TW202446842A - Polyimide resin composites, films and electronic devices containing zeolite - Google Patents
Polyimide resin composites, films and electronic devices containing zeolite Download PDFInfo
- Publication number
- TW202446842A TW202446842A TW113130814A TW113130814A TW202446842A TW 202446842 A TW202446842 A TW 202446842A TW 113130814 A TW113130814 A TW 113130814A TW 113130814 A TW113130814 A TW 113130814A TW 202446842 A TW202446842 A TW 202446842A
- Authority
- TW
- Taiwan
- Prior art keywords
- zeolite
- polyimide resin
- resin composite
- less
- film
- Prior art date
Links
- 239000010457 zeolite Substances 0.000 title claims abstract description 274
- 229920001721 polyimide Polymers 0.000 title claims abstract description 268
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 title claims abstract description 258
- 229910021536 Zeolite Inorganic materials 0.000 title claims abstract description 254
- 239000009719 polyimide resin Substances 0.000 title claims abstract description 232
- 239000002131 composite material Substances 0.000 title claims abstract description 137
- 239000012776 electronic material Substances 0.000 claims abstract description 7
- 239000002245 particle Substances 0.000 claims description 37
- 150000001491 aromatic compounds Chemical class 0.000 claims description 14
- 230000009477 glass transition Effects 0.000 claims description 13
- 229920001187 thermosetting polymer Polymers 0.000 claims description 4
- 239000010408 film Substances 0.000 description 195
- 239000000805 composite resin Substances 0.000 description 132
- 239000000463 material Substances 0.000 description 112
- 239000000758 substrate Substances 0.000 description 96
- 238000004519 manufacturing process Methods 0.000 description 68
- 238000000034 method Methods 0.000 description 58
- 239000000976 ink Substances 0.000 description 49
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 48
- 239000000203 mixture Substances 0.000 description 45
- 239000002243 precursor Substances 0.000 description 42
- 229920005989 resin Polymers 0.000 description 41
- 239000011347 resin Substances 0.000 description 41
- 239000004642 Polyimide Substances 0.000 description 36
- 239000011521 glass Substances 0.000 description 29
- 238000006243 chemical reaction Methods 0.000 description 20
- 238000010438 heat treatment Methods 0.000 description 20
- 239000007789 gas Substances 0.000 description 19
- 239000002904 solvent Substances 0.000 description 19
- 239000004094 surface-active agent Substances 0.000 description 19
- 239000000377 silicon dioxide Substances 0.000 description 17
- 239000002270 dispersing agent Substances 0.000 description 16
- 230000004888 barrier function Effects 0.000 description 15
- 239000011164 primary particle Substances 0.000 description 15
- 238000003475 lamination Methods 0.000 description 14
- 239000000945 filler Substances 0.000 description 13
- 235000012239 silicon dioxide Nutrition 0.000 description 13
- 239000010409 thin film Substances 0.000 description 13
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 12
- 239000003153 chemical reaction reagent Substances 0.000 description 12
- GTDPSWPPOUPBNX-UHFFFAOYSA-N ac1mqpva Chemical compound CC12C(=O)OC(=O)C1(C)C1(C)C2(C)C(=O)OC1=O GTDPSWPPOUPBNX-UHFFFAOYSA-N 0.000 description 11
- 230000015572 biosynthetic process Effects 0.000 description 11
- 150000001875 compounds Chemical class 0.000 description 11
- 238000002156 mixing Methods 0.000 description 11
- 238000000465 moulding Methods 0.000 description 11
- 239000012756 surface treatment agent Substances 0.000 description 11
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 10
- 229910052782 aluminium Inorganic materials 0.000 description 10
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 10
- 238000001035 drying Methods 0.000 description 10
- 239000000126 substance Substances 0.000 description 10
- 125000006158 tetracarboxylic acid group Chemical group 0.000 description 10
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 10
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 9
- 239000004952 Polyamide Substances 0.000 description 9
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 9
- 230000000052 comparative effect Effects 0.000 description 9
- 150000004985 diamines Chemical class 0.000 description 9
- 239000006185 dispersion Substances 0.000 description 9
- 238000001027 hydrothermal synthesis Methods 0.000 description 9
- 238000002347 injection Methods 0.000 description 9
- 239000007924 injection Substances 0.000 description 9
- 229920002647 polyamide Polymers 0.000 description 9
- 238000007789 sealing Methods 0.000 description 9
- 239000004065 semiconductor Substances 0.000 description 9
- 238000003786 synthesis reaction Methods 0.000 description 9
- 238000011282 treatment Methods 0.000 description 9
- VZSRBBMJRBPUNF-UHFFFAOYSA-N 2-(2,3-dihydro-1H-inden-2-ylamino)-N-[3-oxo-3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propyl]pyrimidine-5-carboxamide Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C(=O)NCCC(N1CC2=C(CC1)NN=N2)=O VZSRBBMJRBPUNF-UHFFFAOYSA-N 0.000 description 8
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 8
- 238000002441 X-ray diffraction Methods 0.000 description 8
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 8
- 238000000605 extraction Methods 0.000 description 8
- 230000005669 field effect Effects 0.000 description 8
- -1 polysiloxane Polymers 0.000 description 8
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 7
- ILRRQNADMUWWFW-UHFFFAOYSA-K aluminium phosphate Chemical compound O1[Al]2OP1(=O)O2 ILRRQNADMUWWFW-UHFFFAOYSA-K 0.000 description 7
- 239000002585 base Substances 0.000 description 7
- 230000000694 effects Effects 0.000 description 7
- 150000002500 ions Chemical class 0.000 description 7
- 229910052760 oxygen Inorganic materials 0.000 description 7
- 239000001301 oxygen Substances 0.000 description 7
- 238000011160 research Methods 0.000 description 7
- 239000003566 sealing material Substances 0.000 description 7
- 238000001308 synthesis method Methods 0.000 description 7
- 229910052719 titanium Inorganic materials 0.000 description 7
- 239000010936 titanium Substances 0.000 description 7
- HMUNWXXNJPVALC-UHFFFAOYSA-N 1-[4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]piperazin-1-yl]-2-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethanone Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)N1CCN(CC1)C(CN1CC2=C(CC1)NN=N2)=O HMUNWXXNJPVALC-UHFFFAOYSA-N 0.000 description 6
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 6
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 6
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 6
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 6
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 6
- 238000005259 measurement Methods 0.000 description 6
- 229920000642 polymer Polymers 0.000 description 6
- 229910052710 silicon Inorganic materials 0.000 description 6
- 239000010703 silicon Substances 0.000 description 6
- 238000003756 stirring Methods 0.000 description 6
- 238000002834 transmittance Methods 0.000 description 6
- 238000005406 washing Methods 0.000 description 6
- 125000003118 aryl group Chemical group 0.000 description 5
- 238000005336 cracking Methods 0.000 description 5
- 238000009826 distribution Methods 0.000 description 5
- 239000000047 product Substances 0.000 description 5
- 238000010298 pulverizing process Methods 0.000 description 5
- 238000000967 suction filtration Methods 0.000 description 5
- RFFLAFLAYFXFSW-UHFFFAOYSA-N 1,2-dichlorobenzene Chemical compound ClC1=CC=CC=C1Cl RFFLAFLAYFXFSW-UHFFFAOYSA-N 0.000 description 4
- LDXJRKWFNNFDSA-UHFFFAOYSA-N 2-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)-1-[4-[2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidin-5-yl]piperazin-1-yl]ethanone Chemical compound C1CN(CC2=NNN=C21)CC(=O)N3CCN(CC3)C4=CN=C(N=C4)NCC5=CC(=CC=C5)OC(F)(F)F LDXJRKWFNNFDSA-UHFFFAOYSA-N 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 4
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 4
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 4
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 4
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 4
- AFCARXCZXQIEQB-UHFFFAOYSA-N N-[3-oxo-3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propyl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(CCNC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 AFCARXCZXQIEQB-UHFFFAOYSA-N 0.000 description 4
- 101100233916 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) KAR5 gene Proteins 0.000 description 4
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 4
- 229910001413 alkali metal ion Inorganic materials 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 4
- MVPPADPHJFYWMZ-UHFFFAOYSA-N chlorobenzene Chemical compound ClC1=CC=CC=C1 MVPPADPHJFYWMZ-UHFFFAOYSA-N 0.000 description 4
- 229910052802 copper Inorganic materials 0.000 description 4
- 239000010949 copper Substances 0.000 description 4
- 239000003822 epoxy resin Substances 0.000 description 4
- 239000011888 foil Substances 0.000 description 4
- 229910052733 gallium Inorganic materials 0.000 description 4
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 4
- 230000005525 hole transport Effects 0.000 description 4
- 229910010272 inorganic material Inorganic materials 0.000 description 4
- 239000011147 inorganic material Substances 0.000 description 4
- 238000009413 insulation Methods 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 4
- 229920000647 polyepoxide Polymers 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- LLHKCFNBLRBOGN-UHFFFAOYSA-N propylene glycol methyl ether acetate Chemical compound COCC(C)OC(C)=O LLHKCFNBLRBOGN-UHFFFAOYSA-N 0.000 description 4
- 230000001681 protective effect Effects 0.000 description 4
- 239000010453 quartz Substances 0.000 description 4
- 239000002994 raw material Substances 0.000 description 4
- 239000010980 sapphire Substances 0.000 description 4
- 229910052594 sapphire Inorganic materials 0.000 description 4
- 229910052709 silver Inorganic materials 0.000 description 4
- 239000004332 silver Substances 0.000 description 4
- 239000011734 sodium Substances 0.000 description 4
- 229910001220 stainless steel Inorganic materials 0.000 description 4
- 239000010935 stainless steel Substances 0.000 description 4
- 238000003860 storage Methods 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- WGTYBPLFGIVFAS-UHFFFAOYSA-M tetramethylammonium hydroxide Chemical compound [OH-].C[N+](C)(C)C WGTYBPLFGIVFAS-UHFFFAOYSA-M 0.000 description 4
- 229920005992 thermoplastic resin Polymers 0.000 description 4
- 239000004408 titanium dioxide Substances 0.000 description 4
- 230000002087 whitening effect Effects 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 3
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- 101000827703 Homo sapiens Polyphosphoinositide phosphatase Proteins 0.000 description 3
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 3
- 102100023591 Polyphosphoinositide phosphatase Human genes 0.000 description 3
- 101100012902 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FIG2 gene Proteins 0.000 description 3
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 3
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 3
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 3
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 3
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 3
- 150000001408 amides Chemical class 0.000 description 3
- 125000003277 amino group Chemical group 0.000 description 3
- 239000011324 bead Substances 0.000 description 3
- 238000005452 bending Methods 0.000 description 3
- 230000000903 blocking effect Effects 0.000 description 3
- 229910052796 boron Inorganic materials 0.000 description 3
- 239000003054 catalyst Substances 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 239000008119 colloidal silica Substances 0.000 description 3
- 239000000470 constituent Substances 0.000 description 3
- 230000018044 dehydration Effects 0.000 description 3
- 238000006297 dehydration reaction Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000002296 dynamic light scattering Methods 0.000 description 3
- 230000005684 electric field Effects 0.000 description 3
- 235000019441 ethanol Nutrition 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 238000001125 extrusion Methods 0.000 description 3
- 239000005357 flat glass Substances 0.000 description 3
- 239000012943 hotmelt Substances 0.000 description 3
- 239000012212 insulator Substances 0.000 description 3
- 229910052742 iron Inorganic materials 0.000 description 3
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 3
- 229910052698 phosphorus Inorganic materials 0.000 description 3
- 239000011574 phosphorus Substances 0.000 description 3
- 230000000379 polymerizing effect Effects 0.000 description 3
- 238000003825 pressing Methods 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 239000011342 resin composition Substances 0.000 description 3
- 238000007363 ring formation reaction Methods 0.000 description 3
- 229910052814 silicon oxide Inorganic materials 0.000 description 3
- 229910052708 sodium Inorganic materials 0.000 description 3
- 229910052718 tin Inorganic materials 0.000 description 3
- 239000011135 tin Substances 0.000 description 3
- 229910052725 zinc Inorganic materials 0.000 description 3
- 239000011701 zinc Substances 0.000 description 3
- 229910052726 zirconium Inorganic materials 0.000 description 3
- UOCLXMDMGBRAIB-UHFFFAOYSA-N 1,1,1-trichloroethane Chemical compound CC(Cl)(Cl)Cl UOCLXMDMGBRAIB-UHFFFAOYSA-N 0.000 description 2
- SCYULBFZEHDVBN-UHFFFAOYSA-N 1,1-Dichloroethane Chemical compound CC(Cl)Cl SCYULBFZEHDVBN-UHFFFAOYSA-N 0.000 description 2
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 2
- ARXJGSRGQADJSQ-UHFFFAOYSA-N 1-methoxypropan-2-ol Chemical compound COCC(C)O ARXJGSRGQADJSQ-UHFFFAOYSA-N 0.000 description 2
- WZFUQSJFWNHZHM-UHFFFAOYSA-N 2-[4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]piperazin-1-yl]-1-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethanone Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)N1CCN(CC1)CC(=O)N1CC2=C(CC1)NN=N2 WZFUQSJFWNHZHM-UHFFFAOYSA-N 0.000 description 2
- YLZOPXRUQYQQID-UHFFFAOYSA-N 3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)-1-[4-[2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidin-5-yl]piperazin-1-yl]propan-1-one Chemical compound N1N=NC=2CN(CCC=21)CCC(=O)N1CCN(CC1)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F YLZOPXRUQYQQID-UHFFFAOYSA-N 0.000 description 2
- CONKBQPVFMXDOV-QHCPKHFHSA-N 6-[(5S)-5-[[4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]piperazin-1-yl]methyl]-2-oxo-1,3-oxazolidin-3-yl]-3H-1,3-benzoxazol-2-one Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)N1CCN(CC1)C[C@H]1CN(C(O1)=O)C1=CC2=C(NC(O2)=O)C=C1 CONKBQPVFMXDOV-QHCPKHFHSA-N 0.000 description 2
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 238000012935 Averaging Methods 0.000 description 2
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 2
- MKYBYDHXWVHEJW-UHFFFAOYSA-N N-[1-oxo-1-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propan-2-yl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(C(C)NC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 MKYBYDHXWVHEJW-UHFFFAOYSA-N 0.000 description 2
- NIPNSKYNPDTRPC-UHFFFAOYSA-N N-[2-oxo-2-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethyl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(CNC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 NIPNSKYNPDTRPC-UHFFFAOYSA-N 0.000 description 2
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- 239000004793 Polystyrene Substances 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- XSTXAVWGXDQKEL-UHFFFAOYSA-N Trichloroethylene Chemical group ClC=C(Cl)Cl XSTXAVWGXDQKEL-UHFFFAOYSA-N 0.000 description 2
- YKTSYUJCYHOUJP-UHFFFAOYSA-N [O--].[Al+3].[Al+3].[O-][Si]([O-])([O-])[O-] Chemical compound [O--].[Al+3].[Al+3].[O-][Si]([O-])([O-])[O-] YKTSYUJCYHOUJP-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 2
- ANBBXQWFNXMHLD-UHFFFAOYSA-N aluminum;sodium;oxygen(2-) Chemical compound [O-2].[O-2].[Na+].[Al+3] ANBBXQWFNXMHLD-UHFFFAOYSA-N 0.000 description 2
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 2
- WKDNYTOXBCRNPV-UHFFFAOYSA-N bpda Chemical compound C1=C2C(=O)OC(=O)C2=CC(C=2C=C3C(=O)OC(C3=CC=2)=O)=C1 WKDNYTOXBCRNPV-UHFFFAOYSA-N 0.000 description 2
- 239000004566 building material Substances 0.000 description 2
- 150000001768 cations Chemical class 0.000 description 2
- 238000005119 centrifugation Methods 0.000 description 2
- 238000000748 compression moulding Methods 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- JHIVVAPYMSGYDF-UHFFFAOYSA-N cyclohexanone Chemical compound O=C1CCCCC1 JHIVVAPYMSGYDF-UHFFFAOYSA-N 0.000 description 2
- HGCIXCUEYOPUTN-UHFFFAOYSA-N cyclohexene Chemical compound C1CCC=CC1 HGCIXCUEYOPUTN-UHFFFAOYSA-N 0.000 description 2
- BGTOWKSIORTVQH-UHFFFAOYSA-N cyclopentanone Chemical compound O=C1CCCC1 BGTOWKSIORTVQH-UHFFFAOYSA-N 0.000 description 2
- DIOQZVSQGTUSAI-UHFFFAOYSA-N decane Chemical compound CCCCCCCCCC DIOQZVSQGTUSAI-UHFFFAOYSA-N 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- OJLGWNFZMTVNCX-UHFFFAOYSA-N dioxido(dioxo)tungsten;zirconium(4+) Chemical compound [Zr+4].[O-][W]([O-])(=O)=O.[O-][W]([O-])(=O)=O OJLGWNFZMTVNCX-UHFFFAOYSA-N 0.000 description 2
- 230000005611 electricity Effects 0.000 description 2
- 150000002170 ethers Chemical class 0.000 description 2
- LYCAIKOWRPUZTN-UHFFFAOYSA-N ethylene glycol Natural products OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 2
- 239000011737 fluorine Substances 0.000 description 2
- 229910052731 fluorine Inorganic materials 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 125000000524 functional group Chemical group 0.000 description 2
- 238000005227 gel permeation chromatography Methods 0.000 description 2
- 229910052736 halogen Inorganic materials 0.000 description 2
- 150000002367 halogens Chemical class 0.000 description 2
- FFUAGWLWBBFQJT-UHFFFAOYSA-N hexamethyldisilazane Chemical compound C[Si](C)(C)N[Si](C)(C)C FFUAGWLWBBFQJT-UHFFFAOYSA-N 0.000 description 2
- 238000007602 hot air drying Methods 0.000 description 2
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 2
- 238000001746 injection moulding Methods 0.000 description 2
- 238000007689 inspection Methods 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 238000004898 kneading Methods 0.000 description 2
- 238000010030 laminating Methods 0.000 description 2
- 229910001416 lithium ion Inorganic materials 0.000 description 2
- 238000000691 measurement method Methods 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- BKIMMITUMNQMOS-UHFFFAOYSA-N nonane Chemical compound CCCCCCCCC BKIMMITUMNQMOS-UHFFFAOYSA-N 0.000 description 2
- 239000002736 nonionic surfactant Substances 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 229920002223 polystyrene Polymers 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 239000013049 sediment Substances 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 229910001388 sodium aluminate Inorganic materials 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 230000001629 suppression Effects 0.000 description 2
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 2
- LPSKDVINWQNWFE-UHFFFAOYSA-M tetrapropylazanium;hydroxide Chemical compound [OH-].CCC[N+](CCC)(CCC)CCC LPSKDVINWQNWFE-UHFFFAOYSA-M 0.000 description 2
- 230000000930 thermomechanical effect Effects 0.000 description 2
- PYJJCSYBSYXGQQ-UHFFFAOYSA-N trichloro(octadecyl)silane Chemical compound CCCCCCCCCCCCCCCCCC[Si](Cl)(Cl)Cl PYJJCSYBSYXGQQ-UHFFFAOYSA-N 0.000 description 2
- UBOXGVDOUJQMTN-UHFFFAOYSA-N trichloroethylene Natural products ClCC(Cl)Cl UBOXGVDOUJQMTN-UHFFFAOYSA-N 0.000 description 2
- 239000008096 xylene Substances 0.000 description 2
- 238000004383 yellowing Methods 0.000 description 2
- XEZNGIUYQVAUSS-UHFFFAOYSA-N 18-crown-6 Chemical compound C1COCCOCCOCCOCCOCCO1 XEZNGIUYQVAUSS-UHFFFAOYSA-N 0.000 description 1
- LXOFYPKXCSULTL-UHFFFAOYSA-N 2,4,7,9-tetramethyldec-5-yne-4,7-diol Chemical compound CC(C)CC(C)(O)C#CC(C)(O)CC(C)C LXOFYPKXCSULTL-UHFFFAOYSA-N 0.000 description 1
- YJLUBHOZZTYQIP-UHFFFAOYSA-N 2-[5-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]-1,3,4-oxadiazol-2-yl]-1-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethanone Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C1=NN=C(O1)CC(=O)N1CC2=C(CC1)NN=N2 YJLUBHOZZTYQIP-UHFFFAOYSA-N 0.000 description 1
- POAOYUHQDCAZBD-UHFFFAOYSA-N 2-butoxyethanol Chemical compound CCCCOCCO POAOYUHQDCAZBD-UHFFFAOYSA-N 0.000 description 1
- NECRQCBKTGZNMH-UHFFFAOYSA-N 3,5-dimethylhex-1-yn-3-ol Chemical compound CC(C)CC(C)(O)C#C NECRQCBKTGZNMH-UHFFFAOYSA-N 0.000 description 1
- BKQWDTFZUNGWNV-UHFFFAOYSA-N 4-(3,4-dicarboxycyclohexyl)cyclohexane-1,2-dicarboxylic acid Chemical compound C1C(C(O)=O)C(C(=O)O)CCC1C1CC(C(O)=O)C(C(O)=O)CC1 BKQWDTFZUNGWNV-UHFFFAOYSA-N 0.000 description 1
- HLBLWEWZXPIGSM-UHFFFAOYSA-N 4-Aminophenyl ether Chemical compound C1=CC(N)=CC=C1OC1=CC=C(N)C=C1 HLBLWEWZXPIGSM-UHFFFAOYSA-N 0.000 description 1
- NVKGJHAQGWCWDI-UHFFFAOYSA-N 4-[4-amino-2-(trifluoromethyl)phenyl]-3-(trifluoromethyl)aniline Chemical compound FC(F)(F)C1=CC(N)=CC=C1C1=CC=C(N)C=C1C(F)(F)F NVKGJHAQGWCWDI-UHFFFAOYSA-N 0.000 description 1
- LPEKGGXMPWTOCB-UHFFFAOYSA-N 8beta-(2,3-epoxy-2-methylbutyryloxy)-14-acetoxytithifolin Natural products COC(=O)C(C)O LPEKGGXMPWTOCB-UHFFFAOYSA-N 0.000 description 1
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- 241000269350 Anura Species 0.000 description 1
- 241000408939 Atalopedes campestris Species 0.000 description 1
- DKPFZGUDAPQIHT-UHFFFAOYSA-N Butyl acetate Natural products CCCCOC(C)=O DKPFZGUDAPQIHT-UHFFFAOYSA-N 0.000 description 1
- 240000001194 Heliotropium europaeum Species 0.000 description 1
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 1
- NHTMVDHEPJAVLT-UHFFFAOYSA-N Isooctane Chemical compound CC(C)CC(C)(C)C NHTMVDHEPJAVLT-UHFFFAOYSA-N 0.000 description 1
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 1
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 229920002396 Polyurea Polymers 0.000 description 1
- 229910008051 Si-OH Inorganic materials 0.000 description 1
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- 229910006358 Si—OH Inorganic materials 0.000 description 1
- JAWMENYCRQKKJY-UHFFFAOYSA-N [3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-ylmethyl)-1-oxa-2,8-diazaspiro[4.5]dec-2-en-8-yl]-[2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidin-5-yl]methanone Chemical compound N1N=NC=2CN(CCC=21)CC1=NOC2(C1)CCN(CC2)C(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F JAWMENYCRQKKJY-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 238000010306 acid treatment Methods 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 238000007605 air drying Methods 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 150000001338 aliphatic hydrocarbons Chemical class 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 239000000908 ammonium hydroxide Substances 0.000 description 1
- 239000003945 anionic surfactant Substances 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 238000010296 bead milling Methods 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 description 1
- 239000000920 calcium hydroxide Substances 0.000 description 1
- 229910001861 calcium hydroxide Inorganic materials 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 239000003093 cationic surfactant Substances 0.000 description 1
- ABSOMGPQFXJESQ-UHFFFAOYSA-M cesium;hydroxide;hydrate Chemical compound O.[OH-].[Cs+] ABSOMGPQFXJESQ-UHFFFAOYSA-M 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000003889 chemical engineering Methods 0.000 description 1
- IJOOHPMOJXWVHK-UHFFFAOYSA-N chlorotrimethylsilane Chemical compound C[Si](C)(C)Cl IJOOHPMOJXWVHK-UHFFFAOYSA-N 0.000 description 1
- 229910052681 coesite Inorganic materials 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000005034 decoration Methods 0.000 description 1
- KQAHMVLQCSALSX-UHFFFAOYSA-N decyl(trimethoxy)silane Chemical compound CCCCCCCCCC[Si](OC)(OC)OC KQAHMVLQCSALSX-UHFFFAOYSA-N 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- VIRVTHOOZABTPR-UHFFFAOYSA-N dichloro(phenyl)silane Chemical compound Cl[SiH](Cl)C1=CC=CC=C1 VIRVTHOOZABTPR-UHFFFAOYSA-N 0.000 description 1
- AJNVQOSZGJRYEI-UHFFFAOYSA-N digallium;oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Ga+3].[Ga+3] AJNVQOSZGJRYEI-UHFFFAOYSA-N 0.000 description 1
- JJQZDUKDJDQPMQ-UHFFFAOYSA-N dimethoxy(dimethyl)silane Chemical compound CO[Si](C)(C)OC JJQZDUKDJDQPMQ-UHFFFAOYSA-N 0.000 description 1
- PKTOVQRKCNPVKY-UHFFFAOYSA-N dimethoxy(methyl)silicon Chemical compound CO[Si](C)OC PKTOVQRKCNPVKY-UHFFFAOYSA-N 0.000 description 1
- 239000004205 dimethyl polysiloxane Substances 0.000 description 1
- 235000013870 dimethyl polysiloxane Nutrition 0.000 description 1
- JVSWJIKNEAIKJW-UHFFFAOYSA-N dimethyl-hexane Natural products CCCCCC(C)C JVSWJIKNEAIKJW-UHFFFAOYSA-N 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- SCPWMSBAGXEGPW-UHFFFAOYSA-N dodecyl(trimethoxy)silane Chemical compound CCCCCCCCCCCC[Si](OC)(OC)OC SCPWMSBAGXEGPW-UHFFFAOYSA-N 0.000 description 1
- ODQWQRRAPPTVAG-GZTJUZNOSA-N doxepin Chemical compound C1OC2=CC=CC=C2C(=C/CCN(C)C)/C2=CC=CC=C21 ODQWQRRAPPTVAG-GZTJUZNOSA-N 0.000 description 1
- 238000009820 dry lamination Methods 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- NKSJNEHGWDZZQF-UHFFFAOYSA-N ethenyl(trimethoxy)silane Chemical compound CO[Si](OC)(OC)C=C NKSJNEHGWDZZQF-UHFFFAOYSA-N 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000007765 extrusion coating Methods 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 238000003682 fluorination reaction Methods 0.000 description 1
- 229910001195 gallium oxide Inorganic materials 0.000 description 1
- FUZZWVXGSFPDMH-UHFFFAOYSA-N hexanoic acid Chemical compound CCCCCC(O)=O FUZZWVXGSFPDMH-UHFFFAOYSA-N 0.000 description 1
- CZWLNMOIEMTDJY-UHFFFAOYSA-N hexyl(trimethoxy)silane Chemical compound CCCCCC[Si](OC)(OC)OC CZWLNMOIEMTDJY-UHFFFAOYSA-N 0.000 description 1
- 238000005984 hydrogenation reaction Methods 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 239000011256 inorganic filler Substances 0.000 description 1
- 229910003475 inorganic filler Inorganic materials 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 230000005389 magnetism Effects 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 229940057867 methyl lactate Drugs 0.000 description 1
- BFXIKLCIZHOAAZ-UHFFFAOYSA-N methyltrimethoxysilane Chemical compound CO[Si](C)(OC)OC BFXIKLCIZHOAAZ-UHFFFAOYSA-N 0.000 description 1
- SLYCYWCVSGPDFR-UHFFFAOYSA-N octadecyltrimethoxysilane Chemical compound CCCCCCCCCCCCCCCCCC[Si](OC)(OC)OC SLYCYWCVSGPDFR-UHFFFAOYSA-N 0.000 description 1
- TVMXDCGIABBOFY-UHFFFAOYSA-N octane Chemical compound CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 description 1
- 238000012354 overpressurization Methods 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 125000002467 phosphate group Chemical group [H]OP(=O)(O[H])O[*] 0.000 description 1
- 238000009832 plasma treatment Methods 0.000 description 1
- 229920005575 poly(amic acid) Polymers 0.000 description 1
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 239000013557 residual solvent Substances 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 238000004062 sedimentation Methods 0.000 description 1
- 229910000077 silane Inorganic materials 0.000 description 1
- 150000004756 silanes Chemical class 0.000 description 1
- 229910001415 sodium ion Inorganic materials 0.000 description 1
- KKCBUQHMOMHUOY-UHFFFAOYSA-N sodium oxide Chemical compound [O-2].[Na+].[Na+] KKCBUQHMOMHUOY-UHFFFAOYSA-N 0.000 description 1
- 229910001948 sodium oxide Inorganic materials 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 229910052682 stishovite Inorganic materials 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- KDYFGRWQOYBRFD-UHFFFAOYSA-L succinate(2-) Chemical compound [O-]C(=O)CCC([O-])=O KDYFGRWQOYBRFD-UHFFFAOYSA-L 0.000 description 1
- 150000003457 sulfones Chemical class 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 230000009897 systematic effect Effects 0.000 description 1
- BNCXNUWGWUZTCN-UHFFFAOYSA-N trichloro(dodecyl)silane Chemical compound CCCCCCCCCCCC[Si](Cl)(Cl)Cl BNCXNUWGWUZTCN-UHFFFAOYSA-N 0.000 description 1
- 229910052905 tridymite Inorganic materials 0.000 description 1
- JLGNHOJUQFHYEZ-UHFFFAOYSA-N trimethoxy(3,3,3-trifluoropropyl)silane Chemical compound CO[Si](OC)(OC)CCC(F)(F)F JLGNHOJUQFHYEZ-UHFFFAOYSA-N 0.000 description 1
- NMEPHPOFYLLFTK-UHFFFAOYSA-N trimethoxy(octyl)silane Chemical compound CCCCCCCC[Si](OC)(OC)OC NMEPHPOFYLLFTK-UHFFFAOYSA-N 0.000 description 1
- ZNOCGWVLWPVKAO-UHFFFAOYSA-N trimethoxy(phenyl)silane Chemical compound CO[Si](OC)(OC)C1=CC=CC=C1 ZNOCGWVLWPVKAO-UHFFFAOYSA-N 0.000 description 1
- GPRLSGONYQIRFK-MNYXATJNSA-N triton Chemical compound [3H+] GPRLSGONYQIRFK-MNYXATJNSA-N 0.000 description 1
- 238000011179 visual inspection Methods 0.000 description 1
- 230000003313 weakening effect Effects 0.000 description 1
- 238000009816 wet lamination Methods 0.000 description 1
- 238000012982 x-ray structure analysis Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/18—Manufacture of films or sheets
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/34—Silicon-containing compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L79/00—Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
- C08L79/04—Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
- C08L79/08—Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2379/00—Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
- C08J2379/04—Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
- C08J2379/08—Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Manufacture Of Macromolecular Shaped Articles (AREA)
Abstract
Description
本發明係關於含有沸石之聚醯亞胺樹脂複合材、含有沸石之聚醯亞胺樹脂前驅物組成物、薄膜及電子裝置。The present invention relates to a polyimide resin composite material containing zeolite, a polyimide resin precursor composition containing zeolite, a film and an electronic device.
近年使用樹脂薄膜而可撓性優越之電子裝置的開發正活躍進展。具體可舉例如將聚醯亞胺樹脂薄膜使用為基板的OLED(有機電致發光元件),更進一步使用於顯示器裝置等。In recent years, the development of electronic devices with excellent flexibility using resin films has been actively progressing. Specifically, for example, OLED (organic electroluminescent element) using polyimide resin film as a substrate is used, and further used in display devices.
相較於其他樹脂,聚醯亞胺樹脂一般具有較高的玻璃轉移溫度。然而,因為聚醯亞胺樹脂有高溫下的平均熱膨脹係數較大之傾向,因而有在電子裝置製造時因高溫處理製程導致聚醯亞胺樹脂薄膜出現翹曲等變形,無法滿足電子裝置所要求之初始特性的問題,以及因電子裝置的驅動發熱導致聚醯亞胺樹脂薄膜發生翹曲等變形,引發在樹脂上所設置之零件剝離、斷線等,而無法滿足電子裝置所要求之耐久特性的問題等。故而,針對聚醯亞胺樹脂要求較低的平均熱膨脹係數。Compared to other resins, polyimide resin generally has a higher glass transition temperature. However, because polyimide resin tends to have a larger average thermal expansion coefficient at high temperatures, there are problems such as warping and other deformations of the polyimide resin film during the manufacture of electronic devices due to the high temperature treatment process, which cannot meet the initial characteristics required by the electronic device. In addition, the polyimide resin film warps and other deformations due to the drive heat of the electronic device, causing the parts installed on the resin to peel off and break, and cannot meet the durability characteristics required by the electronic device. Therefore, a lower average thermal expansion coefficient is required for polyimide resin.
再者,使用OLED的顯示器裝置,因為係透過基材觀察所顯示的影像,因而影像清晰性與透明性屬於重要特性。所以,作為基板使用的聚醯亞胺樹脂係要求較低的延遲(retardation)值與霧度率。Furthermore, in a display device using OLED, since the displayed image is observed through the substrate, image clarity and transparency are important characteristics. Therefore, the polyimide resin used as the substrate is required to have a lower retardation value and haze rate.
另一方面,為防止翹曲等變形,聚醯亞胺樹脂的面內配向最好對齊,但為了獲得良好影像清晰性與高透明性,聚醯亞胺樹脂的面內配向較佳為不對齊,因而在防止翹曲等變形、與獲得良好影像清晰性及高透明性方面存在拉鋸關係(專利文獻1~3)。On the other hand, in order to prevent deformation such as warping, the in-plane alignment of the polyimide resin is preferably aligned. However, in order to obtain good image clarity and high transparency, the in-plane alignment of the polyimide resin is preferably misaligned. Therefore, there is a sawtooth relationship in preventing deformation such as warping and obtaining good image clarity and high transparency (patent documents 1~3).
擺脫上述拉鋸關係的技術,已知有針對構成樹脂的單元鑽研、或添加填料。例如專利文獻1~3記載有:藉由在構成樹脂的單元中組合特殊成分,可獲得平均熱膨脹係數較低、且影像清晰性較高、及/或透明性較高的聚醯亞胺樹脂。又,專利文獻3與4記載有:藉由在聚醯亞胺樹脂中添加二氧化矽微粒子,而獲得平均熱膨脹係數較低、且影像清晰性較高、及/或透明性較高的聚醯亞胺樹脂複合材。 [先前技術文獻] [專利文獻] As a technique to get rid of the sawing relationship mentioned above, it is known that the unit constituting the resin is drilled or a filler is added. For example, Patent Documents 1 to 3 state that by combining special components in the unit constituting the resin, a polyimide resin having a lower average thermal expansion coefficient, higher image clarity, and/or higher transparency can be obtained. In addition, Patent Documents 3 and 4 state that by adding silica particles to the polyimide resin, a polyimide resin composite having a lower average thermal expansion coefficient, higher image clarity, and/or higher transparency can be obtained. [Prior Technical Documents] [Patent Documents]
[專利文獻1]國際公開第2015/125895號 [專利文獻2]國際公開第2014/007112號 [專利文獻3]日本專利特開2016-204569號公報 [專利文獻4]國際公開第2014/051050號 [Patent Document 1] International Publication No. 2015/125895 [Patent Document 2] International Publication No. 2014/007112 [Patent Document 3] Japanese Patent Publication No. 2016-204569 [Patent Document 4] International Publication No. 2014/051050
(發明所欲解決之問題)(Invent the problem you want to solve)
使用如專利文獻1~3所記載聚醯亞胺樹脂的薄膜,係作為可抑制高溫處理製程時之翹曲等變形、影像清晰性良好、透明性高的薄膜,可期待使用於電子裝置等的構件。然而,因為在構成樹脂的單元中組合入特殊成分,因而存在製造成本高的問題,成為特殊聚醯亞胺樹脂的新課題。Films using polyimide resins as described in Patent Documents 1 to 3 are expected to be used in components of electronic devices, etc., as they can suppress deformation such as warping during high-temperature processing, have good image clarity, and high transparency. However, since special components are combined in the units constituting the resin, there is a problem of high manufacturing costs, which has become a new issue for special polyimide resins.
另一方面,如專利文獻3與4所記載,在聚醯亞胺樹脂中添加填料的聚醯亞胺樹脂複合材之薄膜,係作為抑制高溫處理製程時之翹曲等變形、且影像清晰性佳、透明性高的薄膜,可期待使用為電子裝置等的構件。又,因為並不需要為特殊的聚醯亞胺樹脂,因而可期待整體廉價使用。然而,經本案發明人等的檢討,判明了於專利文獻3與4所記載樹脂複合材的情況,因為作為填料添加的二氧化矽微粒子有易凝聚的傾向,故有一部分隨時間經過而白濁化明顯、透明性降低的情況。又,判明了若未添加大量的二氧化矽微粒子,則難以降低樹脂複合材的平均熱膨脹係數,因而含聚醯亞胺樹脂之組成物或含聚醯亞胺樹脂前驅物之組成物的安定性低、且由該組成物所製造之聚醯亞胺樹脂的薄膜欠缺影像清晰性重現性、且較脆弱。On the other hand, as described in Patent Documents 3 and 4, a film of a polyimide resin composite material in which a filler is added to a polyimide resin is a film that suppresses deformation such as warping during a high-temperature treatment process, has good image clarity, and has high transparency, and can be expected to be used as a component of electronic devices, etc. In addition, since a special polyimide resin is not required, it can be expected to be used at a low cost as a whole. However, after reviewing the case, the inventors of this case found that in the case of the resin composite material described in Patent Documents 3 and 4, because the silicon dioxide particles added as fillers tend to condense easily, some of them become turbid over time and the transparency decreases. Furthermore, it was found that if a large amount of silica particles were not added, it would be difficult to reduce the average thermal expansion coefficient of the resin composite, and thus the stability of the composition containing the polyimide resin or the composition containing the polyimide resin precursor was low, and the polyimide resin film produced from the composition lacked image clarity and reproducibility and was relatively fragile.
緣是,本發明課題在於廉價提供:完全兼具對翹曲等變形之高抑制性、良好影像清晰性、及高透明性,可因應電子裝置等構件的聚醯亞胺樹脂複合材。 (解決問題之技術手段) Therefore, the subject of the present invention is to provide, at a low cost, a polyimide resin composite material that has high suppression of deformation such as warping, good image clarity, and high transparency, and can be used for components such as electronic devices. (Technical means to solve the problem)
有鑑於上述實情,本案發明人等經深入鑽研,結果發現,藉由使特定構造之沸石分散於聚醯亞胺樹脂中,可使聚醯亞胺樹脂複合材的平均熱膨脹係數(CTE)減小、霧度率降低、且延遲值減小,遂完成本發明。又,本發明亦發現藉由上述構成,亦能增加彈性模數,遂完成本發明。In view of the above facts, the inventors of this case conducted in-depth research and found that by dispersing zeolite of a specific structure in a polyimide resin, the average coefficient of thermal expansion (CTE) of the polyimide resin composite can be reduced, the haze rate can be reduced, and the retardation value can be reduced, thereby completing the present invention. In addition, the inventors also found that the elastic modulus can be increased by the above structure, thereby completing the present invention.
即,本發明主旨係如下。 [1]一種含有沸石之聚醯亞胺樹脂複合材,係電子材料裝置用,其含有:構造單元Composite Building Unit(CBU)為至少含有d6r與mtw中任一者的沸石;以及聚醯亞胺樹脂。 [2]一種含有沸石之聚醯亞胺樹脂複合材,係含有沸石與聚醯亞胺樹脂者;其中, 於0℃以上且上述聚醯亞胺樹脂之玻璃轉移溫度以下的平均熱膨脹係數為未滿50ppm/K; 延遲值為150nm以下;且 霧度率為5%以下。 [3]一種含有沸石之聚醯亞胺樹脂複合材,係呈透明者,其含有:構造單元Composite Building Unit(CBU)為至少含有d6r與mtw中任一者的沸石;以及聚醯亞胺樹脂。 [4]如[1]至[3]中任一項所記載的含有沸石之聚醯亞胺樹脂複合材,其中,上述沸石係具有AEI、AFT、AFX、CHA、ERI、KFI、SAT、SAV、SFW及TSC構造中之任一者。 [5]如[1]至[4]中任一項所記載的含有沸石之聚醯亞胺樹脂複合材,其中,25℃下之彈性模數為4.5GPa以上。 [6]如[1]至[5]中任一項所記載的含有沸石之聚醯亞胺樹脂複合材,其中,相對於含有沸石之聚醯亞胺樹脂複合材,上述沸石係含有1質量%以上且80質量%以下。 [7]如[1]至[6]中任一項所記載的含有沸石之聚醯亞胺樹脂複合材,其中,上述聚醯亞胺樹脂係具有經核氫化之芳香族化合物的聚醯亞胺樹脂。 [8]一種含有沸石之聚醯亞胺樹脂前驅物組成物,係含有:構造單元Composite Building Unit(CBU)為至少含有d6r與mtw中任一者的沸石;以及聚醯亞胺樹脂前驅物。 [9]一種含有沸石之聚醯亞胺樹脂複合材,係[8]所記載的組成物之硬化物。 [10]一種薄膜,係含有[1]至[7]及[9]中任一項所記載的含有沸石之聚醯亞胺樹脂複合材。 [11]一種電子裝置,係含有[1]至[7]及[9]中任一項所記載的含有沸石之聚醯亞胺樹脂複合材。 [12]一種含有沸石之聚醯亞胺樹脂複合材,係含有沸石與聚醯亞胺樹脂者;其中, 於0℃以上、且上述聚醯亞胺樹脂之玻璃轉移溫度以下的平均熱膨脹係數為未滿50ppm/K; 25℃下之彈性模數為4.5GPa以上;且 霧度率為5%以下。 (對照先前技術之功效) That is, the gist of the present invention is as follows. [1] A polyimide resin composite material containing zeolite, for use in electronic material devices, comprising: a composite building unit (CBU) of zeolite containing at least one of d6r and mtw; and a polyimide resin. [2] A polyimide resin composite material containing zeolite, comprising zeolite and a polyimide resin; wherein, the average thermal expansion coefficient at a temperature above 0°C and below the glass transition temperature of the polyimide resin is less than 50 ppm/K; the retardation value is less than 150 nm; and the haze rate is less than 5%. [3] A transparent polyimide resin composite containing zeolite, comprising: a composite building unit (CBU) of zeolite containing at least one of d6r and mtw; and a polyimide resin. [4] A polyimide resin composite containing zeolite as described in any one of [1] to [3], wherein the zeolite has any one of AEI, AFT, AFX, CHA, ERI, KFI, SAT, SAV, SFW and TSC structures. [5] A polyimide resin composite containing zeolite as described in any one of [1] to [4], wherein the elastic modulus at 25°C is 4.5 GPa or more. [6] A zeolite-containing polyimide resin composite material as described in any one of [1] to [5], wherein the zeolite is contained in an amount of 1% by mass or more and 80% by mass or less relative to the zeolite-containing polyimide resin composite material. [7] A zeolite-containing polyimide resin composite material as described in any one of [1] to [6], wherein the polyimide resin is a polyimide resin having a nucleus-hydrogenated aromatic compound. [8] A zeolite-containing polyimide resin precursor composition comprising: a composite building unit (CBU) being a zeolite containing at least one of D6R and MTW; and a polyimide resin precursor. [9] A zeolite-containing polyimide resin composite material, which is a cured product of the composition described in [8]. [10] A film, which is a film, which is a zeolite-containing polyimide resin composite material described in any one of [1] to [7] and [9]. [11] An electronic device, which is a zeolite-containing polyimide resin composite material described in any one of [1] to [7] and [9]. [12] A polyimide resin composite material containing zeolite, comprising zeolite and polyimide resin; wherein, the average thermal expansion coefficient at a temperature above 0°C and below the glass transition temperature of the polyimide resin is less than 50 ppm/K; the elastic modulus at 25°C is greater than 4.5 GPa; and the haze rate is less than 5%. (Compared with the efficacy of the prior art)
可廉價提供:完全兼具對翹曲等變形之高抑制性、良好影像清晰性、及高透明性,可因應電子裝置等構件的聚醯亞胺樹脂複合材。A polyimide resin composite material that can be used in electronic devices and other components and has high resistance to deformation such as warping, good image clarity, and high transparency can be provided at a low price.
以下針對本發明實施形態進行詳細說明,惟該等說明僅為本發明實施形態一例而已,本發明在不逾越其主旨之前提下,並不侷限於該等內容。The following is a detailed description of the implementation form of the present invention, but such description is only an example of the implementation form of the present invention, and the present invention is not limited to such content without exceeding its gist.
本發明一實施形態之含有沸石之聚醯亞胺樹脂複合材的第1態樣,係含有:構造單元Composite Building Unit(CBU)為至少含有d6r與mtw中任一者的沸石、與聚醯亞胺樹脂;屬於電子材料裝置(亦稱「電子裝置」)用的含有沸石之聚醯亞胺樹脂複合材。 再者,本發明另一實施形態之含有沸石之聚醯亞胺樹脂複合材的第2態樣,係含沸石之透明聚醯亞胺樹脂複合材,其含有:構造單元Composite Building Unit(CBU)為至少含有d6r與mtw中任一者的沸石、與聚醯亞胺樹脂;其為透明的含沸石之透明聚醯亞胺樹脂複合材。本發明中所謂「透明」係指霧度率為5%以下的聚醯亞胺樹脂複合材。 本案說明書中,有時亦將含有沸石之聚醯亞胺樹脂複合材簡稱為「複合材」、「樹脂複合材」、及「聚醯亞胺樹脂複合材」。 圖1係本發明一實施形態的樹脂複合材之示意圖。以下,針對樹脂複合材1進行詳細說明。 The first aspect of the polyimide resin composite material containing zeolite in one embodiment of the present invention comprises: the structural unit Composite Building Unit (CBU) is a zeolite containing at least one of D6R and MTW, and a polyimide resin; the polyimide resin composite material containing zeolite belongs to an electronic material device (also referred to as "electronic device"). Furthermore, the second aspect of the polyimide resin composite material containing zeolite in another embodiment of the present invention is a transparent polyimide resin composite material containing zeolite, which comprises: the structural unit Composite Building Unit (CBU) is a zeolite containing at least one of D6R and MTW, and a polyimide resin; it is a transparent transparent polyimide resin composite material containing zeolite. The term "transparent" in the present invention refers to a polyimide resin composite material having a haze rate of 5% or less. In the specification of this case, the polyimide resin composite material containing zeolite is sometimes referred to as a "composite material", "resin composite material", and "polyimide resin composite material". Figure 1 is a schematic diagram of a resin composite material of an embodiment of the present invention. The following is a detailed description of the resin composite material 1.
<1. 樹脂複合材1> 如圖1所示,樹脂複合材1係含有:沸石2、與聚醯亞胺樹脂3。 <1.1 沸石> 針對樹脂複合材所含的沸石進行說明。另外,所謂沸石係以由含有矽或鋁、與氧所構成之TO 4單元(T元素係構成骨架的氧以外之元素)為基本單元者,具體可舉例如:結晶性多孔質的矽酸鋁鹽、結晶性多孔質的磷酸鋁鹽(ALPO)、或結晶性多孔質的矽磷酸鋁鹽(SAPO)。又,該TO 4單元複數個(數個~數十個)連接而構成通稱Composite Building Unit(CBU)的構造單元。所以,具有規則的通道(管狀細孔)與空腔(空洞)。 <1. Resin composite material 1> As shown in FIG1 , the resin composite material 1 contains: zeolite 2 and polyimide resin 3. <1.1 Zeolite> The zeolite contained in the resin composite material is described. In addition, the so-called zeolite is a basic unit composed of a TO 4 unit (T element is an element other than oxygen constituting the skeleton) containing silicon or aluminum and oxygen, and specific examples include: crystalline porous aluminum silicate, crystalline porous aluminum phosphate (ALPO), or crystalline porous aluminum silicophosphate (SAPO). In addition, a plurality of TO 4 units (several to dozens) are connected to form a structural unit generally called Composite Building Unit (CBU). Therefore, there are regular channels (tubular pores) and cavities (holes).
樹脂複合材係含有構造單元Composite Building Unit(CBU)為含有d6r與mtw中之任一者以上的沸石,該沸石係使用為填料。該沸石係含有聚醯亞胺樹脂,且具有容易形成使該聚醯亞胺樹脂所具有之醯亞胺鍵其中一部分容易進入之空腔的構造單元。所以,相較於習知所使用之二氧化矽粒子等填料,該沸石與聚醯亞胺樹脂間之相容性佳,因而不易發生凝聚。The resin composite material contains a structural unit Composite Building Unit (CBU) which is a zeolite containing one or more of D6R and MTW, and the zeolite is used as a filler. The zeolite contains a polyimide resin and has a structural unit that easily forms a cavity that allows a part of the imide bonds of the polyimide resin to easily enter. Therefore, compared with conventional fillers such as silica particles, the zeolite has better compatibility with the polyimide resin and is not easy to agglomerate.
再者,上述樹脂複合材中,因為可利用少量沸石即大幅降低樹脂複合材的平均熱膨脹係數,故即使隨時間經過仍可防止白濁化,可維持高透明性。又,因為屬於填料的沸石之含有量少,因而亦可維持高可撓性,連帶亦可防止脆化、變形等,且呈現良好的影像清晰性。Furthermore, in the above-mentioned resin composite material, since a small amount of zeolite can be used to significantly reduce the average thermal expansion coefficient of the resin composite material, it can prevent whitening over time and maintain high transparency. In addition, since the content of zeolite, which is a filler, is small, it can also maintain high flexibility, and can also prevent embrittlement and deformation, and present good image clarity.
具d6r的沸石係可舉例如:AEI、AFT、AFV、AFX、AVL、CHA、EAB、EMT、ERI、FAU、GME、JSR、KFI、LEV、LTL、LTN、MOZ、MSO、MWW、OFF、SAS、SAT、SAV、SBS、SBT、SFW、SSF、SZR、TSC、及-WEN型構造的沸石。Zeolites with d6r include, for example, AEI, AFT, AFV, AFX, AVL, CHA, EAB, EMT, ERI, FAU, GME, JSR, KFI, LEV, LTL, LTN, MOZ, MSO, MWW, OFF, SAS, SAT, SAV, SBS, SBT, SFW, SSF, SZR, TSC, and -WEN type zeolites.
再者,具mtw的沸石係可舉例如: *BEA、BEC、CSV、GON、ISV、ITG、 *-ITN、IWS、MSE、MTW、SFH、SFN、SSF、 *-SSO、UOS、及UOV型構造的沸石。 Furthermore, examples of zeolites having mtw include: * BEA, BEC, CSV, GON, ISV, ITG, * -ITN, IWS, MSE, MTW, SFH, SFN, SSF, * -SSO, UOS, and UOV type zeolites.
再者,為了三維性地具有與聚醯亞胺樹脂所含之醯亞胺鍵其中一部分的相互作用,更佳係更進一步具有三維通道的沸石。例如:AEI、AFT、AFX、 *BEA、BEC、CHA、EMT、ERI、FAU、GME、ISV、ITG、 *-ITN、IWS、JSR、KFI、MOZ、MSE、OFF、SAT、SAV、SBS、SBT、SFW、SZR、TSC、UOS、UOV、及-WEN型構造的沸石。 Furthermore, in order to have a three-dimensional interaction with a portion of the imide bonds contained in the polyimide resin, a zeolite having a further three-dimensional channel is more preferred, for example: AEI, AFT, AFX, * BEA, BEC, CHA, EMT, ERI, FAU, GME, ISV, ITG, * -ITN, IWS, JSR, KFI, MOZ, MSE, OFF, SAT, SAV, SBS, SBT, SFW, SZR, TSC, UOS, UOV, and -WEN type zeolites.
該等之中,就從容易微粒子化的觀點而言,特佳係更進一步具有氧八元環以下的結構,具體係可舉例如:AEI、AFT、AFX、CHA、ERI、KFI、SAT、SAV、SFW、及TSC構造的沸石。Among them, particularly preferred are zeolites having a structure with less than 8-membered oxygen rings from the viewpoint of easy micronization, and specific examples thereof include zeolites having AEI, AFT, AFX, CHA, ERI, KFI, SAT, SAV, SFW, and TSC structures.
另外,本說明書中,所謂具氧八元環的結構係指由形成沸石骨架的氧與T元素(構成骨架的氧以外之元素)所構成之細孔中,氧數最多時的氧元素數為8的結構。In this specification, the structure having an oxygen 8-membered ring refers to a structure in which the largest number of oxygen elements is 8 in the pores formed by oxygen forming the zeolite framework and T elements (elements other than oxygen forming the framework).
(沸石在樹脂複合材中的含有率) 樹脂複合材中所含有沸石的含有率並無特別的限制,通常係1質量%以上、較佳係3質量%以上、更佳係5質量%以上、又更佳係7質量%以上、特佳係10質量%以上、最佳係15質量%以上,另一方面,通常係80質量%以下、較佳係70質量%以下、更佳係50質量%以下、又更佳係40質量%以下、特佳係30質量%以下、最佳係20質量%以下。如上述,若在樹脂中添加少量沸石,相較於使用二氧化矽等作為填料之情況,可大幅降低所獲得的平均熱膨脹係數。 (Content of zeolite in resin composite) The content of zeolite in the resin composite is not particularly limited, but is usually 1% by mass or more, preferably 3% by mass or more, more preferably 5% by mass or more, more preferably 7% by mass or more, particularly preferably 10% by mass or more, and most preferably 15% by mass or more. On the other hand, it is usually 80% by mass or less, preferably 70% by mass or less, more preferably 50% by mass or less, more preferably 40% by mass or less, particularly preferably 30% by mass or less, and most preferably 20% by mass or less. As mentioned above, if a small amount of zeolite is added to the resin, the average thermal expansion coefficient obtained can be greatly reduced compared to the case where silica or the like is used as a filler.
所以,若沸石含有率為上述1質量%以上、且80質量%以下,則樹脂複合材可抑制脆化、變形等情況下,並兼具良好的影像清晰性、與高透明性。尤其若為10質量%以上、且30質量%以下,則相較於二氧化矽等,利用少量含有量即可更明確地發揮上述樹脂複合材的性質,故特佳。Therefore, if the zeolite content is 1 mass % or more and 80 mass % or less, the resin composite material can suppress embrittlement, deformation, etc., and has good image clarity and high transparency. In particular, if it is 10 mass % or more and 30 mass % or less, the properties of the resin composite material can be more clearly exerted with a small content compared to silicon dioxide, etc., so it is particularly preferred.
樹脂複合材中的沸石係可單獨含有1種、亦可依任意組合與比率含有2種以上。惟,其中至少一種係如前述,屬於構造單元Composite Building Unit(CBU)中含有d6r與mtw中之任一者的沸石。The resin composite material may contain one type of zeolite alone or two or more types in any combination and ratio. However, at least one of the zeolites is zeolite D6R or MTW contained in the Composite Building Unit (CBU) as described above.
具體而言,從製造容易的觀點而言,沸石較佳係矽酸鋁鹽,在不致明顯損及本發明效果之範疇內,亦可取代矽或鋁,改為使用鎵、鐵、硼、鈦、鋯、錫、鋅、磷等元素,亦可與矽、鋁一起含有鎵、鐵、硼、鈦、鋯、錫、鋅、磷等元素。Specifically, from the perspective of ease of production, zeolite is preferably aluminum silicate. Within the scope of not significantly impairing the effects of the present invention, silicon or aluminum may be replaced by elements such as gallium, iron, boron, titanium, zirconium, tin, zinc, and phosphorus. The zeolite may also contain elements such as gallium, iron, boron, titanium, zirconium, tin, zinc, and phosphorus together with silicon and aluminum.
沸石的構造係可依Internationa1 Zeolite Association(IZA)所制訂之規定沸石結構的代碼所表示。另外,沸石的構造係根據由X射線構造解析裝置(例如:BRUKER公司製桌上型X射線繞射裝置D2PHASER)所獲得的X射線繞射圖案,使用沸石構造資料庫2018年版(http://www.iza-structure.org/databases/)可進行特定。The structure of zeolite can be expressed by the code for defining the structure of zeolite established by the International Zeolite Association (IZA). In addition, the structure of zeolite can be identified by using the Zeolite Structure Database 2018 Edition (http://www.iza-structure.org/databases/) based on the X-ray diffraction pattern obtained by an X-ray structure analysis device (e.g., the desktop X-ray diffraction device D2PHASER manufactured by BRUKER).
(沸石之平均熱膨脹係數) 沸石的平均熱膨脹係數係在樹脂複合材顯示較佳性能之前提下,其餘並無特別的限制,係未滿0ppm/K、較佳係-2ppm/K以下、更佳係-3ppm/K以下、又更佳係-5ppm/K以下、特佳係-7ppm/K以下、最佳係-10ppm/K以下,另一方面,通常係-1000ppm/K以上、較佳係-900ppm/K以上、更佳係-800ppm/K以上、又更佳係-700ppm/K以上、特佳係-500ppm/K以上、最佳係-300ppm/K以上。若沸石的平均熱膨脹係數在上述範圍內,則樹脂複合材的沸石含有量少、仍可維持高可撓性,且可在抑制脆化、變形等情況下,兼具良好的影像清晰性、及高透明性。 (Average thermal expansion coefficient of zeolite) The average thermal expansion coefficient of zeolite is less than 0ppm/K, preferably -2ppm/K or less, more preferably -3ppm/K or less, even more preferably -5ppm/K or less, particularly preferably -7ppm/K or less, and optimally -10ppm/K or less, provided that the resin composite material exhibits better performance. There are no special restrictions otherwise. On the other hand, it is usually -1000ppm/K or more, preferably -900ppm/K or more, more preferably -800ppm/K or more, even more preferably -700ppm/K or more, particularly preferably -500ppm/K or more, and optimally -300ppm/K or more. If the average thermal expansion coefficient of zeolite is within the above range, the resin composite can maintain high flexibility even with a low zeolite content, and can have good image clarity and high transparency while suppressing embrittlement and deformation.
另外,沸石的平均熱膨脹係數係藉由使用BRUKER公司製X射線繞射裝置D8ADVANCE、與X射線繞射解析軟體JADE,計算出晶格常數而可測定。 該沸石的平均熱膨脹係數係測定60℃與220℃的熱膨脹係數,再取其平均值並設為平均熱膨脹係數。 In addition, the average thermal expansion coefficient of zeolite can be measured by using the X-ray diffraction device D8ADVANCE manufactured by BRUKER and the X-ray diffraction analysis software JADE to calculate the lattice constant. The average thermal expansion coefficient of the zeolite is obtained by measuring the thermal expansion coefficients at 60°C and 220°C, and then taking the average value as the average thermal expansion coefficient.
再者,沸石的架構密度係在樹脂複合材顯示較佳性能之前提下,其餘並無特別的限定,較佳係17.0T/1000Å 3以下、更佳係16.0T/1000Å 3以下、又更佳係15.0T/1000Å 3以下,另一方面,較佳係12.0T/1000Å 3以上、更佳係13.0T/1000Å 3以上、又更佳係14.0T/1000Å 3以上。若架構密度在上述範圍內,則因為沸石不易凝聚而容易微粒子化,且可在抑制脆化、變形等情況下,兼具良好的影像清晰性、與高透明性。 Furthermore, the framework density of zeolite is not particularly limited, provided that the resin composite material exhibits better performance. Preferably, it is 17.0T/1000Å 3 or less, more preferably 16.0T/1000Å 3 or less, and even more preferably 15.0T/1000Å 3 or less. On the other hand, it is preferably 12.0T/1000Å 3 or more, more preferably 13.0T/1000Å 3 or more, and even more preferably 14.0T/1000Å 3 or more. If the framework density is within the above range, the zeolite is not easily agglomerated and is easily micronized. In addition, it can have both good image clarity and high transparency while suppressing embrittlement and deformation.
另外,所謂架構密度係指表示沸石每單位體積中所存在之T原子的數量,依照沸石的構造所決定的數值。本說明書係只要採用IZA之沸石構造資料庫2018年版(http://www.iza-structure.org/databases/)所記載的數值便可。In addition, the so-called framework density refers to the number of T atoms present per unit volume of zeolite, and is a value determined by the structure of the zeolite. In this manual, the values recorded in the 2018 edition of the IZA Zeolite Structure Database (http://www.iza-structure.org/databases/) may be used.
架構密度大於16.0T/1000Å 3、且17.0T/1000Å 3以下的沸石例,係可舉例如:CSV、ERI、ITG、LTL、LTN、MOZ、MSE、OFF、SAT、SFH、SFN、SSF、 *-SSO、-WEN型構造的沸石。 Examples of zeolites having a framework density greater than 16.0 T/1000Å 3 and less than 17.0 T/1000Å 3 include zeolites of CSV, ERI, ITG, LTL, LTN, MOZ, MSE, OFF, SAT, SFH, SFN, SSF, * -SSO, and -WEN type structures.
架構密度大於15.0T/1000Å 3、且16.0T/1000Å 3以下的沸石例,係可舉例如:AEI、AFT、AFV、AFX、AVL、 *BEA、BEC、CHA、EAB、GME、 *-ITN、LEV、MWW、及SFW型構造的沸石。 Examples of zeolites having a framework density greater than 15.0 T/1000Å 3 and less than 16.0 T/1000Å 3 include zeolites of AEI, AFT, AFV, AFX, AVL, * BEA, BEC, CHA, EAB, GME, * -ITN, LEV, MWW, and SFW structures.
架構密度大於14.0T/1000Å 3、且15.0T/1000Å 3以下的沸石例,係可舉例如:ISV、IWS、KFI、SAS、及SAV型構造的沸石。 Examples of zeolites having a framework density greater than 14.0 T/1000Å 3 and less than 15.0 T/1000Å 3 include zeolites of ISV, IWS, KFI, SAS, and SAV structures.
架構密度存在於14.0T/1000Å 3以下範圍內的沸石例,係可舉例如:EMT、FAU、JSR、SBS、SBT、及TSC型構造的沸石。 Examples of zeolites having a framework density within the range of 14.0 T/1000Å 3 or less include zeolites of EMT, FAU, JSR, SBS, SBT, and TSC type structures.
再者,沸石的二氧化矽/氧化鋁莫耳比(SAR),係在樹脂複合材顯示較佳性能之前提下,其餘並無特別的限制,通常係0.1以上、較佳係0.5以上、更佳係4以上、又更佳係9以上、特佳係12以上,又,通常係2000以下、較佳係1000以下、更佳係500以下、又更佳係100以下。若二氧化矽/氧化鋁莫耳比(SAR)在上述範圍內,可適當地控制相對陽離子的量,亦可抑低沸石的製造成本。Furthermore, the silica/alumina molar ratio (SAR) of the zeolite is not particularly limited, provided that the resin composite material exhibits better performance, and is generally 0.1 or more, preferably 0.5 or more, more preferably 4 or more, more preferably 9 or more, and particularly preferably 12 or more, and is generally 2000 or less, preferably 1000 or less, more preferably 500 or less, and more preferably 100 or less. If the silica/alumina molar ratio (SAR) is within the above range, the relative amount of cations can be appropriately controlled, and the manufacturing cost of the zeolite can also be reduced.
再者,當取代構成TO 4單元的矽、鋁,改為使用鎵、鐵、硼、鈦、鋯、錫、鋅、磷等元素的情況,只要將所取代使用的該元素之氧化物之莫耳比換算為氧化鋁或二氧化矽的莫耳比即可。具體而言,當取代鋁而改為使用鎵的情況,只要將氧化鎵的莫耳比換算為氧化鋁的莫耳比即可。 Furthermore, when replacing silicon and aluminum constituting the TO4 unit with gallium, iron, boron, titanium, zirconium, tin, zinc, phosphorus and other elements, the molar ratio of the oxide of the element used instead can be converted into the molar ratio of aluminum oxide or silicon dioxide. Specifically, when replacing aluminum with gallium, the molar ratio of gallium oxide can be converted into the molar ratio of aluminum oxide.
再者,沸石的相對陽離子係在樹脂複合材顯示較佳性能之前提下,其餘並無特別的限定,通常係結構導向試劑、質子、鹼金屬離子、鹼土族金屬離子,較佳係結構導向試劑、質子、鹼金屬離子,更佳係結構導向試劑、質子、Li離子、Na離子、K離子,又更佳係結構導向試劑、質子、Li離子,特佳係質子。於結構導向試劑的情況,相較於鹼金屬離子、鹼土族金屬離子之下,因為具有柔軟性,因而沸石容易顯示未滿0ppm/K的平均熱膨脹係數,故較佳。又,鹼金屬離子、鹼土族金屬離子係尺寸越小,則沸石越容易顯示未滿0ppm/K的平均熱膨脹係數,故較佳。尤其於質子的情況,因為容易降低樹脂複合材的平均熱膨脹係數,故較佳。Furthermore, the relative cations of the zeolite are not particularly limited under the premise that the resin composite shows better performance. Generally, they are structure-directed reagents, protons, alkali metal ions, and alkali-earth metal ions. Preferably, they are structure-directed reagents, protons, and alkali metal ions. More preferably, they are structure-directed reagents, protons, Li ions, Na ions, and K ions. More preferably, they are structure-directed reagents, protons, and Li ions. Protons are particularly preferred. In the case of structure-oriented reagents, zeolite is preferred because it is softer than alkali metal ions and alkali earth metal ions, and thus it is easier for zeolite to show an average thermal expansion coefficient of less than 0 ppm/K. In addition, the smaller the size of alkali metal ions and alkali earth metal ions is, the easier it is for zeolite to show an average thermal expansion coefficient of less than 0 ppm/K, and thus it is preferred. In the case of protons in particular, it is preferred because it is easier to reduce the average thermal expansion coefficient of resin composites.
即,沸石較佳係as-made(含結構導向試劑型)、質子型、鹼金屬型,更佳係as-made、質子型、Li型、Na型、K型,又更佳係as-made、質子型、Li型,最佳係質子型。That is, the zeolite is preferably as-made (including structure-directed reagent type), proton type, alkali metal type, more preferably as-made, proton type, Li type, Na type, K type, still more preferably as-made, proton type, Li type, and the best is proton type.
另外,所謂結構導向試劑係沸石製造時所使用的模板。In addition, the so-called structure-directing reagent is the template used in the production of zeolite.
沸石的結晶度係在樹脂複合材顯示較佳性能之前提下,其餘並無特別的限定。其理由推測相較於由IZA依代碼所決定的結構,Composite Building Unit(CBU)屬於與樹脂複合材之平均熱膨脹係數相關聯的因子。The crystallinity of zeolite is based on the premise that the resin composite material shows better performance, and there is no special limitation otherwise. The reason is speculated that the Composite Building Unit (CBU) is a factor related to the average thermal expansion coefficient of the resin composite material, compared to the structure determined by the IZA code.
另外,沸石的結晶度係利用X射線繞射裝置(例如:BRUKER公司製桌上型X射線繞射裝置D2PHASER)求取,或者將X射線繞射尖峰與基準沸石的X射線繞射尖峰進行比較則可求取。具體的算出例係可舉例如Scientific Reports 2016、6、Article number:29210的LTA型沸石之結晶度。The crystallinity of zeolite can be obtained by using an X-ray diffraction device (e.g., D2PHASER, a desktop X-ray diffraction device manufactured by BRUKER), or by comparing the X-ray diffraction peak with the X-ray diffraction peak of a standard zeolite. A specific calculation example is the crystallinity of LTA zeolite in Scientific Reports 2016, 6, Article number: 29210.
沸石的平均一次粒徑係在樹脂複合材顯示較佳性能之前提下,其餘並無特別的限制,通常係15nm以上、較佳係20nm以上、更佳係25nm以上、特佳係30nm以上、最佳係40nm以上。另一方面,通常係2000nm以下、較佳係1000nm以下、更佳係500nm以下、又更佳係300nm以下、特佳係200nm以下、最佳係100nm以下。若沸石的平均一次粒徑在上述範圍內,則樹脂複合材內的沸石容易地均勻分散,進而有造成所獲得樹脂複合材的透明性高、良好影像清晰性之傾向。The average primary particle size of zeolite is not particularly limited, provided that the resin composite material exhibits better performance. It is usually 15 nm or more, preferably 20 nm or more, more preferably 25 nm or more, particularly preferably 30 nm or more, and most preferably 40 nm or more. On the other hand, it is usually 2000 nm or less, preferably 1000 nm or less, more preferably 500 nm or less, more preferably 300 nm or less, particularly preferably 200 nm or less, and most preferably 100 nm or less. If the average primary particle size of zeolite is within the above range, the zeolite in the resin composite material is easily and uniformly dispersed, and thus there is a tendency for the obtained resin composite material to have high transparency and good image clarity.
另外,沸石的平均一次粒徑係在利用掃描式電子顯微鏡(SEM)進行粒子觀察時,針對任意選擇30個以上的一次粒子進行粒徑測定,再將該一次粒子的粒徑予以平均而求得。此時,粒徑係指具有與粒子投影面積相等面積、成為最大直徑之圓之直徑(當量圓直徑)。The average primary particle size of zeolite is obtained by measuring the particle size of 30 or more primary particles selected at random during particle observation using a scanning electron microscope (SEM), and then averaging the particle sizes of the primary particles. In this case, the particle size refers to the diameter of a circle having an area equal to the projected area of the particle and having the maximum diameter (equivalent circular diameter).
沸石係在樹脂複合材顯示較佳性能之前提下,亦可為由一次粒子凝聚的二次以上之高階粒子狀態。此狀態的平均粒徑並無特別的限制,通常係15nm以上、較佳係20nm以上、更佳係25nm以上、又更佳係30nm以上、特佳係40nm以上、最佳係50nm以上,另一方面,通常係3000nm以下、較佳係2000nm以下、更佳係1000nm以下、又更佳係500nm以下、特佳係300nm以下、最佳係100nm以下。若在上述範圍內,樹脂複合材內的沸石容易地均勻分散,且有造成所獲得樹脂複合材的透明性高、良好影像清晰性之傾向。Zeolite can be in a state of secondary or higher-order particles agglomerated from primary particles, provided that the resin composite material exhibits better performance. The average particle size of this state is not particularly limited, and is usually 15 nm or more, preferably 20 nm or more, more preferably 25 nm or more, more preferably 30 nm or more, particularly preferably 40 nm or more, and most preferably 50 nm or more. On the other hand, it is usually 3000 nm or less, preferably 2000 nm or less, more preferably 1000 nm or less, more preferably 500 nm or less, particularly preferably 300 nm or less, and most preferably 100 nm or less. If it is within the above range, the zeolite in the resin composite material is easily and uniformly dispersed, and there is a tendency to cause the obtained resin composite material to have high transparency and good image clarity.
另外,沸石的二次以上高階粒子之平均粒徑,係與一次粒子同樣,在利用掃描式電子顯微鏡(SEM)進行的粒子觀察時,針對任意選擇的30個以上粒子進行粒徑測定,再將該粒子的粒徑予以平均而求得。此時,粒徑係指具有與粒子投影面積相等面積、成為最大直徑之圓的直徑(當量圓直徑)。又,亦可採用由粒徑分佈測定裝置所測定的D 50值。粒徑分佈測定裝置係配合粒徑,可使用雷射繞射式粒徑分佈測定裝置、亦可使用動態光散射式粒徑分佈測定裝置。 In addition, the average particle size of the secondary and higher order particles of zeolite is obtained by measuring the particle size of 30 or more particles selected at random during particle observation using a scanning electron microscope (SEM), and then averaging the particle sizes of the particles. At this time, the particle size refers to the diameter of a circle with an area equal to the projected area of the particle and having the maximum diameter (equivalent circular diameter). Alternatively, the D50 value measured by a particle size distribution measuring device can be used. The particle size distribution measuring device is matched with the particle size, and a laser diffraction particle size distribution measuring device or a dynamic light scattering particle size distribution measuring device can be used.
沸石的製造方法並無特別的限制,可利用公知的水熱合成法而廉價地製造。例如製造CHA型沸石時,參照日本專利4896110號所記載方法便可製造。The method for producing zeolite is not particularly limited, and it can be produced cheaply by a known hydrothermal synthesis method. For example, when producing CHA type zeolite, it can be produced by referring to the method described in Japanese Patent No. 4896110.
沸石的製造方法中,視需要可將結構導向試劑使用為模板,通常若屬於可製造目標沸石構造的結構導向試劑,則無特別的限制,若無結構導向試劑仍能製造的話,則亦可不使用結構導向試劑。In the method for producing zeolite, a structure-directing reagent may be used as a template as needed. Generally, there is no particular limitation if the structure-directing reagent can produce the target zeolite structure. If the zeolite can be produced without the structure-directing reagent, the structure-directing reagent may not be used.
另外,製造平均粒徑較小的沸石時,係依合成時間較通常更短的時間、且控制合成溫度較低於通常之溫度進行水熱合成即可,或者將由水熱合成所獲得沸石,利用珠磨機、球磨機等濕式粉碎施行破碎及/或粉碎即可。In addition, when producing zeolite with a smaller average particle size, hydrothermal synthesis can be performed with a shorter synthesis time than usual and a synthesis temperature controlled to be lower than usual, or the zeolite obtained by hydrothermal synthesis can be crushed and/or pulverized using a wet mill such as a bead mill or a ball mill.
上述破碎及/或粉碎所使用的粉碎裝置,係可舉例如:FREUND-TURBO公司製「OB MILL」、Ashizawa Finetech公司製「NANO GETTER」、「NANO GETTER MINI」、「STARMILL」、及「LABSTAR」、Sugino Machine公司製「Star Burst」等。又,一般經粉碎後沸石的結晶性會降低,但可如日本專利特開2014-189476號公報所記載方法,在含有氧化鋁、二氧化矽等的溶液中再結晶化。The crushing and/or pulverizing device used in the above crushing and/or pulverizing can be exemplified by "OB MILL" manufactured by FREUND-TURBO, "NANO GETTER", "NANO GETTER MINI", "STARMILL", and "LABSTAR" manufactured by Ashizawa Finetech, and "Star Burst" manufactured by Sugino Machine. In addition, the crystallinity of zeolite is generally reduced after pulverization, but it can be recrystallized in a solution containing aluminum oxide, silicon dioxide, etc., as described in the method described in Japanese Patent Publication No. 2014-189476.
從抑制經破碎及/或粉碎後的沸石再凝聚之觀點而言,最好在溶劑中施行濕式粉碎,使平均粒徑較小的沸石分散於溶劑中。其中,從可縮小平均粒徑的觀點而言,較佳係施行珠磨。又,為了抑制分散後的再凝聚,在濕式粉碎時亦可使用分散劑。上述溶劑及分散劑係可使用例如在後述油墨之構成成分中所舉例的溶劑與分散劑。From the viewpoint of suppressing the reagglomeration of the crushed and/or pulverized zeolite, it is preferable to perform wet pulverization in a solvent so that the zeolite with a smaller average particle size is dispersed in the solvent. Among them, from the viewpoint of reducing the average particle size, bead milling is more preferable. In addition, in order to suppress the reagglomeration after dispersion, a dispersant may be used during wet pulverization. The above-mentioned solvent and dispersant may be, for example, the solvent and dispersant exemplified in the components of the ink described later.
再者,在分散了破碎及/或粉碎過之沸石的分散液中,依更加縮小沸石平均粒徑之目的,可藉由施行離心分離除去平均粒徑較大的粒子。藉此,沸石可更容易均勻分散於樹脂複合材內,且所獲得樹脂複合材的透明性提高,故較佳。另外,離心分離時所使用的離心機係可使用:市售裝置(例如:KOKUSAN公司製離心機H-36、及日立工機製日立微量高速離心機CF15RN)。Furthermore, in the dispersion in which the crushed and/or pulverized zeolite is dispersed, particles with a larger average particle size can be removed by centrifugal separation for the purpose of further reducing the average particle size of the zeolite. This makes it easier for the zeolite to be uniformly dispersed in the resin composite material, and the transparency of the obtained resin composite material is improved, which is preferred. In addition, the centrifuge used in the centrifugal separation can be a commercially available device (for example: the centrifuge H-36 manufactured by KOKUSAN, and the Hitachi micro high-speed centrifuge CF15RN manufactured by Hitachi Industries).
<1.2. 聚醯亞胺樹脂> 以下,針對樹脂複合材所使用的聚醯亞胺樹脂進行說明。 <1.2. Polyimide resin> The following is an explanation of the polyimide resin used in resin composites.
聚醯亞胺樹脂係可無限制地使用硬化性樹脂與熱可塑性樹脂。其中,例如活性能量射線硬化性樹脂、及熱硬化性樹脂等可交聯的硬化性樹脂,因為相較於熱可塑性樹脂,其樹脂複合材內的樹脂與沸石之均勻分佈較高,故較佳。特別係若為熱硬化性樹脂,則不使用曝光機,而可降低製造成本,故較佳。另外,所謂活性能量射線硬化性樹脂複合材係指利用例如紫外線、可見光、紅外線、電子束等進行硬化的樹脂。 再者,聚醯亞胺樹脂可為具經核氫化(亦稱「氫化」)之芳香族化合物的聚醯亞胺樹脂,亦可為具未被核氫化之芳香族化合物的聚醯亞胺樹脂,從與沸石的相溶性佳、換言之、提升與沸石的接著性的觀點而言,特別係使用於電子裝置時,最好為具經核氫化之芳香族化合物的聚醯亞胺樹脂。 Polyimide resins can be used as curable resins and thermoplastic resins without limitation. Among them, cross-linkable curable resins such as active energy ray curable resins and thermosetting resins are preferred because the resin and zeolite in the resin composite are more evenly distributed than thermoplastic resins. In particular, thermosetting resins are preferred because they do not require an exposure machine and can reduce manufacturing costs. In addition, the so-called active energy ray curable resin composite refers to a resin that is cured using, for example, ultraviolet rays, visible light, infrared rays, electron beams, etc. Furthermore, the polyimide resin may be a polyimide resin having a nucleus-hydrogenated (also called "hydrogenated") aromatic compound, or a polyimide resin having an aromatic compound that has not been nucleus-hydrogenated. From the perspective of good compatibility with zeolite, in other words, improved adhesion with zeolite, it is preferable to use a polyimide resin having a nucleus-hydrogenated aromatic compound, especially when used in electronic devices.
具經核氫化之芳香族化合物的聚醯亞胺樹脂之具體例,係可舉例如:「新訂 最新聚醯亞胺-基礎與應用-」(日本聚醯亞胺・芳香族系高分子研究會編著、NTS(2010))、國際公開第2015/125895號、國際公開第2014/98042號記載、及日本專利特開2016-128555號公報等所舉例的聚醯亞胺樹脂。Specific examples of polyimide resins having a nuclear hydrogenated aromatic compound include polyimide resins exemplified in "Newly Revised Latest Polyimide - Fundamentals and Applications -" (Compiled by the Japanese Polyimide and Aromatic Polymer Research Society, NTS (2010)), International Publication No. 2015/125895, International Publication No. 2014/98042, and Japanese Patent Publication No. 2016-128555.
相關聚醯亞胺樹脂與沸石的相容性,可認為以下事項。例如:(1)藉由聚醯亞胺樹脂所含有之醯亞胺鍵、以及源自未反應的羰基及胺基,與沸石表面之Si-OH基間發揮相互作用,產生如使用了分散劑般的分散機能;(2)聚醯亞胺樹脂所含有之醯亞胺鍵其中一部分,進入至沸石構造單元Composite Building Unit(CBU)中由d6r或mtw任一者所形成的空腔等。所以,沸石容易在聚醯亞胺樹脂複合材內均勻分散,可在抑制脆化、變形等情況下,兼具良好的影像清晰性、及高透明性。結果,可長期性防止白濁化,亦能維持良好的影像清晰性、高透明性。The compatibility of polyimide resin and zeolite can be considered as follows. For example: (1) The imide bonds contained in the polyimide resin and the unreacted carbonyl and amine groups interact with the Si-OH groups on the surface of the zeolite, producing a dispersing function similar to that of a dispersant; (2) Some of the imide bonds contained in the polyimide resin enter the cavity formed by either d6r or mtw in the zeolite structural unit Composite Building Unit (CBU). Therefore, zeolite is easily dispersed evenly in the polyimide resin composite material, and can have good image clarity and high transparency while suppressing embrittlement and deformation. As a result, whitening can be prevented for a long time, and good image clarity and high transparency can be maintained.
其中,具有經核氫化之芳香族化合物的聚醯亞胺樹脂中,係藉由經核氫化的芳香族化合物妨礙源自芳香族化合物彼此間π-π鍵的π-π堆疊,而使與沸石間之相溶性變佳。尤其是具有d6r或mtw的沸石係相溶性變得更佳,此現象係除了上述理由之外,亦可認為藉由d6r或mtw的CBU發揮埋覆被妨礙之π-π堆疊份量的空間之作用,而使相溶性變得更佳。結果可長期性防止白濁化,更可維持良好的影像清晰性、及更高的透明性。Among them, in the polyimide resin with a nucleus-hydrogenated aromatic compound, the nucleus-hydrogenated aromatic compound hinders the π-π stacking derived from the π-π bonds between the aromatic compounds, thereby improving the compatibility with the zeolite. In particular, the compatibility with the zeolite with D6R or MTW is improved. In addition to the above reasons, it can also be considered that the CBU of D6R or MTW plays a role in burying the space of the hindered π-π stacking, thereby improving the compatibility. As a result, whitening can be prevented for a long time, and good image clarity and higher transparency can be maintained.
聚醯亞胺樹脂的分子量係在樹脂複合材顯示較佳性能之前提下,其餘並無特別的限制,利用凝膠滲透色層分析儀(GPC)所測定之聚苯乙烯換算的質量平均分子量(Mw)值,通常係1000以上、較佳係3000以上、更佳係5000以上。又,通常係200000以下、較佳係180000以下、更佳係150000以下。藉由在上述範圍內,有對溶劑的溶解性、黏度等成為普通製造設備可輕易處置的傾向,故較佳。The molecular weight of the polyimide resin is not particularly limited as long as the resin composite material exhibits better performance. The mass average molecular weight (Mw) value of polystyrene conversion measured by gel permeation chromatography (GPC) is usually 1000 or more, preferably 3000 or more, and more preferably 5000 or more. In addition, it is usually 200000 or less, preferably 180000 or less, and more preferably 150000 or less. Within the above range, the solubility in solvents, viscosity, etc. tend to be easily handled by ordinary manufacturing equipment, so it is preferred.
再者,聚醯亞胺樹脂的數量平均分子量(Mn)亦係在樹脂複合材顯示較佳性能之前提下,其餘並無特別的限制,通常係500以上、較佳係1000以上、更佳係2500以上。又,通常在100000以下、較佳係90000以下、更佳係80000以下。藉由在上述範圍內,有對溶劑的溶解性、黏度等成為普通製造設備可輕易處置的傾向,故較佳。聚苯乙烯換算的數量平均分子量,可依照與上述質量平均分子量同樣的方法求取。Furthermore, the number average molecular weight (Mn) of the polyimide resin is also under the premise that the resin composite material shows better performance, and there is no special restriction otherwise. It is usually 500 or more, preferably 1000 or more, and more preferably 2500 or more. In addition, it is usually below 100000, preferably below 90000, and more preferably below 80000. Within the above range, the solubility in the solvent, viscosity, etc. tend to be easily handled by ordinary manufacturing equipment, so it is preferred. The number average molecular weight converted to polystyrene can be obtained in the same way as the above mass average molecular weight.
再者,聚醯亞胺樹脂的Mw除以Mn的值(Mw/Mn),通常係1.5以上、較佳係2以上、更佳係2.5以上,另一方面,通常係5以下、較佳係4.5以下、更佳係4以下。藉由在上述範圍內,從提高樹脂複合材中的沸石均勻性之觀點、以及獲得優異平滑性樹脂複合材之成形體的觀點而言屬較佳。Furthermore, the value of Mw divided by Mn (Mw/Mn) of the polyimide resin is usually 1.5 or more, preferably 2 or more, more preferably 2.5 or more, and is usually 5 or less, preferably 4.5 or less, more preferably 4 or less. It is preferable to be within the above range from the viewpoint of improving the uniformity of zeolite in the resin composite and obtaining a resin composite molded product having excellent smoothness.
聚醯亞胺樹脂的玻璃轉移溫度(Tg),通常係80℃以上、較佳係120℃以上、更佳係170℃以上、又更佳係220℃以上、特佳係250℃以上。又,通常係700℃以下、較佳係500℃以下、更佳係400℃以下、又更佳係350℃以下、特佳係320℃以下。藉由在上述範圍內,樹脂複合材可在抑制脆化、變形等情況下,兼具良好的影像清晰性、及高透明性。The glass transition temperature (Tg) of the polyimide resin is usually 80°C or higher, preferably 120°C or higher, more preferably 170°C or higher, more preferably 220°C or higher, and particularly preferably 250°C or higher. Also, it is usually 700°C or lower, preferably 500°C or lower, more preferably 400°C or lower, more preferably 350°C or lower, and particularly preferably 320°C or lower. By keeping the temperature within the above range, the resin composite can have good image clarity and high transparency while suppressing embrittlement and deformation.
聚醯亞胺樹脂通常係具有大於0ppm/K之平均熱膨脹係數的材料。聚醯亞胺樹脂的平均熱膨脹係數係在樹脂複合材顯示較佳性能之前提下,其餘並無特別的限制,在0℃以上、且該樹脂玻璃轉移溫度以下的溫度範圍中之測定範圍內,通常係大於0ppm/K、較佳係10ppm/K以上、更佳係20ppm/K以上、又更佳係30ppm/K以上、特佳係50ppm/K以上,又,通常係200ppm/K以下、較佳係150ppm/K以下、更佳係125ppm/K以下、又更佳係100ppm/K以下、特佳係75ppm/K以下。藉由在上述範圍內,樹脂複合材可在抑制脆化、變形等情況下,兼具良好的影像清晰性、及高透明性。又,因為沸石只要少量即可,因而可長期性降低白濁。The polyimide resin is generally a material having an average thermal expansion coefficient greater than 0 ppm/K. The average thermal expansion coefficient of the polyimide resin is not particularly limited, provided that the resin composite material exhibits better performance. Within the measurement range in the temperature range above 0°C and below the glass transition temperature of the resin, it is generally greater than 0 ppm/K, preferably 10 ppm/K or more, more preferably 20 ppm/K or more, more preferably 30 ppm/K or more, and particularly preferably 50 ppm/K or more. Furthermore, it is generally less than 200 ppm/K, preferably less than 150 ppm/K, more preferably less than 125 ppm/K, more preferably less than 100 ppm/K, and particularly preferably less than 75 ppm/K. By keeping the above range, the resin composite material can have good image clarity and high transparency while suppressing embrittlement and deformation. In addition, since only a small amount of zeolite is required, the whitening can be reduced for a long time.
另外,樹脂的平均熱膨脹係數係根據JIS K7197(2012年)的方法,利用熱機械分析而可測定。例如使用SII NanoTechnology公司製熱機械分析裝置TMA/SS6100,利用形成片材狀的樹脂複合材之伸縮可進行測定。具體而言,通常利用60℃與220℃二點溫度的熱膨脹係數之斜率可求得。當玻璃轉移溫度在220℃以下的情況,可求取在60℃與玻璃轉移溫度下的測定值之平均。又,樹脂的玻璃轉移溫度可從利用熱機械分析所測定的轉折點求得。In addition, the average thermal expansion coefficient of the resin can be measured by thermomechanical analysis according to the method of JIS K7197 (2012). For example, the thermal mechanical analysis device TMA/SS6100 manufactured by SII NanoTechnology can be used to measure the expansion and contraction of the resin composite material formed into a sheet. Specifically, it can be obtained by taking the slope of the thermal expansion coefficient at two temperatures of 60°C and 220°C. When the glass transition temperature is below 220°C, the average of the measured values at 60°C and the glass transition temperature can be obtained. In addition, the glass transition temperature of the resin can be obtained from the inflection point measured by thermomechanical analysis.
再者,聚醯亞胺樹脂的製造方法係在樹脂複合材顯示較佳性能之前提下,其餘並無特別的限制,只要依照公知方法進行製造即可。例如可依照「新訂 最新聚醯亞胺-基礎與應用-」(日本聚醯亞胺・芳香族系高分子研究會編著、NTS(2010))所記載方法進行製造。Furthermore, the method for producing polyimide resin is not particularly limited as long as the resin composite material shows better performance. It can be produced according to the known method. For example, it can be produced according to the method described in "Newly Revised Latest Polyimide - Fundamentals and Applications -" (Compiled by the Japanese Polyimide and Aromatic Polymer Research Society, NTS (2010)).
<1.3. 其他化合物> 樹脂複合材係除沸石、及聚醯亞胺樹脂之外,在不致明顯損及本發明效果之前提下,尚亦可含有其他化合物。例如後述,在製造樹脂複合材時,亦可含有油墨、或在混練物中含有分散劑、表面處理劑、界面活性劑、醯亞胺化促進劑、溶劑等,而此等的殘留成分亦可含於樹脂複合材中。 <1.3. Other compounds> In addition to zeolite and polyimide resin, the resin composite may also contain other compounds without significantly damaging the effect of the present invention. For example, as described later, when manufacturing the resin composite, it may also contain ink, or contain a dispersant, a surface treatment agent, a surfactant, an imidization accelerator, a solvent, etc. in the kneaded material, and the residual components of these may also be contained in the resin composite.
<1.4. 含有沸石之聚醯亞胺樹脂複合材的特性> 藉由上述構成,可獲得習知未有特性的含有沸石之聚醯亞胺樹脂複合材。具體而言,本發明另一實施形態的含有沸石之聚醯亞胺樹脂複合材第3態樣,係含有:沸石、及具經核氫化之芳香族化合物之聚醯亞胺樹脂者;其中,在0℃以上且上述聚醯亞胺樹脂玻璃轉移溫度以下,該複合材的平均熱膨脹係數為未滿50ppm/K,該複合材的延遲值為150nm以下,該複合材的霧度率為5%以下;或者,第4態樣的含有沸石之聚醯亞胺樹脂複合材,係含有沸石、與聚醯亞胺樹脂;其中,在0℃以上、且上述聚醯亞胺樹脂之玻璃轉移溫度以下的平均熱膨脹係數為未滿50ppm/K,於25℃下之彈性模數為4.5GPa以上,且霧度率為5%以下。 <1.4. Characteristics of zeolite-containing polyimide resin composites> The above-mentioned structure can obtain a zeolite-containing polyimide resin composite having unprecedented characteristics. Specifically, the third embodiment of the zeolite-containing polyimide resin composite of another embodiment of the present invention contains: zeolite, and a polyimide resin having a nucleus-hydrogenated aromatic compound; wherein, at a temperature above 0°C and below the glass transition temperature of the polyimide resin, the average thermal expansion coefficient of the composite is less than 50 ppm/K, and the retardation value of the composite is less than 150 nm. , the composite has a haze rate of 5% or less; or, the zeolite-containing polyimide resin composite of the fourth embodiment contains zeolite and polyimide resin; wherein the average thermal expansion coefficient above 0°C and below the glass transition temperature of the polyimide resin is less than 50ppm/K, the elastic modulus at 25°C is above 4.5GPa, and the haze rate is less than 5%.
在0℃以上、且聚醯亞胺樹脂玻璃轉移溫度以下,含有沸石之聚醯亞胺樹脂複合材的平均熱膨脹係數係可設為未滿50ppm/K。較佳係45ppm/K以下、更佳係40ppm/K以下、又更佳係35ppm/K以下、特佳係30ppm/K以下。又,通常係0ppm/K以上、較佳係5ppm/K以上、更佳係10ppm/K以上、又更佳係15ppm/K以上、特佳係20ppm/K以上。另外,樹脂複合材的平均熱膨脹係數可依照與上述樹脂平均熱膨脹係數同樣的方法進行測定。The average thermal expansion coefficient of the polyimide resin composite material containing zeolite can be set to less than 50ppm/K at a temperature above 0°C and below the glass transition temperature of the polyimide resin. It is preferably below 45ppm/K, more preferably below 40ppm/K, still more preferably below 35ppm/K, and particularly preferably below 30ppm/K. Furthermore, it is usually above 0ppm/K, preferably above 5ppm/K, more preferably above 10ppm/K, still more preferably above 15ppm/K, and particularly preferably above 20ppm/K. In addition, the average thermal expansion coefficient of the resin composite material can be measured in the same manner as the average thermal expansion coefficient of the above-mentioned resin.
再者,含有沸石之聚醯亞胺樹脂複合材的延遲值係可設為150nm以下。較佳係125nm以下、更佳係100nm以下、又更佳係75nm以下、特佳係50nm以下。又,因為越趨近零越佳,因而無較佳下限。另外,延遲值係可使用相位差薄膜・光學材料檢查裝置進行測定。例如使用大塚電子公司製RETS-100,針對膜厚10μm的膜,可依波長460nm下的值算出。Furthermore, the retardation value of the polyimide resin composite containing zeolite can be set to be below 150nm. It is preferably below 125nm, more preferably below 100nm, even more preferably below 75nm, and particularly preferably below 50nm. Again, since the closer to zero the better, there is no better lower limit. In addition, the retardation value can be measured using a phase difference film and optical material inspection device. For example, using RETS-100 manufactured by Otsuka Electronics Co., Ltd., for a film with a film thickness of 10μm, it can be calculated based on the value at a wavelength of 460nm.
再者,含有沸石之聚醯亞胺樹脂複合材的霧度率係針對D65光的值,通常可設在5%以下。較佳係4%以下、更佳係3%以下、又更佳係2%以下、特佳係1%以下。又,因為越趨近零越佳,因而無較佳下限。另外,霧度率係可根據JIS K7136(2000年)及JIS K7361-1(1997年)的方法進行測定。具體而言,可利用測霾計(例如SUGA試驗機公司製TM雙光束自動霧度電腦HZ-2)進行測定。Furthermore, the haze rate of the polyimide resin composite containing zeolite is a value for D65 light, which can usually be set below 5%. It is preferably below 4%, more preferably below 3%, even more preferably below 2%, and particularly preferably below 1%. Moreover, since the closer to zero the better, there is no better lower limit. In addition, the haze rate can be measured according to the methods of JIS K7136 (2000) and JIS K7361-1 (1997). Specifically, it can be measured using a haze meter (for example, TM double-beam automatic haze computer HZ-2 manufactured by SUGA Testing Instruments Co., Ltd.).
樹脂複合材的波長450nm光之穿透率,較佳係70%以上、更佳係75%以上、又更佳係80%以上、特佳係85%以上、最佳係90%以上。因為越趨近100%越佳,故無較佳上限。藉由設在上述範圍內,可兼具良好的影像清晰性、及高透明性。另外,穿透率係可利用分光光度計(例如島津製作所公司製分光光度計UV-2500PC)進行測定。The transmittance of the resin composite material for light with a wavelength of 450nm is preferably 70% or more, more preferably 75% or more, even more preferably 80% or more, particularly preferably 85% or more, and most preferably 90% or more. Since the closer to 100%, the better, there is no upper limit. By setting it within the above range, good image clarity and high transparency can be achieved. In addition, the transmittance can be measured using a spectrophotometer (e.g., spectrophotometer UV-2500PC manufactured by Shimadzu Corporation).
樹脂複合材的可見光線穿透率,較佳係60%以上、更佳係65%以上、又更佳係70%以上、特佳係75%以上、最佳係80%以上。因為越趨近100%越佳,故無較佳上限。藉由設在上述範圍內,可兼具良好的影像清晰性、及高透明性。另外,可見光線穿透率係從分光光度計(例如島津製作所公司製分光光度計UV-2500PC)所測得之數值,根據JIS R3106(1998年)所定義的方法可計算出。The visible light transmittance of the resin composite is preferably 60% or more, more preferably 65% or more, even more preferably 70% or more, particularly preferably 75% or more, and most preferably 80% or more. Since the closer to 100%, the better, there is no upper limit. By setting it within the above range, it can have both good image clarity and high transparency. In addition, the visible light transmittance is a value measured by a spectrophotometer (e.g., spectrophotometer UV-2500PC manufactured by Shimadzu Corporation), which can be calculated according to the method defined in JIS R3106 (1998).
樹脂複合材的黃變指數(黃色度)值,較佳係-20以上、更佳係-10以上、又更佳係-5以上、特佳係-3以上、最佳係-1以上。另一方面,較佳係20以下、更佳係10以下、又更佳係5以下、特佳係3以下、最佳係1以下。藉由設在上述範圍內,可兼具良好的影像清晰性、及高透明性。另外,黃變指數值可根據JIS K7373(2006年)的方法進行測定。具體係可使用SUGA試驗機公司製彩色電腦SM5,針對膜厚10μm的膜而計算出。The yellowing index (yellowness) value of the resin composite is preferably -20 or more, more preferably -10 or more, more preferably -5 or more, particularly preferably -3 or more, and the best value is -1 or more. On the other hand, it is preferably 20 or less, more preferably 10 or less, more preferably 5 or less, particularly preferably 3 or less, and the best value is 1 or less. By setting it within the above range, good image clarity and high transparency can be achieved. In addition, the yellowing index value can be measured according to the method of JIS K7373 (2006). Specifically, it can be calculated using a color computer SM5 manufactured by SUGA Testing Instrument Co., Ltd. for a film with a film thickness of 10μm.
樹脂複合材於25℃下之彈性模數(以下在本案說明書中,有時將樹脂複合材的儲存彈性模數簡稱為「彈性模數」),並無特別的限制,通常係4.0GPa以上、較佳係4.2GPa以上、更佳係4.5GPa以上、又更佳係4.6GPa以上、特佳係4.7GPa以上,另一方面,通常係8.0GPa以下、更佳係7.5GPa以下、又更佳係7.0GPa以下、特佳係6.8GPa以下、最佳係6.5GPa以下。藉由設在上述範圍內,可對翹曲等變形具有高抑制性。 樹脂複合材的儲存彈性模數係例如利用JIS K-7244法所記載的動態黏彈性測定法,使用SII NanoTechnology公司製動態黏彈性裝置DMS6100,在測定溫度範圍:-100℃~150℃、頻率:1Hz、升溫速度:5℃/分的條件下,依雙邊拉伸模式則可測定。 The elastic modulus of the resin composite at 25°C (hereinafter in the specification of this case, the storage elastic modulus of the resin composite is sometimes referred to as "elastic modulus") is not particularly limited, and is usually 4.0GPa or more, preferably 4.2GPa or more, more preferably 4.5GPa or more, more preferably 4.6GPa or more, and particularly preferably 4.7GPa or more. On the other hand, it is usually 8.0GPa or less, more preferably 7.5GPa or less, more preferably 7.0GPa or less, particularly preferably 6.8GPa or less, and optimally 6.5GPa or less. By setting it within the above range, deformation such as warping can be highly suppressed. The storage elastic modulus of resin composites can be measured, for example, using the dynamic viscoelasticity measurement method described in JIS K-7244, using the dynamic viscoelasticity device DMS6100 manufactured by SII NanoTechnology, under the conditions of a measurement temperature range of -100°C to 150°C, a frequency of 1Hz, and a heating rate of 5°C/min, in a double-sided tensile mode.
相關樹脂複合材之隨時間經過的白濁化,可利用上述D65光的霧度率、波長450nm光的穿透率、或可見光線穿透率而定量性地數值化,但利用目視可定性判斷。The cloudiness of the resin composite material over time can be quantitatively quantified using the haze rate of D65 light, the transmittance of light with a wavelength of 450nm, or the transmittance of visible light, but can only be qualitatively determined by visual inspection.
再者,相關樹脂複合材的可撓性,可利用耐彎曲性試驗等定量性地數值化,但利用計數由手進行彎折所造成的龜裂、條紋數量,可定性判斷。Furthermore, the flexibility of the resin composite material can be quantitatively quantified by using a bending resistance test, but it can be qualitatively determined by counting the number of cracks and streaks caused by bending by hand.
<1.5. 含有沸石之聚醯亞胺樹脂複合材的製造方法> 聚醯亞胺樹脂複合材的製造方法係在樹脂複合材顯示較佳性能之前提下,其餘並無特別的限制,可使用在加熱熔融狀態下施行成形、射出成形等常法,為了活用聚醯亞胺的優異強度、阻氣性等,大多形成為薄膜狀之後使用。所以,以下針對特別適用於薄膜狀複合材的製作、且簡易之方法,以將聚醯亞胺樹脂前驅物、沸石、及溶劑混合製作含有沸石之聚醯亞胺樹脂前驅物組成物(亦稱「油墨」),再將油墨塗佈支撐體等之後,施行加熱乾燥的方法為例進行說明。所以,以下所記載的聚醯亞胺樹脂、分散劑、溶劑等之說明並不侷限於油墨,亦涵蓋複合材。 <1.5. Method for producing polyimide resin composites containing zeolite> The method for producing polyimide resin composites is based on the premise that the resin composites show better performance. There are no special restrictions on the rest. The conventional methods such as molding and injection molding in a heated molten state can be used. In order to make use of the excellent strength and gas barrier properties of polyimide, most of them are formed into a film before use. Therefore, the following is a simple method that is particularly suitable for the production of film-like composites. It is explained by taking the method of mixing a polyimide resin precursor, zeolite, and a solvent to produce a polyimide resin precursor composition containing zeolite (also called "ink"), and then applying the ink to a support body, etc., and then heating and drying it. Therefore, the descriptions of polyimide resins, dispersants, solvents, etc. described below are not limited to inks but also cover composite materials.
聚醯亞胺樹脂係對多數溶劑呈不溶不熔,因而在使用屬於聚醯亞胺前驅物之聚醯胺酸進行成形後,利用脫水・環化(醯亞胺化)轉化為聚醯亞胺樹脂。此時,脫水・環化係施行加熱,亦可使用後述醯亞胺化促進劑,轉化為聚醯亞胺樹脂時的加熱溫度係相當於後述的硬化溫度。Since polyimide resin is insoluble in most solvents, it is converted into polyimide resin by dehydration and cyclization (imidization) after being molded using polyamide acid, which is a polyimide precursor. At this time, dehydration and cyclization are performed by heating, and an imidization accelerator described below may also be used. The heating temperature when converting to polyimide resin is equivalent to the curing temperature described below.
另外,所謂聚醯亞胺樹脂前驅物係指以四羧酸二酐與二胺為原料,依等莫耳進行了聚合的聚醯胺酸。另外,一般而言,聚醯胺酸係在油墨中,直接使用使四羧酸二酐與二胺經聚合之狀態的油墨。The so-called polyimide resin precursor refers to a polyamide obtained by polymerizing tetracarboxylic dianhydride and diamine in equimolar ratios. In general, polyamide is used directly in inks in which tetracarboxylic dianhydride and diamine are polymerized.
<1.5.1. 油墨之構成成分> 本發明另一實施形態的油墨,係至少含有:上述沸石、與聚醯亞胺樹脂前驅物者;將該等原料混合,或取代聚醯亞胺樹脂前驅物,改為與含有聚醯亞胺樹脂或聚醯亞胺樹脂前驅物原料(四羧酸二酐、及二胺)、及溶劑的組成物進行混合而製造。 <1.5.1. Composition of ink> Another embodiment of the present invention is an ink that contains at least: the above-mentioned zeolite and a polyimide resin precursor; these raw materials are mixed, or the polyimide resin precursor is replaced by a composition containing a polyimide resin or a polyimide resin precursor raw material (tetracarboxylic dianhydride and diamine) and a solvent.
油墨中的沸石之含有率,通常係0.1質量%以上、較佳係0.5質量%以上、更佳係1質量%以上、又更佳係5質量%以上、特佳係7質量%以上、最佳係10質量%以上,另一方面,通常係80質量%以下、較佳係70質量%以下、更佳係60質量%以下、又更佳係50質量%以下、特佳係40質量%以下、最佳係20質量%以下。藉由設在上述範圍內,可製造沸石不發生沉澱等,可長期間保持分散狀態的油墨。另外,計算沸石含有率時的沸石量,係沸石、及沸石中所含有之物質的合計量。The content of zeolite in the ink is usually 0.1% by mass or more, preferably 0.5% by mass or more, more preferably 1% by mass or more, more preferably 5% by mass or more, particularly preferably 7% by mass or more, and most preferably 10% by mass or more. On the other hand, it is usually 80% by mass or less, preferably 70% by mass or less, more preferably 60% by mass or less, more preferably 50% by mass or less, particularly preferably 40% by mass or less, and most preferably 20% by mass or less. By setting it within the above range, it is possible to produce an ink in which the zeolite does not precipitate and can maintain a dispersed state for a long time. In addition, the amount of zeolite when calculating the zeolite content is the total amount of zeolite and the substances contained in the zeolite.
另外,沸石係在油墨中可單獨使用1種、亦可依任意組合及比率併用2種以上。In addition, the zeolite may be used alone or in combination of two or more in any combination and ratio in the ink.
油墨所使用的聚醯亞胺樹脂,可使用上述本發明一實施形態的樹脂複合材中之聚醯亞胺樹脂,通常係0.5質量%以上、較佳係1質量%以上、更佳係3質量%以上、又更佳係5質量%以上、特佳係10質量%以上,另一方面,通常係90質量%以下、較佳係85質量%以下、更佳係80質量%以下、又更佳係75質量%以下、特佳係70質量%以下。藉由設在上述範圍內,可製造樹脂不發生沉澱等,且可長期間保持分散狀態的油墨。The polyimide resin used in the ink can be the polyimide resin in the resin composite material of the first embodiment of the present invention, and is usually 0.5% by mass or more, preferably 1% by mass or more, more preferably 3% by mass or more, more preferably 5% by mass or more, and particularly preferably 10% by mass or more. On the other hand, it is usually 90% by mass or less, preferably 85% by mass or less, more preferably 80% by mass or less, more preferably 75% by mass or less, and particularly preferably 70% by mass or less. By setting it within the above range, it is possible to produce an ink in which the resin does not precipitate and can maintain a dispersed state for a long time.
另外,聚醯亞胺樹脂係在油墨中可單獨使用1種、亦可依任意組合及比率併用2種以上。The polyimide resin may be used alone or in combination of two or more in any combination and ratio in the ink.
再者,亦可取代上述聚醯亞胺樹脂而混合屬於聚醯亞胺樹脂前驅物的聚醯胺酸。另外,油墨中的聚醯亞胺樹脂前驅物之含有率,係只要相當於可換算為轉換成聚醯亞胺樹脂時的上述樹脂之含有率便可。Furthermore, instead of the polyimide resin, a polyamide which is a polyimide resin precursor may be mixed. In addition, the content of the polyimide resin precursor in the ink may be equivalent to the content of the above resin when it is converted into a polyimide resin.
一般而言,含有屬於聚醯亞胺樹脂前驅物之聚醯胺酸的油墨,係將等莫耳添加了四羧酸二酐與二胺的油墨,利用加熱施行聚合,在油墨中形成聚醯胺酸後,可直接使用為油墨。Generally speaking, ink containing polyamide, which is a precursor of polyimide resin, is prepared by adding equimolar amounts of tetracarboxylic dianhydride and diamine to the ink, polymerizing the ink by heating, and forming polyamide in the ink, which can then be used directly as ink.
所以,亦可取代上述聚醯亞胺樹脂而混合四羧酸二酐與二胺。另外,油墨中的聚醯亞胺樹脂前驅物原料(四羧酸二酐與二胺)含有率,係只要相當於可換算換為最終轉化成聚醯亞胺樹脂時的上述樹脂之含有率即可。Therefore, tetracarboxylic dianhydride and diamine may be mixed instead of the above polyimide resin. In addition, the content of the polyimide resin precursor raw materials (tetracarboxylic dianhydride and diamine) in the ink only needs to be equivalent to the content of the above resin when it can be converted into the final polyimide resin.
另外,四羧酸二酐的具體例係在樹脂複合材顯示較佳性能之前提下,其餘並無特別的限制,例如「新訂 最新聚醯亞胺-基礎與應用-」(日本聚醯亞胺・芳香族系高分子研究會編著、NTS(2010))、國際公開第2015/125895號、國際公開第2014/98042號記載、及日本專利特開2016-128555號公報等所列舉的四羧酸二酐。其中,較佳係具有經核氫化之芳香族化合物的四羧酸二酐。In addition, specific examples of tetracarboxylic dianhydride are not particularly limited as long as the resin composite material exhibits better performance, such as tetracarboxylic dianhydride listed in "Newly Revised Latest Polyimide - Foundation and Application -" (Compiled by the Japanese Polyimide and Aromatic Polymer Research Society, NTS (2010)), International Publication No. 2015/125895, International Publication No. 2014/98042, and Japanese Patent Publication No. 2016-128555. Among them, tetracarboxylic dianhydride having an aromatic compound that has been nuclear hydrogenated is preferred.
再者,二胺的具體例係在樹脂複合材顯示較佳性能之前提下,其餘並無特別的限制,例如:「新訂 最新聚醯亞胺-基礎與應用-」(日本聚醯亞胺・芳香族系高分子研究會編著、NTS(2010))、國際公開第2015/125895號、國際公開第2014/98042號記載、及日本專利特開2016-128555號公報等所列舉的二胺。Furthermore, specific examples of diamines are not particularly limited as long as the resin composite material exhibits better performance, such as diamines listed in "Newly Revised Latest Polyimide - Fundamentals and Applications -" (Compiled by the Japanese Polyimide and Aromatic Polymer Research Society, NTS (2010)), International Publication No. 2015/125895, International Publication No. 2014/98042, and Japanese Patent Publication No. 2016-128555.
再者,作為將四羧酸二酐與二胺依等莫耳聚合形成聚醯胺酸的加熱溫度,較佳係未滿該聚醯胺酸進行脫水・環化而轉化為聚醯亞胺的溫度。The heating temperature for polymerizing tetracarboxylic dianhydride and diamine in equimolar amounts to form polyamide is preferably a temperature lower than the temperature at which the polyamide undergoes dehydration and cyclization to be converted into polyimide.
溶劑係在樹脂複合材顯示較佳性能之前提下,其餘並無特別的限制,可舉例如:水;己烷、庚烷、辛烷、異辛烷、壬烷、或癸烷等脂肪族烴類;甲苯、二甲苯、氯苯、或鄰二氯苯等芳香族烴類;甲醇、乙醇、異丙醇、2-丁氧基乙醇、1-甲氧基-2-丙醇等醇類;丙酮、甲乙酮、環戊酮、或環己酮等酮類;醋酸乙酯、醋酸丁酯、或乳酸甲酯等酯類;氯仿、二氯甲烷、二氯乙烷、三氯乙烷、或三氯乙烯等鹵烴類;丙二醇單甲醚醋酸酯(PGMEA)、乙醚、四氫呋喃、或二㗁烷等醚類;N-甲基吡咯啶酮、二甲基甲醯胺、或二甲基乙醯胺等醯胺類等。The solvent is not particularly limited as long as the resin composite material exhibits better performance. Examples include: water; aliphatic hydrocarbons such as hexane, heptane, octane, isooctane, nonane, or decane; aromatic hydrocarbons such as toluene, xylene, chlorobenzene, or o-dichlorobenzene; alcohols such as methanol, ethanol, isopropanol, 2-butoxyethanol, 1-methoxy-2-propanol; acetone, methyl ethyl alcohol, methyl ether, methyl ether, methyl ether, methyl ether, methyl ether, methyl ether, methyl ether, methyl ether, methyl ether, methyl ether, methyl ether, methyl ether, methyl ether, methyl ether, methyl ether, methyl ether, methyl ether, methyl ether, methyl ether, methyl ether, methyl ether, methyl ether, methyl Ketones such as ketone, cyclopentanone, or cyclohexanone; esters such as ethyl acetate, butyl acetate, or methyl lactate; halogens such as chloroform, dichloromethane, dichloroethane, trichloroethane, or trichloroethylene; ethers such as propylene glycol monomethyl ether acetate (PGMEA), ethyl ether, tetrahydrofuran, or dioxane; amides such as N-methylpyrrolidone, dimethylformamide, or dimethylacetamide, etc.
其中,從聚醯亞胺樹脂前驅物的溶解度高之觀點而言,較佳係甲苯、二甲苯、氯苯、或鄰二氯苯等芳香族烴類;氯仿、二氯甲烷、二氯乙烷、三氯乙烷、或三氯乙烯等鹵烴類;丙二醇單甲醚醋酸酯(PGMEA)、乙醚、四氫呋喃、或二㗁烷等醚類;N-甲基吡咯啶酮、二甲基甲醯胺、或二甲基乙醯胺等醯胺類。Among them, from the viewpoint of high solubility of the polyimide resin precursor, preferred are aromatic hydrocarbons such as toluene, xylene, chlorobenzene, or o-dichlorobenzene; halogens such as chloroform, dichloromethane, dichloroethane, trichloroethane, or trichloroethylene; ethers such as propylene glycol monomethyl ether acetate (PGMEA), ethyl ether, tetrahydrofuran, or dioxane; and amides such as N-methylpyrrolidone, dimethylformamide, or dimethylacetamide.
特別因具有經核氫化之芳香族化合物的聚醯亞胺樹脂前驅物之溶解性高的理由,較佳係N-甲基吡咯啶酮、二甲基甲醯胺、或二甲基乙醯胺等醯胺類。In particular, since polyimide resin precursors having nucleohydrogenated aromatic compounds have high solubility, amides such as N-methylpyrrolidone, dimethylformamide, or dimethylacetamide are preferred.
再者,因為溶劑可殘留於樹脂複合材中、亦可不殘留,因而溶劑的含有率與沸點並無特別的限制。Furthermore, since the solvent may or may not remain in the resin composite, there is no particular restriction on the content and boiling point of the solvent.
油墨中的溶劑之含有率,通常係5質量%以上、較佳係10質量%以上、更佳係15質量%以上,另一方面,通常係99質量%以下、較佳係95質量%以下、更佳係90質量%以下。為上述範圍內時,由油墨具有適度黏度、經乾燥後可獲得具有適度厚度之樹脂複合材而言,屬較佳。The content of the solvent in the ink is usually 5% by mass or more, preferably 10% by mass or more, and more preferably 15% by mass or more. On the other hand, it is usually 99% by mass or less, preferably 95% by mass or less, and more preferably 90% by mass or less. When it is within the above range, the ink has a moderate viscosity and a resin composite material with a moderate thickness can be obtained after drying.
另外,溶劑係在油墨中可單獨使用1種、亦可依任意組合及比率併用2種以上。The solvent may be used alone or in combination of two or more in any ratio in the ink.
再者,在油墨中亦可含有沸石、聚醯亞胺樹脂或聚醯亞胺樹脂前驅物或聚醯亞胺樹脂前驅物原料、及溶劑以外的其他化合物,例如亦可含有:分散劑、表面處理劑、界面活性劑、醯亞胺化促進劑等。該等分散劑、表面處理劑、界面活性劑、醯亞胺化促進劑,係可使用上述樹脂複合材中的分散劑、表面處理劑、界面活性劑、醯亞胺化促進劑。Furthermore, the ink may also contain zeolite, polyimide resin or polyimide resin precursor or polyimide resin precursor raw material, and other compounds other than the solvent, for example, it may also contain: dispersant, surface treatment agent, surfactant, imidization accelerator, etc. Such dispersant, surface treatment agent, surfactant, imidization accelerator may be the dispersant, surface treatment agent, surfactant, imidization accelerator in the above-mentioned resin composite.
油墨可使用的其他化合物,在油墨中通常係0.001質量%以上、較佳係0.003質量%以上、更佳係0.005質量%以上、又更佳係0.01質量%以上、特佳係0.05質量%以上,另一方面,通常係10質量%以下、較佳係7質量%以下、更佳係5質量%以下、又更佳係3質量%以下、特佳係1質量%以下。藉由設在上述範圍內,即使在油墨中仍不發生沸石、聚醯亞胺樹脂或聚醯亞胺樹脂前驅物之沉澱等情形,可保持分散狀態。The amount of other compounds that can be used in the ink is usually 0.001 mass % or more, preferably 0.003 mass % or more, more preferably 0.005 mass % or more, even more preferably 0.01 mass % or more, and particularly preferably 0.05 mass % or more in the ink, and is usually 10 mass % or less, preferably 7 mass % or less, more preferably 5 mass % or less, even more preferably 3 mass % or less, and particularly preferably 1 mass % or less. By setting it within the above range, even if the zeolite, polyimide resin, or polyimide resin precursor is precipitated in the ink, the dispersion state can be maintained.
所謂分散劑係指用於在油墨中、以及製造後的樹脂複合材中使沸石均勻分散的化合物。例如:甲基氫聚矽氧烷、聚甲氧基矽烷、二甲基聚矽氧烷、或矽靈PEG-7琥珀酸鹽等聚矽氧烷化合物及其鹽;矽烷化合物等(甲基二甲氧基矽烷、二甲基二甲氧基矽烷、甲基三甲氧基矽烷、苯基三甲氧基矽烷、二氯苯基矽烷、氯化三甲基矽烷、己基三甲氧基矽烷、辛基三甲氧基矽烷、癸基三甲氧基矽烷、十二烷基三甲氧基矽烷、十二烷基三氯矽烷、十八烷基三甲氧基矽烷、十八烷基三氯矽烷、三氟丙基三甲氧基矽烷、乙烯基三甲氧基矽烷、3-丙烯醯氧丙基三甲氧基矽烷、3-巰丙基三甲氧基矽烷、3-胺丙基三乙氧基矽烷、3-(2-胺乙基)胺丙基三甲氧基矽烷、六甲基二矽氧烷、1,1,1,3,3,3-六甲基二矽氮烷、或3-羧丙基三甲基三甲氧基矽烷等)之有機矽化合物;甲酸、醋酸、丁酸、月桂酸、硬脂酸、油酸、6-羥基己酸等羧酸化合物;月桂醚磷酸、或三辛膦等有機磷化合物;二甲胺、三丁胺、三甲胺、環己胺、伸乙二胺、或聚伸乙亞胺等胺化合物;羧酸胺化合物、及磷酸胺化合物等。另外,所謂羧酸胺化合物係指具有羧基與胺基之二者官能基的化合物;所謂磷酸胺化合物係指具有磷酸基與胺基之二者官能基的化合物。The so-called dispersant refers to the compound used to evenly disperse zeolite in the ink and the resin composite after manufacture. For example: polysiloxane compounds and their salts such as methyl hydropolysiloxane, polymethoxysilane, dimethyl polysiloxane, or silane PEG-7 succinate; silane compounds (methyldimethoxysilane, dimethyldimethoxysilane, methyltrimethoxysilane, phenyltrimethoxysilane, dichlorophenylsilane, trimethylsilyl chloride, hexyltrimethoxysilane, octyltrimethoxysilane, decyltrimethoxysilane, dodecyltrimethoxysilane, dodecyltrichlorosilane, octadecyltrimethoxysilane, octadecyltrichlorosilane, trifluoropropyltrimethoxysilane, vinyltrimethoxysilane, 3-acryloxypropyl The present invention can be used to prepare the present invention with a preferred embodiment of the present invention. The present invention can be used to prepare the present invention with a preferred embodiment of the present invention. The present invention can be used to prepare the present invention with a preferred embodiment of the present invention. The present invention can be used to prepare the present invention with a preferred embodiment of the present invention. In addition, the so-called carboxylic acid amine compound refers to a compound having both a carboxyl group and an amine group as functional groups; the so-called phosphate amine compound refers to a compound having both a phosphate group and an amine group as functional groups.
其中,從對沸石的親和性特別高之理由,較佳係磷酸胺化合物的分散劑。Among them, dispersants of amine phosphate compounds are preferred because of their particularly high affinity for zeolite.
分散劑係可單獨使用1種、亦可依任意組合及比率併用2種以上。又,後述的表面處理劑、界面活性劑亦具有分散劑的作用。另外,分散劑係在樹脂複合材之製造後,可完全分解、亦可僅部分分解、亦可未分解。The dispersant may be used alone or in combination of two or more in any combination and ratio. The surface treatment agent and surfactant described below also function as a dispersant. In addition, the dispersant may be completely decomposed, partially decomposed, or not decomposed after the resin composite is manufactured.
為了防止沸石凝聚,以及使沸石在油墨中、與製造後的樹脂複合材中均勻分散,沸石亦可利用表面處理劑施行處理。In order to prevent zeolite from agglomerating and to disperse the zeolite evenly in the ink and the resin composite after manufacture, the zeolite can also be treated with a surface treatment agent.
表面處理劑並無特別的限制,可使用已知物、亦可使用作為上述分散劑者,或將聚亞胺、聚酯、聚醯胺、聚胺甲酸乙酯、聚脲等黏結劑樹脂等使用為表面處理劑。The surface treatment agent is not particularly limited, and a known agent may be used, or the above-mentioned dispersant may be used, or a binder resin such as polyimide, polyester, polyamide, polyurethane, polyurea, etc. may be used as the surface treatment agent.
表面處理劑係可單獨使用1種、亦可依任意組合及比率併用2種以上。另外,表面處理劑係在樹脂複合材製造後,可完全分解、亦可部分分解、亦可未分解。The surface treatment agent may be used alone or in combination of two or more in any combination and ratio. In addition, the surface treatment agent may be completely decomposed, partially decomposed, or not decomposed after the resin composite material is manufactured.
樹脂複合材之製造時,在防止因微小氣泡或異物附著等而樹脂複合材發生凹陷、乾燥不均等之目的下,油墨亦可含有界面活性劑。When manufacturing resin composites, the ink may also contain a surfactant for the purpose of preventing the resin composite from being dented or drying unevenly due to tiny bubbles or foreign matter adhering to the resin composite.
界面活性劑並無特別的限制,可使用公知的界面活性劑(陽離子系界面活性劑、陰離子系界面活性劑、非離子系界面活性劑)。其中,較佳係矽系界面活性劑、氟系界面活性劑、或乙炔二醇系界面活性劑。界面活性劑的具體例,作為非離子系界面活性劑係可舉例如:TRITON X100(Dow Chemical公司製);作為氟系界面活性劑係可舉例如:ZONYL FS300(杜邦公司製);作為矽系界面活性劑係可舉例如:BYK-310、BYK-320、BYK-345(BYK化學公司製);作為乙炔二醇系界面活性劑係可舉例如:SURFYNOL 104、SURFYNOL 465(Air Products公司製)、OLFINE EXP4036、或OLFINE EXP4200(日信化學工業公司製)。The surfactant is not particularly limited, and known surfactants (cationic surfactants, anionic surfactants, nonionic surfactants) can be used. Among them, silicon-based surfactants, fluorine-based surfactants, or acetylene glycol-based surfactants are preferred. Specific examples of the surfactant include TRITON X100 (manufactured by Dow Chemical) as a non-ionic surfactant, ZONYL FS300 (manufactured by DuPont) as a fluorine-based surfactant, BYK-310, BYK-320, BYK-345 (manufactured by BYK Chemical Co., Ltd.) as a silicon-based surfactant, and SURFYNOL 104, SURFYNOL 465 (manufactured by Air Products), OLFINE EXP4036, or OLFINE EXP4200 (manufactured by Nissin Chemical Industries, Ltd.) as an acetylene glycol-based surfactant.
界面活性劑係可單獨使用1種、亦可依任意組合及比率併用2種以上。另外,界面活性劑係在樹脂複合材之製造後,可完全分解、亦可部分分解、亦可未分解。The surfactant may be used alone or in combination of two or more in any combination and ratio. In addition, the surfactant may be completely decomposed, partially decomposed, or not decomposed after the resin composite is manufactured.
再者,利用界面活性劑可提升後述油墨的潤濕性。潤濕性係除了實際塗佈於基材之外,亦可利用接觸角進行評價。作為油墨的接觸角,相對於PET基材,通常係45°以下、較佳係30°以下、更佳係15°以下。又,因為拓展於基材一面時則未檢測出接觸角,故特佳係未檢測出。藉由設在45°以下,油墨可塗佈於所有的基材上。另外,接觸角可利用接觸角計進行測定。例如可利用協和界面科學公司製DM-501進行測定。Furthermore, the use of surfactants can improve the wettability of the ink described later. In addition to the actual coating on the substrate, the wettability can also be evaluated by the contact angle. The contact angle of the ink is usually below 45°, preferably below 30°, and more preferably below 15° with respect to the PET substrate. In addition, since the contact angle is not detected when it is extended to one side of the substrate, it is particularly preferably not detected. By setting it below 45°, the ink can be coated on all substrates. In addition, the contact angle can be measured using a contact angle meter. For example, it can be measured using the DM-501 manufactured by Kyowa Interface Sciences.
醯亞胺化促進劑係只要能促進從屬於聚醯亞胺樹脂前驅物的聚醯胺酸轉化為聚醯亞胺的醯亞胺化即可,故配合該聚醯亞胺樹脂複合材中的聚醯亞胺樹脂之製造方法選擇即可。可舉例如:「新訂 最新聚醯亞胺-基礎與應用-」(日本聚醯亞胺・芳香族系高分子研究會編著、NTS(2010))、國際公開第2015/125895號、國際公開第2014/98042號記載、及日本專利特開2016-128555號公報等所記載的醯亞胺化促進劑等。The imidization accelerator can be any one that can accelerate the imidization of polyamic acid, which is a precursor of the polyimide resin, into polyimide, and can be selected in accordance with the method for producing the polyimide resin in the polyimide resin composite. Examples include imidization accelerators described in "Newly Revised Latest Polyimide - Fundamentals and Applications -" (Compiled by the Japanese Polyimide and Aromatic Polymer Research Society, NTS (2010)), International Publication No. 2015/125895, International Publication No. 2014/98042, and Japanese Patent Publication No. 2016-128555.
醯亞胺化促進劑係可單獨使用1種、亦可依任意組合及比率併用2種以上。另外,醯亞胺化促進劑係在組成物中,可單獨存在、亦可與溶劑等一起形成錯合物。又,亦可形成多聚體。另外,醯亞胺化促進劑係在樹脂複合材之製造後,可完全分解、亦可部分分解、亦可未分解。The imidization accelerator may be used alone or in combination of two or more in any combination and ratio. In addition, the imidization accelerator may exist alone in the composition or may form a complex with a solvent or the like. In addition, a polymer may be formed. In addition, the imidization accelerator may be completely decomposed, partially decomposed, or not decomposed after the resin composite is produced.
油墨較佳係呈安定24小時以上、更佳係呈安定1週以上。安定狀態越持久,則油墨越能大量合成與長期保存,可降低製造成本。The ink is preferably stable for more than 24 hours, and more preferably for more than 1 week. The longer the stable state lasts, the more ink can be synthesized and stored for a long time, which can reduce the manufacturing cost.
另外,油墨的安定性係可利用沉澱物生成、黏度變化等進行評價。沉澱物生成可利用目視、或動態光散射粒徑測定裝置進行判斷。又,黏度可利用旋轉黏度計法(「物理化學實驗手冊」(足立吟也、石井康敬、吉田郷弘編、化學同人(1993)所記載)進行求取。Ink stability can be evaluated by sediment formation, viscosity change, etc. Sediment formation can be determined visually or by using a dynamic light scattering particle size measuring device. Viscosity can be determined by a rotational viscometer method (described in "Handbook of Physical and Chemical Experiments" (edited by Ginya Adachi, Yasuki Ishii, and Gohiro Yoshida, Chemical Research (1993)).
如上述,樹脂複合材係例示利用塗佈油墨進行製造的例子,惟聚醯亞胺樹脂複合材的製造方法並不侷限於此。例如在未使用溶劑之下,將聚醯亞胺樹脂或聚醯亞胺樹脂前驅物、與沸石進行混練後施行加熱,亦可製造樹脂複合材。As mentioned above, the resin composite material is an example of being manufactured using coating ink, but the manufacturing method of the polyimide resin composite material is not limited to this. For example, the resin composite material can also be manufactured by kneading a polyimide resin or a polyimide resin precursor with zeolite without using a solvent and then heating it.
混練物所使用的沸石係可使用樹脂複合材中的沸石,可單獨使用1種、亦可依任意組合及比率併用2種以上。The zeolite used in the kneaded material may be any zeolite in the resin composite material, and may be used alone or in combination of two or more in any ratio.
再者,混練物所使用的樹脂係可使用樹脂複合材中的聚醯亞胺樹脂,可單獨使用1種、亦可依任意組合及比率併用2種以上。The resin used in the kneaded material may be a polyimide resin in a resin composite material, and one type may be used alone or two or more types may be used in any combination and ratio.
再者,亦可含有混練物所使用的沸石、及聚醯亞胺樹脂以外的其他化合物。例如亦可含有上述分散劑、表面處理劑、界面活性劑、醯亞胺化促進劑等。其他化合物係分別可單獨使用1種、亦可依任意組合及比率併用2種以上。Furthermore, the mixture may contain other compounds other than the zeolite and polyimide resin used in the kneading product. For example, the above-mentioned dispersant, surface treatment agent, surfactant, imidization accelerator, etc. may be contained. The other compounds may be used alone or in any combination and ratio.
混練物所使用的沸石、聚醯亞胺樹脂、及其他化合物的比率,係在由混練物經加熱所製造的樹脂複合材顯示較佳性能之前提下、並無特別的限制。The ratio of zeolite, polyimide resin, and other compounds used in the mixture is not particularly limited as long as the resin composite material produced by heating the mixture exhibits better performance.
其中,為了在樹脂複合材薄膜的成形加工時可輕易調整黏度,上述中最好藉由塗佈油墨而製造聚醯亞胺樹脂複合材。Among them, in order to easily adjust the viscosity during the molding process of the resin composite film, it is best to manufacture the polyimide resin composite by applying ink.
油墨與混練物並無特別的限定,可利用習知公知方法進行摻合,可藉由將油墨與混練物的構成成分進行混合而製造。另外,此時,以提升均勻性、脫泡等為目的,最好使用例如:塗料振盪機、珠磨機、行星式攪拌機、攪拌式分散機、均質機、自公轉式攪拌混合機、三輥機、捏和機、單軸或三軸混練機等一般的混練裝置及攪拌器等進行混合。The ink and the mixed material are not particularly limited and can be mixed by a known method and can be manufactured by mixing the components of the ink and the mixed material. In addition, at this time, for the purpose of improving uniformity and defoaming, it is best to use a general mixing device and agitator such as a paint vibrator, a bead mill, a planetary mixer, a stirring disperser, a homogenizer, a self-revolving stirring mixer, a three-roller mill, a kneader, a single-shaft or three-shaft mixer, etc. for mixing.
各構成成分的混合順序亦在不致發生反應、沉澱物等問題的前提下,可為任意,亦可於油墨及混練物構成成分中,先將其中任2成分或3成分以上混合,然後再混合其餘成分,但亦可一次全部混合。The order of mixing the components can be arbitrary as long as no reaction or sedimentation occurs. It is also possible to first mix any two or three or more components of the ink and mixed material and then mix the remaining components. Alternatively, all components may be mixed at once.
<1.5.2. 聚醯亞胺樹脂複合材之成形> 將樹脂複合材施行成形的方法,係可採用樹脂成形時一般使用的方法。此時,樹脂複合材製造時所必要的加熱、與用於成形的加熱,亦可同時施行。 <1.5.2. Molding of polyimide resin composites> The method for molding the resin composite can be the method generally used for molding resins. At this time, the heating required for manufacturing the resin composite and the heating for molding can also be performed at the same time.
例如當聚醯亞胺樹脂複合材具有熱可塑性時,藉由將樹脂複合材依所需形狀,例如填充於模具中便可成形。此種成形體的製造法係可使用例如:射出成形法、射出壓縮成形法、擠出成形法、及壓縮成形法等。For example, when the polyimide resin composite material has thermoplasticity, the resin composite material can be formed into a desired shape by, for example, filling it into a mold. Such a molded body can be manufactured by, for example, injection molding, injection compression molding, extrusion molding, and compression molding.
當構成樹脂複合材的聚醯亞胺樹脂係熱可塑性樹脂時,成形體的成形可在熱可塑性樹脂的熔融溫度以上之溫度及既定成形速度與壓力之條件下實施。When the polyimide resin constituting the resin composite is a thermoplastic resin, the molding of the molded body can be carried out at a temperature above the melting temperature of the thermoplastic resin and at a predetermined molding speed and pressure.
熔融溫度較佳係未滿400℃、更佳係370℃以下、特佳係340℃以下,另一方面,較佳係80℃以上、更佳係90℃以上、又更佳係100℃以上、特佳係120℃以上。因為未滿400℃時,屬於滾輪對滾輪法般之使用可撓性基材的製造步驟中亦能對應的溫度,故較佳。又,達80℃以上時,則樹脂可均勻熔融,故較佳;達100℃以上時,則可降低水分的影響,故較佳;達120℃以上時可更加降低水分的影響,故較佳。The melting temperature is preferably less than 400°C, more preferably less than 370°C, and particularly preferably less than 340°C. On the other hand, it is preferably more than 80°C, more preferably more than 90°C, even more preferably more than 100°C, and particularly preferably more than 120°C. When it is less than 400°C, it is a temperature that can be used in the manufacturing process using a flexible substrate such as the roller-on-roller method, so it is preferred. Moreover, when it is more than 80°C, the resin can be uniformly melted, so it is preferred; when it is more than 100°C, the influence of water can be reduced, so it is preferred; when it is more than 120°C, the influence of water can be further reduced, so it is preferred.
再者,當構成聚醯亞胺樹脂複合材的樹脂屬於上述聚醯亞胺樹脂前驅物組成物之硬化物的熱硬化性樹脂複合材時(使用樹脂前驅物的情況),樹脂複合材的成形、亦即硬化係可在配合各個組成的硬化溫度條件下實施。Furthermore, when the resin constituting the polyimide resin composite is a thermosetting resin composite that is a cured product of the above-mentioned polyimide resin precursor composition (when a resin precursor is used), the molding, i.e., the curing, of the resin composite can be carried out under the curing temperature conditions that match the respective components.
硬化溫度較佳係未滿400℃、更佳係370℃以下、特佳係340℃以下,另一方面,較佳係0℃以上、較佳係80℃以上、又更佳係90℃以上、特佳係100℃以上、最佳係120℃以上。未滿400℃時,屬於滾輪對滾輪法般之使用可撓性基材的製造步驟中亦能對應的溫度,故較佳。又,達80℃以上時,則進行某程度硬化,抑制從樹脂複合材溶出未反應成分,故較佳;達100℃以上時,則可降低水分的影響,故較佳;達120℃以上時,則可更加降低水分的影響,故較佳。The curing temperature is preferably less than 400°C, more preferably less than 370°C, and particularly preferably less than 340°C. On the other hand, it is preferably above 0°C, preferably above 80°C, more preferably above 90°C, particularly preferably above 100°C, and most preferably above 120°C. When it is less than 400°C, it is a temperature that can be used in the manufacturing step using a flexible substrate such as the roller-on-roller method, so it is preferred. Moreover, when it reaches 80°C or more, it is preferred because curing is performed to a certain extent, and the dissolution of unreacted components from the resin composite is suppressed; when it reaches 100°C or more, the influence of moisture can be reduced, so it is preferred; when it reaches 120°C or more, the influence of moisture can be further reduced, so it is preferred.
當具流動性的樹脂複合材時,藉由積層於所需支撐體上(積層步驟),接著再施行熱處理(熱處理步驟),可將樹脂複合材施行成形。另外,所需的支撐體亦可在製造後去除。When the resin composite material is fluid, the resin composite material can be formed by laminating it on the desired support (lamination step) and then performing a heat treatment (heat treatment step). In addition, the desired support can also be removed after manufacturing.
熱處理方法係可採用例如:熱風乾燥、利用紅外線加熱器進行的乾燥等公知乾燥方法。其中,較佳係乾燥速度快的熱風乾燥。若利用風乾即能乾燥,則亦可省略熱處理方法。The heat treatment method may be a known drying method such as hot air drying, drying using an infrared heater, etc. Among them, hot air drying with a fast drying speed is preferred. If air drying is sufficient, the heat treatment method may be omitted.
熱處理的溫度較佳係未滿400℃、更佳係370℃以下、特佳係340℃以下,另一方面,較佳係80℃以上、更佳係90℃以上、又更佳係100℃以上、特佳係120℃以上。未滿400℃時,屬於滾輪對滾輪法般之使用可撓性基材的製造步驟中亦能對應的溫度,故較佳。又,達80℃以上時,可除去片材中的殘存溶劑,故較佳;達100℃以上時,則可降低水分的影響,故較佳;達120℃以上時,則可更加降低水分的影響,故較佳。The temperature of the heat treatment is preferably less than 400°C, more preferably less than 370°C, and particularly preferably less than 340°C. On the other hand, it is preferably more than 80°C, more preferably more than 90°C, even more preferably more than 100°C, and particularly preferably more than 120°C. When it is less than 400°C, it is a temperature that can be used in the manufacturing step using a flexible substrate such as the roller-on-roller method, so it is preferred. Moreover, when it is more than 80°C, it is preferred because residual solvents in the sheet can be removed; when it is more than 100°C, it is preferred because the influence of moisture can be reduced; when it is more than 120°C, it is preferred because the influence of moisture can be further reduced.
加熱時間並無特別的限定,通常係30秒以上、較佳係1分鐘以上、更佳係2分鐘以上、又更佳係3分鐘以上,另一方面,通常係24小時以下、較佳係12小時以下、更佳係1小時以下、又更佳係15分鐘以下。若在上述範圍內,可適用於如滾輪對滾輪法般之實用製造步驟,故較佳。The heating time is not particularly limited, but is usually 30 seconds or more, preferably 1 minute or more, more preferably 2 minutes or more, and more preferably 3 minutes or more. On the other hand, it is usually 24 hours or less, preferably 12 hours or less, more preferably 1 hour or less, and more preferably 15 minutes or less. If it is within the above range, it can be applied to practical manufacturing steps such as the roller-on-roller method, so it is preferred.
支撐體的材料並無特別的限定,基材的材料較佳例可舉例如:石英、玻璃、藍寶石或二氧化鈦等無機材料;及可撓性基材。The material of the support is not particularly limited. Preferred examples of the material of the substrate include inorganic materials such as quartz, glass, sapphire or titanium dioxide; and flexible substrates.
所謂「可撓性基材」係指曲率半徑通常達0.1mm以上、且10000mm以下的基材。另外,於製造可撓性電子裝置時,為了兼顧彎曲性與支撐體特性,曲率半徑較佳係達0.3mm以上、更佳係1mm以上,另一方面,較佳係3000mm以下、更佳係1000mm以下。另外,曲率半徑係對彎曲至未出現應變、龜裂等破壞的基材,使用共軛焦點顯微鏡(例如:KEYENCE公司製形狀測定雷射顯微鏡VK-X200)而可求得。The so-called "flexible substrate" refers to a substrate whose radius of curvature is usually greater than 0.1 mm and less than 10,000 mm. In addition, in order to take into account both the bendability and the support characteristics when manufacturing flexible electronic devices, the radius of curvature is preferably greater than 0.3 mm, more preferably greater than 1 mm, and on the other hand, preferably less than 3,000 mm, more preferably less than 1,000 mm. In addition, the radius of curvature can be obtained by using a conjugate focus microscope (e.g., KEYENCE shape measurement laser microscope VK-X200) for a substrate that is bent to no damage such as strain or cracking.
可撓性基材的具體例並無限定,可舉例如:環氧系樹脂等樹脂;紙或合成紙等紙材料;由於對銀、銅、不鏽鋼、鈦、鋁等金屬箔賦予絕緣性而使表面經塗佈或層合者等複合材料。Specific examples of the flexible substrate are not limited, and examples thereof include resins such as epoxy resins; paper materials such as paper or synthetic paper; and composite materials such as metal foils such as silver, copper, stainless steel, titanium, and aluminum that are coated or laminated to impart insulation.
另外,該等之中,若可使用可撓性基材,則可利用滾輪對滾輪方式進行製造,提升生產性。In addition, among these, if a flexible substrate can be used, it can be manufactured using a roller-on-roller method to improve productivity.
使用樹脂基材時,必需注意阻氣性。即,若基材的阻氣性過低,則有因通過基材的外氣而樹脂複合材劣化之情形,故最好避免。所以,使用樹脂基材時,最好藉由在至少其中一板面上設置緻密之氧化矽膜等方法,以確保阻氣性。When using a resin substrate, attention must be paid to the gas barrier properties. That is, if the gas barrier properties of the substrate are too low, the resin composite material may be degraded by the external air passing through the substrate, so it is best to avoid this. Therefore, when using a resin substrate, it is best to ensure the gas barrier properties by providing a dense silicon oxide film on at least one of the board surfaces.
作為玻璃係可舉例如:鈉玻璃、藍板玻璃或無鹼玻璃等。從玻璃中的溶出離子少之觀點而言,該等之中較佳係無鹼玻璃。Examples of the glass include sodium glass, blue plate glass, and alkali-free glass. Among these, alkali-free glass is preferred because of the small amount of ions dissolved in the glass.
支撐體的形狀並無限制,可使用例如:板狀、薄膜狀或片材狀等。The shape of the support is not limited, and for example, a plate, a film, or a sheet can be used.
再者,支撐體的膜厚並無限制,通常係5μm以上、較佳係20μm以上,另一方面,通常係20mm以下、較佳係10mm以下。若支撐體的膜厚達5μm以上,可降低強度不足的可能性,故較佳。若支撐體的膜厚在20mm以下,可抑制成本、且不變重,故較佳。Furthermore, the film thickness of the support is not limited, but is usually 5 μm or more, preferably 20 μm or more, and is usually 20 mm or less, preferably 10 mm or less. If the film thickness of the support is 5 μm or more, the possibility of insufficient strength can be reduced, which is preferred. If the film thickness of the support is 20 mm or less, the cost can be suppressed and the weight does not increase, which is preferred.
當支撐體的材料為玻璃時,膜厚通常係0.01mm以上、較佳係0.1mm以上,另一方面,通常係10mm以下、較佳係5mm以下。若玻璃基材的膜厚達0.01mm以上,可增加機械強度、不易發生龜裂,故較佳。又,若玻璃基材的膜厚在5mm以下,則不變重,故較佳。When the support is made of glass, the film thickness is usually 0.01 mm or more, preferably 0.1 mm or more, and is usually 10 mm or less, preferably 5 mm or less. If the film thickness of the glass substrate is 0.01 mm or more, the mechanical strength can be increased and cracking is not easy to occur, so it is preferred. In addition, if the film thickness of the glass substrate is 5 mm or less, it does not become heavy, so it is preferred.
另外,所謂「滾輪對滾輪方式」係在將捲繞成捲筒狀的可撓性基材繞出,一邊進行間歇性或連續性搬送、一邊利用捲取輥進行捲取的期間施行加工之方式。根據滾輪對滾輪方式,可統括處理km級之長條基板,因而屬於較板對板方式等更適合於量產化的生產方式。In addition, the so-called "roller-to-roller method" is a method in which a flexible substrate wound into a roll is unwound, and processing is performed while it is intermittently or continuously transported and taken up by a take-up roller. The roller-to-roller method can process long substrates of the order of kilometers, and is therefore a production method more suitable for mass production than the board-to-board method.
可使用滾輪對滾輪方式的輥尺寸,係在能利用滾輪對滾輪式製造裝置進行處置之前提下,其餘並無特別的限定,輥芯的外徑通常係5m以下、較佳係3m以下、更佳係1m以下,另一方面,通常係1cm以上、較佳係3cm以上、更佳係5cm以上、又更佳係10cm以上、特佳係20cm以上。若該等的直徑在上述上限以下,則輥的處置性高,故較佳;若達上述下限以上,則依以下各步驟所成膜的層,因彎曲應力遭破壞的可能性降低,故較佳。輥的寬度通常係5cm以上、較佳係10cm以上、更佳係20cm以上,另一方面,通常係5m以下、較佳係3m以下、更佳係2m以下。若寬度在上述上限以下,則輥的處置性高,故較佳,若達上述下限以上,則樹脂複合材的用途之自由度高,故較佳。The size of the roller that can be used in the roller-to-roller method is not particularly limited, provided that the roller-to-roller manufacturing device can be used for processing. The outer diameter of the roller core is usually less than 5m, preferably less than 3m, and more preferably less than 1m. On the other hand, it is usually more than 1cm, preferably more than 3cm, more preferably more than 5cm, more preferably more than 10cm, and particularly preferably more than 20cm. If the diameter is below the upper limit, the handling property of the roller is high, so it is better; if it reaches the lower limit, the layer formed according to the following steps is less likely to be damaged by bending stress, so it is better. The width of the roller is usually 5 cm or more, preferably 10 cm or more, more preferably 20 cm or more, and is usually 5 m or less, preferably 3 m or less, more preferably 2 m or less. If the width is below the upper limit, the roller is easy to handle and is therefore preferred. If it is above the lower limit, the resin composite material has a high degree of freedom in its use and is therefore preferred.
另外,未必一定要使用支撐體,藉由從依照含有熱處理的成形方法所成形之固態狀樹脂複合材,切削為所需形狀則亦可獲得成形體。In addition, it is not necessary to use a support body, and a molded body can be obtained by cutting a solid resin composite material formed by a molding method including heat treatment into a desired shape.
<2. 樹脂複合材之用途> 上述樹脂複合材的第1態樣,係使用於電子材料裝置的用途。又,第2與第3態樣,係不僅可使用於電子材料裝置,亦可使用於例如:觸媒模組、分子篩膜模組、光學構件、吸濕構件、食品、建築構件、及包裝構件等用途,其中,使用於電子材料裝置的構成構件,例如:基材、集氣材(getter material)薄膜、密封材等,因為可活用樹脂複合材的高特性,故較佳。 <2. Application of resin composites> The first aspect of the above-mentioned resin composite is used for electronic material devices. In addition, the second and third aspects can be used not only for electronic material devices, but also for applications such as catalyst modules, molecular screening modules, optical components, moisture absorption components, food, building components, and packaging components. Among them, components used for electronic material devices, such as substrates, getter material films, and sealing materials, are preferred because they can utilize the high properties of resin composites.
再者,含有樹脂複合材的材料係作為薄膜使用,藉由形成薄膜狀,不僅可活用聚醯亞胺樹脂的阻氣性等,亦有利於前述高透明性、可撓性、影像清晰性等。形成薄膜狀而使用時,樹脂複合材的膜厚並無特別的限制,配合目標用途適當設定即可,通常係大於0.5μm、較佳係1μm以上、更佳係2μm以上、又更佳係3μm以上、特佳係5μm以上,另一方面,從上述透明性、可撓性、影像清晰性的觀點而言,通常係5mm以下、較佳係1mm以下、更佳係0.5mm以下、又更佳係0.3mm以下、特佳係0.1mm以下。Furthermore, the material containing the resin composite is used as a film. By forming the film, not only the gas barrier property of the polyimide resin can be utilized, but also the aforementioned high transparency, flexibility, image clarity, etc. are also advantageous. When used in the form of a film, the film thickness of the resin composite is not particularly limited and can be appropriately set in accordance with the target use. It is usually greater than 0.5 μm, preferably 1 μm or more, more preferably 2 μm or more, more preferably 3 μm or more, and particularly preferably 5 μm or more. On the other hand, from the perspective of the aforementioned transparency, flexibility, and image clarity, it is usually less than 5 mm, preferably less than 1 mm, more preferably less than 0.5 mm, more preferably less than 0.3 mm, and particularly preferably less than 0.1 mm.
樹脂複合材的膜厚可使用非接觸式膜厚計、接觸式膜厚計等一般膜厚計進行測定。非接觸式係可舉例如:共軛焦點顯微鏡(例如:KEYENCE公司製形狀測定雷射顯微鏡VK-X200)等。 以下,以使用聚醯亞胺樹脂複合材作為電子裝置為例進行說明。 The film thickness of the resin composite can be measured using a general film thickness gauge such as a non-contact film thickness gauge or a contact film thickness gauge. Examples of non-contact types include conjugate focus microscopes (e.g., KEYENCE's shape measurement laser microscope VK-X200). The following is an example of using a polyimide resin composite as an electronic device.
<2.1. 電子裝置> 電子裝置係具有2個以上的電極,將在該電極間流動的電流、或產生的電壓,利用電氣、光、磁氣或化學物質等進行控制的裝置,或者藉由所施加的電壓、電流,使光、電場、磁場產生的裝置。具體而言,可舉例如:電阻器、整流器(二極體)、開關元件(電晶體、閘流體)、放大元件(電晶體)、記憶體元件或化學感測器等、或將該等元件組合或積體化的裝置。又,亦可舉例如:產生光電流的光電二極體或光電晶體、藉由施加電場而發光的電致發光元件、以及利用光產生電動勢的光電轉換元件或太陽電池等光元件。電子裝置的更具體例係可舉例如:S.M.Sze著、Physics of Semiconductor Devices、2nd Edition(Wiley Interscience 1981)所記載者。 <2.1. Electronic devices> Electronic devices are devices that have two or more electrodes and control the current flowing between the electrodes or the voltage generated by using electricity, light, magnetism or chemical substances, or devices that generate light, electric field or magnetic field by applying voltage or current. Specifically, they include resistors, rectifiers (diodes), switching elements (transistors, gates), amplifier elements (transistors), memory elements or chemical sensors, or devices that combine or integrate these elements. In addition, they include photodiodes or phototransistors that generate photocurrents, electroluminescent elements that emit light by applying an electric field, and photoelectric converters or solar cells that generate electromotive force using light. A more systematic example of electronic devices can be found in Physics of Semiconductor Devices, 2nd Edition (Wiley Interscience 1981) by S.M.Sze.
其中,電子裝置的較佳例係可舉例如:場效電晶體(FET)元件、電致發光元件(LED)、光電轉換元件或太陽電池。利用該等裝置可有效活用樹脂複合材的高特性。Preferred examples of electronic devices include field effect transistor (FET) devices, electroluminescent devices (LED), photoelectric converters or solar cells. These devices can effectively utilize the high properties of resin composites.
以下,針對本發明另一實施形態,作為具有上述樹脂複合材為構成要件的電子裝置(亦稱為「含樹脂複合材之電子裝置」)之例,詳細說明場效電晶體元件、電致發光元件、光電轉換元件及太陽電池如下。Hereinafter, with respect to another embodiment of the present invention, as an example of an electronic device having the above-mentioned resin composite as a constituent element (also referred to as an "electronic device containing a resin composite"), a field effect transistor element, an electroluminescent element, a photoelectric conversion element and a solar cell are described in detail as follows.
<2.2. 場效電晶體(FET)元件> 場效電晶體(FET)元件係具有樹脂複合材作為構成要件。一實施形態的場效電晶體(FET)元件係在基材上設有半導體層、絕緣體層、源極電極、閘極電極、汲極電極。 <2.2. Field Effect Transistor (FET) Component> Field Effect Transistor (FET) components have a resin composite material as a component. One embodiment of the field effect transistor (FET) component has a semiconductor layer, an insulator layer, a source electrode, a gate electrode, and a drain electrode on a substrate.
一實施形態中,基材係具有本發明一實施形態的樹脂複合材。因為該樹脂複合材的平均熱膨脹係數低,因而適合使用為基材的材料。In one embodiment, the substrate is a resin composite material of one embodiment of the present invention. Since the average thermal expansion coefficient of the resin composite material is low, it is suitable for use as a substrate material.
以下,針對一實施形態的FET元件進行詳細說明。圖2所示係FET元件結構例的示意圖。圖2中,11係表示半導體層、12係表示絕緣體層、13與14係表示源極電極與汲極電極、15係表示閘極電極、16係表示基材、17係表示FET元件。圖2(A)至(D)分別表示不同結構的FET元件,但均屬於FET元件的結構例。相關構成FET元件的該等構成構件及其製造方法並無特別的限制,可使用周知技術。例如:國際公開第2013/180230號或日本專利特開2015-134703號公報等公知文獻所記載的技術。The following is a detailed description of an implementation form of a FET element. FIG2 is a schematic diagram of an example of a FET element structure. In FIG2 , 11 represents a semiconductor layer, 12 represents an insulating layer, 13 and 14 represent a source electrode and a drain electrode, 15 represents a gate electrode, 16 represents a substrate, and 17 represents a FET element. FIG2 (A) to (D) respectively represent FET elements of different structures, but all are examples of structures of FET elements. There are no special restrictions on the components and manufacturing methods of the related FET elements, and known technologies can be used. For example: technologies described in known documents such as International Publication No. 2013/180230 or Japanese Patent Publication No. 2015-134703.
另外,本說明書中,所謂「半導體」係由固態狀態的載子遷移率大小所定義。所謂「載子遷移率」係如周知,為成為電荷(電子或電洞)可多快地(或多數)移動的指標。具體而言,本說明書的「半導體」在室溫下的載子遷移率,通常係1.0×10 -6cm 2/V・s以上、較佳係1.0×10 -5cm 2/V・s以上、更佳係5.0×10 -5cm 2/V・s以上、又更佳係1.0×10 -4cm 2/V・s以上。另外,載子遷移率可例如利用場效電晶體的IV特性之測定等進行測定。 In this specification, the so-called "semiconductor" is defined by the size of the carrier mobility in the solid state. As is well known, the so-called "carrier mobility" is an indicator of how fast (or how much) electric charges (electrons or holes) can move. Specifically, the carrier mobility of the "semiconductor" in this specification at room temperature is usually 1.0× 10-6 cm2 /V·s or more, preferably 1.0× 10-5 cm2 /V·s or more, more preferably 5.0× 10-5 cm2 /V·s or more, and even more preferably 1.0× 10-4 cm2 /V·s or more. In addition, the carrier mobility can be measured, for example, by measuring the IV characteristics of a field effect transistor.
<2.2.1. 基材> FET元件通常係製作於基材16上。基材16的材料係在不致明顯損及本發明效果之前提下,其餘並無特別的限定。基材16的材料之較佳例,係可舉例如:石英、玻璃、藍寶石或二氧化鈦等無機材料;上述樹脂複合材的成形體等之可撓性基材。 <2.2.1. Substrate> FET elements are usually made on a substrate 16. The material of the substrate 16 is not particularly limited as long as it does not significantly damage the effect of the present invention. Preferred examples of the material of the substrate 16 include inorganic materials such as quartz, glass, sapphire or titanium dioxide; flexible substrates such as the above-mentioned resin composite moldings.
所謂「可撓性基材」係指曲率半徑通常達0.1mm以上、且10000mm以下的基材。另外,製造可撓性電子裝置時,為了兼顧彎曲性與支撐體特性,曲率半徑較佳係0.3mm以上、更佳係1mm以上,另一方面,較佳係3000mm以下、更佳係1000mm以下。另外,曲率半徑係針對彎曲至未出現應變、龜裂等破壞的基材,使用共軛焦點顯微鏡(例如:KEYENCE公司製形狀測定雷射顯微鏡VK-X200)而可求得。The so-called "flexible substrate" refers to a substrate with a curvature radius of usually 0.1 mm or more and 10,000 mm or less. In addition, in order to take into account both the bendability and the support characteristics when manufacturing flexible electronic devices, the curvature radius is preferably 0.3 mm or more, more preferably 1 mm or more, and on the other hand, it is preferably 3,000 mm or less, more preferably 1,000 mm or less. In addition, the curvature radius is obtained by using a conjugate focus microscope (e.g., KEYENCE VK-X200 shape measurement laser microscope) for a substrate that is bent without strain, cracking, etc.
可撓性基材的具體例係在含有本發明一實施形態的樹脂複合材之前提下,其餘並無限定,可舉例如:環氧系樹脂等樹脂;紙或合成紙等紙材料;用於對銀、銅、不鏽鋼、鈦或鋁等金屬箔賦予絕緣性而使表面經塗佈或層合等之複合材料;上述樹脂複合材的成形體。Specific examples of flexible substrates are resin composites containing an embodiment of the present invention, and are not limited to the rest. Examples include: resins such as epoxy resins; paper materials such as paper or synthetic paper; composite materials used to impart insulation to metal foils such as silver, copper, stainless steel, titanium or aluminum by coating or laminating the surface; and molded bodies of the above-mentioned resin composites.
另外,若樹脂複合材的成形體係可撓性基材,則適合於滾輪對滾輪法等製造,但即使不為可撓性基材,仍可使用作為基材16。In addition, if the resin composite molded body is a flexible substrate, it is suitable for manufacturing by the roller-on-roller method, etc., but even if it is not a flexible substrate, it can still be used as the substrate 16.
再者,藉由對基材16施行處理,可提升FET的特性。其理由推定係藉由調整基材16的親水性/疏水性,而提升所成膜半導體層11的膜質,尤其是改善基材13與半導體層11之界面部分的特性所致。此種基材處理係可舉例如:使用六甲基二矽氮烷、環己烯、十八烷基三氯矽烷等的疏水化處理;使用鹽酸、硫酸及醋酸等酸的酸處理;使用氫氧化鈉、氫氧化鉀、氫氧化鈣及氨等的鹼處理;臭氧處理;氟化處理;使用氧、氬等的電漿處理;形成蘭米爾-布洛吉特(Langmuir-Blodegett)膜的處理;形成其他絕緣體或半導體薄膜的處理等。Furthermore, the characteristics of FET can be improved by treating the substrate 16. The reason is presumed to be that the film quality of the formed semiconductor layer 11 is improved by adjusting the hydrophilicity/hydrophobicity of the substrate 16, especially the characteristics of the interface between the substrate 13 and the semiconductor layer 11 are improved. Such substrate treatments include, for example: hydrophobic treatment using hexamethyldisilazane, cyclohexene, octadecyltrichlorosilane, etc.; acid treatment using acids such as hydrochloric acid, sulfuric acid and acetic acid; alkaline treatment using sodium hydroxide, potassium hydroxide, calcium hydroxide and ammonia; ozone treatment; fluorination treatment; plasma treatment using oxygen, argon, etc.; treatment to form a Langmuir-Blodegett film; treatment to form other insulators or semiconductor films, etc.
<2.3. 電致發光元件(LED)> 電致發光元件(LED)係具有含樹脂複合材的構成要件。電致發光元件係藉由施加電場,利用了藉由從陽極注入的電洞、與從陰極注入的電子之再鍵結能量而使螢光性物質發光之原理的自發光元件。 <2.3. Electroluminescent element (LED)> An electroluminescent element (LED) is a component that contains a resin composite material. An electroluminescent element is a self-luminescent element that uses the principle that fluorescent substances emit light by applying an electric field and utilizing the recombination energy of holes injected from the anode and electrons injected from the cathode.
以下,針對電致發光元件,參照圖式進行說明。圖3所示係電致發光元件一實施形態的示意剖視圖。圖3中,元件符號31係表示基材、32係表示陽極、33係表示電洞注入層、34係表示電洞輸送層、35係表示發光層、36係表示電子輸送層、37係表示電子注入層、38係表示陰極、39係表示電致發光元件。另外,電致發光元件並非必需具有該等構成構件之全部,可任意選擇必要的構成構件。例如未必一定要設置電洞注入層33、電洞輸送層34、電子輸送層36及電子注入層37。相關構成電致發光元件的該等構成構件及其製造方法,並無特別的限制,可使用周知技術。可使用例如:國際公開第2013/180230號或日本專利特開2015-134703號公報等公知文獻所記載的技術。The electroluminescent element is described below with reference to the drawings. FIG3 is a schematic cross-sectional view of an embodiment of the electroluminescent element. In FIG3 , element symbol 31 represents a substrate, 32 represents an anode, 33 represents a hole injection layer, 34 represents a hole transport layer, 35 represents a luminescent layer, 36 represents an electron transport layer, 37 represents an electron injection layer, 38 represents a cathode, and 39 represents an electroluminescent element. In addition, the electroluminescent element does not necessarily have all of these components, and the necessary components can be arbitrarily selected. For example, the hole injection layer 33, the hole transport layer 34, the electron transport layer 36, and the electron injection layer 37 do not necessarily have to be provided. The components and manufacturing methods of the electroluminescent element are not particularly limited, and known techniques can be used, such as those described in International Publication No. 2013/180230 or Japanese Patent Publication No. 2015-134703.
一實施形態中,基材31係具有樹脂複合材。樹脂複合材係因為其特性的緣故,所以適合用作為基材31的材料。In one embodiment, the substrate 31 is a resin composite material. The resin composite material is suitable as a material for the substrate 31 due to its properties.
<2.3.1. 基材(31)> 基材31係成為電致發光元件39的支撐體者,其材料係在不致明顯損及本發明效果之前提下,其餘並無特別的限定。基材31的材料之較佳例係可舉例如:石英、玻璃、藍寶石或二氧化鈦等無機材料;上述樹脂複合材的成形體等可撓性基材。 <2.3.1. Substrate (31)> The substrate 31 is a support for the electroluminescent element 39. The material thereof is not particularly limited as long as it does not cause significant damage and the effects of the present invention are achieved. Preferred examples of the material of the substrate 31 include inorganic materials such as quartz, glass, sapphire or titanium dioxide; and flexible substrates such as the molded body of the above-mentioned resin composite material.
可撓性基材的具體例係在含有本發明一實施形態的樹脂複合材前提下,其餘並無限定,可舉例如:環氧系樹脂等樹脂;紙或合成紙等紙材料;為了對銀、銅、不鏽鋼、鈦、鋁等金屬箔賦予絕緣性而使表面經塗佈或層合等複合材料;樹脂複合材的成形體。Specific examples of flexible substrates are resin composites containing an embodiment of the present invention, and are not limited to the rest. Examples include: resins such as epoxy resins; paper materials such as paper or synthetic paper; composite materials whose surfaces are coated or laminated in order to impart insulation to metal foils such as silver, copper, stainless steel, titanium, and aluminum; and molded bodies of resin composites.
另外,若樹脂複合材的成形體係可撓性基材,則適合於滾輪對滾輪法等製造,但即使不為可撓性基材,仍可使用作為基材31。In addition, if the resin composite molded body is a flexible base material, it is suitable for manufacturing by the roller-on-roller method, etc., but even if it is not a flexible base material, it can still be used as the base material 31.
使用樹脂基材時,必需注意阻氣性。即,若基材的阻氣性過低,則有因通過基材的外氣而電致發光元件劣化之情形,故最好避免。所以,使用樹脂基材時,最好藉由在至少其中一板面上設置緻密之氧化矽膜、樹脂複合材等方法,以確保阻氣性。When using a resin substrate, attention must be paid to the gas barrier properties. That is, if the gas barrier properties of the substrate are too low, the electroluminescent element may be degraded by the external air passing through the substrate, so it is best to avoid this. Therefore, when using a resin substrate, it is best to ensure the gas barrier properties by providing a dense silicon oxide film, resin composite material, etc. on at least one of the board surfaces.
玻璃係可舉例如:鈉玻璃、藍板玻璃或無鹼玻璃等。從玻璃中的溶出離子少之觀點而言,該等之中較佳係無鹼玻璃。Examples of glass include sodium glass, blue plate glass, and alkali-free glass. Among these, alkali-free glass is preferred because of the small amount of dissolved ions in the glass.
基材31的形狀並無限制,可使用例如:板狀、薄膜狀或片材狀等。The shape of the substrate 31 is not limited, and for example, a plate, a film, or a sheet may be used.
再者,基材31的膜厚並無限制,通常係5μm以上、較佳係20μm以上,另一方面,通常係20mm以下、較佳係10mm以下。若基材的膜厚達5μm以上,可降低電致發光元件強度不足的可能性,故較佳。若基材的膜厚在20mm以下,可抑低成本、且質量不變重,故較佳。Furthermore, the film thickness of the substrate 31 is not limited, and is usually 5 μm or more, preferably 20 μm or more, and is usually 20 mm or less, preferably 10 mm or less. If the film thickness of the substrate is 5 μm or more, the possibility of insufficient strength of the electroluminescent element can be reduced, which is preferred. If the film thickness of the substrate is 20 mm or less, the cost can be reduced and the weight does not increase, which is preferred.
基材31的材料為玻璃時,膜厚通常係0.01mm以上、較佳係0.1mm以上,另一方面,通常係1cm以下、較佳係0.5cm以下。若玻璃基材31的膜厚達0.01mm以上,則增加機械強度,不易發生龜裂,故較佳。又,若玻璃基材31的膜厚在0.5cm以下,則質量不變重,故較佳。When the material of the substrate 31 is glass, the film thickness is usually 0.01 mm or more, preferably 0.1 mm or more, and is usually 1 cm or less, preferably 0.5 cm or less. If the film thickness of the glass substrate 31 is 0.01 mm or more, the mechanical strength is increased and cracking is not likely to occur, which is preferred. If the film thickness of the glass substrate 31 is 0.5 cm or less, the weight does not increase, which is preferred.
另外,圖3所示僅止於電致發光元件之一實施形態,電致發光元件並不侷限於圖示構成。例如亦可設為與圖3相反的積層結構,亦即在基板31上,依照:陰極38、電子注入層37、電子輸送層36、發光層35、電洞輸送層34、電洞注入層33及陽極32的順序進行積層。In addition, FIG3 shows only one embodiment of the electroluminescent element, and the electroluminescent element is not limited to the structure shown in the figure. For example, a layered structure opposite to that shown in FIG3 may be used, that is, on the substrate 31, the cathode 38, the electron injection layer 37, the electron transport layer 36, the luminescent layer 35, the hole transport layer 34, the hole injection layer 33 and the anode 32 are layered in the order of.
電致發光元件的構成並無特別的限定,可為單一元件,亦可為由呈陣列狀配置的構造所形成之元件,亦可為使陽極與陰極配置成呈X-Y矩陣狀的構造元件。The structure of the electroluminescent element is not particularly limited, and it may be a single element, an element formed by a structure arranged in an array, or an element with an anode and a cathode arranged in an X-Y matrix.
<2.4. 光電轉換元件> 光電轉換元件係具有含樹脂複合材的構成要件。一實施形態的光電轉換元件,係具有至少一對電極、以及在該電極間存在的活性層。又,一實施形態的光電轉換元件亦可具有包括基材、電子取出層及電洞取出層的其他構成要件。 <2.4. Photoelectric conversion element> The photoelectric conversion element has a constituent element containing a resin composite material. In one embodiment, the photoelectric conversion element has at least one pair of electrodes and an active layer between the electrodes. In addition, the photoelectric conversion element in one embodiment may also have other constituent elements including a substrate, an electron extraction layer, and a hole extraction layer.
圖4所示係光電轉換元件一實施形態的示意剖視圖。圖4所示光電轉換元件,係一般薄膜太陽電池所使用的光電轉換元件,惟,光電轉換元件並不侷限於圖4所示。一實施形態的光電轉換元件57係具有依序形成:基材56、陰極(電極)51、電子取出層(緩衝層)52、活性層53、電洞取出層(緩衝層)54及陽極(電極)55的層構造。另外,未必一定要設電子取出層52與電洞取出層54。相關構成光電轉換元件的該等構成構件及其製造方法並無特別的限制,可採用周知技術。例如可使用國際公開第2013/180230號或日本專利特開2015-134703號公報等公知文獻所記載的技術。FIG4 is a schematic cross-sectional view of an embodiment of a photoelectric conversion element. The photoelectric conversion element shown in FIG4 is a photoelectric conversion element used in a general thin-film solar cell, but the photoelectric conversion element is not limited to that shown in FIG4. A photoelectric conversion element 57 in an embodiment has a layer structure formed in sequence: a substrate 56, a cathode (electrode) 51, an electron extraction layer (buffer layer) 52, an active layer 53, a hole extraction layer (buffer layer) 54, and an anode (electrode) 55. In addition, the electron extraction layer 52 and the hole extraction layer 54 are not necessarily required. There are no special restrictions on the components and manufacturing methods of the relevant photoelectric conversion element, and well-known technologies can be used. For example, the technology described in the known documents such as International Publication No. 2013/180230 and Japanese Patent Application Laid-Open No. 2015-134703 can be used.
一實施形態的光電轉換元件中,基材56係含有樹脂複合材。樹脂複合材係因為其特性的緣故,適合作為基材56的材料。In one embodiment of the photoelectric conversion element, the substrate 56 includes a resin composite material. The resin composite material is suitable as a material for the substrate 56 due to its properties.
<2.4.1. 基材(56)> 光電轉換元件57係通常具有成為支撐體的基材56。 <2.4.1. Substrate (56)> The photoelectric conversion element 57 usually has a substrate 56 serving as a support.
基材56的材料係在不致明顯損及本發明效果之前提下,並無特別的限定。基材56的材料較佳例係可舉例如:石英、玻璃、藍寶石或二氧化鈦等無機材料;及樹脂複合材的成形體等可撓性基材。The material of the substrate 56 is not particularly limited as long as it does not cause significant damage and the effect of the present invention is achieved. Preferred examples of the material of the substrate 56 include inorganic materials such as quartz, glass, sapphire or titanium dioxide, and flexible substrates such as molded bodies of resin composite materials.
可撓性基材的具體例係在含有本發明一實施形態的樹脂複合材之前提下,其餘並無限定,可舉例如:環氧系樹脂等樹脂;紙或合成紙等紙材料;為了對銀、銅、不鏽鋼、鈦、鋁等金屬箔賦予絕緣性而使表面經塗佈或層合等複合材料;上述樹脂複合材的成形體。Specific examples of flexible substrates are resin composites containing an embodiment of the present invention, and are not limited to the rest. Examples include: resins such as epoxy resins; paper materials such as paper or synthetic paper; composite materials whose surfaces are coated or laminated in order to impart insulation to metal foils such as silver, copper, stainless steel, titanium, and aluminum; and molded bodies of the above-mentioned resin composites.
另外,若樹脂複合材的成形體係可撓性基材,則適合用於滾輪對滾輪法等製造,但即使不為可撓性基材,仍可使用作為基材56。In addition, if the resin composite molded body is a flexible base material, it is suitable for use in manufacturing such as the roller-on-roller method, but even if it is not a flexible base material, it can still be used as the base material 56.
使用樹脂基材時,必需注意阻氣性。亦即,若基材的阻氣性過低,則會因通過基材的外氣導致活性層劣化,故最好避免。所以,使用樹脂基材時,最好藉由在至少其中一板面上設置緻密氧化矽膜、樹脂複合材等方法,以確保阻氣性。When using a resin substrate, you must pay attention to the gas barrier properties. That is, if the gas barrier properties of the substrate are too low, the active layer will be degraded due to the external air passing through the substrate, so it is best to avoid this. Therefore, when using a resin substrate, it is best to ensure the gas barrier properties by setting a dense silicon oxide film, resin composite material, etc. on at least one of the board surfaces.
玻璃係可舉例如:鈉玻璃、藍板玻璃或無鹼玻璃等。從玻璃中的溶出離子少之觀點而言,該等之中較佳係無鹼玻璃。Examples of glass include sodium glass, blue plate glass, and alkali-free glass. Among these, alkali-free glass is preferred because of the small amount of dissolved ions in the glass.
基材56的形狀並無限制,可使用例如:板狀、薄膜狀或片材狀等。The shape of the substrate 56 is not limited, and for example, a plate, a film, or a sheet may be used.
再者,基材56的膜厚並無限制,通常係5μm以上、較佳係20μm以上,另一方面,通常係20mm以下、較佳係10mm以下。若基材56的膜厚達5μm以上,可降低光電轉換元件強度不足的可能性,故較佳。若基材56的膜厚在20mm以下,可抑低成本、且質量不變重,故較佳。Furthermore, the film thickness of the substrate 56 is not limited, and is usually 5 μm or more, preferably 20 μm or more, and is usually 20 mm or less, preferably 10 mm or less. If the film thickness of the substrate 56 is 5 μm or more, the possibility of insufficient intensity of the photoelectric conversion element can be reduced, which is preferred. If the film thickness of the substrate 56 is 20 mm or less, the cost can be reduced and the weight does not increase, which is preferred.
當基材56的材料係玻璃時,膜厚通常係0.01mm以上、較佳係0.1mm以上,另一方面,通常係1cm以下、較佳係0.5cm以下。若玻璃基材31的膜厚達0.01mm以上,可增加機械強度、不易發生龜裂,故較佳。又,若玻璃基材56的膜厚在0.5cm以下,則質量不變重,故較佳。When the material of the substrate 56 is glass, the film thickness is usually 0.01 mm or more, preferably 0.1 mm or more, and is usually 1 cm or less, preferably 0.5 cm or less. If the film thickness of the glass substrate 56 is 0.01 mm or more, the mechanical strength can be increased and cracking is not easy to occur, which is preferred. In addition, if the film thickness of the glass substrate 56 is 0.5 cm or less, the weight does not increase, which is preferred.
<2.5. 太陽電池> 光電轉換元件57較佳係使用為太陽電池、尤其是薄膜太陽電池的太陽電池元件。圖5所示係本發明一實施形態之太陽電池的薄膜太陽電池之構成的示意剖視圖。如圖5所示,本實施形態的薄膜太陽電池111係依序具備有:耐候性保護薄膜101、紫外線阻斷薄膜102、阻氣膜103、集氣材薄膜104、密封材105、太陽電池元件106、密封材107、集氣材薄膜108、阻氣膜109及背襯片110。本實施形態的薄膜太陽電池111中,太陽電池元件106係具有光電轉換元件。所以,從有形成耐候性保護薄膜101之一側(圖5中的下方)照射光,使太陽電池元件106發電。另外,薄膜太陽電池111並非必需具有該等構成構件全部,可任意選擇必要的構成構件。 <2.5. Solar cell> The photoelectric conversion element 57 is preferably a solar cell, especially a thin film solar cell. FIG5 is a schematic cross-sectional view of the structure of a thin film solar cell of a solar cell in an embodiment of the present invention. As shown in FIG5, the thin film solar cell 111 of this embodiment has: a weather-resistant protective film 101, an ultraviolet blocking film 102, a gas barrier film 103, a gas collecting material film 104, a sealing material 105, a solar cell element 106, a sealing material 107, a gas collecting material film 108, a gas barrier film 109 and a backing film 110. In the thin film solar cell 111 of this embodiment, the solar cell element 106 has a photoelectric conversion element. Therefore, light is irradiated from one side (the lower side in FIG. 5) where the weather-resistant protective film 101 is formed, so that the solar cell element 106 generates electricity. In addition, the thin-film solar cell 111 does not necessarily have all of these components, and the necessary components can be arbitrarily selected.
相關構成薄膜太陽電池的該等構成構件及其製造方法,並無特別的限制,可使用周知技術。例如:國際公開第2013/180230號或日本專利特開2015-134703號公報等公知文獻所記載的技術。The components and manufacturing methods of the thin film solar cell are not particularly limited, and known technologies can be used, such as those described in International Publication No. 2013/180230 or Japanese Patent Publication No. 2015-134703.
再者,耐候性保護薄膜、背襯片、紫外線阻斷薄膜、阻氣膜、集氣材薄膜及密封材,亦可使用於場效電晶體元件(FET)及電致發光元件(LED)等上述電子裝置。Furthermore, the weather-resistant protective film, backing film, UV blocking film, gas barrier film, gas collecting material film and sealing material can also be used in the above-mentioned electronic devices such as field effect transistor elements (FET) and electroluminescent elements (LED).
本實施形態之薄膜太陽電池111的製造方法並無限制,例如圖6所示形態的太陽電池製造方法,係在製作圖5所示積層體之後,再施行層合密封步驟的方法。本實施形態的太陽電池元件106因為耐熱性優異,因而可降低因層合密封步驟造成的劣化,故較佳。The manufacturing method of the thin film solar cell 111 of this embodiment is not limited. For example, the manufacturing method of the solar cell shown in FIG6 is a method of performing a lamination and sealing step after manufacturing the laminated body shown in FIG5. The solar cell element 106 of this embodiment is preferred because it has excellent heat resistance and can reduce the deterioration caused by the lamination and sealing step.
圖5所示積層體的製作,係可使用周知技術實施。層合密封步驟的方法係在不致損及本發明效果之前提下,其餘並無特別的限制,可舉例如:濕式層合、乾式層合、熱熔膠層合、擠出層合、共擠出成形層合、擠出被覆、利用光硬化接著劑進行的層合、熱壓合等。其中較佳係於有機電致發光元件的密封方面具有實際成效之利用光硬化接著劑進行的層合法、於太陽電池方面具有實際成效的熱熔膠層合或熱壓合,又,在可使用片材狀密封材方面,更佳係熱熔膠層合或熱壓合。The production of the laminate shown in FIG5 can be implemented using known techniques. The method of the lamination and sealing step is not particularly limited as long as the effect of the present invention is not impaired. Examples thereof include wet lamination, dry lamination, hot melt lamination, extrusion lamination, co-extrusion lamination, extrusion coating, lamination using a photocurable adhesive, and heat pressing. Among them, the lamination method using a photocurable adhesive that has been practically effective in the sealing of organic electroluminescent elements and the hot melt lamination or heat pressing that has been practically effective in the sealing of solar cells are preferred. In addition, in the case where a sheet-shaped sealing material can be used, hot melt lamination or heat pressing is more preferred.
層合密封步驟的加熱溫度,通常係130℃以上、較佳係140℃以上,又,通常係180℃以下、較佳係170℃以下。層合密封步驟的加熱時間,通常係10分鐘以上、較佳係20分鐘以上,又,通常係100分鐘以下、較佳係90分鐘以下。層合密封步驟的壓力,通常係0.001MPa以上、較佳係0.01MPa以上,又,通常係0.2MPa以下、較佳係0.1MPa以下。藉由壓力設在該範圍內,可確實施行密封,且可抑制密封材105、107從端部滲出、或抑制因過加壓所造成的膜厚減少,能確保尺寸安定性。另外,亦可同上述製造由2個以上太陽電池元件106串聯或並聯連接者。The heating temperature of the lamination and sealing step is usually 130°C or higher, preferably 140°C or higher, and usually 180°C or lower, preferably 170°C or lower. The heating time of the lamination and sealing step is usually 10 minutes or higher, preferably 20 minutes or higher, and usually 100 minutes or lower, preferably 90 minutes or lower. The pressure of the lamination and sealing step is usually 0.001MPa or higher, preferably 0.01MPa or higher, and usually 0.2MPa or lower, preferably 0.1MPa or lower. By setting the pressure within this range, sealing can be surely performed, and the sealing materials 105 and 107 can be suppressed from seeping out from the ends, or the film thickness reduction caused by over-pressurization can be suppressed, thereby ensuring dimensional stability. In addition, two or more solar cell elements 106 may be connected in series or in parallel in the same manner as described above.
太陽電池、尤其是上述薄膜太陽電池111的用途並無限制,可使用於任意用途。例如一實施形態的太陽電池係可使用為建材用太陽電池、汽車用太陽電池、室內裝潢用太陽電池、鐵路用太陽電池、船舶用太陽電池、飛機用太陽電池、太空船用太陽電池、家電用太陽電池、行動電話用太陽電池或玩具用太陽電池。The use of solar cells, especially the thin film solar cells 111, is not limited and can be used for any purpose. For example, the solar cells in one embodiment can be used as solar cells for building materials, solar cells for automobiles, solar cells for interior decoration, solar cells for railways, solar cells for ships, solar cells for airplanes, solar cells for spacecraft, solar cells for household appliances, solar cells for mobile phones, or solar cells for toys.
<2.6. 太陽電池模組> 太陽電池、尤其是上述薄膜太陽電池111係可直接使用,亦可使用為太陽電池模組的構成要件。例如圖6所示,製作在基材112上設有太陽電池、尤其是上述薄膜太陽電池111的太陽電池模組113,可將該太陽電池模組113設置於使用場所而使用。 <2.6. Solar cell module> The solar cell, especially the thin film solar cell 111, can be used directly or as a component of a solar cell module. For example, as shown in FIG6, a solar cell module 113 is prepared in which a solar cell, especially the thin film solar cell 111, is provided on a substrate 112, and the solar cell module 113 can be installed at a place of use.
基材112係可使用周知技術,例如基材112的材料係可使用國際公開第2013/180230號或日本專利特開2015-134703號公報等所記載的材料。又,基材112亦可使用聚醯亞胺樹脂複合材。例如當使用建材用板材作為基材112時,藉由在該板材的表面上設置薄膜太陽電池111而形成太陽電池模組113,可製作建築物外牆用太陽電池板。 [實施例] The substrate 112 can be made of known technology. For example, the material of the substrate 112 can be made of materials described in International Publication No. 2013/180230 or Japanese Patent Publication No. 2015-134703. In addition, the substrate 112 can also be made of a polyimide resin composite. For example, when a building material board is used as the substrate 112, a thin-film solar cell 111 is provided on the surface of the board to form a solar cell module 113, and a solar cell board for a building exterior wall can be manufactured. [Example]
以下,利用實施例,針對本發明進行更具體說明,惟,本發明在不逾越其主旨之前提下,並不受以下實施例的限制。另外,後述實施例所獲得的沸石及薄膜之評價,係依照下述方法實施。The present invention is described in more detail below using examples, but the present invention is not limited to the following examples without exceeding the scope of the present invention. In addition, the evaluation of the zeolite and the membrane obtained in the examples described below is carried out according to the following method.
<沸石之評價> (沸石之平均一次粒徑) 利用JEOL公司製Auto Fine Coater JFC-1600,依沸石-白金靶材間距離30mm施行60秒鐘濺鍍,蒸鍍成沸石試料表面的白金厚度約9nm之後,利用SEM施行觀察。SEM的動作距離設為10~11mm、加速電壓設為10kV、光點尺寸設為30mm。平均一次粒徑係利用JEOL公司製掃描式電子顯微鏡JSM-6010LV進行粒子觀察,針對任意選擇之30個一次粒子施行粒徑測定,再將該一次粒子的粒徑予以平均而求得。另外,粒徑係具有與粒子投影面積相等面積之圓的直徑(當量圓直徑)。 <Evaluation of Zeolite> (Average Primary Particle Size of Zeolite) Using Auto Fine Coater JFC-1600 manufactured by JEOL, sputtering was performed for 60 seconds at a distance of 30mm between zeolite and platinum target. After the platinum thickness on the surface of the zeolite sample was evaporated to about 9nm, it was observed using SEM. The SEM operation distance was set to 10~11mm, the acceleration voltage was set to 10kV, and the spot size was set to 30mm. The average primary particle size was obtained by particle observation using a scanning electron microscope JSM-6010LV manufactured by JEOL. The particle size of 30 randomly selected primary particles was measured and the particle size of the primary particles was averaged. In addition, the particle size is the diameter of a circle with an area equal to the projected area of the particle (equivalent circle diameter).
(沸石的平均熱膨脹係數) 藉由使用BRUKER公司製X射線繞射裝置D8ADVANCE與X射線繞射解析軟體JADE,計算出晶格常數,而測定沸石在60~220℃的平均熱膨脹係數。 (Average thermal expansion coefficient of zeolite) The average thermal expansion coefficient of zeolite at 60~220℃ was measured by calculating the lattice constant using the X-ray diffraction device D8ADVANCE manufactured by BRUKER and the X-ray diffraction analysis software JADE.
<薄膜評價> (薄膜之平均熱膨脹係數) 溫度範圍60℃~220℃的平均熱膨脹係數(CTE),係使用SII NanoTechnology公司製熱機械分析裝置TMA/SS6100進行測定。另外,樣品形狀係設為寬4mm、夾具間距離20mm,依升溫速度10℃/min進行升溫。 <Film evaluation> (Average thermal expansion coefficient of film) The average thermal expansion coefficient (CTE) in the temperature range of 60℃~220℃ was measured using the thermal mechanical analysis device TMA/SS6100 manufactured by SII NanoTechnology. In addition, the sample shape was set to 4mm in width and 20mm in distance between the fixtures, and the temperature was raised at a rate of 10℃/min.
(薄膜之延遲值) 薄膜之延遲值(Rth)係使用大塚電子公司製相位差薄膜・光學材料檢查裝置RETS-100,針對膜厚10μm的膜計算出波長460nm的值。 (Retardation value of film) The retardation value (Rth) of the film is calculated at a wavelength of 460nm for a film with a thickness of 10μm using the phase difference film and optical material inspection device RETS-100 manufactured by Otsuka Electronics Co., Ltd.
(薄膜之霧度率) 薄膜之霧度率係使用SUGA試驗機公司製TM雙光束自動霧度電腦HZ-2進行測定。本次所使用的霧度率係針對D65光的值。 (Haze rate of film) The haze rate of film is measured using the TM double beam automatic haze computer HZ-2 manufactured by SUGA Testing Instruments Co., Ltd. The haze rate used this time is the value for D65 light.
(薄膜之儲存彈性模數) 樹脂複合材薄膜在各溫度下的儲存彈性模數,係根據JIS K-7244法所記載的動態黏彈性測定法,使用SII NanoTechnology公司製動態黏彈性裝置DMS6100,依雙邊拉伸模式進行測定(測定溫度範圍:-100℃~150℃、頻率:1Hz、升溫速度:5℃/分)。表1所示彈性模數係測定溫度於25℃下的彈性模數。 (Storage elastic modulus of film) The storage elastic modulus of the resin composite film at various temperatures is measured according to the dynamic viscoelasticity measurement method described in JIS K-7244, using the dynamic viscoelasticity device DMS6100 manufactured by SII NanoTechnology, in double-sided tensile mode (measurement temperature range: -100℃~150℃, frequency: 1Hz, heating rate: 5℃/min). The elastic modulus shown in Table 1 is the elastic modulus measured at a temperature of 25℃.
<沸石之合成方法> (合成例1:沸石C1之合成方法) 在容器內依序添加:Kishida化學公司製氫氧化鈉、作為結構導向試劑(SDA)之SACHEM公司製N,N,N-三甲基-1-金剛烷氫氧化銨(TMAdaOH)、Aldrich公司製氫氧化鋁、日揮觸媒化成公司製Cataloid SI-30。所獲得混合物的組成係1.0SiO 2/0.033Al 2O 3/0.1NaOH/0.06KOH/0.07TMAdaOH/20H 2O。然後,將相對於SiO 2為2質量%的作為種結晶之CHA型沸石添加於混合物中,充分混合後,將所獲得混合物裝入耐壓容器中,在160℃烤箱中,於15rpm旋轉下,進行48小時的水熱合成。經抽吸過濾、洗淨後,施行乾燥,獲得屬於CHA型沸石(as-made)的沸石C1。 <Synthesis method of zeolite> (Synthesis example 1: Synthesis method of zeolite C1) Sodium hydroxide manufactured by Kishida Chemical Co., Ltd., N,N,N-trimethyl-1-adamantane ammonium hydroxide (TMAdaOH) manufactured by SACHEM Co., Ltd. as a structure-directing agent (SDA), aluminum hydroxide manufactured by Aldrich Co., Ltd., and Cataloid SI-30 manufactured by Heliotrope Catalyst Chemicals Co., Ltd. were added in sequence into a container. The composition of the obtained mixture was 1.0SiO2 / 0.033Al2O3 /0.1NaOH/ 0.06KOH /0.07TMAdaOH /20H2O . Then, 2 mass % of CHA zeolite as seed crystals relative to SiO2 was added to the mixture, and after thorough mixing, the obtained mixture was placed in a pressure-resistant container and subjected to hydrothermal synthesis for 48 hours in a 160°C oven at 15 rpm. After suction filtration, washing, and drying, zeolite C1 belonging to CHA zeolite (as-made) was obtained.
所獲得沸石C1經SEM觀察,結果平均一次粒徑係1000nm。又,經測定沸石C1於60~220℃下之平均熱膨脹係數,結果沸石C1的平均熱膨脹係數係-10ppm/K。The obtained zeolite C1 was observed by SEM, and the average primary particle size was 1000nm. In addition, the average thermal expansion coefficient of zeolite C1 was measured at 60-220℃, and the average thermal expansion coefficient of zeolite C1 was -10ppm/K.
(合成例2:沸石C2之合成方法) 在容器內,依序添加:水、Kishida化學公司製氫氧化鉀、以及觸媒化成工業公司製FAU型沸石USY7。所獲得混合物的組成係1.0SiO 2/0.143Al 2O 3/0.582KOH/36.2H 2O。經充分混合後,將所獲得混合物裝入耐壓容器中,在100℃烤箱中靜置,進行7天的水熱合成。經抽吸過濾、洗淨後,施行乾燥,獲得屬於CHA型沸石的沸石C2。 (Synthesis Example 2: Synthesis Method of Zeolite C2) In a container, water, potassium hydroxide produced by Kishida Chemical Co., Ltd., and FAU type zeolite USY7 produced by Catalyst Chemical Industry Co., Ltd. were added in sequence. The composition of the obtained mixture was 1.0SiO 2 /0.143Al 2 O 3 /0.582KOH/36.2H 2 O. After being fully mixed, the obtained mixture was placed in a pressure-resistant container and placed in an oven at 100°C for 7 days of hydrothermal synthesis. After suction filtration, washing, and drying, zeolite C2 belonging to CHA type zeolite was obtained.
所獲得沸石C2經SEM觀察,結果平均一次粒徑係200nm。又,經測定沸石C2於60~220℃下之平均熱膨脹係數,結果沸石C2的平均熱膨脹係數係-10ppm/K。The obtained zeolite C2 was observed by SEM, and the average primary particle size was 200nm. In addition, the average thermal expansion coefficient of zeolite C2 was measured at 60-220℃, and the average thermal expansion coefficient of zeolite C2 was -10ppm/K.
(合成例3:沸石T1之合成方法) 參考Chemical Engineering Journal、230、380、2013,施行以下的合成。在容器內中,依序添加:水、Kishida化學公司製氫氧化鈉、Kishida化學公司製氫氧化鉀、作為結構導向試劑(SDA)之SACHEM公司製氫氧化四甲銨(TMAOH)、淺田化學工業公司製鋁酸鈉(氧化鋁20.13%、氧化鈉18.9%)、Aldrich公司製AS-40膠態二氧化矽。所獲得混合物的組成係1.0SiO 2/0.025Al 2O 3/0.3NaOH/0.3KOH/0.06TMAOH/10H 2O。充分混合後,將所獲得混合物裝入耐壓容器中,在130℃烤箱中,於15rpm旋轉下,進行5天的水熱合成。經抽吸過濾、洗淨後,施行乾燥,獲得屬於OFF型與ERI型連晶的Linde T型沸石(as-made)。該粉末在600℃、6小時、空氣流通下施行煅燒,獲得沸石T1。 (Synthesis Example 3: Synthesis method of zeolite T1) The following synthesis was performed with reference to Chemical Engineering Journal, 230, 380, 2013. In a container, water, sodium hydroxide produced by Kishida Chemical Co., Ltd., potassium hydroxide produced by Kishida Chemical Co., Ltd., tetramethylammonium hydroxide (TMAOH) produced by SACHEM Co., Ltd. as a structure-directing agent (SDA), sodium aluminate (20.13% alumina, 18.9% sodium oxide) produced by Asada Chemical Co., Ltd., and AS-40 colloidal silica produced by Aldrich Co. were added in order. The composition of the obtained mixture was 1.0SiO 2 /0.025Al 2 O 3 /0.3NaOH/0.3KOH/0.06TMAOH/10H 2 O. After thorough mixing, the obtained mixture was placed in a pressure-resistant container and subjected to hydrothermal synthesis for 5 days in a 130°C oven at 15 rpm. After suction filtration, washing, and drying, Linde T-type zeolite (as-made) with OFF-type and ERI-type intercrystalline was obtained. The powder was calcined at 600°C for 6 hours in air circulation to obtain zeolite T1.
所獲得沸石T1經SEM觀察,結果平均一次粒徑係300nm。又,經測定沸石T1於60~220℃下之平均熱膨脹係數,結果沸石T1的平均熱膨脹係數係-12ppm/K。The obtained zeolite T1 was observed by SEM, and the average primary particle size was 300nm. In addition, the average thermal expansion coefficient of zeolite T1 was measured at 60-220℃, and the average thermal expansion coefficient of zeolite T1 was -12ppm/K.
(合成例4:磷酸鋁A1之合成方法) 在容器內,混合Kishida化學公司製85%磷酸69g與水130g。在其中添加假軟水鋁石(75%Al 2O 3)40.8g,並攪拌。經攪拌2小時後,添加三乙胺27.3g與水120g的混合物,再攪拌1小時。充分混合後,將所獲得混合物裝入耐壓容器中,在190℃烤箱中,於15rpm旋轉下,進行12小時的水熱合成。經抽吸過濾、洗淨後,施行乾燥,獲得APC型磷酸鋁。所獲得APC型磷酸鋁在600℃、6小時、空氣流通下施行煅燒,獲得磷酸鋁A1。 (Synthesis Example 4: Synthesis method of aluminum phosphate A1) In a container, mix 69 g of 85% phosphoric acid manufactured by Kishida Chemical Co., Ltd. and 130 g of water. Add 40.8 g of pseudo-soft alumina (75% Al 2 O 3 ) and stir. After stirring for 2 hours, add a mixture of 27.3 g of triethylamine and 120 g of water, and stir for another hour. After thorough mixing, the obtained mixture is placed in a pressure-resistant container and subjected to hydrothermal synthesis for 12 hours in a 190°C oven with rotation at 15 rpm. After suction filtration and washing, it is dried to obtain APC-type aluminum phosphate. The obtained APC-type aluminum phosphate is calcined at 600°C for 6 hours in air circulation to obtain aluminum phosphate A1.
(合成例5:矽質岩1之合成方法) 在容器內,依序添加:水、結構導向試劑(SDA)之SACHEM公司製氫氧化四丙銨(TPAOH)、日產化學公司製Snowtex-40膠態二氧化矽。所獲得混合物的組成係1.0SiO 2/0.4TPAOH/11.8H 2O。充分混合後,將所獲得混合物裝入耐壓容器中,在100℃烤箱中,於15rpm旋轉下,進行20小時的水熱合成。經抽吸過濾、洗淨後,施行乾燥,獲得具MFI型結晶的矽質岩-1型沸石。所獲得矽質岩-1型沸石在600℃、6小時、空氣流通下施行煅燒,獲得矽質岩1。 (Synthesis Example 5: Synthesis Method of Silica 1) In a container, add water, structure-directed reagent (SDA) tetrapropylammonium hydroxide (TPAOH) manufactured by SACHEM, and Snowtex-40 colloidal silica manufactured by Nissan Chemical Co., Ltd. in sequence. The composition of the obtained mixture is 1.0SiO 2 /0.4TPAOH/11.8H 2 O. After thorough mixing, the obtained mixture is placed in a pressure-resistant container and subjected to hydrothermal synthesis for 20 hours in a 100°C oven at 15 rpm. After suction filtration, washing, and drying, Silica 1 type zeolite with MFI type crystals is obtained. The obtained silicalite-1 type zeolite was calcined at 600°C for 6 hours under air circulation to obtain silicalite 1.
(合成例6:沸石R1之合成方法) 在容器內,使環冠醚(18-冠-6)0.93g溶解於水6.3g中,在其中添加Kishida化學公司製氫氧化鈉0.45g、70%鋁酸鈉1.74g、Kishida化學公司製氫氧化銫一水合物0.71g,於80℃下施行3小時加熱攪拌。在其中添加日產化學公司製Snowtex-40膠態二氧化矽10.5g,經充分混合後,在室溫下放置1天。所獲得混合物放入耐壓容器中,於110℃下靜置96小時而進行水熱合成,經過濾、水洗,獲得RHO型沸石。所獲得RHO型在600℃、6小時、空氣流通下施行煅燒,獲得沸石R1。 (Synthesis Example 6: Synthesis method of zeolite R1) In a container, 0.93 g of cyclic crown ether (18-crown-6) was dissolved in 6.3 g of water, and 0.45 g of sodium hydroxide, 1.74 g of 70% sodium aluminate, and 0.71 g of cesium hydroxide monohydrate manufactured by Kishida Chemical Co., Ltd. were added thereto, and heated and stirred at 80°C for 3 hours. 10.5 g of Snowtex-40 colloidal silica manufactured by Nissan Chemical Co., Ltd. was added thereto, and after thorough mixing, it was left at room temperature for 1 day. The obtained mixture was placed in a pressure-resistant container, and left at 110°C for 96 hours for hydrothermal synthesis. After filtering and washing with water, RHO-type zeolite was obtained. The obtained RHO type was calcined at 600℃ for 6 hours under air circulation to obtain zeolite R1.
<樹脂組成物之製造方法> (樹脂組成物製造例1:含聚醯亞胺前驅物之組成物M1的製造方法) 在具備氮氣導入管、冷卻器及攪拌機的四口燒瓶中,添加3,3',4,4'-聯苯四羧酸二酐311g(1.06mol)、3,3',4,4'-雙環己基四羧酸二酐324g(1.06mol)、2,2'-雙(三氟甲基)聯苯胺340g(1.06mol)、4,4'-雙(二胺基二苯基)碸263g(1.06mol)及N-甲基吡咯啶酮2890g,於80℃下進行8小時加熱攪拌,獲得含有聚醯亞胺前驅物30質量%的含聚醯亞胺前驅物之組成物M1。該聚醯亞胺前驅物係具有經核氫化(氫化)芳香族化合物。 <Manufacturing method of resin composition> (Resin composition manufacturing example 1: Manufacturing method of composition M1 containing polyimide precursor) In a four-necked flask equipped with a nitrogen inlet tube, a cooler and a stirrer, 311 g (1.06 mol) of 3,3',4,4'-biphenyltetracarboxylic dianhydride, 324 g (1.06 mol) of 3,3',4,4'-bicyclohexyltetracarboxylic dianhydride, 340 g (1.06 mol) of 2,2'-bis(trifluoromethyl)benzidine, 263 g (1.06 mol) of 4,4'-bis(diaminodiphenyl)sulfone and 2890 g of N-methylpyrrolidone were added, and the mixture was heated and stirred at 80° C. for 8 hours to obtain a polyimide precursor-containing composition M1 containing 30% by mass of the polyimide precursor. The polyimide precursor is a nuclear hydrogenated (hydrogenated) aromatic compound.
<實施例1:使用含聚醯亞胺前驅物之組成物M1的樹脂複合材薄膜之製造> (比較例1-1:聚醯亞胺樹脂薄膜1之製造方法) 將含聚醯亞胺前驅物之組成物M1利用N-甲基吡咯啶酮稀釋,調整成聚醯亞胺前驅物20質量%。將所獲得油墨使用TESTER產業公司製滴流器塗佈於鹼玻璃(Corning公司製)上,依330℃施行30分鐘的乾燥・煅燒,獲得聚醯亞胺樹脂薄膜1。利用東洋精機製作所公司製THICKNESS METER B-1測定膜厚,結果薄膜的膜厚係10μm。另外,從測定薄膜的平均熱膨脹係數時的轉折點,所求得之聚醯亞胺樹脂薄膜1的玻璃轉移溫度(Tg)係320℃。所獲得薄膜的平均熱膨脹係數、延遲值、霧度率及彈性模數,係如表1所示。 <Example 1: Production of a resin composite film using a composition M1 containing a polyimide precursor> (Comparative Example 1-1: Method for producing a polyimide resin film 1) The composition M1 containing a polyimide precursor was diluted with N-methylpyrrolidone to adjust the polyimide precursor to 20% by mass. The obtained ink was applied to alkaline glass (made by Corning) using a dripper manufactured by TESTER Industries, Ltd., and dried and calcined at 330°C for 30 minutes to obtain a polyimide resin film 1. The film thickness was measured using THICKNESS METER B-1 manufactured by Toyo Seiki Seisakusho Co., Ltd., and the film thickness of the film was 10μm. In addition, the glass transition temperature (Tg) of the polyimide resin film 1 obtained from the turning point when measuring the average thermal expansion coefficient of the film is 320°C. The average thermal expansion coefficient, retardation value, haze rate and elastic modulus of the obtained film are shown in Table 1.
(實施例1-1:聚醯亞胺樹脂複合材薄膜1之製造方法) 在N-甲基吡咯啶酮中添加沸石C1,利用Ashizawa Finetech公司製LABSTAR MINI施行珠磨,獲得沸石C1含有量4質量%的沸石分散液D1。 (Example 1-1: Method for manufacturing polyimide resin composite film 1) Zeolite C1 was added to N-methylpyrrolidone and bead milled using LABSTAR MINI manufactured by Ashizawa Finetech to obtain a zeolite dispersion D1 containing 4% by mass of zeolite C1.
其次,將所獲得沸石分散液D1約20g,使用日立工機製日立微量高速離心機CF15RN,依5000rpm施行30分鐘離心分離,藉由採取上澄液,獲得經離心分離後的沸石分散液。離心分離後的沸石分散液中之沸石量係2.5質量%。又,利用動態光散射式粒徑分佈測定裝置(MicrotracBEL公司Nanotrac WaveII-EX150)所測定的D 50值係35nm。 Next, about 20 g of the obtained zeolite dispersion D1 was centrifuged at 5000 rpm for 30 minutes using a Hitachi micro high-speed centrifuge CF15RN manufactured by Hitachi Industries, Ltd., and the supernatant was collected to obtain a zeolite dispersion after centrifugation. The amount of zeolite in the zeolite dispersion after centrifugation was 2.5% by mass. In addition, the D 50 value measured by a dynamic light scattering particle size distribution measuring device (MicrotracBEL Nanotrac WaveII-EX150) was 35 nm.
其次,將所獲得離心分離後的沸石分散液19.2g、與4g之含聚醯亞胺前驅物之組成物M1混合,利用攪拌子進行攪拌,獲得由沸石與含聚醯亞胺前驅物之組成物M1混合的油墨。將所獲得油墨利用TESTER產業公司製滴流器施行塗佈,依330℃施行30分鐘的乾燥・煅燒,獲得聚醯亞胺樹脂複合材薄膜1。另外,薄膜的膜厚係19μm,所獲得薄膜中的沸石含有量,相對於薄膜質量係28.6質量%。所獲得薄膜的平均熱膨脹係數、延遲值、霧度率及彈性模數,係如表1所示。Next, 19.2 g of the centrifugally separated zeolite dispersion was mixed with 4 g of the polyimide precursor-containing composition M1, and stirred with a stirrer to obtain an ink mixed with zeolite and the polyimide precursor-containing composition M1. The obtained ink was applied using a dripper manufactured by TESTER Industries, Ltd., and dried and calcined at 330°C for 30 minutes to obtain a polyimide resin composite film 1. In addition, the film thickness was 19 μm, and the zeolite content in the obtained film was 28.6% by mass relative to the film mass. The average thermal expansion coefficient, retardation value, haze rate and elastic modulus of the obtained film are shown in Table 1.
(實施例1-2:聚醯亞胺樹脂複合材薄膜2之製造方法) 除了將沸石分散液D1 4.8g、與含聚醯亞胺前驅物之組成物M1 4g混合之外,其餘均依照與實施例1同樣進行,獲得聚醯亞胺樹脂複合材薄膜2。薄膜的膜厚係6μm,所獲得薄膜中的沸石含有量,相對於薄膜質量係9.1質量%。所獲得薄膜的平均熱膨脹係數、延遲值、霧度率及彈性模數,係如表1所示。 (Example 1-2: Method for manufacturing polyimide resin composite film 2) Except for mixing 4.8g of zeolite dispersion D1 and 4g of composition M1 containing polyimide precursor, the rest is carried out in the same manner as in Example 1 to obtain polyimide resin composite film 2. The film thickness is 6μm, and the zeolite content in the obtained film is 9.1% by mass relative to the film mass. The average thermal expansion coefficient, retardation value, haze rate and elastic modulus of the obtained film are shown in Table 1.
(實施例2-1:聚醯亞胺樹脂複合材薄膜3之製造方法) 除了取代沸石C1,改為使用沸石C2之外,其餘均依照與實施例1-1同樣進行,獲得聚醯亞胺樹脂複合材薄膜3。薄膜的膜厚係21μm,所獲得薄膜內的沸石含有量,相對於薄膜質量係28.6質量%。所獲得薄膜的平均熱膨脹係數、延遲值、霧度率及彈性模數,係如表1所示。 (Example 2-1: Method for manufacturing polyimide resin composite film 3) Except for replacing zeolite C1 with zeolite C2, the rest is carried out in the same manner as in Example 1-1 to obtain a polyimide resin composite film 3. The film thickness is 21 μm, and the zeolite content in the obtained film is 28.6% by mass relative to the film mass. The average thermal expansion coefficient, retardation value, haze rate and elastic modulus of the obtained film are shown in Table 1.
(實施例2-2:聚醯亞胺樹脂複合材薄膜4之製造方法) 除了取代沸石C1,改為使用沸石C2之外,其餘均依照與實施例1-2同樣進行,獲得聚醯亞胺樹脂複合材薄膜4。薄膜的膜厚係21μm,所獲得薄膜內的沸石含有量,相對於薄膜質量係9.1質量%。所獲得薄膜的平均熱膨脹係數、延遲值、霧度率及彈性模數,係如表1所示。 (Example 2-2: Method for manufacturing polyimide resin composite film 4) Except for replacing zeolite C1 with zeolite C2, the rest is carried out in the same manner as in Example 1-2 to obtain a polyimide resin composite film 4. The film thickness is 21 μm, and the zeolite content in the obtained film is 9.1% by mass relative to the film mass. The average thermal expansion coefficient, retardation value, haze rate and elastic modulus of the obtained film are shown in Table 1.
(實施例3-1:聚醯亞胺樹脂複合材薄膜5之製造方法) 依沸石T1 0.24g、聚醯亞胺前驅物0.6g、NMP 2.4g的方式進行混合,利用攪拌子進行攪拌獲得油墨。將所獲得油墨利用TESTER產業公司製滴流器施行塗佈,依330℃施行30分鐘的乾燥・煅燒,獲得聚醯亞胺樹脂複合材薄膜5。另外,薄膜的膜厚係44μm,所獲得薄膜中的沸石含有量,相對於薄膜質量係28.6質量%。所獲得薄膜的平均熱膨脹係數及霧度率,係如表1所示。 (Example 3-1: Method for manufacturing polyimide resin composite film 5) 0.24 g of zeolite T1, 0.6 g of polyimide precursor, and 2.4 g of NMP were mixed and stirred with a stirrer to obtain ink. The obtained ink was applied using a dripper manufactured by TESTER Industries, Ltd., and dried and calcined at 330°C for 30 minutes to obtain a polyimide resin composite film 5. In addition, the film thickness was 44 μm, and the zeolite content in the obtained film was 28.6% by mass relative to the film mass. The average thermal expansion coefficient and haze rate of the obtained film are shown in Table 1.
(實施例3-2:聚醯亞胺樹脂複合材薄膜6之製造方法) 依沸石T1 0.06g、聚醯亞胺前驅物0.6g、NMP 2.4g的方式進行混合,利用攪拌子進行攪拌獲得油墨。將所獲得油墨利用TESTER產業公司製滴流器施行塗佈,依330℃施行30分鐘的乾燥・煅燒,獲得聚醯亞胺樹脂複合材薄膜6。另外,薄膜的膜厚係21μm,所獲得薄膜中的沸石含有量,相對於薄膜質量係9.1質量%。所獲得薄膜的平均熱膨脹係數、延遲值及霧度率,係如表1所示。 (Example 3-2: Method for manufacturing polyimide resin composite film 6) Zeolite T1 0.06g, polyimide precursor 0.6g, and NMP 2.4g were mixed and stirred with a stirrer to obtain ink. The obtained ink was applied using a dripper manufactured by TESTER Industries, Ltd., and dried and calcined at 330°C for 30 minutes to obtain a polyimide resin composite film 6. In addition, the film thickness was 21μm, and the zeolite content in the obtained film was 9.1% by mass relative to the film mass. The average thermal expansion coefficient, retardation value, and haze rate of the obtained film are shown in Table 1.
(實施例4-1:聚醯亞胺樹脂複合材薄膜7之製造方法) 除了取代沸石T1,改為使用觸媒化成工業公司製FAU型沸石HY(5)(二氧化矽/氧化鋁莫耳比=40)之外,其餘均依照與實施例3-2同樣的方法,製作聚醯亞胺樹脂複合材薄膜7。所獲得薄膜中的沸石含有量,相對於薄膜質量係9.1質量%。所獲得薄膜的平均熱膨脹係數及霧度率,係如表1所示。 (Example 4-1: Method for manufacturing polyimide resin composite film 7) Except that zeolite T1 was replaced with FAU type zeolite HY(5) (silicon dioxide/alumina molar ratio = 40) manufactured by Catalytic Chemical Industries, Ltd., the rest was prepared in the same manner as in Example 3-2 to manufacture polyimide resin composite film 7. The zeolite content in the obtained film was 9.1% by mass relative to the film mass. The average thermal expansion coefficient and haze rate of the obtained film are shown in Table 1.
(實施例5-1:聚醯亞胺樹脂複合材薄膜8之製造方法) 除了取代沸石T1,改為使用東曹公司製質子型 *BEA型沸石 HSZ-940HOA(二氧化矽/氧化鋁莫耳比=40)之外,其餘均依照與實施例3-2同樣的方法,製作聚醯亞胺樹脂複合材薄膜8。所獲得薄膜中的沸石含有量,相對於薄膜質量係9.1質量%。所獲得薄膜的平均熱膨脹係數係如表1所示。 (Example 5-1: Method for manufacturing polyimide resin composite film 8) Except for replacing zeolite T1 with proton type * BEA type zeolite HSZ-940HOA (silicon dioxide/alumina molar ratio = 40) manufactured by Tosoh Corporation, the same method as in Example 3-2 was followed to manufacture polyimide resin composite film 8. The zeolite content in the obtained film was 9.1% by mass relative to the mass of the film. The average thermal expansion coefficient of the obtained film is shown in Table 1.
(比較例1-2:聚醯亞胺樹脂複合材薄膜9之製造方法) 除了取代沸石T1,改為使用Admatechs公司製二氧化矽 SC2500-SQ(平均一次粒徑200nm)之外,其餘均依照與實施例1-1同樣的方法,製作聚醯亞胺樹脂複合材薄膜9。另外,薄膜的膜厚係18μm,所獲得薄膜中的沸石含有量,相對於薄膜質量係9.1質量%。所獲得薄膜的平均熱膨脹係數、霧度率及彈性模數,係如表1所示。 (Comparative Example 1-2: Method for manufacturing polyimide resin composite film 9) Except that zeolite T1 was replaced with silica SC2500-SQ (average primary particle size 200nm) manufactured by Admatechs, the polyimide resin composite film 9 was manufactured in the same manner as in Example 1-1. In addition, the film thickness was 18μm, and the zeolite content in the obtained film was 9.1% by mass relative to the film mass. The average thermal expansion coefficient, haze rate, and elastic modulus of the obtained film are shown in Table 1.
(比較例1-3:聚醯亞胺樹脂複合材薄膜10之製造方法) 除了取代沸石C1,改為使用負膨脹材之Furuuchi股份有限公司製鎢酸鋯 FINE ZWO-01之外,其餘均依照與實施例1-1同樣的方法,製作聚醯亞胺樹脂複合材薄膜10。所獲得薄膜中的沸石含有量,相對於薄膜質量係9.1質量%。所獲得薄膜的平均熱膨脹係數、延遲值、霧度率及彈性模數,係如表1所示。 (Comparative Example 1-3: Method for manufacturing polyimide resin composite film 10) Except for replacing zeolite C1 with negative expansion material FINE ZWO-01 made by Furuuchi Co., Ltd., the polyimide resin composite film 10 was manufactured in the same manner as in Example 1-1. The zeolite content in the obtained film was 9.1% by mass relative to the mass of the film. The average thermal expansion coefficient, retardation value, haze rate and elastic modulus of the obtained film are shown in Table 1.
(比較例1-4:聚醯亞胺樹脂複合材薄膜11之製造方法) 除了取代沸石T1,改為使用沸石A1之外,其餘均依照與實施例3-1同樣的方法,製作聚醯亞胺樹脂複合材薄膜11。所獲得薄膜中的沸石含有量,相對於薄膜質量係9.1質量%。所獲得薄膜的平均熱膨脹係數,係如表1所示。 (Comparative Example 1-4: Method for manufacturing polyimide resin composite film 11) Except for using zeolite A1 instead of zeolite T1, the polyimide resin composite film 11 was manufactured in the same manner as in Example 3-1. The zeolite content in the obtained film was 9.1% by mass relative to the mass of the film. The average thermal expansion coefficient of the obtained film is shown in Table 1.
(比較例1-5:聚醯亞胺樹脂複合材薄膜12之製造方法) 除了取代沸石T1,改為使用矽質岩1之外,其餘均依照與實施例3-1同樣的方法,製作聚醯亞胺樹脂複合材薄膜12。所獲得薄膜中的沸石含有量,相對於薄膜質量係9.1質量%。所獲得薄膜的平均熱膨脹係數、延遲值、霧度率及彈性模數,係如表1所示。 (Comparative Example 1-5: Method for manufacturing polyimide resin composite film 12) Except for replacing zeolite T1 with silicalite 1, the polyimide resin composite film 12 was manufactured in the same manner as in Example 3-1. The zeolite content in the obtained film was 9.1% by mass relative to the mass of the film. The average thermal expansion coefficient, retardation value, haze rate and elastic modulus of the obtained film are shown in Table 1.
(比較例1-6:聚醯亞胺樹脂複合材薄膜13之製造方法) 除了取代沸石T1,改為使用中村超硬公司製ZeoalZ4A-005(平均一次粒徑50nm、LTA型沸石)之外,其餘均依照與實施例3-1同樣的方法,製作聚醯亞胺樹脂複合材薄膜13。所獲得薄膜中的沸石含有量,相對於薄膜質量係9.1質量%。所獲得薄膜的平均熱膨脹係數,係如表1所示。 (Comparative Example 1-6: Method for manufacturing polyimide resin composite film 13) Except for replacing zeolite T1 with Zeoal Z4A-005 (average primary particle size 50nm, LTA type zeolite) manufactured by Nakamura Superhard Co., Ltd., the rest is made in the same way as in Example 3-1 to manufacture polyimide resin composite film 13. The zeolite content in the obtained film is 9.1% by mass relative to the mass of the film. The average thermal expansion coefficient of the obtained film is shown in Table 1.
(比較例1-7:聚醯亞胺樹脂複合材薄膜14之製造方法) 除了取代沸石T1,改為使用沸石R1之外,其餘均依照與實施例3-1同樣的方法,製作聚醯亞胺樹脂複合材薄膜14。所獲得薄膜中的沸石含有量,相對於薄膜質量係9.1質量%。所獲得薄膜的平均熱膨脹係數,係如表1所示。 (Comparative Example 1-7: Method for manufacturing polyimide resin composite film 14) Except for using zeolite R1 instead of zeolite T1, the polyimide resin composite film 14 was manufactured in the same manner as in Example 3-1. The zeolite content in the obtained film was 9.1% by mass relative to the mass of the film. The average thermal expansion coefficient of the obtained film is shown in Table 1.
(樹脂組成物製造例2:非氫化含聚醯亞胺前驅物之組成物M2之製造方法) 在具備氮氣導入管、冷卻器及攪拌機的四口燒瓶中,添加3,3',4,4'-聯苯四羧酸二酐635g(2.16mol)、4,4'-二胺基二苯醚445g(2.22mol)、N,N-二甲基乙醯胺3240g,於80℃下進行6小時加熱攪拌,獲得含有聚醯亞胺前驅物25質量%的含聚醯亞胺前驅物之組成物M2。該聚醯亞胺前驅物係未具經核氫化(氫化)芳香族化合物。 (Resin composition preparation example 2: Preparation method of non-hydrogenated polyimide precursor-containing composition M2) In a four-necked flask equipped with a nitrogen inlet tube, a cooler and a stirrer, add 635g (2.16mol) of 3,3',4,4'-biphenyltetracarboxylic dianhydride, 445g (2.22mol) of 4,4'-diaminodiphenyl ether and 3240g of N,N-dimethylacetamide, and heat and stir at 80°C for 6 hours to obtain a polyimide precursor-containing composition M2 containing 25% by mass of the polyimide precursor. The polyimide precursor is an aromatic compound that is not nuclear hydrogenated (hydrogenated).
(比較例1-8:聚醯亞胺樹脂薄膜2之製造方法) 除了取代含聚醯亞胺前驅物之組成物M1,改為使用M2之外,其餘均依照與比較例1-1同樣的方法,製作聚醯亞胺樹脂薄膜2。所獲得薄膜的平均熱膨脹係數係如表1所示。 (Comparative Example 1-8: Method for producing polyimide resin film 2) Except for replacing the polyimide precursor-containing composition M1 with M2, the polyimide resin film 2 was produced in the same manner as in Comparative Example 1-1. The average thermal expansion coefficient of the obtained film is shown in Table 1.
(實施例6-1:聚醯亞胺樹脂複合材薄膜15之製造方法) 除了使用沸石C1與含聚醯亞胺前驅物之組成物M2外,其餘均依照與實施例1-1同樣進行,獲得聚醯亞胺樹脂複合材薄膜15。所獲得薄膜中的沸石含有量,相對於薄膜質量係9.1質量%。所獲得薄膜的平均熱膨脹係數係如表1所示。 (Example 6-1: Method for manufacturing polyimide resin composite film 15) Except for using zeolite C1 and composition M2 containing polyimide precursor, the rest is carried out in the same manner as Example 1-1 to obtain polyimide resin composite film 15. The zeolite content in the obtained film is 9.1% by mass relative to the mass of the film. The average thermal expansion coefficient of the obtained film is shown in Table 1.
[表1]
表1中,可知本發明實施形態的含有沸石之聚醯亞胺樹脂複合材中,該樹脂複合材的平均熱膨脹係數係未滿50ppm,該樹脂複合材的延遲值係150nm以下,且與聚醯亞胺樹脂同級低,該樹脂複合材的霧度率係5%以下,與聚醯亞胺樹脂同級低。 相較於含有屬於一般無機填料的二氧化矽、屬於具負熱膨脹係數之填料之鎢酸鋯的聚醯亞胺樹脂複合材,本發明實施形態的含有沸石之聚醯亞胺樹脂複合材的平均熱膨脹係數之降幅量較大。分別含有具正熱膨脹係數的二氧化矽、與具負熱膨脹係數之鎢酸鋯的聚醯亞胺樹脂複合材,係平均熱膨脹係數相同,得知填料本身的平均熱膨脹係數並不決定樹脂複合材的平均熱膨脹係數。 含有特定沸石的聚醯亞胺樹脂複合材係平均熱膨脹係數大幅降低。具有含d6r之沸石(CHA、ERI)、及/或含mtw之沸石(BEA)的聚醯亞胺樹脂複合體,係平均熱膨脹係數大於不含該等的含有沸石之聚醯亞胺樹脂複合材,推測因為含有該等CBU,故平均熱膨脹係數變得更小。 藉由含沸石9.1質量%所造成的平均熱膨脹係數減少率,係相較於使用非氫化聚醯亞胺時之12.0%,使用了氫化聚醯亞胺時為14.0%,得知使用氫化聚醯亞胺時效果更加明顯。雖原因尚未闡明,但可認為其係藉由氫化使樹脂間的π-π堆疊變弱,同時強化與沸石間的相互作用之結果所致。 From Table 1, it can be seen that in the polyimide resin composite material containing zeolite in the embodiment of the present invention, the average thermal expansion coefficient of the resin composite material is less than 50ppm, the retardation value of the resin composite material is less than 150nm, which is as low as that of polyimide resin, and the haze rate of the resin composite material is less than 5%, which is as low as that of polyimide resin. Compared with the polyimide resin composite material containing silicon dioxide, which is a general inorganic filler, and zirconium tungstate, which is a filler with a negative thermal expansion coefficient, the average thermal expansion coefficient of the polyimide resin composite material containing zeolite in the embodiment of the present invention has a greater decrease. The average thermal expansion coefficient of polyimide resin composites containing silica with a positive thermal expansion coefficient and zirconium tungstate with a negative thermal expansion coefficient is the same, indicating that the average thermal expansion coefficient of the filler itself does not determine the average thermal expansion coefficient of the resin composite. The average thermal expansion coefficient of polyimide resin composites containing specific zeolites is greatly reduced. The average thermal expansion coefficient of polyimide resin composites containing d6r-containing zeolites (CHA, ERI) and/or mtw-containing zeolites (BEA) is greater than that of polyimide resin composites containing zeolites without these. It is speculated that the average thermal expansion coefficient becomes smaller because of the inclusion of these CBUs. The average thermal expansion coefficient reduction rate caused by the 9.1 mass% zeolite content is 14.0% when using hydrogenated polyimide, compared to 12.0% when using non-hydrogenated polyimide. It is known that the effect is more obvious when using hydrogenated polyimide. Although the reason has not been clarified, it is believed that it is the result of weakening the π-π stacking between resins through hydrogenation and strengthening the interaction with zeolite.
由以上結果得知,藉由本發明一實施形態的含有沸石之聚醯亞胺樹脂複合材,可廉價提供對翹曲等變形具高抑制性、兼具良好影像清晰性、與高透明性,能因應電子裝置等構件的含有沸石之聚醯亞胺樹脂複合材。 (產業上之可利用性) From the above results, it can be seen that the polyimide resin composite containing zeolite in one embodiment of the present invention can provide a polyimide resin composite containing zeolite that has high suppression of deformation such as warping, good image clarity, and high transparency, and can be used in components such as electronic devices at a low cost. (Industrial applicability)
藉由本發明一實施形態的聚醯亞胺樹脂複合材,可廉價提供對翹曲等變形具高抑制性、兼具高影像清晰性與高透明性,能因應電子裝置等構件的含有沸石之聚醯亞胺樹脂複合材。By using the polyimide resin composite material of one embodiment of the present invention, a polyimide resin composite material containing zeolite which has high resistance to deformation such as warping, high image clarity and high transparency, and can be used for components such as electronic devices can be provided at a low cost.
1:樹脂複合材 2:沸石 3:樹脂 11:半導體層 12:絕緣體層 13、14:源極電極及汲極電極 15:閘極電極 16:基材 17:FET元件 31:基材 32:陽極 33:電洞注入層 34:電洞輸送層 35:發光層 36:電子輸送層 37:電子注入層 38:陰極 39:電致發光元件 51:陰極 52:電子取出層 53:活性層 54:電洞取出層 55:陽極 56:基材 57:光電轉換元件 101:耐候性保護薄膜 102:紫外線阻斷薄膜 103、109:阻氣膜 104、108:集氣材薄膜 105、107:密封材 106:太陽電池元件 110:背襯片 111:薄膜太陽電池 112:基材 113:太陽電池模組 1: Resin composite 2: Zeolite 3: Resin 11: Semiconductor layer 12: Insulator layer 13, 14: Source electrode and drain electrode 15: Gate electrode 16: Substrate 17: FET element 31: Substrate 32: Anode 33: Hole injection layer 34: Hole transport layer 35: Luminescent layer 36: Electron transport layer 37: Electron injection layer 38: Cathode 39: Electroluminescent element 51: Cathode 52: Electron extraction layer 53: Active layer 54: Hole extraction layer 55: Anode 56: Substrate 57: Photoelectric conversion element 101: Weather-resistant protective film 102: UV blocking film 103, 109: Gas barrier film 104, 108: Gas collector film 105, 107: Sealing material 106: Solar cell element 110: Backing sheet 111: Thin-film solar cell 112: Substrate 113: Solar cell module
圖1係本發明一實施形態的含有沸石與樹脂的樹脂複合材之示意圖。 圖2(A)至(D)係本發明一實施形態的場效電晶體元件構成之示意剖視圖。 圖3係本發明一實施形態的電致發光元件構成之示意剖視圖。 圖4係本發明一實施形態的光電轉換元件構成之示意剖視圖。 圖5係本發明一實施形態的太陽電池構成之示意剖視圖。 圖6係本發明一實施形態的太陽電池模組構成之示意剖視圖。 FIG. 1 is a schematic diagram of a resin composite material containing zeolite and resin in an embodiment of the present invention. FIG. 2 (A) to (D) are schematic cross-sectional views of a field effect transistor element in an embodiment of the present invention. FIG. 3 is a schematic cross-sectional view of an electroluminescent element in an embodiment of the present invention. FIG. 4 is a schematic cross-sectional view of a photoelectric conversion element in an embodiment of the present invention. FIG. 5 is a schematic cross-sectional view of a solar cell in an embodiment of the present invention. FIG. 6 is a schematic cross-sectional view of a solar cell module in an embodiment of the present invention.
1:樹脂複合材 1: Resin composite material
2:沸石 2: Zeolite
3:樹脂 3: Resin
Claims (10)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018119364 | 2018-06-22 | ||
JP2018-119364 | 2018-06-22 |
Publications (1)
Publication Number | Publication Date |
---|---|
TW202446842A true TW202446842A (en) | 2024-12-01 |
Family
ID=68982882
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW113130814A TW202446842A (en) | 2018-06-22 | 2019-06-24 | Polyimide resin composites, films and electronic devices containing zeolite |
TW108122243A TW202006015A (en) | 2018-06-22 | 2019-06-24 | Zeolite-containing polyimide resin composite material, zeolite-containing polyimide resin precursor composition, film and electronic device |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW108122243A TW202006015A (en) | 2018-06-22 | 2019-06-24 | Zeolite-containing polyimide resin composite material, zeolite-containing polyimide resin precursor composition, film and electronic device |
Country Status (5)
Country | Link |
---|---|
JP (1) | JP7355010B2 (en) |
KR (1) | KR102462579B1 (en) |
CN (1) | CN112384571A (en) |
TW (2) | TW202446842A (en) |
WO (1) | WO2019245054A1 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20230101813A (en) * | 2020-11-02 | 2023-07-06 | 미쯔비시 케미컬 주식회사 | Zeolite, method for producing zeolite, composition, liquid composition, liquid encapsulant, resin composite, encapsulant, method for producing encapsulant, and device |
WO2023210791A1 (en) * | 2022-04-28 | 2023-11-02 | 三菱ケミカル株式会社 | Silicalite, compositon, liquid-state sealing agent, resin composite, sealing material, sealing material production method, and electronic device |
KR102556342B1 (en) * | 2023-01-08 | 2023-07-17 | 주식회사 네이피 | Antimicrobial technology and prevention of overfermentation for fermented food |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06287327A (en) * | 1993-02-04 | 1994-10-11 | Shin Etsu Chem Co Ltd | Production of polyimide film |
US7306647B2 (en) * | 2004-11-19 | 2007-12-11 | Chevron U.S.A. Inc. | Mixed matrix membrane with mesoporous particles and methods for making and using the same |
JP2007177017A (en) * | 2005-12-27 | 2007-07-12 | Shin Etsu Chem Co Ltd | Polyimide silicone resin composition |
JP2014509556A (en) * | 2011-03-01 | 2014-04-21 | エクソンモービル リサーチ アンド エンジニアリング カンパニー | Rapid temperature swing adsorption contactor for separating gases |
KR102009067B1 (en) | 2012-07-02 | 2019-08-08 | 가부시키가이샤 가네카 | Polyamide acid, polyimide, polyamide acid solution, and use of polyimide |
JP6274109B2 (en) | 2012-09-27 | 2018-02-07 | 三菱瓦斯化学株式会社 | Polyimide resin composition |
CN106029743B (en) | 2014-02-21 | 2019-03-29 | 三菱化学株式会社 | Composition and polyimide film containing polyimide precursor and/or polyimides |
JP2016204569A (en) | 2015-04-27 | 2016-12-08 | 宇部興産株式会社 | Polyamic acid solution composition and polyimide film |
JP6837900B2 (en) | 2017-04-14 | 2021-03-03 | 旭化成株式会社 | Complex |
JP7263729B2 (en) | 2017-10-16 | 2023-04-25 | 三菱ケミカル株式会社 | Resin composites and electronic devices |
-
2019
- 2019-06-24 TW TW113130814A patent/TW202446842A/en unknown
- 2019-06-24 WO PCT/JP2019/025009 patent/WO2019245054A1/en active Application Filing
- 2019-06-24 JP JP2020525836A patent/JP7355010B2/en active Active
- 2019-06-24 TW TW108122243A patent/TW202006015A/en unknown
- 2019-06-24 KR KR1020207037182A patent/KR102462579B1/en active Active
- 2019-06-24 CN CN201980041554.7A patent/CN112384571A/en active Pending
Also Published As
Publication number | Publication date |
---|---|
WO2019245054A1 (en) | 2019-12-26 |
JP7355010B2 (en) | 2023-10-03 |
TW202006015A (en) | 2020-02-01 |
JPWO2019245054A1 (en) | 2021-06-24 |
KR20210013188A (en) | 2021-02-03 |
CN112384571A (en) | 2021-02-19 |
KR102462579B1 (en) | 2022-11-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5815276B2 (en) | POLYMER SHEET FOR SOLAR CELL BACK SHEET, ITS MANUFACTURING METHOD, AND SOLAR CELL MODULE | |
US20110091732A1 (en) | Polyamic acid resin composition and polyimide film prepared therefrom | |
TW202446842A (en) | Polyimide resin composites, films and electronic devices containing zeolite | |
TW201223995A (en) | Polyester film and method for producing same | |
CN103765609B (en) | Solar cell backboard and solar cell module | |
AU2006298297A1 (en) | Encapsulation film for photovoltaic module and photovoltaic module | |
JP5540803B2 (en) | Method for producing gas barrier film | |
KR20130050337A (en) | Polyester film for sealing backside of solar cell | |
KR20120116846A (en) | Polymer composition, multi-layered film and photovoltaic modules comprising the same | |
JP5978519B2 (en) | Solar cell backsheet and solar cell module | |
WO2020080437A1 (en) | Liquid composition, resin composite, liquid sealing material, sealing material, and electronic device | |
JP7263729B2 (en) | Resin composites and electronic devices | |
WO2017122819A1 (en) | Prepreg, printed circuit board, semiconductor package, and method for producing printed circuit board | |
JP5623952B2 (en) | SOLAR CELL POLYMER SHEET AND METHOD FOR PRODUCING THE SAME, SOLAR CELL BACK SHEET, AND SOLAR CELL MODULE | |
CN102569440B (en) | Rear panel for solar cell and method for manufacturing same | |
TWI499064B (en) | White polyester film for solar cell, solar cell back encapsulant and solar cell module using same | |
JP2019112552A (en) | Dispersion liquid, resin composite material, and electronic device | |
KR101871615B1 (en) | Multilayer film, back sheet for solar cell modules, and solar cell module | |
JPWO2014003196A1 (en) | Electronic device and manufacturing method thereof | |
WO2012008276A1 (en) | Gas barrier film, and organic electronic device using same | |
JP2017212438A (en) | Back sheet for solar battery module and solar battery module | |
JP2018116993A (en) | Rear surface protective sheet for solar cell module | |
KR102025077B1 (en) | Flexible substrate for bifacial solar cell, manufacturing method for the flexible substrate, manufacturing method for cigs solar cell, and solar cell module for window | |
JP2015098519A (en) | Resin composition, component, optical device and electronic device | |
JP2014008720A (en) | Release film |