TW202447969A - Semiconductor device and method for forming the same - Google Patents
Semiconductor device and method for forming the same Download PDFInfo
- Publication number
- TW202447969A TW202447969A TW112146985A TW112146985A TW202447969A TW 202447969 A TW202447969 A TW 202447969A TW 112146985 A TW112146985 A TW 112146985A TW 112146985 A TW112146985 A TW 112146985A TW 202447969 A TW202447969 A TW 202447969A
- Authority
- TW
- Taiwan
- Prior art keywords
- layer
- etch stop
- hole
- bonding
- metal layer
- Prior art date
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 48
- 238000000034 method Methods 0.000 title claims abstract description 39
- 229910052751 metal Inorganic materials 0.000 claims abstract description 162
- 239000002184 metal Substances 0.000 claims abstract description 162
- 238000005530 etching Methods 0.000 claims abstract description 64
- 239000010410 layer Substances 0.000 claims description 530
- 235000012431 wafers Nutrition 0.000 claims description 78
- 229910052581 Si3N4 Inorganic materials 0.000 claims description 67
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims description 67
- 238000004519 manufacturing process Methods 0.000 claims description 31
- 239000011241 protective layer Substances 0.000 claims description 26
- 239000000758 substrate Substances 0.000 claims description 26
- 239000000463 material Substances 0.000 claims description 18
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 10
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 10
- 239000010703 silicon Substances 0.000 claims description 10
- 229910052710 silicon Inorganic materials 0.000 claims description 10
- 229910052814 silicon oxide Inorganic materials 0.000 claims description 10
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 3
- 229910052799 carbon Inorganic materials 0.000 claims description 3
- 239000011521 glass Substances 0.000 claims description 3
- 230000003667 anti-reflective effect Effects 0.000 claims description 2
- 238000009792 diffusion process Methods 0.000 description 18
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 9
- 229910052802 copper Inorganic materials 0.000 description 9
- 239000010949 copper Substances 0.000 description 9
- 229920002120 photoresistant polymer Polymers 0.000 description 8
- 238000004140 cleaning Methods 0.000 description 7
- 238000005520 cutting process Methods 0.000 description 6
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000011810 insulating material Substances 0.000 description 2
- 239000007769 metal material Substances 0.000 description 2
- 238000001953 recrystallisation Methods 0.000 description 2
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 2
- 229910010271 silicon carbide Inorganic materials 0.000 description 2
- 239000002356 single layer Substances 0.000 description 2
- 101100012902 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FIG2 gene Proteins 0.000 description 1
- 238000004380 ashing Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 238000001000 micrograph Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/768—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
- H01L21/76838—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
- H01L21/76895—Local interconnects; Local pads, as exemplified by patent document EP0896365
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/768—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
- H01L21/76897—Formation of self-aligned vias or contact plugs, i.e. involving a lithographically uncritical step
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/52—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
- H01L23/538—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames the interconnection structure between a plurality of semiconductor chips being formed on, or in, insulating substrates
- H01L23/5386—Geometry or layout of the interconnection structure
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Geometry (AREA)
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
Abstract
Description
本發明是關於半導體積體電路製造領域,特別關於一種半導體元件及其製造方法。The present invention relates to the field of semiconductor integrated circuit manufacturing, and in particular to a semiconductor element and a manufacturing method thereof.
隨著晶片製程技術的發展,多片晶片堆疊的技術越來越受到業界的重視,其中混合鍵合技術運用較爲廣泛。With the development of chip manufacturing technology, multi-chip stacking technology has received more and more attention from the industry, among which hybrid bonding technology is widely used.
在鍵合之前,會先在待鍵合的晶圓上形成氮化矽層和鍵合層,然後在鍵合層中蝕刻形成通孔,並蝕刻停止在氮化矽層中。然後,填充底部抗反射層於通孔中,再蝕刻通孔側壁頂部的鍵合層和底部抗反射層,以在通孔頂部形成溝槽;然後,去除剩餘的底部抗反射層和通孔底面的氮化矽層。接著,填充金屬層於溝槽和通孔中,以便於在後續混合鍵合過程中,兩片晶圓上的鍵合層之間鍵合且金屬層之間鍵合。Before bonding, a silicon nitride layer and a bonding layer are formed on the wafers to be bonded, and then a through hole is etched in the bonding layer, and the etching stops in the silicon nitride layer. Then, a bottom anti-reflection layer is filled in the through hole, and the bonding layer and the bottom anti-reflection layer on the top of the through hole sidewall are etched to form a trench at the top of the through hole; then, the remaining bottom anti-reflection layer and the silicon nitride layer on the bottom of the through hole are removed. Next, a metal layer is filled in the trench and through hole to facilitate bonding between the bonding layers on the two wafers and bonding between the metal layers in the subsequent hybrid bonding process.
其中,如圖1所示,待鍵合的晶圓11上形成有氮化矽層13和鍵合層14,晶圓11頂部形成有頂層金屬層12。在待鍵合的晶圓11中,頂層金屬層12(例如爲銅)作爲重佈線層,通常較厚,導致頂層金屬層12上容易産生小丘121(hillock),而小丘121上的氮化矽層13相比其他位置上的氮化矽層13薄很多,且氮化矽的脆性大,導致小丘121容易頂裂其上的氮化矽層13,並且,在蝕刻形成通孔的過程中也會對氮化矽層13進行少量蝕刻,從而導致小丘121暴露出來,進而發生金屬擴散的問題。如圖2中所示爲銅擴散後在頂層金屬層12中形成了凹坑122,且金屬會擴散至通孔的內壁以及晶圓11的表面,進而導致鍵合的晶圓之間出現電性連接問題甚至斷路。雖然通過增加氮化矽層13的厚度能夠防止金屬擴散,但是會導致氮化矽層13本身剝離的風險增大。As shown in FIG. 1 , a silicon nitride layer 13 and a bonding layer 14 are formed on a wafer 11 to be bonded, and a top metal layer 12 is formed on the top of the wafer 11 . In the wafer 11 to be bonded, the top metal layer 12 (e.g., copper) is a redistribution layer and is usually thicker, which causes hillocks 121 to be easily generated on the top metal layer 12. The silicon nitride layer 13 on the hillock 121 is much thinner than the silicon nitride layer 13 at other locations, and silicon nitride is very brittle, which causes the hillock 121 to easily crack the silicon nitride layer 13 thereon. In addition, a small amount of etching will also be performed on the silicon nitride layer 13 during the process of etching to form a through hole, thereby exposing the hillock 121 and causing metal diffusion problems. As shown in FIG2 , after copper diffusion, pits 122 are formed in the top metal layer 12, and the metal diffuses to the inner wall of the through hole and the surface of the wafer 11, thereby causing electrical connection problems or even disconnection between the bonded wafers. Although metal diffusion can be prevented by increasing the thickness of the silicon nitride layer 13, the risk of the silicon nitride layer 13 itself peeling off will increase.
因此,如何改善銅擴散問題,以提高混合鍵合良率是本領域仍需解決的問題。Therefore, how to improve the copper diffusion problem to increase the hybrid bonding yield is a problem that still needs to be solved in this field.
本發明的目的在於提供一種半導體元件及其製造方法,能夠改善金屬擴散問題,進而能夠提高混合鍵合良率。The purpose of the present invention is to provide a semiconductor element and a manufacturing method thereof, which can improve the metal diffusion problem and thus improve the hybrid bonding yield.
爲實現上述目的,本發明提供了一種半導體元件的製造方法,包括以下步驟。首先提供一晶圓,所述晶圓形成有頂層金屬層,蝕刻停止層覆蓋所述頂層金屬層,所述蝕刻停止層爲至少兩層堆疊的結構。接著,形成鍵合層於所述蝕刻停止層上,然後蝕刻所述鍵合層,且蝕刻停止於所述蝕刻停止層的非最底層結構中,以形成通孔。然後,填充保護層於所述通孔中,接著蝕刻去除所述通孔中的部分所述保護層和所述通孔側壁頂部的所述鍵合層,以在所述通孔頂部形成溝槽。然後,去除剩餘的所述保護層,接著蝕刻去除所述通孔底面的所述蝕刻停止層,以暴露出所述頂層金屬層。接著,填充金屬層於所述溝槽和所述通孔中,所述金屬層與所述頂層金屬層連接。To achieve the above-mentioned purpose, the present invention provides a method for manufacturing a semiconductor element, comprising the following steps. First, a wafer is provided, wherein the wafer is formed with a top metal layer, and an etch stop layer covers the top metal layer, and the etch stop layer is a structure of at least two layers stacked. Then, a bonding layer is formed on the etch stop layer, and then the bonding layer is etched, and the etching stops in the non-bottommost structure of the etch stop layer to form a through hole. Then, a protective layer is filled in the through hole, and then a portion of the protective layer in the through hole and the bonding layer at the top of the through hole sidewall are etched away to form a groove at the top of the through hole. Then, the remaining protection layer is removed, and then the etching stop layer on the bottom surface of the through hole is removed by etching to expose the top metal layer. Then, a metal layer is filled in the trench and the through hole, and the metal layer is connected to the top metal layer.
在一些實施例中,所述蝕刻停止層包括自下向上堆疊的氧化物層和氮化矽層,在形成所述通孔時,蝕刻停止於所述氮化矽層中。或者,在一些實施例中,所述蝕刻停止層包括自下向上堆疊的第一氮化矽層、氧化物層和第二氮化矽層,在形成所述通孔時,蝕刻停止於所述第二氮化矽層或氧化物層中。In some embodiments, the etch stop layer includes an oxide layer and a silicon nitride layer stacked from bottom to top, and when the through hole is formed, the etching stops in the silicon nitride layer. Alternatively, in some embodiments, the etch stop layer includes a first silicon nitride layer, an oxide layer, and a second silicon nitride layer stacked from bottom to top, and when the through hole is formed, the etching stops in the second silicon nitride layer or the oxide layer.
在一些實施例中,所述氧化物層的材料包括氧化矽及/或氮氧化矽。In some embodiments, the material of the oxide layer includes silicon oxide and/or silicon oxynitride.
在一些實施例中,所述鍵合層爲多層堆疊的結構。In some embodiments, the bonding layer is a multi-layer stacked structure.
在一些實施例中,所述保護層包括抗反射層、旋塗碳和旋塗玻璃中的其中至少一者。In some embodiments, the protective layer includes at least one of an anti-reflective layer, spin-on carbon, and spin-on glass.
在一些實施例中,所述半導體元件的製造方法還包括將至少兩個所述晶圓進行鍵合,其中,相鄰所述晶圓上的所述鍵合層相鍵合,且相鄰所述晶圓上的所述金屬層相鍵合。In some embodiments, the method for manufacturing the semiconductor device further includes bonding at least two of the wafers, wherein the bonding layers on adjacent wafers are bonded to each other, and the metal layers on adjacent wafers are bonded to each other.
本發明還提供一種半導體元件,包括基底,所述基底上方形成有頂層金屬層。蝕刻停止層,覆蓋所述頂層金屬層,所述蝕刻停止層爲至少兩層堆疊的結構,所述蝕刻停止層中形成有暴露出所述頂層金屬層的通孔。鍵合層,形成於所述蝕刻停止層上,所述鍵合層中形成有溝槽,所述通孔從所述蝕刻停止層中延伸至所述鍵合層中且與所述溝槽連通,所述溝槽的寬度大於所述通孔的寬度。金屬層,填充於所述溝槽和所述通孔中,所述金屬層與所述頂層金屬層連接。The present invention also provides a semiconductor element, comprising a substrate, a top metal layer formed on the substrate, an etch stop layer covering the top metal layer, the etch stop layer being a structure of at least two layers stacked, a through hole exposing the top metal layer formed in the etch stop layer, a bonding layer formed on the etch stop layer, a trench formed in the bonding layer, the through hole extending from the etch stop layer into the bonding layer and communicating with the trench, the width of the trench being greater than the width of the through hole. A metal layer is filled in the trench and the through hole, and the metal layer is connected to the top metal layer.
在一些實施例中,所述蝕刻停止層包括自下向上堆疊的氧化物層和氮化矽層,或者,所述蝕刻停止層包括自下向上堆疊的第一氮化矽層、氧化物層和第二氮化矽層。In some embodiments, the etch stop layer includes an oxide layer and a silicon nitride layer stacked from bottom to top, or the etch stop layer includes a first silicon nitride layer, an oxide layer, and a second silicon nitride layer stacked from bottom to top.
在一些實施例中,所述氧化物層的材料包括氧化矽及/或氮氧化矽。In some embodiments, the material of the oxide layer includes silicon oxide and/or silicon oxynitride.
在一些實施例中,所述半導體元件包括至少兩個相鍵合的所述基底,其中,相鄰所述基底上方的所述鍵合層相鍵合,且相鄰所述基底上方的所述金屬層相鍵合。In some embodiments, the semiconductor device includes at least two bonded substrates, wherein the bonding layers adjacent to the substrates are bonded, and the metal layers adjacent to the substrates are bonded.
與現有技術相比,本發明的技術方案具有以下有益效果:Compared with the prior art, the technical solution of the present invention has the following beneficial effects:
1. 本發明的半導體元件的製造方法,通過形成蝕刻停止層於晶圓上,所述蝕刻停止層覆蓋頂層金屬層,所述蝕刻停止層爲至少兩層堆疊的結構;形成鍵合層於所述蝕刻停止層上;蝕刻所述鍵合層,且蝕刻停止於所述蝕刻停止層的非最底層結構中,以形成通孔;填充保護層於所述通孔中;蝕刻去除所述通孔中的部分所述保護層和所述通孔側壁頂部的所述鍵合層,以在所述通孔頂部形成溝槽;去除剩餘的所述保護層;蝕刻去除所述通孔底面的所述蝕刻停止層,以暴露出所述頂層金屬層;填充金屬層於所述溝槽和所述通孔中,所述金屬層與所述頂層金屬層連接,使得能夠改善金屬擴散問題,進而能夠提高混合鍵合良率。1. The method for manufacturing a semiconductor device of the present invention comprises forming an etch stop layer on a wafer, wherein the etch stop layer covers a top metal layer, and the etch stop layer is a structure of at least two stacked layers; forming a bonding layer on the etch stop layer; etching the bonding layer, and the etching stops in a non-bottommost structure of the etch stop layer to form a through hole; filling a protective layer in the through hole; and etching away a portion of the through hole. The protective layer and the bonding layer on the top of the through hole side wall are separated to form a groove at the top of the through hole; the remaining protective layer is removed; the etch stop layer on the bottom surface of the through hole is removed by etching to expose the top metal layer; a metal layer is filled in the groove and the through hole, and the metal layer is connected to the top metal layer, so that the metal diffusion problem can be improved, thereby improving the hybrid bonding yield.
2. 本發明的半導體元件,由於包括基底,所述基底上方形成有頂層金屬層;蝕刻停止層,覆蓋所述頂層金屬層,所述蝕刻停止層爲至少兩層堆疊的結構,所述蝕刻停止層中形成有暴露出所述頂層金屬層的通孔;鍵合層,形成於所述蝕刻停止層上,所述鍵合層中形成有溝槽,所述通孔從所述蝕刻停止層中延伸至所述鍵合層中且與所述溝槽連通,所述溝槽的寬度大於所述通孔的寬度;金屬層,填充於所述溝槽和所述通孔中,所述金屬層與所述頂層金屬層連接,使得能夠改善金屬擴散問題,進而能夠提高混合鍵合良率。2. The semiconductor device of the present invention comprises a substrate, a top metal layer is formed on the substrate; an etch stop layer, covering the top metal layer, the etch stop layer is a structure of at least two layers stacked, the etch stop layer is formed with a through hole exposing the top metal layer; a bonding layer, formed on the etch stop layer, A trench is formed, the through hole extends from the etch stop layer to the bonding layer and is connected to the trench, the width of the trench is greater than the width of the through hole; a metal layer is filled in the trench and the through hole, the metal layer is connected to the top metal layer, so that the metal diffusion problem can be improved, thereby improving the hybrid bonding yield.
爲使本發明的目的、優點和特徵更加清楚,以下對本發明提出的半導體元件及其製造方法作進一步詳細說明。需說明的是,附圖均採用非常簡化的形式且均使用非精準的比例,僅用以方便、明晰地輔助說明本發明實施例的目的。In order to make the purpose, advantages and features of the present invention more clear, the semiconductor device and its manufacturing method proposed by the present invention are further described in detail below. It should be noted that the attached figures are all in a very simplified form and are not in exact proportions, and are only used to conveniently and clearly assist in explaining the purpose of the embodiments of the present invention.
本發明一實施例提供了一種半導體元件的製造方法。請參閱圖3,所述半導體元件的製造方法的步驟依序包括:An embodiment of the present invention provides a method for manufacturing a semiconductor device. Referring to FIG. 3 , the steps of the method for manufacturing a semiconductor device include:
步驟S1,提供一晶圓,所述晶圓形成有頂層金屬層,蝕刻停止層覆蓋所述頂層金屬層,所述蝕刻停止層爲至少兩層堆疊的結構;Step S1, providing a wafer, wherein a top metal layer is formed on the wafer, an etch stop layer covers the top metal layer, and the etch stop layer is a structure of at least two stacked layers;
步驟S2,形成鍵合層於所述蝕刻停止層上;Step S2, forming a bonding layer on the etch stop layer;
步驟S3,蝕刻所述鍵合層,且蝕刻停止於所述蝕刻停止層的非最底層結構中,以形成通孔;Step S3, etching the bonding layer, and stopping the etching in the non-bottommost structure of the etch stop layer to form a through hole;
步驟S4,填充保護層於所述通孔中;Step S4, filling the protective layer in the through hole;
步驟S5,蝕刻去除所述通孔中的部分所述保護層和所述通孔側壁頂部的所述鍵合層,以在所述通孔頂部形成溝槽;Step S5, etching and removing a portion of the protection layer in the through hole and the bonding layer at the top of the through hole sidewall to form a groove at the top of the through hole;
步驟S6,去除剩餘的所述保護層;Step S6, removing the remaining protective layer;
步驟S7,蝕刻去除所述通孔底面的所述蝕刻停止層,以暴露出所述頂層金屬層;Step S7, etching away the etching stop layer on the bottom surface of the through hole to expose the top metal layer;
步驟S8,填充金屬層於所述溝槽和所述通孔中,所述金屬層與所述頂層金屬層連接。Step S8, filling the groove and the through hole with a metal layer, wherein the metal layer is connected to the top metal layer.
下面請參閱圖4a至圖4k,以對本實施例提供的半導體元件的製造方法進行詳細說明。圖4a至圖4k為半導體元件在製造步驟中的剖面示意圖。Please refer to Figures 4a to 4k below for a detailed description of the method for manufacturing a semiconductor device provided in this embodiment. Figures 4a to 4k are schematic cross-sectional views of a semiconductor device in the manufacturing steps.
首先進行步驟S1中,如圖4a所示,首先提供一晶圓21,所述晶圓21形成有頂層金屬層213。First, in step S1, as shown in FIG. 4a, a wafer 21 is provided, and a top metal layer 213 is formed on the wafer 21.
所述晶圓21包括基底211和形成於基底211上的絕緣介質層212,所述頂層金屬層213形成於所述絕緣介質層212中,且所述絕緣介質層212暴露出所述頂層金屬層213。所述絕緣介質層212中還形成有金屬互連結構等結構,所述頂層金屬層213作爲重佈線層與所述金屬互連結構電連接。The wafer 21 includes a substrate 211 and an insulating dielectric layer 212 formed on the substrate 211, the top metal layer 213 is formed in the insulating dielectric layer 212, and the insulating dielectric layer 212 exposes the top metal layer 213. The insulating dielectric layer 212 also has a metal interconnect structure and the like formed therein, and the top metal layer 213 is electrically connected to the metal interconnect structure as a redistribution layer.
所述晶圓21可以爲元件晶圓或承載晶圓。The wafer 21 may be a device wafer or a carrier wafer.
所述元件晶圓可以爲包含圖像感測器的像素陣列的像素晶圓,或者包含MEMS元件的MEMS微結構的MEMS晶圓,還可以爲包含功率元件的MOSFET晶圓或者IGBT晶圓或者被動元件晶圓等。所述元件晶圓的種類取決於最終要製作的元件的功能。所述承載晶圓可以未包含功能結構。或者,所述承載晶圓可以包含功能結構,且功能結構位於所述承載晶圓的內部而非位於所述承載晶圓的表面。在一些實施例中,所述承載晶圓包含的功能結構也可以位於晶圓邊緣的內部及/或表面。The component wafer may be a pixel wafer including a pixel array of an image sensor, or a MEMS wafer including a MEMS microstructure of a MEMS element, or a MOSFET wafer including a power element, or an IGBT wafer, or a passive element wafer, etc. The type of the component wafer depends on the function of the element to be manufactured in the end. The carrier wafer may not include a functional structure. Alternatively, the carrier wafer may include a functional structure, and the functional structure is located inside the carrier wafer rather than on the surface of the carrier wafer. In some embodiments, the functional structure included in the carrier wafer may also be located inside and/or on the surface of the wafer edge.
所述頂層金屬層213的材料可以爲銅或鋁等金屬材料。The material of the top metal layer 213 can be metal materials such as copper or aluminum.
在所述晶圓21中,所述頂層金屬層213作爲重佈線層,通常較厚,使得所述頂層金屬層213在製程過程中的高溫環境下的應力變化更明顯,進而會發生晶體的再結晶或生長,導致所述頂層金屬層213上容易産生小丘(即圖1中所示的小丘121)。其中,當所述頂層金屬層213的材料爲銅時,由於銅的擴散性非常好,導致所述頂層金屬層213上更容易産生小丘。In the wafer 21, the top metal layer 213 is usually thicker as a redistribution layer, so that the stress change of the top metal layer 213 in the high temperature environment during the manufacturing process is more obvious, and then the recrystallization or growth of the crystal will occur, resulting in the easy generation of hillocks (i.e., hillocks 121 shown in FIG. 1 ) on the top metal layer 213. When the material of the top metal layer 213 is copper, copper has very good diffusion properties, resulting in the easy generation of hillocks on the top metal layer 213.
如圖4a所示,所述晶圓21上形成有蝕刻停止層22,所述蝕刻停止層22覆蓋所述頂層金屬層213,所述蝕刻停止層22爲至少兩層堆疊的結構。As shown in FIG. 4 a , an etch stop layer 22 is formed on the wafer 21 . The etch stop layer 22 covers the top metal layer 213 . The etch stop layer 22 is a structure of at least two stacked layers.
在圖4a至圖4k所示的實施例中,所述蝕刻停止層22包括自下向上堆疊的第一氮化矽層221、氧化物層222和第二氮化矽層223。或者,在另一實施例中,所述蝕刻停止層22包括自下向上堆疊的氧化物層和氮化矽層。所述蝕刻停止層22的結構不僅限於上述的實施例。在其他實施例中,所述蝕刻停止層22也可以由氧化物層和氮化矽層多次交替堆疊而成。In the embodiments shown in FIGS. 4a to 4k, the etch stop layer 22 includes a first silicon nitride layer 221, an oxide layer 222, and a second silicon nitride layer 223 stacked from bottom to top. Alternatively, in another embodiment, the etch stop layer 22 includes an oxide layer and a silicon nitride layer stacked from bottom to top. The structure of the etch stop layer 22 is not limited to the above-mentioned embodiments. In other embodiments, the etch stop layer 22 may also be formed by multiple alternating stacks of oxide layers and silicon nitride layers.
其中,所述氧化物層的材料可以包括氧化矽及/或氮氧化矽等。The material of the oxide layer may include silicon oxide and/or silicon oxynitride.
接著進行步驟S2,如圖4a所示,形成鍵合層23於所述蝕刻停止層22上。Then, step S2 is performed, as shown in FIG. 4 a , to form a bonding layer 23 on the etch stop layer 22 .
較佳者,所述鍵合層23爲多層堆疊的結構。Preferably, the bonding layer 23 is a multi-layer stacked structure.
在圖4a至圖4j所示的實施例中,所述鍵合層23包括自下向上堆疊的第一介質層231、第二介質層232和第三介質層233。其中,在一實施例中,所述第一介質層231和所述第三介質層233的材料可以爲氧化矽及/或氮氧化矽等氧化物層,所述第二介質層232的材料可以爲摻氮的碳化矽。在其他實施例中,所述第一介質層231、所述第二介質層232和所述第三介質層233的材料還可以爲其他絕緣材料。In the embodiments shown in FIG. 4a to FIG. 4j, the bonding layer 23 includes a first dielectric layer 231, a second dielectric layer 232, and a third dielectric layer 233 stacked from bottom to top. In one embodiment, the materials of the first dielectric layer 231 and the third dielectric layer 233 may be oxide layers such as silicon oxide and/or silicon oxynitride, and the material of the second dielectric layer 232 may be nitrogen-doped silicon carbide. In other embodiments, the materials of the first dielectric layer 231, the second dielectric layer 232, and the third dielectric layer 233 may also be other insulating materials.
接著進行步驟S3,蝕刻所述鍵合層23,且蝕刻停止於所述蝕刻停止層22的非最底層結構中,以形成通孔24。Then, step S3 is performed to etch the bonding layer 23 , and the etching stops at the non-bottommost structure of the etch stop layer 22 to form a through hole 24 .
其中,需要說明的是,蝕刻停止於所述蝕刻停止層22的非最底層結構中的步驟可包括蝕刻停止於所述蝕刻停止層22的最頂層結構的頂面,即剛好將所述鍵合層23刻穿。或者可包括蝕刻停止於所述蝕刻停止層22的非最底層結構的內部,即在將所述鍵合層23刻穿之後,所述蝕刻停止層22的非最底層結構也被蝕刻去除部分厚度。或者,可包括蝕刻停止於所述蝕刻停止層22的最底層結構的頂面,即在將所述鍵合層23刻穿之後,所述蝕刻停止層22的非最底層結構也剛好被刻穿而暴露出所述蝕刻停止層22的最底層結構。It should be noted that the step of stopping etching in the non-bottommost structure of the etch stop layer 22 may include stopping etching at the top surface of the topmost structure of the etch stop layer 22, i.e., just etching through the bonding layer 23. Alternatively, the step of stopping etching at the inside of the non-bottommost structure of the etch stop layer 22 may include, i.e., after etching through the bonding layer 23, the non-bottommost structure of the etch stop layer 22 is also partially etched away. Alternatively, the etching may be stopped at the top surface of the bottommost structure of the etch stop layer 22, that is, after the bonding layer 23 is etched through, the non-bottommost structure of the etch stop layer 22 is also etched through to expose the bottommost structure of the etch stop layer 22.
若所述蝕刻停止層22包括自下向上堆疊的氧化物層和氮化矽層,則在形成所述通孔24時,蝕刻停止於所述氮化矽層中。若所述蝕刻停止層22包括自下向上堆疊的第一氮化矽層221、氧化物層222和第二氮化矽層223,則在形成所述通孔24時,蝕刻停止於所述第二氮化矽層223或氧化物層222中。If the etch stop layer 22 includes an oxide layer and a silicon nitride layer stacked from bottom to top, the etching stops in the silicon nitride layer when forming the through hole 24. If the etch stop layer 22 includes a first silicon nitride layer 221, an oxide layer 222, and a second silicon nitride layer 223 stacked from bottom to top, the etching stops in the second silicon nitride layer 223 or the oxide layer 222 when forming the through hole 24.
詳細來說,請參考圖4b至圖4d,形成所述通孔24的步驟可以包括:首先如圖4b所示,形成第一圖案化的光阻層241於所述第三介質層233上。然後,如圖4c所示,以所述第一圖案化的光阻層241爲遮罩,依序蝕刻所述第三介質層233、所述第二介質層232和所述第一介質層231,並停止於所述第二氮化矽層223中。然後,如圖4d所示,去除所述第一圖案化的光阻層241。In detail, referring to FIG. 4b to FIG. 4d, the step of forming the through hole 24 may include: first, as shown in FIG. 4b, forming a first patterned photoresist layer 241 on the third dielectric layer 233. Then, as shown in FIG. 4c, using the first patterned photoresist layer 241 as a mask, sequentially etching the third dielectric layer 233, the second dielectric layer 232 and the first dielectric layer 231, and stopping in the second silicon nitride layer 223. Then, as shown in FIG. 4d, removing the first patterned photoresist layer 241.
另外,在形成所述通孔24之後,且在後續填充保護層25於所述通孔24中之前,所述半導體元件的製造方法的還可包括進行濕式清洗製程,以去除蝕刻産生的副産物。In addition, after forming the through hole 24 and before subsequently filling the protection layer 25 in the through hole 24, the method for manufacturing the semiconductor device may further include performing a wet cleaning process to remove byproducts generated by etching.
由於所述蝕刻停止層22爲至少兩層堆疊的結構,且在蝕刻形成所述通孔24時,蝕刻停止於所述蝕刻停止層22的非最底層結構中,使得與圖1所示的僅採用單層結構的氮化矽層13作爲蝕刻停止層相比,本發明的實施例中的所述蝕刻停止層22的層數增多且厚度增大,使得在蝕刻形成所述通孔24的過程中,所述頂層金屬層213上的小丘一直能被較厚的蝕刻停止層22包覆保護住,且所述蝕刻停止層22的最底層結構被非最底層結構壓住,能夠改善所述蝕刻停止層22的最底層結構被所述頂層金屬層213上的小丘頂裂的情況。此外,本發明的實施例在蝕刻形成所述通孔24之後至少還保留部分所述蝕刻停止層22,以其整個厚度的最底層結構包覆所述頂層金屬層213,使得後續在進行濕式清洗製程過程中,所述蝕刻停止層22的最底層結構能夠繼續保護所述頂層金屬層213上的小丘。因此,本發明的實施例能夠在蝕刻形成所述通孔24的過程中以及在蝕刻形成所述通孔24之後避免所述頂層金屬層213上的小丘暴露出來,進而避免所述頂層金屬層213上的小丘在進行濕式清洗製程過程中與清洗液反應,從而改善金屬擴散問題。Since the etch stop layer 22 is a structure of at least two layers stacked, and when etching to form the through hole 24, the etching stops in the non-bottommost structure of the etch stop layer 22, compared with the single-layer silicon nitride layer 13 as the etch stop layer shown in FIG. 1, the etch stop layer 22 in the embodiment of the present invention has more layers and a larger thickness. , so that in the process of etching to form the through hole 24, the hillock on the top metal layer 213 can always be covered and protected by the thicker etch stop layer 22, and the bottom layer structure of the etch stop layer 22 is pressed by the non-bottom layer structure, which can improve the situation where the bottom layer structure of the etch stop layer 22 is cracked by the hillock on the top metal layer 213. In addition, the embodiment of the present invention retains at least a portion of the etch stop layer 22 after etching to form the through hole 24, and covers the top metal layer 213 with the bottom structure of the entire thickness thereof, so that during the subsequent wet cleaning process, the bottom structure of the etch stop layer 22 can continue to protect the hillock on the top metal layer 213. Therefore, the embodiment of the present invention can prevent the hillock on the top metal layer 213 from being exposed during the process of etching to form the through hole 24 and after etching to form the through hole 24, and further prevent the hillock on the top metal layer 213 from reacting with the cleaning solution during the wet cleaning process, thereby improving the metal diffusion problem.
在一些實施例中,當所述蝕刻停止層22包括自下向上堆疊的第一氮化矽層221、氧化物層222和第二氮化矽層223,或者所述蝕刻停止層22包括自下向上堆疊的氧化物層和氮化矽層時,由於氧化矽及/或氮氧化矽等氧化物的脆性低於氮化矽的脆性,使得氧化物的包覆性更好,進而使得若氧化物層包覆第一氮化矽層,則第一氮化矽層不容易裂開,若氧化物層直接包覆小丘,則氧化物層不容易裂開。因此,本發明能夠在蝕刻形成所述通孔24時進一步避免所述頂層金屬層213上的小丘暴露出來。In some embodiments, when the etch stop layer 22 includes a first silicon nitride layer 221, an oxide layer 222, and a second silicon nitride layer 223 stacked from bottom to top, or the etch stop layer 22 includes an oxide layer and a silicon nitride layer stacked from bottom to top, since the brittleness of oxides such as silicon oxide and/or silicon oxynitride is lower than that of silicon nitride, the oxide has better coating properties, and thus if the oxide layer coats the first silicon nitride layer, the first silicon nitride layer is not easy to crack, and if the oxide layer directly coats the hillock, the oxide layer is not easy to crack. Therefore, the present invention can further prevent the hillock on the top metal layer 213 from being exposed when etching to form the through hole 24.
在一些實施例中,當所述蝕刻停止層22包括自下向上堆疊的第一氮化矽層221、氧化物層222和第二氮化矽層223,且在形成所述通孔24時蝕刻停止於所述第二氮化矽層223時,即使所述第一氮化矽層221裂開,還有所述氧化物層222作爲緩衝層包覆裂開的所述第一氮化矽層221和所述頂層金屬層213上的小丘,從而能夠進一步避免所述頂層金屬層213上的小丘暴露出來。In some embodiments, when the etch stop layer 22 includes a first silicon nitride layer 221, an oxide layer 222, and a second silicon nitride layer 223 stacked from bottom to top, and the etching stops at the second silicon nitride layer 223 when forming the through hole 24, even if the first silicon nitride layer 221 is cracked, the oxide layer 222 serves as a buffer layer to cover the cracked first silicon nitride layer 221 and the hillock on the top metal layer 213, thereby further preventing the hillock on the top metal layer 213 from being exposed.
接著進行步驟S4,如圖4e所示,填充保護層25於所述通孔24中。Then, step S4 is performed, as shown in FIG. 4 e , to fill the protection layer 25 in the through hole 24 .
所述保護層25還可以覆蓋所述鍵合層23的表面。The protective layer 25 may also cover the surface of the bonding layer 23.
所述保護層25包括抗反射層、旋塗碳和旋塗玻璃等其中至少一者。The protective layer 25 includes at least one of an anti-reflection layer, spin-on carbon, and spin-on glass.
抗反射層可以由氮化物材料、有機材料、氧化物材料等形成。The anti-reflection layer may be formed of a nitride material, an organic material, an oxide material, or the like.
接著進行步驟S5,如圖4f至圖4g所示,蝕刻去除所述通孔24中的部分所述保護層25和所述通孔24側壁頂部的所述鍵合層23,以在所述通孔24頂部形成溝槽26,所述溝槽26的寬度大於所述通孔24的寬度。Then, step S5 is performed, as shown in FIGS. 4f to 4g, to etch away a portion of the protective layer 25 in the through hole 24 and the bonding layer 23 at the top of the sidewall of the through hole 24 to form a groove 26 at the top of the through hole 24, wherein the width of the groove 26 is greater than the width of the through hole 24.
在一些實施例中,在所述通孔24頂部形成所述溝槽26可以包括以下步驟。首先如圖4f所示,形成第二圖案化的光阻層261於所述保護層25上,然後如圖4g所示,以所述第二圖案化的光阻層261爲遮罩,蝕刻所述保護層25和所述通孔24側壁頂部的所述鍵合層23,以在所述通孔24頂部形成所述溝槽26。In some embodiments, forming the trench 26 at the top of the through hole 24 may include the following steps. First, as shown in FIG4f, a second patterned photoresist layer 261 is formed on the protective layer 25, and then, as shown in FIG4g, the second patterned photoresist layer 261 is used as a mask to etch the protective layer 25 and the bonding layer 23 at the top of the sidewall of the through hole 24 to form the trench 26 at the top of the through hole 24.
在蝕刻形成所述溝槽26之後,所述通孔24中還剩餘部分厚度的所述保護層25,所述保護層25能夠在蝕刻形成所述溝槽26的過程中保護所述通孔24底面的蝕刻停止層22,避免所述通孔24底面的蝕刻停止層22被蝕刻,從而避免所述頂層金屬層213上的小丘暴露出來。After the trench 26 is formed by etching, a partial thickness of the protective layer 25 remains in the through hole 24. The protective layer 25 can protect the etch stop layer 22 at the bottom of the through hole 24 during the process of etching the trench 26, thereby preventing the etch stop layer 22 at the bottom of the through hole 24 from being etched, thereby preventing the hillock on the top metal layer 213 from being exposed.
接著進行步驟S6,如圖4h所示,去除剩餘的所述保護層25。Then, step S6 is performed, as shown in FIG. 4h, to remove the remaining protective layer 25.
在一些實施例中,可以採用灰化製程去除所述通孔24中剩餘的所述保護層25、所述鍵合層23上的保護層25和所述第二圖案化的光阻層261。In some embodiments, an ashing process may be used to remove the remaining protective layer 25 in the through hole 24 , the protective layer 25 on the bonding layer 23 , and the second patterned photoresist layer 261 .
接著步驟S7,如圖4i所示,蝕刻去除所述通孔24底面的所述蝕刻停止層22,以暴露出所述頂層金屬層213。Then, in step S7, as shown in FIG. 4i, the etching stop layer 22 on the bottom surface of the through hole 24 is removed by etching to expose the top metal layer 213.
在蝕刻去除所述通孔24底面的所述蝕刻停止層22的同時,所述鍵合層23的頂面以及所述溝槽26的內壁也會被蝕刻去除部分厚度。While the etching stop layer 22 on the bottom surface of the through hole 24 is being etched away, a portion of the thickness of the top surface of the bonding layer 23 and the inner wall of the trench 26 will also be etched away.
接著進行步驟S8,如圖4j至圖4k,填充金屬層27於所述溝槽26和所述通孔24中,所述金屬層27與所述頂層金屬層213電連接。Then, step S8 is performed, as shown in FIG. 4j to FIG. 4k , to fill the metal layer 27 in the trench 26 and the through hole 24 , and the metal layer 27 is electrically connected to the top metal layer 213 .
當所述鍵合層23包括自下向上堆疊的第一介質層231、第二介質層232和第三介質層233時,填充所述金屬層27於所述溝槽26和所述通孔24中的可以包括以下步驟。首先,如圖4j所示,填充金屬層27於所述溝槽26和所述通孔24中,且所述金屬層27覆蓋所述第三介質層233。然後,如圖4k所示,採用化學機械研磨製程研磨去除高於所述第二介質層232的所述金屬層27以及所述第三介質層233,以使得在後續鍵合製程中,相鄰所述晶圓21上的所述第二介質層232相鍵合。When the bonding layer 23 includes a first dielectric layer 231, a second dielectric layer 232, and a third dielectric layer 233 stacked from bottom to top, filling the metal layer 27 in the trench 26 and the through hole 24 may include the following steps. First, as shown in FIG4j, the metal layer 27 is filled in the trench 26 and the through hole 24, and the metal layer 27 covers the third dielectric layer 233. Then, as shown in FIG4k, the metal layer 27 and the third dielectric layer 233 that are higher than the second dielectric layer 232 are ground and removed by a chemical mechanical grinding process, so that in the subsequent bonding process, the second dielectric layer 232 on the adjacent wafer 21 is bonded.
所述金屬層27位於所述通孔24中的部分爲轉接層,所述轉接層用於與所述頂層金屬層213電連接。所述金屬層27位於所述溝槽26中的部分爲鍵合焊盤,所述鍵合焊盤用於後續的鍵合製程。The portion of the metal layer 27 located in the through hole 24 is a transfer layer, and the transfer layer is used to electrically connect to the top metal layer 213. The portion of the metal layer 27 located in the trench 26 is a bonding pad, and the bonding pad is used for a subsequent bonding process.
在一些實施例中,所述半導體元件的製造方法還可包括將至少兩個所述晶圓21進行鍵合,其中相鄰所述晶圓21上的所述鍵合層23相鍵合,且相鄰所述晶圓21上的所述金屬層27相鍵合。In some embodiments, the method for manufacturing the semiconductor device may further include bonding at least two of the wafers 21, wherein the bonding layers 23 on adjacent wafers 21 are bonded, and the metal layers 27 on adjacent wafers 21 are bonded.
由上述說明可知,在本發明所提供的半導體元件的製造過程中,由於所述蝕刻停止層22能夠使得所述頂層金屬層213上的小丘一直被保護而避免被暴露出來,從而使得金屬擴散問題得到改善,避免在所述頂層金屬層213形成凹坑(即圖2中的凹坑122),以及避免金屬擴散至所述通孔24和所述溝槽26表面,進而避免導致後續鍵合的晶圓之間出現電性連接問題甚至斷路,提高了混合鍵合良率。As can be seen from the above description, in the manufacturing process of the semiconductor element provided by the present invention, the etch stop layer 22 can protect the hillock on the top metal layer 213 from being exposed, thereby improving the metal diffusion problem, avoiding the formation of pits (i.e., pits 122 in FIG. 2) in the top metal layer 213, and avoiding metal diffusion to the surface of the through hole 24 and the groove 26, thereby avoiding electrical connection problems or even circuit breaks between the wafers to be bonded subsequently, thereby improving the hybrid bonding yield.
另外,需要說明的是,採用上述半導體元件的製造方法形成了晶圓結構,所述晶圓結構包括陣列排佈的晶片結構,相鄰的所述晶片結構之間設置有切割道。所述半導體元件的製造方法還可包括沿所述切割道對所述晶圓結構進行切割,以將陣列排佈的所述晶片結構分離。In addition, it should be noted that the above-mentioned method for manufacturing semiconductor elements is used to form a wafer structure, wherein the wafer structure includes chip structures arranged in an array, and a cutting path is provided between adjacent chip structures. The method for manufacturing semiconductor elements may also include cutting the wafer structure along the cutting path to separate the chip structures arranged in an array.
圖4k所示的半導體元件可以爲所述晶圓結構的一部分或者爲所述晶片結構。The semiconductor element shown in Figure 4k can be a part of the wafer structure or the chip structure.
綜上所述,本發明提供一種半導體元件的製造方法,步驟包括:提供一晶圓,所述晶圓形成有頂層金屬層,蝕刻停止層覆蓋所述頂層金屬層,所述蝕刻停止層爲至少兩層堆疊的結構;形成鍵合層於所述蝕刻停止層上;蝕刻所述鍵合層,且蝕刻停止於所述蝕刻停止層的非最底層結構中,以形成通孔;填充保護層於所述通孔中;蝕刻去除所述通孔中的部分所述保護層和所述通孔側壁頂部的所述鍵合層,以在所述通孔頂部形成溝槽;去除剩餘的所述保護層;蝕刻去除所述通孔底面的所述蝕刻停止層,以暴露出所述頂層金屬層;填充金屬層於所述溝槽和所述通孔中,所述金屬層與所述頂層金屬層連接。本發明提供的半導體元件的製造方法能夠改善金屬擴散問題,進而能夠提高混合鍵合良率。In summary, the present invention provides a method for manufacturing a semiconductor device, the steps comprising: providing a wafer, the wafer having a top metal layer formed thereon, an etch stop layer covering the top metal layer, the etch stop layer being a structure of at least two layers stacked; forming a bonding layer on the etch stop layer; etching the bonding layer, and the etching stops in a non-bottommost structure of the etch stop layer to form a through hole; filling The method comprises the following steps: filling a protective layer in the through hole; etching away a portion of the protective layer in the through hole and the bonding layer on the top of the through hole sidewall to form a trench at the top of the through hole; removing the remaining protective layer; etching away the etching stop layer on the bottom of the through hole to expose the top metal layer; filling a metal layer in the trench and the through hole, wherein the metal layer is connected to the top metal layer. The method for manufacturing a semiconductor element provided by the present invention can improve the metal diffusion problem, thereby improving the hybrid bonding yield.
本發明一實施例提供了一種半導體元件,包括基底,所述基底上方形成有頂層金屬層。蝕刻停止層,覆蓋所述頂層金屬層,所述蝕刻停止層爲至少兩層堆疊的結構,所述蝕刻停止層中形成有暴露出所述頂層金屬層的通孔。鍵合層,形成於所述蝕刻停止層上,所述鍵合層中形成有溝槽,其中所述通孔從所述蝕刻停止層中延伸至所述鍵合層中且與所述溝槽連通,且所述溝槽的寬度大於所述通孔的寬度。金屬層,填充於所述溝槽和所述通孔中,所述金屬層與所述頂層金屬層連接。An embodiment of the present invention provides a semiconductor element, comprising a substrate, a top metal layer formed on the substrate, an etch stop layer covering the top metal layer, the etch stop layer being a structure of at least two layers stacked, a through hole exposing the top metal layer formed in the etch stop layer, and a bonding layer formed on the etch stop layer, a trench formed in the bonding layer, wherein the through hole extends from the etch stop layer into the bonding layer and communicates with the trench, and the width of the trench is greater than the width of the through hole. A metal layer is filled in the trench and the through hole, and the metal layer is connected to the top metal layer.
以下請參考圖4k來對本實施例提供的半導體元件進行詳細說明。圖4k為半導體元件的剖面示意圖。Please refer to Figure 4k below to explain the semiconductor device provided by this embodiment in detail. Figure 4k is a cross-sectional schematic diagram of the semiconductor device.
所述基底211上方形成有頂層金屬層213。A top metal layer 213 is formed on the substrate 211 .
所述基底211上形成有絕緣介質層212,所述頂層金屬層213形成於所述絕緣介質層212中,且所述絕緣介質層212暴露出所述頂層金屬層213;所述絕緣介質層212中還形成有金屬互連結構等結構,所述頂層金屬層213作爲重佈線層與所述金屬互連結構電連接。An insulating dielectric layer 212 is formed on the substrate 211, and the top metal layer 213 is formed in the insulating dielectric layer 212, and the insulating dielectric layer 212 exposes the top metal layer 213; a metal interconnect structure and other structures are also formed in the insulating dielectric layer 212, and the top metal layer 213 is electrically connected to the metal interconnect structure as a redistribution layer.
所述頂層金屬層213的材料可以爲銅或鋁等金屬材料。The material of the top metal layer 213 can be metal materials such as copper or aluminum.
所述頂層金屬層213作爲重佈線層,通常較厚,使得所述頂層金屬層213在製程過程中的高溫環境下的應力變化更明顯,進而會發生晶體的再結晶或生長,導致所述頂層金屬層213上容易産生小丘(即圖1中所示的小丘121);其中,當所述頂層金屬層213的材料爲銅時,由於銅的擴散性非常好,導致所述頂層金屬層213上更容易産生小丘。The top metal layer 213 is usually thicker as a redistribution layer, so that the stress change of the top metal layer 213 in the high temperature environment during the manufacturing process is more obvious, and then the recrystallization or growth of the crystal will occur, resulting in the easy generation of hillocks (i.e., the hillocks 121 shown in FIG. 1 ); wherein, when the material of the top metal layer 213 is copper, due to the very good diffusion property of copper, it is easier to generate hillocks on the top metal layer 213.
所述蝕刻停止層22形成於所述絕緣介質層212上,所述蝕刻停止層22覆蓋所述頂層金屬層213,所述蝕刻停止層22爲至少兩層堆疊的結構,所述蝕刻停止層22中形成有暴露出所述頂層金屬層213的通孔。The etch stop layer 22 is formed on the insulating dielectric layer 212 , and covers the top metal layer 213 . The etch stop layer 22 is a structure of at least two layers stacked together, and a through hole exposing the top metal layer 213 is formed in the etch stop layer 22 .
在圖4k所示的實施例中,所述蝕刻停止層22包括自下向上堆疊的第一氮化矽層221、氧化物層222和第二氮化矽層223;或者,在另一實施例中,所述蝕刻停止層22包括自下向上堆疊的氧化物層和氮化矽層。所述蝕刻停止層22的結構不僅限於上述的實施例,在其他實施例中,所述蝕刻停止層22也可以由氧化物層和氮化矽層多次交替堆疊而成。In the embodiment shown in FIG. 4k , the etch stop layer 22 includes a first silicon nitride layer 221, an oxide layer 222, and a second silicon nitride layer 223 stacked from bottom to top; or, in another embodiment, the etch stop layer 22 includes an oxide layer and a silicon nitride layer stacked from bottom to top. The structure of the etch stop layer 22 is not limited to the above embodiment. In other embodiments, the etch stop layer 22 may also be formed by multiple alternating stacks of oxide layers and silicon nitride layers.
在一些實施例中,所述氧化物層的材料可以包括氧化矽及/或氮氧化矽等。In some embodiments, the material of the oxide layer may include silicon oxide and/or silicon oxynitride.
所述鍵合層23形成於所述蝕刻停止層22上,所述鍵合層23中形成有溝槽,所述通孔從所述蝕刻停止層22中延伸至所述鍵合層23中的溝槽底面,且所述通孔與所述溝槽連通,其中所述溝槽的寬度大於所述通孔的寬度。The bonding layer 23 is formed on the etch stop layer 22, a trench is formed in the bonding layer 23, the through hole extends from the etch stop layer 22 to the bottom surface of the trench in the bonding layer 23, and the through hole is connected to the trench, wherein the width of the trench is greater than the width of the through hole.
較佳者,所述鍵合層23爲多層堆疊的結構。Preferably, the bonding layer 23 is a multi-layer stacked structure.
在一些實施例中,所述鍵合層23可以包括自下向上堆疊的第一介質層231、第二介質層232和第三介質層233。其中,在一實施例中,所述第一介質層231和所述第三介質層233的材料可以爲氧化矽及/或氮氧化矽等氧化物層,所述第二介質層232的材料可以爲摻氮的碳化矽;在其他實施例中,所述第一介質層231、所述第二介質層232和所述第三介質層233的材料還可以爲其他絕緣材料。In some embodiments, the bonding layer 23 may include a first dielectric layer 231, a second dielectric layer 232, and a third dielectric layer 233 stacked from bottom to top. In one embodiment, the materials of the first dielectric layer 231 and the third dielectric layer 233 may be oxide layers such as silicon oxide and/or silicon oxynitride, and the material of the second dielectric layer 232 may be nitrogen-doped silicon carbide; in other embodiments, the materials of the first dielectric layer 231, the second dielectric layer 232, and the third dielectric layer 233 may also be other insulating materials.
在圖4k所示的實施例中,所述鍵合層23包括自下向上堆疊的第一介質層231和第二介質層232。In the embodiment shown in FIG. 4k , the bonding layer 23 includes a first dielectric layer 231 and a second dielectric layer 232 stacked from bottom to top.
所述金屬層27填充於所述溝槽和所述通孔中,所述金屬層27與所述頂層金屬層213電連接。The metal layer 27 is filled in the trench and the through hole, and the metal layer 27 is electrically connected to the top metal layer 213.
所述金屬層27位於所述通孔中的部分爲轉接層,所述轉接層用於與所述頂層金屬層213電連接;所述金屬層27位於所述溝槽中的部分爲鍵合焊盤,所述鍵合焊盤用於後續的鍵合製程。The portion of the metal layer 27 located in the through hole is a transfer layer, which is used to electrically connect to the top metal layer 213; the portion of the metal layer 27 located in the groove is a bonding pad, which is used for a subsequent bonding process.
本發明之半導體元件可以僅包括單個所述基底211。或者,本發明之半導體元件包括至少兩個相鍵合的所述基底211,其中相鄰所述基底211上方的所述鍵合層23相鍵合,且相鄰所述基底211上方的所述金屬層27相鍵合。當所述鍵合層23包括自下向上堆疊的第一介質層231和第二介質層232時,相鄰所述基底211上方的所述第二介質層232相鍵合。The semiconductor device of the present invention may include only a single substrate 211. Alternatively, the semiconductor device of the present invention includes at least two bonded substrates 211, wherein the bonding layer 23 adjacent to the substrate 211 is bonded, and the metal layer 27 adjacent to the substrate 211 is bonded. When the bonding layer 23 includes a first dielectric layer 231 and a second dielectric layer 232 stacked from bottom to top, the second dielectric layer 232 adjacent to the substrate 211 is bonded.
由於所述蝕刻停止層22爲至少兩層堆疊的結構,使得在蝕刻形成所述通孔時,能夠蝕刻停止於所述蝕刻停止層22的非最底層結構中,進而使得與圖1所示的僅採用單層結構的氮化矽層13作爲蝕刻停止層相比,本發明的實施例中的所述蝕刻停止層22的層數增多且厚度增大,使得在蝕刻形成所述通孔的過程中,所述頂層金屬層213上的小丘一直能被較厚的蝕刻停止層22包覆保護住,且所述蝕刻停止層22的最底層結構被非最底層結構壓住,能夠改善所述蝕刻停止層22的最底層結構被所述頂層金屬層213上的小丘頂裂的情況。另外,在蝕刻形成所述通孔之後至少還保留部分所述蝕刻停止層22在通孔底部而未被蝕刻穿,即所述蝕刻停止層22的整個厚度的最底層結構包覆所述頂層金屬層213,使得後續在進行濕式清洗製程過程中,所述蝕刻停止層22的最底層結構能夠繼續保護所述頂層金屬層213上的小丘。因此,本發明的實施例能夠在蝕刻形成所述通孔的過程中以及在蝕刻形成所述通孔之後避免所述頂層金屬層213上的小丘暴露出來,進而避免所述頂層金屬層213上的小丘在進行濕式清洗製程過程中與清洗液反應,從而改善金屬擴散問題。Since the etch stop layer 22 is a structure of at least two layers stacked, when etching to form the through hole, the etching can be stopped in the non-bottommost structure of the etch stop layer 22. Therefore, compared with the etch stop layer 13 with only a single-layer structure as the etch stop layer shown in FIG. 1, the etch stop layer 22 in the embodiment of the present invention has more layers and a thicker thickness. The thickness of the etching stop layer 22 is increased, so that in the process of etching to form the through hole, the hillock on the top metal layer 213 can always be covered and protected by the thicker etch stop layer 22, and the bottommost structure of the etch stop layer 22 is pressed by the non-bottommost structure, which can improve the situation that the bottommost structure of the etch stop layer 22 is broken by the hillock on the top metal layer 213. In addition, after the through hole is etched, at least a portion of the etch stop layer 22 remains at the bottom of the through hole without being etched through, that is, the bottommost structure of the entire thickness of the etch stop layer 22 covers the top metal layer 213, so that during the subsequent wet cleaning process, the bottommost structure of the etch stop layer 22 can continue to protect the hillock on the top metal layer 213. Therefore, the embodiment of the present invention can prevent the hillock on the top metal layer 213 from being exposed during and after etching the through hole, and further prevent the hillock on the top metal layer 213 from reacting with the cleaning solution during the wet cleaning process, thereby improving the metal diffusion problem.
在一些實施例中,當所述蝕刻停止層22包括自下向上堆疊的第一氮化矽層221、氧化物層222和第二氮化矽層223,或者,所述蝕刻停止層22包括自下向上堆疊的氧化物層和氮化矽層時,由於氧化矽及/或氮氧化矽等氧化物的脆性低於氮化矽的脆性,使得氧化物的包覆性更好,進而使得若氧化物層包覆第一氮化矽層,則第一氮化矽層不容易裂開,若氧化物層直接包覆小丘,則氧化物層不容易裂開,因此,能夠在蝕刻形成所述通孔時進一步避免所述頂層金屬層213上的小丘暴露出來。In some embodiments, when the etch stop layer 22 includes a first silicon nitride layer 221, an oxide layer 222, and a second silicon nitride layer 223 stacked from bottom to top, or when the etch stop layer 22 includes an oxide layer and a silicon nitride layer stacked from bottom to top, since the brittleness of oxides such as silicon oxide and/or silicon oxynitride is lower than that of silicon nitride, the oxide has better coating properties, and thus if the oxide layer coats the first silicon nitride layer, the first silicon nitride layer is not easy to crack, and if the oxide layer directly coats the hillock, the oxide layer is not easy to crack. Therefore, the hillock on the top metal layer 213 can be further prevented from being exposed when etching to form the through hole.
在一些實施例中,當所述蝕刻停止層22包括自下向上堆疊的第一氮化矽層221、氧化物層222和第二氮化矽層223,且在形成所述通孔時蝕刻停止於所述第二氮化矽層223時,即使所述第一氮化矽層221裂開,還有所述氧化物層222作爲緩衝層包覆裂開的所述第一氮化矽層221和所述頂層金屬層213上的小丘,從而能夠進一步避免所述頂層金屬層213上的小丘暴露出來。In some embodiments, when the etch stop layer 22 includes a first silicon nitride layer 221, an oxide layer 222, and a second silicon nitride layer 223 stacked from bottom to top, and the etching stops at the second silicon nitride layer 223 when forming the through hole, even if the first silicon nitride layer 221 is cracked, the oxide layer 222 serves as a buffer layer to cover the cracked first silicon nitride layer 221 and the hillock on the top metal layer 213, thereby further preventing the hillock on the top metal layer 213 from being exposed.
從上述內容可知,由於所述蝕刻停止層22能夠使得在所述半導體元件的製造過程中,所述頂層金屬層213上的小丘一直被保護而避免被暴露出來,從而使得金屬擴散問題得到改善,避免在所述頂層金屬層213形成凹坑(即圖2中的凹坑122),以及避免金屬擴散至所述通孔和所述溝槽表面,進而避免導致後續鍵合的晶圓之間出現電性連接問題甚至斷路,提高了混合鍵合良率。From the above content, it can be seen that, since the etch stop layer 22 can ensure that the hillocks on the top metal layer 213 are always protected and prevented from being exposed during the manufacturing process of the semiconductor element, the metal diffusion problem is improved, and pits (i.e., pits 122 in FIG. 2) are prevented from forming in the top metal layer 213, and metal diffusion to the through hole and the groove surface is prevented, thereby avoiding electrical connection problems or even circuit breaks between the subsequently bonded wafers, thereby improving the hybrid bonding yield.
需要說明的是,本發明提供的半導體元件可以爲晶圓結構或晶片結構,所述晶圓結構包括陣列排佈的所述晶片結構,相鄰的所述晶片結構之間設置有切割道,通過沿所述切割道對所述晶圓結構進行切割,能夠將陣列排佈的所述晶片結構分離。It should be noted that the semiconductor element provided by the present invention can be a wafer structure or a chip structure, and the wafer structure includes the chip structures arranged in an array, and cutting paths are provided between adjacent chip structures. By cutting the wafer structure along the cutting paths, the chip structures arranged in an array can be separated.
圖4k所示的半導體元件可以爲所述晶圓結構的一部分或者爲所述晶片結構。The semiconductor element shown in Figure 4k can be a part of the wafer structure or the chip structure.
所述晶圓結構中的晶圓21可以爲元件晶圓或承載晶圓。The wafer 21 in the wafer structure may be a device wafer or a carrier wafer.
所述元件晶圓可以爲包含圖像感測器的像素陣列的像素晶圓,或者包含MEMS元件的MEMS微結構的MEMS晶圓,還可以爲包含功率元件的MOSFET晶圓或者IGBT晶圓或者被動元件晶圓等,所述元件晶圓的種類取決於最終要製作的元件的功能。所述承載晶圓可以未包含功能結構。或者,所述承載晶圓可以包含功能結構,且功能結構位於所述承載晶圓的內部而非位於所述承載晶圓的表面,在一些實施例中,所述承載晶圓包含的功能結構也可以位於晶圓邊緣的內部及/或表面。The component wafer may be a pixel wafer including a pixel array of an image sensor, or a MEMS wafer including a MEMS microstructure of a MEMS component, or a MOSFET wafer including a power component, or an IGBT wafer, or a passive component wafer, etc. The type of the component wafer depends on the function of the component to be manufactured in the end. The carrier wafer may not include a functional structure. Alternatively, the carrier wafer may include a functional structure, and the functional structure is located inside the carrier wafer rather than on the surface of the carrier wafer. In some embodiments, the functional structure included in the carrier wafer may also be located inside and/or on the surface of the wafer edge.
綜上所述,本發明提供一種半導體元件,包括:基底,所述基底上方形成有頂層金屬層;蝕刻停止層,覆蓋所述頂層金屬層,所述蝕刻停止層爲至少兩層堆疊的結構,所述蝕刻停止層中形成有暴露出所述頂層金屬層的通孔;鍵合層,形成於所述蝕刻停止層上,所述鍵合層中形成有溝槽,所述通孔從所述蝕刻停止層中延伸至所述鍵合層中且與所述溝槽連通,所述溝槽的寬度大於所述通孔的寬度;金屬層,填充於所述溝槽和所述通孔中,所述金屬層與所述頂層金屬層連接。本發明提供的半導體元件能夠改善金屬擴散問題,進而能夠提高混合鍵合良率。 以上所述僅為本發明之較佳實施例,凡依本發明申請專利範圍所做之均等變化與修飾,皆應屬本發明之涵蓋範圍。 In summary, the present invention provides a semiconductor element, comprising: a substrate, a top metal layer formed on the substrate; an etch stop layer, covering the top metal layer, the etch stop layer being a stacked structure of at least two layers, and a through hole exposing the top metal layer is formed in the etch stop layer; a bonding layer, forming A trench is formed in the bonding layer on the etch stop layer, the through hole extends from the etch stop layer to the bonding layer and is connected to the trench, and the width of the trench is greater than the width of the through hole; a metal layer is filled in the trench and the through hole, and the metal layer is connected to the top metal layer. The semiconductor element provided by the present invention can improve the metal diffusion problem, thereby improving the hybrid bonding yield. The above is only a preferred embodiment of the present invention, and all equal changes and modifications made according to the scope of the patent application of the present invention should be covered by the present invention.
11:晶圓 12:頂層金屬層 13:氮化矽層 14:鍵合層 21:晶圓 22:蝕刻停止層 23:鍵合層 24:通孔 25:保護層 26:溝槽 27:金屬層 121:小丘 122:凹坑 211:基底 212:絕緣介質層 213:頂層金屬層 221:第一氮化矽層 222:氧化物層 223:第二氮化矽層 231:第一介質層 232:第二介質層 233:第三介質層 241:第一圖案化的光阻層 261:第二圖案化的光阻層 S1:步驟 S2:步驟 S3:步驟 S4:步驟 S5:步驟 S6:步驟 S7:步驟 S8:步驟 11: Wafer 12: Top metal layer 13: Silicon nitride layer 14: Bonding layer 21: Wafer 22: Etch stop layer 23: Bonding layer 24: Via hole 25: Protective layer 26: Trench 27: Metal layer 121: Hillock 122: Pits 211: Substrate 212: Insulating dielectric layer 213: Top metal layer 221: First silicon nitride layer 222: Oxide layer 223: Second silicon nitride layer 231: First dielectric layer 232: Second dielectric layer 233: third dielectric layer 241: first patterned photoresist layer 261: second patterned photoresist layer S1: step S2: step S3: step S4: step S5: step S6: step S7: step S8: step
圖1所繪示為習知技術之晶圓中的頂層金屬層上形成小丘的示意圖。 圖2所繪示為習知技術之晶圓中的頂層金屬層發生金屬擴散的掃描電子顯微鏡圖。 圖3所繪示為本發明一實施例之半導體元件的製造方法的流程圖。 圖4a至圖4k所繪示為本發明一實施例之半導體元件在圖3所示製造方法的步驟的剖面示意圖。 FIG. 1 is a schematic diagram showing the formation of hillocks on the top metal layer in a wafer of the prior art. FIG. 2 is a scanning electron microscope image showing metal diffusion in the top metal layer in a wafer of the prior art. FIG. 3 is a flow chart of a method for manufacturing a semiconductor element of an embodiment of the present invention. FIG. 4a to FIG. 4k are schematic cross-sectional views of the steps of the manufacturing method shown in FIG. 3 of a semiconductor element of an embodiment of the present invention.
S1:步驟 S1: Steps
S2:步驟 S2: Step
S3:步驟 S3: Step
S4:步驟 S4: Step
S5:步驟 S5: Step
S6:步驟 S6: Step
S7:步驟 S7: Step
S8:步驟 S8: Step
Claims (10)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310558078.4A CN116525537A (en) | 2023-05-17 | 2023-05-17 | Semiconductor device and method for manufacturing the same |
CN2023105580784 | 2023-05-17 |
Publications (1)
Publication Number | Publication Date |
---|---|
TW202447969A true TW202447969A (en) | 2024-12-01 |
Family
ID=87397561
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW112146985A TW202447969A (en) | 2023-05-17 | 2023-12-04 | Semiconductor device and method for forming the same |
Country Status (3)
Country | Link |
---|---|
CN (1) | CN116525537A (en) |
TW (1) | TW202447969A (en) |
WO (1) | WO2024234583A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116525537A (en) * | 2023-05-17 | 2023-08-01 | 武汉新芯集成电路制造有限公司 | Semiconductor device and method for manufacturing the same |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6753260B1 (en) * | 2001-10-05 | 2004-06-22 | Taiwan Semiconductor Manufacturing Company | Composite etching stop in semiconductor process integration |
CN101625993B (en) * | 2008-07-08 | 2011-05-11 | 中芯国际集成电路制造(上海)有限公司 | Dual-damascene structure and manufacturing method thereof |
CN110581117B (en) * | 2019-09-18 | 2021-04-27 | 武汉新芯集成电路制造有限公司 | Semiconductor device and manufacturing method thereof |
CN110911292B (en) * | 2019-12-02 | 2021-12-24 | 武汉新芯集成电路制造有限公司 | Method for manufacturing semiconductor |
CN110931373B (en) * | 2019-12-11 | 2021-11-19 | 武汉新芯集成电路制造有限公司 | Semiconductor device and manufacturing method thereof |
CN115064513A (en) * | 2022-05-31 | 2022-09-16 | 长江存储科技有限责任公司 | A kind of semiconductor structure and preparation method of semiconductor structure |
CN116525537A (en) * | 2023-05-17 | 2023-08-01 | 武汉新芯集成电路制造有限公司 | Semiconductor device and method for manufacturing the same |
-
2023
- 2023-05-17 CN CN202310558078.4A patent/CN116525537A/en active Pending
- 2023-11-07 WO PCT/CN2023/130213 patent/WO2024234583A1/en unknown
- 2023-12-04 TW TW112146985A patent/TW202447969A/en unknown
Also Published As
Publication number | Publication date |
---|---|
CN116525537A (en) | 2023-08-01 |
WO2024234583A1 (en) | 2024-11-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10535696B2 (en) | Pad structure exposed in an opening through multiple dielectric layers in BSI image sensor chips | |
CN101635266B (en) | Bonding structure and method for three-dimensional interconnection between die and wafer | |
TWI397972B (en) | Semiconductor device manufacturing method | |
KR100604903B1 (en) | Semiconductor wafer with improved step coverage and manufacturing method | |
US8421238B2 (en) | Stacked semiconductor device with through via | |
US8338958B2 (en) | Semiconductor device and manufacturing method thereof | |
TWI441302B (en) | Semiconductor device | |
US6025277A (en) | Method and structure for preventing bonding pad peel back | |
TW201222773A (en) | Integrated circuit device and method of forming the same | |
JP2010045371A (en) | Through-silicon-via structure including conductive protective film, and method of forming the same | |
TW201230279A (en) | Integrated circuit device and method of forming the same | |
TW202115850A (en) | Semiconductor device structure and forming method thereof | |
WO2007023963A1 (en) | Semiconductor device | |
KR100691051B1 (en) | Semiconductor Device and Bond Pad Formation Process | |
TW202447969A (en) | Semiconductor device and method for forming the same | |
JP2013247139A (en) | Semiconductor device and method of manufacturing the same | |
US8026612B2 (en) | Semiconductor device and method of manufacturing semiconductor device | |
TWI775352B (en) | Semiconductor package and manufacturing method thereof | |
JP2012160547A (en) | Semiconductor device and manufacturing method of the same | |
CN113725167B (en) | Integrated circuit element and manufacturing method thereof | |
TWI571964B (en) | Semiconductor structure and manufacturing method thereof | |
TW202230619A (en) | Semiconductor device including a through silicon via structure and method of fabricating the same | |
JP2008041804A (en) | Semiconductor device and method for manufacturing the same | |
CN116525462A (en) | Semiconductor device and method for manufacturing the same | |
KR20060097442A (en) | Bonding pad with grooves and method for manufacturing same |