在進一步詳細討論之前,將定義以下術語。
定義除非另外定義,否則本文所使用的所有技術術語和科學術語的含義與本發明所屬領域的普通技術人員通常所理解的含義相同。如本文中所使用的,以下術語旨在具有以下含義:
如在說明書和權利要求書中所使用的,單數形式“一個(a)”、“一種(an)”以及“所述(the)”等包括複數指代物,除非上下文中另外明確指明。因此,例如,對“化合物”的提及包括單一化合物和多種不同的化合物。
如本文所使用的,術語“約”旨在表明所引用的值不應被解釋為絕對值,並且還應考慮測量誤差、批次間變化和/或設備間變化。除了本申請中指定了測量誤差或變化的範圍(例如,XRPD中衍射角2θ的測量誤差為± 0.2°,晶體多晶型物熔融的吸熱的測量誤差為± 10℃,並且DSC中多晶型物脫水/去溶劑化的吸熱的測量誤差為± 20℃,MDSC中玻璃化轉變溫度(Tg)的測量誤差為± 10℃,TGA中的測量誤差為± 20℃)之外,當在數位指代,例如,溫度、時間、量和濃度,包括範圍之前使用時,術語“約”表示可能相差± 10%、± 5%或± 1%的近似值。
如本文所使用的,“抑制劑”是指具有抑制靶蛋白或多肽的生物功能,如通過抑制靶蛋白或多肽的活性或表達來抑制靶蛋白或多肽的生物功能的能力的化合物或藥劑。因此,術語“抑制劑”在靶蛋白或多肽的生物學作用的背景下被定義。雖然本文中的一些抑制劑特異性地與靶標相互作用(例如,與靶標結合),但通過與所述靶蛋白或多肽的信號轉導通路的其它成員相互作用來抑制靶蛋白或多肽的生物活性的化合物也特別包括在此定義中。被抑制劑抑制的生物活性的非限制性實例包括與腫瘤的發展、生長或擴散相關聯的生物活性。如本文所使用的,如適用於生物活性劑的“選擇性抑制(selective inhibition)”或“選擇性地抑制(selectively inhibit)”是指與脫靶信號傳導活性相比,藥劑通過與靶標蛋白或多肽的直接或間接相互作用而選擇性地降低靶標信號傳導活性的能力。
應理解,本公開的“化合物”可以以溶劑化形式以及非溶劑化形式,例如水合形式、固體形式存在,並且本公開旨在涵蓋所有此類溶劑化形式和非溶劑化形式。應進一步理解,本公開的“化合物”可以以藥學上可接受的鹽的形式存在。
如本文所使用的,術語“藥學上可接受的”是指在合理醫學判斷的範圍內適於與人類和其它動物的組織接觸使用而不會產生過多毒性、刺激、過敏反應或其它問題或併發症的與合理的益處/風險比相稱的那些化合物、材料、組合物和/或劑型。在一些實施方式中,藥學上可接受的化合物、材料、組合物和/或劑型是指被管理機構(如美國食品和藥物管理局(U.S. Food and Drug Administration)、國家藥品監督管理局(National Medical Products Administration)或歐洲藥物管理局(European Medicines Agency))批准或公認藥典(如美國藥典(U.S.Pharmacopoeia)、中國藥典(China Pharmacopoeia)或歐洲藥典(European Pharmacopoeia))中所列用於動物並且更具體地用於人類的那些化合物、材料、組合物和/或劑型。
如本文所使用的,“藥學上可接受的鹽”或“藥學鹽”是指其中母體化合物通過將現有的酸性部分(例如,羧基等)或鹼部分(例如,胺、鹼等)轉化為其鹽形式而改性的化合物的衍生物。在許多情況下,本公開的化合物由於存在胺基、鹼或與其類似的基團而能夠形成酸加成鹽和/或鹼鹽。而且,“藥學上可接受的鹽”包括保持母體化合物的生物有效性和特性的酸加成鹽或鹼鹽,所述酸加成鹽或鹼鹽通常在生物學上或在其它方面並非不期望的。藥學上可接受的鹽是本領域中所熟知的。例如,Berge等人在《藥物科學雜誌(J. Pharmaceutical Sciences)》 (1977) 66:1-19卷中詳細描述了藥學上可接受的鹽。本文所提供的化合物的藥學上可接受的鹽包括衍生自適合的無機酸和有機酸以及無機鹼和有機鹼的那些鹽。藥學上可接受的無毒酸加成鹽的實例是用如鹽酸、氫溴酸、磷酸、硫酸和高氯酸等無機酸或用如乙酸、丙酸、乙醇酸、丙酮酸、草酸、乳酸、三氟乙酸、苯甲酸、肉桂酸、扁桃酸、乙磺酸、對甲苯磺酸、水楊酸、丙二酸、富馬酸、檸檬酸、蘋果酸、馬來酸、酒石酸、琥珀酸或甲磺酸等有機酸或通過使用本領域使用的其它方法,如離子交換形成的胺基的鹽。其它藥學上可接受的鹽包括己二酸鹽、藻酸鹽、抗壞血酸鹽、天冬胺酸鹽、苯磺酸鹽(benzenesulfonate)、苯磺酸鹽(besylate)、苯甲酸鹽、硫酸氫鹽、硼酸鹽、丁酸鹽、樟腦酸鹽、樟腦磺酸鹽、檸檬酸鹽、環戊烷丙酸鹽、雙葡萄糖酸鹽、十二烷基硫酸鹽、乙磺酸鹽、甲酸鹽、富馬酸鹽、葡庚糖酸鹽、甘油磷酸鹽、葡糖酸鹽、半硫酸鹽、庚酸鹽、己酸鹽、氫碘酸鹽、2-羥基-乙磺酸鹽、乳糖醛酸鹽、乳酸鹽、月桂酸鹽、月桂基硫酸鹽、蘋果酸鹽、馬來酸鹽、丙二酸鹽、甲磺酸鹽、2-萘磺酸鹽、煙酸鹽、硝酸鹽、油酸鹽、草酸鹽、棕櫚酸鹽、撲酸鹽、果膠酸鹽、過硫酸鹽、3-苯基丙酸鹽、磷酸鹽、苦味酸鹽、新戊酸鹽、丙酸鹽、硬脂酸鹽、琥珀酸鹽、硫酸鹽、酒石酸鹽、硫氰酸鹽、對甲苯磺酸鹽、十一烷酸鹽、戊酸鹽等。在一些實施方式中,可以衍生出鹽的無機酸包括例如鹽酸鹽、硫酸鹽、磷酸鹽等。在一些實施方式中,可以衍生出鹽的有機酸包括例如馬來酸鹽、富馬酸鹽、草酸鹽、對甲苯磺酸鹽、琥珀酸鹽、L-(+)-酒石酸鹽、單己二酸鹽、半己二酸鹽等。在某些實施方式中,藥學上可接受的鹽是鹽酸鹽、硫酸鹽、磷酸鹽、馬來酸鹽、富馬酸鹽、草酸鹽、對甲苯磺酸鹽、琥珀酸鹽、L-(+)-酒石酸鹽、單己二酸鹽或半己二酸鹽。
如本文所使用的,術語“多晶型形式”、“多晶型物”或“結晶形式”是指其中組成原子、分子或離子以具有高度規則的化學結構的規則有序、重複的三維形態填充的化合物的固態形式。具體地,化合物或其鹽可以以一種或多種結晶形式產生。不同的結晶形式可以通過X射線粉末衍射(XRPD)圖(例如,在各個衍射角(2θ)處的X射線衍射峰位置和/或峰強度)、如通過差示掃描量熱法(DSC)熱譜圖的吸熱所展示的熔點開始(和水合形式的脫水開始)、熱重分析(TGA)、固態
1H核磁共振(NMR)光譜、水溶解度、高強度光照條件、物理和化學儲存穩定性以及本領域已知的任何其它測量結果來表徵。
“XRPD圖”是指實驗地觀察到的衍射圖或由此得出的參數,其示出為x-y圖,其中峰位置表示為x軸上的衍射角(2θ)和y軸上的峰強度。此圖中的峰可以用於表徵結晶固體形式。
如本文所使用的,術語“峰位置”是指如在X射線粉末衍射實驗中測量和觀察到的X射線反射位置。峰位置與晶胞的尺寸直接相關。峰位置可能受到樣品就座在衍射儀中的精確高度和同樣衍射儀的零校準的影響。
術語“峰強度”是指給定X射線粉末衍射圖中的相對信號強度。可能影響相對峰強度的因素是樣品厚度和優選取向(即,結晶顆粒不是隨機分佈的)。
與任何資料測量結果一樣,XRPD資料也存在可變性。資料通常僅由峰的衍射角表示,而不包括峰的強度,因為峰強度可能對樣品製備尤其敏感(例如,顆粒大小、水分含量、溶劑含量和優選取向效應影響靈敏度),因此在不同條件下製備的相同材料的樣品可能產生略有不同的形態;此可變性通常大於衍射角的可變性。衍射角可變性也可能對樣品製備敏感。其它可變性來源來自儀器參數和原始X射線資料的處理:不同的X射線儀器使用不同的參數進行操作,並且這些參數可能導致來自相同固體形式的略有不同的XRPD圖,並且類似的不同套裝軟體不同地處理X射線資料,並且這也導致可變性。這些和其它可變性來源是製藥領域的普通技術人員已知的。由於此類可變性來源,XRPD中衍射角的測量誤差為大約2θ(± 0.2°),並且在考慮附圖中的XRPD圖並且讀取本文包括的表中所包含的資料時,應考慮此類測量誤差程度。
DSC測量固體樣品與溫度升高的適當參考之間的熱能差。DSC熱譜圖的特徵在於,吸熱(表示能量攝取)以及還有放熱(表示能量釋放),通常在樣品被加熱時。本領域技術人員還理解,在特定化合物的DSC熱譜圖中觀察到的值或值範圍將顯示不同純度的批次之間的差異。根據進行DSC分析的加熱速率(即掃描速率)、定義和確定DSC起始溫度的方式、所使用的校準標準、儀器校準以及樣品的相對濕度(RH)和化學純度,本公開的化合物所表現出的吸熱可能不同(晶體多晶型物熔融的吸熱為±10℃,並且多晶型物脫水/去溶劑化的吸熱為±20℃),並且在考慮本文包括的DSC資料時,應考慮此類變化程度。為了進一步澄清,在不同批次中製備的一種化合物可能示出DSC熱譜圖的變化,然而這些具有變化的DSC熱譜圖仍應被視為彼此“基本上類似”。對於任何給定的實例,觀察到的吸熱也可能因儀器而異;然而,其通常將在本文所定義的範圍內,倘若儀器相似地進行校準。此外,應理解的是,去除所製備的化合物中的殘留溶劑也可能改變DSC起始溫度和峰溫度。
經調製的DSC(MDSC)是一種使用正弦溫度振盪的技術,所述正弦溫度振盪將總熱流分為反向分量和非反向分量。在測量熱容、結晶度和相變溫度時,它比DSC更精確。本領域的技術人員將理解各種因素(例如,沿儀器中的熱路徑的熱容、樣品內的溫度分佈以及樣品、樣品池和其固定板之間的熱接觸)對MDSC的穩態有影響,並因此導致測量誤差。因此,MDSC的玻璃化轉變溫度(Tg)的測量誤差為±10℃,並且在考慮本文包括的MDSC資料時,應考慮此類變化程度。
TGA是其中在樣本在空氣或如氮氣等受控氣氛中加熱時,記錄樣本的重量變化的測試程式。熱重曲線(熱譜圖)提供關於溶劑和水含量以及材料的熱穩定性的資訊。TGA熱譜圖示出與DSC相似的變化(約20℃的測量誤差),使得本領域的技術人員認識到,在判斷TGA熱譜圖的實質性身份時,應考慮測量誤差。
除非另有說明,否則“野生型ErbB”是指存在於自然環境中的執行ErbB的正常功能的正常ErbB家族成員。一方面,本公開提供了ErbB家族激酶(例如,HER2)的抑制性化合物。在一些實施方式中,本公開的化合物選擇性地抑制ErbB2(即,HER2),而不抑制其它ErbB家族激酶(例如,EGFR)。
在一些實施方式中,本公開的化合物可以抑制ErbB2的野生型(WT)形式和突變體形式兩者。如本文所使用的,術語“突變”是指ErbB2蛋白的任何突變,“突變體”或“突變形式”是指含有所述突變的蛋白質。ErbB2的示例性突變包括但不限於外顯子20 YVMA插入和p95截短的HER2。
在一些實施方式中,本公開的化合物抑制WT HER2的磷酸化的IC
50值為0.1-200 nM、0.1-150 nM、0.1-130 nM、0.1-120 nM、0.1-100 nM、0.1-50 nM、0.1-40 nM、0.1-30 nM、0.1-25 nM、0.1-20 nM、0.1-10 nM、0.5-200 nM、0.5-150 nM、0.5-130 nM、0.5-120 nM、0.5-100 nM、0.5-50 nM、0.5-40 nM、0.5-30 nM、0.5-25 nM、0.5-20 nM、0.5-10 nM、1-200 nM、1-150 nM、1-130 nM、1-120 nM、1-100 nM、1-50 nM、1-40 nM、1-30 nM、1-25 nM、1-20 nM、1-10 nM、2-200 nM、2-150 nM、2-130 nM、2-120 nM、2-100 nM、2-50 nM、2-40 nM、2-30 nM、2-25 nM、2-20 nM、2-10 nM、0.1-150 nM、0.1-130 nM、1-150 nM、1-130 nM、2-130 nM或2-150 nM。在一些實施方式中,本公開的化合物的IC
50值通過中尺度發現(MSD)測定來測量。
增殖抑制作用可以由“50%生長抑制濃度”(GI
50)值表示,其是指觀察到50%最大增殖抑制作用時化合物的濃度。GI
50值可以通過本領域已知的方法測量,例如比色法(MTS測定)。在一些實施方式中,如通過MTS所測量的,本公開的化合物抑制WT HER2和/或承載突變體HER2的細胞的GI
50值為0.1-200 nM、0.1-150 nM、0.1-130 nM、0.1-120 nM、0.1-100 nM、0.1-50 nM、0.1-40 nM、0.1-30 nM、0.1-20 nM、0.1-10 nM、1-200 nM、1-150 nM、1-130 nM、1-120 nM、1-100 nM、1-50 nM、1-40 nM、1-30 nM、1-20 nM、1-10 nM、2-200 nM、2-150 nM、2-130 nM、2-120 nM、2-100 nM、2-50 nM、2-40 nM、2-30 nM、2-25 nM、2-20 nM、2-10 nM、4-200 nM、4-150 nM、4-130 nM、4-120 nM、4-50 nM、4-40 nM、4-30 nM、4-20 nM、4-10 nM、更優選地0.1-150 nM、0.1-130 nM、1-150 nM、1-130 nM、2-150 nM、2-130 nM、4-150 nM或4-130 nM。
如本文所使用的,“選擇性地抑制”HER2意味著所提供的化合物作為WT(和/或突變體形式的)HER2的抑制劑的效力是其它類型的ErbB激酶(例如,EGFR)的效力的至少1000倍、至少500倍、至少200倍、至少100倍、至少50倍、至少45倍、至少40倍、至少35倍、至少30倍、至少25倍、至少20倍、至少15倍或至少10倍。在一些實施方式中,“選擇性地抑制”HER2意味著所提供的化合物作為HER2(WT和/或突變體形式)的抑制劑的效力是其它類型的ErbB激酶(例如,EGFR)的效力的至多1500倍、至多1200倍、至多1000倍、至多800倍、至多600倍、至多400倍、至多200倍、至多100倍、至多50倍。
在一些實施方式中,術語“不抑制”其它類型的ErbB激酶(例如,EGFR)意味著所提供的化合物抑制其它類型的IC
50為至少500 nΜ的ErbB激酶(例如,WT EGFR)。在一些實施方式中,此類化合物抑制其它類型的IC
50為至少10 μΜ、至少9 μΜ、至少8 μΜ、至少7 μΜ、至少6 μΜ、至少5 μΜ、至少3 μΜ、至少2 μΜ或至少1 μΜ的ErbB激酶。
在一些實施方式中,用於抑制WT-EGFR的化合物的IC
50和/或GI
50為用於抑制WT HER2的化合物的IC
50和/或GI
50的至少5倍、10倍、20倍、50倍、100倍、200倍、500倍、1000倍、優選地50倍、100倍、200倍、500倍或1000倍。
術語“藥物組合物”是指本公開的一種或多種化合物與其它化學組分,如藥學上可接受的稀釋劑、賦形劑或載體的混合物。藥物組合物的目的是促進化合物施用於物件。
如本文所使用的,術語“緩釋形式”(“sustained released form”)是指活性劑從藥物組合物中釋放,使得其變得可用於在對象體內,主要地,在對象的胃腸道中,在延長時間段內(延釋,extended release)內或在某一位置處(控釋,controlled release)生物吸收。
如本文所使用的,術語“藥學上可接受的載體”是指將本文提供的化合物從一個位置、體液、組織、器官(內部或外部)或身體的一部分載運或運輸到另一位置、體液、組織、器官或身體的一部分所涉及的藥學上可接受的材料、組合物或媒劑,如液體或固體填充劑、稀釋劑、賦形劑、溶劑或封裝材料。藥學上可接受的載體可以是可以用於接觸動物的組織,而無過量毒性或副作用的媒劑、稀釋劑、賦形劑或其它材料。藥學上可接受的載體的非限制性實例包括糖,如乳糖、葡萄糖和蔗糖;澱粉,如玉米澱粉和馬鈴薯澱粉;纖維素和其衍生物,如羧甲基纖維素鈉、乙基纖維素和乙酸纖維素;粉末狀黃芪;麥芽;明膠;滑石;可哥脂和栓劑蠟;油,如花生油、棉籽油、紅花油、芝麻油、橄欖油、玉米油和大豆油;二醇,如聚乙二醇和丙二醇;酯,如油酸乙酯和月桂酸乙酯;瓊脂;緩衝劑,如氫氧化鎂和氫氧化鋁;海藻酸;等滲鹽水;林格氏溶液(Ringer's solution);乙醇;磷酸鹽緩衝溶液;無毒相容性潤滑劑,如月桂基硫酸鈉和硬脂酸鎂;著色劑;脫模劑;塗層劑;甜味劑、調味劑和芳香劑;防腐劑;抗氧化劑;離子交換劑;氧化鋁;硬脂酸鋁;卵磷脂;自乳化藥物遞送系統(SEDDS),如d-α-生育酚聚乙二醇1000琥珀酸酯;藥物劑型中使用的表面活性劑,如Tween或其它類似的聚合物遞送基質;血清蛋白,如人血清白蛋白;甘胺酸;山梨酸;山梨酸鉀;飽和植物脂肪酸的偏甘油酯混合物;水、鹽或電解質,如硫酸魚精蛋白、磷酸氫二鈉、磷酸氫鉀、氯化鈉和鋅鹽;膠態二氧化矽;三矽酸鎂;聚乙烯吡咯烷酮;基於纖維素的物質;聚丙烯酸酯;蠟;以及聚乙烯-聚氧丙烯-嵌段聚合物。還可以使用如α-、β-和γ-環糊精等環糊精或如羥烷基環糊精等經化學修飾的衍生物,包括2-和3-羥丙基-環糊精,或其它溶解的衍生物以增強本文所描述的化合物的遞送。可以在本公開中使用的藥學上可接受的載體包括本領域公知的那些載體,如在“雷明頓藥物科學(Remington Pharmaceutical Sciences)”新澤西州馬克出版公司(Mack Pub. Co., New Jersey) (1991)中公開的那些載體,所述文獻通過引用併入本文。
如本文所使用的,所公開的化合物的“施用”涵蓋使用如本文討論的任何合適的製劑或施用途徑向物件遞送本文所述的化合物或其前藥或其它藥學上可接受的衍生物。
術語“有效量”或“治療有效量”是指足以預防、治療、減少和/或改善物件的任何病症或疾病的症狀和/或潛在病因的本文所描述的化合物或藥物組合物的量或足以對靶細胞產生期望的效果,例如,減少細胞遷移的藥劑的量。在一個實施方式中,“治療有效量”是指足以減少或消除疾病的症狀的量。在另一個實施方式中,治療有效量是足以克服疾病本身的量。在某些具體實施方式中,“治療有效量”是用於可檢測地殺死或抑制癌細胞的生長或擴散;減少腫瘤的大小或數量;或癌症水準、階段、進展或嚴重程度的其它量度的有效量。治療有效量將根據所治療的物件和病狀、物件的體重和年齡、病狀的嚴重程度、所選擇的特定組合物或賦形劑、所遵循的給藥方案、施用時間、施用方式等而變化,所有這些都可以由本領域的普通技術人員容易地確定。完全治療效果不一定通過施用一個劑量發生,並且可以在僅施用一系列劑量之後發生。具體劑量將根據例如所選擇的特定化合物、物件的物種以及其年齡/現有健康狀況或健康狀況的風險、所遵循的給藥方案、疾病的嚴重程度、所述特定化合物是否與其它藥劑組合施用、施用時間、特定化合物所施用的組織以及其被承載的物理遞送系統而變化。因此,治療有效量可以以一次或多次施用的形式施用。例如但不限於,在治療癌症的背景下,藥劑的治療有效量是指減輕、改善、緩解或消除患者的癌症的一種或多種症狀的藥劑的量。
如本文所使用的,術語“治療(treatment)”、“治療(treat)”和“治療(treating)”是指逆轉、緩解、延遲如本文所述的疾病或病症或所述疾病或病狀的一種或多種症狀的發作或抑制其進展。在一些實施方式中,可以在產生一種或多種症狀後施用治療。在其它實施方式中,可以在不存在症狀的情況下施用治療。例如,可以在症狀發作之前(例如,根據症狀歷史和/或根據遺傳或其它易感因素)向易感個體施用治療。還可以在症狀消退後繼續治療,例如以呈現或延緩其復發。
如本文所使用的,“抗癌劑”、“抗腫瘤劑”或“化療劑”是指任何可用於治療贅生物病狀的藥劑。一種類別的抗癌劑包括化學治療劑。“化療”是指通過各種方法向癌症患者施用一種或多種化療藥物和/或其它藥劑,包括靜脈內、口服、肌肉內、腹膜內、膀胱內、皮下、經皮、頰或吸入或以栓劑的形式。
考慮施用的術語“物件”包括但不限於人類(即,任何年齡組的男性或女性,例如,兒科對象(例如,嬰兒、兒童、青少年)或成人對象(例如,青年、中年或老年))和/或其它靈長類動物(例如,食蟹猴、恆河猴);哺乳動物,包括商業上相關的哺乳動物,如牛、豬、馬、綿羊、山羊、兔、倉鼠、小鼠、貓和/或狗;和/或禽類,包括,如雞、鴨、鵝、鵪鶉和/或火雞。
化合物 I 以及其藥學鹽WO 2019214634A1中描述的化合物(S)-N-(4-([1,2,4]三唑並[1,5-a]吡啶-7-基氧基)-3-甲基苯基)-5-((3,3-二氟-1-甲基呱啶-4-基)氧基)-7-甲氧基喹唑啉-4-胺(化合物I)是強效的ErbB抑制劑並且具有以下結構:
化合物I
一方面,本公開提供了化合物I的新藥學鹽。
在一些實施方式中,本文所提供的化合物I的藥學鹽選自:化合物I的鹽酸鹽、硫酸鹽、磷酸鹽、馬來酸鹽、富馬酸鹽、草酸鹽、對甲苯磺酸鹽、琥珀酸鹽、L-(+)-酒石酸鹽、單己二酸鹽、半己二酸鹽。
在某些實施方式中,化合物I的藥學鹽是單鹽。在某些實施方式中,化合物I的藥學鹽呈無定形形式。在某些實施方式中,化合物I的所述藥學鹽呈結晶形式。在某些實施方式中,化合物I的藥學鹽是呈結晶形式的鹽酸鹽、硫酸鹽、磷酸鹽、馬來酸鹽、富馬酸鹽、草酸鹽、對甲苯磺酸鹽、琥珀酸鹽、L-(+)-酒石酸鹽、單己二酸鹽、半己二酸鹽。
結晶形式的表徵一方面,本公開提供了化合物I或其藥學上可接受的鹽的若干種多晶型結晶形式。
一方面,本公開提供了化合物I的結晶形式,具體地,化合物I的形式A、形式B、形式C或形式D。另一方面,本公開提供了化合物I的藥學上可接受的鹽的結晶形式,具體地,化合物I的鹽酸鹽的結晶形式、化合物I的硫酸鹽的結晶形式、化合物I的磷酸鹽的結晶形式、化合物I的馬來酸鹽的結晶形式、化合物I的富馬酸鹽的結晶形式、化合物I的草酸鹽的結晶形式、化合物I的對甲苯磺酸鹽的結晶形式、化合物I的琥珀酸鹽的結晶形式、化合物I的L-(+)-酒石酸鹽的結晶形式、化合物I的單己二酸鹽的結晶形式、化合物I的半己二酸鹽的結晶形式。
1. 化合物 I 的形式 A在一些實施方式中,公開了一種化合物I(游離鹼)的結晶形式,所述結晶形式是化合物I的結晶形式A。
在一些實施方式中,化合物I的形式A具有X射線粉末衍射(XRPD)圖,所述XRPD圖包括在7.09 ± 0.20°、15.15 ± 0.20°和21.55 ± 0.20°的衍射角(2θ)值處的峰。
在一些實施方式中,化合物I的形式A具有XRPD圖,所述XRPD圖包括在7.09 ± 0.20°、11.92 ± 0.20°、15.15 ± 0.20°和21.55 ± 0.20°的2θ處的峰。
在一些實施方式中,化合物I的形式A具有XRPD圖,所述XRPD圖包括在7.09 ± 0.20°、15.15 ± 0.20°、21.55 ± 0.20°和23.93 ± 0.20°的2θ處的峰。
在一些實施方式中,化合物I的形式A具有XRPD圖,所述XRPD圖包括在7.09 ± 0.20°、11.92 ± 0.20°、15.15 ± 0.20°、21.55 ± 0.20°和23.93 ± 0.20°的2θ處的峰。
在一些實施方式中,化合物I的形式A具有XRPD圖,所述XRPD圖包括在6.45 ± 0.20°、7.09 ± 0.20°、11.92 ± 0.20°、15.15 ± 0.20°、21.55 ± 0.20°和23.93 ± 0.20°的2θ處的峰。
在一些實施方式中,化合物I的形式A具有XRPD圖,所述XRPD圖包括在7.09 ± 0.20°、11.92 ± 0.20°、15.15 ± 0.20°、17.85 ± 0.20°、21.55 ± 0.20°和23.93 ± 0.20°的2θ處的峰。
在一些實施方式中,化合物I的形式A具有XRPD圖,所述XRPD圖包括在6.45 ± 0.20°、7.09 ± 0.20°、11.92 ± 0.20°、15.15 ± 0.20°、17.85 ± 0.20°、21.55 ± 0.20°和23.93 ± 0.20°的2θ處的峰。
在一些實施方式中,化合物I的形式A具有XRPD圖,所述XRPD圖包括至少七個或更多個(例如,八個、九個或十個)在選自以下的2θ處的峰:6.45 ± 0.20°、7.09 ± 0.20°、11.92 ± 0.20°、14.19 ± 0.20°、15.15 ± 0.20°、17.85 ± 0.20°、18.94 ± 0.20°、21.55 ± 0.20°、23.93 ± 0.20°和26.86 ± 0.20°。
在一些實施方式中,化合物I的形式A具有XRPD圖,所述XRPD圖包括在6.45 ± 0.20°、7.09 ± 0.20°、11.92 ± 0.20°、14.19 ± 0.20°、15.15 ± 0.20°、17.85 ± 0.20°、18.94 ± 0.20°、21.55 ± 0.20°、23.93 ± 0.20°和26.86 ± 0.20°的2θ處的峰。
在一些實施方式中,化合物I的形式A具有XRPD圖,所述XRPD圖包括至少十個或更多個(例如,11個、12個、13個、14個或15個)在選自以下的2θ處的峰:6.45 ± 0.20°、7.09 ± 0.20°、10.75 ± 0.20°、11.32 ± 0.20°、11.92 ± 0.20°、12.88 ± 0.20°、14.19 ± 0.20°、15.15 ± 0.20°、17.85 ± 0.20°、18.94 ± 0.20°、20.79 ± 0.20°、21.55 ± 0.20°、23.93 ± 0.20°、25.69 ± 0.20°和26.86 ± 0.20°。
在一些實施方式中,化合物I的形式A具有XRPD圖,所述XRPD圖包括在6.45 ± 0.20°、7.09 ± 0.20°、10.75 ± 0.20°、11.32 ± 0.20°、11.92 ± 0.20°、12.88 ± 0.20°、14.19 ± 0.20°、15.15 ± 0.20°、17.85 ± 0.20°、18.94 ± 0.20°、20.79 ± 0.20°、21.55 ± 0.20°、23.93 ± 0.20°、25.69 ± 0.20°和26.86 ± 0.20°的2θ處的峰。
在一些實施方式中,化合物I的形式A具有與表7中所示的XRPD資料基本上類似的XRPD圖。
在一些實施方式中,化合物I的形式A具有與圖11中所示的XRPD圖基本上類似的XRPD圖。
在一些實施方式中,化合物I的形式A具有DSC熱譜圖,所述DSC熱譜圖包括吸熱,具有在約199.5℃處的起始點和在約201.5℃處的峰。
在一些實施方式中,化合物I的形式A具有與圖13中所示的DSC熱譜圖基本上類似的DSC熱譜圖。
在一些實施方式中,化合物I的形式A具有TGA熱譜圖,所述TGA熱譜圖表現出在從約30℃加熱到約120℃時,約0.02%的品質損失。
在一些實施方式中,化合物I的形式A具有與圖12中所示的TGA熱譜圖基本上類似的TGA熱譜圖。
在一些實施方式中,化合物I的形式A具有與圖14中所示的DVS蒸汽吸附圖基本上類似的DVS蒸汽吸附圖。
2. 化合物 I 的形式 B在一些實施方式中,公開了一種化合物I(游離鹼)的結晶形式,所述結晶形式是化合物I的結晶形式B。
在一些實施方式中,化合物I的形式B具有XRPD圖,所述XRPD圖包括在7.42 ± 0.20°、13.21 ± 0.20°和19.24 ± 0.20°的2θ處的峰。
在一些實施方式中,化合物I的形式B具有XRPD圖,所述XRPD圖包括在6.62 ± 0.20°、7.42 ± 0.20°、13.21 ± 0.20°和19.24 ± 0.20°的2θ處的峰。
在一些實施方式中,化合物I的形式B具有XRPD圖,所述XRPD圖包括在7.17 ± 0.20°、7.42 ± 0.20°、13.21 ± 0.20°和19.24 ± 0.20°的2θ處的峰。
在一些實施方式中,化合物I的形式B具有XRPD圖,所述XRPD圖包括在6.62 ± 0.20°、7.17 ± 0.20°、7.42 ± 0.20°、13.21 ± 0.20°和19.24 ± 0.20°的2θ處的峰。
在一些實施方式中,化合物I的形式B具有XRPD圖,所述XRPD圖包括在6.62 ± 0.20°、7.17 ± 0.20°、7.42 ± 0.20°、13.21 ± 0.20°、14.25 ± 0.20°和19.24 ± 0.20°的2θ處的峰。
在一些實施方式中,化合物I的形式B具有XRPD圖,所述XRPD圖包括在6.62 ± 0.20°、7.17 ± 0.20°、7.42 ± 0.20°、13.21 ± 0.20°、17.94 ± 0.20°和19.24 ± 0.20°的2θ處的峰。
在一些實施方式中,化合物I的形式B具有XRPD圖,所述XRPD圖包括在6.62 ± 0.20°、7.17 ± 0.20°、7.42 ± 0.20°、13.21 ± 0.20°、14.25 ± 0.20°、17.94 ± 0.20°和19.24 ± 0.20°的2θ處的峰。
在一些實施方式中,化合物I的形式B具有XRPD圖,所述XRPD圖包括至少七個或更多個(例如,八個、九個或十個)在選自以下的2θ處的峰:6.62 ± 0.20°、7.17 ± 0.20°、7.42 ± 0.20°、11.61 ± 0.20°、13.21 ± 0.20°、14.25 ± 0.20°、16.89 ± 0.20°、17.94 ± 0.20°、19.24 ± 0.20°和21.89 ± 0.20°。
在一些實施方式中,化合物I的形式B具有XRPD圖,所述XRPD圖包括在6.62 ± 0.20°、7.17 ± 0.20°、7.42 ± 0.20°、11.61 ± 0.20°、13.21 ± 0.20°、14.25 ± 0.20°、16.89 ± 0.20°、17.94 ± 0.20°、19.24 ± 0.20°和21.89 ± 0.20°的2θ處的峰。
在一些實施方式中,化合物I的形式B具有XRPD圖,所述XRPD圖包括至少十個或更多個(例如,11個、12個、13個、14個或15個)在選自以下的2θ處的峰:6.62 ± 0.20°、7.17 ± 0.20°、7.42 ± 0.20°、11.61 ± 0.20°、13.21 ± 0.20°、13.92 ± 0.20°、14.25 ± 0.20°、16.89 ± 0.20°、17.24 ± 0.20°、17.94 ± 0.20°、19.24 ± 0.20°、21.89 ± 0.20°、27.21 ± 0.20°、27.35 ± 0.20°和27.87 ± 0.20°。
在一些實施方式中,化合物I的形式B具有XRPD圖,所述XRPD圖包括在6.62 ± 0.20°、7.17 ± 0.20°、7.42 ± 0.20°、11.61 ± 0.20°、13.21 ± 0.20°、13.92 ± 0.20°、14.25 ± 0.20°、16.89 ± 0.20°、17.24 ± 0.20°、17.94 ± 0.20°、19.24 ± 0.20°、21.89 ± 0.20°、27.21 ± 0.20°、27.35 ± 0.20°和27.87 ± 0.20°的2θ處的峰。
在一些實施方式中,化合物I的形式B具有與表8中所示的XRPD資料基本上類似的XRPD圖。
在一些實施方式中,化合物I的形式B具有與圖15中所示的XRPD圖基本上類似的XRPD圖。
在一些實施方式中,化合物I的形式B具有DSC熱譜圖,所述DSC熱譜圖包括三個吸熱轉變其起始點和峰溫度分別為116.3℃和125.4℃、182.4℃和187.5℃、199.2℃和200.3℃。
在一些實施方式中,化合物I的形式B具有與圖16中所示的DSC熱譜圖基本上類似的DSC熱譜圖。
在一些實施方式中,化合物I的形式B具有TGA熱譜圖,所述TGA熱譜圖表現出在從約30℃加熱到約100℃時,少於1.68%的品質損失。
在一些實施方式中,化合物I的形式B具有與圖16中所示的TGA熱譜圖基本上類似的TGA熱譜圖。
3. 化合物 I 的形式 C在一些實施方式中,公開了一種化合物I(游離鹼)的結晶形式,所述結晶形式是化合物I的結晶形式C。
在一些實施方式中,化合物I的形式C具有XRPD圖,所述XRPD圖包括在5.95 ± 0.20°、8.58 ± 0.20°和19.56 ± 0.20°的2θ處的峰。
在一些實施方式中,化合物I的形式C具有XRPD圖,所述XRPD圖包括在5.95 ± 0.20°、8.58 ± 0.20°、11.89 ± 0.20°和19.56 ± 0.20°的2θ處的峰。
在一些實施方式中,化合物I的形式C具有XRPD圖,所述XRPD圖包括在5.95 ± 0.20°、8.58 ± 0.20°、13.75 ± 0.20°和19.56 ± 0.20°的2θ處的峰。
在一些實施方式中,化合物I的形式C具有XRPD圖,所述XRPD圖包括在5.95 ± 0.20°、8.58 ± 0.20°、11.89 ± 0.20°、13.75 ± 0.20°和19.56 ± 0.20°的2θ處的峰。
在一些實施方式中,化合物I的形式C具有XRPD圖,所述XRPD圖包括在5.95 ± 0.20°、8.58 ± 0.20°、11.89 ± 0.20°、12.39 ± 0.20°、13.75 ± 0.20°和19.56 ± 0.20°的2θ處的峰。
在一些實施方式中,化合物I的形式C具有XRPD圖,所述XRPD圖包括在5.95 ± 0.20°、8.58 ± 0.20°、11.89 ± 0.20°、13.40 ± 0.20°、13.75 ± 0.20°和19.56 ± 0.20°的2θ處的峰。
在一些實施方式中,化合物I的形式C具有XRPD圖,所述XRPD圖包括在5.95 ± 0.20°、8.58 ± 0.20°、11.89 ± 0.20°、12.39 ± 0.20°、13.40 ± 0.20°、13.75 ± 0.20°和19.56 ± 0.20°的2θ處的峰。
在一些實施方式中,化合物I的形式C具有XRPD圖,所述XRPD圖包括至少七個或更多個(例如,八個、九個或十個)在選自以下的2θ處的峰:5.95 ± 0.20°、8.58 ± 0.20°、11.89 ± 0.20°、12.39 ± 0.20°、13.40 ± 0.20°、13.75 ± 0.20°、17.23 ± 0.20°、18.91 ± 0.20°、19.56 ± 0.20°和23.51 ± 0.20°。
在一些實施方式中,化合物I的形式C具有XRPD圖,所述XRPD圖包括在5.95 ± 0.20°、8.58 ± 0.20°、11.89 ± 0.20°、12.39 ± 0.20°、13.40 ± 0.20°、13.75 ± 0.20°、17.23 ± 0.20°、18.91 ± 0.20°、19.56 ± 0.20°和23.51 ± 0.20°的2θ處的峰。
在一些實施方式中,化合物I的形式C具有XRPD圖,所述XRPD圖包括至少十個或更多個(例如,11個、12個、13個、14個或15個)在選自以下的2θ處的峰:5.95 ± 0.20°、8.58 ± 0.20°、11.89 ± 0.20°、12.39 ± 0.20°、13.40 ± 0.20°、13.75 ± 0.20°、15.54 ± 0.20°、15.90 ± 0.20°、17.23 ± 0.20°、18.91 ± 0.20°、19.56 ± 0.20°、23.51 ± 0.20°、24.91 ± 0.20°、25.29 ± 0.20°和25.55 ± 0.20°。
在一些實施方式中,化合物I的形式C具有XRPD圖,所述XRPD圖包括在5.95 ± 0.20°、8.58 ± 0.20°、11.89 ± 0.20°、12.39 ± 0.20°、13.40 ± 0.20°、13.75 ± 0.20°、15.54 ± 0.20°、15.90 ± 0.20°、17.23 ± 0.20°、18.91 ± 0.20°、19.56 ± 0.20°、23.51 ± 0.20°、24.91 ± 0.20°、25.29 ± 0.20°和25.55 ± 0.20°的2θ處的峰。
在一些實施方式中,化合物I的形式C具有與表9中所示的XRPD資料基本上類似的XRPD圖。
在一些實施方式中,化合物I的形式C具有與圖17中所示的XRPD圖基本上類似的XRPD圖。
在一些實施方式中,化合物I的形式C具有DSC熱譜圖,所述DSC熱譜圖包括吸熱,具有約193.8℃處的去溶劑化起始點和在約194.6℃處的峰。
在一些實施方式中,化合物I的形式C具有與圖18中所示的DSC熱譜圖基本上類似的DSC熱譜圖。
在一些實施方式中,化合物I的形式C具有TGA熱譜圖,所述TGA熱譜圖表現出在從約30℃加熱到約180℃時,少於0.70%的品質損失。
在一些實施方式中,化合物I的形式C具有與圖18中所示的TGA熱譜圖基本上類似的TGA熱譜圖。
4. 化合物 I 的形式 D在一些實施方式中,公開了一種化合物I(游離鹼)的結晶形式,所述結晶形式是化合物I的結晶形式D。
在一些實施方式中,化合物I的形式D具有XRPD圖,所述XRPD圖包括在6.85 ± 0.20°、14.81 ± 0.20°和21.38 ± 0.20°的2θ處的峰。
在一些實施方式中,化合物I的形式D具有XRPD圖,所述XRPD圖包括在6.85 ± 0.20°、13.71 ± 0.20°、14.81 ± 0.20°和21.38 ± 0.20°的2θ處的峰。
在一些實施方式中,化合物I的形式D具有XRPD圖,所述XRPD圖包括在6.85 ± 0.20°、14.81 ± 0.20°、17.69 ± 0.20°和21.38 ± 0.20°的2θ處的峰。
在一些實施方式中,化合物I的形式D具有XRPD圖,所述XRPD圖包括在6.85 ± 0.20°、13.71 ± 0.20°、14.81 ± 0.20°、17.69 ± 0.20°和21.38 ± 0.20°的2θ處的峰。
在一些實施方式中,化合物I的形式D具有XRPD圖,所述XRPD圖包括在6.85 ± 0.20°、11.13 ± 0.20°、13.71 ± 0.20°、14.81 ± 0.20°、17.69 ± 0.20°和21.38 ± 0.20°的2θ處的峰。
在一些實施方式中,化合物I的形式D具有XRPD圖,所述XRPD圖包括在6.85 ± 0.20°、13.71 ± 0.20°、14.81 ± 0.20°、17.69 ± 0.20°、21.38 ± 0.20°和23.49 ± 0.20°的2θ處的峰。
在一些實施方式中,化合物I的形式D具有XRPD圖,所述XRPD圖包括在6.85 ± 0.20°、11.13 ± 0.20°、13.71 ± 0.20°、14.81 ± 0.20°、17.69 ± 0.20°、21.38 ± 0.20°和23.49 ± 0.20°的2θ處的峰。
在一些實施方式中,化合物I的形式D具有XRPD圖,所述XRPD圖包括至少七個或更多個(例如,八個、九個、十個或十一個)在選自以下的2θ處的峰:6.85 ± 0.20°、11.13 ± 0.20°、13.07 ± 0.20°、13.71 ± 0.20°、14.81 ± 0.20°、15.08 ± 0.20°、17.69 ± 0.20°、18.37 ± 0.20°、21.38 ± 0.20°、21.67 ± 0.20°和23.49 ± 0.20°。
在一些實施方式中,化合物I的形式D具有XRPD圖,所述XRPD圖包括在6.85 ± 0.20°、11.13 ± 0.20°、13.07 ± 0.20°、13.71 ± 0.20°、14.81 ± 0.20°、15.08 ± 0.20°、17.69 ± 0.20°、18.37 ± 0.20°、21.38 ± 0.20°、21.67 ± 0.20°和23.49 ± 0.20°的2θ處的峰。
在一些實施方式中,化合物I的形式D具有XRPD圖,所述XRPD圖包括至少11個或更多個(例如,12個、13個、14個或15個)在選自以下的2θ處的峰:6.85 ± 0.20°、11.13 ± 0.20°、13.07 ± 0.20°、13.71 ± 0.20°、14.81 ± 0.20°、15.08 ± 0.20°、17.69 ± 0.20°、18.37 ± 0.20°、21.38 ± 0.20°、21.67 ± 0.20°、22.25 ± 0.20°、23.49 ± 0.20°、24.65 ± 0.20°、26.69 ± 0.20°和28.60 ± 0.20°。
在一些實施方式中,化合物I的形式D具有XRPD圖,所述XRPD圖包括在6.85 ± 0.20°、11.13 ± 0.20°、13.07 ± 0.20°、13.71 ± 0.20°、14.81 ± 0.20°、15.08 ± 0.20°、17.69 ± 0.20°、18.37 ± 0.20°、21.38 ± 0.20°、21.67 ± 0.20°、22.25 ± 0.20°、23.49 ± 0.20°、24.65 ± 0.20°、26.69 ± 0.20°和28.60 ± 0.20°的2θ處的峰。
在一些實施方式中,化合物I的形式D具有與表10中所示的XRPD資料基本上類似的XRPD圖。
在一些實施方式中,化合物I的形式D具有與圖19中所示的XRPD圖基本上類似的XRPD圖。
在一些實施方式中,化合物I的形式D具有DSC熱譜圖,所述DSC熱譜圖包括兩個吸熱轉變,其起始點和峰溫度分別為186.9℃和190.5℃、199.5℃和200.4℃。
在一些實施方式中,化合物I的形式D具有與圖20中所示的DSC熱譜圖基本上類似的DSC熱譜圖。
在一些實施方式中,化合物I的形式D具有TGA熱譜圖,所述TGA熱譜圖表現出在從約30℃加熱到約100℃時,少於0.67%的品質損失。
在一些實施方式中,化合物I的形式D具有與圖20中所示的TGA熱譜圖基本上類似的TGA熱譜圖。
5. 化合物 I 的富馬酸鹽的結晶形式在一些實施方式中,公開了一種化合物I的藥學上可接受的鹽的結晶形式,所述結晶形式是化合物I的富馬酸鹽的結晶形式。
在一些實施方式中,化合物I的富馬酸鹽的結晶形式具有XRPD圖,所述XRPD圖包括在5.98 ± 0.20°、10.02 ± 0.20°和16.47 ± 0.20°的2θ處的峰。
在一些實施方式中,化合物I的富馬酸鹽的結晶形式具有XRPD圖,所述XRPD圖包括在5.98 ± 0.20°、10.02 ± 0.20°、15.36 ± 0.20°和16.47 ± 0.20°的2θ處的峰。
在一些實施方式中,化合物I的富馬酸鹽的結晶形式具有XRPD圖,所述XRPD圖包括在5.98 ± 0.20°、10.02 ± 0.20°、16.47 ± 0.20°和25.17 ± 0.20°的2θ處的峰。
在一些實施方式中,化合物I的富馬酸鹽的結晶形式具有XRPD圖,所述XRPD圖包括在5.98 ± 0.20°、10.02 ± 0.20°、15.36 ± 0.20°、16.47 ± 0.20°和25.17 ± 0.20°的2θ處的峰。
在一些實施方式中,化合物I的富馬酸鹽的結晶形式具有XRPD圖,所述XRPD圖包括在5.98 ± 0.20°、10.02 ± 0.20°、15.36 ± 0.20°、16.47 ± 0.20°、17.30 ± 0.20°和25.17 ± 0.20°的2θ處的峰。
在一些實施方式中,化合物I的富馬酸鹽的結晶形式具有XRPD圖,所述XRPD圖包括在5.98 ± 0.20°、10.02 ± 0.20°、15.36 ± 0.20°、16.47 ± 0.20°、20.32 ± 0.20°和25.17 ± 0.20°的2θ處的峰。
在一些實施方式中,化合物I的富馬酸鹽的結晶形式具有XRPD圖,所述XRPD圖包括在5.98 ± 0.20°、10.02 ± 0.20°、15.36 ± 0.20°、16.47 ± 0.20°、17.30 ± 0.20°、20.32 ± 0.20°和25.17 ± 0.20°的2θ處的峰。
在一些實施方式中,化合物I的富馬酸鹽的結晶形式具有XRPD圖,所述XRPD圖包括至少七個或更多個(例如,八個、九個或十個)在5.98 ± 0.20°、8.49 ± 0.20°、10.02 ± 0.20°、10.70 ± 0.20°、15.36 ± 0.20°、16.47 ± 0.20°、17.30 ± 0.20°、20.32 ± 0.20°、25.17 ± 0.20°和25.80 ± 0.20°的2θ處的峰。
在一些實施方式中,化合物I的富馬酸鹽的結晶形式具有XRPD圖,所述XRPD圖包括在5.98 ± 0.20°、8.49 ± 0.20°、10.02 ± 0.20°、10.70 ± 0.20°、15.36 ± 0.20°、16.47 ± 0.20°、17.30 ± 0.20°、20.32 ± 0.20°、25.17 ± 0.20°和25.80 ± 0.20°的2θ處的峰。
在一些實施方式中,化合物I的富馬酸鹽的結晶形式具有XRPD圖,所述XRPD圖包括至少十個或更多個(例如,11個、12個、13個、14個或15個)在選自以下的2θ處的峰:5.42 ± 0.20°、5.98 ± 0.20°、6.56 ± 0.20°、8.49 ± 0.20°、10.02 ± 0.20°、10.70 ± 0.20°、12.49 ± 0.20°、15.36 ± 0.20°、16.47 ± 0.20°、17.30 ± 0.20°、20.32 ± 0.20°、25.17 ± 0.20°、25.80 ± 0.20°和27.45 ± 0.20°。
在一些實施方式中,化合物I的富馬酸鹽的結晶形式具有XRPD圖,所述XRPD圖包括在5.42 ± 0.20°、5.98 ± 0.20°、6.56 ± 0.20°、8.49 ± 0.20°、10.02 ± 0.20°、10.70 ± 0.20°、12.49 ± 0.20°、15.36 ± 0.20°、16.47 ± 0.20°、17.30 ± 0.20°、20.32 ± 0.20°、25.17 ± 0.20°、25.80 ± 0.20°和27.45 ± 0.20°的2θ處的峰。
在一些實施方式中,化合物I的富馬酸鹽的結晶形式具有與表14中所示的XRPD圖基本上類似的XRPD圖。
在一些實施方式中,化合物I的富馬酸鹽的結晶形式具有與圖21或圖22中所示的XRPD圖基本上類似的XRPD圖。
在一些實施方式中,化合物I的富馬酸鹽的結晶形式具有DSC熱譜圖,所述DSC熱譜圖包括吸熱,具有在約162.8℃處的起始點和在約169.8℃處的峰。
在一些實施方式中,化合物I的富馬酸鹽的結晶形式具有與圖23的DSC熱譜圖基本上類似的DSC熱譜圖。
在一些實施方式中,化合物I的富馬酸鹽的結晶形式具有TGA熱譜圖,所述TGA熱譜圖表現出在從約40℃加熱到約110℃時,約0.70%的品質損失。
在一些實施方式中,化合物I的富馬酸鹽的結晶形式具有與圖24的TGA熱譜圖基本上類似的TGA熱譜圖。
在一些實施方式中,化合物I的富馬酸鹽的結晶形式具有與圖25的DVS蒸汽吸附圖基本上類似的DVS蒸汽吸附圖。
6. 化合物 I 的半琥珀酸鹽的結晶形式在一些實施方式中,化合物I的半琥珀酸鹽的結晶形式具有與圖26中所示的XRPD圖基本上類似的XRPD圖。
在一些實施方式中,化合物I的半琥珀酸鹽的結晶形式具有DSC熱譜圖,所述DSC熱譜圖包括吸熱,具有在約173.9℃處的起始點和在約184.3℃處的峰。
在一些實施方式中,化合物I的半琥珀酸鹽的結晶形式具有與圖27的DSC熱譜圖基本上類似的DSC熱譜圖。
在一些實施方式中,化合物I的半琥珀酸鹽的結晶形式具有TGA熱譜圖,所述TGA熱譜圖表現出在從約30℃加熱到約125℃時,約4.10%的品質損失。
在一些實施方式中,化合物I的半琥珀酸鹽的結晶形式具有與圖28的TGA熱譜圖基本上類似的TGA熱譜圖。
在一些實施方式中,化合物I的半琥珀酸鹽的結晶形式具有與圖29的DVS蒸汽吸附圖基本上類似的DVS蒸汽吸附圖。
7. 化合物 I 的鹽酸鹽的結晶形式在一些實施方式中,化合物I的鹽酸鹽的結晶形式具有DSC熱譜圖,所述DSC熱譜圖包括吸熱,具有在約220.8℃處的起始點和在約227.6℃處的峰。
在一些實施方式中,化合物I的鹽酸鹽的結晶形式具有TGA熱譜圖,所述TGA熱譜圖表現出在從約40℃加熱到約150℃時,約0.26%的品質損失。
在一些實施方式中,化合物I的鹽酸鹽的結晶形式具有與圖30的DSC熱譜圖和TGA熱譜圖基本上類似的DSC熱譜圖和TGA熱譜圖。
在一些實施方式中,化合物I的鹽酸鹽的結晶形式具有與圖31的DVS蒸汽吸附圖基本上類似的DVS蒸汽吸附圖。
8. 化合物 I 的磷酸鹽的結晶形式在一些實施方式中,化合物I的磷酸鹽的結晶形式具有與圖32中所示的XRPD圖基本上類似的XRPD圖。
在一些實施方式中,化合物I的磷酸鹽的結晶形式具有DSC熱譜圖,所述DSC熱譜圖包括四個吸熱,具有在約30.8℃處的起始點和在約50.1℃處的峰、在約145.5℃處的起始點和在約149.1℃處的峰、在約191.1℃處的起始點和在約195.5℃處的峰,以及在約213.2℃處的起始點和在約239.0℃處的峰。
在一些實施方式中,化合物I的磷酸鹽的結晶形式具有TGA熱譜圖,所述TGA熱譜圖表現出在從約30℃加熱到約200℃時,約4.66%的品質損失。
在一些實施方式中,化合物I的磷酸鹽的結晶形式具有與圖33的DSC熱譜圖和TGA熱譜圖基本上類似的DSC熱譜圖和TGA熱譜圖。
在一些實施方式中,化合物I的磷酸鹽的結晶形式具有與圖34的DVS蒸汽吸附圖基本上類似的DVS蒸汽吸附圖。
9. 化合物 I 的硫酸鹽的結晶形式在一些實施方式中,化合物I的硫酸鹽的結晶形式具有與圖35中所示的XRPD圖基本上類似的XRPD圖。
在一些實施方式中,化合物I的硫酸鹽的結晶形式具有DSC熱譜圖,所述DSC熱譜圖包括三個吸熱,具有在約34.5℃處的起始點和在約57.3℃處的峰、在約157.5℃處的起始點和在約169.4℃處的峰,以及在約227.6℃處的起始點並在約247.4℃處的峰。
在一些實施方式中,化合物I的硫酸鹽的結晶形式具有TGA熱譜圖,所述TGA熱譜圖表現出在從約30℃加熱到約200℃時,約5.47%的品質損失。
在一些實施方式中,化合物I的硫酸鹽的結晶形式具有與圖36的DSC熱譜圖和TGA熱譜圖基本上類似的DSC熱譜圖和TGA熱譜圖。
在一些實施方式中,化合物I的硫酸鹽的結晶形式具有與圖37的DVS蒸汽吸附圖基本上類似的DVS蒸汽吸附圖。
10. 化合物 I 的半己二酸鹽的結晶形式在一些實施方式中,公開了一種化合物I的藥學上可接受的鹽的結晶形式,所述結晶形式是化合物I的半己二酸鹽的結晶形式。
在一些實施方式中,化合物I的半己二酸鹽的結晶形式具有XRPD圖,所述XRPD圖包括在8.49 ± 0.20°、9.30 ± 0.20°和24.93 ± 0.20°的2θ處的峰。
在一些實施方式中,化合物I的半己二酸鹽的結晶形式具有XRPD圖,所述XRPD圖包括在8.49 ± 0.20°、9.30 ± 0.20°、18.04 ± 0.20°和24.93 ± 0.20°的2θ處的峰。
在一些實施方式中,化合物I的半己二酸鹽的結晶形式具有XRPD圖,所述XRPD圖包括在8.49 ± 0.20°、9.30 ± 0.20°、18.12 ± 0.20°和24.93 ± 0.20°的2θ處的峰。
在一些實施方式中,化合物I的半己二酸鹽的結晶形式具有XRPD圖,所述XRPD圖包括在8.49 ± 0.20°、9.30 ± 0.20°、18.04 ± 0.20°、18.12 ± 0.20°和24.93 ± 0.20°的2θ處的峰。
在一些實施方式中,化合物I的半己二酸鹽的結晶形式具有XRPD圖,所述XRPD圖包括在8.49 ± 0.20°、9.30 ± 0.20°、18.04 ± 0.20°、18.12 ± 0.20°、18.59 ± 0.20°和24.93 ± 0.20°的2θ處的峰。
在一些實施方式中,化合物I的半己二酸鹽的結晶形式具有XRPD圖,所述XRPD圖包括在8.49 ± 0.20°、9.30 ± 0.20°、18.12 ± 0.20°、18.59 ± 0.20°、20.70 ± 0.20°和24.93 ± 0.20°的2θ處的峰。
在一些實施方式中,化合物I的半己二酸鹽的結晶形式具有XRPD圖,所述XRPD圖包括在8.49 ± 0.20°、9.30 ± 0.20°、18.04 ± 0.20°、18.12 ± 0.20°、18.59 ± 0.20°、20.70 ± 0.20°和24.93 ± 0.20°的2θ處的峰。
在一些實施方式中,化合物I的半己二酸鹽的結晶形式具有XRPD圖,所述XRPD圖包括至少七個或更多個(例如,八個、九個或十個)在8.49 ± 0.20°、9.30 ± 0.20°、12.32 ± 0.20°、17.27 ± 0.20°、18.04 ± 0.20°、18.12 ± 0.20°、18.59 ± 0.20°、20.70 ± 0.20°、23.87 ± 0.20°和24.93 ± 0.20°的2θ處的峰。
在一些實施方式中,化合物I的半己二酸鹽的結晶形式具有XRPD圖,所述XRPD圖包括在8.49 ± 0.20°、9.30 ± 0.20°、12.32 ± 0.20°、17.27 ± 0.20°、18.04 ± 0.20°、18.12 ± 0.20°、18.59 ± 0.20°、20.70 ± 0.20°、23.87 ± 0.20°和24.93 ± 0.20°的2θ處的峰。
在一些實施方式中,化合物I的半己二酸鹽的結晶形式具有XRPD圖,所述XRPD圖包括至少十個或更多個(例如,11個、12個、13個、14個或15個)在選自以下的2θ處的峰:8.49 ± 0.20°、9.30 ± 0.20°、10.28 ± 0.20°、12.32 ± 0.20°、12.72 ± 0.20°、15.05 ± 0.20°、16.42 ± 0.20°、17.27 ± 0.20°、18.04 ± 0.20°、18.12 ± 0.20°、18.59 ± 0.20°、20.70 ± 0.20°、23.87 ± 0.20°、24.93 ± 0.20°和28.09 ± 0.20°。
在一些實施方式中,化合物I的半己二酸鹽的結晶形式具有XRPD圖,所述XRPD圖包括在8.49 ± 0.20°、9.30 ± 0.20°、10.28 ± 0.20°、12.32 ± 0.20°、12.72 ± 0.20°、15.05 ± 0.20°、16.42 ± 0.20°、17.27 ± 0.20°、18.04 ± 0.20°、18.12 ± 0.20°、18.59 ± 0.20°、20.70 ± 0.20°、23.87 ± 0.20°、24.93 ± 0.20°和28.09 ± 0.20°的2θ處的峰。
在一些實施方式中,化合物I的半己二酸鹽的結晶形式具有與表15中所示的XRPD圖基本上類似的XRPD圖。
在一些實施方式中,化合物I的半己二酸鹽的結晶形式具有與圖38中所示的XRPD圖基本上類似的XRPD圖。
在一些實施方式中,化合物I的半己二酸鹽的結晶形式具有DSC熱譜圖,所述DSC熱譜圖包括吸熱,具有在約173.3℃處的起始點和在約175.0℃處的峰。
在一些實施方式中,化合物I的半己二酸鹽的結晶形式具有TGA熱譜圖,所述TGA熱譜圖表現出在從約40℃加熱到約145℃時,約0.25%的品質損失。
在一些實施方式中,化合物I的半己二酸鹽的結晶形式具有與圖39的DSC熱譜圖和TGA熱譜圖基本上類似的DSC熱譜圖和TGA熱譜圖。
在一些實施方式中,化合物I的半己二酸鹽的結晶形式具有與圖40的DVS蒸汽吸附圖基本上類似的DVS蒸汽吸附圖。
11. 化合物 I 的對甲苯磺酸鹽的結晶形式在一些實施方式中,公開了一種化合物I的藥學上可接受的鹽的結晶形式,所述結晶形式是化合物I的對甲苯磺酸鹽的結晶形式。
在一些實施方式中,化合物I的對甲苯磺酸鹽的結晶形式具有XRPD圖,所述XRPD圖包括在6.56 ± 0.20°、7.13 ± 0.20°和7.48 ± 0.20°的2θ處的峰。
在一些實施方式中,化合物I的對甲苯磺酸鹽的結晶形式具有XRPD圖,所述XRPD圖包括在6.56 ± 0.20°、7.13 ± 0.20°、7.48 ± 0.20°和15.69 ± 0.20°的2θ處的峰。
在一些實施方式中,化合物I的對甲苯磺酸鹽的結晶形式具有XRPD圖,所述XRPD圖包括在6.56 ± 0.20°、7.13 ± 0.20°、7.48 ± 0.20°和18.14 ± 0.20°的2θ處的峰。
在一些實施方式中,化合物I的對甲苯磺酸鹽的結晶形式具有XRPD圖,所述XRPD圖包括在6.56 ± 0.20°、7.13 ± 0.20°、7.48 ± 0.20°、15.69 ± 0.20°和18.14 ± 0.20°的2θ處的峰。
在一些實施方式中,化合物I的對甲苯磺酸鹽的結晶形式具有XRPD圖,所述XRPD圖包括在6.56 ± 0.20°、7.13 ± 0.20°、7.48 ± 0.20°、14.54 ± 0.20°、15.69 ± 0.20°和18.14 ± 0.20°的2θ處的峰。
在一些實施方式中,化合物I的對甲苯磺酸鹽的結晶形式具有XRPD圖,所述XRPD圖包括在6.56 ± 0.20°、7.13 ± 0.20°、7.48 ± 0.20°、15.69 ± 0.20°、18.14 ± 0.20°和19.00 ± 0.20°的2θ處的峰。
在一些實施方式中,化合物I的對甲苯磺酸鹽的結晶形式具有XRPD圖,所述XRPD圖包括在6.56 ± 0.20°、7.13 ± 0.20°、7.48 ± 0.20°、14.54 ± 0.20°、15.69 ± 0.20°、18.14 ± 0.20°和19.00 ± 0.20°的2θ處的峰。
在一些實施方式中,化合物I的對甲苯磺酸鹽的結晶形式具有XRPD圖,所述XRPD圖包括至少七個或更多個(例如,八個、九個或十個)在6.56 ± 0.20°、7.13 ± 0.20°、7.48 ± 0.20°、7.86 ± 0.20°、14.54 ± 0.20°、15.69 ± 0.20°、18.14 ± 0.20°、19.00 ± 0.20°、21.59 ± 0.20°和24.04 ± 0.20°的2θ處的峰。
在一些實施方式中,化合物I的對甲苯磺酸鹽的結晶形式具有XRPD圖,所述XRPD圖包括在6.56 ± 0.20°、7.13 ± 0.20°、7.48 ± 0.20°、7.86 ± 0.20°、14.54 ± 0.20°、15.69 ± 0.20°、18.14 ± 0.20°、19.00 ± 0.20°、21.59 ± 0.20°和24.04 ± 0.20°的2θ處的峰。
在一些實施方式中,化合物I的對甲苯磺酸鹽的結晶形式具有XRPD圖,所述XRPD圖包括至少十個或更多個(例如,11個、12個、13個、14個或15個)在選自以下的2θ處的峰:6.56 ± 0.20°、7.13 ± 0.20°、7.48 ± 0.20°、7.86 ± 0.20°、10.47 ± 0.20°、11.94 ± 0.20°、14.54 ± 0.20°、15.69 ± 0.20°、17.89 ± 0.20°、18.14 ± 0.20°、19.00 ± 0.20°、19.70 ± 0.20°、21.59 ± 0.20°、22.41 ± 0.20°和24.04 ± 0.20°。
在一些實施方式中,化合物I的對甲苯磺酸鹽的結晶形式具有XRPD圖,所述XRPD圖包括在6.56 ± 0.20°、7.13 ± 0.20°、7.48 ± 0.20°、7.86 ± 0.20°、10.47 ± 0.20°、11.94 ± 0.20°、14.54 ± 0.20°、15.69 ± 0.20°、17.89 ± 0.20°、18.14 ± 0.20°、19.00 ± 0.20°、19.70 ± 0.20°、21.59 ± 0.20°、22.41 ± 0.20°和24.04 ± 0.20°的2θ處的峰。
在一些實施方式中,化合物I的對甲苯磺酸鹽的結晶形式具有與表16中所示的XRPD圖基本上類似的XRPD圖。
在一些實施方式中,化合物I的對甲苯磺酸鹽的結晶形式具有與圖41中所示的XRPD圖基本上類似的XRPD圖。
在一些實施方式中,化合物I的對甲苯磺酸鹽的結晶形式具有DSC熱譜圖,所述DSC熱譜圖包括吸熱,具有在約168.2℃處的起始點和在約175.2℃處的峰。
在一些實施方式中,化合物I的對甲苯磺酸鹽的結晶形式具有TGA熱譜圖,所述TGA熱譜圖表現出在從約30℃加熱到約150℃時,約0.79%的品質損失。
在一些實施方式中,化合物I的對甲苯磺酸鹽的結晶形式具有與圖42的DSC熱譜圖和TGA熱譜圖基本上類似的DSC熱譜圖和TGA熱譜圖。
在一些實施方式中,化合物I的對甲苯磺酸鹽的結晶形式具有與圖43的DVS蒸汽吸附圖基本上類似的DVS蒸汽吸附圖。
12. 化合物 I 的馬來酸鹽的結晶形式在一些實施方式中,公開了一種化合物I的藥學上可接受的鹽的結晶形式,所述結晶形式是化合物I的馬來酸鹽的結晶形式。
在一些實施方式中,化合物I的馬來酸鹽的結晶形式具有XRPD圖,所述XRPD圖包括在5.65 ± 0.20°、14.67 ± 0.20°和20.12 ± 0.20°的2θ處的峰。
在一些實施方式中,化合物I的馬來酸鹽的結晶形式具有XRPD圖,所述XRPD圖包括在5.65 ± 0.20°、14.11 ± 0.20°、14.67 ± 0.20°和20.12 ± 0.20°的2θ處的峰。
在一些實施方式中,化合物I的馬來酸鹽的結晶形式具有XRPD圖,所述XRPD圖包括在5.65 ± 0.20°、14.67 ± 0.20°、20.12 ± 0.20°和21.48 ± 0.20°的2θ處的峰。
在一些實施方式中,化合物I的馬來酸鹽的結晶形式具有XRPD圖,所述XRPD圖包括在5.65 ± 0.20°、14.11 ± 0.20°、14.67 ± 0.20°、20.12 ± 0.20°和21.48 ± 0.20°的2θ處的峰。
在一些實施方式中,化合物I的馬來酸鹽的結晶形式具有XRPD圖,所述XRPD圖包括在5.65 ± 0.20°、7.13 ± 0.20°、14.11 ± 0.20°、14.67 ± 0.20°、20.12 ± 0.20°和21.48 ± 0.20°的2θ處的峰。
在一些實施方式中,化合物I的馬來酸鹽的結晶形式具有XRPD圖,所述XRPD圖包括在5.65 ± 0.20°、14.11 ± 0.20°、14.67 ± 0.20°、20.12 ± 0.20°、21.48 ± 0.20°和27.28 ± 0.20°的2θ處的峰。
在一些實施方式中,化合物I的馬來酸鹽的結晶形式具有XRPD圖,所述XRPD圖包括在5.65 ± 0.20°、7.13 ± 0.20°、14.11 ± 0.20°、14.67 ± 0.20°、20.12 ± 0.20°、21.48 ± 0.20°和27.28 ± 0.20°的2θ處的峰。
在一些實施方式中,化合物I的馬來酸鹽的結晶形式具有XRPD圖,所述XRPD圖包括至少七個或更多個(例如,八個、九個或十個)在5.65 ± 0.20°、7.13 ± 0.20°、14.11 ± 0.20°、14.67 ± 0.20°、18.59 ± 0.20°、19.96 ± 0.20°、20.12 ± 0.20°、21.48 ± 0.20°、23.95 ± 0.20°和27.28 ± 0.20°的2θ處的峰。
在一些實施方式中,化合物I的馬來酸鹽的結晶形式具有XRPD圖,所述XRPD圖包括在5.65 ± 0.20°、7.13 ± 0.20°、14.11 ± 0.20°、14.67 ± 0.20°、18.59 ± 0.20°、19.96 ± 0.20°、20.12 ± 0.20°、21.48 ± 0.20°、23.95 ± 0.20°和27.28 ± 0.20°的2θ處的峰。
在一些實施方式中,化合物I的馬來酸鹽的結晶形式具有XRPD圖,所述XRPD圖包括至少十個或更多個(例如,11個、12個、13個、14個或15個)在選自以下的2θ處的峰:5.65 ± 0.20°、6.45 ± 0.20°、7.13 ± 0.20°、7.35 ± 0.20°、11.95 ± 0.20°、13.56 ± 0.20°、14.11 ± 0.20°、14.67 ± 0.20°、18.59 ± 0.20°、19.96 ± 0.20°、20.12 ± 0.20°、20.42 ± 0.20°、21.48 ± 0.20°、23.95 ± 0.20°和27.28 ± 0.20°。
在一些實施方式中,化合物I的馬來酸鹽的結晶形式具有XRPD圖,所述XRPD圖包括在5.65 ± 0.20°、6.45 ± 0.20°、7.13 ± 0.20°、7.35 ± 0.20°、11.95 ± 0.20°、13.56 ± 0.20°、14.11 ± 0.20°、14.67 ± 0.20°、18.59 ± 0.20°、19.96 ± 0.20°、20.12 ± 0.20°、20.42 ± 0.20°、21.48 ± 0.20°、23.95 ± 0.20°和27.28 ± 0.20°的2θ處的峰。
在一些實施方式中,化合物I的馬來酸鹽的結晶形式具有與表17中所示的XRPD圖基本上類似的XRPD圖。
在一些實施方式中,化合物I的馬來酸鹽的結晶形式具有與圖44中所示的XRPD圖基本上類似的XRPD圖。
在一些實施方式中,化合物I的馬來酸鹽的結晶形式具有DSC熱譜圖,所述DSC熱譜圖包括吸熱,具有在約159.6℃處的起始點和在約162.5℃處的峰。
在一些實施方式中,化合物I的馬來酸鹽的結晶形式具有TGA熱譜圖,所述TGA熱譜圖表現出在從約30℃加熱到約140℃時,約0.44%的品質損失。
在一些實施方式中,化合物I的馬來酸鹽的結晶形式具有與圖45的DSC熱譜圖和TGA熱譜圖基本上類似的DSC熱譜圖和TGA熱譜圖。
在一些實施方式中,化合物I的馬來酸鹽的結晶形式具有與圖46的DVS蒸汽吸附圖基本上類似的DVS蒸汽吸附圖。
13. 化合物 I 的草酸鹽的結晶形式在一些實施方式中,化合物I的草酸鹽的結晶形式具有與圖47中所示的XRPD圖基本上類似的XRPD圖。
在一些實施方式中,化合物I的草酸鹽的結晶形式具有DSC熱譜圖,所述DSC熱譜圖包括三個吸熱,具有在約30.5℃處的起始點和在約63.2℃處的峰、在約129.9℃處的起始點和在約139.5℃處的峰,以及在約193.2℃處的起始點和在約211.4℃處的峰。
在一些實施方式中,化合物I的草酸鹽的結晶形式具有TGA熱譜圖,所述TGA熱譜圖表現出在從約37℃加熱到約147℃時,約7.92%的品質損失。
在一些實施方式中,化合物I的草酸鹽的結晶形式具有與圖48的DSC熱譜圖和TGA熱譜圖基本上類似的DSC熱譜圖和TGA熱譜圖。
14. 化合物 I 的 L-(+)- 酒石酸鹽的結晶形式在一些實施方式中,化合物I的L-(+)-酒石酸鹽的結晶形式具有與圖49中所示的XRPD圖基本上類似的XRPD圖。
在一些實施方式中,化合物I的L-(+)-酒石酸鹽的結晶形式具有DSC熱譜圖,所述DSC熱譜圖包括三個吸熱,具有在約144.5℃處的起始點和在約156.1℃處的峰、在約172.3℃處的起始點在約187.5℃處的峰,以及在約203.5℃處的起始點和在約224.0℃處的峰。
在一些實施方式中,化合物I的L-(+)-酒石酸鹽的結晶形式具有TGA熱譜圖,所述TGA熱譜圖表現出在從約40℃加熱到約150℃時,約0.59%的品質損失。
在一些實施方式中,化合物I的L-(+)-酒石酸鹽的結晶形式具有與圖50的DSC熱譜圖和TGA熱譜圖基本上類似的DSC熱譜圖和TGA熱譜圖。
15. 化合物 I 的單己二酸鹽的結晶形式在一些實施方式中,化合物I的單己二酸鹽的結晶形式具有與圖51中所示的XRPD圖基本上類似的XRPD圖。
在一些實施方式中,化合物I的單己二酸鹽的結晶形式具有DSC熱譜圖,所述DSC熱譜圖包括兩個吸熱,所述兩個吸熱在約146.1℃下開始並在約148.7℃下達到峰值,並且在約167.1℃下開始並在約171.9℃下達到峰值。
在一些實施方式中,化合物I的單己二酸鹽的結晶形式具有TGA熱譜圖,所述TGA熱譜圖表現出在從約40℃加熱到約125℃時,約0.33%的品質損失。
在一些實施方式中,化合物I的單己二酸鹽的結晶形式具有與圖52的DSC熱譜圖和TGA熱譜圖基本上類似的DSC熱譜圖和TGA熱譜圖。
當本文提及結晶形式時,結晶度方便地大於約60%,更方便地大於約80%,方便地大於約90%,並且更方便地大於約95%。最方便地,結晶度大於約98%。
在一些實施方式中,本公開的結晶形式優選是基本上純的,這意味著每種結晶形式包括不超過10重量%、不超過5重量%或不超過1重量%的任一種明顯雜質,包括化合物的其它多晶型形式。在某些實施方式中,本公開的“基本上純的”結晶形式的純度超過90%、超過95%、超過98%或甚至超過99%。
在一些實施方式中,本公開的結晶形式也可以一起存在於混合物中。本公開的結晶形式的混合物將具有混合物中存在的結晶形式中的每種結晶形式的XRPD峰特性。例如,兩種結晶形式的混合物將具有與基本上純的結晶形式的XRPD圖相對應的XRPD圖,所述XRPD圖為X射線粉末衍射圖的卷積。
製備方法本文進一步提供了用於製備化合物I以及其藥學上可接受的鹽的結晶形式的方法。
本文進一步提供了一種用於製備化合物I的方法。所述方法總結在下面的方案中:
化合物I先前已經在國際專利公開WO 2019/214634中描述,所述國際專利公開通過引用整體併入本文,並且特別是其對化合物I、所述化合物的合成以及所述化合物的ErbB抑制劑活性的證明的描述通過引用整體併入本文。
本文進一步提供了一種可用於以大規模,例如,以數十千克規模以高產物產率製備化合物I的方法。所述方法匯總在下面的方案中:
本公開的藥學鹽和結晶形式可以通過本領域已知的方法製備。在一些實施方式中,通過以下製備化合物I的藥學上可接受的鹽的晶體:將化合物I溶解在甲基乙基酮、乙醇或乙酸乙酯中,將對應的酸添加在甲基乙基酮、乙醇或乙酸乙酯中溶液中,並且使所述溶液結晶並且分離化合物I的藥學上可接受的鹽的晶體,其中藥學上可接受的鹽選自鹽酸鹽、硫酸鹽、磷酸鹽、馬來酸鹽、富馬酸鹽、草酸鹽、對甲苯磺酸鹽、琥珀酸鹽、L-(+)-酒石酸鹽、單己二酸鹽、半己二酸鹽。然而,這些決不限制本公開的藥學鹽和結晶形式的製備方法。
本文進一步提供了一種用於製備化合物I的形式A的結晶方法,所述結晶方法包括以下步驟:將化合物I溶解在H
2O/EtOH/MTBE溶液中,將形式A晶種添加到所述溶液中,使所述溶液結晶並分離所述化合物I的形式A。
本文進一步提供了一種用於製備化合物I的形式B的結晶方法,所述結晶方法包括以下步驟:將化合物I的半己二酸鹽懸浮在pH 6.8緩衝液中以形成化合物I的游離鹼,將懸浮液過濾並使懸浮液乾燥以分離化合物I的形式B。
本文進一步提供了一種用於製備化合物I的形式C的結晶方法,所述結晶方法包括以下步驟:將化合物I溶解在熱甲醇溶液中,使所述溶液冷卻,使所述溶液結晶並分離所述化合物I的形式C。
本文進一步提供了一種用於製備化合物I的形式D的結晶方法,所述結晶方法包括以下步驟:將化合物I溶解在熱(例如,50℃)的1,4-二噁烷或THF溶液中,將反溶劑(例如,正庚烷、水或MTBE)添加到所述溶液中,使所述溶液結晶並分離所述化合物I的形式D。
本文進一步提供了一種用於製備化合物I的形式D的結晶方法,所述結晶方法包括以下步驟:將化合物I溶解在熱(例如,50℃)的適當溶劑(例如,THF、1,4-二噁烷、丙酮、乙腈或乙酸乙酯)中,使所述溶液在較低溫度(例如,25℃)下蒸發,使所述溶液結晶並分離所述化合物I的形式D。
經噴霧乾燥的分散體“經噴霧乾燥的分散體”或“SDD”是指由噴霧乾燥過程獲得的粉末。“噴霧乾燥”是指由溶液或漿料產生乾粉末的方法。用熱氣體,例如空氣或氮氣使溶液或漿料霧化或快速乾燥,這使得溶劑快速且均勻地蒸發。
在某些實施方式中,本公開提供了一種經噴霧乾燥的分散體,其包含化合物I和經噴霧乾燥的分散體的聚合物。
用於經噴霧乾燥的分散體的聚合物的非限制性實例包括:HPMC-AS聚合物、PVP-VA64共聚物、Soluplus聚合物、Eudragit E100聚合物、Eudragit L100-55聚合物、羥丙基-β-環糊精(HP-β-CD)、PVP K30 LP聚合物、HPC(羥丙基纖維素,Klucel LF)聚合物、HPC(Klucel MF)聚合物、HPMC E5 LV聚合物、HPMC E15聚合物和/或HPMCP-HP50聚合物。在某些實施方式中,聚合物是HPMC-AS聚合物。在某些實施方式中,HPMC-AS聚合物是HPMC-AS MG聚合物、HPMC-AS MF聚合物或HPMC-AS LF聚合物。在某些實施方式中,HPMC-AS聚合物是HPMC-AS MG聚合物。在某些實施方式中,聚合物是PVP-VA64共聚物。在某些實施方式中,聚合物是HPC(Klucel LF)聚合物。
在某些實施方式中,化合物I以占經噴霧乾燥的分散體的約5% w/w至約70% w/w的量存在。在某些實施方式中,聚合物以占經噴霧乾燥的分散體的約95% w/w至約30% w/w的量存在。
在某些實施方式中,化合物I以占經噴霧乾燥的分散體的約20% w/w至約60% w/w的量存在。在某些實施方式中,聚合物以占經噴霧乾燥的分散體的約80% w/w至約40% w/w的量存在。
在某些實施方式中,化合物I以占經噴霧乾燥的分散體的約20% w/w至約40% w/w的量存在。在某些實施方式中,化合物I以占經噴霧乾燥的分散體的約20% w/w、約30% w/w或約40% w/w的量存在。在某些實施方式中,聚合物的量占經噴霧乾燥的分散體的約80% w/w、約70% w/w、約60% w/w、約55% w/w、約50% w/w或約40% w/w。在某些實施方式中,聚合物的量占經噴霧乾燥的分散體的約77.5% w/w。
在某些實施方式中,本文所述的經噴霧乾燥的分散體包含量為約20% w/w至約60% w/w的化合物I和量為約80% w/w至約40% w/w的HPMC-AS MG聚合物。
在某些實施方式中,本文所述的經噴霧乾燥的分散體包含量為約20% w/w的化合物I和量為約80% w/w的HPMC-AS MG聚合物。在某些實施方式中,本文所述的經噴霧乾燥的分散體包含量為約30% w/w的化合物I和量為約70% w/w的HPMC-AS MG聚合物。在某些實施方式中,本文所述的經噴霧乾燥的分散體包含量為約40% w/w的化合物I和量為約60% w/w的HPMC-AS MG聚合物。
在某些實施方式中,本文所公開的經噴霧乾燥的分散體進一步包含一種或多種表面活性劑。在某些實施方式中,表面活性劑是維生素E聚乙二醇琥珀酸酯(TPGS)。在某些實施方式中,表面活性劑是十二烷基硫酸鈉(SDS)。在某些實施方式中,表面活性劑是聚山梨酯80(Tween 80)。在某些實施方式中,表面活性劑的量為約0.5% w/w至約20% w/w。在某些實施方式中,表面活性劑的量為約2.5% w/w至約10% w/w。在某些實施方式中,表面活性劑的量為約2.5% w/w、約5% w/w或約10% w/w。
在某些實施方式中,本文所述的經噴霧乾燥的分散體包含量為約40% w/w的化合物I、量為約50% w/w的HPMC-AS MF聚合物和量為約10% w/w的TPGS。
在某些實施方式中,本文所述的經噴霧乾燥的分散體包含量為約40% w/w的化合物I、量為約55% w/w的HPC(Klucel LF)聚合物和量為約5% w/w的SDS。
在某些實施方式中,本文所述的經噴霧乾燥的分散體包含量為約40% w/w的化合物I、量為約55% w/w的HPMC-AS MF聚合物和量為約5% w/w的SDS。
在某些實施方式中,本文所述的經噴霧乾燥的分散體包含量為約20% w/w的化合物I、量為約77.5% w/w的HPMC-AS MF聚合物和量為約2.5% w/w的SDS。
在某些實施方式中,製劑是通過噴霧乾燥過程產生的,包含選自以下的溶劑:水、丙酮、甲醇、二氯甲烷以及其任何組合。
在某些實施方式中,溶劑包括丙酮。
在某些實施方式中,溶劑包括丙酮和水。在某些實施方式中,溶劑包括量為99%的丙酮和量為1%的水。在某些實施方式中,溶劑包括量為98.2%的丙酮和量為1.8%的水。
在某些實施方式中,溶劑包括丙酮和二氯甲烷。在某些實施方式中,溶劑包括量為30%的丙酮和量為70%的二氯甲烷。在某些實施方式中,溶劑包括量為40%的丙酮和量為60%的二氯甲烷。
在某些實施方式中,溶劑包括甲醇。
在某些實施方式中,溶劑包括甲醇和二氯甲烷。在某些實施方式中,溶劑包括量為50%的甲醇和量為50%的二氯甲烷。
本文還提供了一種製備經噴霧乾燥的分散體的方法。
在某些實施方式中,本文所述的經噴霧乾燥的分散體的藥物含量高於90%。在某些實施方式中,製劑的藥物含量高於91%、92%、93%、94%、95%、96%、97%、98%、99%、99.1%、99.2%、99.3%、99.4%、99.5%、99.6%、99.7%、99.8%或99.9%。“藥物含量”(“assay of drug”)或“藥物物質含量”(“assay of drug substance”)可以通過美國藥典(USP)方法確定。在一些實施方式中,藥物含量通過UPLC或HPLC所提供的測試樣品和參考標準品的色譜圖來確定。
在某些實施方式中,本文所述的經噴霧乾燥的分散體在25℃和60%相對濕度(RH)下儲存一周後的藥物含量高於90%。在某些實施方式中,製劑在25℃和60% RH下儲存一周後的藥物含量高於91%、92%、93%、94%、95%、96%、97%、98%、99%、99.1%、99.2%、99.3%、99.4%、99.5%、99.6%、99.7%、99.8%或99.9%。
在某些實施方式中,本文所述的經噴霧乾燥的分散體在25℃和60%相對濕度(RH)下儲存一周後的藥物含量高於90%。在某些實施方式中,製劑在40℃和75% RH下儲存一周後的藥物含量高於91%、92%、93%、94%、95%、96%、97%、98%、99%、99.1%、99.2%、99.3%、99.4%、99.5%、99.6%、99.7%、99.8%或99.9%。
在某些實施方式中,式I化合物的經噴霧乾燥的分散體被調配為片劑。
在某些實施方式中,如上所述的片劑的藥物組合物包含約5 mg至約1000 mg的化合物I。在某些實施方式中,如上所述的片劑的藥物組合物包含量為約25 mg、約50 mg、約75 mg、約100 mg、約125 mg、約150 mg或約200 mg的化合物I。
在某些實施方式中,如上所述的片劑的藥物組合物包含化合物I、用於經噴霧乾燥的分散體的聚合物、以及黏合劑、崩解劑、潤滑劑、包衣或其組合。
在某些實施方式中,如上所述的片劑的藥物組合物包含化合物I、用於經噴霧乾燥的分散體的聚合物、微晶纖維素PH-101、甘露醇、交聯羧甲纖維素鈉、膠體二氧化矽、硬脂酸鎂、微晶纖維素PH-102、泊洛沙姆188 (Poloxamer 188)以及包衣材料。
在某些實施方式中,如上所述的片劑的藥物組合物包含化合物I、HPMC-AS聚合物、微晶纖維素PH-101、甘露醇、交聯羧甲纖維素鈉、膠體二氧化矽、硬脂酸鎂、微晶纖維素PH-102、泊洛沙姆188以及包衣材料。
在某些實施方式中,如上所述的片劑的藥物組合物包含化合物I、HPMC-AS MG聚合物、微晶纖維素PH-101、甘露醇、交聯羧甲纖維素鈉、膠體二氧化矽、硬脂酸鎂、微晶纖維素PH-102、泊洛沙姆188以及包衣材料。
在某些實施方式中,如上所述的片劑的藥物組合物包含量介於約10% w/w與30% w/w之間的化合物I、量介於約30% w/w與50% w/w之間的HPMC-AS MG聚合物、量介於約10% w/w與25% w/w之間的微晶纖維素PH-101、量介於約5% w/w與15% w/w之間的甘露醇、量介於約1% w/w與10% w/w之間的交聯羧甲纖維素鈉、量介於約0.1% w/w與1% w/w之間的膠體二氧化矽、量介於約0.1% w/w與1% w/w之間的硬脂酸鎂、量介於約5% w/w與15% w/w之間的微晶纖維素PH-102、量介於約0% w/w與5% w/w之間的泊洛沙姆188。
在某些實施方式中,如上所述的片劑的藥物組合物包含量介於約10% w/w與30% w/w之間的化合物I、量介於約30% w/w與50% w/w之間的HPMC-AS MG聚合物、量介於約10% w/w與25% w/w之間的微晶纖維素PH-101、量介於約5% w/w與15% w/w之間的甘露醇、量介於約1% w/w與10% w/w之間的交聯羧甲纖維素鈉、量介於約0.1% w/w與1% w/w之間的膠體二氧化矽、量介於約0.1% w/w與1% w/w之間的硬脂酸鎂、量介於約5% w/w與15% w/w之間的微晶纖維素PH-102、量介於約0% w/w與5% w/w之間的泊洛沙姆188。以上片劑的藥物組合物還包含額外的量介於約1% w/w與5% w/w之間包衣材料。
在某些實施方式中,如上所述的片劑的藥物組合物包含顆粒內部分和顆粒外部分。
在某些實施方式中,如上所述的片劑的藥物組合物包含量為約12% w/w的化合物I、量為約48% w/w的HPMC-AS MG聚合物、量為約12.4% w/w的微晶纖維素PH-101、量為約10% w/w的甘露醇、量為約2% w/w的交聯羧甲纖維素鈉、量為約0.5% w/w的膠體二氧化矽、量為約0.25% w/w的硬脂酸鎂、量為約9.4% w/w的微晶纖維素PH-102、量為約3.0% w/w的泊洛沙姆188。
在某些實施方式中,如上所述的片劑的藥物組合物包含量為約18% w/w的化合物I、量為約42% w/w的HPMC-AS MG聚合物、量為約11.4% w/w的微晶纖維素PH-101、量為約10% w/w的甘露醇、量為約3% w/w的交聯羧甲纖維素鈉、量為約0.5% w/w的膠體二氧化矽、量為約0.25% w/w的硬脂酸鎂、量為約9.4% w/w的微晶纖維素PH-102、量為約3.0% w/w的泊洛沙姆188。
在某些實施方式中,如上所述的片劑的藥物組合物包含量為約24% w/w的化合物I、量為約36% w/w的HPMC-AS MG聚合物、量為約11.4% w/w的微晶纖維素PH-101、量為約10% w/w的甘露醇、量為約3% w/w的交聯羧甲纖維素鈉、量為約0.5% w/w的膠體二氧化矽、量為約0.25% w/w的硬脂酸鎂、量為約9.4% w/w的微晶纖維素PH-102、量為約3.0% w/w的泊洛沙姆188。
在某些實施方式中,如上所述的片劑的藥物組合物包含量為約12% w/w的化合物I、量為約48% w/w的HPMC-AS MG聚合物、量為約12.4% w/w的微晶纖維素PH-101、量為約10% w/w的甘露醇、量為約2% w/w的交聯羧甲纖維素鈉、量為約0.5% w/w的膠體二氧化矽、量為約0.25% w/w的硬脂酸鎂、量為約9.4% w/w的微晶纖維素PH-102、量為約3.0% w/w的泊洛沙姆188。以上片劑的藥物組合物還包含額外的量為約2.0% w/w包衣材料。
在某些實施方式中,如上所述的片劑的藥物組合物包含量為約18% w/w的化合物I、量為約42% w/w的HPMC-AS MG聚合物、量為約11.4% w/w的微晶纖維素PH-101、量為約10% w/w的甘露醇、量為約3% w/w的交聯羧甲纖維素鈉、量為約0.5% w/w的膠體二氧化矽、量為約0.25% w/w的硬脂酸鎂、量為約9.4% w/w的微晶纖維素PH-102、量為約3.0% w/w的泊洛沙姆188。以上片劑的藥物組合物還包含額外的量為約2.0% w/w包衣材料。
在某些實施方式中,如上所述的片劑的藥物組合物包含量為約24% w/w的化合物I、量為約36% w/w的HPMC-AS MG聚合物、量為約11.4% w/w的微晶纖維素PH-101、量為約10% w/w的甘露醇、量為約3% w/w的交聯羧甲纖維素鈉、量為約0.5% w/w的膠體二氧化矽、量為約0.25% w/w的硬脂酸鎂、量為約9.4% w/w的微晶纖維素PH-102、量為約3.0% w/w的泊洛沙姆188。以上片劑的藥物組合物還包含額外的量為約2.0% w/w包衣材料。
在某些實施方式中,包衣材料是Opadry®。在某些實施方式中,包衣材料是03K620011-CN黃。
本文進一步提供了一種用於片劑的經噴霧乾燥的分散體的製備方法。
藥物組合物一方面,本公開還提供了藥物組合物,其包含一種或多種如上所討論的此類結晶多晶型形式以及藥學上可接受的載體。
藥學上可接受的載體是本領域中可以以製藥領域眾所周知的方式製備的常規藥物載體。在一些實施方式中,本公開的化合物可以與藥學上可接受的載體混合以製備藥物組合物。
可以充當藥學上可接受的載體的材料的一些實例包括:(1)糖,如乳糖、葡萄糖和蔗糖;(2)澱粉,如玉米澱粉和馬鈴薯澱粉;(3)纖維素以及其衍生物,如羧甲基纖維素鈉、乙基纖維素和乙酸纖維素;(4)粉狀黃蓍膠;(5)麥芽;(6)明膠;(7)滑石;(8)賦形劑,如可哥脂和栓劑蠟;(9)油,如花生油、棉籽油、紅花油、芝麻油、橄欖油、玉米油和豆油;(10)二醇,如丙二醇;(11)多元醇,如甘油、山梨醇、甘露醇和聚乙二醇;(12)酯,如油酸乙酯和月桂酸乙酯;(13)瓊脂;(14)緩衝劑,如氫氧化鎂和氫氧化鋁;(15)海藻酸;(16)無熱原的水;(17)等滲鹽水;(18)林格氏溶液;(19)醇,如乙醇和丙醇;(20)磷酸鹽緩衝溶液;以及(21)藥物製劑中採用的其它無毒相容性物質,如丙酮。
藥物組合物可以含有接近生理條件所需的藥學上可接受的輔助物質,如pH調節劑和緩沖劑、毒性調節劑等,例如乙酸鈉、氯化鈉、氯化鉀、氯化鈣、乳酸鈉等。
藥物組合物的形式取決於多種標準,包括但不限於施用途徑、疾病程度或要施用的劑量。
藥物組合物可以被調配用於口服、鼻、直腸、經皮、靜脈內或肌內施用。根據所期望的施用途徑,藥物組合物可以以片劑、膠囊、丸劑、糖衣丸、粉末、顆粒、小袋、扁囊劑、錠劑、懸浮液、乳液、溶液、糖漿、氣溶膠(固體或液體介質的形式)、噴霧、軟膏、糊劑、乳膏、洗劑、凝膠、貼劑、吸入劑或栓劑的形式施用。
藥物組合物可以被調配成在通過採用本領域中已知的程式施用於患者之後,提供活性成分的快速、持續或延遲釋放。在一些實施方式中,藥物組合物以持續釋放形式調配。在一些實施方式中,延長時間段可以為約1小時至24小時、2小時至12小時、3小時至8小時、4小時至6小時、1天至2天或更長時間。在某些實施方式中,延長時間段為至少約4小時、至少約8小時、至少約12小時或至少約24小時。藥物組合物可以以片劑形式調配。例如,活性劑的釋放速率不僅可以通過活性劑在胃腸液中溶出並且隨後不受pH影響從片劑或丸劑中擴散出來而進行控制,而且還可能受片劑崩解和溶蝕的物理過程影響。在一些實施方式中,可以使用如“控釋醫學應用(Medical Applications of Controlled Release)”,Langer和Wise (編輯),佛羅里達州波卡拉頓的CRC出版社(CRC Pres., Boca Raton, Florida) (1974);“受控的藥物生物利用度(Controlled Drug Bioavailability)”,《藥物產品設計和性能( Drug Product Design and Performance)》,Smolen和Ball (編輯),紐約威利出版社(Wiley, New York)(1984);Ranger和Peppas, 1983, 《高分子科學評論雜誌:高分子化學(J Macromol. Sci. Rev. Macromol Chem.)》23:61;還參見Levy等人, 1985, 《科學(Science)》228:190;During等人, 1989, 《神經病學年鑒(Ann. Neurol.)》25:351;Howard等人, 1989, 《神經外科雜誌(J. Neurosurg.)》71:105所公開的聚合物材料用於持釋。以上參考文獻都以全文引用的方式併入本文中。
在某些實施方式中,藥物組合物包含約0.0001 mg至約5000 mg的本公開的化合物(例如,約0.0001 mg至約10 mg、約0.001 mg至約10 mg、約0.01 mg至約10 mg、約0.1 mg至約10 mg、約1 mg至約10 mg、約5 mg至約10 mg、約5 mg至約20 mg、約5 mg至約30 mg、約5 mg至約40 mg、約5 mg至約50 mg、約10 mg至約100 mg、約20 mg至約100 mg、約30 mg至約100 mg、約40 mg至約100 mg、約50 mg至約100 mg、約50 mg至約200 mg、約50 mg至約300 mg、約50 mg至約400 mg、約50 mg至約500 mg、約100 mg至約200 mg、約100 mg至約300 mg、約100 mg至約400 mg、約100 mg至約500 mg、約200 mg至約500 mg、約300 mg至約500 mg、約400 mg至約500 mg、約500 mg至約1000 mg、約600 mg至約1000 mg、約700 mg至約1000 mg、約800 mg至約1000 mg、約900 mg至約1000 mg、約1000 mg至約2000 mg、約2000 mg至約3000 mg、約3000 mg至約4000 mg或約4000 mg至約5000 mg)。每個物件每天的合適劑量可以為約5 mg至約500 mg,優選地約5 mg至約50 mg、約50 mg至約100 mg或約50 mg至約500 mg。
在某些實施方式中,藥物組合物可以以單位劑型調配,每個劑量包含約0.0001 mg至約10 mg、約0.001 mg至約10 mg、約0.01 mg至約10 mg、約0.1 mg至約10 mg、約1 mg至約10 mg、約5 mg至約10 mg、約5 mg至約20 mg、約5 mg至約30 mg、約5 mg至約40 mg、約5 mg至約50 mg、約10 mg至約100 mg、約20 mg至約100 mg、約30 mg至約100 mg、約40 mg至約100 mg、約50 mg至約100 mg、約50 mg至約200 mg、約50 mg至約300 mg、約50 mg至約400 mg、約50 mg至約500 mg、約100 mg至約200 mg、約100 mg至約300 mg、約100 mg至約400 mg、約100 mg至約500 mg、約200 mg至約500 mg、約300 mg至約500 mg、約400 mg至約500 mg、約500 mg至約1000 mg、約600 mg至約1000 mg、約700 mg至約1000 mg、約800 mg至約1000 mg、約900 mg至約1000 mg、約1000 mg至約2000 mg、約2000 mg至約3000 mg、約3000 mg至約4000 mg或約4000 mg至約5000 mg的本公開的化合物。術語“單位劑型”是指適合用作人類物件和其它哺乳動物的單位劑量的物理離散單元,每個單元含有與合適的藥物載體締合的經計算產生所期望的治療效果的預定量的活性材料。
術語“單位劑型”是指適合用作人類物件和其它哺乳動物的單位劑量的物理離散單元,每個單元含有與合適的藥物載體締合的經計算產生所期望的治療效果的預定量的活性物質。
用於治療的用途和方法本公開提供了一種治療與ErbB(包括例如,HER2)相關的疾病的方法,所述方法包括向物件施用治療有效量的本公開的一種或多種化合物、其藥學上可接受的鹽、酯、水合物、溶劑化物或立體異構體或藥物組合物。
如本文所使用的,術語“與ErbB相關的疾病”是指其發作或發展或兩者都與ErbB的基因組改變、表達或過表達相關的疾病。實例包括但不限於免疫相關疾病、增殖性病症、癌症和其它疾病。
如本文所使用的,術語“與HER2相關的疾病”是指其發作或發展或兩者都與HER2的基因組改變、表達、過表達或活性相關的疾病或病症,視情況而定。實例包括但不限於免疫相關疾病、增殖性病症、癌症和其它疾病。
在一些實施方式中,與ErbB相關的疾病是癌症,優選地ErbB表達性癌症,或ErbB過表達性癌症。“ErbB表達性癌症”是一種涉及具有存在於其細胞表面處的ErbB蛋白,如HER2的癌細胞或腫瘤細胞的癌症。“ErbB過表達性癌症”是與相同組織類型的非癌細胞相比,在癌細胞或腫瘤細胞的細胞表面處具有顯著更高水準的ErbB蛋白,如HER2,的癌症。此類過表達可能是由基因擴增或轉錄或翻譯增加引起的。ErbB受體表達或過表達可以在通過評估存在於細胞表面上的ErbB蛋白的水準增加的診斷或預後測定(例如,通過免疫組織化學測定;IHC)中確定。可替代地或另外,可以例如通過螢光原位雜交(FISH;參見1998年10月發佈的WO98/45479)、southern印跡或聚合酶鏈反應(PCR)技術,如實時定量PCR(RT-PCR)來測量細胞中的ErbB編碼性核酸的水準。方法132:73-80 (1990)。除了以上測定之外,熟練的從業者還可使用各種體內測定。例如,可以將患者體內的細胞暴露於抗體,所述抗體任選地用可檢測標記,例如,放射性同位素進行標記,並且可以例如通過外部掃描放射性或通過分析取自先前暴露於抗體的患者的活組織檢查評估抗體與患者的細胞的結合。
具體地,癌症包括但不限於白血病、膠質母細胞瘤、黑色素瘤、軟骨肉瘤、膽管癌、骨肉瘤、淋巴瘤、肺癌、腺癌、骨髓瘤、肝細胞癌、腎上腺皮質癌、胰腺癌、乳腺癌、膀胱癌、前列腺癌、肝癌、胃癌、結腸癌、結直腸癌、卵巢癌、宮頸癌、腦癌、食道癌、骨癌、睪丸癌、皮膚癌、腎癌、間皮瘤、神經母細胞瘤、甲狀腺癌、頭頸癌、食道癌、眼癌、前列腺癌、鼻咽癌或口腔癌。在一些實施方式中,癌症是肺癌、乳腺癌、卵巢癌、膀胱癌或膠質母細胞瘤。在一些實施方式中,癌症是乳腺癌、胃癌、結直腸癌、胰腺癌、前列腺癌、膀胱癌、卵巢癌或肺癌(例如,非小細胞肺癌、小細胞肺癌、腺癌、鱗狀細胞肺癌和大細胞肺癌)。在一些實施方式中,與ErbB(例如,HER2)相關的疾病是已轉移至中樞神經系統(CNS)的癌症,特別是伴有腦轉移和軟腦膜轉移的癌症。
如本文所使用的,術語“(treatment)”和“治療(treat)”是指逆轉、緩解、延遲如本文所述的疾病或病症或其一種或多種症狀的發作或抑制其進展。在一些實施方式中,治療可以在患上一種或多種症狀後進行。在其它實施方式中,治療可以在不存在症狀的情況下進行。例如,治療可以在症狀發作之前(例如,根據症狀歷史和/或根據遺傳或其它易感因素)對易感個體進行。治療還可以在症狀消退後繼續,例如以預防或延遲其復發。
如本文所提供的化合物的治療有效量將取決於本領域中已知的各種因素,例如物件的體重、年齡、既往病史、目前的藥物治療、健康狀況和交叉反應的可能性、過敏、敏感性和不良副作用,以及施用途徑和疾病發展的程度。本領域的普通技術人員(例如,醫師或獸醫)可如這些和其它情況或要求所指示按比例地減少或增加劑量。
如本文所使用的,術語“物件”和“個體”可互換地使用並且是指溫血動物,包括人或任何非人動物(例如,小鼠、大鼠、兔、狗、貓、牛、豬、綿羊、馬或靈長類動物)。人包括出生前和出生後形式。在一些實施方式中,物件是人類。物件可以是疑似患有與ErbB(例如,HER2)相關的疾病但可能表現出或可能不表現出疾病症狀的物件。
在一些實施方式中,本文提供的一種或多種化合物、其藥學上可接受的鹽、酯、水合物、溶劑化物或立體異構體或藥物組合物通過腸胃外途徑或非腸胃外途徑施用。在一些實施方式中,一種或多種化合物、其藥學上可接受的鹽、水合物、溶劑化物或立體異構體或藥物組合物口服地、腸內地、頰地、鼻地、鼻內地、經黏膜地、表皮地、經皮地、真皮地、眼地、肺地、舌下地、直腸地、陰道地、局部地、皮下地、靜脈內地、肌內地、動脈內地、鞘內地、囊內地、眶內地、心內地、皮內地、腹膜內地、經氣管地、皮下地、關節內地、囊下地、蛛網膜下地、脊柱內地或胸骨內地施用。
本文提供的化合物可以以純的形式、與其它活性成分的組合或以本公開的藥物組合物的形式施用。在一些實施方式中,本文提供的化合物可以與一種或多種本領域已知的抗癌劑組合同時地或依次地施用於有需要的物件。在一些實施方式中,每天一次、每天兩次、每天三次或每兩天一次、每三天一次、每四天一次、每五天一次、每六天一次、一週一次進行施用。
在一些實施方式中,本文提供的一種或多種化合物、其藥學上可接受的鹽、酯、水合物、溶劑化物或立體異構體或藥物組合物口服地施用。對於口服施用,任何達到期望目標的劑量都是合適的。在一些實施方式中,合適的每日劑量介於約0.001-5000 mg之間,介於0.1 mg與5 g之間,介於5 mg與1 g之間,介於10 mg與500 mg之間,並且每天一次、每天兩次、每天三次、每天或每週3-5天進行施用。在一些實施方式中,本文提供的一種或多種化合物、其藥學上可接受的鹽、酯、水合物、溶劑化物或立體異構體或藥物組合物的劑量是每天約0.0001 mg、0.001 mg、0.01 mg、0.1 mg、1 mg、10 mg、50 mg、100 mg、200 mg、250 mg、500 mg、750 mg、1000 mg、2000 mg、3000 mg、4000 mg或至多約5000 mg。
在一些實施方式中,本文提供的一種或多種化合物、其藥學上可接受的鹽、酯、水合物、溶劑化物或立體異構體或藥物組合物在施用於物件後可以穿過物件的血腦屏障(BBB)。
在一些實施方式中,本公開提供了本公開的化合物、其藥學上可接受的鹽、酯、水合物、溶劑化物或立體異構體或藥物組合物在製備用於治療與ErbB(例如,HER2)相關的疾病的藥物中的用途。
本公開中的化合物以及其藥物組合物可以用於抑制ErbB(表達或活性),尤其是在體內和體外兩者中抑制HER2(表達或活性)。在一些實施方式中,本公開中的化合物以及其藥物組合物可以用於在非診斷、非治療方法(例如,用於研究目的)中抑制ErbB(表達或活性),尤其是抑制HER2(表達或活性)。
本公開中的化合物以及其藥物組合物可以用於預防或治療溫血動物,特別是人的與ErbB(例如,HER2)相關的任何疾病的發作或發展。
本公開還包括以下實施方式:
實施方式1:一種化合物I或化合物I的藥學上可接受的鹽的結晶形式,其中化合物I是(
S)-
N-(4-([1,2,4]三唑並[1,5-
a]吡啶-7-基氧基)-3-甲基苯基)-5-((3,3-二氟-1-甲基呱啶-4-基)氧基)-7-甲氧基喹唑啉-4-胺。
實施方式2:根據實施方式1所述的結晶形式,其是化合物I的形式A。
實施方式3:根據實施方式2所述的結晶形式,其具有X射線粉末衍射(XRPD)圖,所述XRPD圖包括在7.09 ± 0.20°、15.15 ± 0.20°和21.55 ± 0.20°的衍射角(2θ)值處的峰。
實施方式4:根據實施方式3所述的結晶形式,其具有XRPD圖,所述XRPD圖進一步包括至少一個或兩個在選自以下的2θ處的峰:11.92 ± 0.20°和23.93 ± 0.20°。
實施方式5:根據實施方式2所述的結晶形式,其具有XRPD圖,所述XRPD圖包括在7.09 ± 0.20°、11.92 ± 0.20°、15.15 ± 0.20°、21.55 ± 0.20°和23.93 ± 0.20°的2θ處的峰。
實施方式6:根據實施方式5所述的結晶形式,其具有XRPD圖,所述XRPD圖進一步包括至少一個或兩個在選自以下的2θ處的峰:6.45 ± 0.20°和17.85 ± 0.20°。
實施方式7:根據實施方式2所述的結晶形式,其具有XRPD圖,所述XRPD圖包括在6.45 ± 0.20°、7.09 ± 0.20°、11.92 ± 0.20°、15.15 ± 0.20°、17.85 ± 0.20°、21.55 ± 0.20°和23.93 ± 0.20°的2θ處的峰。
實施方式8:根據實施方式7所述的結晶形式,其具有XRPD圖,所述XRPD圖進一步包括至少一個、兩個或三個在選自以下的2θ處的峰:14.19 ± 0.20°、18.94 ± 0.20°和26.86 ± 0.20°。
實施方式9:根據實施方式2所述的結晶形式,其具有XRPD圖,所述XRPD圖包括在6.45 ± 0.20°、7.09 ± 0.20°、11.92 ± 0.20°、14.19 ± 0.20°、15.15 ± 0.20°、17.85 ± 0.20°、18.94 ± 0.20°、21.55 ± 0.20°、23.93 ± 0.20°和26.86 ± 0.20°的2θ處的峰。
實施方式10:根據實施方式9所述的結晶形式,其具有XRPD圖,所述XRPD圖進一步包括至少一個、兩個、三個或更多個在選自以下的2θ處的峰:10.75 ± 0.20°、11.32 ± 0.20°、12.88 ± 0.20°、20.79 ± 0.20°和25.69 ± 0.20°。
實施方式11:根據實施方式2所述的結晶形式,其具有XRPD圖,所述XRPD圖包括在6.45 ± 0.20°、7.09 ± 0.20°、10.75 ± 0.20°、11.32 ± 0.20°、11.92 ± 0.20°、12.88 ± 0.20°、14.19 ± 0.20°、15.15 ± 0.20°、17.85 ± 0.20°、18.94 ± 0.20°、20.79 ± 0.20°、21.55 ± 0.20°、23.93 ± 0.20°、25.69 ± 0.20°和26.86 ± 0.20°的2θ處的峰。
實施方式12:根據實施方式2所述的結晶形式,其具有與表7中所示基本上類似的XRPD圖。
實施方式13:根據實施方式2所述的結晶形式,其具有與圖11中所示基本上類似的XRPD圖。
實施方式14:根據實施方式3所述的結晶形式,其具有TGA熱譜圖,所述TGA熱譜圖表現出在從約30℃加熱到約120℃時,約0.02%的重量損失。
實施方式15:根據實施方式3所述的結晶形式,其具有與圖12中所示的TGA熱譜圖基本上類似的TGA熱譜圖。
實施方式16:根據實施方式3所述的結晶形式,其具有DSC熱譜圖,所述熱譜圖包括吸熱,所述吸熱具有在約199.5℃處的起始點和在約201.5℃處的峰。
實施方式17:根據實施方式3所述的結晶形式,其具有與圖13中所示基本上類似的DSC熱譜圖。
實施方式18:根據實施方式3所述的結晶形式,其具有與圖14中所示基本上類似的DVS蒸汽吸附圖。
實施方式19:根據實施方式1所述的結晶形式,其是化合物I的形式B。
實施方式20:根據實施方式19所述的結晶形式,其具有XRPD圖,所述XRPD圖包括在7.42 ± 0.20°、13.21 ± 0.20°和19.24 ± 0.20°的2θ處的峰。
實施方式21:根據實施方式20所述的結晶形式,其具有XRPD圖,所述XRPD圖進一步包括至少一個或兩個在選自以下的2θ處的峰:6.62 ± 0.20°和7.17 ± 0.20°。
實施方式22:根據實施方式19所述的結晶形式,其具有XRPD圖,所述XRPD圖包括在6.62 ± 0.20°、7.17 ± 0.20°、7.42 ± 0.20°、13.21 ± 0.20°和19.24 ± 0.20°的2θ處的峰。
實施方式23:根據實施方式22所述的結晶形式,其具有XRPD圖,所述XRPD圖進一步包括至少一個或兩個在選自以下的2θ處的峰:14.25 ± 0.20°和17.94 ± 0.20°。
實施方式24:根據實施方式19所述的結晶形式,其具有XRPD圖,所述XRPD圖包括在6.62 ± 0.20°、7.17 ± 0.20°、7.42 ± 0.20°、13.21 ± 0.20°、14.25 ± 0.20°、17.94 ± 0.20°和19.24 ± 0.20°的2θ處的峰。
實施方式25:根據實施方式24所述的結晶形式,其具有XRPD圖,所述XRPD圖進一步包括至少一個、兩個或三個在選自以下的2θ處的峰:11.61 ± 0.20°、16.89 ± 0.20°和21.89 ± 0.20°。
實施方式26:根據實施方式19所述的結晶形式,其具有XRPD圖,所述XRPD圖包括在6.62 ± 0.20°、7.17 ± 0.20°、7.42 ± 0.20°、11.61 ± 0.20°、13.21 ± 0.20°、14.25 ± 0.20°、16.89 ± 0.20°、17.94 ± 0.20°、19.24 ± 0.20°和21.89 ± 0.20°的2θ處的峰。
實施方式27:根據實施方式26所述的結晶形式,其具有XRPD圖,所述XRPD圖進一步包括至少一個、兩個、三個或更多個在選自以下的2θ處的峰:13.92 ± 0.20°、17.24 ± 0.20°、27.21 ± 0.20°、27.35 ± 0.20°和27.87 ± 0.20°。
實施方式28:根據實施方式19所述的結晶形式,其具有XRPD圖,所述XRPD圖包括在6.62 ± 0.20°、7.17 ± 0.20°、7.42 ± 0.20°、11.61 ± 0.20°、13.21 ± 0.20°、13.92 ± 0.20°、14.25 ± 0.20°、16.89 ± 0.20°、17.24 ± 0.20°、17.94 ± 0.20°、19.24 ± 0.20°、21.89 ± 0.20°、27.21 ± 0.20°、27.35 ± 0.20°和27.87 ± 0.20°的2θ處的峰。
實施方式29:根據實施方式19所述的結晶形式,其具有與表8中所示基本上類似的XRPD圖。
實施方式30:根據實施方式19所述的結晶形式,其具有與圖15中所示基本上類似的XRPD圖。
實施方式31:根據實施方式20所述的結晶形式,其具有TGA熱譜圖,所述TGA熱譜圖表現出在從約30℃加熱到約100℃時,約1.68%的重量損失。
實施方式32:根據實施方式20所述的結晶形式,其具有DSC熱譜圖,所述DSC熱譜圖包括三個吸熱,所述三個吸熱分別具有在約116.3℃處的起始點和在約125.4℃處的峰、在約182.4℃處的起始點和在約187.5℃處的峰,以及在約199.2℃處的起始點和在約200.3℃處的峰。
實施方式33:根據實施方式20所述的結晶形式,其具有與圖16中所示基本上類似的TGA熱譜圖和DSC熱譜圖。
實施方式34:根據實施方式1所述的結晶形式,其是化合物I的形式C。
實施方式35:根據實施方式34所述的結晶形式,其具有XRPD圖,所述XRPD圖包括在5.95 ± 0.20°、8.58 ± 0.20°和19.56 ± 0.20°的2θ處的峰。
實施方式36:根據實施方式35所述的結晶形式,其具有XRPD圖,所述XRPD圖進一步包括至少一個或兩個在選自以下的2θ處的峰:11.89 ± 0.20°和13.75 ± 0.20°。
實施方式37:根據實施方式34所述的結晶形式,其具有XRPD圖,所述XRPD圖包括在5.95 ± 0.20°、8.58 ± 0.20°、11.89 ± 0.20°、13.75 ± 0.20°和19.56 ± 0.20°的2θ處的峰。
實施方式38:根據實施方式37所述的結晶形式,其具有XRPD圖,所述XRPD圖進一步包括至少一個或兩個在選自以下的2θ處的峰:12.39 ± 0.20°和13.40 ± 0.20°。
實施方式39:根據實施方式34所述的結晶形式,其具有XRPD圖,所述XRPD圖包括在5.95 ± 0.20°、8.58 ± 0.20°、11.89 ± 0.20°、12.39 ± 0.20°、13.40 ± 0.20°、13.75 ± 0.20°和19.56 ± 0.20°的2θ處的峰。
實施方式40:根據實施方式39所述的結晶形式,其具有XRPD圖,所述XRPD圖進一步包括至少一個、兩個或三個在選自以下的2θ處的峰:17.23 ± 0.20°、18.91 ± 0.20°和23.51 ± 0.20°。
實施方式41:根據實施方式34所述的結晶形式,其具有XRPD圖,所述XRPD圖包括在5.95 ± 0.20°、8.58 ± 0.20°、11.89 ± 0.20°、12.39 ± 0.20°、13.40 ± 0.20°、13.75 ± 0.20°、17.23 ± 0.20°、18.91 ± 0.20°、19.56 ± 0.20°和23.51 ± 0.20°的2θ處的峰。
實施方式42:根據實施方式41所述的結晶形式,其具有XRPD圖,所述XRPD圖進一步包括至少一個、兩個、三個或更多個在選自以下的2θ處的峰:15.54 ± 0.20°、15.90 ± 0.20°、24.91 ± 0.20°、25.29 ± 0.20°和25.55 ± 0.20°。
實施方式43:根據實施方式34所述的結晶形式,其具有XRPD圖,所述XRPD圖包括在5.95 ± 0.20°、8.58 ± 0.20°、11.89 ± 0.20°、12.39 ± 0.20°、13.40 ± 0.20°、13.75 ± 0.20°、15.54 ± 0.20°、15.90 ± 0.20°、17.23 ± 0.20°、18.91 ± 0.20°、19.56 ± 0.20°、23.51 ± 0.20°、24.91 ± 0.20°、25.29 ± 0.20°和25.55 ± 0.20°的2θ處的峰。
實施方式44:根據實施方式34所述的結晶形式,其具有與表9中所示基本上類似的XRPD圖。
實施方式45:根據實施方式34所述的結晶形式,其具有與圖17中所示基本上類似的XRPD圖。
實施方式46:根據實施方式35所述的結晶形式,其具有TGA熱譜圖,所述TGA熱譜圖表現出在從約30℃加熱到約180℃時,約0.5-1%的重量損失。
實施方式47:根據實施方式35所述的結晶形式,其具有DSC熱譜圖,所述熱譜圖包括吸熱,所述吸熱具有在約193.8℃處的起始點和在約194.6℃處的峰。
實施方式48:根據實施方式35所述的結晶形式,其具有與圖18中所示基本上類似的TGA熱譜圖和DSC熱譜圖。
實施方式49:根據實施方式1所述的結晶形式,其是化合物I的形式D。
實施方式50:根據實施方式49所述的結晶形式,其具有XRPD圖,所述XRPD圖包括在6.85 ± 0.20°、14.81 ± 0.20°和21.38 ± 0.20°的2θ處的峰。
實施方式51:根據實施方式50所述的結晶形式,其具有XRPD圖,所述XRPD圖進一步包括至少一個或兩個在選自以下的2θ處的峰:13.71 ± 0.20°和17.69 ± 0.20°。
實施方式52:根據實施方式49所述的結晶形式,其具有XRPD圖,所述XRPD圖包括在6.85 ± 0.20°、13.71 ± 0.20°、14.81 ± 0.20°、17.69 ± 0.20°和21.38 ± 0.20°的2θ處的峰。
實施方式53:根據實施方式52所述的結晶形式,其具有XRPD圖,所述XRPD圖進一步包括至少一個或兩個在選自以下的2θ處的峰:11.13 ± 0.20°和23.49 ± 0.20°。
實施方式54:根據實施方式49所述的結晶形式,其具有XRPD圖,所述XRPD圖包括在6.85 ± 0.20°、11.13 ± 0.20°、13.71 ± 0.20°、14.81 ± 0.20°、17.69 ± 0.20°、21.38 ± 0.20°和23.49 ± 0.20°的2θ處的峰。
實施方式55:根據實施方式54所述的結晶形式,其具有XRPD圖,所述XRPD圖進一步包括至少一個、兩個、三個或更多個在選自以下的2θ處的峰:13.07 ± 0.20°、15.08 ± 0.20°、18.37 ± 0.20°和21.67 ± 0.20°。
實施方式56:根據實施方式49所述的結晶形式,其具有XRPD圖,所述XRPD圖包括在6.85 ± 0.20°、11.13 ± 0.20°、13.07 ± 0.20°、13.71 ± 0.20°、14.81 ± 0.20°、15.08 ± 0.20°、17.69 ± 0.20°、18.37 ± 0.20°、21.38 ± 0.20°、21.67 ± 0.20°和23.49 ± 0.20°的2θ處的峰。
實施方式57:根據實施方式56所述的結晶形式,其具有XRPD圖,所述XRPD圖進一步包括至少一個、兩個、三個或更多個在選自以下的2θ處的峰:22.25 ± 0.20°、24.65 ± 0.20°、26.69 ± 0.20°和28.60 ± 0.20°。
實施方式58:根據實施方式49所述的結晶形式,其具有XRPD圖,所述XRPD圖包括在6.85 ± 0.20°、11.13 ± 0.20°、13.07 ± 0.20°、13.71 ± 0.20°、14.81 ± 0.20°、15.08 ± 0.20°、17.69 ± 0.20°、18.37 ± 0.20°、21.38 ± 0.20°、21.67 ± 0.20°、22.25 ± 0.20°、23.49 ± 0.20°、24.65 ± 0.20°、26.69 ± 0.20°和28.60 ± 0.20°的2θ處的峰。
實施方式59:根據實施方式49所述的結晶形式,其具有與表10中所示基本上類似的XRPD圖。
實施方式60:根據實施方式49所述的結晶形式,其具有與圖19中所示基本上類似的XRPD圖。
實施方式61:根據實施方式50所述的結晶形式,其具有TGA熱譜圖,所述TGA熱譜圖表現出在從約30℃加熱到約100℃時,約0.5-0.8%的重量損失。
實施方式62:根據實施方式50所述的結晶形式,其具有DSC熱譜圖,所述熱譜圖包括兩個吸熱,所述兩個吸熱分別具有在約186.9℃處的起始點和在約190.5℃處的峰,以及在約199.5℃處的起始點和在約200.4℃處的峰。
實施方式63:根據實施方式50所述的結晶形式,其具有與圖20中所示的TGA熱譜圖和DSC熱譜圖基本上類似的TGA熱譜圖和DSC熱譜圖。
實施方式64:根據實施方式1所述的結晶形式,其中所述化合物I的藥學上可接受的鹽選自由以下組成的組:鹽酸鹽、硫酸鹽、磷酸鹽、馬來酸鹽、富馬酸鹽、草酸鹽、對甲苯磺酸鹽、琥珀酸鹽、L-(+)-酒石酸鹽、單己二酸鹽和半己二酸鹽。
實施方式65:一種經噴霧乾燥的分散體(SDD)製劑,其包含化合物I和聚合物。
實施方式66:根據實施方式65所述的製劑,其中所述聚合物選自由以下組成的組:HPMC-AS聚合物、PVP-VA64共聚物、Soluplus聚合物、Eudragit E100聚合物、Eudragit L100-55聚合物、羥丙基-β-環糊精(HP-β-CD)、PVP K30 LP聚合物、HPC(羥丙基纖維素,Klucel LF)聚合物、HPC(Klucel MF)聚合物、HPMC E5 LV聚合物、HPMC E15聚合物、HPMCP-HP50聚合物以及其任何組合。
實施方式67:根據實施方式65所述的製劑,其中所述聚合物是HPMC-AS聚合物。
實施方式68:根據實施方式67所述的製劑,其中所述HPMC-AS聚合物選自由以下組成的組:HPMC-AS MG聚合物、HPMC-AS MF聚合物、HPMC-AS LF聚合物以及其任何組合。
實施方式69:根據實施方式65所述的製劑,其中所述聚合物是HPC(Klucel LF)聚合物。
實施方式70:根據實施方式65至69中任一項所述的製劑,其進一步包含表面活性劑。
實施方式71:根據實施方式70所述的製劑,其中所述表面活性劑選自由以下組成的組:維生素E聚乙二醇琥珀酸酯(TPGS)、十二烷基硫酸鈉(SDS)、聚山梨酯80(Tween 80)以及其組合。
實施方式72:根據實施方式65至71中任一項所述的製劑,其中化合物I的量為約5% w/w至約70% w/w。
實施方式73:根據實施方式65至72中任一項所述的製劑,其中化合物I的量為約20% w/w至約60% w/w。
實施方式74:根據實施方式65至73中任一項所述的製劑,其中化合物I的量為約20% w/w、約30% w/w或約40% w/w。
實施方式75:根據實施方式65至74中任一項所述的製劑,其中所述聚合物的量為約95% w/w至約30% w/w。
實施方式76:根據實施方式65至75中任一項所述的製劑,其中所述聚合物的量為約80% w/w至約40% w/w。
實施方式77:根據實施方式65至76中任一項所述的製劑,其中所述聚合物的量為約80% w/w、約77.5% w/w、約70% w/w、約60% w/w、約55% w/w、約50% w/w或約40% w/w。
實施方式78:根據實施方式65至77中任一項所述的製劑,其中所述表面活性劑的量為約0.5% w/w至約20% w/w。
實施方式79:根據實施方式65至78中任一項所述的製劑,其中所述表面活性劑的量為約2.5% w/w至約10% w/w。
實施方式80:根據實施方式65至79中任一項所述的製劑,其中所述表面活性劑的量為約2.5% w/w、約5% w/w或約10% w/w。
實施方式81:根據實施方式65至68或72至75中任一項所述的製劑,其中所述製劑包含量為約20% w/w的化合物I和量為約80% w/w的HPMC-AS MG聚合物。
實施方式82:根據實施方式65至68或72至75中任一項所述的製劑,其中所述製劑包含量為約30% w/w的化合物I和量為約70% w/w的HPMC-AS MG聚合物。
實施方式83:根據實施方式65至68或72至75中任一項所述的製劑,其中所述製劑包含量為約40% w/w的化合物I和量為約60% w/w的HPMC-AS MG聚合物。
實施方式84:根據實施方式65至68或70至80中任一項所述的製劑,其中所述製劑包含量為約40% w/w的化合物I、量為約50% w/w的HPMC-AS MF聚合物和量為約10% w/w的TPGS。
實施方式85:根據實施方式65、66或69至80中任一項所述的製劑,其中所述製劑包含量為約40% w/w的化合物I、量為約55% w/w的HPC(Klucel LF)聚合物和量為約5% w/w的SDS。
實施方式86:根據實施方式65至68或70至80中任一項所述的製劑,其中所述製劑包含量為約40% w/w的化合物I、量為約55% w/w的HPMC-AS MF聚合物和量為約5% w/w的SDS。
實施方式87:根據實施方式65至68或70至80中任一項所述的製劑,其中所述製劑包含量為約20% w/w的化合物I、量為約77.5% w/w的HPMC-AS MF聚合物和量為約2.5% w/w的SDS。
實施方式88:根據實施方式65至87中任一項所述的製劑,其中所述製劑是通過噴霧乾燥過程產生的,包含選自以下的溶劑:水、丙酮、甲醇、二氯甲烷以及其任何組合。
實施方式89:根據實施方式88所述的製劑,其中所述溶劑包括丙酮。
實施方式90:根據實施方式88所述的製劑,其中所述溶劑包括丙酮和水。
實施方式91:根據實施方式90所述的製劑,其中所述溶劑包括量為約99%的丙酮和量為約1%的水。
實施方式92:根據實施方式90所述的製劑,其中所述溶劑包括量為約98.2%的丙酮和量為約1.8%的水。
實施方式93:根據實施方式88所述的製劑,其中所述溶劑包括丙酮和二氯甲烷。
實施方式94:根據實施方式93所述的製劑,其中所述溶劑包括量為約30%的丙酮和量為約70%的二氯甲烷。
實施方式95:根據實施方式88所述的製劑,其中所述溶劑包括甲醇。
實施方式96:根據實施方式88所述的製劑,其中所述溶劑包括甲醇和二氯甲烷。
實施方式97:根據實施方式96所述的製劑,其中所述溶劑包括量為約50%的甲醇和量為約50%的二氯甲烷。
實施方式98:根據實施方式65至97中任一項所述的製劑,其中所述製劑中的化合物I是無定形的。
實施方式99:根據實施方式81所述的製劑,其中所述製劑具有與圖68或圖70中所示基本上類似的XRPD圖。
實施方式100:根據實施方式81所述的製劑,其中所述製劑具有MDSC譜,所述MDSC譜包括在約107 ± 3℃處的玻璃化轉變溫度(Tg)。
實施方式101:根據實施方式81所述的製劑,其中所述製劑具有與圖69、圖71或圖73中所示基本上類似的MDSC譜。
實施方式102:根據實施方式81至83中任一項所述的製劑,其中所述製劑具有與圖72中所示基本上類似的XRPD圖。
實施方式103:根據實施方式82所述的製劑,其中所述製劑具有MDSC譜,所述MDSC譜包括在約103.5℃處的玻璃化轉變溫度(Tg)。
實施方式104:根據實施方式82所述的製劑,其中所述製劑具有與圖74中所示基本上類似的MDSC譜。
實施方式105:根據實施方式83所述的製劑,其中所述製劑具有MDSC譜,所述MDSC譜包括在約99.7℃處的玻璃化轉變溫度(Tg)。
實施方式106:根據實施方式83所述的製劑,其中所述製劑具有與圖75中所示基本上類似的MDSC譜。
實施方式107:根據實施方式84至87中任一項所述的製劑,其中所述製劑具有與圖76中所示基本上類似的XRPD圖。
實施方式108:根據實施方式84所述的製劑,其中所述製劑具有MDSC譜,所述MDSC譜包括在約67.7℃處的Tg。
實施方式109:根據實施方式84所述的製劑,其中所述製劑具有與圖77中所示基本上類似的MDSC譜。
實施方式110:根據實施方式85所述的製劑,其中所述製劑具有MDSC譜,所述MDSC譜包括在約61.5℃處的Tg。
實施方式111:根據實施方式85所述的製劑,其中所述製劑具有與圖78中所示基本上類似的MDSC譜。
實施方式112:根據實施方式86所述的製劑,其中所述製劑具有MDSC譜,所述MDSC譜包括兩個在約96.3℃和約110.4℃處或在約95.8℃和約107.9℃處的Tg。
實施方式113:根據實施方式86所述的製劑,其中所述製劑具有與圖79或圖81中所示基本上類似的MDSC譜。
實施方式114:根據實施方式87所述的製劑,其中所述製劑具有MDSC譜,所述MDSC譜包括在約104.6℃處的Tg。
實施方式115:根據實施方式87所述的製劑,其中所述製劑具有與圖80中所示基本上類似的MDSC譜。
實施方式116:根據實施方式65至115中任一項所述的製劑,其中所述製劑的藥物含量高於98%。
實施方式117:根據實施方式65至116中任一項所述的製劑,其中所述製劑的藥物含量高於99%。
實施方式118:根據實施方式65至117中任一項所述的製劑,其中所述製劑的藥物含量高於99.5%。
實施方式119:根據實施方式65至118中任一項所述的製劑,其中所述製劑在25℃和60%相對濕度(RH)下儲存一周後的藥物含量高於98%。
實施方式120:根據實施方式65至119中任一項所述的製劑,其中所述製劑在25℃和60% RH下儲存一周後的藥物含量高於99%。
實施方式121:根據實施方式65至120中任一項所述的製劑,其中所述製劑在25℃和60% RH下儲存一周後的藥物含量高於99.4%。
實施方式122:根據實施方式65至121中任一項所述的製劑,其中所述製劑在40℃和75% RH下儲存一周後的藥物含量高於98%。
實施方式123:根據實施方式65至122中任一項所述的製劑,其中所述製劑在40℃和75% RH下儲存一周後的藥物含量高於99%。
實施方式124:根據實施方式65至123中任一項所述的製劑,其中所述製劑在40℃和75% RH下儲存一周後的藥物含量高於99.2%。
實施方式125:根據實施方式65至124中任一項所述的製劑,其中所述製劑被調配為片劑。
實施方式126:根據實施方式125所述的製劑,其中所述片劑包括量介於約5 mg至約1000 mg之間的化合物I。
實施方式127:根據實施方式125或126所述的製劑,其中所述片劑包括量為約25 mg、約50 mg、約75 mg、約100 mg、約125 mg、約150 mg或約200 mg的化合物I。
實施方式128:根據實施方式125至127中任一項所述的製劑,其中所述片劑包括化合物I、用於經噴霧乾燥的分散體的聚合物、黏合劑、崩解劑和潤滑劑。
實施方式129:根據實施方式125至128中任一項所述的製劑,其中所述片劑包括化合物I、用於經噴霧乾燥的分散體的聚合物、微晶纖維素PH-101、甘露醇、交聯羧甲纖維素鈉、膠體二氧化矽、硬脂酸鎂、微晶纖維素PH-102、泊洛沙姆188以及包衣材料。
實施方式130:根據實施方式129所述的製劑,其中所述聚合物是HPMS-AS聚合物。
實施方式131:根據實施方式130所述的製劑,其中所述聚合物是HPMS-AS MG聚合物。
實施方式132:根據實施方式125至128中任一項所述的製劑,其中所述片劑包括量介於約10% w/w與約30%w/w之間的化合物I、量介於約30% w/w與約50% w/w之間的HPMC-AS MG聚合物、量介於約10% w/w與約25% w/w之間的微晶纖維素PH-101、量介於約5% w/w與約15% w/w之間的甘露醇、量介於約1% w/w與約10% w/w之間的交聯羧甲纖維素鈉、量介於約0.1% w/w與約1% w/w之間的膠體二氧化矽、量介於約0.1% w/w與約1% w/w之間的硬脂酸鎂、量介於約5% w/w與約15% w/w之間的微晶纖維素PH-102以及量介於約0% w/w與約5% w/w之間的泊洛沙姆188。
實施方式133:根據實施方式132所述的製劑,其中所述片劑包括顆粒內部分和顆粒外部分,所述顆粒內部分包括量為約12% w/w的化合物I、量為約48% w/w的HPMC-AS MG聚合物、量為約12.4% w/w的微晶纖維素PH-101、量為約10% w/w的甘露醇、量為約2% w/w的交聯羧甲纖維素鈉、量為約0.5% w/w的膠體二氧化矽以及量為約0.25% w/w的硬脂酸鎂,所述顆粒外部分包括量為約2% w/w的交聯羧甲纖維素鈉、量為約9.4% w/w的微晶纖維素PH-102、量為約3% w/w的泊洛沙姆188以及量為約0.5% w/w的硬脂酸鎂。
實施方式134:根據實施方式132所述的製劑,其中所述片劑包括顆粒內部分和顆粒外部分,所述顆粒內部分包括量為約18% w/w的化合物I、量為約42% w/w的HPMC-AS MG聚合物、量為約11.4% w/w的微晶纖維素PH-101、量為約10% w/w的甘露醇、量為約3% w/w的交聯羧甲纖維素鈉、量為約0.5% w/w的膠體二氧化矽以及量為約0.25% w/w的硬脂酸鎂,所述顆粒外部分包括量為約3% w/w的交聯羧甲纖維素鈉、量為約8.4% w/w的微晶纖維素PH-102、量為約3.0% w/w的泊洛沙姆188以及量為約0.5% w/w的硬脂酸鎂。
實施方式135:根據實施方式132所述的製劑,其中所述片劑包括顆粒內部分和顆粒外部分,所述顆粒內部分包括量為約24% w/w的化合物I、量為約36% w/w的HPMC-AS MG聚合物、量為約11.4% w/w的微晶纖維素PH-101、量為約10% w/w的甘露醇、量為約3% w/w的交聯羧甲纖維素鈉、量為約0.5% w/w的膠體二氧化矽以及量為約0.25% w/w的硬脂酸鎂,所述顆粒外部分包括量為約3% w/w的交聯羧甲纖維素鈉、量為約11.4% w/w的微晶纖維素PH-102以及量為約0.5% w/w的硬脂酸鎂。
實施方式136:根據實施方式132至135中任一項所述的製劑,其中所述片劑進一步包括量介於約1% w/w與約5% w/w之間的額外包衣材料。
實施方式137:根據實施方式136所述的製劑,其中所述額外包衣材料的量為約2.0% w/w。
實施方式138:根據實施方式129至131或136至137中任一項所述的製劑,其中所述包衣材料是Opadry®。
實施方式139:根據實施方式137至138中任一項所述的製劑,其中所述片劑的溶出性能為活性藥物成分(API)在45分鐘內不小於60%。
實施方式140:根據實施方式137至139中任一項所述的製劑,其中所述片劑的溶出性能為API在45分鐘內不小於80%。
實施方式141:根據實施方式137所述的製劑,其中所述片劑具有與圖85中所示基本上類似的溶出曲線。
實施方式142:一種治療與ErbB相關的疾病的方法,所述方法包括向物件施用治療有效量的呈多晶型形式的化合物I或化合物I的藥學上可接受的鹽或包含化合物I和聚合物的經噴霧乾燥的分散體(SDD)。
實施方式143:根據實施方式142所述的方法,其中所述ErbB是HER2。
實施方式144:根據實施方式142或143所述的方法,其中所述疾病是癌症。
實施方式145:根據實施方式144所述的方法,其中所述癌症選自由以下組成的組:白血病、膠質母細胞瘤、黑色素瘤、軟骨肉瘤、膽管癌、骨肉瘤、淋巴瘤、肺癌、腺癌、骨髓瘤、肝細胞癌、腎上腺皮質癌、胰腺癌、乳腺癌、膀胱癌、前列腺癌、肝癌、胃癌、結腸癌、結直腸癌、卵巢癌、宮頸癌、腦癌、食道癌、骨癌、睪丸癌、皮膚癌、腎癌、間皮瘤、神經母細胞瘤、膠質母細胞瘤、甲狀腺癌、頭頸癌、食道癌、眼癌、前列腺癌、鼻咽癌和口腔癌。
實施方式146:根據實施方式144所述的方法,其中所述癌症選自由以下組成的組:肺癌、乳腺癌、胃癌、結直腸癌、胰腺癌、前列腺癌、膀胱癌、卵巢癌和膠質母細胞瘤。
實施方式147:根據實施方式144所述的方法,其中所述癌症選自由以下組成的組:肺癌、乳腺癌、膀胱癌、卵巢癌和膠質母細胞瘤。
實施方式148:根據實施方式144至147中任一項所述的方法,其中所述癌症已轉移到中樞神經系統(CNS)。
實施方式149:根據實施方式148所述的方法,其中所述癌症具有腦轉移和軟腦膜轉移。
實施例以下縮寫具有如下所示的定義:
為清楚起見,下表匯總了在整個申請中可互換使用的關於所討論的每種化合物的化合物識別字、化學名稱和結構。
實施例 1 :分析方法 1H NMR分析
1H NMR使用配備有自動化採樣器(B-ACS 120)的布魯克公司AVANCE III(Bruker AVANCE III)、布魯克公司Ultrashield 400或布魯克公司Advance 300進行。
X射線粉末衍射(XRPD)
使用D8 Advance衍射儀(布魯克公司)檢查固體樣品。系統配備有LynxEye檢測器。樣品從3°到40° 2θ掃描,步進為0.02° 2θ。管電壓和電流為40 KV和40 mA(D8 Advance)。
將樣品鋪展到Si襯底上以使用如下參數進行XRPD測試:管:Cu:K-α(λ = 1.54179Å)。
發電機:電壓:40 kV;電流:40 mA。
掃描範圍:3度至40度。
掃描速率:10度/分鐘
樣品轉速:15 rpm
熱重分析(TGA)
在TGA Q5000IR、Q500、Discovery TGA 55(美國TA儀器公司(TA Instruments,US))或梅特勒托利多公司TGA 2(Mettler Toledo TGA 2)上進行TGA。將樣品放置在開放的焦油鋁平底鍋中,自動地稱重,並且插入到TGA爐中。將樣品以10℃/分鐘加熱到最終溫度。
使用約5-10 mg樣品以使用以下參數進行TGA測試:以10℃/分鐘加熱至300℃;在% < 80.00的情況下,中止下一段。
差示掃描量熱法(DSC)
用DSC Q2000、Q200、Discovery DSC 250(美國的TA儀器公司)或梅特勒托利多公司DSC 3+進行DSC分析。將所稱重的樣品放置在DSC針孔平底鍋中,並準確地記錄重量。將樣品以10℃/分鐘加熱到最終溫度。
加熱-冷卻-加熱DSC
將粉末稱量到來自TA儀器公司的Tzero鋁樣品平底鍋中。
被針孔蓋覆蓋的儀器,用於使用如下參數進行DSC測試:在30℃下平衡;以10℃/分鐘加熱至220℃(第一次加熱運行);等溫1.00分鐘;以10℃/分鐘冷卻至20℃(冷卻運行);等溫1.00分鐘;以10℃/分鐘加熱至220℃(第二次加熱);氮氣流量:50毫升/分鐘。
MDSC
將SDD粉末稱量到來自TA儀器公司的Tzero鋁樣品平底鍋中,所述鋁樣品平底鍋被針孔蓋覆蓋,用於使用如下參數進行MDSC測試:在10℃下平衡;每60秒調節+/-1℃;等溫5.00分鐘;以2℃/分鐘加熱至200℃。
動態水分吸附分析(DVS)
使用DVS Advantage-1或Intrinsic(英國的SMS公司(SMS,UK))確定DVS。在步進模式下,在10%至90%的全週期的目標相對濕度(RH)下對樣品進行測試。以10% RH增量進行分析。平衡時間:60分鐘。RH(%)測量點:第一週期:0、10、20、30、40、50、60、70、80、90。第二週期:90、80、70、60、50、40、30、20、10、0。
實施例 2 :用於製備 (
S)-N-(4-([1,2,4]
三唑並 [1,5-a] 吡啶 -7- 基氧基 )-3- 甲基苯基 )-5-((3,3- 二氟 -1- 甲基呱啶 -4- 基 ) 氧基 )-7- 甲氧基喹唑啉 -4- 胺 ( 化合物 I) 的程式實驗室規模合成(
S)-N-(4-([1,2,4]三唑並[1,5-a]吡啶-7-基氧基)-3-甲基苯基)-5-((3,3-二氟-1-甲基呱啶-4-基)氧基)-7-甲氧基喹唑啉-4-胺(化合物I)和(
R)-N-(4-([1,2,4]三唑並[1,5-a]吡啶-7-基氧基)-3-甲基苯基)-5-((3,3-二氟-1-甲基呱啶-4-基)氧基)-7-甲氧基喹唑啉-4-胺(化合物II)
實驗室規模合成化合物I
用於製備化合物(8)的程式:
向化合物(7)(130 g,0.948 mol)於冰-鹽冷水浴中的溶液中添加98% HCOOH(200 mL,4.47mol)。將所得混合物溫熱至約25℃,並且添加40% HCHO(137 mL,1.896 mol)。在加熱至40℃期間,大量的氣體釋放。完成後,將溶液通過添加經濃縮的NaOH調節至pH = 9-10,並且用EtOAc(1.5 L x 3)萃取,用水和鹽水(1.6 L)洗滌。將有機層在Na
2SO
4上乾燥並且濃縮,以得到呈白色固體的化合物(8)(116.8 g,粗品)。
用於製備化合物(2)的程式:
將化合物(1)(2.5 g,11.2 mmol)和CuCN(2.9 g,22.4 mmol)於NMP(25 mL)中的混合物在160℃下攪拌5小時。冷卻至室溫、過濾並濃縮後,將為化合物(2)的粗產物未經進一步純化直接用於下一步驟。
用於製備化合物(3)的程式:
將NH
3氣體泵入到100 mL EtOH中,在0℃下持續15分鐘,並且將化合物(2)(3 g粗品)溶解於30 mL MeOH中,將混合物在120℃下於密封的管中攪拌過夜。將溶液濃縮,並且將殘餘物通過矽膠上柱色譜法(PE/EtOAc = 1/1)純化,以得到呈白色固體的化合物(3)(450 mg,兩步驟產率為24%)。
化合物(3)的
1H NMR
(400MHz, DMSO-
d
6 )
δ6.38 (s, 2H), 6.17 (d,
J= 2 Hz, 1H), 6.13 (dd,
J 1= 2.0 Hz,
J 2= 9.2 Hz, 1H), 3.73 (s, 3H)。
用於製備化合物(4)的程式:
將化合物(3)(2 g,粗品)於DMF-DMA(8 mL)中的混合物在100℃下攪拌2小時,在冷卻至室溫後,將混合物過濾,並且將沉澱物用乙酸乙酯洗滌,以得到呈黃色固體的化合物(4)(800 mg,粗品),所述化合物未經進一步純化直接用於下一步驟。
用於製備化合物(6)的程式:
將化合物(4)(800 mg,3.62 mmol)和化合物(5)(1.303 g,5.43 mmol)於AcOH(15 mL)中的混合物在40-60℃下攪拌過夜。將混合物濃縮,用K
2CO
3(水溶液)將pH調節至8-9並過濾。將殘餘物用乙酸乙酯洗滌,以得到呈棕色固體的化合物(6)(1.6 g,粗品)。
化合物(6)的LCMS:R
t= 0.702分鐘(Xtimate C18 2.1*30 mm),MS (ESI) m/z 417.0 [M+H]
+。
化合物(6)的
1H NMR
(400MHz, 甲醇-
d
4 )
δ8.74 (d,
J= 7.2 Hz, 1H), 8.46 (s, 1H), 8.29 (s, 1H), 7.71 (s, 1H), 7.67 (dd,
J 1= 2.4 Hz ,
J 2= 8.4 Hz, 1H), 7.18 (d,
J= 8.4 Hz, 1H), 7.09-7.00 (m, 3H), 6.85 (d,
J= 2.4 Hz, 1H), 3.98 (s, 3H), 2.25 (s, 3H)。
用於製備化合物I和化合物II的程式:
將化合物(6)(1.1 g,2.64 mmol)、化合物(8)(991 mg,5.28 mmol)和
t-BuOK(889 mg,7.92 mmol)於THF/DMF(15/6 mL)中的混合物在80-100℃下在N
2氣氛下攪拌過夜。將混合物濃縮,並且將殘餘物通過反相製備型HPLC:(柱:SYNERGI 250*50 10 um,梯度:40-70% B和60-30% A(A = 水/0.05% NH
4HCO
3,B = 乙腈),流速:80毫升/分鐘)純化,以獲得化合物(9),並且然後將化合物(9)通過SFC分離,以得到170 mg化合物I和170 mg化合物II。
化合物I和化合物II的手性SFC分離條件:對於化合物I,t
R= 1.582分鐘,並且對於化合物II,為1.741為分鐘;柱:Chiralcel OD-3 50 * 4.6 mm I.D,3 um;流動相:A:CO
2,B:乙醇(0.05%二乙胺);梯度:保持5%的B和95%的A,並且持續0.2分鐘,然後在1.4分鐘內形成5%至40%的B,並且保持40%的B和60%的A持續1.05分鐘,然後保持5%的B持續0.35分鐘;流速:4毫升/分鐘;柱溫:40℃
化合物I:
LCMS:R
t= 2.001分鐘(Xtimate C18,2.1*30 mm,3 um),MS (ESI) m/z = 548.1 [M+H]
+。
1H NMR (400MHz, 甲醇-
d
4 )
δ8.89 (d,
J= 7.6 Hz, 1H), 8.77 (s, 1H), 8.58 (s, 1H), 7.82 (d,
J= 2.4 Hz, 1H), 7.77 (dd,
J
1 = 9.2 Hz,
J
2 = 2.8 Hz, 1H), 7.31 (d,
J= 8.4 Hz, 1H), 7.26 (dd,
J
1 = 13.6 Hz,
J
2 = 2.0 Hz, 2H), 6.95 (d,
J= 2.0 Hz, 1H), 6.92 (s, 1H), 5.67-5.59 (m, 1H), 4.28 (brs, 1H), 4.08 (s, 3H), 3.91-3.76 (m, 2H), 3.53-3.47 (m, 1H), 3.07 (s, 3H), 2.88 (d,
J= 13.2 Hz, 1H), 2.43-2.40 (m, 1H), 2.29 (s, 3H)。
化合物II:
LCMS:R
t= 2.009分鐘(Xtimate C18,2.1*30 mm,3 um),MS (ESI) m/z = 548.0 [M+H]
+。
1H NMR
(400MHz, 甲醇-
d
4 )
δ8.89 (d,
J= 7.2 Hz, 1H), 8.76 (s, 1H), 8.57 (s, 1H), 7.82 (d,
J= 2.4 Hz, 1H), 7.77 (dd,
J
1 = 8.4 Hz,
J
2 = 2.4 Hz, 1H), 7.30 (d,
J= 8.8 Hz, 1H), 7.22 (dd,
J
1 = 7.6 Hz,
J
2 = 2.4 Hz, 2H), 6.96 (d,
J= 2.4 Hz, 1H), 6.91 (d,
J= 2.4 Hz, 1H), 5.72-5.63 (m, 1H), 4.26-4.24 (m, 1H), 4.08 (s, 3H), 3.94-3.76 (m, 2H), 3.57-3.51 (m, 1H), 3.07 (s, 3H), 2.87 (d,
J= 14.4 Hz, 1H), 2.48-2.42 (m, 1H), 2.29 (s, 3H)。
(
S)-N-(4-([1,2,4]三唑並[1,5-a]吡啶-7-基氧基)-3-甲基苯基)-5-((3,3-二氟-1-甲基呱啶-4-基)氧基)-7-甲氧基喹唑啉-4-胺(化合物I)的按比例擴大規模製備方法
在4步驟合成(包括重結晶)中使用化合物,即化合物(3)、化合物(5)和化合物(10)作為起始材料來製備化合物I。詳細的合成途徑在方案2中呈現的方案和以下描述中描繪。
步驟1:化合物(4)的製備
將化合物(3)和DMF-DMA於IPA中的混合物在75-80℃下加熱直到反應完成,然後使反應溶液冷卻。將化合物(4)通過過濾分離,用IPA洗滌並且乾燥。
步驟2:化合物(6)的製備
將化合物(5)添加到經加熱的化合物(4)的AcOH溶液中,將所得混合物在70-75℃下加熱直到反應完成。將反應冷卻,然後裝入水。將固體通過過濾分離,用水洗滌,並且用NaOH水溶液制漿。將化合物(6)通過過濾分離,用水洗滌並且乾燥。
步驟3:化合物I粗品的製備
向化合物(10)和
t-BuOK於DMF/THF中的溶液中添加化合物(6)。將所得混合物在70-80℃下加熱,直到反應完成。將溶液借助於通過矽藻土過濾來收集,冷卻,然後添加水。將固體通過過濾分離,用水洗滌,然後將濕濾餅用水制漿。將化合物I(粗品)通過過濾分離,用水洗滌並且乾燥。
步驟4:化合物I的重結晶
通過筒式篩檢程式將化合物I(粗品)於EtOH/水中的溶液過濾,然後添加晶種。將混合物濃縮並且裝入MTBE,然後使所得混合物冷卻。將化合物I(重結晶的)通過過濾分離,用MTBE洗滌並且乾燥。
步驟1的程式:
在N
2氣氛下,將化合物(3)(19.5 kg,1.00 wt)和DMF-DMA(1.06-1.09 wt)與IPA(4.0-4.2 wt)一起裝入,將所得混合物在75-80℃下加熱並攪拌,直到如HPLC所指示的反應完成(預期反應時間為6-8小時)。使反應混合物在4-6小時內冷卻至15-25℃,將固體通過過濾收集並且用IPA(0.79-0.95 wt)洗滌。將濕濾餅在40-45℃下在真空下乾燥,以獲得化合物(4)(24.85 kg,純度:100.0%,產率:96%)。化合物(4)的
1H NMR:(CDCl
3, 400MHz), 2.88-3.23(m, 6H), 3.61-3.97(m, 3H), 6.00-6.51(m, 2H), 7.26-7.79(m, 1H)。
步驟2的程式:
將化合物(4)(22.4 kg,1.0 wt)在70-75℃下溶解於AcOH(5.4-5.5 wt)中,並且將化合物(5)(1.08-1.14 wt)在65-75℃下在1-3小時內逐部分添加,然後將AcOH(1.0-1.1 wt)添加到沖洗反應器中。將所得混合物在70-75℃下加熱並攪拌,直到如HPLC所指示的反應完成(預期反應時間為15-20小時)。將反應混合物在4-6小時內冷卻至15-25℃,將工藝水(10.0-10.5 wt)添加,並且在此溫度下攪拌4-6小時,並且將固體通過過濾收集,然後用水(1.9-2.1 wt)洗滌。將濕濾餅和工藝水(10.0-10.5 wt)添加到反應器中,然後添加2 N NaOH(3.5-4.5 wt),以在15-25℃下將pH調節至13-14。將混合物在此溫度下攪拌4-6小時,並且將固體通過過濾收集,然後用水(1.9-2.1 wt)洗滌。將濕濾餅在50-55℃下乾燥,以獲得化合物(6)(37.45 kg,純度:99.7%,測定:98.9%,產率:88%)。化合物(6)的
1H NMR (DMSO-
d
6 , 400MHz):2.18(s, 3H), 3.940 (s, 3H), 6.78-6.79(d, 1H), 7.01-7.21(m, 4H), 7.69-7.74(m, 2H), 8.38(s, 1H), 8.52(s, 1H), 8.92-8.94(d, 1H), 9.03-9.06(d, 1H)。
步驟3的程式:
向化合物(10)(15.9 kg,0.43-0.44 wt)於THF(5.0-5.2 wt)和DMF(2.7-2.9 wt)中的溶液中添加
t-BuOK(0.302-0.323 wt),將所得混合物在20-30℃下攪拌0.5-1.0小時,然後將化合物(6)(36.9 kg,1.00 wt)和THF(1.0-1.2 wt)添加,並且在70-80℃下攪拌,直到如HPLC所指示的反應完成(預期反應時間為16-20小時)。將反應混合物過濾,然後將純淨水(20.0-24.0 wt)在15-25℃下逐滴添加(添加時間≥ 8小時),然後在15-25℃下攪拌4-8小時。將固體通過過濾收集並且用純淨水(1.5-2.5 wt)洗滌。將濕濾餅和純淨水(9.0-10.0 wt)添加,將混合物調節至15-25℃,並且在此溫度下攪拌4-8小時。將固體通過過濾收集,並且用純淨水(1.5-2.5 wt)洗滌。將濕濾餅在50-55℃下在減壓下乾燥,以獲得化合物I(粗品)(44.1 kg,純度:99.8%;手性純度:100.0%,產率:91.0%)。
步驟4的程式:
將粗品化合物I(43.5 kg,1.0 wt)在70-75℃下在氮氣保護下溶解在純淨水(0.50-0.54 wt)和EtOH(7.5-8.0 wt)中,然後將所得混合物通過筒式篩檢程式轉移到另一個反應器中。將清澈溶液冷卻至58-63℃,然後添加晶種(0.005-0.010 wt),將混合物在此溫度下攪拌2-6小時。將混合物在60℃下濃縮至6-8 V,並將溫度調節至45-55℃,並且在此溫度下在不少於6小時內逐滴添加MTBE(4.0-6.0 wt)。將反應混合物在45-55℃下攪拌2-8小時,然後在5-10小時內冷卻至-2-2℃(10℃/1-2小時是優選的),並在此溫度下攪拌6-12小時。將固體通過過濾收集,並且用MTBE(1.3-1.6 wt x 2)洗滌。將濕濾餅在45-50℃下在減壓下乾燥,以獲得重結晶的化合物I(36.2 kg,純度:99.9%,測定:99.0%;手性純度:100.0%,產率:82%)。
= +12.2°(
c10 mg/mL,MeOH)。獲得了化合物I的形式A。
化合物I的
1H NMR譜示出在圖1中。
化合物I的單個晶體
將約20 mg化合物I放入到8 mL小瓶中,並且添加約2-3 mL乙醇/水(50:50,v/v)的溶劑混合物。將溶液在室溫下攪拌10分鐘,並且通過注射器膜將渾濁的溶液過濾。將清澈的經過濾的溶液用具有針孔的塑膠包裹物包裹,並且在通風櫥中在60℃下蒸發。在乙醇/水(50:50,v/v)中在60℃下的蒸發法產生了具有適用於單晶確定的大小和透明度的化合物I的板狀晶體。化合物I中的單個手性中心的絕對構型被確定為(
S)。化合物I的單晶X射線衍射ORTEP示出在圖2中。
晶體資料
資料收集
細化
用於製備化合物I的形式B的程式
將150 mg化合物I的半己二酸鹽在25℃下懸浮於75 mL pH 6.8的緩衝液中。將混合物在25℃下攪拌24小時以形成化合物I的游離鹼。將懸浮液過濾並在35℃的真空烘箱中乾燥24小時以得到化合物I的結晶形式B。
用於製備化合物I的形式C的程式
將300 mg化合物I和15 mL甲醇在50℃下添加到40 mL小瓶中。將混合物在50℃下保持30分鐘。將懸浮液過濾,並且使濾液快速冷卻至0℃,直到在溶液中形成固體。將懸浮液過濾,以得到化合物I的結晶形式C。
用於製備化合物I的形式D的程式
方法1
將300 mg化合物I在50℃下懸浮到4 mL 1,4-二噁烷或THF中。將混合物在50℃下保持30分鐘。將懸浮液過濾。向濾液中逐滴添加反溶劑(例如,正庚烷、水或MTBE),直到溶劑/反溶劑的比率達到1:5(v/v)。將懸浮液過濾,以得到化合物I的結晶形式D。
方法2
將30 mg化合物I在50℃下懸浮到1 mL適當溶劑(例如,THF、1,4-二噁烷、丙酮、乙腈或乙酸乙酯)中。將混合物在50℃下保持30分鐘。將懸浮液過濾,並且將濾液在25℃下蒸發7天。將懸浮液過濾,以得到化合物I的結晶形式D。
化合物I的形式A的在25℃下使用溶劑的平衡:
將約30 mg化合物I的形式A用0.5 mL溶劑(如下表1中所述)在25℃下平衡10天。將懸浮液過濾並且在環境條件下乾燥10分鐘。通過XRPD對固體部分進行了研究。如果觀察到差異,則將進行另外的研究。(例如,DSC、TGA、NMR)。
化合物I的形式A的在50℃下使用溶劑的平衡:
如以上所描述的,但在50℃下。平衡時間可以比25℃的時間更短,以防止在高溫下降解。
化合物I的形式A的在25℃或50℃下在溶劑中的持續10天的平衡實驗的XRPD圖疊加分別示出在圖3和圖4中。
化合物I在室溫下通過緩慢蒸發結晶:
在50℃下製備化合物I在最少量的溶劑(如下表2中所述)中的飽和溶液。允許上清液在環境溫度下緩慢蒸發以檢查其多晶型形式。
來自在室溫下進行的蒸發實驗的XRPD圖疊加示出在圖5中。
從熱飽和溶液中結晶化合物I:
將大約30 mg化合物I在60℃下溶解於最少量的溶劑(如下表3所述)中。進行過濾以確保溶液中沒有殘餘的晶體。將飽和溶液的一部分放入在冰浴中並且攪動以快速冷卻。使另一部分以0.1℃/分鐘的速率逐漸冷卻至5℃,並在5℃下保持過夜。通過XRPD對固體部分進行了研究。如果觀察到差異,則將進行另外的研究。(例如,DSC、TGA、NMR)。
來自從熱飽和溶液中結晶化合物I的快速冷卻實驗或緩慢冷卻實驗的XRPD圖疊加分別示出在圖6和圖7中。
化合物I通過添加反溶劑沉澱:
測試了兩種不同的溶劑組合。將化合物I溶解在溶解度高的介質中,並且添加化合物I在其中高度不溶的溶劑。通過XRPD對固體部分進行了研究。如果觀察到差異,則將進行另外的研究。(例如,DSC、TGA、NMR)。
來自化合物I的反溶劑實驗的XRPD圖疊加示出在圖8中。
化合物I的形式A在壓縮下的行為:
將約100 mg化合物I用液壓機在20 MPa下壓縮5分鐘(片劑的直徑為8 mm)。進行XRPD以研究在壓縮下的多晶型行為。如果觀察到差異,則將進行另外的研究。(例如,DSC、TGA、NMR)。
來自壓縮實驗的XRPD圖疊加示出在圖9中。在用20 MPa壓縮5分鐘後,化合物I的形式A沒有觀察到XRPD圖的變化。
化合物I的形式A的研磨模擬實驗:
將約20 mg化合物I用研缽手動研磨1分鐘。通過XRPD評估固體形式和結晶度。如果觀察到差異,則將進行另外的研究。(例如,DSC、TGA、NMR)。
化合物I的形式A的製粒模擬實驗:
向化合物I中逐滴添加製粒溶劑,直到固體被充分潤濕。每次添加之間進行漩渦。在環境條件下乾燥至< 2%或更低。通過XRPD評估固體形式和結晶度。製粒溶劑是例如水和乙醇。
來自研磨和製粒實驗的XRPD掃描疊加示出在圖10中。在研磨並用水和乙醇濕法製粒後,化合物I的形式A沒有觀察到XRPD圖的變化。
化合物I的形式A和形式B的競爭平衡:
在競爭平衡實驗中研究化合物I的形式B和形式A的1:1品質混合物。將約20 mg化合物I的形式A和20 mg化合物Ⅰ的形式B用1 mL化合物I的飽和溶液在25℃下平衡3天。將懸浮液過濾並在環境條件下乾燥10分鐘。通過XRPD對固體部分進行了研究。
通過反溶劑從1,4-二噁烷/水系統中沉澱或化合物I的半己二酸鹽在pH = 6.8的磷酸鹽緩衝溶液中解離為化合物I的游離鹼而獲得化合物I的水合物。化合物I的水合物呈形式A,但不穩定,並且在真空下在30℃下乾燥後轉化無水物形式B。
形式B僅通過化合物I的水合物在30℃的真空乾燥下脫水而獲得。其呈中等結晶形式,在116.3℃下開始熔融,並且顯示出在100℃下1.68%的重量損失。進行形式A和形式B的競爭平衡。在競爭平衡後,在三種所選溶劑中獲得了形式A(如下表中所述),這表示形式A比形式B更穩定。
化合物I的形式C的平衡:
用10 mL MeOH使一定量的形式C在5℃下平衡。在不同的時間點檢查XRPD圖。將懸浮液過濾,並且在環境條件下乾燥10分鐘。通過XRPD對固體部分進行了研究。
通過在MeOH中快速冷卻的熱飽和溶液結晶實驗中獲得形式C。其可以形成高度結晶的顆粒,並且在193.8℃下開始熔融,並且重量損失為0.70%。形式C在甲醇中進一步平衡3天、10天和17天證明了形式A比形式C更穩定。
化合物I的形式D的平衡:
將從反溶劑實驗中獲得的形式D懸浮液保持攪拌7天,然後將懸浮液過濾並且在環境條件下乾燥10分鐘。通過XRPD對固體部分進行了研究。
在此多晶型物研究中,形式D可以通過不同的方法獲得。其可以形成高度結晶的固體,並且顯示出在186.9℃下開始熔融,並且在165℃下的重量損失為0.67%。與反溶劑沉澱實驗組合,在開始時在多個溶劑/反溶劑對中獲得形式D。在對應溶劑中平衡7天後,形式D轉化為形式A,這表明形式A也比形式D更穩定。
化合物 I 的形式 A 、形式 B 、形式 C 、形式 D 的物理特性。 化合物 I 的形式 A25℃下的近似溶解度測量
稱取約2 mg化合物I的形式A,並且用最少量的溶劑使其溶解,以確定25℃下的溶解度。實驗是通過手動稀釋與視覺觀察組合進行的。
化合物I的形式A的XRPD資料示出在圖11和表7中。
熱行為:化合物I的形式A的DSC和TGA
通過DSC和TGA獲得化合物I的形式A的熱行為。化合物I的形式A的TGA示出在圖12中。化合物I的形式A的TGA顯示,從30℃到120℃觀察到約0.02%的重量損失。
化合物I的形式A的DSC示出在圖13中。化合物I的形式A的DSC顯示,DSC中的起始點和峰的溫度分別為199.5℃和201.5℃。
化合物I的形式A的吸濕性
化合物I的形式A的DVS圖示出在圖14中。化合物I的形式A的DVS圖顯示,從0-80% RH,約0.21%的水分被吸收,這指示藥物物質的輕微吸濕特性。
化合物 I 的形式 B化合物I的形式B的XRPD資料示出在圖15和表8中。
化合物I的形式B的TGA和DSC示出在圖16中。化合物I的形式B的TGA顯示,從30℃到100℃觀察到約1.68%的重量損失。化合物I的形式B的DSC顯示出三個具有起始溫度和峰值溫度的吸熱轉變,分別為116.3℃和125.4℃、182.4℃和187.5℃、199.2℃和200.3℃。
化合物 I 的形式 C化合物I的形式C的XRPD資料示出在圖17和表9中。
化合物I的形式C的TGA和DSC示出在圖18中。化合物I的形式C的TGA顯示,從30℃到180℃觀察到約0.70%的重量損失。化合物I的形式C的DSC顯示出一個具有起始溫度和峰值溫度的吸熱轉變,分別為193.8℃和194.6℃。
化合物 I 的形式 D化合物I的形式D的XRPD資料示出在圖19和表10中。
化合物I的形式D的TGA和DSC示出在圖20中。化合物I的形式D的TGA顯示,從30℃到100℃觀察到約0.67%的重量損失。化合物I的形式D的DSC顯示出兩個吸熱轉變,起始點和峰的溫度分別為186.9℃和190.5℃、199.5℃和200.4℃。
實施例 4 :化合物 I 的藥學鹽的製備和鹽篩選用於化合物I的鹽篩選的程式
將50 mg化合物I游離鹼形式與1當量選自以下的酸混合:鹽酸、硫酸、磷酸、富馬酸、己二酸、馬來酸、對甲苯磺酸、琥珀酸、草酸、L-(+)-酒石酸,然後添加1 mL溶劑。將獲得的混合物在50℃下攪拌2小時,並且然後在25℃下攪拌過夜,以形成化合物I的藥學鹽。將沉澱物通過離心過濾收集,並且在50℃下乾燥過夜,並且然後通過XRPD進行分析。類似地,還用0.5當量的酸進行鹽篩選。如果觀察到新的圖樣,則進行進一步評估TGA、DSC、NMR、吸濕性。
化合物I的藥學鹽的物理特性
下表匯總了化合物I的藥學鹽的物理特性,所述藥學鹽選自:化合物I的呈結晶形式的鹽酸鹽、硫酸鹽、磷酸鹽、富馬酸鹽、單己二酸鹽、半己二酸鹽、馬來酸鹽、對甲苯磺酸鹽、琥珀酸鹽、草酸鹽、L-(+)-酒石酸鹽。
化合物 I 的富馬酸鹽化合物I的富馬酸鹽的XRPD資料以及其與化合物I的形式A的比較示出在圖21、圖22和表14中。
化合物I的富馬酸鹽的DSC示出在圖23中。化合物I的富馬酸鹽的DSC顯示出一個吸熱轉變,起始點和峰的溫度分別為162.8℃和169.8℃。化合物I的富馬酸鹽的TGA示出在圖24中。化合物I的富馬酸鹽的TGA顯示,從40℃到110℃觀察到約0.70%的重量損失。化合物I的富馬酸鹽的蒸汽吸附分析示出在圖25中。
化合物 I 的半琥珀酸鹽化合物I的半琥珀酸鹽和化合物I的游離鹼形式A的XRPD資料示出在圖26中。化合物I的半琥珀酸鹽的DSC示出在圖27中。化合物I的半琥珀酸鹽的DSC顯示出一個吸熱轉變,起始點和峰的溫度分別為173.9℃和184.3℃。化合物I的半琥珀酸鹽的TGA示出在圖28中。化合物I的半琥珀酸鹽的TGA顯示,從30℃到125℃觀察到約4.10%的重量損失。化合物I的半琥珀酸鹽的蒸汽吸附分析示出在圖29中。
化合物 I 的鹽酸鹽化合物I的鹽酸鹽的DSC和TGA示出在圖30中。化合物I的鹽酸鹽的DSC顯示出一個吸熱轉變,起始點和峰的溫度分別為220.8℃和227.6℃。化合物I的鹽酸鹽的TGA顯示,從40℃到150℃觀察到約0.26%的重量損失。化合物I的鹽酸鹽的蒸汽吸附分析示出在圖31中。
化合物 I 的磷酸鹽化合物I的磷酸鹽的XRPD示出在圖32中。化合物I的磷酸鹽的DSC和TGA示出在圖33中。化合物I的磷酸鹽的DSC顯示出四個吸熱轉變,起始點和峰的溫度分別為30.8℃和50.1℃、145.5℃和149.1℃、191.1℃和195.5℃、213.2℃和239.0℃。化合物I的磷酸鹽的TGA顯示,從30℃到200℃觀察到約4.66%的重量損失。化合物I的磷酸鹽的蒸汽吸附分析示出在圖34中。
化合物 I 的硫酸鹽化合物I的硫酸鹽的XRPD示出在圖35中。化合物I的硫酸鹽的DSC和TGA示出在圖36中。化合物I的硫酸鹽的DSC顯示出三個吸熱轉變,起始點和峰的溫度分別為34.5℃和57.3℃、157.5℃和169.4℃、227.6℃和247.4℃。化合物I的硫酸鹽的TGA顯示,從30℃到200℃觀察到約5.47%的重量損失。化合物I的硫酸鹽的蒸汽吸附分析示出在圖37中。
化合物 I 的半己二酸鹽化合物I的半己二酸鹽的XRPD數據示出在圖38和表15中。
化合物I的半己二酸鹽的DSC和TGA示出在圖39中。化合物I的半己二酸鹽的DSC顯示出一個吸熱轉變,起始點和峰的溫度分別為173.3℃和175.0℃。化合物I的半己二酸鹽的TGA顯示,從40℃到145℃觀察到約0.25%的重量損失。化合物I的半己二酸鹽的DVS圖示出在圖40中。
化合物 I 的對甲苯磺酸鹽化合物I的對甲苯磺酸鹽的XRPD數據示出在圖41和表16中。
化合物I的對甲苯磺酸鹽的DSC和TGA示出在圖42中。化合物I的對甲苯磺酸鹽的DSC顯示出一個吸熱轉變,起始點和峰的溫度分別為168.2℃和175.2℃。化合物I的對甲苯磺酸鹽的TGA顯示,從30℃到150℃觀察到約0.79%的重量損失。化合物I的對甲苯磺酸鹽的DVS圖示出在圖43中。
化合物 I 的馬來酸鹽化合物I的馬來酸鹽的XRPD數據示出在圖44和表17中。
化合物I的馬來酸鹽的DSC和TGA示出在圖45中。化合物I的馬來酸鹽的DSC顯示出一個吸熱轉變,起始點和峰的溫度分別為159.6℃和162.5℃。化合物I的馬來酸鹽的TGA顯示,從30℃到140℃觀察到約0.44%的重量損失。化合物I的馬來酸鹽的DVS圖示出在圖46中。
化合物 I 的草酸鹽化合物I的草酸鹽的XRPD數據示出在圖47中。化合物I的草酸鹽的DSC和TGA示出在圖48中。化合物I的草酸鹽的DSC顯示出三個吸熱轉變,起始點和峰的溫度分別為30.5℃和63.2℃、129.9℃和139.5℃、193.2℃和211.4℃。化合物I的草酸鹽的TGA顯示,從37℃到147℃觀察到約7.92%的重量損失。
化合物 I 的 L-(+)- 酒石酸鹽化合物I的L-(+)-酒石酸鹽的XRPD示出在圖49中。化合物I的L-(+)-酒石酸鹽的DSC和TGA示出在圖50中。化合物I的L-(+)-酒石酸鹽的DSC顯示出三個具有起始溫度和峰值溫度的吸熱轉變,分別為144.5℃和156.1℃、172.3℃和187.5℃、203.5℃和224.0℃。化合物I的酒石酸鹽的TGA顯示,從40℃到150℃觀察到約0.59%的重量損失。
化合物 I 的單己二酸鹽化合物I的單己二酸鹽的XRPD數據示出在圖51中。化合物I的單己二酸鹽的DSC和TGA示出在圖52中。化合物I的單己二酸鹽的DSC顯示出兩個吸熱轉變,起始點和峰的溫度分別為146.1℃和148.7℃、167.1℃和171.9℃。化合物I的單己二酸鹽的TGA顯示,從40℃到125℃觀察到約0.33%的重量損失。
實施例 5 :化合物 I 與聚合物的經噴霧乾燥的分散體的製備和聚合物篩選將化合物I的游離鹼形式和化合物I濃度為7.5 mg/mL的聚合物(40:60,w/w)溶解在對應溶劑(丙酮、MeOH或DCM:MeOH = 1:1(v/v))中,作為用於固體分散體製備的噴霧乾燥溶液。
將約200 mg化合物I的游離鹼形式和300 mg聚合物添加到40 mL玻璃小瓶中,並且用對應體積的對應溶劑(丙酮、MeOH或DCM:MeOH = 1:1(v/v))通過磁力攪拌使其溶解。化合物I/PVP-VA64、化合物I/Soluplus、化合物I/HPMC-AS LF、化合物I/Eudragit E100、化合物I/Eudragit L100-55、化合物I/HPbCD、化合物I/PVP K30 LP、化合物I/HPC(Klucel LF)、化合物I/HPMC E5 LV、化合物I/HPMC E15和化合物I/HPMCP-HP50溶液是清澈的。化合物I/HPMC-AS MF溶液幾乎是清澈的。化合物I/HPC(Klucel LF)溶液在磁力攪拌約5小時後的黏度大,最後對其進行噴霧乾燥。其通過ProCept 4M8-Trix進行噴霧乾燥。將產物收集並且在真空中在30℃下進一步乾燥14-47小時,並且然後在5℃下儲存,用石蠟膜密封並用鋁箔包裹以避光。
分別具有PVP-VA64聚合物(40:60,w/w)、Soluplus聚合物(40:60,w/w)、HPMC-AS MF聚合物(40:60,w/w)、HPMC-AS LF聚合物(40:60,w/w)、Eudragit E100聚合物(40:60,w/w)和Eudragit L100-55聚合物(40:60,w/w)的化合物I SDD的XRPD圖疊加示出在圖53中。
XRPD資料顯示具有PVP-VA64聚合物(40:60,w/w)的化合物I SDD是無定形的;具有Soluplus聚合物(40:60,w/w)的化合物I SDD是無定形的;具有HPMC-AS MF聚合物(40:60,w/w)的化合物I SDD是無定形的;具有HPMC-AS LF聚合物(40:60,w/w)的化合物I SDD是無定形的;具有Eudragit E100聚合物(40:60,w/w)的化合物I SDD是無定形的;並且具有Eudragit L100-55聚合物(40:60,w/w)的化合物I SDD是無定形的。
具有PVP-VA64聚合物(40:60,w/w)的化合物I SDD的MDSC示出在圖54中。MDSC譜顯示了具有PVP-VA64聚合物(40:60,w/w)的化合物I SDD的玻璃化轉變溫度(Tg)中點(半高)為98.1℃。
具有Soluplus聚合物(40:60,w/w)的化合物I SDD的MDSC示出在圖55中。MDSC譜顯示了具有Soluplus聚合物(40:60,w/w)的化合物I SDD的玻璃化轉變溫度(Tg)中點(半高)為75.7℃。
具有HPMC-AS LF聚合物(40:60,w/w)的化合物I SDD的MDSC示出在圖56中。MDSC譜顯示了具有HPMC-AS LF聚合物(40:60,w/w)的化合物I SDD的玻璃化轉變溫度(Tg)中點(半高)為102.5℃。
具有HPMC-AS MF聚合物(40:60,w/w)的化合物I SDD的MDSC示出在圖57中。MDSC譜顯示了具有HPMC-AS MF聚合物(40:60,w/w)的化合物I SDD的玻璃化轉變溫度(Tg)中點(半高)為100.6℃。
具有Eudragit E100聚合物(40:60,w/w)的化合物I SDD的MDSC示出在圖58中。MDSC譜顯示了具有Eudragit E100聚合物(40:60,w/w)的化合物I SDD的玻璃化轉變溫度(Tg)中點(半高)為57.0℃。
具有Eudragit L100-55聚合物(40:60,w/w)的化合物I SDD的MDSC示出在圖59中。MDSC譜顯示了具有Eudragit L100-55聚合物(40:60,w/w)的化合物I SDD的玻璃化轉變溫度(Tg)中點(半高)為120.5℃。
分別具有HPbCD聚合物(40:60,w/w)、PVP K30 LP聚合物(40:60,w/w)、HPC(klucel LF)聚合物(40:60,w/w)、HPC(klucel MF)聚合物(40:60,w/w)、HPMC E5 LV聚合物(40:60,w/w)、HPMC E15聚合物(40:60,w/w)和HPMCP-HP50聚合物(40:60,w/w)的化合物I SDD的XRPD圖疊加示出在圖60中。
XRPD資料顯示具有HPbCD聚合物(40:60,w/w)的化合物I SDD是無定形的;具有PVP K30 LP聚合物(40:60,w/w)的化合物I SDD是無定形的;具有HPC(klucel LF)聚合物(40:60,w/w)的化合物I SDD是無定形的;具有HPC(klucel MF)聚合物(40:60,w/w)的化合物I SDD具有極低的結晶度;具有HPMC E5 LV聚合物(40:60,w/w)的化合物I SDD是無定形的;具有HPMC E15聚合物(40:60,w/w)的化合物I SDD是無定形的;並且具有HPMCP-HP50聚合物(40:60,w/w)的化合物I SDD是無定形的。
具有HPbCD聚合物(40:60,w/w)的化合物I SDD的MDSC示出在圖61中。MDSC譜顯示了具有HPbCD聚合物(40:60,w/w)的化合物I SDD的玻璃化轉變溫度(Tg)中點(半高)為92.7℃。
具有PVP K30 LP聚合物(40:60,w/w)的化合物I SDD的MDSC示出在圖62中。MDSC譜顯示了具有PVP K30 LP聚合物(40:60,w/w)的化合物I SDD的兩個玻璃化轉變溫度(Tg)中點(半高)分別為85.0℃和145.0℃。
具有HPC(Klucel LF)聚合物(40:60,w/w)的化合物I SDD的MDSC示出在圖63中。MDSC譜顯示了具有HPC(Klucel LF)聚合物(40:60,w/w)的化合物I SDD的玻璃化轉變溫度(Tg)中點(半高)為64.6℃。
具有HPC(Klucel MF)聚合物(40:60,w/w)的化合物I SDD的MDSC示出在圖64中。MDSC譜顯示了具有HPC(Klucel MF)聚合物(40:60,w/w)的化合物I SDD的玻璃化轉變溫度中點(半高)為53.6℃。
具有HPMC E5 LV聚合物(40:60,w/w)的化合物I SDD的MDSC示出在圖65中。MDSC譜顯示了具有HPMC E5 LV聚合物(40:60,w/w)的化合物I SDD的玻璃化轉變溫度中點(半高)為101.4℃。
具有HPMC E15聚合物(40:60,w/w)的化合物I SDD的MDSC示出在圖66中。MDSC譜顯示了具有HPMC E15聚合物(40:60,w/w)的化合物I SDD的玻璃化轉變溫度(Tg)中點(半高)為100.9℃。
具有HPMCP-HP50聚合物(40:60,w/w)的化合物I SDD的MDSC示出在圖67中。MDSC譜顯示了具有HPMCP-HP50聚合物(40:60,w/w)的化合物I SDD的玻璃化轉變溫度中點(半高)為114.6℃。
實施例 6 :化合物 I 與 HPMC-AS MG 聚合物在 DCM 和丙酮溶劑系統中的經噴霧乾燥的分散體的製備通過對化合物I濃度為19.3 mg/mL的化合物I/聚合物HPMC-AS MG溶液進行噴霧乾燥來製備具有20% w/w化合物I的基於HPMC-AS-MG的SDD。將溶劑(4.6 L DCM/丙酮 = 6/4(v/v))添加到10-L玻璃瓶中。在磁力攪拌下添加化合物I(88.78 g),直到所有固體完全溶解。然後將HPMC-AS MG(355.12 g)添加到溶液中,並且通過磁力攪拌使其完全溶解以獲得SDD溶液。
通過對化合物I濃度為30.5 mg/mL的化合物I/聚合物HPMC-AS MG溶液進行噴霧乾燥來製備具有30% w/w化合物I的基於HPMC-AS-MG的SDD。將溶劑(2.6 L二氯甲烷/丙酮 = 7/3(v/v))添加到5-L玻璃瓶中。在磁力攪拌下添加化合物I(79.30 g),直到所有固體完全溶解。然後將HPMC-AS MG(185.03 g)添加到溶液中,並且通過磁力攪拌使其完全溶解以獲得SDD溶液。
通過對化合物I濃度為52 mg/mL的化合物I/聚合物HPMC-AS MG溶液進行噴霧乾燥來製備具有20% w/w化合物I的基於HPMC-AS-MG的SDD。將溶劑(2.6 L二氯甲烷/丙酮 = 6/4(v/v))添加到5-L玻璃瓶中。在磁力攪拌下添加化合物I(135.20 g),直到所有固體完全溶解。然後將HPMC-AS MG(202.80 g)添加到溶液中,並且通過磁力攪拌使其完全溶解以獲得SDD溶液。
具有HPMC-AS MG聚合物(20:80,w/w)的化合物I SSD在乾燥前的XRPD數據示出在圖68中。XRPD資料顯示具有HPMC-AS MG聚合物(20:80 w/w)的化合物I SSD是無定形的。
具有HPMC-AS MG聚合物(20:80,w/w)的化合物I SSD在乾燥前的MDSC示出在圖69中。MDSC譜顯示了具有HPMC-AS MG聚合物(20:80,w/w)的化合物I SSD的玻璃化轉變溫度中點(拐點)為107.3℃。
具有HPMC-AS MG聚合物(20:80,w/w)的化合物I SDD在30℃下乾燥10小時後的XRPD資料示出在圖70中。XRPD資料顯示,具有HPMC-AS MG聚合物(20:80,w/w)的化合物I SDD在30℃下乾燥10小時後是無定形的。
具有HPMC-AS MG聚合物(20:80,w/w)的化合物I SDD在30℃下乾燥10小時後的MDSC示出在圖71中。MDSC譜顯示了具有HPMC-AS MG聚合物(20:80,w/w)的化合物I SDD的玻璃化轉變溫度(Tg)中點(拐點)為105.2℃。
具有HPMC-AS MG聚合物(分別地,20:80 w/w、30:70 w/w或40:60 w/w)的化合物I SSD的XRPD圖疊加示出在圖72中。XRPD資料顯示具有HPMC-AS MG聚合物(20:80 w/w、30:70 w/w或40:60 w/w)的化合物I SSD是無定形的。
具有HPMC-AS MG聚合物(20:80,w/w)的化合物I SDD的MDSC示出在圖73中。MDSC譜顯示了具有HPMC-AS MG聚合物(20:80,w/w)的化合物I SDD的玻璃化轉變溫度(Tg)中點(半高)為107.8℃。
具有HPMC-AS MG聚合物(30:70,w/w)的化合物I SDD的MDSC示出在圖74中。MDSC譜顯示了具有HPMC-AS MG聚合物(30:70,w/w)的化合物I SDD的玻璃化轉變溫度(Tg)中點(半高)為103.5℃。
具有HPMC-AS MG聚合物(40:60,w/w)的化合物I SDD的MDSC示出在圖75中。MDSC譜顯示了具有HPMC-AS MG聚合物(40:60,w/w)的化合物I SDD的玻璃化轉變溫度(Tg)中點(半高)為99.7℃。
實施例 7 :化合物 I 、聚合物和表面活性劑的 SDD 製劑的製備以及表面活性劑篩選用於用聚合物和表面活性劑製備化合物I SDD的程式
將化合物I的游離鹼形式、表面活性劑和聚合物稱取到40 mL玻璃瓶中,如表19中所示。並且然後使用26.7 mL丙酮以通過磁力攪拌使化合物I/HPMC-AS/TPGS和化合物I/Klucel-LF/SDS系統溶解,同時使其它三種化合物I/HPMC-AS MF/SDS系統通過丙酮/H
2O的經混合溶劑溶解。很少白色絮凝物在系統D和E中仍未溶解,其進一步以3000 rpm離心10分鐘,並使用上清液以進行噴霧乾燥。用於固體分散體製備的詳細過程參數列示於表20中。將產物收集並在真空中在30℃下乾燥約13小時,並且然後在5℃下儲存,用石蠟膜密封並用鋁箔包裹以避光。
下表匯總了具有聚合物和表面活性劑的化合物I SDD的五種配方(系統A、系統B、系統C、系統D和系統E)。
下表匯總了分別地用於製備系統A、系統B、系統C、系統D和系統E的噴霧乾燥分散體的詳細過程參數。
系統A、系統B、系統C、系統D和系統E的化合物I SDD的XRPD資料分別示出在圖76中。
XRPD資料顯示系統A的具有HPMC-AS MF和TPGS的化合物I SDD是無定形的;系統B的具有Klucel LF和SDS的化合物I SDD是無定形的;系統C的具有HPMC-AS MF和SDS的化合物I SDD是無定形的;系統D的具有HPMC-AS MF和SDS的化合物I SDD是無定形的;並且系統E的具有HPMC-AS MF和SDS的化合物I SDD是無定形的。
系統A的具有HPMC-AS MF和TPGS的化合物I SDD的MDSC示出在圖77中。MDSC譜顯示了系統A的具有HPMC-AS MF和TPGS的化合物I SDD的玻璃化轉變溫度(Tg)中點(半高)為67.7℃。
系統B的具有Klucel LF和SDS的化合物I SDD的MDSC示出在圖78中。MDSC譜顯示了系統B的具有Klucel LF和SDS的化合物I SDD的玻璃化轉變溫度(Tg)中點(半高)為61.5℃。
系統C的具有HPMC-AS MF和SDS的化合物I SDD的MDSC示出在圖79中。MDSC譜顯示了系統C的具有HPMC-AS MF和SDS的化合物I SDD的兩個玻璃化轉變溫度(Tg)中點(半高)分別為96.3℃和110.4℃。
系統D的具有HPMC-AS MF和SDS的化合物I SDD的MDSC示出在圖80中。MDSC譜顯示了系統D的具有HPMC-AS MF和SDS的化合物I SDD的玻璃化轉變溫度(Tg)中點(半高)為104.6℃。
系統E的具有HPMC-AS MF和SDS的化合物I SDD的MDSC示出在圖81中。MDSC譜顯示了系統E的具有HPMC-AS MF和SDS的化合物I SDD的兩個玻璃化轉變溫度(Tg)中點(半高)分別為95.8℃和107.9℃。
下表匯總了來自系統A、系統B、系統C、系統D和系統E的化合物I SDD在40℃、75% RH或25℃、60% RH下的1周穩定性測試的結果。
系統A、系統B、系統C、系統D和系統E的化合物I SDD分別在40℃、75% RH或25℃、60% RH下進行1周穩定性測試後的XRPD圖疊加示出在圖82中。
XRPD資料顯示系統A的化合物I SDD(25℃,60% RH)是無定形的;系統A的化合物I SDD(40℃,75% RH)具有極低的結晶度;系統B的化合物I SDD(25℃,60% RH)是無定形的;系統B的化合物I SDD(40℃,75% RH)是無定形的;系統C的化合物I SDD(40℃,75% RH)具有極低的結晶度;系統D的化合物I SDD(25℃,60% RH)是無定形的;系統D的化合物I SDD(40℃,75% RH)是無定形的;系統E的化合物I SDD(25℃,60% RH)是無定形的;並且系統E的化合物I SDD(40℃,75% RH)具有極低的結晶度。
實施例 8 :化合物 I 片劑的經噴霧乾燥的分散體的製備方法的描述製備方法
步驟1:噴霧乾燥
用丙酮使化合物I的游離鹼溶解,並且攪拌混合物直至溶液清澈。然後將乙酸羥丙甲纖維素琥珀酸酯MG (HPMC-AS MG)添加到以上溶液中並保持攪拌以製備清澈溶液。通過噴霧乾燥器逐部分對溶液進行噴霧,並且收集粉末。然後通過二次真空乾燥來對所獲得的化合物I的經噴霧乾燥的分散體進行乾燥。將連續收集的經噴霧乾燥的分散體粉末合併並共混用於下游步驟。具有HPMC-AS MG聚合物(20:80,w/w)的化合物I SSD的製備流程圖示出在圖83中。
步驟2:分配和去結塊
將所需的製備材料分配,並且通過共磨機使膠體二氧化矽、甘露醇交聯羧甲纖維素鈉、微晶纖維素PH-101去結塊。
步驟3:預共混和預潤滑
將化合物I的經噴霧乾燥的分散體直接轉移到高剪切製粒機中,並且添加以上過篩的材料和共混物。然後將過篩的硬脂酸鎂轉移到製粒機中以進行潤滑。
步驟4:輥壓實
用輥壓實機和磨機將以上共混物壓實,以形成顆粒。
步驟5:共混和潤滑
將泊洛沙姆188、交聯羧甲纖維素鈉、微晶纖維素PH-102和硬脂酸鎂過篩。將來自步驟4的顆粒與過篩的泊洛沙姆188、交聯羧甲纖維素鈉和微晶纖維素PH-102共混。將過篩的硬脂酸鎂轉移到共混器中以進行潤滑。
步驟6:壓縮
在旋轉製片機上將以上共混物壓縮成核心片劑。
步驟7:膜塗覆
將純淨水和Opadry®包衣系統(可商購獲得的經預混合的包衣劑)混合,以製備包衣溶液。塗覆核心片劑,直到達到目標重量增益。將經塗覆的片劑乾燥並排出。
步驟8:瓶包裝
容器是45 mL(25 mg強度)或100 mL(100 mg強度)的具有口服固體藥用安全蓋的藥用高密度聚乙烯(HDPE)瓶。將每個瓶用片劑和乾燥劑填充。然後對瓶進行感應密封。
將25 mg和100 mg強度的片劑分別包裝在45 mL和100 mL白色圓柱形高密度聚乙烯(HDPE)瓶中,並且將瓶用口服固體藥用安全蓋封閉,每個瓶含有片劑和乾燥劑。
化合物I片劑的製備流程圖示出在圖84中。
溶出行為
化合物I SDD片劑為口服固體劑型,並且其溶出性能符合USP中的對應關於口服固體製劑的指南。化合物I SDD片劑的溶出曲線示出在圖85中。溶出曲線顯示,對於兩種強度,實現了活性藥物成分(API)在45分鐘內不小於80%的溶出性能。
Before discussing in further detail, the following terms will be defined.
DefinitionUnless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by a person of ordinary skill in the art to which the present invention belongs. As used herein, the following terms are intended to have the following meanings:
As used in the specification and claims, the singular forms "a", "an", and "the" include plural referents unless the context clearly indicates otherwise. Thus, for example, a reference to a "compound" includes a single compound and a plurality of different compounds.
As used herein, the term "about" is intended to indicate that the quoted value should not be interpreted as an absolute value, and measurement errors, batch-to-batch variations, and/or device-to-device variations should also be considered. Except where a range of measurement error or variation is specified in this application (e.g., the measurement error of diffraction angle 2θ in XRPD is ± 0.2°, the measurement error of endotherm of melting of crystalline polymorphs is ± 10°C, and the measurement error of endotherm of dehydration/desolvation of polymorphs in DSC is ± 20°C, the measurement error of glass transition temperature (Tg) in MDSC is ± 10°C, and the measurement error in TGA is ± 20°C), when used before a numerical reference to, for example, temperature, time, amount, and concentration, including ranges, the term "about" indicates an approximate value that may vary by ± 10%, ± 5%, or ± 1%.
As used herein, "inhibitor" refers to a compound or agent that has the ability to inhibit the biological function of a target protein or polypeptide, such as by inhibiting the activity or expression of the target protein or polypeptide. Therefore, the term "inhibitor" is defined in the context of the biological action of the target protein or polypeptide. Although some inhibitors herein specifically interact with the target (e.g., bind to the target), compounds that inhibit the biological activity of the target protein or polypeptide by interacting with other members of the signal transduction pathway of the target protein or polypeptide are also specifically included in this definition. Non-limiting examples of biological activities inhibited by inhibitors include biological activities associated with the development, growth or spread of tumors. As used herein, "selective inhibition" or "selectively inhibiting" as applied to biologically active agents refers to the ability of an agent to selectively reduce target signaling activity compared to off-target signaling activity by direct or indirect interaction with a target protein or polypeptide.
It should be understood that the "compounds" of the present disclosure may exist in solvated forms as well as in unsolvated forms, such as hydrated forms, solid forms, and the present disclosure is intended to cover all such solvated and unsolvated forms. It should be further understood that the "compounds" of the present disclosure may exist in the form of pharmaceutically acceptable salts.
As used herein, the term "pharmaceutically acceptable" refers to those compounds, materials, compositions and/or dosage forms which are, within the scope of sound medical judgment, suitable for use in contact with the tissues of humans and other animals without causing excessive toxicity, irritation, allergic response, or other problems or complications commensurate with a reasonable benefit/risk ratio. In some embodiments, pharmaceutically acceptable compounds, materials, compositions and/or dosage forms refer to those compounds, materials, compositions and/or dosage forms that are approved by a regulatory agency (such as the U.S. Food and Drug Administration, the National Medical Products Administration or the European Medicines Agency) or listed in a recognized pharmacopoeia (such as the U.S. Pharmacopoeia, the China Pharmacopoeia or the European Pharmacopoeia) for use in animals and more specifically in humans.
As used herein, "pharmaceutically acceptable salts" or "pharmaceutical salts" refer to derivatives of compounds in which the parent compound is modified by converting an existing acidic moiety (e.g., carboxyl, etc.) or basic moiety (e.g., amine, base, etc.) into its salt form. In many cases, the compounds disclosed herein are capable of forming acid addition salts and/or alkaline salts due to the presence of an amine group, a base or a group similar thereto. Moreover, "pharmaceutically acceptable salts" include acid addition salts or alkaline salts that maintain the biological effectiveness and properties of the parent compound, and the acid addition salts or alkaline salts are generally not biologically or otherwise undesirable. Pharmaceutically acceptable salts are well known in the art. For example, Berge et al. describe pharmaceutically acceptable salts in detail in J. Pharmaceutical Sciences (1977) 66: 1-19. Pharmaceutically acceptable salts of the compounds provided herein include those derived from suitable inorganic and organic acids and inorganic and organic bases. Examples of pharmaceutically acceptable non-toxic acid addition salts are salts of amine groups formed with inorganic acids such as hydrochloric acid, hydrobromic acid, phosphoric acid, sulfuric acid and perchloric acid, or with organic acids such as acetic acid, propionic acid, glycolic acid, pyruvic acid, oxalic acid, lactic acid, trifluoroacetic acid, benzoic acid, cinnamic acid, mandelic acid, ethanesulfonic acid, p-toluenesulfonic acid, salicylic acid, malonic acid, fumaric acid, citric acid, malic acid, maleic acid, tartaric acid, succinic acid or methanesulfonic acid, or by using other methods used in the art, such as ion exchange. Other pharmaceutically acceptable salts include adipate, alginate, ascorbate, aspartate, benzenesulfonate, besylate, benzoate, hydrogen sulfate, borate, butyrate, camphorate, camphorsulfonate, citrate, cyclopentanepropionate, digluconate, dodecyl sulfate, ethanesulfonate, formate, fumarate, glucoheptonate, glycerophosphate, gluconate, hemisulfate, heptanoate, caproate, and the like. Salt, hydroiodate, 2-hydroxy-ethanesulfonate, lactobionate, lactate, laurate, lauryl sulfate, apple acid salt, maleate, malonic acid salt, methanesulfonate, 2-naphthalenesulfonate, nicotinate, nitrate, oleate, oxalate, palmitic acid salt, pyrate, pectinate, persulfate, 3-phenylpropionic acid salt, phosphate, picrate, neopentanoate, propionate, stearate, succinate, sulfate, tartaric acid salt, thiocyanate, p-toluenesulfonate, undecanoate, valerate, etc. In some embodiments, inorganic acids from which salts can be derived include, for example, hydrochlorides, sulfates, phosphates, etc. In some embodiments, organic acids from which salts can be derived include, for example, maleates, fumarates, oxalates, p-toluenesulfonates, succinates, L-(+)-tartrates, monoadipates, hemiadipates, etc. In certain embodiments, pharmaceutically acceptable salts are hydrochlorides, sulfates, phosphates, maleates, fumarates, oxalates, p-toluenesulfonates, succinates, L-(+)-tartrates, monoadipates, or hemiadipates.
As used herein, the term "polymorphic form", "polymorph" or "crystalline form" refers to a solid state form of a compound in which the constituent atoms, molecules or ions are packed in a regularly ordered, repeating three-dimensional morphology with a highly regular chemical structure. Specifically, a compound or its salt may be produced in one or more crystalline forms. The different crystalline forms can be identified by X-ray powder diffraction (XRPD) patterns (e.g., X-ray diffraction peak positions and/or peak intensities at various diffraction angles (2θ)), melting point onset (and dehydration onset for hydrated forms) as shown by endotherms in differential scanning calorimetry (DSC) thermograms, thermogravimetric analysis (TGA), solid
1H nuclear magnetic resonance (NMR) spectroscopy, water solubility, high intensity illumination conditions, physical and chemical storage stability, and any other measurement results known in the art.
"XRPD pattern" refers to an experimentally observed diffraction pattern or parameters derived therefrom, which is shown as an x-y diagram, where the peak position is expressed as the diffraction angle (2θ) on the x-axis and the peak intensity on the y-axis. The peaks in this diagram can be used to characterize the crystalline solid form.
As used herein, the term "peak position" refers to the position of X-ray reflections as measured and observed in an X-ray powder diffraction experiment. The peak position is directly related to the size of the unit cell. The peak position may be affected by the precise height at which the sample is seated in the diffractometer and the zero calibration of the same diffractometer.
The term "peak intensity" refers to the relative signal intensity in a given X-ray powder diffraction pattern. Factors that may affect relative peak intensity are sample thickness and preferred orientation (i.e., crystalline particles are not randomly distributed).
As with any data measurement, XRPD data are subject to variability. Data are usually presented only in terms of the diffraction angles of the peaks, not the intensities of the peaks, because peak intensities can be particularly sensitive to sample preparation (e.g., particle size, moisture content, solvent content, and preferred orientation effects affect sensitivity), so samples of the same material prepared under different conditions can produce slightly different morphologies; this variability is usually greater than the variability of the diffraction angles. Diffraction angle variability can also be sensitive to sample preparation. Other sources of variability arise from instrument parameters and processing of the raw X-ray data: different X-ray instruments operate using different parameters and these parameters can result in slightly different XRPD patterns from the same solid form, and similarly different software packages process X-ray data differently and this also results in variability. These and other sources of variability are known to those of ordinary skill in the pharmaceutical arts. Due to such sources of variability, the measurement error of the diffraction angles in XRPD is approximately 2θ (± 0.2°), and this degree of measurement error should be taken into account when considering the XRPD patterns in the accompanying figures and reading the data contained in the tables included herein.
DSC measures the difference in thermal energy between a solid sample and a suitable reference at elevated temperatures. DSC thermograms are characterized by the absorption of heat (indicating energy uptake) and also the exotherm (indicating energy release), usually when the sample is heated. It is also understood by those skilled in the art that the values or ranges of values observed in the DSC thermogram of a particular compound will show differences between batches of different purities. Depending on the heating rate (i.e., scan rate) at which the DSC analysis is performed, the manner in which the DSC onset temperature is defined and determined, the calibration standards used, the instrument calibration, and the relative humidity (RH) and chemical purity of the sample, the endotherms exhibited by the compounds of the present disclosure may vary (the endotherm of melting of a crystalline polymorph is ±10°C, and the endotherm of dehydration/desolvation of a polymorph is ±20°C), and such degree of variation should be taken into account when considering the DSC data included herein. For further clarification, a compound prepared in different batches may show variations in the DSC thermogram, however these DSC thermograms with variations should still be considered "substantially similar" to each other. For any given example, the observed endotherm may also vary from instrument to instrument; however, it will generally be within the range defined herein, provided the instruments are calibrated similarly. In addition, it should be understood that removal of residual solvents in the prepared compound may also change the DSC onset and peak temperatures.
Modulated DSC (MDSC) is a technique that uses sinusoidal temperature oscillations that separate the total heat flow into reversing and non-reversing components. It is more accurate than DSC in measuring heat capacity, crystallinity, and phase transition temperatures. Those skilled in the art will appreciate that various factors (e.g., heat capacity along the thermal path in the instrument, temperature distribution within the sample, and thermal contact between the sample, the sample cell, and its mounting plate) have an effect on the stability of the MDSC and therefore lead to measurement errors. The glass transition temperature (Tg) of the MDSC is therefore measured with an error of ±10°C and this degree of variation should be taken into account when considering the MDSC data included herein.
TGA is a test procedure in which the change in weight of a sample is recorded as the sample is heated in air or a controlled atmosphere such as nitrogen. Thermogravimetric curves (thermographs) provide information about solvent and water content and the thermal stability of the material. The TGA thermogram shows similar changes to DSC (measurement error of about 20°C), so that those skilled in the art recognize that the measurement error should be considered when judging the substantial identity of the TGA thermogram.
Unless otherwise specified, "wild-type ErbB" refers to a normal ErbB family member that performs the normal function of ErbB in the natural environment. In one aspect, the present disclosure provides inhibitory compounds of ErbB family kinases (e.g., HER2). In some embodiments, the compounds of the present disclosure selectively inhibit ErbB2 (i.e., HER2) without inhibiting other ErbB family kinases (e.g., EGFR).
In some embodiments, the compounds of the present disclosure can inhibit both the wild-type (WT) form and the mutant form of ErbB2. As used herein, the term "mutation" refers to any mutation of the ErbB2 protein, and "mutant" or "mutant form" refers to a protein containing the mutation. Exemplary mutations of ErbB2 include, but are not limited to, exon 20 YVMA insertion and p95 truncated HER2.
In some embodiments, the compounds disclosed herein inhibit phosphorylation of WT HER2 with an IC
50Values are 0.1-200 nM, 0.1-150 nM, 0.1-130 nM, 0.1-120 nM, 0.1-100 nM, 0.1-50 nM, 0.1-40 nM, 0.1-30 nM, 0.1-25 nM, 0.1-20 nM, 0.1-10 nM, 0.5-200 nM, 0.5-150 nM, 0.5-130 nM, 0.5-120 nM, 0.5-100 nM, 0.5-50 nM, 0.5-40 nM, 0.5-30 nM, 0.5-25 nM, 0.5-20 nM, 0.5-10 nM, 1-200 nM, 1-150 nM, 1-130 nM, 1-120 nM, 1-100 nM, 1-50 nM, 1-40 nM, 1-30 nM, 1-25 nM, 1-20 nM, 1-10 nM, 2-200 nM, 2-150 nM, 2-130 nM, 2-120 nM, 2-100 nM, 2-50 nM, 2-40 nM, 2-30 nM, 2-25 nM, 2-20 nM, 2-10 nM, 0.1-150 nM, 0.1-130 nM, 1-150 nM, 1-130 nM, 2-130 nM or 2-150 nM. In some embodiments, the IC of the disclosed compounds
50The value was measured by the median scale detection (MSD) assay.
The proliferation inhibition can be measured by the "50% growth inhibitory concentration" (GI
50) value, which refers to the concentration of the compound at which 50% maximum proliferation inhibition is observed. GI
50The value can be measured by methods known in the art, such as colorimetric methods (MTS assay). In some embodiments, the compounds disclosed herein inhibit the GI of WT HER2 and/or cells bearing mutant HER2 as measured by MTS.50Values are 0.1-200 nM, 0.1-150 nM, 0.1-130 nM, 0.1-120 nM, 0.1-100 nM, 0.1-50 nM, 0.1-40 nM, 0.1-30 nM, 0.1-20 nM, 0.1-10 nM, 1-200 nM, 1-150 nM, 1-130 nM, 1-120 nM, 1-100 nM, 1-50 nM, 1-40 nM, 1-30 nM, 1-20 nM, 1-10 nM, 2-200 nM, 2-150 nM, 2-130 nM, 2-120 nM, 2-100 nM, 2-50 nM, 2-40 nM, 2-30 nM, 2-25 nM, 2-20 nM, 2-10 nM, 4-200 nM, 4-150 nM, 4-130 nM, 4-120 nM, 4-50 nM, 4-40 nM, 4-30 nM, 4-20 nM, 4-10 nM, more preferably 0.1-150 nM, 0.1-130 nM, 1-150 nM, 1-130 nM, 2-150 nM, 2-130 nM, 4-150 nM or 4-130 nM.
As used herein, "selectively inhibiting" HER2 means that the potency of the provided compounds as inhibitors of WT (and/or mutant forms) HER2 is greater than that of other types of ErbB kinases (e.g., EGFR). at least 1000 times, at least 500 times, at least 200 times, at least 100 times, at least 50 times, at least 45 times, at least 40 times, at least 35 times, at least 30 times, at least 25 times, at least 20 times, at least 15 times, or at least 10 times. In some embodiments, "selectively inhibiting" HER2 means that the potency of the provided compound as an inhibitor of HER2 (WT and/or mutant forms) is at most 1:1 relative to the potency of other types of ErbB kinases (e.g., EGFR). 1500 times, up to 1200 times, up to 1000 times, up to 800 times, up to 600 times, up to 400 times, up to 200 times, up to 100 times, up to 50 times.
In some embodiments, the term "does not inhibit" other types of ErbB kinases (e.g., EGFR) mean that the provided compounds inhibit other types of IC
50At least 500 nM of an ErbB kinase (e.g., WT EGFR). In some embodiments, such compounds inhibit other types of IC
50At least 10 μM, at least 9 μM, at least 8 μM, at least 7 μM, at least 6 μM, at least 5 μM, at least 3 μM, at least 2 μM, or at least 1 μM of ErbB kinase.
In some embodiments, the IC of the compound used to inhibit WT-EGFR
50and/or GI
50IC for compounds used to inhibit WT HER2
50and/or GI
50At least 5 times, 10 times, 20 times, 50 times, 100 times, 200 times, 500 times, 1000 times, preferably 50 times, 100 times, 200 times, 500 times or 1000 times.
The term "pharmaceutical composition" refers to a mixture of one or more compounds disclosed herein with other chemical components, such as a pharmaceutically acceptable diluent, excipient or carrier. The purpose of the pharmaceutical composition is to facilitate the administration of the compound to an object.
As used herein, the term "sustained released form" refers to the release of the active agent from the pharmaceutical composition so that it becomes available for bioabsorption in the subject, primarily in the gastrointestinal tract of the subject, over an extended period of time (extended release) or at a certain location (controlled release).
As used herein, the term "pharmaceutically acceptable carrier" refers to a pharmaceutically acceptable material, composition or vehicle involved in carrying or transporting the compounds provided herein from one location, body fluid, tissue, organ (internal or external) or part of the body to another location, body fluid, tissue, organ or part of the body, such as a liquid or solid filler, diluent, excipient, solvent or encapsulating material. A pharmaceutically acceptable carrier can be a vehicle, diluent, excipient or other material that can be used to contact the tissues of an animal without excessive toxicity or side effects. Non-limiting examples of pharmaceutically acceptable carriers include sugars such as lactose, glucose and sucrose; starches such as corn starch and potato starch; cellulose and its derivatives such as sodium carboxymethylcellulose, ethylcellulose and cellulose acetate; powdered astragalus; malt; gelatin; talc; cocoa butter and suppository wax; oils such as peanut oil, cottonseed oil, safflower oil, sesame oil, olive oil, corn oil and soybean oil; glycols such as polyethylene glycol and propylene glycol; esters such as ethyl oleate and ethyl laurate; agar; buffers such as magnesium hydroxide and aluminum hydroxide; alginic acid; isotonic water; Ringer's solution (Ringer's solution); ethanol; phosphate buffer solutions; nontoxic compatible lubricants, such as sodium lauryl sulfate and magnesium stearate; coloring agents; mold release agents; coating agents; sweeteners, flavorings and fragrances; preservatives; antioxidants; ion exchange agents; aluminum oxide; aluminum stearate; lecithin; self-emulsifying drug delivery systems (SEDDS), such as d-α-tocopheryl polyethylene glycol 1000 succinate; surfactants used in drug dosage forms, such as Tween or other similar polymer delivery matrices; serum proteins such as human serum albumin; glycine; sorbic acid; potassium sorbate; partial glyceride mixtures of saturated vegetable fatty acids; water, salts or electrolytes such as protamine sulfate, sodium dihydrogen phosphate, potassium dihydrogen phosphate, sodium chloride and zinc salts; colloidal silica; magnesium trisilicate; polyvinyl pyrrolidone; cellulose-based materials; polyacrylates; waxes; and polyethylene-polyoxypropylene-block polymers. Cyclodextrins such as α-, β- and γ-cyclodextrin or chemically modified derivatives such as hydroxyalkylcyclodextrins, including 2- and 3-hydroxypropyl-cyclodextrins, or other solubilized derivatives may also be used to enhance the delivery of the compounds described herein. Pharmaceutically acceptable carriers that can be used in the present disclosure include those known in the art, such as those disclosed in "Remington Pharmaceutical Sciences" Mack Pub. Co., New Jersey (1991), which is incorporated herein by reference.
As used herein, "administration" of a disclosed compound encompasses delivery of a compound described herein, or a prodrug or other pharmaceutically acceptable derivative thereof, to an object using any suitable formulation or administration route as discussed herein.
The term "effective amount" or "therapeutically effective amount" refers to an amount of a compound or pharmaceutical composition described herein sufficient to prevent, treat, reduce and/or ameliorate the symptoms and/or underlying causes of any condition or disease of a subject, or an amount of an agent sufficient to produce a desired effect on a target cell, for example, an amount that reduces cell migration. In one embodiment, a "therapeutically effective amount" refers to an amount sufficient to reduce or eliminate the symptoms of a disease. In another embodiment, a therapeutically effective amount is an amount sufficient to overcome the disease itself. In certain specific embodiments, a "therapeutically effective amount" is an effective amount used to detectably kill or inhibit the growth or spread of cancer cells; reduce the size or number of tumors; or other measures of the level, stage, progression or severity of cancer. The therapeutically effective amount will vary depending on the subject and condition being treated, the subject's weight and age, the severity of the condition, the specific composition or formulation selected, the dosing regimen followed, the time of administration, the mode of administration, etc., all of which can be readily determined by one of ordinary skill in the art. The full therapeutic effect does not necessarily occur by administering one dose, and may occur after administering only a series of doses. The specific dose will vary depending on, for example, the specific compound selected, the species of the subject and their age/existing health condition or risk of health condition, the dosing regimen followed, the severity of the disease, whether the specific compound is administered in combination with other agents, the time of administration, the tissue to which the specific compound is administered, and the physical delivery system in which it is carried. Thus, a therapeutically effective amount may be administered in one or more administrations. For example, but not limited to, in the context of treating cancer, a therapeutically effective amount of an agent refers to an amount of the agent that reduces, improves, alleviates, or eliminates one or more symptoms of cancer in a patient.
As used herein, the terms "treatment," "treat," and "treating" refer to reversing, alleviating, delaying the onset of, or inhibiting the progression of a disease or condition as described herein or one or more symptoms of the disease or condition. In some embodiments, treatment may be administered after the development of one or more symptoms. In other embodiments, treatment may be administered in the absence of symptoms. For example, treatment may be administered to a susceptible individual prior to the onset of symptoms (e.g., based on a history of symptoms and/or based on genetic or other susceptibility factors). Treatment may also be continued after symptoms resolve, for example to present or delay their recurrence.
As used herein, "anticancer agent," "antitumor agent," or "chemotherapeutic agent" refers to any agent useful for treating a biological condition. One class of anticancer agents includes chemotherapeutic agents. "Chemotherapy" refers to the administration of one or more chemotherapeutic drugs and/or other agents to a cancer patient by various methods, including intravenous, oral, intramuscular, intraperitoneal, intravesical, subcutaneous, transdermal, buccal, or by inhalation or in the form of a suppository.
The term "subject" is contemplated for use including, but not limited to, humans (i.e., males or females of any age group, e.g., pediatric subjects (e.g., infants, children, adolescents) or adult subjects (e.g., young, middle-aged or elderly)) and/or other primates (e.g., cynomolgus monkeys, Ganges monkeys); mammals, including commercially relevant mammals, such as cattle, pigs, horses, sheep, goats, rabbits, hamsters, mice, cats and/or dogs; and/or poultry, including, e.g., chickens, ducks, geese, quails and/or turkeys.
Compound I And its pharmaceutical saltThe compound (S)-N-(4-([1,2,4]triazolo[1,5-a]pyridin-7-yloxy)-3-methylphenyl)-5-((3,3-difluoro-1-methylpiperidin-4-yl)oxy)-7-methoxyquinazolin-4-amine (Compound I) described in WO 2019214634A1 is a potent ErbB inhibitor and has the following structure:
Compound I
In one aspect, the present disclosure provides a new pharmaceutical salt of Compound I.
In some embodiments, the pharmaceutical salt of Compound I provided herein is selected from: hydrochloride, sulfate, phosphate, maleate, fumarate, oxalate, p-toluenesulfonate, succinate, L-(+)-tartrate, monoadipate, hemiadipate of Compound I.
In some embodiments, the pharmaceutical salt of Compound I is a monosalt. In some embodiments, the pharmaceutical salt of Compound I is in amorphous form. In some embodiments, the pharmaceutical salt of Compound I is in crystalline form. In certain embodiments, the pharmaceutical salt of Compound I is a hydrochloride, sulfate, phosphate, maleate, fumarate, oxalate, p-toluenesulfonate, succinate, L-(+)-tartrate, monoadipate, hemiadipate in crystalline form.
Characterization of crystalline formOn the one hand, the present disclosure provides several polymorphic crystalline forms of Compound I or its pharmaceutically acceptable salt.
On the one hand, the present disclosure provides a crystalline form of Compound I, specifically, Form A, Form B, Form C or Form D of Compound I. On the other hand, the present disclosure provides a crystalline form of a pharmaceutically acceptable salt of Compound I, specifically, a crystalline form of a hydrochloride salt of Compound I, a crystalline form of a sulfate salt of Compound I, a crystalline form of a phosphate salt of Compound I, a crystalline form of a maleate salt of Compound I, a crystalline form of a fumarate salt of Compound I, a crystalline form of an oxalate salt of Compound I, a crystalline form of a p-toluenesulfonate salt of Compound I, a crystalline form of a succinate salt of Compound I, a crystalline form of a L-(+)-tartrate salt of Compound I, a crystalline form of a monoadipate salt of Compound I, and a crystalline form of a hemiadipate salt of Compound I.
1. Compound I Form AIn some embodiments, a crystalline form of Compound I (free base) is disclosed, the crystalline form being crystalline Form A of Compound I.
In some embodiments, Form A of Compound I has an X-ray powder diffraction (XRPD) pattern comprising peaks at diffraction angle (2θ) values of 7.09 ± 0.20°, 15.15 ± 0.20°, and 21.55 ± 0.20°.
In some embodiments, Form A of Compound I has an XRPD pattern comprising peaks at 2θ values of 7.09 ± 0.20°, 11.92 ± 0.20°, 15.15 ± 0.20°, and 21.55 ± 0.20°.
In some embodiments, Form A of Compound I has an XRPD pattern comprising peaks at 7.09 ± 0.20°, 15.15 ± 0.20°, 21.55 ± 0.20°, and 23.93 ± 0.20° 2θ.
In some embodiments, Form A of Compound I has an XRPD pattern comprising peaks at 7.09 ± 0.20°, 11.92 ± 0.20°, 15.15 ± 0.20°, 21.55 ± 0.20°, and 23.93 ± 0.20° 2θ.
In some embodiments, Form A of Compound I has an XRPD pattern comprising peaks at 6.45 ± 0.20°, 7.09 ± 0.20°, 11.92 ± 0.20°, 15.15 ± 0.20°, 21.55 ± 0.20°, and 23.93 ± 0.20° 2θ.
In some embodiments, Form A of Compound I has an XRPD pattern comprising peaks at 7.09 ± 0.20°, 11.92 ± 0.20°, 15.15 ± 0.20°, 17.85 ± 0.20°, 21.55 ± 0.20°, and 23.93 ± 0.20° 2θ.
In some embodiments, Form A of Compound 1 has an XRPD pattern comprising peaks at 2θ of 6.45 ± 0.20°, 7.09 ± 0.20°, 11.92 ± 0.20°, 15.15 ± 0.20°, 17.85 ± 0.20°, 21.55 ± 0.20°, and 23.93 ± 0.20°.
In some embodiments, Form A of Compound 1 has an XRPD pattern comprising at least seven or more (e.g., eight, nine, or ten) peaks at 2θ selected from 6.45 ± 0.20°, 7.09 ± 0.20°, 11.92 ± 0.20°, 14.19 ± 0.20°, 15.15 ± 0.20°, 17.85 ± 0.20°, 18.94 ± 0.20°, 21.55 ± 0.20°, 23.93 ± 0.20°, and 26.86 ± 0.20°.
In some embodiments, Form A of Compound 1 has an XRPD pattern comprising peaks at 6.45 ± 0.20°, 7.09 ± 0.20°, 11.92 ± 0.20°, 14.19 ± 0.20°, 15.15 ± 0.20°, 17.85 ± 0.20°, 18.94 ± 0.20°, 21.55 ± 0.20°, 23.93 ± 0.20°, and 26.86 ± 0.20° 2θ.
In some embodiments, Form A of Compound 1 has an XRPD pattern comprising at least ten or more (e.g., 11, 12, 13, 14, or 15) peaks at 2θ selected from 6.45 ± 0.20°, 7.09 ± 0.20°, 10.75 ± 0.20°, 11.32 ± 0.20°, 11.92 ± 0.20°, 12.88 ± 0.20°, 14.19 ± 0.20°, 15.15 ± 0.20°, 17.85 ± 0.20°, 18.94 ± 0.20°, 20.79 ± 0.20°, 21.55 ± 0.20°, 23.93 ± 0.20°, 25.69 ± 0.20° and 26.86 ± 0.20°.
In some embodiments, Form A of Compound 1 has an XRPD pattern comprising peaks at 2θ of 6.45 ± 0.20°, 7.09 ± 0.20°, 10.75 ± 0.20°, 11.32 ± 0.20°, 11.92 ± 0.20°, 12.88 ± 0.20°, 14.19 ± 0.20°, 15.15 ± 0.20°, 17.85 ± 0.20°, 18.94 ± 0.20°, 20.79 ± 0.20°, 21.55 ± 0.20°, 23.93 ± 0.20°, 25.69 ± 0.20°, and 26.86 ± 0.20°.
In some embodiments, Form A of Compound I has an XRPD pattern substantially similar to the XRPD data shown in Table 7.
In some embodiments, Form A of Compound I has an XRPD pattern substantially similar to the XRPD pattern shown in Figure 11.
In some embodiments, Form A of Compound I has a DSC thermogram comprising an endotherm having an onset at about 199.5°C and a peak at about 201.5°C.
In some embodiments, Form A of Compound I has a DSC thermogram substantially similar to the DSC thermogram shown in Figure 13.
In some embodiments, Form A of Compound I has a TGA thermogram exhibiting a mass loss of about 0.02% upon heating from about 30°C to about 120°C.
In some embodiments, Form A of Compound I has a TGA thermogram substantially similar to the TGA thermogram shown in Figure 12.
In some embodiments, Form A of Compound I has a DVS vapor sorption graph substantially similar to the DVS vapor sorption graph shown in Figure 14.
2. Compound I Form BIn some embodiments, a crystalline form of Compound I (free base) is disclosed, the crystalline form being crystalline Form B of Compound I.
In some embodiments, Form B of Compound I has an XRPD pattern comprising peaks at 2θ of 7.42 ± 0.20°, 13.21 ± 0.20°, and 19.24 ± 0.20°.
In some embodiments, Form B of Compound I has an XRPD pattern comprising peaks at 2θ of 6.62 ± 0.20°, 7.42 ± 0.20°, 13.21 ± 0.20°, and 19.24 ± 0.20°.
In some embodiments, Form B of Compound I has an XRPD pattern comprising peaks at 2θ of 7.17 ± 0.20°, 7.42 ± 0.20°, 13.21 ± 0.20°, and 19.24 ± 0.20°.
In some embodiments, Form B of Compound I has an XRPD pattern comprising peaks at 2θ of 6.62 ± 0.20°, 7.17 ± 0.20°, 7.42 ± 0.20°, 13.21 ± 0.20°, and 19.24 ± 0.20°.
In some embodiments, Form B of Compound I has an XRPD pattern comprising peaks at 6.62 ± 0.20°, 7.17 ± 0.20°, 7.42 ± 0.20°, 13.21 ± 0.20°, 14.25 ± 0.20°, and 19.24 ± 0.20° 2θ.
In some embodiments, Form B of Compound I has an XRPD pattern comprising peaks at 6.62 ± 0.20°, 7.17 ± 0.20°, 7.42 ± 0.20°, 13.21 ± 0.20°, 17.94 ± 0.20°, and 19.24 ± 0.20° 2θ.
In some embodiments, Form B of Compound I has an XRPD pattern comprising peaks at 2θ of 6.62 ± 0.20°, 7.17 ± 0.20°, 7.42 ± 0.20°, 13.21 ± 0.20°, 14.25 ± 0.20°, 17.94 ± 0.20°, and 19.24 ± 0.20°.
In some embodiments, Form B of Compound I has an XRPD pattern comprising at least seven or more (e.g., eight, nine, or ten) peaks at 2θ selected from 6.62 ± 0.20°, 7.17 ± 0.20°, 7.42 ± 0.20°, 11.61 ± 0.20°, 13.21 ± 0.20°, 14.25 ± 0.20°, 16.89 ± 0.20°, 17.94 ± 0.20°, 19.24 ± 0.20°, and 21.89 ± 0.20°.
In some embodiments, Form B of Compound I has an XRPD pattern comprising peaks at 2θ of 6.62 ± 0.20°, 7.17 ± 0.20°, 7.42 ± 0.20°, 11.61 ± 0.20°, 13.21 ± 0.20°, 14.25 ± 0.20°, 16.89 ± 0.20°, 17.94 ± 0.20°, 19.24 ± 0.20°, and 21.89 ± 0.20°.
In some embodiments, Form B of Compound 1 has an XRPD pattern comprising at least ten or more (e.g., 11, 12, 13, 14, or 15) peaks at 2θ selected from 6.62 ± 0.20°, 7.17 ± 0.20°, 7.42 ± 0.20°, 11.61 ± 0.20°, 13.21 ± 0.20°, 13.92 ± 0.20°, 14.25 ± 0.20°, 16.89 ± 0.20°, 17.24 ± 0.20°, 17.94 ± 0.20°, 19.24 ± 0.20°, 21.89 ± 0.20°, 27.21 ± 0.20°, 27.35 ± 0.20°, 0.20° and 27.87 ± 0.20°.
In some embodiments, Form B of Compound I has an XRPD pattern comprising peaks at 2θ of 6.62 ± 0.20°, 7.17 ± 0.20°, 7.42 ± 0.20°, 11.61 ± 0.20°, 13.21 ± 0.20°, 13.92 ± 0.20°, 14.25 ± 0.20°, 16.89 ± 0.20°, 17.24 ± 0.20°, 17.94 ± 0.20°, 19.24 ± 0.20°, 21.89 ± 0.20°, 27.21 ± 0.20°, 27.35 ± 0.20°, and 27.87 ± 0.20°.
In some embodiments, Form B of Compound I has an XRPD pattern substantially similar to the XRPD data shown in Table 8.
In some embodiments, Form B of Compound I has an XRPD pattern substantially similar to the XRPD pattern shown in Figure 15.
In some embodiments, Form B of Compound I has a DSC thermogram comprising three endothermic transitions with onsets and peak temperatures of 116.3°C and 125.4°C, 182.4°C and 187.5°C, 199.2°C and 200.3°C, respectively.
In some embodiments, Form B of Compound I has a DSC thermogram substantially similar to the DSC thermogram shown in Figure 16.
In some embodiments, Form B of Compound I has a TGA thermogram that exhibits less than 1.68% mass loss upon heating from about 30°C to about 100°C.
In some embodiments, Form B of Compound I has a TGA thermogram substantially similar to the TGA thermogram shown in Figure 16.
3. Compound I Form CIn some embodiments, a crystalline form of Compound I (free base) is disclosed, the crystalline form being crystalline Form C of Compound I.
In some embodiments, Form C of Compound I has an XRPD pattern comprising peaks at 2θ of 5.95 ± 0.20°, 8.58 ± 0.20°, and 19.56 ± 0.20°.
In some embodiments, Form C of Compound I has an XRPD pattern comprising peaks at 2θ of 5.95 ± 0.20°, 8.58 ± 0.20°, 11.89 ± 0.20°, and 19.56 ± 0.20°.
In some embodiments, Form C of Compound I has an XRPD pattern comprising peaks at 2θ of 5.95 ± 0.20°, 8.58 ± 0.20°, 13.75 ± 0.20°, and 19.56 ± 0.20°.
In some embodiments, Form C of Compound I has an XRPD pattern comprising peaks at 2θ of 5.95 ± 0.20°, 8.58 ± 0.20°, 11.89 ± 0.20°, 13.75 ± 0.20°, and 19.56 ± 0.20°.
In some embodiments, Form C of Compound I has an XRPD pattern comprising peaks at 2θ of 5.95 ± 0.20°, 8.58 ± 0.20°, 11.89 ± 0.20°, 12.39 ± 0.20°, 13.75 ± 0.20°, and 19.56 ± 0.20°.
In some embodiments, Form C of Compound I has an XRPD pattern comprising peaks at 2θ of 5.95 ± 0.20°, 8.58 ± 0.20°, 11.89 ± 0.20°, 13.40 ± 0.20°, 13.75 ± 0.20°, and 19.56 ± 0.20°.
In some embodiments, Form C of Compound I has an XRPD pattern comprising peaks at 2θ of 5.95 ± 0.20°, 8.58 ± 0.20°, 11.89 ± 0.20°, 12.39 ± 0.20°, 13.40 ± 0.20°, 13.75 ± 0.20°, and 19.56 ± 0.20°.
In some embodiments, Form C of Compound I has an XRPD pattern comprising at least seven or more (e.g., eight, nine, or ten) peaks at 2θ selected from 5.95 ± 0.20°, 8.58 ± 0.20°, 11.89 ± 0.20°, 12.39 ± 0.20°, 13.40 ± 0.20°, 13.75 ± 0.20°, 17.23 ± 0.20°, 18.91 ± 0.20°, 19.56 ± 0.20°, and 23.51 ± 0.20°.
In some embodiments, Form C of Compound I has an XRPD pattern comprising peaks at 2θ of 5.95 ± 0.20°, 8.58 ± 0.20°, 11.89 ± 0.20°, 12.39 ± 0.20°, 13.40 ± 0.20°, 13.75 ± 0.20°, 17.23 ± 0.20°, 18.91 ± 0.20°, 19.56 ± 0.20°, and 23.51 ± 0.20°.
In some embodiments, Form C of Compound 1 has an XRPD pattern comprising at least ten or more (e.g., 11, 12, 13, 14, or 15) peaks at 2θ selected from 5.95 ± 0.20°, 8.58 ± 0.20°, 11.89 ± 0.20°, 12.39 ± 0.20°, 13.40 ± 0.20°, 13.75 ± 0.20°, 15.54 ± 0.20°, 15.90 ± 0.20°, 17.23 ± 0.20°, 18.91 ± 0.20°, 19.56 ± 0.20°, 23.51 ± 0.20°, 24.91 ± 0.20°, 25.29 ± 0.20°, 26.80 ± 0.20°, 27.11 ± 0.20°, 28.81 ± 0.20°, 29.97 ± 0.20°, 30. 0.20° and 25.55 ± 0.20°.
In some embodiments, Form C of Compound I has an XRPD pattern comprising peaks at 2θ of 5.95 ± 0.20°, 8.58 ± 0.20°, 11.89 ± 0.20°, 12.39 ± 0.20°, 13.40 ± 0.20°, 13.75 ± 0.20°, 15.54 ± 0.20°, 15.90 ± 0.20°, 17.23 ± 0.20°, 18.91 ± 0.20°, 19.56 ± 0.20°, 23.51 ± 0.20°, 24.91 ± 0.20°, 25.29 ± 0.20°, and 25.55 ± 0.20°.
In some embodiments, Form C of Compound I has an XRPD pattern substantially similar to the XRPD data shown in Table 9.
In some embodiments, Form C of Compound I has an XRPD pattern substantially similar to the XRPD pattern shown in Figure 17.
In some embodiments, Form C of Compound I has a DSC thermogram comprising an endotherm with a desolvation onset at about 193.8°C and a peak at about 194.6°C.
In some embodiments, Form C of Compound I has a DSC thermogram substantially similar to the DSC thermogram shown in Figure 18.
In some embodiments, Form C of Compound I has a TGA thermogram exhibiting a mass loss of less than 0.70% upon heating from about 30°C to about 180°C.
In some embodiments, Form C of Compound I has a TGA thermogram substantially similar to the TGA thermogram shown in Figure 18.
4. Compound I Form DIn some embodiments, a crystalline form of Compound I (free base) is disclosed, which is crystalline Form D of Compound I.
In some embodiments, Form D of Compound I has an XRPD pattern, which includes peaks at 6.85 ± 0.20°, 14.81 ± 0.20°, and 21.38 ± 0.20° 2θ.
In some embodiments, Form D of Compound I has an XRPD pattern, which includes peaks at 6.85 ± 0.20°, 13.71 ± 0.20°, 14.81 ± 0.20°, and 21.38 ± 0.20° 2θ.
In some embodiments, Form D of Compound I has an XRPD pattern comprising peaks at 6.85 ± 0.20°, 14.81 ± 0.20°, 17.69 ± 0.20°, and 21.38 ± 0.20° 2θ.
In some embodiments, Form D of Compound I has an XRPD pattern comprising peaks at 6.85 ± 0.20°, 13.71 ± 0.20°, 14.81 ± 0.20°, 17.69 ± 0.20°, and 21.38 ± 0.20° 2θ.
In some embodiments, Form D of Compound I has an XRPD pattern comprising peaks at 6.85 ± 0.20°, 11.13 ± 0.20°, 13.71 ± 0.20°, 14.81 ± 0.20°, 17.69 ± 0.20°, and 21.38 ± 0.20° 2θ.
In some embodiments, Form D of Compound I has an XRPD pattern comprising peaks at 6.85 ± 0.20°, 13.71 ± 0.20°, 14.81 ± 0.20°, 17.69 ± 0.20°, 21.38 ± 0.20°, and 23.49 ± 0.20° 2θ.
In some embodiments, Form D of Compound I has an XRPD pattern comprising peaks at 2θ of 6.85 ± 0.20°, 11.13 ± 0.20°, 13.71 ± 0.20°, 14.81 ± 0.20°, 17.69 ± 0.20°, 21.38 ± 0.20°, and 23.49 ± 0.20°.
In some embodiments, Form D of Compound I has an XRPD pattern comprising at least seven or more (e.g., eight, nine, ten, or eleven) peaks at 2θ selected from 6.85 ± 0.20°, 11.13 ± 0.20°, 13.07 ± 0.20°, 13.71 ± 0.20°, 14.81 ± 0.20°, 15.08 ± 0.20°, 17.69 ± 0.20°, 18.37 ± 0.20°, 21.38 ± 0.20°, 21.67 ± 0.20°, and 23.49 ± 0.20°.
In some embodiments, Form D of Compound I has an XRPD pattern comprising peaks at 2θ of 6.85 ± 0.20°, 11.13 ± 0.20°, 13.07 ± 0.20°, 13.71 ± 0.20°, 14.81 ± 0.20°, 15.08 ± 0.20°, 17.69 ± 0.20°, 18.37 ± 0.20°, 21.38 ± 0.20°, 21.67 ± 0.20°, and 23.49 ± 0.20°.
In some embodiments, Form D of Compound 1 has an XRPD pattern comprising at least 11 or more (e.g., 12, 13, 14, or 15) peaks at 2θ selected from 6.85 ± 0.20°, 11.13 ± 0.20°, 13.07 ± 0.20°, 13.71 ± 0.20°, 14.81 ± 0.20°, 15.08 ± 0.20°, 17.69 ± 0.20°, 18.37 ± 0.20°, 21.38 ± 0.20°, 21.67 ± 0.20°, 22.25 ± 0.20°, 23.49 ± 0.20°, 24.65 ± 0.20°, 26.69 ± 0.20°, and 28.60 ± 0.20°. 0.20°.
In some embodiments, Form D of Compound I has an XRPD pattern comprising peaks at 2θ of 6.85 ± 0.20°, 11.13 ± 0.20°, 13.07 ± 0.20°, 13.71 ± 0.20°, 14.81 ± 0.20°, 15.08 ± 0.20°, 17.69 ± 0.20°, 18.37 ± 0.20°, 21.38 ± 0.20°, 21.67 ± 0.20°, 22.25 ± 0.20°, 23.49 ± 0.20°, 24.65 ± 0.20°, 26.69 ± 0.20°, and 28.60 ± 0.20°.
In some embodiments, Form D of Compound I has an XRPD pattern substantially similar to the XRPD data shown in Table 10.
In some embodiments, Form D of Compound I has an XRPD pattern substantially similar to the XRPD pattern shown in Figure 19.
In some embodiments, Form D of Compound I has a DSC thermogram comprising two endothermic transitions with onsets and peak temperatures of 186.9°C and 190.5°C, 199.5°C, and 200.4°C, respectively.
In some embodiments, Form D of Compound I has a DSC thermogram substantially similar to the DSC thermogram shown in Figure 20.
In some embodiments, Form D of Compound I has a TGA thermogram showing a mass loss of less than 0.67% upon heating from about 30°C to about 100°C.
In some embodiments, Form D of Compound I has a TGA thermogram substantially similar to the TGA thermogram shown in Figure 20.
5. Compound I The crystalline form of the fumarate saltIn some embodiments, a crystalline form of a pharmaceutically acceptable salt of Compound I is disclosed, which is a crystalline form of a fumarate salt of Compound I.
In some embodiments, the crystalline form of the fumarate salt of Compound I has an XRPD pattern, which includes peaks at 2θ of 5.98 ± 0.20°, 10.02 ± 0.20°, and 16.47 ± 0.20°.
In some embodiments, the crystalline form of the fumarate salt of Compound I has an XRPD pattern, which includes peaks at 2θ of 5.98 ± 0.20°, 10.02 ± 0.20°, 15.36 ± 0.20°, and 16.47 ± 0.20°.
In some embodiments, the crystalline form of the fumarate salt of Compound I has an XRPD pattern comprising peaks at 5.98 ± 0.20°, 10.02 ± 0.20°, 16.47 ± 0.20°, and 25.17 ± 0.20° 2θ.
In some embodiments, the crystalline form of the fumarate salt of Compound I has an XRPD pattern comprising peaks at 5.98 ± 0.20°, 10.02 ± 0.20°, 15.36 ± 0.20°, 16.47 ± 0.20°, and 25.17 ± 0.20° 2θ.
In some embodiments, the crystalline form of the fumarate salt of Compound I has an XRPD pattern comprising peaks at 2θ of 5.98 ± 0.20°, 10.02 ± 0.20°, 15.36 ± 0.20°, 16.47 ± 0.20°, 17.30 ± 0.20°, and 25.17 ± 0.20°.
In some embodiments, the crystalline form of the fumarate salt of Compound I has an XRPD pattern comprising peaks at 2θ of 5.98 ± 0.20°, 10.02 ± 0.20°, 15.36 ± 0.20°, 16.47 ± 0.20°, 20.32 ± 0.20°, and 25.17 ± 0.20°.
In some embodiments, the crystalline form of the fumarate salt of Compound I has an XRPD pattern comprising peaks at 2θ of 5.98 ± 0.20°, 10.02 ± 0.20°, 15.36 ± 0.20°, 16.47 ± 0.20°, 17.30 ± 0.20°, 20.32 ± 0.20°, and 25.17 ± 0.20°.
In some embodiments, the crystalline form of the fumarate salt of Compound I has an XRPD pattern comprising at least seven or more (e.g., eight, nine, or ten) peaks at 2θ of 5.98 ± 0.20°, 8.49 ± 0.20°, 10.02 ± 0.20°, 10.70 ± 0.20°, 15.36 ± 0.20°, 16.47 ± 0.20°, 17.30 ± 0.20°, 20.32 ± 0.20°, 25.17 ± 0.20°, and 25.80 ± 0.20°.
In some embodiments, the crystalline form of the fumarate salt of Compound 1 has an XRPD pattern comprising peaks at 2θ of 5.98 ± 0.20°, 8.49 ± 0.20°, 10.02 ± 0.20°, 10.70 ± 0.20°, 15.36 ± 0.20°, 16.47 ± 0.20°, 17.30 ± 0.20°, 20.32 ± 0.20°, 25.17 ± 0.20°, and 25.80 ± 0.20°.
In some embodiments, the crystalline form of the fumarate salt of Compound 1 has an XRPD pattern comprising at least ten or more (e.g., 11, 12, 13, 14, or 15) peaks at 2θ selected from 5.42 ± 0.20°, 5.98 ± 0.20°, 6.56 ± 0.20°, 8.49 ± 0.20°, 10.02 ± 0.20°, 10.70 ± 0.20°, 12.49 ± 0.20°, 15.36 ± 0.20°, 16.47 ± 0.20°, 17.30 ± 0.20°, 20.32 ± 0.20°, 25.17 ± 0.20°, 25.80 ± 0.20°, and 27.45 ± 0.20°. 0.20°.
In some embodiments, the crystalline form of the fumarate salt of Compound I has an XRPD pattern comprising peaks at 2θ of 5.42 ± 0.20°, 5.98 ± 0.20°, 6.56 ± 0.20°, 8.49 ± 0.20°, 10.02 ± 0.20°, 10.70 ± 0.20°, 12.49 ± 0.20°, 15.36 ± 0.20°, 16.47 ± 0.20°, 17.30 ± 0.20°, 20.32 ± 0.20°, 25.17 ± 0.20°, 25.80 ± 0.20°, and 27.45 ± 0.20°.
In some embodiments, the crystalline form of the fumarate salt of Compound I has an XRPD pattern substantially similar to the XRPD pattern shown in Table 14.
In some embodiments, the crystalline form of the fumarate salt of Compound I has an XRPD pattern substantially similar to the XRPD pattern shown in Figure 21 or Figure 22.
In some embodiments, the crystalline form of the fumarate salt of Compound I has a DSC thermogram comprising an endotherm with an onset at about 162.8°C and a peak at about 169.8°C.
In some embodiments, the crystalline form of the fumarate salt of Compound I has a DSC thermogram substantially similar to the DSC thermogram of Figure 23.
In some embodiments, the crystalline form of the fumarate salt of Compound I has a TGA thermogram showing a mass loss of about 0.70% when heated from about 40°C to about 110°C.
In some embodiments, the crystalline form of the fumarate salt of Compound I has a TGA thermogram substantially similar to the TGA thermogram of Figure 24.
In some embodiments, the crystalline form of the fumarate salt of Compound I has a DVS vapor sorption diagram substantially similar to the DVS vapor sorption diagram of Figure 25.
6. Compound I The crystalline form of the hemisuccinateIn some embodiments, the crystalline form of the hemisuccinate salt of Compound I has an XRPD pattern substantially similar to the XRPD pattern shown in Figure 26.
In some embodiments, the crystalline form of the hemisuccinate salt of Compound I has a DSC thermogram comprising an endotherm with an onset at about 173.9°C and a peak at about 184.3°C.
In some embodiments, the crystalline form of the hemisuccinate salt of Compound I has a DSC thermogram substantially similar to the DSC thermogram of Figure 27.
In some embodiments, the crystalline form of the hemisuccinate salt of Compound I has a TGA thermogram exhibiting a mass loss of about 4.10% upon heating from about 30°C to about 125°C.
In some embodiments, the crystalline form of the hemisuccinate salt of Compound I has a TGA thermogram substantially similar to the TGA thermogram of Figure 28.
In some embodiments, the crystalline form of the hemisuccinate salt of Compound I has a DVS vapor sorption graph substantially similar to the DVS vapor sorption graph of Figure 29.
7. Compound I The crystalline form of the hydrochlorideIn some embodiments, the crystalline form of the hydrochloride salt of Compound I has a DSC thermogram comprising an endotherm with an onset at about 220.8°C and a peak at about 227.6°C.
In some embodiments, the crystalline form of the hydrochloride salt of Compound I has a TGA thermogram showing a mass loss of about 0.26% upon heating from about 40°C to about 150°C.
In some embodiments, the crystalline form of the hydrochloride salt of Compound I has a DSC thermogram and a TGA thermogram substantially similar to those of FIG. 30.
In some embodiments, the crystalline form of the hydrochloride salt of Compound I has a DVS vapor sorption graph substantially similar to the DVS vapor sorption graph of Figure 31.
8. Compound I Crystalline form of phosphateIn some embodiments, the crystalline form of the phosphate salt of Compound I has an XRPD pattern substantially similar to the XRPD pattern shown in Figure 32.
In some embodiments, the crystalline form of the phosphate salt of Compound I has a DSC thermogram comprising four endotherms having an onset at about 30.8°C and a peak at about 50.1°C, an onset at about 145.5°C and a peak at about 149.1°C, an onset at about 191.1°C and a peak at about 195.5°C, and an onset at about 213.2°C and a peak at about 239.0°C.
In some embodiments, the crystalline form of the phosphate salt of Compound I has a TGA thermogram showing a mass loss of about 4.66% when heated from about 30°C to about 200°C.
In some embodiments, the crystalline form of the phosphate salt of Compound I has a DSC thermogram and a TGA thermogram substantially similar to the DSC thermogram and TGA thermogram of Figure 33.
In some embodiments, the crystalline form of the phosphate salt of Compound I has a DVS vapor adsorption graph substantially similar to the DVS vapor adsorption graph of Figure 34.
9. Compound I The crystalline form of the sulfateIn some embodiments, the crystalline form of the sulfate salt of Compound I has an XRPD pattern substantially similar to the XRPD pattern shown in Figure 35.
In some embodiments, the crystalline form of the sulfate salt of Compound I has a DSC thermogram comprising three endotherms with an onset at about 34.5°C and a peak at about 57.3°C, an onset at about 157.5°C and a peak at about 169.4°C, and an onset at about 227.6°C and a peak at about 247.4°C.
In some embodiments, the crystalline form of the sulfate salt of Compound I has a TGA thermogram showing a mass loss of about 5.47% upon heating from about 30°C to about 200°C.
In some embodiments, the crystalline form of the sulfate salt of Compound I has a DSC thermogram and a TGA thermogram substantially similar to those of FIG. 36 .
In some embodiments, the crystalline form of the sulfate salt of Compound I has a DVS vapor sorption graph substantially similar to the DVS vapor sorption graph of FIG. 37 .
10. Compound I The crystalline form of the hemiadipate saltIn some embodiments, a crystalline form of a pharmaceutically acceptable salt of Compound I is disclosed, which is a crystalline form of a hemiadipate salt of Compound I.
In some embodiments, the crystalline form of the hemiadipate salt of Compound I has an XRPD pattern, which includes peaks at 8.49 ± 0.20°, 9.30 ± 0.20°, and 24.93 ± 0.20° 2θ.
In some embodiments, the crystalline form of the hemiadipate salt of Compound I has an XRPD pattern, which includes peaks at 8.49 ± 0.20°, 9.30 ± 0.20°, 18.04 ± 0.20°, and 24.93 ± 0.20° 2θ.
In some embodiments, the crystalline form of the hemiadipate salt of Compound I has an XRPD pattern comprising peaks at 8.49 ± 0.20°, 9.30 ± 0.20°, 18.12 ± 0.20°, and 24.93 ± 0.20° 2θ.
In some embodiments, the crystalline form of the hemiadipate salt of Compound I has an XRPD pattern comprising peaks at 8.49 ± 0.20°, 9.30 ± 0.20°, 18.04 ± 0.20°, 18.12 ± 0.20°, and 24.93 ± 0.20° 2θ.
In some embodiments, the crystalline form of the hemiadipate salt of Compound I has an XRPD pattern comprising peaks at 8.49 ± 0.20°, 9.30 ± 0.20°, 18.04 ± 0.20°, 18.12 ± 0.20°, 18.59 ± 0.20°, and 24.93 ± 0.20° 2θ.
In some embodiments, the crystalline form of the hemiadipate salt of Compound I has an XRPD pattern comprising peaks at 8.49 ± 0.20°, 9.30 ± 0.20°, 18.12 ± 0.20°, 18.59 ± 0.20°, 20.70 ± 0.20°, and 24.93 ± 0.20° 2θ.
In some embodiments, the crystalline form of the hemiadipate salt of Compound 1 has an XRPD pattern comprising peaks at 8.49 ± 0.20°, 9.30 ± 0.20°, 18.04 ± 0.20°, 18.12 ± 0.20°, 18.59 ± 0.20°, 20.70 ± 0.20°, and 24.93 ± 0.20° 2θ.
In some embodiments, the crystalline form of the hemiadipate salt of Compound 1 has an XRPD pattern comprising at least seven or more (e.g., eight, nine, or ten) peaks at 8.49 ± 0.20°, 9.30 ± 0.20°, 12.32 ± 0.20°, 17.27 ± 0.20°, 18.04 ± 0.20°, 18.12 ± 0.20°, 18.59 ± 0.20°, 20.70 ± 0.20°, 23.87 ± 0.20°, and 24.93 ± 0.20° 2θ.
In some embodiments, the crystalline form of the hemiadipate salt of Compound 1 has an XRPD pattern comprising peaks at 8.49 ± 0.20°, 9.30 ± 0.20°, 12.32 ± 0.20°, 17.27 ± 0.20°, 18.04 ± 0.20°, 18.12 ± 0.20°, 18.59 ± 0.20°, 20.70 ± 0.20°, 23.87 ± 0.20°, and 24.93 ± 0.20° 2θ.
In some embodiments, the crystalline form of the hemiadipate salt of Compound 1 has an XRPD pattern comprising at least ten or more (e.g., 11, 12, 13, 14, or 15) peaks at 2θ selected from 8.49 ± 0.20°, 9.30 ± 0.20°, 10.28 ± 0.20°, 12.32 ± 0.20°, 12.72 ± 0.20°, 15.05 ± 0.20°, 16.42 ± 0.20°, 17.27 ± 0.20°, 18.04 ± 0.20°, 18.12 ± 0.20°, 18.59 ± 0.20°, 20.70 ± 0.20°, 23.87 ± 0.20°, 24.93 ± 0.20°, 25. ± 0.20° and 28.09 ± 0.20°.
In some embodiments, the crystalline form of the hemiadipate salt of Compound 1 has an XRPD pattern comprising peaks at 8.49 ± 0.20°, 9.30 ± 0.20°, 10.28 ± 0.20°, 12.32 ± 0.20°, 12.72 ± 0.20°, 15.05 ± 0.20°, 16.42 ± 0.20°, 17.27 ± 0.20°, 18.04 ± 0.20°, 18.12 ± 0.20°, 18.59 ± 0.20°, 20.70 ± 0.20°, 23.87 ± 0.20°, 24.93 ± 0.20°, and 28.09 ± 0.20° 2θ.
In some embodiments, the crystalline form of the hemiadipate salt of Compound I has an XRPD pattern substantially similar to the XRPD pattern shown in Table 15.
In some embodiments, the crystalline form of the hemiadipate salt of Compound I has an XRPD pattern substantially similar to the XRPD pattern shown in Figure 38.
In some embodiments, the crystalline form of the hemiadipate salt of Compound I has a DSC thermogram comprising an endotherm having an onset at about 173.3°C and a peak at about 175.0°C.
In some embodiments, the crystalline form of the hemiadipate salt of Compound I has a TGA thermogram exhibiting a mass loss of about 0.25% upon heating from about 40°C to about 145°C.
In some embodiments, the crystalline form of the hemiadipate salt of Compound I has a DSC thermogram and a TGA thermogram substantially similar to those of FIG. 39 .
In some embodiments, the crystalline form of the hemiadipate salt of Compound I has a DVS vapor sorption graph substantially similar to the DVS vapor sorption graph of FIG. 40 .
11. Compound I The crystalline form of the p-toluenesulfonate saltIn some embodiments, a crystalline form of a pharmaceutically acceptable salt of Compound I is disclosed, which is a crystalline form of a p-toluenesulfonate salt of Compound I.
In some embodiments, the crystalline form of the p-toluenesulfonate salt of Compound I has an XRPD pattern, which includes peaks at 6.56 ± 0.20°, 7.13 ± 0.20°, and 7.48 ± 0.20° 2θ.
In some embodiments, the crystalline form of the p-toluenesulfonate salt of Compound I has an XRPD pattern, which includes peaks at 6.56 ± 0.20°, 7.13 ± 0.20°, 7.48 ± 0.20°, and 15.69 ± 0.20° 2θ.
In some embodiments, the crystalline form of the p-toluenesulfonate salt of Compound I has an XRPD pattern comprising peaks at 6.56 ± 0.20°, 7.13 ± 0.20°, 7.48 ± 0.20°, and 18.14 ± 0.20° 2θ.
In some embodiments, the crystalline form of the p-toluenesulfonate salt of Compound I has an XRPD pattern comprising peaks at 6.56 ± 0.20°, 7.13 ± 0.20°, 7.48 ± 0.20°, 15.69 ± 0.20°, and 18.14 ± 0.20° 2θ.
In some embodiments, the crystalline form of the p-toluenesulfonate salt of Compound I has an XRPD pattern comprising peaks at 6.56 ± 0.20°, 7.13 ± 0.20°, 7.48 ± 0.20°, 14.54 ± 0.20°, 15.69 ± 0.20°, and 18.14 ± 0.20° 2θ.
In some embodiments, the crystalline form of the p-toluenesulfonate salt of Compound I has an XRPD pattern comprising peaks at 6.56 ± 0.20°, 7.13 ± 0.20°, 7.48 ± 0.20°, 15.69 ± 0.20°, 18.14 ± 0.20°, and 19.00 ± 0.20° 2θ.
In some embodiments, the crystalline form of the p-toluenesulfonate salt of Compound 1 has an XRPD pattern comprising peaks at 2θ of 6.56 ± 0.20°, 7.13 ± 0.20°, 7.48 ± 0.20°, 14.54 ± 0.20°, 15.69 ± 0.20°, 18.14 ± 0.20°, and 19.00 ± 0.20°.
In some embodiments, the crystalline form of the p-toluenesulfonate salt of Compound I has an XRPD pattern comprising at least seven or more (e.g., eight, nine, or ten) peaks at 6.56 ± 0.20°, 7.13 ± 0.20°, 7.48 ± 0.20°, 7.86 ± 0.20°, 14.54 ± 0.20°, 15.69 ± 0.20°, 18.14 ± 0.20°, 19.00 ± 0.20°, 21.59 ± 0.20°, and 24.04 ± 0.20° 2θ.
In some embodiments, the crystalline form of the p-toluenesulfonate salt of Compound 1 has an XRPD pattern comprising peaks at 2θ of 6.56 ± 0.20°, 7.13 ± 0.20°, 7.48 ± 0.20°, 7.86 ± 0.20°, 14.54 ± 0.20°, 15.69 ± 0.20°, 18.14 ± 0.20°, 19.00 ± 0.20°, 21.59 ± 0.20°, and 24.04 ± 0.20°.
In some embodiments, the crystalline form of the p-toluenesulfonate salt of Compound 1 has an XRPD pattern comprising at least ten or more (e.g., 11, 12, 13, 14, or 15) peaks at 2θ selected from 6.56 ± 0.20°, 7.13 ± 0.20°, 7.48 ± 0.20°, 7.86 ± 0.20°, 10.47 ± 0.20°, 11.94 ± 0.20°, 14.54 ± 0.20°, 15.69 ± 0.20°, 17.89 ± 0.20°, 18.14 ± 0.20°, 19.00 ± 0.20°, 19.70 ± 0.20°, 21.59 ± 0.20°, 22.41 ± 0.20°, 0.20° and 24.04 ± 0.20°.
In some embodiments, the crystalline form of the p-toluenesulfonate salt of Compound 1 has an XRPD pattern comprising peaks at 2θ of 6.56 ± 0.20°, 7.13 ± 0.20°, 7.48 ± 0.20°, 7.86 ± 0.20°, 10.47 ± 0.20°, 11.94 ± 0.20°, 14.54 ± 0.20°, 15.69 ± 0.20°, 17.89 ± 0.20°, 18.14 ± 0.20°, 19.00 ± 0.20°, 19.70 ± 0.20°, 21.59 ± 0.20°, 22.41 ± 0.20°, and 24.04 ± 0.20°.
In some embodiments, the crystalline form of the p-toluenesulfonate salt of Compound I has an XRPD pattern substantially similar to the XRPD pattern shown in Table 16.
In some embodiments, the crystalline form of the p-toluenesulfonate salt of Compound I has an XRPD pattern substantially similar to the XRPD pattern shown in Figure 41.
In some embodiments, the crystalline form of the p-toluenesulfonate salt of Compound I has a DSC thermogram comprising an endotherm with an onset at about 168.2°C and a peak at about 175.2°C.
In some embodiments, the crystalline form of the p-toluenesulfonate salt of Compound I has a TGA thermogram exhibiting a mass loss of about 0.79% upon heating from about 30°C to about 150°C.
In some embodiments, the crystalline form of the p-toluenesulfonate salt of Compound I has a DSC thermogram and a TGA thermogram substantially similar to those of FIG. 42.
In some embodiments, the crystalline form of the p-toluenesulfonate salt of Compound I has a DVS vapor sorption diagram substantially similar to the DVS vapor sorption diagram of FIG. 43.
12. Compound I The crystalline form of the maleate saltIn some embodiments, a crystalline form of a pharmaceutically acceptable salt of Compound I is disclosed, which is a crystalline form of a maleate salt of Compound I.
In some embodiments, the crystalline form of the maleate salt of Compound I has an XRPD pattern, which includes peaks at 2θ of 5.65 ± 0.20°, 14.67 ± 0.20°, and 20.12 ± 0.20°.
In some embodiments, the crystalline form of the maleate salt of Compound I has an XRPD pattern, which includes peaks at 2θ of 5.65 ± 0.20°, 14.11 ± 0.20°, 14.67 ± 0.20°, and 20.12 ± 0.20°.
In some embodiments, the crystalline form of the maleate salt of Compound I has an XRPD pattern comprising peaks at 5.65 ± 0.20°, 14.67 ± 0.20°, 20.12 ± 0.20°, and 21.48 ± 0.20° 2θ.
In some embodiments, the crystalline form of the maleate salt of Compound I has an XRPD pattern comprising peaks at 5.65 ± 0.20°, 14.11 ± 0.20°, 14.67 ± 0.20°, 20.12 ± 0.20°, and 21.48 ± 0.20° 2θ.
In some embodiments, the crystalline form of the maleate salt of Compound I has an XRPD pattern comprising peaks at 5.65 ± 0.20°, 7.13 ± 0.20°, 14.11 ± 0.20°, 14.67 ± 0.20°, 20.12 ± 0.20°, and 21.48 ± 0.20° 2θ.
In some embodiments, the crystalline form of the maleate salt of Compound I has an XRPD pattern comprising peaks at 5.65 ± 0.20°, 14.11 ± 0.20°, 14.67 ± 0.20°, 20.12 ± 0.20°, 21.48 ± 0.20°, and 27.28 ± 0.20° 2θ.
In some embodiments, the crystalline form of the maleate salt of Compound I has an XRPD pattern comprising peaks at 2θ of 5.65 ± 0.20°, 7.13 ± 0.20°, 14.11 ± 0.20°, 14.67 ± 0.20°, 20.12 ± 0.20°, 21.48 ± 0.20°, and 27.28 ± 0.20°.
In some embodiments, the crystalline form of the maleate salt of Compound I has an XRPD pattern comprising at least seven or more (e.g., eight, nine, or ten) peaks at 2θ of 5.65 ± 0.20°, 7.13 ± 0.20°, 14.11 ± 0.20°, 14.67 ± 0.20°, 18.59 ± 0.20°, 19.96 ± 0.20°, 20.12 ± 0.20°, 21.48 ± 0.20°, 23.95 ± 0.20°, and 27.28 ± 0.20°.
In some embodiments, the crystalline form of the maleate salt of Compound I has an XRPD pattern comprising peaks at 2θ of 5.65 ± 0.20°, 7.13 ± 0.20°, 14.11 ± 0.20°, 14.67 ± 0.20°, 18.59 ± 0.20°, 19.96 ± 0.20°, 20.12 ± 0.20°, 21.48 ± 0.20°, 23.95 ± 0.20°, and 27.28 ± 0.20°.
In some embodiments, the crystalline form of the maleate salt of Compound 1 has an XRPD pattern comprising at least ten or more (e.g., 11, 12, 13, 14, or 15) peaks at 2θ selected from 5.65 ± 0.20°, 6.45 ± 0.20°, 7.13 ± 0.20°, 7.35 ± 0.20°, 11.95 ± 0.20°, 13.56 ± 0.20°, 14.11 ± 0.20°, 14.67 ± 0.20°, 18.59 ± 0.20°, 19.96 ± 0.20°, 20.12 ± 0.20°, 20.42 ± 0.20°, 21.48 ± 0.20°, 23.95 ± 0.20°, 24.84 ± 0.20°, 25.12 ± 0.20°, 26.85 ± 0.20°, 27.91 ± 0.20°, 28. 0.20° and 27.28 ± 0.20°.
In some embodiments, the crystalline form of the maleate salt of Compound I has an XRPD pattern comprising peaks at 2θ of 5.65 ± 0.20°, 6.45 ± 0.20°, 7.13 ± 0.20°, 7.35 ± 0.20°, 11.95 ± 0.20°, 13.56 ± 0.20°, 14.11 ± 0.20°, 14.67 ± 0.20°, 18.59 ± 0.20°, 19.96 ± 0.20°, 20.12 ± 0.20°, 20.42 ± 0.20°, 21.48 ± 0.20°, 23.95 ± 0.20°, and 27.28 ± 0.20°.
In some embodiments, the crystalline form of the maleate salt of Compound I has an XRPD pattern substantially similar to the XRPD pattern shown in Table 17.
In some embodiments, the crystalline form of the maleate salt of Compound I has an XRPD pattern substantially similar to the XRPD pattern shown in Figure 44.
In some embodiments, the crystalline form of the maleate salt of Compound I has a DSC thermogram comprising an endotherm with an onset at about 159.6°C and a peak at about 162.5°C.
In some embodiments, the crystalline form of the maleate salt of Compound I has a TGA thermogram exhibiting a mass loss of about 0.44% upon heating from about 30°C to about 140°C.
In some embodiments, the crystalline form of the maleate salt of Compound I has a DSC thermogram and a TGA thermogram substantially similar to those of FIG. 45 .
In some embodiments, the crystalline form of the maleate salt of Compound I has a DVS vapor sorption graph substantially similar to the DVS vapor sorption graph of FIG. 46 .
13. Compound I The crystalline form of the oxalate saltIn some embodiments, the crystalline form of the oxalate salt of Compound I has an XRPD pattern substantially similar to the XRPD pattern shown in Figure 47.
In some embodiments, the crystalline form of the oxalate salt of Compound I has a DSC thermogram comprising three endotherms with an onset at about 30.5°C and a peak at about 63.2°C, an onset at about 129.9°C and a peak at about 139.5°C, and an onset at about 193.2°C and a peak at about 211.4°C.
In some embodiments, the crystalline form of the oxalate salt of Compound I has a TGA thermogram showing a mass loss of about 7.92% upon heating from about 37°C to about 147°C.
In some embodiments, the crystalline form of the oxalate salt of Compound I has a DSC thermogram and a TGA thermogram substantially similar to the DSC thermogram and TGA thermogram of Figure 48.
14. Compound I of L-(+)- Crystalline form of tartaric acid saltIn some embodiments, the crystalline form of the L-(+)-tartrate salt of Compound I has an XRPD pattern substantially similar to the XRPD pattern shown in FIG. 49.
In some embodiments, the crystalline form of the L-(+)-tartrate salt of Compound I has a DSC thermogram comprising three endotherms with an onset at about 144.5°C and a peak at about 156.1°C, an onset at about 172.3°C and a peak at about 187.5°C, and an onset at about 203.5°C and a peak at about 224.0°C.
In some embodiments, the crystalline form of the L-(+)-tartrate salt of Compound I has a TGA thermogram showing a mass loss of about 0.59% upon heating from about 40°C to about 150°C.
In some embodiments, the crystalline form of the L-(+)-tartrate salt of Compound I has a DSC thermogram and a TGA thermogram substantially similar to those of Figure 50.
15. Compound I The crystalline form of the monoadipate saltIn some embodiments, the crystalline form of the monoadipate salt of Compound I has an XRPD pattern substantially similar to the XRPD pattern shown in Figure 51.
In some embodiments, the crystalline form of the monoadipate salt of Compound I has a DSC thermogram comprising two endotherms starting at about 146.1°C and peaking at about 148.7°C, and starting at about 167.1°C and peaking at about 171.9°C.
In some embodiments, the crystalline form of the monoadipate salt of Compound I has a TGA thermogram exhibiting a mass loss of about 0.33% upon heating from about 40°C to about 125°C.
In some embodiments, the crystalline form of the monoadipate salt of Compound I has a DSC thermogram and a TGA thermogram substantially similar to those of Figure 52.
When referring to a crystalline form herein, the degree of crystallinity is conveniently greater than about 60%, more conveniently greater than about 80%, conveniently greater than about 90%, and more conveniently greater than about 95%. Most conveniently, the degree of crystallinity is greater than about 98%.
In some embodiments, the crystalline forms of the present disclosure are preferably substantially pure, meaning that each crystalline form includes no more than 10%, no more than 5%, or no more than 1% by weight of any significant impurity, including other polymorphic forms of the compound. In certain embodiments, the purity of the "substantially pure" crystalline forms of the present disclosure is greater than 90%, greater than 95%, greater than 98%, or even greater than 99%.
In some embodiments, the crystalline forms of the present disclosure may also be present together in a mixture. A mixture of crystalline forms of the present disclosure will have XRPD peak characteristics of each of the crystalline forms present in the mixture. For example, a mixture of two crystalline forms will have an XRPD pattern corresponding to the XRPD pattern of a substantially pure crystalline form, which is a convolution of an X-ray powder diffraction pattern.
Preparation methodFurther provided herein are methods for preparing crystalline forms of Compound I and its pharmaceutically acceptable salts.
Further provided herein are methods for preparing Compound I. The methods are summarized in the following scheme:
Compound I has been previously described in International Patent Publication WO 2019/214634, which is incorporated herein by reference in its entirety, and in particular its description of Compound I, its synthesis, and its demonstration of ErbB inhibitor activity.
Further provided herein is a method that can be used to prepare Compound I on a large scale, for example, on a scale of tens of kilograms, with high product yields. The method is summarized in the following scheme:
The pharmaceutical salts and crystalline forms disclosed herein can be prepared by methods known in the art. In some embodiments, the crystals of the pharmaceutically acceptable salt of Compound I are prepared by: dissolving Compound I in methyl ethyl ketone, ethanol or ethyl acetate, adding the corresponding acid to the solution in methyl ethyl ketone, ethanol or ethyl acetate, and crystallizing the solution and separating the crystals of the pharmaceutically acceptable salt of Compound I, wherein the pharmaceutically acceptable salt is selected from hydrochloride, sulfate, phosphate, maleate, fumarate, oxalate, p-toluenesulfonate, succinate, L-(+)-tartrate, monoadipate, hemiadipate. However, these in no way limit the preparation methods of the pharmaceutical salts and crystalline forms disclosed herein.
This article further provides a crystallization method for preparing form A of compound I, which comprises the following steps: dissolving compound I in H
2O/EtOH/MTBE solution, adding Form A seed crystals to the solution, allowing the solution to crystallize and isolating Form A of Compound I.
This article further provides a crystallization method for preparing Form B of Compound I, the crystallization method comprising the following steps: suspending the hemiadipate of Compound I in a pH 6.8 buffer to form a free base of Compound I, filtering the suspension and drying the suspension to isolate Form B of Compound I.
This article further provides a crystallization method for preparing Form C of Compound I, the crystallization method comprising the following steps: dissolving Compound I in a hot methanol solution, cooling the solution, allowing the solution to crystallize and isolating Form C of Compound I.
Further provided herein is a crystallization method for preparing Form D of Compound I, comprising the steps of: dissolving Compound I in a hot (e.g., 50°C) 1,4-dioxane or THF solution, adding an anti-solvent (e.g., n-heptane, water, or MTBE) to the solution, crystallizing the solution, and isolating Form D of Compound I.
Further provided herein is a crystallization method for preparing Form D of Compound I, comprising the steps of: dissolving Compound I in a hot (e.g., 50°C) appropriate solvent (e.g., THF, 1,4-dioxane, acetone, acetonitrile, or ethyl acetate), evaporating the solution at a relatively low temperature (e.g., 25°C), crystallizing the solution, and isolating Form D of Compound I.
Spray dried dispersion"Spray dried dispersion" or "SDD" refers to a powder obtained by a spray drying process. "Spray drying" refers to a method of producing a dry powder from a solution or slurry. The solution or slurry is atomized or flash dried with a hot gas, such as air or nitrogen, which causes the solvent to evaporate quickly and uniformly.
In certain embodiments, the present disclosure provides a spray dried dispersion comprising Compound I and a polymer of the spray dried dispersion.
Non-limiting examples of polymers for spray-dried dispersions include: HPMC-AS polymers, PVP-VA64 copolymers, Soluplus polymers, Eudragit E100 polymers, Eudragit L100-55 polymers, hydroxypropyl-β-cyclodextrin (HP-β-CD), PVP K30 LP polymers, HPC (hydroxypropyl cellulose, Klucel LF) polymers, HPC (Klucel MF) polymers, HPMC E5 LV polymers, HPMC E15 polymers and/or HPMCP-HP50 polymers. In certain embodiments, the polymer is an HPMC-AS polymer. In certain embodiments, the HPMC-AS polymer is an HPMC-AS MG polymer, an HPMC-AS MF polymer or an HPMC-AS LF polymer. In certain embodiments, the HPMC-AS polymer is an HPMC-AS MG polymer. In certain embodiments, the polymer is a PVP-VA64 copolymer. In certain embodiments, the polymer is HPC (Klucel LF) polymer.
In certain embodiments, Compound I is present in an amount of about 5% w/w to about 70% w/w of the spray-dried dispersion. In certain embodiments, the polymer is present in an amount of about 95% w/w to about 30% w/w of the spray-dried dispersion.
In certain embodiments, Compound I is present in an amount of about 20% w/w to about 60% w/w of the spray-dried dispersion. In certain embodiments, the polymer is present in an amount of about 80% w/w to about 40% w/w of the spray-dried dispersion.
In certain embodiments, Compound I is present in an amount of about 20% w/w to about 40% w/w of the spray-dried dispersion. In certain embodiments, Compound I is present in an amount of about 20% w/w, about 30% w/w, or about 40% w/w of the spray-dried dispersion. In certain embodiments, the amount of polymer is about 80% w/w, about 70% w/w, about 60% w/w, about 55% w/w, about 50% w/w, or about 40% w/w of the spray-dried dispersion. In certain embodiments, the amount of polymer is about 77.5% w/w of the spray-dried dispersion.
In certain embodiments, the spray-dried dispersion described herein comprises Compound I in an amount of about 20% w/w to about 60% w/w and HPMC-AS MG polymer in an amount of about 80% w/w to about 40% w/w.
In certain embodiments, the spray-dried dispersion described herein comprises Compound I in an amount of about 20% w/w and HPMC-AS MG polymer in an amount of about 80% w/w. In certain embodiments, the spray-dried dispersion described herein comprises Compound I in an amount of about 30% w/w and HPMC-AS MG polymer in an amount of about 70% w/w. In certain embodiments, the spray-dried dispersion described herein comprises Compound I in an amount of about 40% w/w and HPMC-AS MG polymer in an amount of about 60% w/w.
In certain embodiments, the spray-dried dispersion disclosed herein further comprises one or more surfactants. In certain embodiments, the surfactant is vitamin E polyethylene glycol succinate (TPGS). In certain embodiments, the surfactant is sodium dodecyl sulfate (SDS). In certain embodiments, the surfactant is polysorbate 80 (Tween 80). In certain embodiments, the amount of the surfactant is about 0.5% w/w to about 20% w/w. In certain embodiments, the amount of the surfactant is about 2.5% w/w to about 10% w/w. In certain embodiments, the amount of the surfactant is about 2.5% w/w, about 5% w/w, or about 10% w/w.
In certain embodiments, the spray-dried dispersion described herein comprises Compound I in an amount of about 40% w/w, HPMC-AS MF polymer in an amount of about 50% w/w, and TPGS in an amount of about 10% w/w.
In certain embodiments, the spray-dried dispersion described herein comprises Compound I in an amount of about 40% w/w, HPC (Klucel LF) polymer in an amount of about 55% w/w, and SDS in an amount of about 5% w/w.
In certain embodiments, the spray-dried dispersion described herein comprises Compound I in an amount of about 40% w/w, HPMC-AS MF polymer in an amount of about 55% w/w, and SDS in an amount of about 5% w/w.
In certain embodiments, the spray-dried dispersion described herein comprises Compound I in an amount of about 20% w/w, HPMC-AS MF polymer in an amount of about 77.5% w/w, and SDS in an amount of about 2.5% w/w.
In some embodiments, the formulation is produced by a spray drying process and comprises a solvent selected from the group consisting of water, acetone, methanol, dichloromethane, and any combination thereof.
In some embodiments, the solvent comprises acetone.
In some embodiments, the solvent comprises acetone and water. In some embodiments, the solvent comprises 99% acetone and 1% water. In some embodiments, the solvent comprises 98.2% acetone and 1.8% water.
In some embodiments, the solvent comprises acetone and dichloromethane. In some embodiments, the solvent comprises 30% acetone and 70% dichloromethane. In some embodiments, the solvent comprises 40% acetone and 60% dichloromethane.
In some embodiments, the solvent comprises methanol.
In some embodiments, the solvent comprises methanol and dichloromethane. In some embodiments, the solvent comprises 50% methanol and 50% dichloromethane.
Also provided herein is a method for preparing a spray-dried dispersion.
In some embodiments, the spray-dried dispersion described herein has a drug content greater than 90%. In some embodiments, the drug content of the formulation is greater than 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8% or 99.9%. "Assay of drug" or "assay of drug substance" can be determined by the United States Pharmacopeia (USP) method. In some embodiments, the drug content is determined by chromatograms of test samples and reference standards provided by UPLC or HPLC.
In some embodiments, the spray-dried dispersion described herein has a drug content greater than 90% after storage at 25°C and 60% relative humidity (RH) for one week. In some embodiments, the drug content of the formulation after storage at 25°C and 60% RH for one week is greater than 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8% or 99.9%.
In certain embodiments, the spray-dried dispersion described herein has a drug content greater than 90% after storage at 25°C and 60% relative humidity (RH) for one week. In certain embodiments, the drug content of the formulation after storage at 40°C and 75% RH for one week is greater than 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8% or 99.9%.
In certain embodiments, the spray-dried dispersion of the compound of Formula I is formulated as a tablet.
In certain embodiments, the pharmaceutical composition of the tablet as described above comprises about 5 mg to about 1000 mg of Compound I. In certain embodiments, the pharmaceutical composition of the tablet as described above comprises about 25 mg, about 50 mg, about 75 mg, about 100 mg, about 125 mg, about 150 mg, or about 200 mg of Compound I.
In certain embodiments, the pharmaceutical composition of the tablet as described above comprises Compound I, a polymer for a spray-dried dispersion, and a binder, a disintegrant, a lubricant, a coating, or a combination thereof.
In certain embodiments, the pharmaceutical composition of the tablet as described above comprises Compound I, a polymer for a spray-dried dispersion, microcrystalline cellulose PH-101, mannitol, sodium croscarmellose, colloidal silicon dioxide, magnesium stearate, microcrystalline cellulose PH-102, poloxamer 188, and a coating material.
In certain embodiments, the pharmaceutical composition of the tablet as described above comprises Compound I, HPMC-AS polymer, microcrystalline cellulose PH-101, mannitol, sodium croscarmellose, colloidal silicon dioxide, magnesium stearate, microcrystalline cellulose PH-102, poloxamer 188, and a coating material.
In certain embodiments, the pharmaceutical composition of the tablet as described above comprises Compound I, HPMC-AS MG polymer, microcrystalline cellulose PH-101, mannitol, cross-linked carboxymethyl cellulose sodium, colloidal silicon dioxide, magnesium stearate, microcrystalline cellulose PH-102, poloxamer 188, and coating materials.
In certain embodiments, the pharmaceutical composition of the tablet as described above comprises Compound I in an amount between about 10% w/w and 30% w/w, HPMC-AS MG polymer in an amount between about 30% w/w and 50% w/w, microcrystalline cellulose PH-101 in an amount between about 10% w/w and 25% w/w, mannitol in an amount between about 5% w/w and 15% w/w, cross-linked sodium carboxymethylcellulose in an amount between about 1% w/w and 10% w/w, colloidal silicon dioxide in an amount between about 0.1% w/w and 1% w/w, magnesium stearate in an amount between about 0.1% w/w and 1% w/w, and magnesium stearate in an amount between about 5% w/w and 15% w/w. w/w of microcrystalline cellulose PH-102, and poloxamer 188 in an amount between about 0% w/w and 5% w/w.
In certain embodiments, the pharmaceutical composition of the tablet as described above comprises Compound I in an amount between about 10% w/w and 30% w/w, HPMC-AS MG polymer in an amount between about 30% w/w and 50% w/w, microcrystalline cellulose PH-101 in an amount between about 10% w/w and 25% w/w, mannitol in an amount between about 5% w/w and 15% w/w, cross-linked sodium carboxymethylcellulose in an amount between about 1% w/w and 10% w/w, colloidal silicon dioxide in an amount between about 0.1% w/w and 1% w/w, magnesium stearate in an amount between about 0.1% w/w and 1% w/w, and magnesium stearate in an amount between about 5% w/w and 15% w/w. w/w of microcrystalline cellulose PH-102, and poloxamer 188 in an amount between about 0% w/w and 5% w/w. The pharmaceutical composition of the above tablets also includes an additional amount of coating material between about 1% w/w and 5% w/w.
In certain embodiments, the pharmaceutical composition of the tablets described above comprises an intragranular portion and an extragranular portion.
In certain embodiments, the pharmaceutical composition of the tablet as described above comprises about 12% w/w of Compound I, about 48% w/w of HPMC-AS MG polymer, about 12.4% w/w of microcrystalline cellulose PH-101, about 10% w/w of mannitol, about 2% w/w of cross-linked carboxymethyl cellulose sodium, about 0.5% w/w of colloidal silicon dioxide, about 0.25% w/w of magnesium stearate, about 9.4% w/w of microcrystalline cellulose PH-102, and about 3.0% w/w of poloxamer 188.
In certain embodiments, the pharmaceutical composition of the tablet as described above comprises about 18% w/w of Compound I, about 42% w/w of HPMC-AS MG polymer, about 11.4% w/w of microcrystalline cellulose PH-101, about 10% w/w of mannitol, about 3% w/w of cross-linked carboxymethyl cellulose sodium, about 0.5% w/w of colloidal silicon dioxide, about 0.25% w/w of magnesium stearate, about 9.4% w/w of microcrystalline cellulose PH-102, and about 3.0% w/w of poloxamer 188.
In certain embodiments, the pharmaceutical composition of the tablet as described above comprises about 24% w/w of Compound I, about 36% w/w of HPMC-AS MG polymer, about 11.4% w/w of microcrystalline cellulose PH-101, about 10% w/w of mannitol, about 3% w/w of cross-linked carboxymethyl cellulose sodium, about 0.5% w/w of colloidal silicon dioxide, about 0.25% w/w of magnesium stearate, about 9.4% w/w of microcrystalline cellulose PH-102, and about 3.0% w/w of poloxamer 188.
In certain embodiments, the pharmaceutical composition of the tablets described above comprises about 12% w/w of Compound I, about 48% w/w of HPMC-AS MG polymer, about 12.4% w/w of microcrystalline cellulose PH-101, about 10% w/w of mannitol, about 2% w/w of cross-linked carboxymethyl cellulose sodium, about 0.5% w/w of colloidal silicon dioxide, about 0.25% w/w of magnesium stearate, about 9.4% w/w of microcrystalline cellulose PH-102, and about 3.0% w/w of poloxamer 188. The pharmaceutical composition of the above tablets also comprises an additional coating material in an amount of about 2.0% w/w.
In certain embodiments, the pharmaceutical composition of the tablets described above comprises about 18% w/w of Compound I, about 42% w/w of HPMC-AS MG polymer, about 11.4% w/w of microcrystalline cellulose PH-101, about 10% w/w of mannitol, about 3% w/w of cross-linked carboxymethyl cellulose sodium, about 0.5% w/w of colloidal silicon dioxide, about 0.25% w/w of magnesium stearate, about 9.4% w/w of microcrystalline cellulose PH-102, and about 3.0% w/w of poloxamer 188. The pharmaceutical composition of the above tablets also comprises an additional coating material in an amount of about 2.0% w/w.
In certain embodiments, the pharmaceutical composition of the tablets described above comprises about 24% w/w of Compound I, about 36% w/w of HPMC-AS MG polymer, about 11.4% w/w of microcrystalline cellulose PH-101, about 10% w/w of mannitol, about 3% w/w of cross-linked carboxymethyl cellulose sodium, about 0.5% w/w of colloidal silicon dioxide, about 0.25% w/w of magnesium stearate, about 9.4% w/w of microcrystalline cellulose PH-102, and about 3.0% w/w of poloxamer 188. The pharmaceutical composition of the above tablets also comprises an additional coating material in an amount of about 2.0% w/w.
In certain embodiments, the coating material is Opadry®. In certain embodiments, the coating material is 03K620011-CN yellow.
Further provided herein is a method for preparing a spray-dried dispersion for tablets.
Drug CombinationsIn one aspect, the present disclosure also provides a pharmaceutical composition comprising one or more of such crystalline polymorphic forms as discussed above and a pharmaceutically acceptable carrier.
Pharmaceutically acceptable carriers are conventional drug carriers in the art that can be prepared in a manner well known in the pharmaceutical field. In some embodiments, the compounds of the present disclosure can be mixed with a pharmaceutically acceptable carrier to prepare a pharmaceutical composition.
Some examples of materials that can serve as pharmaceutically acceptable carriers include: (1) sugars, such as lactose, glucose, and sucrose; (2) starches, such as corn starch and potato starch; (3) cellulose and its derivatives, such as sodium carboxymethylcellulose, ethyl cellulose, and cellulose acetate; (4) powdered tragacanth; (5) malt; (6) gelatin; (7) talc; (8) excipients, such as cocoa butter and suppository wax; (9) oils, such as peanut oil, cottonseed oil, safflower oil, sesame oil, olive oil, corn oil, and soybean oil; (10) 0) glycols, such as propylene glycol; (11) polyols, such as glycerol, sorbitol, mannitol, and polyethylene glycol; (12) esters, such as ethyl oleate and ethyl laurate; (13) agar; (14) buffers, such as magnesium hydroxide and aluminum hydroxide; (15) alginic acid; (16) pyrogen-free water; (17) isosalted water; (18) Ringer's solution; (19) alcohols, such as ethanol and propanol; (20) phosphate buffer solutions; and (21) other non-toxic compatible substances used in pharmaceutical preparations, such as acetone.
The pharmaceutical composition may contain pharmaceutically acceptable auxiliary substances required to approximate physiological conditions, such as pH adjusters and buffers, toxicity adjusters, etc., for example, sodium acetate, sodium chloride, potassium chloride, calcium chloride, sodium lactate, etc. The form of the pharmaceutical composition depends on a variety of criteria, including but not limited to the route of administration, the extent of the disease or the dose to be administered. The pharmaceutical composition can be formulated for oral, nasal, rectal, transdermal, intravenous or intramuscular administration. Depending on the desired route of administration, the pharmaceutical composition may be administered in the form of tablets, capsules, pills, dragees, powders, granules, sachets, cachets, tablets, suspensions, emulsions, solutions, syrups, aerosols (in solid or liquid media), sprays, ointments, pastes, creams, lotions, gels, patches, inhalants, or suppositories.
The pharmaceutical composition may be formulated to provide rapid, sustained, or delayed release of the active ingredient after administration to a patient by procedures known in the art. In some embodiments, the pharmaceutical composition is formulated in a sustained release form. In some embodiments, the extended time period can be about 1 hour to 24 hours, 2 hours to 12 hours, 3 hours to 8 hours, 4 hours to 6 hours, 1 day to 2 days, or longer. In certain embodiments, the extended time period is at least about 4 hours, at least about 8 hours, at least about 12 hours, or at least about 24 hours. The pharmaceutical composition can be formulated in tablet form. For example, the release rate of the active agent can be controlled not only by the dissolution of the active agent in the gastrointestinal fluid and the subsequent diffusion out of the tablet or pill without being affected by pH, but also by the physical process of tablet disintegration and dissolution. In some embodiments, the methods described in "Medical Applications of Controlled Release", Langer and Wise (eds.), CRC Pres., Boca Raton, Florida (1974); "Controlled Drug Bioavailability", Drug Product Design and Performance, Smolen and Ball (eds.), Wiley, New York (1984); Ranger and Peppas, 1983, J Macromol. Sci. Rev. Macromol Chem. 23:61; see also Levy et al., 1985, Science 228:190; During et al., 1989, Ann. Neurol. 25:351; Howard et al., 1989, J. Neurosurg. 71:105 disclose polymer materials for sustained release. The above references are incorporated herein by reference in their entirety.
In certain embodiments, the pharmaceutical composition comprises from about 0.0001 mg to about 5000 mg of a compound of the disclosure (e.g., from about 0.0001 mg to about 10 mg, from about 0.001 mg to about 10 mg, from about 0.01 mg to about 10 mg, from about 0.1 mg to about 10 mg, from about 1 mg to about 10 mg, from about 5 mg to about 10 mg, from about 5 mg to about 20 mg, from about 5 mg to about 30 mg, from about 5 mg to about 40 mg, from about 5 mg to about 50 mg, from about 10 mg to about 100 mg, from about 20 mg to about 100 mg, from about 30 mg to about 100 mg, from about 40 mg to about 100 mg, from about 50 mg to about 100 mg, from about 50 mg to about 200 mg, from about 50 mg to about 300 mg, from about 50 mg to about 400 mg, from about 50 mg to about 500 mg, from about 100 From about 100 mg to about 200 mg, from about 100 mg to about 300 mg, from about 100 mg to about 400 mg, from about 100 mg to about 500 mg, from about 200 mg to about 500 mg, from about 300 mg to about 500 mg, from about 400 mg to about 500 mg, from about 500 mg to about 1000 mg, from about 600 mg to about 1000 mg, from about 700 mg to about 1000 mg, from about 800 mg to about 1000 mg, from about 900 mg to about 1000 mg, from about 1000 mg to about 2000 mg, from about 2000 mg to about 3000 mg, from about 3000 mg to about 4000 mg, or from about 4000 mg to about 5000 mg). A suitable dosage per article per day may be about 5 mg to about 500 mg, preferably about 5 mg to about 50 mg, about 50 mg to about 100 mg, or about 50 mg to about 500 mg.
In certain embodiments, the pharmaceutical composition can be formulated in a unit dosage form, each dosage comprising about 0.0001 mg to about 10 mg, about 0.001 mg to about 10 mg, about 0.01 mg to about 10 mg, about 0.1 mg to about 10 mg, about 1 mg to about 10 mg, about 5 mg to about 10 mg, about 5 mg to about 20 mg, about 5 mg to about 30 mg, about 5 mg to about 40 mg, about 5 mg to about 50 mg, about 10 mg to about 100 mg, about 20 mg to about 100 mg, about 30 mg to about 100 mg, about 40 mg to about 100 mg, about 50 mg to about 100 mg, about 50 mg to about 200 mg, about 50 mg to about 300 mg, about 50 mg to about 400 mg, about 50 mg to about 500 mg, about 100 mg to about 200 mg. The present invention relates to a compound of the present disclosure in an amount of about 100 mg to about 300 mg, about 100 mg to about 400 mg, about 100 mg to about 500 mg, about 200 mg to about 500 mg, about 300 mg to about 500 mg, about 400 mg to about 500 mg, about 500 mg to about 1000 mg, about 600 mg to about 1000 mg, about 700 mg to about 1000 mg, about 800 mg to about 1000 mg, about 900 mg to about 1000 mg, about 1000 mg to about 2000 mg, about 2000 mg to about 3000 mg, about 3000 mg to about 4000 mg, or about 4000 mg to about 5000 mg of a compound of the present disclosure. The term "unit dosage form" refers to physically discrete units suitable for use as unit dosages for human subjects and other mammals, each unit containing a predetermined amount of active material calculated to produce the desired therapeutic effect in combination with a suitable pharmaceutical carrier.
The term "unit dosage form" refers to physically discrete units suitable for use as unit dosages for human subjects and other mammals, each unit containing a predetermined amount of active material calculated to produce the desired therapeutic effect in combination with a suitable pharmaceutical carrier.
Uses and methods of treatmentThe present disclosure provides a method for treating a disease associated with ErbB (including, for example, HER2), the method comprising administering to a subject a therapeutically effective amount of one or more compounds of the present disclosure, a pharmaceutically acceptable salt, ester, hydrate, solvate or stereoisomer thereof, or a pharmaceutical composition thereof.
As used herein, the term "disease associated with ErbB" refers to a disease whose onset or development, or both, is associated with genomic alterations, expression, or overexpression of ErbB. Examples include, but are not limited to, immune-related diseases, proliferative disorders, cancer, and other diseases.
As used herein, the term "disease associated with HER2" refers to a disease or condition whose onset or development, or both, is associated with genomic alterations, expression, overexpression, or activity of HER2, as the case may be. Examples include, but are not limited to, immune-related diseases, proliferative disorders, cancer, and other diseases.
In some embodiments, the disease associated with ErbB is cancer, preferably an ErbB expressing cancer, or an ErbB overexpressing cancer. "ErbB expressing cancer" is a cancer involving cancer cells or tumor cells having an ErbB protein, such as HER2, present at their cell surface. "ErbB overexpressing cancer" is a cancer that has significantly higher levels of ErbB proteins, such as HER2, at the cell surface of cancer cells or tumor cells compared to non-cancerous cells of the same tissue type. Such overexpression may be caused by gene amplification or increased transcription or translation. ErbB receptor expression or overexpression can be determined in a diagnostic or prognostic assay (e.g., by immunohistochemistry assay; IHC) by evaluating increased levels of ErbB proteins present on the cell surface. Alternatively or in addition, the level of ErbB encoding nucleic acid in cells can be measured, for example, by fluorescent in situ hybridization (FISH; see WO98/45479 published in October 1998), southern blot, or polymerase chain reaction (PCR) techniques, such as real-time quantitative PCR (RT-PCR). Methods 132: 73-80 (1990). In addition to the above assays, the skilled practitioner can also use various in vivo assays. For example, cells in a patient can be exposed to an antibody, which is optionally labeled with a detectable marker, such as a radioisotope, and the binding of the antibody to the patient's cells can be assessed, for example, by external scanning for radioactivity or by analyzing a biopsy taken from a patient previously exposed to the antibody.
Specifically, cancer includes but is not limited to leukemia, glioblastoma, melanoma, chondrosarcoma, cholangiocarcinoma, osteosarcoma, lymphoma, lung cancer, adenocarcinoma, myeloma, hepatocellular carcinoma, adrenocortical carcinoma, pancreatic cancer, breast cancer, bladder cancer, prostate cancer, liver cancer, stomach cancer, colon cancer, colorectal cancer, ovarian cancer, cervical cancer, brain cancer, esophageal cancer, bone cancer, testicular cancer, skin cancer, kidney cancer, mesothelioma, neuroblastoma, thyroid cancer, head and neck cancer, esophageal cancer, eye cancer, prostate cancer, nasopharyngeal carcinoma or oral cancer. In some embodiments, the cancer is lung cancer, breast cancer, ovarian cancer, bladder cancer or glioblastoma. In some embodiments, the cancer is breast cancer, gastric cancer, colorectal cancer, pancreatic cancer, prostate cancer, bladder cancer, ovarian cancer, or lung cancer (e.g., non-small cell lung cancer, small cell lung cancer, adenocarcinoma, squamous cell lung cancer, and large cell lung cancer). In some embodiments, the disease associated with ErbB (e.g., HER2) is a cancer that has metastasized to the central nervous system (CNS), particularly a cancer with brain metastases and leptomeningeal metastases.
As used herein, the terms "treatment" and "treat" refer to reversing, alleviating, delaying the onset of, or inhibiting the progression of a disease or condition as described herein or one or more symptoms thereof. In some embodiments, treatment may be performed after developing one or more symptoms. In other embodiments, treatment may be performed in the absence of symptoms. For example, treatment can be given to susceptible individuals prior to the onset of symptoms (e.g., based on a history of symptoms and/or based on genetic or other predisposing factors). Treatment can also be continued after symptoms have resolved, for example to prevent or delay their recurrence.
The therapeutically effective amount of a compound as provided herein will depend on various factors known in the art, such as the subject's weight, age, past medical history, current drug therapy, health status and potential for cross-reactions, allergies, sensitivities and adverse side effects, as well as the route of administration and extent of disease progression. A person of ordinary skill in the art (e.g., a physician or veterinarian) may proportionally reduce or increase the dosage as indicated by these and other circumstances or requirements.
As used herein, the terms "subject" and "individual" are used interchangeably and refer to warm-blooded animals, including humans or any non-human animals (e.g., mice, rats, rabbits, dogs, cats, cows, pigs, sheep, horses, or primates). Humans include prenatal and postnatal forms. In some embodiments, the subject is a human. The subject may be a subject suspected of having a disease associated with ErbB (e.g., HER2) but may or may not exhibit symptoms of the disease.
In some embodiments, one or more compounds provided herein, pharmaceutically acceptable salts, esters, hydrates, solvates, or stereoisomers thereof, or drug compositions are administered by an enteral or non-enteral route. In some embodiments, one or more compounds, pharmaceutically acceptable salts, hydrates, solvates or stereoisomers thereof, or pharmaceutical compositions are administered orally, enterally, buccally, nasally, intranasally, transmucosally, epidermally, transdermally, dermally, ocularly, pulmonary, sublingually, rectally, vaginally, topically, subcutaneously, intravenously, intramuscularly, intraarterially, intrathecally, intracapsularly, intraorbitally, intracardially, intradermally, intraperitoneally, transtracheally, subcutaneously, intraarticularly, subcapsularly, subarachnoidally, intraspinally, or intrasternally.
The compounds provided herein can be administered in pure form, in combination with other active ingredients, or in the form of pharmaceutical compositions disclosed herein. In some embodiments, the compounds provided herein can be administered to an object in need simultaneously or sequentially in combination with one or more anticancer agents known in the art. In some embodiments, administration is performed once a day, twice a day, three times a day, or once every two days, once every three days, once every four days, once every five days, once every six days, or once a week.
In some embodiments, one or more compounds provided herein, pharmaceutically acceptable salts, esters, hydrates, solvates, or stereoisomers thereof, or drug compositions are administered orally. For oral administration, any dose that achieves the desired goal is suitable. In some embodiments, a suitable daily dose is between about 0.001-5000 mg, between 0.1 mg and 5 g, between 5 mg and 1 g, between 10 mg and 500 mg, and is administered once a day, twice a day, three times a day, every day, or 3-5 days a week. In some embodiments, the dose of one or more compounds, pharmaceutically acceptable salts, esters, hydrates, solvates, or stereoisomers thereof, or pharmaceutical compositions provided herein is about 0.0001 mg, 0.001 mg, 0.01 mg, 0.1 mg, 1 mg, 10 mg, 50 mg, 100 mg, 200 mg, 250 mg, 500 mg, 750 mg, 1000 mg, 2000 mg, 3000 mg, 4000 mg, or up to about 5000 mg per day.
In some embodiments, one or more compounds, pharmaceutically acceptable salts, esters, hydrates, solvates, stereoisomers, or pharmaceutical compositions provided herein can cross the blood-brain barrier (BBB) of an object after being administered to the object.
In some embodiments, the present disclosure provides the use of the compounds, pharmaceutically acceptable salts, esters, hydrates, solvates, stereoisomers, or pharmaceutical compositions disclosed herein in the preparation of a drug for treating a disease associated with ErbB (e.g., HER2).
The compounds disclosed herein and pharmaceutical compositions thereof can be used to inhibit ErbB (expression or activity), especially to inhibit HER2 (expression or activity) both in vivo and in vitro. In some embodiments, the compounds and pharmaceutical compositions disclosed herein can be used to inhibit ErbB (expression or activity), especially HER2 (expression or activity), in non-diagnostic, non-therapeutic methods (e.g., for research purposes).
The compounds and pharmaceutical compositions disclosed herein can be used to prevent or treat the onset or development of any disease associated with ErbB (e.g., HER2) in warm-blooded animals, especially humans.
The disclosure also includes the following embodiments:
Embodiment 1: A crystalline form of a compound I or a pharmaceutically acceptable salt of a compound I, wherein the compound I is (
S)-
N-(4-([1,2,4]triazolidine[1,5-
a ]pyridin-7-yloxy)-3-methylphenyl)-5-((3,3-difluoro-1-methylpiperidin-4-yl)oxy)-7-methoxyquinazolin-4-amine. Embodiment 2: According to the crystalline form described in Embodiment 1, it is Form A of Compound I. Embodiment 3: According to the crystalline form described in Embodiment 2, it has an X-ray powder diffraction (XRPD) pattern, and the XRPD pattern includes peaks at diffraction angles (2θ) values of 7.09 ± 0.20°, 15.15 ± 0.20° and 21.55 ± 0.20°. Embodiment 4: According to the crystalline form described in Embodiment 3, it has an XRPD pattern, and the XRPD pattern further includes at least one or two peaks at 2θ selected from the following: 11.92 ± 0.20° and 23.93 ± 0.20°. Embodiment 5: The crystalline form according to Embodiment 2, which has an XRPD pattern, wherein the XRPD pattern includes peaks at 2θ of 7.09 ± 0.20°, 11.92 ± 0.20°, 15.15 ± 0.20°, 21.55 ± 0.20°, and 23.93 ± 0.20°. Embodiment 6: The crystalline form according to Embodiment 5, which has an XRPD pattern, wherein the XRPD pattern further includes at least one or two peaks at 2θ selected from the group consisting of 6.45 ± 0.20° and 17.85 ± 0.20°. Embodiment 7: The crystalline form according to Embodiment 2, which has an XRPD pattern, wherein the XRPD pattern includes peaks at 2θ of 6.45 ± 0.20°, 7.09 ± 0.20°, 11.92 ± 0.20°, 15.15 ± 0.20°, 17.85 ± 0.20°, 21.55 ± 0.20°, and 23.93 ± 0.20°. Embodiment 8: The crystalline form according to Embodiment 7, which has an XRPD pattern, wherein the XRPD pattern further includes at least one, two, or three peaks at 2θ selected from the group consisting of 14.19 ± 0.20°, 18.94 ± 0.20°, and 26.86 ± 0.20°. Embodiment 9: According to the crystalline form of Embodiment 2, it has an XRPD pattern, and the XRPD pattern includes peaks at 2θ of 6.45 ± 0.20°, 7.09 ± 0.20°, 11.92 ± 0.20°, 14.19 ± 0.20°, 15.15 ± 0.20°, 17.85 ± 0.20°, 18.94 ± 0.20°, 21.55 ± 0.20°, 23.93 ± 0.20° and 26.86 ± 0.20°. Embodiment 10: According to the crystalline form of Embodiment 9, it has an XRPD pattern, and the XRPD pattern further includes at least one, two, three or more peaks at 2θ selected from the following: 10.75 ± 0.20°, 11.32 ± 0.20°, 12.88 ± 0.20°, 20.79 ± 0.20° and 25.69 ± 0.20°. Embodiment 11: According to the crystalline form of Embodiment 2, it has an XRPD pattern, and the XRPD pattern includes peaks at 2θ of 6.45 ± 0.20°, 7.09 ± 0.20°, 10.75 ± 0.20°, 11.32 ± 0.20°, 11.92 ± 0.20°, 12.88 ± 0.20°, 14.19 ± 0.20°, 15.15 ± 0.20°, 17.85 ± 0.20°, 18.94 ± 0.20°, 20.79 ± 0.20°, 21.55 ± 0.20°, 23.93 ± 0.20°, 25.69 ± 0.20° and 26.86 ± 0.20°. Embodiment 12: The crystalline form according to Embodiment 2, having an XRPD pattern substantially similar to that shown in Table 7. Embodiment 13: The crystalline form according to Embodiment 2, having an XRPD pattern substantially similar to that shown in FIG. 11. Embodiment 14: The crystalline form according to Embodiment 3, having a TGA thermogram, wherein the TGA thermogram exhibits a weight loss of about 0.02% upon heating from about 30° C. to about 120° C. Embodiment 15: The crystalline form according to Embodiment 3, having a TGA thermogram substantially similar to that shown in FIG. 12. Embodiment 16: The crystalline form according to Embodiment 3, which has a DSC thermogram, the thermogram comprising an endotherm having an onset at about 199.5°C and a peak at about 201.5°C. Embodiment 17: The crystalline form according to Embodiment 3, which has a DSC thermogram substantially similar to that shown in FIG. 13. Embodiment 18: The crystalline form according to Embodiment 3, which has a DVS vapor sorption diagram substantially similar to that shown in FIG. 14. Embodiment 19: The crystalline form according to Embodiment 1, which is Form B of Compound I. Embodiment 20: The crystalline form according to Embodiment 19, which has an XRPD pattern, the XRPD pattern comprising peaks at 2θ of 7.42 ± 0.20°, 13.21 ± 0.20°, and 19.24 ± 0.20°. Embodiment 21: According to the crystalline form of embodiment 20, it has an XRPD pattern, and the XRPD pattern further includes at least one or two peaks at 2θ selected from: 6.62 ± 0.20° and 7.17 ± 0.20°. Embodiment 22: According to the crystalline form of embodiment 19, it has an XRPD pattern, and the XRPD pattern includes peaks at 2θ of 6.62 ± 0.20°, 7.17 ± 0.20°, 7.42 ± 0.20°, 13.21 ± 0.20° and 19.24 ± 0.20°. Embodiment 23: According to the crystalline form of embodiment 22, it has an XRPD pattern, and the XRPD pattern further includes at least one or two peaks at 2θ selected from the following: 14.25 ± 0.20° and 17.94 ± 0.20°. Embodiment 24: According to the crystalline form of embodiment 19, it has an XRPD pattern, and the XRPD pattern includes peaks at 2θ of 6.62 ± 0.20°, 7.17 ± 0.20°, 7.42 ± 0.20°, 13.21 ± 0.20°, 14.25 ± 0.20°, 17.94 ± 0.20° and 19.24 ± 0.20°. Embodiment 25: According to the crystalline form of Embodiment 24, it has an XRPD pattern, and the XRPD pattern further includes at least one, two or three peaks at 2θ selected from the following: 11.61 ± 0.20°, 16.89 ± 0.20° and 21.89 ± 0.20°. Embodiment 26: According to the crystalline form of Embodiment 19, it has an XRPD pattern, and the XRPD pattern includes peaks at 2θ of 6.62 ± 0.20°, 7.17 ± 0.20°, 7.42 ± 0.20°, 11.61 ± 0.20°, 13.21 ± 0.20°, 14.25 ± 0.20°, 16.89 ± 0.20°, 17.94 ± 0.20°, 19.24 ± 0.20° and 21.89 ± 0.20°. Embodiment 27: According to the crystalline form of Embodiment 26, it has an XRPD pattern, which further includes at least one, two, three or more peaks at 2θ selected from the following: 13.92 ± 0.20°, 17.24 ± 0.20°, 27.21 ± 0.20°, 27.35 ± 0.20° and 27.87 ± 0.20°. Embodiment 28: According to the crystalline form of Embodiment 19, it has an XRPD pattern, and the XRPD pattern includes peaks at 2θ of 6.62 ± 0.20°, 7.17 ± 0.20°, 7.42 ± 0.20°, 11.61 ± 0.20°, 13.21 ± 0.20°, 13.92 ± 0.20°, 14.25 ± 0.20°, 16.89 ± 0.20°, 17.24 ± 0.20°, 17.94 ± 0.20°, 19.24 ± 0.20°, 21.89 ± 0.20°, 27.21 ± 0.20°, 27.35 ± 0.20° and 27.87 ± 0.20°. Embodiment 29: The crystalline form according to Embodiment 19, having an XRPD pattern substantially similar to that shown in Table 8. Embodiment 30: The crystalline form according to Embodiment 19, having an XRPD pattern substantially similar to that shown in Figure 15. Embodiment 31: The crystalline form according to Embodiment 20, having a TGA thermogram showing a weight loss of about 1.68% upon heating from about 30°C to about 100°C. Embodiment 32: The crystalline form according to Embodiment 20, which has a DSC thermogram, wherein the DSC thermogram includes three endotherms, wherein the three endotherms have an onset at about 116.3°C and a peak at about 125.4°C, an onset at about 182.4°C and a peak at about 187.5°C, and an onset at about 199.2°C and a peak at about 200.3°C, respectively. Embodiment 33: The crystalline form according to Embodiment 20, which has a TGA thermogram and a DSC thermogram substantially similar to those shown in Figure 16. Embodiment 34: The crystalline form according to Embodiment 1, which is Form C of Compound I. Embodiment 35: The crystalline form according to embodiment 34, which has an XRPD pattern, wherein the XRPD pattern comprises peaks at 2θ of 5.95 ± 0.20°, 8.58 ± 0.20°, and 19.56 ± 0.20°. Embodiment 36: The crystalline form according to embodiment 35, which has an XRPD pattern, wherein the XRPD pattern further comprises at least one or two peaks at 2θ selected from the group consisting of 11.89 ± 0.20° and 13.75 ± 0.20°. Embodiment 37: According to the crystalline form of embodiment 34, it has an XRPD pattern, and the XRPD pattern includes peaks at 2θ of 5.95 ± 0.20°, 8.58 ± 0.20°, 11.89 ± 0.20°, 13.75 ± 0.20° and 19.56 ± 0.20°. Embodiment 38: According to the crystalline form of embodiment 37, it has an XRPD pattern, and the XRPD pattern further includes at least one or two peaks at 2θ selected from the following: 12.39 ± 0.20° and 13.40 ± 0.20°. Embodiment 39: According to the crystalline form of embodiment 34, it has an XRPD pattern, and the XRPD pattern includes peaks at 2θ of 5.95 ± 0.20°, 8.58 ± 0.20°, 11.89 ± 0.20°, 12.39 ± 0.20°, 13.40 ± 0.20°, 13.75 ± 0.20° and 19.56 ± 0.20°. Embodiment 40: According to the crystalline form of embodiment 39, it has an XRPD pattern, and the XRPD pattern further includes at least one, two or three peaks at 2θ selected from the following: 17.23 ± 0.20°, 18.91 ± 0.20° and 23.51 ± 0.20°. Embodiment 41: According to the crystalline form of Embodiment 34, it has an XRPD pattern, and the XRPD pattern includes peaks at 2θ of 5.95 ± 0.20°, 8.58 ± 0.20°, 11.89 ± 0.20°, 12.39 ± 0.20°, 13.40 ± 0.20°, 13.75 ± 0.20°, 17.23 ± 0.20°, 18.91 ± 0.20°, 19.56 ± 0.20° and 23.51 ± 0.20°. Embodiment 42: According to the crystalline form of Embodiment 41, it has an XRPD pattern, which further includes at least one, two, three or more peaks at 2θ selected from the following: 15.54 ± 0.20°, 15.90 ± 0.20°, 24.91 ± 0.20°, 25.29 ± 0.20° and 25.55 ± 0.20°. Embodiment 43: According to the crystalline form of embodiment 34, it has an XRPD pattern, and the XRPD pattern includes peaks at 2θ of 5.95 ± 0.20°, 8.58 ± 0.20°, 11.89 ± 0.20°, 12.39 ± 0.20°, 13.40 ± 0.20°, 13.75 ± 0.20°, 15.54 ± 0.20°, 15.90 ± 0.20°, 17.23 ± 0.20°, 18.91 ± 0.20°, 19.56 ± 0.20°, 23.51 ± 0.20°, 24.91 ± 0.20°, 25.29 ± 0.20° and 25.55 ± 0.20°. Embodiment 44: The crystalline form according to Embodiment 34, having an XRPD pattern substantially similar to that shown in Table 9. Embodiment 45: The crystalline form according to Embodiment 34, having an XRPD pattern substantially similar to that shown in Figure 17. Embodiment 46: The crystalline form according to Embodiment 35, having a TGA thermogram, wherein the TGA thermogram exhibits a weight loss of about 0.5-1% upon heating from about 30°C to about 180°C. Embodiment 47: The crystalline form according to Embodiment 35, having a DSC thermogram, wherein the thermogram comprises an endotherm having an onset at about 193.8°C and a peak at about 194.6°C. Embodiment 48: The crystalline form according to Embodiment 35, which has a TGA thermogram and a DSC thermogram substantially similar to those shown in Figure 18. Embodiment 49: The crystalline form according to Embodiment 1, which is Form D of Compound I. Embodiment 50: The crystalline form according to Embodiment 49, which has an XRPD pattern, the XRPD pattern comprising peaks at 2θ of 6.85 ± 0.20°, 14.81 ± 0.20°, and 21.38 ± 0.20°. Embodiment 51: The crystalline form according to Embodiment 50, which has an XRPD pattern, the XRPD pattern further comprising at least one or two peaks at 2θ selected from: 13.71 ± 0.20° and 17.69 ± 0.20°. Embodiment 52: According to the crystalline form of embodiment 49, it has an XRPD pattern, and the XRPD pattern includes peaks at 2θ of 6.85 ± 0.20°, 13.71 ± 0.20°, 14.81 ± 0.20°, 17.69 ± 0.20° and 21.38 ± 0.20°. Embodiment 53: According to the crystalline form of embodiment 52, it has an XRPD pattern, and the XRPD pattern further includes at least one or two peaks at 2θ selected from the following: 11.13 ± 0.20° and 23.49 ± 0.20°. Embodiment 54: According to the crystalline form of embodiment 49, it has an XRPD pattern, and the XRPD pattern includes peaks at 2θ of 6.85 ± 0.20°, 11.13 ± 0.20°, 13.71 ± 0.20°, 14.81 ± 0.20°, 17.69 ± 0.20°, 21.38 ± 0.20°, and 23.49 ± 0.20°. Embodiment 55: According to the crystalline form of embodiment 54, it has an XRPD pattern, and the XRPD pattern further includes at least one, two, three or more peaks at 2θ selected from the following: 13.07 ± 0.20°, 15.08 ± 0.20°, 18.37 ± 0.20°, and 21.67 ± 0.20°. Embodiment 56: According to the crystalline form of embodiment 49, it has an XRPD pattern, and the XRPD pattern includes peaks at 2θ of 6.85±0.20°, 11.13±0.20°, 13.07±0.20°, 13.71±0.20°, 14.81±0.20°, 15.08±0.20°, 17.69±0.20°, 18.37±0.20°, 21.38±0.20°, 21.67±0.20° and 23.49±0.20°. Embodiment 57: According to the crystalline form of Embodiment 56, it has an XRPD pattern, and the XRPD pattern further includes at least one, two, three or more peaks at 2θ selected from the following: 22.25 ± 0.20°, 24.65 ± 0.20°, 26.69 ± 0.20° and 28.60 ± 0.20°. Embodiment 58: According to the crystalline form of embodiment 49, it has an XRPD pattern, and the XRPD pattern includes peaks at 2θ of 6.85±0.20°, 11.13±0.20°, 13.07±0.20°, 13.71±0.20°, 14.81±0.20°, 15.08±0.20°, 17.69±0.20°, 18.37±0.20°, 21.38±0.20°, 21.67±0.20°, 22.25±0.20°, 23.49±0.20°, 24.65±0.20°, 26.69±0.20° and 28.60±0.20°. Embodiment 59: The crystalline form according to Embodiment 49, having an XRPD pattern substantially similar to that shown in Table 10. Embodiment 60: The crystalline form according to Embodiment 49, having an XRPD pattern substantially similar to that shown in Figure 19. Embodiment 61: The crystalline form according to Embodiment 50, having a TGA thermogram, wherein the TGA thermogram exhibits a weight loss of about 0.5-0.8% upon heating from about 30°C to about 100°C. Embodiment 62: The crystalline form according to Embodiment 50, having a DSC thermogram, wherein the thermogram comprises two endotherms, wherein the two endotherms have an onset at about 186.9°C and a peak at about 190.5°C, and an onset at about 199.5°C and a peak at about 200.4°C, respectively. Embodiment 63: The crystalline form according to Embodiment 50, which has a TGA thermogram and a DSC thermogram substantially similar to those shown in Figure 20. Embodiment 64: The crystalline form according to Embodiment 1, wherein the pharmaceutically acceptable salt of Compound I is selected from the group consisting of hydrochloride, sulfate, phosphate, maleate, fumarate, oxalate, p-toluenesulfonate, succinate, L-(+)-tartrate, monoadipate and hemiadipate. Embodiment 65: A spray dried dispersion (SDD) formulation comprising Compound I and a polymer. Embodiment 66: The formulation according to embodiment 65, wherein the polymer is selected from the group consisting of: HPMC-AS polymer, PVP-VA64 copolymer, Soluplus polymer, Eudragit E100 polymer, Eudragit L100-55 polymer, hydroxypropyl-β-cyclodextrin (HP-β-CD), PVP K30 LP polymer, HPC (hydroxypropyl cellulose, Klucel LF) polymer, HPC (Klucel MF) polymer, HPMC E5 LV polymer, HPMC E15 polymer, HPMCP-HP50 polymer, and any combination thereof. Embodiment 67: The formulation according to embodiment 65, wherein the polymer is HPMC-AS polymer. Embodiment 68: The formulation according to embodiment 67, wherein the HPMC-AS polymer is selected from the group consisting of: HPMC-AS MG polymer, HPMC-AS MF polymer, HPMC-AS LF polymer, and any combination thereof. Embodiment 69: The formulation according to embodiment 65, wherein the polymer is HPC (Klucel LF) polymer. Embodiment 70: The formulation according to any one of embodiments 65 to 69, further comprising a surfactant. Embodiment 71: The formulation according to embodiment 70, wherein the surfactant is selected from the group consisting of: vitamin E polyethylene glycol succinate (TPGS), sodium dodecyl sulfate (SDS), polysorbate 80 (Tween 80), and combinations thereof. Embodiment 72: The formulation according to any one of embodiments 65 to 71, wherein the amount of Compound I is about 5% w/w to about 70% w/w. Embodiment 73: The formulation according to any one of embodiments 65 to 72, wherein the amount of Compound I is about 20% w/w to about 60% w/w. Embodiment 74: The formulation according to any one of embodiments 65 to 73, wherein the amount of Compound I is about 20% w/w, about 30% w/w, or about 40% w/w. Embodiment 75: The formulation according to any one of embodiments 65 to 74, wherein the amount of the polymer is about 95% w/w to about 30% w/w. Embodiment 76: The formulation according to any one of embodiments 65 to 75, wherein the amount of the polymer is about 80% w/w to about 40% w/w. Embodiment 77: The formulation according to any one of embodiments 65 to 76, wherein the amount of the polymer is about 80% w/w, about 77.5% w/w, about 70% w/w, about 60% w/w, about 55% w/w, about 50% w/w, or about 40% w/w. Embodiment 78: The formulation according to any one of embodiments 65 to 77, wherein the amount of the surfactant is about 0.5% w/w to about 20% w/w. Embodiment 79: The formulation according to any one of embodiments 65 to 78, wherein the amount of the surfactant is about 2.5% w/w to about 10% w/w. Embodiment 80: The formulation according to any one of embodiments 65 to 79, wherein the amount of the surfactant is about 2.5% w/w, about 5% w/w, or about 10% w/w. Embodiment 81: The formulation according to any one of embodiments 65 to 68 or 72 to 75, wherein the formulation comprises about 20% w/w of Compound I and about 80% w/w of HPMC-AS MG polymer. Embodiment 82: The formulation according to any one of embodiments 65 to 68 or 72 to 75, wherein the formulation comprises about 30% w/w of Compound I and about 70% w/w of HPMC-AS MG polymer. Embodiment 83: The formulation according to any one of Embodiments 65 to 68 or 72 to 75, wherein the formulation comprises Compound I in an amount of about 40% w/w and HPMC-AS MG polymer in an amount of about 60% w/w. Embodiment 84: The formulation according to any one of Embodiments 65 to 68 or 70 to 80, wherein the formulation comprises Compound I in an amount of about 40% w/w, HPMC-AS MF polymer in an amount of about 50% w/w, and TPGS in an amount of about 10% w/w. Embodiment 85: The formulation according to any one of embodiments 65, 66, or 69 to 80, wherein the formulation comprises about 40% w/w of Compound I, about 55% w/w of HPC (Klucel LF) polymer, and about 5% w/w of SDS. Embodiment 86: The formulation according to any one of embodiments 65 to 68 or 70 to 80, wherein the formulation comprises about 40% w/w of Compound I, about 55% w/w of HPMC-AS MF polymer, and about 5% w/w of SDS. Embodiment 87: The formulation according to any one of embodiments 65 to 68 or 70 to 80, wherein the formulation comprises Compound I in an amount of about 20% w/w, HPMC-AS MF polymer in an amount of about 77.5% w/w, and SDS in an amount of about 2.5% w/w. Embodiment 88: The formulation according to any one of embodiments 65 to 87, wherein the formulation is produced by a spray drying process and comprises a solvent selected from the following: water, acetone, methanol, dichloromethane, and any combination thereof. Embodiment 89: The formulation according to embodiment 88, wherein the solvent comprises acetone. Embodiment 90: The formulation according to embodiment 88, wherein the solvent comprises acetone and water. Embodiment 91: The formulation according to embodiment 90, wherein the solvent comprises acetone in an amount of about 99% and water in an amount of about 1%. Embodiment 92: The formulation according to embodiment 90, wherein the solvent comprises acetone in an amount of about 98.2% and water in an amount of about 1.8%. Embodiment 93: The formulation according to embodiment 88, wherein the solvent comprises acetone and dichloromethane. Embodiment 94: The formulation according to embodiment 93, wherein the solvent comprises acetone in an amount of about 30% and dichloromethane in an amount of about 70%. Embodiment 95: The formulation according to embodiment 88, wherein the solvent comprises methanol. Embodiment 96: The formulation according to embodiment 88, wherein the solvent comprises methanol and dichloromethane. Embodiment 97: The formulation according to embodiment 96, wherein the solvent comprises methanol in an amount of about 50% and dichloromethane in an amount of about 50%. Embodiment 98: The formulation according to any one of embodiments 65 to 97, wherein Compound I in the formulation is amorphous. Embodiment 99: The formulation according to embodiment 81, wherein the formulation has an XRPD pattern substantially similar to that shown in Figure 68 or Figure 70. Embodiment 100: The formulation according to embodiment 81, wherein the formulation has an MDSC spectrum including a glass transition temperature (Tg) at about 107 ± 3°C. Embodiment 101: The formulation according to embodiment 81, wherein the formulation has an MDSC spectrum substantially similar to that shown in Figure 69, Figure 71 or Figure 73. Embodiment 102: The formulation according to any one of Embodiments 81 to 83, wherein the formulation has an XRPD pattern substantially similar to that shown in Figure 72. Embodiment 103: The formulation according to Embodiment 82, wherein the formulation has an MDSC spectrum including a glass transition temperature (Tg) at about 103.5°C. Embodiment 104: The formulation according to Embodiment 82, wherein the formulation has an MDSC spectrum substantially similar to that shown in Figure 74. Embodiment 105: The formulation according to Embodiment 83, wherein the formulation has an MDSC spectrum including a glass transition temperature (Tg) at about 99.7°C. Embodiment 106: The formulation of Embodiment 83, wherein the formulation has an MDSC spectrum substantially similar to that shown in Figure 75. Embodiment 107: The formulation of any one of Embodiments 84 to 87, wherein the formulation has an XRPD pattern substantially similar to that shown in Figure 76. Embodiment 108: The formulation of Embodiment 84, wherein the formulation has an MDSC spectrum including a Tg at about 67.7°C. Embodiment 109: The formulation of Embodiment 84, wherein the formulation has an MDSC spectrum substantially similar to that shown in Figure 77. Embodiment 110: The formulation of Embodiment 85, wherein the formulation has an MDSC spectrum including a Tg at about 61.5°C. Embodiment 111: The formulation of embodiment 85, wherein the formulation has an MDSC spectrum substantially similar to that shown in Figure 78. Embodiment 112: The formulation of embodiment 86, wherein the formulation has an MDSC spectrum including two Tgs at about 96.3°C and about 110.4°C or at about 95.8°C and about 107.9°C. Embodiment 113: The formulation of embodiment 86, wherein the formulation has an MDSC spectrum substantially similar to that shown in Figure 79 or Figure 81. Embodiment 114: The formulation of embodiment 87, wherein the formulation has an MDSC spectrum including a Tg at about 104.6°C. Embodiment 115: The formulation according to Embodiment 87, wherein the formulation has an MDSC spectrum substantially similar to that shown in Figure 80. Embodiment 116: The formulation according to any one of Embodiments 65 to 115, wherein the drug content of the formulation is higher than 98%. Embodiment 117: The formulation according to any one of Embodiments 65 to 116, wherein the drug content of the formulation is higher than 99%. Embodiment 118: The formulation according to any one of Embodiments 65 to 117, wherein the drug content of the formulation is higher than 99.5%. Embodiment 119: The formulation according to any one of Embodiments 65 to 118, wherein the drug content of the formulation after storage at 25°C and 60% relative humidity (RH) for one week is higher than 98%. Embodiment 120: The formulation according to any one of Embodiments 65 to 119, wherein the drug content of the formulation after storage at 25°C and 60% RH for one week is higher than 99%. Embodiment 121: The formulation according to any one of Embodiments 65 to 120, wherein the drug content of the formulation after storage at 25°C and 60% RH for one week is higher than 99.4%. Embodiment 122: The formulation according to any one of Embodiments 65 to 121, wherein the drug content of the formulation after storage at 40°C and 75% RH for one week is higher than 98%. Embodiment 123: The formulation according to any one of Embodiments 65 to 122, wherein the drug content of the formulation after storage at 40°C and 75% RH for one week is higher than 99%. Embodiment 124: The formulation according to any one of Embodiments 65 to 123, wherein the drug content of the formulation after storage at 40°C and 75% RH for one week is higher than 99.2%. Embodiment 125: The formulation according to any one of Embodiments 65 to 124, wherein the formulation is formulated as a tablet. Embodiment 126: The formulation according to Embodiment 125, wherein the tablet comprises Compound I in an amount between about 5 mg and about 1000 mg. Embodiment 127: The formulation according to Embodiment 125 or 126, wherein the tablet comprises Compound I in an amount of about 25 mg, about 50 mg, about 75 mg, about 100 mg, about 125 mg, about 150 mg, or about 200 mg. Embodiment 128: The formulation according to any one of Embodiments 125 to 127, wherein the tablet comprises Compound I, a polymer for spray-dried dispersion, a binder, a disintegrant, and a lubricant. Embodiment 129: The formulation according to any one of Embodiments 125 to 128, wherein the tablet comprises Compound I, a polymer for spray-dried dispersion, microcrystalline cellulose PH-101, mannitol, cross-linked carboxymethyl cellulose sodium, colloidal silicon dioxide, magnesium stearate, microcrystalline cellulose PH-102, poloxamer 188, and a coating material. Embodiment 130: The formulation according to Embodiment 129, wherein the polymer is an HPMS-AS polymer. Embodiment 131: A formulation according to embodiment 130, wherein the polymer is HPMS-AS MG polymer. Embodiment 132: The formulation according to any one of embodiments 125 to 128, wherein the tablet comprises Compound I in an amount between about 10% w/w and about 30% w/w, HPMC-AS MG polymer in an amount between about 30% w/w and about 50% w/w, microcrystalline cellulose PH-101 in an amount between about 10% w/w and about 25% w/w, mannitol in an amount between about 5% w/w and about 15% w/w, cross-linked sodium carboxymethyl cellulose in an amount between about 1% w/w and about 10% w/w, colloidal silicon dioxide in an amount between about 0.1% w/w and about 1% w/w, magnesium stearate in an amount between about 0.1% w/w and about 1% w/w, and cellulose acetate in an amount between about 5% w/w and about 10% w/w. w/w and about 15% w/w microcrystalline cellulose PH-102 and an amount of poloxamer 188 between about 0% w/w and about 5% w/w. Embodiment 133: The formulation according to embodiment 132, wherein the tablet comprises an intragranular portion and an extragranular portion, wherein the intragranular portion comprises about 12% w/w of Compound I, about 48% w/w of HPMC-AS MG polymer, about 12.4% w/w of microcrystalline cellulose PH-101, about 10% w/w of mannitol, about 2% w/w of cross-linked carboxymethyl cellulose sodium, about 0.5% w/w of colloidal silicon dioxide, and about 0.25% w/w of magnesium stearate, and the extragranular portion comprises about 2% w/w of cross-linked carboxymethyl cellulose sodium, about 9.4% w/w of microcrystalline cellulose PH-102, about 3% w/w of w/w of Poloxamer 188 and an amount of about 0.5% w/w of magnesium stearate. Embodiment 134: The formulation according to embodiment 132, wherein the tablet comprises an intragranular portion and an extragranular portion, wherein the intragranular portion comprises about 18% w/w of Compound I, about 42% w/w of HPMC-AS MG polymer, about 11.4% w/w of microcrystalline cellulose PH-101, about 10% w/w of mannitol, about 3% w/w of cross-linked carboxymethyl cellulose sodium, about 0.5% w/w of colloidal silicon dioxide, and about 0.25% w/w of magnesium stearate, and the extragranular portion comprises about 3% w/w of cross-linked carboxymethyl cellulose sodium, about 8.4% w/w of microcrystalline cellulose PH-102, about 3.0% w/w of w/w of Poloxamer 188 and an amount of about 0.5% w/w of magnesium stearate. Embodiment 135: The formulation according to embodiment 132, wherein the tablet comprises an intragranular portion and an extragranular portion, wherein the intragranular portion comprises about 24% w/w of Compound I, about 36% w/w of HPMC-AS MG polymer, about 11.4% w/w of microcrystalline cellulose PH-101, about 10% w/w of mannitol, about 3% w/w of cross-linked carboxymethyl cellulose sodium, about 0.5% w/w of colloidal silicon dioxide, and about 0.25% w/w of magnesium stearate, and the extragranular portion comprises about 3% w/w of cross-linked carboxymethyl cellulose sodium, about 11.4% w/w of microcrystalline cellulose PH-102, and about 0.5% w/w of magnesium stearate. w/w of magnesium stearate. Embodiment 136: The formulation according to any one of Embodiments 132 to 135, wherein the tablet further comprises an additional coating material in an amount between about 1% w/w and about 5% w/w. Embodiment 137: The formulation according to Embodiment 136, wherein the amount of the additional coating material is about 2.0% w/w. Embodiment 138: The formulation according to any one of Embodiments 129 to 131 or 136 to 137, wherein the coating material is Opadry®. Embodiment 139: The formulation according to any one of Embodiments 137 to 138, wherein the dissolution performance of the tablet is not less than 60% of the active pharmaceutical ingredient (API) within 45 minutes. Embodiment 140: The formulation according to any one of Embodiments 137 to 139, wherein the dissolution performance of the tablet is not less than 80% of the API within 45 minutes. Embodiment 141: The formulation according to Embodiment 137, wherein the tablet has a dissolution profile substantially similar to that shown in Figure 85. Embodiment 142: A method for treating a disease associated with ErbB, the method comprising administering to an object a therapeutically effective amount of Compound I in polymorphic form or a pharmaceutically acceptable salt of Compound I or a spray-dried dispersion (SDD) comprising Compound I and a polymer. Embodiment 143: The method according to Embodiment 142, wherein the ErbB is HER2. Embodiment 144: The method according to Embodiment 142 or 143, wherein the disease is cancer. Embodiment 145: The method according to embodiment 144, wherein the cancer is selected from the group consisting of: leukemia, glioblastoma, melanoma, chondrosarcoma, cholangiocarcinoma, osteosarcoma, lymphoma, lung cancer, adenocarcinoma, myeloma, hepatocellular carcinoma, adrenocortical carcinoma, pancreatic cancer, breast cancer, bladder cancer, prostate cancer, liver cancer, gastric cancer, colon cancer, colorectal cancer, ovarian cancer, cervical cancer, brain cancer, esophageal cancer, bone cancer, testicular cancer, skin cancer, kidney cancer, mesothelioma, neuroblastoma, glioblastoma, thyroid cancer, head and neck cancer, esophageal cancer, eye cancer, prostate cancer, nasopharyngeal cancer and oral cancer. Embodiment 146: The method according to embodiment 144, wherein the cancer is selected from the group consisting of lung cancer, breast cancer, gastric cancer, colorectal cancer, pancreatic cancer, prostate cancer, bladder cancer, ovarian cancer, and glioblastoma. Embodiment 147: The method according to embodiment 144, wherein the cancer is selected from the group consisting of lung cancer, breast cancer, bladder cancer, ovarian cancer, and glioblastoma. Embodiment 148: The method according to any one of embodiments 144 to 147, wherein the cancer has metastasized to the central nervous system (CNS). Embodiment 149: The method according to embodiment 148, wherein the cancer has brain metastases and leptomeningeal metastases.EmbodimentThe following abbreviations have the following definitions:
For clarity, the following table summarizes the compound identifiers, chemical names, and structures used interchangeably throughout the application for each compound discussed.
Embodiment 1 : Analytical methods 1H NMR analysis
1H NMR was performed using a Bruker AVANCE III, Bruker Ultrashield 400, or Bruker Advance 300 equipped with an automated sampler (B-ACS 120).
X-ray powder diffraction (XRPD)
Solid samples were examined using a D8 Advance diffractometer (Bruker). The system was equipped with a LynxEye detector. Samples were scanned from 3° to 40° 2θ with a step of 0.02° 2θ. The tube voltage and current were 40 KV and 40 mA (D8 Advance).
Samples were spread onto Si substrates for XRPD measurements using the following parameters: Tube: Cu: K-α (λ = 1.54179Å).
Generator: Voltage: 40 kV; Current: 40 mA.
Scanning range: 3°C to 40°C.
Scanning rate: 10°C/min
Sample rotation speed: 15 rpm
Thermogravimetric analysis (TGA)
TGA was performed on a TGA Q5000IR, Q500, Discovery TGA 55 (TA Instruments, US) or Mettler Toledo TGA 2. The sample was placed in an open tarred aluminum pan, weighed automatically, and inserted into the TGA furnace. The sample was heated to the final temperature at 10°C/min.
Use about 5-10 mg of sample for TGA test with the following parameters: heat to 300°C at 10°C/min; stop next segment at % < 80.00.
Differential Scanning Calorimetry (DSC)
DSC analysis was performed with DSC Q2000, Q200, Discovery DSC 250 (TA Instruments, USA) or Mettler Toledo DSC 3+. Place the weighed sample in the DSC pinhole pan and record the weight accurately. Heat the sample at 10°C/min to the final temperature.
Heating-Cooling-Heating DSC
Powder was weighed into Tzero aluminum sample pan from TA Instruments.
Instrument covered with pinhole lid for DSC test with following parameters: equilibrate at 30°C; heat to 220°C at 10°C/min (first heating run); isothermal for 1.00 min; cool to 20°C at 10°C/min (cooling run); isothermal for 1.00 min; heat to 220°C at 10°C/min (second heating run); nitrogen flow: 50 ml/min.
MDSC
SDD powder was weighed into a Tzero aluminum sample pan from TA Instruments, which was covered with a pinhole lid for MDSC test with following parameters: equilibrate at 10°C; adjust +/-1°C every 60 seconds; isothermal for 5.00 min; heat to 200°C at 2°C/min.
Dynamic moisture sorption analysis (DVS)
DVS was determined using a DVS Advantage-1 or Intrinsic (SMS, UK). Samples were tested in step mode at target relative humidity (RH) over a full cycle from 10% to 90%. Analysis was performed in 10% RH increments. Equilibration time: 60 min. RH (%) measurement points: 1st cycle: 0, 10, 20, 30, 40, 50, 60, 70, 80, 90. 2nd cycle: 90, 80, 70, 60, 50, 40, 30, 20, 10, 0.
Embodiment 2 :Used in preparation ( S )-N-(4-([1,2,4] Triazol [1,5-a] Pyridine -7- Oxy )-3- Methylphenyl )-5-((3,3- Difluoro -1- Methylpiperidin -4- base ) Oxygen )-7- Methoxyquinazoline -4- amine ( Compound I) ProgramLaboratory scale synthesis (
S)-N-(4-([1,2,4]triazolo[1,5-a]pyridin-7-yloxy)-3-methylphenyl)-5-((3,3-difluoro-1-methylpiperidin-4-yl)oxy)-7-methoxyquinazolin-4-amine (Compound I) and (
R)-N-(4-([1,2,4]triazolo[1,5-a]pyridin-7-yloxy)-3-methylphenyl)-5-((3,3-difluoro-1-methylpiperidin-4-yl)oxy)-7-methoxyquinazolin-4-amine (Compound II)
Laboratory-scale synthesis of compound I
Procedure for preparing compound (8):
To a solution of compound (7) (130 g, 0.948 mol) in an ice-salt cold water bath was added 98% HCOOH (200 mL, 4.47 mol). The resulting mixture was warmed to about 25°C, and 40% HCHO (137 mL, 1.896 mol) was added. During heating to 40°C, a large amount of gas was released. Upon completion, the solution was adjusted to pH = 9-10 by adding concentrated NaOH, and extracted with EtOAc (1.5 L x 3), washed with water and brine (1.6 L). The organic layer was concentrated in Na
2SO
4The mixture was dried on ice and concentrated to give compound (8) (116.8 g, crude) as a white solid.
Procedure for preparing compound (2):
A mixture of compound (1) (2.5 g, 11.2 mmol) and CuCN (2.9 g, 22.4 mmol) in NMP (25 mL) was stirred at 160°C for 5 hours. After cooling to room temperature, filtering and concentrating, the crude product of compound (2) was used directly in the next step without further purification.
Procedure for preparing compound (3):
NH
3The gas was pumped into 100 mL of EtOH at 0°C for 15 minutes, and compound (2) (3 g crude product) was dissolved in 30 mL of MeOH, and the mixture was stirred in a sealed tube at 120°C overnight. The solution was concentrated, and the residue was purified by silica gel column chromatography (PE/EtOAc = 1/1) to obtain compound (3) (450 mg, two-step yield 24%) as a white solid.
1H NMR (400MHz, DMSO-
d 6 )
δ6.38 (s, 2H), 6.17 (d,
J= 2 Hz, 1H), 6.13 (dd,
J 1= 2.0 Hz,
J 2= 9.2 Hz, 1H), 3.73 (s, 3H).
Procedure for preparing compound (4):
A mixture of compound (3) (2 g, crude) in DMF-DMA (8 mL) was stirred at 100°C for 2 hours. After cooling to room temperature, the mixture was filtered and the precipitate was washed with ethyl acetate to obtain compound (4) (800 mg, crude) as a yellow solid, which was used directly in the next step without further purification.
Procedure for preparing compound (6):
A mixture of compound (4) (800 mg, 3.62 mmol) and compound (5) (1.303 g, 5.43 mmol) in AcOH (15 mL) was stirred at 40-60°C overnight. The mixture was concentrated and eluted with K
2CO
3(aqueous solution) The pH was adjusted to 8-9 and filtered. The residue was washed with ethyl acetate to obtain compound (6) (1.6 g, crude) as a brown solid.
LCMS of compound (6): R
t= 0.702 min (Xtimate C18 2.1*30 mm), MS (ESI) m/z 417.0 [M+H]
+.
Compound (6)
1H NMR
(400MHz, methanol-
d 4 )
δ8.74 (d,
J= 7.2 Hz, 1H), 8.46 (s, 1H), 8.29 (s, 1H), 7.71 (s, 1H), 7.67 (dd,
J 1= 2.4 Hz ,
J 2= 8.4 Hz, 1H), 7.18 (d,
J= 8.4 Hz, 1H), 7.09-7.00 (m, 3H), 6.85 (d,
J= 2.4 Hz, 1H), 3.98 (s, 3H), 2.25 (s, 3H).
Procedure for preparing compound I and compound II:
Compound (6) (1.1 g, 2.64 mmol), compound (8) (991 mg, 5.28 mmol) and
t-BuOK (889 mg, 7.92 mmol) in THF/DMF (15/6 mL) was heated at 80-100 °C under N2Stir overnight under atmosphere. The mixture was concentrated and the residue was subjected to reverse phase preparative HPLC: (column: SYNERGI 250*50 10 um, gradient: 40-70% B and 60-30% A (A = water/0.05% NH
4HCO
3, B = acetonitrile), flow rate: 80 ml/min) to obtain compound (9), and then compound (9) was separated by SFC to obtain 170 mg of compound I and 170 mg of compound II.
Chiral SFC separation conditions of compound I and compound II: For compound I, t
R= 1.582 minutes, and for compound II, 1.741 minutes; Column: Chiralcel OD-3 50 * 4.6 mm I.D, 3 um; Mobile phase: A: CO
2, B: ethanol (0.05% diethylamine); Gradient: 5% B and 95% A for 0.2 min, then 5% to 40% B in 1.4 min, then 40% B and 60% A for 1.05 min, then 5% B for 0.35 min; Flow rate: 4 ml/min; Column temperature: 40°C
Compound I:
LCMS: R
t= 2.001 min (Xtimate C18, 2.1*30 mm, 3 um), MS (ESI) m/z = 548.1 [M+H]
+.
1H NMR (400MHz, methanol-
d 4 )
δ8.89 (d,
J= 7.6 Hz, 1H), 8.77 (s, 1H), 8.58 (s, 1H), 7.82 (d,
J= 2.4 Hz, 1H), 7.77 (dd,
J 1 = 9.2 Hz,
J 2 = 2.8 Hz, 1H), 7.31 (d,
J= 8.4 Hz, 1H), 7.26 (dd,
J 1 = 13.6 Hz,
J 2 = 2.0 Hz, 2H), 6.95 (d,
J= 2.0 Hz, 1H), 6.92 (s, 1H), 5.67-5.59 (m, 1H), 4.28 (brs, 1H), 4.08 (s, 3H), 3.91-3.76 (m, 2H), 3.53-3.47 ( m, 1H), 3.07 (s, 3H), 2.88 (d,
J= 13.2 Hz, 1H), 2.43-2.40 (m, 1H), 2.29 (s, 3H).
Compound II:
LCMS: R
t= 2.009 minutes (Xtimate C18, 2.1*30 mm, 3 um), MS (ESI) m/z = 548.0 [M+H]
+.
1H NMR
(400MHz, methanol-
d 4 )
δ8.89 (d,
J= 7.2 Hz, 1H), 8.76 (s, 1H), 8.57 (s, 1H), 7.82 (d,
J= 2.4 Hz, 1H), 7.77 (dd,
J 1 = 8.4 Hz,
J 2 = 2.4 Hz, 1H), 7.30 (d,
J= 8.8 Hz, 1H), 7.22 (dd,
J 1 = 7.6 Hz,
J 2 = 2.4 Hz, 2H), 6.96 (d,
J= 2.4 Hz, 1H), 6.91 (d,
J= 2.4 Hz, 1H), 5.72-5.63 (m, 1H), 4.26-4.24 (m, 1H), 4.08 (s, 3H), 3.94-3.76 (m, 2H), 3.57-3.51 (m, 1H), 3.07 (s, 3H), 2.87 (d,
J= 14.4 Hz, 1H), 2.48-2.42 (m, 1H), 2.29 (s, 3H). (
S)-N-(4-([1,2,4]triazolo[1,5-a]pyridin-7-yloxy)-3-methylphenyl)-5-((3,3-difluoro-1-methylpiperidin-4-yl)oxy)-7-methoxyquinazolin-4-amine (Compound I)
Compounds, namely compound (3), compound (5) and compound (10) were used as starting materials in a 4-step synthesis (including recrystallization) to prepare compound I. The detailed synthetic route is depicted in the scheme presented in Scheme 2 and in the following description.
Step 1: Preparation of compound (4)
A mixture of compound (3) and DMF-DMA in IPA was heated at 75-80°C until the reaction was complete, and the reaction solution was cooled. Compound (4) was separated by filtration, washed with IPA and dried.
Step 2: Preparation of compound (6)
Compound (5) was added to the heated AcOH solution of compound (4), and the resulting mixture was heated at 70-75°C until the reaction was complete. The reaction was cooled and then charged with water. The solid was separated by filtration, washed with water, and slurried with an aqueous NaOH solution. Compound (6) was separated by filtration, washed with water and dried.
Step 3: Preparation of crude compound I
To compound (10) and
t-BuOK in DMF/THF is added with compound (6). The resulting mixture is heated at 70-80°C until the reaction is complete. The solution is collected by filtration through diatomaceous earth, cooled, and then water is added. The solid is separated by filtration, washed with water, and then the wet cake is slurried with water. Compound I (crude) is separated by filtration, washed with water and dried.
Step 4: Recrystallization of Compound I
A solution of Compound I (crude) in EtOH/water is filtered by a cartridge screening procedure, and then seed crystals are added. The mixture is concentrated and charged with MTBE, and then the resulting mixture is cooled. Compound I (recrystallized) is separated by filtration, washed with MTBE and dried.
Step 1 program:
In N
2Under an atmosphere, compound (3) (19.5 kg, 1.00 wt) and DMF-DMA (1.06-1.09 wt) were charged together with IPA (4.0-4.2 wt), and the resulting mixture was heated and stirred at 75-80°C until the reaction was complete as indicated by HPLC (expected reaction time was 6-8 hours). The reaction mixture was cooled to 15-25°C within 4-6 hours, and the solid was collected by filtration and washed with IPA (0.79-0.95 wt). The wet cake was dried under vacuum at 40-45°C to obtain compound (4) (24.85 kg, purity: 100.0%, yield: 96%). Compound (4)
1H NMR: (CDCl
3, 400MHz), 2.88-3.23(m, 6H), 3.61-3.97(m, 3H), 6.00-6.51(m, 2H), 7.26-7.79(m, 1H).
Step 2 program:
Compound (4) (22.4 kg, 1.0 wt) was dissolved in AcOH (5.4-5.5 wt) at 70-75°C, and compound (5) (1.08-1.14 wt) was added portionwise at 65-75°C over 1-3 hours, and then AcOH (1.0-1.1 wt) was added to the rinse reactor. The resulting mixture was heated and stirred at 70-75°C until the reaction was complete as indicated by HPLC (expected reaction time 15-20 hours). The reaction mixture was cooled to 15-25°C over 4-6 hours, process water (10.0-10.5 wt) was added and stirred at this temperature for 4-6 hours, and the solid was collected by filtration and then washed with water (1.9-2.1 wt). The wet cake and process water (10.0-10.5 wt) were added to the reactor, and then 2 N NaOH (3.5-4.5 wt) was added to adjust the pH to 13-14 at 15-25°C. The mixture was stirred at this temperature for 4-6 hours, and the solid was collected by filtration and then washed with water (1.9-2.1 wt). The wet cake was dried at 50-55°C to obtain compound (6) (37.45 kg, purity: 99.7%, assay: 98.9%, yield: 88%).
1H NMR (DMSO-
d 6 , 400MHz): 2.18(s, 3H), 3.940 (s, 3H), 6.78-6.79(d, 1H), 7.01-7.21(m, 4H), 7.69-7.74(m, 2H), 8.38(s, 1H), 8.52(s, 1H), 8.92-8.94(d, 1H), 9.03-9.06(d, 1H).
Step 3 program:
Add to a solution of compound (10) (15.9 kg, 0.43-0.44 wt) in THF (5.0-5.2 wt) and DMF (2.7-2.9 wt)
t-BuOK (0.302-0.323 wt), the resulting mixture was stirred at 20-30°C for 0.5-1.0 hours, then compound (6) (36.9 kg, 1.00 wt) and THF (1.0-1.2 wt) were added, and stirred at 70-80°C until the reaction was complete as indicated by HPLC (expected reaction time was 16-20 hours). The reaction mixture was filtered, and then pure water (20.0-24.0 wt) was added dropwise at 15-25°C (addition time ≥ 8 hours), and then stirred at 15-25°C for 4-8 hours. The solid was collected by filtration and washed with pure water (1.5-2.5 wt). The wet cake and purified water (9.0-10.0 wt) were added, the mixture was adjusted to 15-25°C, and stirred at this temperature for 4-8 hours. The solid was collected by filtration and washed with purified water (1.5-2.5 wt). The wet cake was dried at 50-55°C under reduced pressure to obtain compound I (crude) (44.1 kg, purity: 99.8%; chiral purity: 100.0%, yield: 91.0%).
Step 4 procedure:
The crude compound I (43.5 kg, 1.0 wt) was dissolved in pure water (0.50-0.54 wt) and EtOH (7.5-8.0 wt) at 70-75°C under nitrogen protection, and the resulting mixture was transferred to another reactor through a cartridge screening procedure. The clear solution was cooled to 58-63°C, and then seed crystals (0.005-0.010 wt) were added, and the mixture was stirred at this temperature for 2-6 hours. The mixture was concentrated to 6-8 V at 60°C, and the temperature was adjusted to 45-55°C, and MTBE (4.0-6.0 wt) was added dropwise at this temperature for not less than 6 hours. The reaction mixture was stirred at 45-55°C for 2-8 hours, then cooled to -2-2°C within 5-10 hours (10°C/1-2 hours is preferred), and stirred at this temperature for 6-12 hours. The solid was collected by filtration and washed with MTBE (1.3-1.6 wt x 2). The wet cake was dried at 45-50°C under reduced pressure to obtain recrystallized compound I (36.2 kg, purity: 99.9%, assay: 99.0%; chiral purity: 100.0%, yield: 82%).
= +12.2°(
c10 mg/mL, MeOH). Form A of compound I was obtained.
1The H NMR spectrum is shown in FIG1 .
Single crystal of Compound I
About 20 mg of Compound I was placed in an 8 mL vial, and about 2-3 mL of a solvent mixture of ethanol/water (50:50, v/v) was added. The solution was stirred at room temperature for 10 minutes, and the turbid solution was filtered through a syringe membrane. The clear filtered solution was wrapped with a plastic wrap with a pinhole and evaporated at 60° C. in a fume hood. Evaporation at 60° C. in ethanol/water (50:50, v/v) produced plate-like crystals of Compound I with a size and transparency suitable for single crystal determination. The absolute configuration of the single chiral center in Compound I was determined to be (
S). The single crystal X-ray diffraction ORTEP of compound I is shown in Figure 2.
Crystal data
Data collection
Refinement
Procedure for preparing Form B of Compound I
150 mg of the hemiadipate salt of Compound I was suspended in 75 mL of pH 6.8 buffer at 25°C. The mixture was stirred at 25°C for 24 hours to form the free base of Compound I. The suspension was filtered and dried in a vacuum oven at 35°C for 24 hours to obtain crystalline Form B of Compound I.
Procedure for preparing Form C of Compound I
300 mg of Compound I and 15 mL of methanol were added to a 40 mL vial at 50°C. The mixture was kept at 50°C for 30 minutes. The suspension was filtered and the filtrate was rapidly cooled to 0°C until a solid was formed in the solution. The suspension was filtered to obtain crystalline Form C of Compound I.
Procedure for preparing Form D of Compound I
Method 1
300 mg of Compound I was suspended in 4 mL of 1,4-dioxane or THF at 50°C. The mixture was kept at 50°C for 30 minutes. The suspension was filtered. An anti-solvent (e.g., n-heptane, water, or MTBE) was added dropwise to the filtrate until the solvent/anti-solvent ratio reached 1:5 (v/v). The suspension was filtered to obtain crystalline Form D of Compound I.
Method 2
30 mg of Compound I was suspended in 1 mL of a suitable solvent (e.g., THF, 1,4-dioxane, acetone, acetonitrile, or ethyl acetate) at 50°C. The mixture was kept at 50°C for 30 minutes. The suspension was filtered, and the filtrate was evaporated at 25°C for 7 days. The suspension was filtered to obtain crystalline Form D of Compound I.
Equilibration of Form A of Compound I at 25°C using solvent:
About 30 mg of Form A of Compound I was equilibrated with 0.5 mL of solvent (as described in Table 1 below) at 25°C for 10 days. The suspension was filtered and dried at ambient conditions for 10 minutes. The solid portion was studied by XRPD. If differences were observed, additional studies would be performed. (e.g., DSC, TGA, NMR).
Equilibration of Form A of Compound I at 50°C using solvent:
As described above, but at 50°C. The equilibration time may be shorter than that at 25°C to prevent degradation at high temperatures.
XRPD pattern overlays of Form A of Compound I in solvent at 25°C or 50°C for 10 days of equilibrium experiments are shown in Figures 3 and 4, respectively.
Compound I crystallized by slow evaporation at room temperature:
A saturated solution of Compound I in a minimum amount of solvent (as described in Table 2 below) was prepared at 50°C. The supernatant was allowed to evaporate slowly at ambient temperature to check its polymorphic form.
An overlay of XRPD patterns from evaporation experiments performed at room temperature is shown in Figure 5.
Crystallization of Compound I from hot saturated solutions:
Approximately 30 mg of Compound I was dissolved in a minimum amount of solvent (as described in Table 3 below) at 60°C. Filtration was performed to ensure that there were no residual crystals in the solution. A portion of the saturated solution was placed in an ice bath and stirred to cool rapidly. The other portion was gradually cooled to 5°C at a rate of 0.1°C/min and kept at 5°C overnight. The solid portion was studied by XRPD. If differences were observed, additional studies would be performed. (e.g., DSC, TGA, NMR).
Overlays of XRPD patterns from either a fast cooling experiment or a slow cooling experiment to crystallize Compound I from a hot saturated solution are shown in Figures 6 and 7, respectively.
Compound I Precipitation by Addition of Antisolvent:
Two different solvent combinations were tested. Compound I was dissolved in a highly soluble medium and a solvent was added in which Compound I was highly insoluble. The solid fraction was studied by XRPD. If differences were observed, additional studies would be performed. (e.g., DSC, TGA, NMR).
The XRPD pattern overlay from the anti-solvent experiment of Compound I is shown in Figure 8.
Behavior of Form A of Compound I under compression:
About 100 mg of Compound I was compressed with a hydraulic press at 20 MPa for 5 minutes (the diameter of the tablet was 8 mm). XRPD was performed to study the polymorphic behavior under compression. If differences were observed, additional studies would be performed. (e.g., DSC, TGA, NMR).
The XRPD pattern overlay from the compression experiment is shown in Figure 9. No changes in the XRPD pattern were observed for Form A of Compound I after compression at 20 MPa for 5 minutes.
Grinding simulation experiment of Form A of Compound I:
About 20 mg of Compound I was manually ground with a mortar for 1 minute. Solid form and crystallinity were evaluated by XRPD. If differences were observed, additional studies would be performed. (e.g., DSC, TGA, NMR).
Granulation simulation experiments of Form A of Compound I:
Granulation solvent was added dropwise to Compound I until the solid was well wetted. Vortexed between each addition. Drying to < 2% or less at ambient conditions. Solid form and crystallinity were evaluated by XRPD. Granulation solvents are, for example, water and ethanol.
Overlays of XRPD scans from the milling and granulation experiments are shown in Figure 10. No changes in the XRPD pattern were observed for Form A of Compound I after milling and wet granulation with water and ethanol.
Competitive equilibrium of Form A and Form B of Compound I:
A 1:1 mass mixture of Form B and Form A of Compound I was studied in a competitive equilibrium experiment. About 20 mg of Form A of Compound I and 20 mg of Form B of Compound I were equilibrated with 1 mL of a saturated solution of Compound I at 25 °C for 3 days. The suspension was filtered and dried at ambient conditions for 10 minutes. The solid fraction was studied by XRPD.
Hydrate of Compound I was obtained by precipitation from a 1,4-dioxane/water system with an antisolvent or by dissociation of the hemiadipate salt of Compound I to the free base of Compound I in a phosphate buffer solution at pH = 6.8. The hydrate of Compound I was in Form A, but was unstable and converted to the anhydrate Form B after drying under vacuum at 30 °C.
Form B was obtained only by dehydrating the hydrate of Compound I under vacuum drying at 30°C. It was in a moderately crystalline form, began to melt at 116.3°C, and showed a weight loss of 1.68% at 100°C. Competitive equilibrium of Form A and Form B was performed. After competitive equilibrium, Form A was obtained in three selected solvents (as described in the table below), which indicates that Form A is more stable than Form B.
Equilibration of Form C of Compound I:
A certain amount of Form C was equilibrated at 5°C with 10 mL MeOH. XRPD patterns were examined at different time points. The suspension was filtered and dried at ambient conditions for 10 minutes. The solid portion was studied by XRPD.
Form C was obtained by a hot saturated solution crystallization experiment with rapid cooling in MeOH. It can form highly crystalline particles and start melting at 193.8°C with a weight loss of 0.70%. Form C was further equilibrated in methanol for 3 days, 10 days, and 17 days, demonstrating that Form A is more stable than Form C.
Equilibration of Form D of Compound I:
The suspension of Form D obtained from the antisolvent experiment was kept stirred for 7 days, after which the suspension was filtered and dried for 10 minutes at ambient conditions. The solid part was studied by XRPD.
In this polymorph study, Form D can be obtained by different methods. It can form a highly crystalline solid and shows an onset of melting at 186.9°C and a weight loss of 0.67% at 165°C. In combination with the antisolvent precipitation experiment, Form D was obtained in multiple solvent/antisolvent pairs at the beginning. After equilibration in the corresponding solvent for 7 days, Form D converted to Form A, which shows that Form A is also more stable than Form D.
Compound I Form A ,form B ,form C ,form D physical properties. Compound I Form AApproximate solubility measurements at 25°C
Approximately 2 mg of Compound I Form A was weighed and dissolved with a minimal amount of solvent to determine solubility at 25°C. The experiment was performed by a combination of manual dilution and visual observation.
The XRPD data of Form A of Compound I are shown in Figure 11 and Table 7.
Thermal Behavior: DSC and TGA of Form A of Compound I
The thermal behavior of Form A of Compound I was obtained by DSC and TGA. The TGA of Form A of Compound I is shown in FIG12. The TGA of Form A of Compound I shows that about 0.02% weight loss is observed from 30°C to 120°C.
The DSC of Form A of Compound I is shown in FIG13. The DSC of Form A of Compound I shows that the temperatures of the onset and peak in the DSC are 199.5°C and 201.5°C, respectively.
Hygroscopicity of Form A of Compound I
The DVS graph of Form A of Compound I is shown in FIG14. The DVS graph of Form A of Compound I shows that about 0.21% of water is absorbed from 0-80% RH, which indicates slightly hygroscopic properties of the drug substance.
Compound I Form BThe XRPD data of Form B of Compound I are shown in Figure 15 and Table 8.
The TGA and DSC of Form B of Compound I are shown in FIG16 . The TGA of Form B of Compound I shows that a weight loss of about 1.68% is observed from 30°C to 100°C. The DSC of Form B of Compound I shows three endothermic transitions with onset and peak temperatures of 116.3°C and 125.4°C, 182.4°C and 187.5°C, and 199.2°C and 200.3°C, respectively.
Compound I Form CThe XRPD data of Form C of Compound I are shown in Figure 17 and Table 9.
The TGA and DSC of Form C of Compound I are shown in FIG18. The TGA of Form C of Compound I shows that a weight loss of about 0.70% is observed from 30°C to 180°C. The DSC of Form C of Compound I shows an endothermic transition with an onset temperature and a peak temperature of 193.8°C and 194.6°C, respectively.
Compound I Form DThe XRPD data of Form D of Compound I are shown in Figure 19 and Table 10.
The TGA and DSC of Form D of Compound I are shown in FIG20. The TGA of Form D of Compound I shows that a weight loss of about 0.67% is observed from 30°C to 100°C. The DSC of Form D of Compound I shows two endothermic transitions with the onset and peak temperatures of 186.9°C and 190.5°C, 199.5°C and 200.4°C, respectively.
Embodiment 4 :Compound I Preparation and screening of pharmaceutical saltsProcedure for salt screening of Compound I
50 mg of Compound I free base form was mixed with 1 equivalent of an acid selected from the following: hydrochloric acid, sulfuric acid, phosphoric acid, fumaric acid, adipic acid, maleic acid, p-toluenesulfonic acid, succinic acid, oxalic acid, L-(+)-tartaric acid, and then 1 mL of solvent was added. The obtained mixture was stirred at 50°C for 2 hours, and then stirred at 25°C overnight to form a pharmaceutical salt of Compound I. The precipitate was collected by centrifugal filtration, and dried at 50°C overnight, and then analyzed by XRPD. Similarly, salt screening was also performed with 0.5 equivalent of acid. If a new pattern was observed, further evaluation of TGA, DSC, NMR, hygroscopicity was performed.
Physical properties of pharmaceutical salts of Compound I
The following table summarizes the physical properties of pharmaceutical salts of Compound I, which are selected from: hydrochloride, sulfate, phosphate, fumarate, monoadipate, hemiadipate, maleate, p-toluenesulfonate, succinate, oxalate, L-(+)-tartrate of Compound I in crystalline form.
Compound I FumarateXRPD data of the fumarate salt of Compound I and its comparison with Form A of Compound I are shown in Figure 21, Figure 22 and Table 14.
The DSC of the fumarate salt of Compound I is shown in FIG23. The DSC of the fumarate salt of Compound I shows an endothermic transition with the onset and peak temperatures of 162.8°C and 169.8°C, respectively. The TGA of the fumarate salt of Compound I is shown in FIG24. The TGA of the fumarate salt of Compound I shows that a weight loss of about 0.70% is observed from 40°C to 110°C. The vapor sorption analysis of the fumarate salt of Compound I is shown in FIG25.
Compound I HemisuccinateThe XRPD data of the hemisuccinate salt of Compound I and the free base Form A of Compound I are shown in Figure 26. The DSC of the hemisuccinate salt of Compound I is shown in Figure 27. The DSC of the hemisuccinate salt of Compound I shows an endothermic transition with the onset and peak temperatures of 173.9°C and 184.3°C, respectively. The TGA of the hemisuccinate salt of Compound I is shown in Figure 28. The TGA of the hemisuccinate salt of Compound I shows that a weight loss of about 4.10% is observed from 30°C to 125°C. The vapor sorption analysis of the hemisuccinate salt of Compound I is shown in Figure 29.
Compound I HydrochlorideThe DSC and TGA of the hydrochloride salt of Compound I are shown in FIG30. The DSC of the hydrochloride salt of Compound I shows an endothermic transition with the onset and peak temperatures of 220.8°C and 227.6°C, respectively. The TGA of the hydrochloride salt of Compound I shows that a weight loss of about 0.26% is observed from 40°C to 150°C. The vapor sorption analysis of the hydrochloride salt of Compound I is shown in FIG31.
Compound I PhosphateThe XRPD of the phosphate salt of Compound I is shown in FIG32. The DSC and TGA of the phosphate salt of Compound I are shown in FIG33. The DSC of the phosphate salt of Compound I shows four endothermic transitions, with the onset and peak temperatures being 30.8°C and 50.1°C, 145.5°C and 149.1°C, 191.1°C and 195.5°C, 213.2°C and 239.0°C, respectively. The TGA of the phosphate salt of Compound I shows that a weight loss of about 4.66% is observed from 30°C to 200°C. The vapor sorption analysis of the phosphate salt of Compound I is shown in FIG34.
Compound I SulfateThe XRPD of the sulfate salt of Compound I is shown in FIG35. The DSC and TGA of the sulfate salt of Compound I are shown in FIG36. The DSC of the sulfate salt of Compound I shows three endothermic transitions, with the onset and peak temperatures being 34.5°C and 57.3°C, 157.5°C and 169.4°C, 227.6°C and 247.4°C, respectively. The TGA of the sulfate salt of Compound I shows that a weight loss of about 5.47% is observed from 30°C to 200°C. The vapor sorption analysis of the sulfate salt of Compound I is shown in FIG37.
Compound I HemiadipateThe XRPD data of the hemiadipate salt of Compound I are shown in Figure 38 and Table 15.
The DSC and TGA of the hemiadipate salt of Compound I are shown in FIG39. The DSC of the hemiadipate salt of Compound I shows an endothermic transition with the onset and peak temperatures of 173.3°C and 175.0°C, respectively. The TGA of the hemiadipate salt of Compound I shows that a weight loss of about 0.25% is observed from 40°C to 145°C. The DVS graph of the hemiadipate salt of Compound I is shown in FIG40.
Compound I p-ToluenesulfonateThe XRPD data of the p-toluenesulfonate salt of Compound I are shown in Figure 41 and Table 16.
The DSC and TGA of the p-toluenesulfonate salt of Compound I are shown in FIG42. The DSC of the p-toluenesulfonate salt of Compound I shows an endothermic transition with the onset and peak temperatures of 168.2°C and 175.2°C, respectively. The TGA of the p-toluenesulfonate salt of Compound I shows that a weight loss of about 0.79% is observed from 30°C to 150°C. The DVS graph of the p-toluenesulfonate salt of Compound I is shown in FIG43.
Compound I MaleateThe XRPD data of the maleate salt of Compound I are shown in Figure 44 and Table 17.
The DSC and TGA of the maleate salt of Compound I are shown in FIG45. The DSC of the maleate salt of Compound I shows an endothermic transition with the onset and peak temperatures of 159.6°C and 162.5°C, respectively. The TGA of the maleate salt of Compound I shows that a weight loss of about 0.44% is observed from 30°C to 140°C. The DVS graph of the maleate salt of Compound I is shown in FIG46.
Compound I OxalateThe XRPD data of the oxalate salt of Compound I are shown in Figure 47. The DSC and TGA of the oxalate salt of Compound I are shown in Figure 48. The DSC of the oxalate salt of Compound I shows three endothermic transitions, with the onset and peak temperatures being 30.5°C and 63.2°C, 129.9°C and 139.5°C, 193.2°C and 211.4°C, respectively. The TGA of the oxalate salt of Compound I shows that a weight loss of about 7.92% is observed from 37°C to 147°C.
Compound I of L-(+)- Tartaric acidThe XRPD of the L-(+)-tartrate of Compound I is shown in FIG49. The DSC and TGA of the L-(+)-tartrate of Compound I are shown in FIG50. The DSC of the L-(+)-tartrate of Compound I shows three endothermic transitions with onset and peak temperatures of 144.5°C and 156.1°C, 172.3°C and 187.5°C, 203.5°C and 224.0°C, respectively. The TGA of the tartrate of Compound I shows that a weight loss of about 0.59% is observed from 40°C to 150°C.
Compound I MonoadipateThe XRPD data of the monoadipate salt of Compound I are shown in Figure 51. The DSC and TGA of the monoadipate salt of Compound I are shown in Figure 52. The DSC of the monoadipate salt of Compound I shows two endothermic transitions, with the onset and peak temperatures being 146.1°C and 148.7°C, 167.1°C and 171.9°C, respectively. The TGA of the monoadipate salt of Compound I shows that a weight loss of about 0.33% is observed from 40°C to 125°C.
Embodiment 5 :Compound I Preparation of spray-dried dispersions with polymers and polymer screeningThe free base form of Compound I and the polymer (40:60, w/w) at a concentration of 7.5 mg/mL of Compound I were dissolved in the corresponding solvent (acetone, MeOH or DCM: MeOH = 1: 1 (v/v)) as a spray-dried solution for solid dispersion preparation.
About 200 mg of the free base form of Compound I and 300 mg of the polymer were added to a 40 mL glass vial and dissolved with a corresponding volume of the corresponding solvent (acetone, MeOH or DCM: MeOH = 1: 1 (v/v)) by magnetic stirring. Compound I/PVP-VA64, Compound I/Soluplus, Compound I/HPMC-AS LF, Compound I/Eudragit E100, Compound I/Eudragit L100-55, Compound I/HPbCD, Compound I/PVP K30 LP, Compound I/HPC (Klucel LF), Compound I/HPMC E5 LV, Compound I/HPMC E15, and Compound I/HPMCP-HP50 solutions were clear. Compound I/HPMC-AS MF solution was almost clear. Compound I/HPC (Klucel LF) solution had a high viscosity after magnetic stirring for about 5 hours, and was finally spray dried. It was spray dried by ProCept 4M8-Trix. The product was collected and further dried in vacuum at 30°C for 14-47 hours, and then stored at 5°C, sealed with paraffin film and wrapped with aluminum foil to protect from light.
The XRPD patterns of Compound I SDD with PVP-VA64 polymer (40:60, w/w), Soluplus polymer (40:60, w/w), HPMC-AS MF polymer (40:60, w/w), HPMC-AS LF polymer (40:60, w/w), Eudragit E100 polymer (40:60, w/w) and Eudragit L100-55 polymer (40:60, w/w) are superimposed in FIG. 53 .
XRPD data showed that Compound I SDD with PVP-VA64 polymer (40:60, w/w) was amorphous; Compound I SDD with Soluplus polymer (40:60, w/w) was amorphous; Compound I SDD with HPMC-AS MF polymer (40:60, w/w) was amorphous; Compound I SDD with HPMC-AS LF polymer (40:60, w/w) was amorphous; Compound I SDD with Eudragit E100 polymer (40:60, w/w) was amorphous; and Compound I SDD with Eudragit L100-55 polymer (40:60, w/w) was amorphous.
The MDSC of Compound I SDD with PVP-VA64 polymer (40:60, w/w) is shown in FIG. 54 . The MDSC spectrum showed that the midpoint (half height) of the glass transition temperature (Tg) of Compound I SDD with PVP-VA64 polymer (40:60, w/w) was 98.1°C.
The MDSC of Compound I SDD with Soluplus polymer (40:60, w/w) is shown in Figure 55. The MDSC spectrum showed that the midpoint (half height) of the glass transition temperature (Tg) of Compound I SDD with Soluplus polymer (40:60, w/w) was 75.7°C.
The MDSC of Compound I SDD with HPMC-AS LF polymer (40:60, w/w) is shown in Figure 56. The MDSC spectrum showed that the midpoint (half height) of the glass transition temperature (Tg) of Compound I SDD with HPMC-AS LF polymer (40:60, w/w) was 102.5°C.
The MDSC of Compound I SDD with HPMC-AS MF polymer (40:60, w/w) is shown in FIG57. The MDSC spectrum shows that the midpoint (half height) of the glass transition temperature (Tg) of Compound I SDD with HPMC-AS MF polymer (40:60, w/w) is 100.6°C.
The MDSC of Compound I SDD with Eudragit E100 polymer (40:60, w/w) is shown in FIG58. The MDSC spectrum shows that the midpoint (half height) of the glass transition temperature (Tg) of Compound I SDD with Eudragit E100 polymer (40:60, w/w) is 57.0°C.
The MDSC of Compound I SDD with Eudragit L100-55 polymer (40:60, w/w) is shown in FIG59. The MDSC spectrum showed that the midpoint (half height) of the glass transition temperature (Tg) of compound I SDD with Eudragit L100-55 polymer (40:60, w/w) was 120.5°C.
The XRPD patterns of compound I SDD with HPbCD polymer (40:60, w/w), PVP K30 LP polymer (40:60, w/w), HPC (klucel LF) polymer (40:60, w/w), HPC (klucel MF) polymer (40:60, w/w), HPMC E5 LV polymer (40:60, w/w), HPMC E15 polymer (40:60, w/w) and HPMCP-HP50 polymer (40:60, w/w) are superimposed in Figure 60.
XRPD data showed that Compound I SDD with HPbCD polymer (40:60, w/w) was amorphous; Compound I SDD with PVP K30 LP polymer (40:60, w/w) was amorphous; Compound I SDD with HPC (klucel LF) polymer (40:60, w/w) was amorphous; Compound I SDD with HPC (klucel MF) polymer (40:60, w/w) had extremely low crystallinity; Compound I SDD with HPMC E5 LV polymer (40:60, w/w) was amorphous; Compound I SDD with HPMC E15 polymer (40:60, w/w) was amorphous; and Compound I SDD with HPMCP-HP50 polymer (40:60, w/w) was amorphous.
The MDSC of Compound I SDD with HPbCD polymer (40:60, w/w) is shown in FIG61. The MDSC spectrum shows that the glass transition temperature (Tg) midpoint (half height) of Compound I SDD with HPbCD polymer (40:60, w/w) is 92.7°C.
The MDSC of Compound I SDD with PVP K30 LP polymer (40:60, w/w) is shown in FIG62. The MDSC spectrum shows that the two glass transition temperature (Tg) midpoints (half height) of Compound I SDD with PVP K30 LP polymer (40:60, w/w) are 85.0°C and 145.0°C, respectively.
The MDSC of Compound I SDD with HPC (Klucel LF) polymer (40:60, w/w) is shown in FIG63. The MDSC spectrum showed that the midpoint (half height) of the glass transition temperature (Tg) of Compound I SDD with HPC (Klucel LF) polymer (40:60, w/w) was 64.6°C.
The MDSC of Compound I SDD with HPC (Klucel MF) polymer (40:60, w/w) is shown in Figure 64. The MDSC spectrum showed that the midpoint (half height) of the glass transition temperature of Compound I SDD with HPC (Klucel MF) polymer (40:60, w/w) was 53.6°C.
The MDSC of Compound I SDD with HPMC E5 LV polymer (40:60, w/w) is shown in Figure 65. The MDSC spectrum showed that the midpoint (half height) of the glass transition temperature of Compound I SDD with HPMC E5 LV polymer (40:60, w/w) was 101.4°C.
The MDSC of Compound I SDD with HPMC E15 polymer (40:60, w/w) is shown in Figure 66. The MDSC spectrum shows that the midpoint (half height) of the glass transition temperature (Tg) of Compound I SDD with HPMC E15 polymer (40:60, w/w) is 100.9°C.
The MDSC of Compound I SDD with HPMCP-HP50 polymer (40:60, w/w) is shown in Figure 67. The MDSC spectrum shows that the midpoint (half height) of the glass transition temperature of Compound I SDD with HPMCP-HP50 polymer (40:60, w/w) is 114.6°C.
Embodiment 6 :Compound I and HPMC-AS MG Polymer in DCM Preparation of spray-dried dispersions in an acetone solvent systemHPMC-AS-MG-based SDD with 20% w/w Compound I was prepared by spray drying a Compound I/polymer HPMC-AS MG solution having a Compound I concentration of 19.3 mg/mL. Solvent (4.6 L DCM/acetone = 6/4 (v/v)) was added to a 10-L glass bottle. Compound I (88.78 g) was added under magnetic stirring until all solids were completely dissolved. HPMC-AS MG (355.12 g) was then added to the solution and completely dissolved by magnetic stirring to obtain an SDD solution.
HPMC-AS-MG-based SDD with 30% w/w Compound I was prepared by spray drying a Compound I/polymer HPMC-AS MG solution having a Compound I concentration of 30.5 mg/mL. A solvent (2.6 L of dichloromethane/acetone = 7/3 (v/v)) was added to a 5-L glass bottle. Compound I (79.30 g) was added under magnetic stirring until all solids were completely dissolved. HPMC-AS MG (185.03 g) was then added to the solution and completely dissolved by magnetic stirring to obtain an SDD solution.
An HPMC-AS-MG-based SDD with 20% w/w Compound I was prepared by spray drying a Compound I/polymer HPMC-AS MG solution having a Compound I concentration of 52 mg/mL. A solvent (2.6 L of dichloromethane/acetone = 6/4 (v/v)) was added to a 5-L glass bottle. Compound I (135.20 g) was added under magnetic stirring until all solids were completely dissolved. HPMC-AS MG (202.80 g) was then added to the solution and completely dissolved by magnetic stirring to obtain an SDD solution.
XRPD data of Compound I SSD with HPMC-AS MG polymer (20:80, w/w) before drying are shown in FIG68. XRPD data show that Compound I SSD with HPMC-AS MG polymer (20:80 w/w) is amorphous.
MDSC of Compound I SSD with HPMC-AS MG polymer (20:80, w/w) before drying is shown in FIG69. The MDSC spectrum shows that the midpoint (inflection point) of the glass transition temperature of Compound I SSD with HPMC-AS MG polymer (20:80, w/w) is 107.3°C.
The XRPD data of Compound I SDD with HPMC-AS MG polymer (20:80, w/w) after drying at 30°C for 10 hours are shown in FIG. 70. The XRPD data show that Compound I SDD with HPMC-AS MG polymer (20:80, w/w) is amorphous after drying at 30°C for 10 hours.
The MDSC of Compound I SDD with HPMC-AS MG polymer (20:80, w/w) after drying at 30°C for 10 hours is shown in FIG. 71. The MDSC spectrum shows that the midpoint (inflection point) of the glass transition temperature (Tg) of Compound I SDD with HPMC-AS MG polymer (20:80, w/w) is 105.2°C.
The XRPD pattern overlay of Compound I SSD with HPMC-AS MG polymer (20:80 w/w, 30:70 w/w or 40:60 w/w, respectively) is shown in FIG72 . The XRPD data showed that Compound I SSD with HPMC-AS MG polymer (20:80 w/w, 30:70 w/w or 40:60 w/w) was amorphous.
The MDSC of Compound I SDD with HPMC-AS MG polymer (20:80, w/w) is shown in FIG73 . The MDSC spectrum showed that the midpoint (half height) of the glass transition temperature (Tg) of Compound I SDD with HPMC-AS MG polymer (20:80, w/w) was 107.8°C.
The MDSC of Compound I SDD with HPMC-AS MG polymer (30:70, w/w) is shown in FIG74 . The MDSC spectrum showed that the midpoint (half height) of the glass transition temperature (Tg) of Compound I SDD with HPMC-AS MG polymer (30:70, w/w) was 103.5°C.
The MDSC of Compound I SDD with HPMC-AS MG polymer (40:60, w/w) is shown in Figure 75. The MDSC spectrum showed that the midpoint (half height) of the glass transition temperature (Tg) of Compound I SDD with HPMC-AS MG polymer (40:60, w/w) was 99.7°C.
Embodiment 7 :Compound I , polymers and surfactants SDD Preparation of formulations and screening of surfactantsProcedure for preparing Compound I SDD with polymer and surfactant
The free base form of Compound I, surfactant and polymer were weighed into 40 mL glass bottles as shown in Table 19. And then 26.7 mL of acetone was used to dissolve the Compound I/HPMC-AS/TPGS and Compound I/Klucel-LF/SDS systems by magnetic stirring, while the other three Compound I/HPMC-AS MF/SDS systems were stirred by acetone/H
2O was dissolved in the mixed solvent. A little white flocculent remained undissolved in systems D and E, which were further centrifuged at 3000 rpm for 10 minutes, and the supernatant was used for spray drying. The detailed process parameters for solid dispersion preparation are listed in Table 20. The product was collected and dried in vacuum at 30°C for about 13 hours, and then stored at 5°C, sealed with paraffin film and wrapped with aluminum foil to avoid light.
The following table summarizes five formulations of Compound I SDD with polymers and surfactants (System A, System B, System C, System D, and System E).
The following table summarizes the detailed process parameters used to prepare the spray dried dispersions for System A, System B, System C, System D, and System E, respectively.
The XRPD data of Compound I SDD of System A, System B, System C, System D, and System E are shown in FIG. 76 , respectively.
The XRPD data show that Compound I SDD of System A with HPMC-AS MF and TPGS is amorphous; Compound I SDD of System B with Klucel LF and SDS is amorphous; Compound I SDD of System C with HPMC-AS MF and SDS is amorphous; Compound I SDD of System D with HPMC-AS MF and SDS is amorphous; and Compound I SDD of System E with HPMC-AS MF and SDS is amorphous.
The MDSC of Compound I SDD of System A with HPMC-AS MF and TPGS is shown in FIG. 77 . The MDSC spectrum shows that the midpoint (half height) of the glass transition temperature (Tg) of compound I SDD with HPMC-AS MF and TPGS of system A is 67.7°C.
The MDSC of compound I SDD with Klucel LF and SDS of system B is shown in Figure 78. The MDSC spectrum shows that the midpoint (half height) of the glass transition temperature (Tg) of compound I SDD with Klucel LF and SDS of system B is 61.5°C.
The MDSC of compound I SDD with HPMC-AS MF and SDS of system C is shown in Figure 79. The MDSC spectrum shows that the midpoints (half heights) of the two glass transition temperatures (Tg) of compound I SDD with HPMC-AS MF and SDS of system C are 96.3°C and 110.4°C, respectively.
The MDSC of compound I SDD with HPMC-AS MF and SDS of system D is shown in Figure 80. The MDSC spectrum shows that the midpoint (half height) of the glass transition temperature (Tg) of compound I SDD with HPMC-AS MF and SDS of system D is 104.6°C.
The MDSC of compound I SDD with HPMC-AS MF and SDS of system E is shown in Figure 81. The MDSC spectrum shows that the midpoints (half heights) of the two glass transition temperatures (Tg) of compound I SDD with HPMC-AS MF and SDS of system E are 95.8°C and 107.9°C, respectively.
The following table summarizes the results of 1-week stability testing of Compound I SDD from System A, System B, System C, System D, and System E at 40°C, 75% RH or 25°C, 60% RH.
The XRPD patterns of compound I SDD of system A, system B, system C, system D and system E after 1-week stability testing at 40°C, 75% RH or 25°C, 60% RH are superimposed in Figure 82.
XRPD data showed that compound I SDD (25°C, 60% RH) of system A was amorphous; compound I SDD (40°C, 75% RH) of system A had extremely low crystallinity; compound I SDD (25°C, 60% RH) of system B was amorphous; compound I SDD (40°C, 75% RH) of system B was amorphous; compound I SDD (40°C, 75% RH) of system C had extremely low crystallinity; compound I SDD (25°C, 60% RH) of system D was amorphous; compound I SDD (40°C, 75% RH) of system D was amorphous; compound I SDD (25°C, 60% RH) of system E was amorphous; and compound I SDD (40°C, 75% RH) of system E was RH) has extremely low crystallinity.
Embodiment 8 :Compound I Description of the method for preparing spray-dried dispersions of tabletsPreparation method
Step 1: Spray drying
The free base of Compound I was dissolved with acetone, and the mixture was stirred until the solution was clear. Hydroxypropyl methylcellulose acetate succinate MG (HPMC-AS MG) was then added to the above solution and kept stirring to prepare a clear solution. The solution was sprayed portion by portion through a spray dryer, and the powder was collected. The obtained spray-dried dispersion of Compound I was then dried by secondary vacuum drying. The continuously collected spray-dried dispersion powders were combined and blended for downstream steps. The preparation flow chart of Compound I SSD with HPMC-AS MG polymer (20:80, w/w) is shown in Figure 83.
Step 2: Distribution and de-agglomeration
The required preparation materials are distributed and colloidal silica, sodium carboxymethyl cellulose cross-linked with mannitol, and microcrystalline cellulose PH-101 are de-agglomerated by a co-mill.
Step 3: Pre-blending and pre-lubrication
The spray-dried dispersion of compound I is directly transferred to a high shear granulator and the above sieved materials and blends are added. The sieved magnesium stearate is then transferred to the granulator for lubrication.
Step 4: Roller compaction
The above blend is compacted with a roller compactor and a mill to form granules.
Step 5: Blending and Lubrication
Sieve Poloxamer 188, sodium cross-linked carboxymethyl cellulose, microcrystalline cellulose PH-102 and magnesium stearate. Blend the granules from step 4 with the sieved Poloxamer 188, sodium cross-linked carboxymethyl cellulose and microcrystalline cellulose PH-102. Transfer the sieved magnesium stearate to the blender for lubrication.
Step 6: Compression
Compress the above blend into core tablets on a rotary tableting machine.
Step 7: Film Coating
Mix purified water and Opadry® coating system (commercially available premixed coating agent) to prepare coating solution. Coat core tablets until target weight gain is achieved. Coated tablets are dried and discharged.
Step 8: Bottle Packaging
Containers are 45 mL (25 mg strength) or 100 mL (100 mg strength) pharmaceutical high-density polyethylene (HDPE) bottles with oral solid pharmaceutical safety caps. Each bottle is filled with tablets and desiccant. The bottles are then induction sealed.
The tablets of 25 mg and 100 mg strengths were packaged in 45 mL and 100 mL white cylindrical high-density polyethylene (HDPE) bottles, respectively, and the bottles were sealed with oral solid pharmaceutical safety caps, each containing tablets and desiccant.
The preparation process of Compound I tablets is shown in Figure 84.
Dissolution behavior
Compound I SDD tablets are oral solid dosage forms, and their dissolution performance meets the corresponding guidelines for oral solid dosage forms in USP. The dissolution profiles of Compound I SDD tablets are shown in Figure 85. The dissolution profiles show that for both strengths, a dissolution performance of not less than 80% of the active pharmaceutical ingredient (API) within 45 minutes was achieved.