphenyl apurinic/apyrimidinic site endonuclease inhibitors to treat cancer
EP2976327B1 (en) * 2013-03-20 2017-06-21 Bayer Pharma Aktiengesellschaft 3-acetylamino-1-(phenyl-heteroaryl-aminocarbonyl or phenyl-heteroaryl-carbonylamino)benzene derivatives for the treatment of hyperproliferative disorders
WO2015143653A1 (en) * 2014-03-26 2015-10-01 Merck Sharp & Dohme Corp. TrkA KINASE INHIBITORS,COMPOSITIONS AND METHODS THEREOF
EP3034500A1 (en) * 2014-12-17 2016-06-22 Genkyotex Sa Amido thiazole derivatives as NADPH oxidase inhibitors
WO2020210831A1 (en) * 2019-04-12 2020-10-15 TONIX Pharmaceuticals Holding Corp Inhibitors of cd40-cd154 binding

Also Published As

Publication number Publication date
WO2024182380A3 (en) 2024-10-24
WO2024182380A2 (en) 2024-09-06

Similar Documents

Publication Publication Date Title
CN110452216B (en) Anti-fibrotic pyridinones
CN102099036B (en) Compounds and methods for treating inflammatory and fibrotic disorders
AU2024204902A1 (en) Cot modulators and methods of use thereof
JP6948322B2 (en) Heteroarylhydroxypyrimidinone as an APJ agonist of APJ receptor
CN109983007A (en) Amide derivatives inhibitor and its preparation method and application
JP2016518316A (en) MK2 inhibitors and their use
US20090005363A1 (en) Organic Compounds
JP2010505957A (en) N-arylpyrazole compounds used for diabetes
AU2006218125A1 (en) Pyrrolidine and piperidine acetylene derivatives for use as mGluR5 antagonists
KR20140041583A (en) Inhibitors of lrrk2 kinase activity
CN104822687A (en) Anti-fibrotic pyridinones
JP2009538309A (en) Thiophenecarboxamides useful as inhibitors of protein kinases
JP2009533452A (en) Thiophene-carboxamides useful as inhibitors of protein kinases
JP2009506127A (en) Anilinopyrazole derivatives useful for the treatment of diabetes
KR20070026357A (en) Indole derivatives and their use as kinase inhibitors, in particular Iv2 inhibitors
JP2022513310A (en) Matryptase 2 inhibitor and its use
CA2919783A1 (en) Heterobicycloaryl rorc2 inhibitors and methods of use thereof
KR20200097294A (en) 1,2,4-oxadiazole derivatives as histone deacetylase 6 inhibitors
ES2351393T3 (en) SULPHOPIRROLES
CA3125625A1 (en) Inhibitors of cgas activity as therapeutic agents
CN107879975A (en) Histon deacetylase (HDAC) inhibitor and its application
PT2178858E (en) Novel heterocyclic compounds as mglu5 antagonists
US20040067955A1 (en) Pyridazinone compound and pharmaceutical use thereof
JP2009538305A (en) Thiophenecarboxamides useful as inhibitors of protein kinases
JP2001520655A (en) 5,7-Disubstituted 4-aminopyrido [2,3-D] pyrimidine compounds and their use as adenosine kinase inhibitors