TW202445884A - Optoelectronic device and method for processing the same - Google Patents
Optoelectronic device and method for processing the same Download PDFInfo
- Publication number
- TW202445884A TW202445884A TW113102428A TW113102428A TW202445884A TW 202445884 A TW202445884 A TW 202445884A TW 113102428 A TW113102428 A TW 113102428A TW 113102428 A TW113102428 A TW 113102428A TW 202445884 A TW202445884 A TW 202445884A
- Authority
- TW
- Taiwan
- Prior art keywords
- layer
- region
- active layer
- optoelectronic device
- charge carrier
- Prior art date
Links
- 230000005693 optoelectronics Effects 0.000 title claims abstract description 102
- 238000000034 method Methods 0.000 title claims description 40
- 239000002800 charge carrier Substances 0.000 claims abstract description 92
- 239000000463 material Substances 0.000 claims description 72
- 239000002019 doping agent Substances 0.000 claims description 40
- 230000007547 defect Effects 0.000 claims description 28
- 238000009826 distribution Methods 0.000 claims description 25
- 230000004888 barrier function Effects 0.000 claims description 22
- 239000004065 semiconductor Substances 0.000 claims description 15
- 239000000758 substrate Substances 0.000 claims description 14
- 238000005530 etching Methods 0.000 claims description 13
- 238000004088 simulation Methods 0.000 claims description 9
- 238000005259 measurement Methods 0.000 claims description 8
- 230000003287 optical effect Effects 0.000 claims description 8
- 229910052725 zinc Inorganic materials 0.000 claims description 7
- 238000000151 deposition Methods 0.000 claims description 5
- 230000004044 response Effects 0.000 claims description 4
- 229910052738 indium Inorganic materials 0.000 claims description 2
- 238000004611 spectroscopical analysis Methods 0.000 claims 2
- 238000002441 X-ray diffraction Methods 0.000 claims 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 claims 1
- 230000005855 radiation Effects 0.000 description 35
- 238000009792 diffusion process Methods 0.000 description 20
- 230000008569 process Effects 0.000 description 11
- 230000006798 recombination Effects 0.000 description 11
- 238000005215 recombination Methods 0.000 description 11
- 238000005036 potential barrier Methods 0.000 description 10
- 230000004048 modification Effects 0.000 description 9
- 238000012986 modification Methods 0.000 description 9
- 238000013461 design Methods 0.000 description 7
- 238000002360 preparation method Methods 0.000 description 7
- 229910052782 aluminium Inorganic materials 0.000 description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 238000000605 extraction Methods 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 238000002161 passivation Methods 0.000 description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 238000000137 annealing Methods 0.000 description 3
- 238000000231 atomic layer deposition Methods 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 238000005229 chemical vapour deposition Methods 0.000 description 3
- 230000009849 deactivation Effects 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 239000011810 insulating material Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 229910044991 metal oxide Inorganic materials 0.000 description 3
- 150000004706 metal oxides Chemical class 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 150000004767 nitrides Chemical class 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 2
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 229910052681 coesite Inorganic materials 0.000 description 2
- 239000003086 colorant Substances 0.000 description 2
- 229910052593 corundum Inorganic materials 0.000 description 2
- 229910052906 cristobalite Inorganic materials 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 230000005686 electrostatic field Effects 0.000 description 2
- 238000011049 filling Methods 0.000 description 2
- 229910052733 gallium Inorganic materials 0.000 description 2
- 238000005240 physical vapour deposition Methods 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 235000012239 silicon dioxide Nutrition 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 229910052682 stishovite Inorganic materials 0.000 description 2
- 229910052905 tridymite Inorganic materials 0.000 description 2
- 229910001845 yogo sapphire Inorganic materials 0.000 description 2
- 229910002704 AlGaN Inorganic materials 0.000 description 1
- 108091006149 Electron carriers Proteins 0.000 description 1
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 1
- 101100012902 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FIG2 gene Proteins 0.000 description 1
- 239000006096 absorbing agent Substances 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 230000008094 contradictory effect Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 230000000873 masking effect Effects 0.000 description 1
- 238000001451 molecular beam epitaxy Methods 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 238000012805 post-processing Methods 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 238000002203 pretreatment Methods 0.000 description 1
- 238000004886 process control Methods 0.000 description 1
- 238000011002 quantification Methods 0.000 description 1
- 229910002059 quaternary alloy Inorganic materials 0.000 description 1
- 238000004151 rapid thermal annealing Methods 0.000 description 1
- 229910052594 sapphire Inorganic materials 0.000 description 1
- 239000010980 sapphire Substances 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 239000012780 transparent material Substances 0.000 description 1
- 238000009966 trimming Methods 0.000 description 1
- 238000000927 vapour-phase epitaxy Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/81—Bodies
- H10H20/819—Bodies characterised by their shape, e.g. curved or truncated substrates
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/81—Bodies
- H10H20/813—Bodies having a plurality of light-emitting regions, e.g. multi-junction LEDs or light-emitting devices having photoluminescent regions within the bodies
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/81—Bodies
- H10H20/816—Bodies having carrier transport control structures, e.g. highly-doped semiconductor layers or current-blocking structures
- H10H20/8162—Current-blocking structures
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/81—Bodies
- H10H20/8215—Bodies characterised by crystalline imperfections, e.g. dislocations; characterised by the distribution of dopants, e.g. delta-doping
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/84—Coatings, e.g. passivation layers or antireflective coatings
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L25/00—Assemblies consisting of a plurality of semiconductor or other solid state devices
- H01L25/03—Assemblies consisting of a plurality of semiconductor or other solid state devices all the devices being of a type provided for in a single subclass of subclasses H10B, H10F, H10H, H10K or H10N, e.g. assemblies of rectifier diodes
- H01L25/04—Assemblies consisting of a plurality of semiconductor or other solid state devices all the devices being of a type provided for in a single subclass of subclasses H10B, H10F, H10H, H10K or H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
- H01L25/075—Assemblies consisting of a plurality of semiconductor or other solid state devices all the devices being of a type provided for in a single subclass of subclasses H10B, H10F, H10H, H10K or H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H10H20/00
- H01L25/0753—Assemblies consisting of a plurality of semiconductor or other solid state devices all the devices being of a type provided for in a single subclass of subclasses H10B, H10F, H10H, H10K or H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H10H20/00 the devices being arranged next to each other
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/01—Manufacture or treatment
- H10H20/011—Manufacture or treatment of bodies, e.g. forming semiconductor layers
- H10H20/013—Manufacture or treatment of bodies, e.g. forming semiconductor layers having light-emitting regions comprising only Group III-V materials
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/01—Manufacture or treatment
- H10H20/011—Manufacture or treatment of bodies, e.g. forming semiconductor layers
- H10H20/018—Bonding of wafers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/81—Bodies
- H10H20/811—Bodies having quantum effect structures or superlattices, e.g. tunnel junctions
- H10H20/812—Bodies having quantum effect structures or superlattices, e.g. tunnel junctions within the light-emitting regions, e.g. having quantum confinement structures
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/81—Bodies
- H10H20/819—Bodies characterised by their shape, e.g. curved or truncated substrates
- H10H20/821—Bodies characterised by their shape, e.g. curved or truncated substrates of the light-emitting regions, e.g. non-planar junctions
Landscapes
- Led Devices (AREA)
- Electroluminescent Light Sources (AREA)
Abstract
Description
[相關申請案][Related applications]
本申請案請求日期為2023年1月27日之國際專利申請案PCT/EP2023/052084的優先權,在此以提及方式將其全部內容併入本文。This application claims priority from international patent application PCT/EP2023/052084, filed on January 27, 2023, the entire contents of which are hereby incorporated by reference.
本發明係有關於一種光電裝置及一種製備光電裝置之方法。The present invention relates to an optoelectronic device and a method for preparing the optoelectronic device.
對於數種顯示應用,每個像素中之個別光電裝置的尺寸正在縮小。像素的填充因數(光電裝置面積與像素面積之間的比率)從1:10降至1:100在某些顯示應用中係很常見的。同樣地,在一些應用中,顯示器本身的尺寸越來越小,而光學系統則用於引導光線。前者的典型應用是各種較大的顯示器或面板,而後者的應用包括AR或VR顯示器。For several display applications, the size of the individual optoelectronic devices in each pixel is shrinking. A decrease in the fill factor of a pixel (the ratio between the area of the optoelectronic device and the area of the pixel) from 1:10 to 1:100 is common in some display applications. Similarly, in some applications, the size of the display itself is getting smaller, while the optical system is used to guide the light. Typical applications for the former are various larger displays or panels, while applications for the latter include AR or VR displays.
這些顯示器使用不同的光電裝置來表示RGB顏色,每種顏色都有各種不同的實施方式。然而,為了實施目的(例如使用轉換器時),或為了提供一定程度的觀看體驗,對輻射行為提出某些要求。These displays use different optoelectronic devices to represent RGB colors, each with various implementations. However, certain requirements are placed on the emission behavior for implementation purposes (such as when using a converter), or to provide a certain level of viewing experience.
這次,在某些應用中應該獲得恆定的顏色印象(顏色隨角度的變化),其中使用者可以從稍微不同的角度觀看顯示器,或者多個使用者可以同時從不同的角度觀看螢幕。另一個態樣是整體亮度,其在給定及期望的角度範圍內應該是恆定的。This time, a constant color impression (color variation with angle) should be obtained in certain applications, where a user can view the display from slightly different angles, or multiple users can view the screen from different angles at the same time. Another aspect is the overall brightness, which should be constant within a given and expected angle range.
光電裝置因其尺寸小於50µm且小至2µm至4µm而亦稱為µ-LED,可以包含它們自己的輻射分佈(radiation profile),這取決於它們各自的材料系統、偏振、活性區域的尺寸、發射表面的尺寸及幾何形狀以及裝置主體的幾何形狀。後面兩者的改變通常會導致光取出效率(light extraction efficiency)的損失。Optoelectronic devices, also called µ-LEDs for their size less than 50µm and as small as 2µm to 4µm, can contain their own radiation profile, which depends on their respective material system, polarization, size of the active area, size and geometry of the emitting surface and geometry of the device body. Changes in the latter two usually result in a loss of light extraction efficiency.
這個問題可以藉由結構化發射表面來解決;因為已經發現,在沒有表面結構化的情況下,µ-LED在低電流位準下的取出效率會顯著降低,所以仍然經常這樣做。This problem can be solved by structuring the emitting surface; this is still often done because it has been found that without surface structuring the extraction efficiency of µ-LEDs at low current levels is significantly reduced.
調整光電裝置的輻射特性之傳統技術通常是基於裝置主體及封裝設計的修改。因此,例如在US 10.367.122 B2及DE 10 2020 113716中可找到實例,後者使用附加的光學元件。Conventional techniques for adjusting the radiation characteristics of optoelectronic devices are usually based on modifications of the device body and package design. Thus, examples can be found, for example, in US 10.367.122 B2 and DE 10 2020 113716, the latter using additional optical elements.
雖然這些技術通常可以達到期望目標,但是它們並非適用於所有情況,並且無法改善µ-LED的低光效率下降問題。因此,仍然希望改進對光電裝置及特別是對µ-LED的輻射特性之控制而不改變裝置主體的幾何形狀。While these techniques generally work well, they are not applicable in all cases and do not improve the low light efficiency drop of µ-LEDs. Therefore, it remains desirable to improve the control of the radiation characteristics of optoelectronic devices, and in particular µ-LEDs, without changing the geometry of the device body.
由獨立請求項的標的物來滿足此目的及其它目的。在附屬請求項中概述所提出原理的特徵及其它態樣。This and other objects are met by the subject matter of the independent claims. The features and other aspects of the proposed concept are outlined in the dependent claims.
本發明人提出藉由選擇性地去活化(deactivating)活性層的特定區域來修改光電裝置的輻射場型,以獲得整個發射表面之遠場輻射及光分佈的調整。本申請案的表述「去活化」包括對活性層的特定區域或部分的任何修改,使得在通常操作中此部分發射的光實質上比活性層之未被修改的另一部分少。在本申請案的意義上,減少的光發射被認為是與未修改的部分相比減少10%或更多,並且特別是超過50%,更特別是超過70%。The inventors propose to modify the radiation pattern of a photoelectric device by selectively deactivating specific areas of the active layer to obtain adjustment of the far-field radiation and light distribution of the entire emitting surface. The expression "deactivation" in this application includes any modification of a specific area or part of the active layer so that in normal operation the light emitted by this part is substantially less than another part of the active layer that has not been modified. In the sense of this application, reduced light emission is considered to be a reduction of 10% or more, and particularly more than 50%, and more particularly more than 70% compared to the unmodified part.
此修改可以透過各種手段來實現,但是可能常常需要結構化遮罩層,以選擇性地修改活性層內的所述區域。在這方面,本發明人注意到,Zn擴散已主要用來防止在基於三元或四元磷化物材料系統(例如,InGaAlP)的μ-LED的外緣處之表面復合。這種摻雜物擴散的目的是避免非輻射效率損失,這個過程稱為量子井互相混合。This modification can be achieved by various means, but may often require a structured mask layer to selectively modify the region within the active layer. In this regard, the inventors note that Zn diffusion has been used primarily to prevent surface recombination at the outer edges of μ-LEDs based on ternary or quaternary phosphide material systems (e.g., InGaAlP). The purpose of this dopant diffusion is to avoid non-radiative efficiency losses, a process known as quantum well intermixing.
除了別的態樣之外,本發明人現在建議重新利用摻雜物擴散至活性層之應該被選擇性地去活化的部分中,使得光發射主要發生在非摻雜區域中。雖然這樣的部分之修改亦可以由其它手段來實現,但是摻雜物擴散提供活性層的局部量子井互相混合部分,這產生能隙的局部變化,在一定程度上使注入活性層的電荷載子陷入較低的能谷內。因此,在活性層的那些部分中能隙增加的區域會表現出減少的光發射,因此稱為去活化。Among other aspects, the inventors now propose to reuse the diffusion of dopants into the parts of the active layer that should be selectively deactivated, so that light emission occurs mainly in the non-doped regions. Although such partial modification can also be achieved by other means, the diffusion of dopants provides a local quantum well intermixing part of the active layer, which produces a local change in the energy gap, which to a certain extent causes the electron carriers injected into the active layer to fall into a lower energy valley. Therefore, the regions in those parts of the active layer where the energy gap increases will show reduced light emission, hence the term deactivation.
藉由適當的模擬及製程控制,人們可以調整輻射場型以反映光電裝置的期望遠場分佈。亦可以維持及實施其它製程手段(例如,傳統的量子井互相混合或帶有後續再生長的平台式修邊)。因此,所得的光電裝置結合因減少在傾斜側壁的邊緣處之可用非輻射復合中心(它們被來自再成長層或QWI邊緣區域的靜電場阻擋)而提高量子效率與因在活性層內選擇性地調整輻射及非輻射區域而最佳化輻射場型的優點。With appropriate simulation and process control, one can tune the radiation pattern to reflect the desired far-field distribution of the optoelectronic device. Other process approaches (e.g., conventional quantum well intermixing or terrace trimming with subsequent regrowth) can also be maintained and implemented. Thus, the resulting optoelectronic device combines the advantages of increased quantum efficiency due to the reduction of available non-radiating recombination centers at the edges of the sloped sidewalls (which are blocked by electrostatic fields from the regrowth layer or QWI edge region) with the advantages of optimized radiation pattern due to selective tuning of radiating and non-radiating regions within the active layer.
所提出的原理不限於諸如上述磷化物系統的特定材料系統,亦可以在諸如InGaN、InAlGaN或GaN的氮化物材料系統中實施。同樣地,包括退火步驟、使用Mo:SiO2塗層及「重複快速熱退火」來產生具有更高能隙的區域之其它技術亦是可能的。在替代實施方式中,人們可以在應該去活化的區域中引起缺陷,從而在活性層的那些部分中導致更高的缺陷密度。然而,缺陷通常造成非輻射復合,這可能降低整體量子效率,因為電荷載子仍然會在那些去活化部分中進行復合。因此,與其它技術組合可能是合適的。再者,人們可以想像在活性層或其子層的那些部分中進行選擇性蝕刻製程來界定非輻射部分。The proposed principle is not limited to specific material systems such as the above-mentioned phosphide systems, but can also be implemented in nitride material systems such as InGaN, InAlGaN or GaN. Similarly, other techniques including annealing steps, the use of Mo:SiO2 coatings and "repeated rapid thermal annealing" to produce regions with higher band gaps are also possible. In alternative embodiments, one can induce defects in the areas that should be deactivated, thereby leading to a higher defect density in those parts of the active layer. However, defects generally cause non-radiative recombination, which may reduce the overall quantum efficiency because charge carriers still recombine in those deactivated parts. Therefore, combination with other techniques may be appropriate. Furthermore, one can imagine performing a selective etching process in those parts of the active layer or its sublayers to define the non-radiative parts.
在一些態樣中,本發明人提出一種光電裝置,其包括一磊晶成長層堆,該層堆具有一第一摻雜類型的一第一電荷載子傳輸層、一第二摻雜類型的一第二電荷載子傳輸層及堆疊在該第一電荷載子傳輸層與該第二電荷載子傳輸層之間的一活性層。該層堆可以磊晶成長在一些載體基板上。In some embodiments, the present inventors provide an optoelectronic device comprising an epitaxially grown layer stack having a first charge carrier transport layer of a first doping type, a second charge carrier transport layer of a second doping type, and an active layer stacked between the first charge carrier transport layer and the second charge carrier transport layer. The layer stack can be epitaxially grown on some carrier substrates.
可以在該第二電荷載子傳輸層上面界定該光電裝置的一發射表面。依據所提出的原理之該活性層包括置中地位於該發射表面下方的一第一區域及圍繞該第一區域的一第二區域。取決於各別的實施方式,該發射表面可以小於該第一區域,但亦可能大於該各別的第一區域。在後者情況下,該第二區域的部分可以位於該發射表面下方。An emission surface of the optoelectronic device can be defined above the second charge carrier transport layer. The active layer according to the proposed principle comprises a first region centrally located below the emission surface and a second region surrounding the first region. Depending on the respective implementation, the emission surface can be smaller than the first region, but can also be larger than the respective first region. In the latter case, parts of the second region can be located below the emission surface.
在此,「發射表面」通常被認為是光電裝置的主表面之一,在裝置的操作中光通過此主表面發射。在一些情況下,光發射表面係裝置的頂面之一,而所述頂面的部分被輸出耦合結構、透明接觸層等覆蓋。Herein, an "emitting surface" is generally considered to be one of the major surfaces of an optoelectronic device through which light is emitted during operation of the device. In some cases, the light emitting surface is one of the top surfaces of the device, and portions of the top surface are covered by output coupling structures, transparent contact layers, etc.
依據所提出的原理,該活性層的該第一區域包括構造成發光的至少一第一部分及構造成不發光的至少一第二部分。該第一區域的發光部分及不發光或減少發光部分的配置產生具有一特定遠場分佈之該光電裝置的一輻射場型。該輻射場型及該相關遠場分佈可藉由適當選擇及形成各別的該第一部分及該第二部分來進行調整。According to the proposed principle, the first region of the active layer includes at least one first portion configured to emit light and at least one second portion configured to not emit light. The configuration of the emitting portion and the not emitting or reduced emitting portion of the first region produces a radiation pattern of the optoelectronic device with a specific far-field distribution. The radiation pattern and the associated far-field distribution can be adjusted by appropriately selecting and forming the respective first portion and the second portion.
因此,可以獲得不同的光分佈特性,從而調節光電裝置的光發射以滿足自別的需求。特別是對於像光學元件的機械元件難以實現的µ-LED,透過修改該活性層來調整光發射的可能性提供了數個優點。使用光學元件及裝置本身生產光電設備變得更便宜且更容易製造。Thus, different light distribution properties can be obtained and thus the light emission of the optoelectronic device can be adjusted to meet individual requirements. Especially for µ-LEDs, where mechanical components like optical elements are difficult to realize, the possibility to adjust the light emission by modifying the active layer offers several advantages. Producing optoelectronic devices using optical elements and the device itself becomes cheaper and easier to manufacture.
已經發現,為了調整遠場特性,可以在活性層中提供構造成用於光發射的一中心部分,並且繞該中心部分之一個以上的部分可以包括不同的發射場型。在一些情況下,例如,至少一第二部分圍繞該至少一第一部分。該至少一第一部分可以置中地位於該活性層(或第一區域)的中心且被一第二部分圍繞。第一部分與第二部分可以交替,而厚度(亦即,當從上方觀看時各別區域的面積)可以是不同的。It has been found that, in order to tune the far field properties, a central portion configured for light emission may be provided in the active layer, and one or more portions around the central portion may include different emission patterns. In some cases, for example, at least one second portion surrounds the at least one first portion. The at least one first portion may be centered in the center of the active layer (or first region) and surrounded by a second portion. The first and second portions may alternate, and the thickness (i.e., the area of the respective regions when viewed from above) may be different.
在一些情況下,例如,當從上方觀看時,該至少一第一部分包括圓形或橢圓形形狀。在一些另外的情況下,當從上方觀看時,該至少一第一部分包括一個以上的環,該一個以上的環被一各別環形第二部分圍繞。在一些情況下,環形的第一部分及第二部分亦可以交替,從而在該活性層中形成交替的圓形輻射區域及非輻射區域。In some cases, for example, when viewed from above, the at least one first portion comprises a circular or elliptical shape. In some other cases, when viewed from above, the at least one first portion comprises more than one ring, and the more than one ring is surrounded by a respective annular second portion. In some cases, the annular first and second portions can also alternate, thereby forming alternating circular radiating regions and non-radiating regions in the active layer.
一些態樣係有關於該等第二部分的製備,亦即,在該第二部分中之活性層材料的修改。在一些情況下,該至少一第二部分包括比該至少一第一部分還高的缺陷密度。該較高的缺陷密度可以藉由在該活性層的該第二部分中引入摻雜物或其它原子來實現。這些缺陷充當非輻射復合中心或散射中心,使得在該第二部分中發生顯著減少的發射。在一些情況下,該至少一第二部分的缺陷密度比該至少一第一部分的缺陷密度高一個數量級,特別是至少兩個數量級或1.5個數量級至3個數量級之間。在一些情況下,該至少一第一部分的缺陷密度可以在量測極限的範圍內或稍微大於量測極限。因此,該至少一第二部分的缺陷密度可以在比量測極限高1個數量級至2.5個數量級之間的範圍內。Some aspects relate to the preparation of the second portions, i.e., the modification of the active layer material in the second portion. In some cases, the at least one second portion comprises a higher defect density than the at least one first portion. The higher defect density can be achieved by introducing dopants or other atoms in the second portion of the active layer. These defects act as non-radiative recombination centers or scattering centers, so that significantly reduced emission occurs in the second portion. In some cases, the defect density of the at least one second portion is one order of magnitude higher than the defect density of the at least one first portion, in particular at least two orders of magnitude or between 1.5 and 3 orders of magnitude. In some cases, the defect density of the at least one first portion can be within the measurement limit or slightly greater than the measurement limit. Therefore, the defect density of the at least a second portion may be in a range between 1 order of magnitude and 2.5 orders of magnitude higher than the measurement limit.
替代地或附加地,可以在該活性層中之各別的該等第二部分中引入摻雜物,摻雜物引起局部量子井互相混合或至少局部能隙畸變,導致在該第二部分的位置處有較高的能隙。在一些情況下,摻雜物會觸發缺陷移動,導致高/低富鋁層中Al及Ga的晶格格位之調換。較高的能隙產生局部靜電場,以從那些區域排斥電荷載子並在一定程度上將它們捕獲或保持在該等第一部分中。在一些情況下,摻雜物濃度可以在5e17 1/cm 3與7e18 1/cm 3之間的範圍內。在成長方向上可能存在梯度。例如,在一些情況下,摻雜物濃度可以在數個值之間變化,而其最大值在於該至少一第二部分,而對應的最小值在位該至少一第一區域。摻雜物濃度可以是不同的且可以在該裝置的製備期間由各種製程步驟來控制。可以組合各種不同的技術來修改該活性層及/或內部的能隙結構。 Alternatively or additionally, dopants may be introduced into the respective second portions in the active layer, the dopants causing local quantum well intermixing or at least local energy gap distortion, resulting in a higher energy gap at the location of the second portion. In some cases, the dopants trigger defect movement, resulting in the exchange of lattice sites of Al and Ga in the high/low aluminum-rich layers. The higher energy gap generates a local electrostatic field to repel charge carriers from those regions and to capture or retain them to a certain extent in the first portions. In some cases, the dopant concentration may be in the range between 5e17 1/cm 3 and 7e18 1/cm 3. There may be a gradient in the growth direction. For example, in some cases, the dopant concentration may vary between several values with a maximum value in the at least one second portion and a corresponding minimum value in the at least one first region. The dopant concentration may be different and may be controlled by various process steps during the fabrication of the device. Various different techniques may be combined to modify the active layer and/or internal bandgap structure.
摻雜物本身可以包括Mg或Zn中之一種。摻雜物擴散至該活性層的該第二部分中可由各種手段來實現,其包括但不限於氣相磊晶、CVD、MBE、帶有後續退火的ALD等等。The dopant itself may include one of Mg or Zn. Diffusion of the dopant into the second portion of the active layer may be achieved by a variety of means including but not limited to vapor phase epitaxy, CVD, MBE, ALD with subsequent annealing, and the like.
在一些情況下,該活性層的該第二區域包括量子井互相混合區域。如上所述,該第二區域圍繞該第一區域。藉由在該第二區域中產生量子井互相混合區域,可以產生主要使電荷載子陷入該第一區域中的一電位障。如果該光電裝置元件以總長度或直徑小於電荷載子的擴散長度來進行平台式結構化,則這是特別有用的。具有大擴散長度的材料系統以磷化物為基礎,例如,InGaP、InGaAlP、GaP等。然而,由於遠場調整及光整形的可能性,基於氮化物的半導體材料(例如,GaN、InGaN、AlGaN、InGaAlN等)亦可以在該第二區域中使用QWI。In some cases, the second region of the active layer includes a quantum well intermixing region. As described above, the second region surrounds the first region. By creating a quantum well intermixing region in the second region, an electrical barrier can be created that primarily traps charge carriers in the first region. This is particularly useful if the optoelectronic device element is terraced with an overall length or diameter that is smaller than the diffusion length of the charge carriers. Material systems with large diffusion lengths are based on phosphides, such as InGaP, InGaAlP, GaP, etc. However, due to the possibility of far-field tuning and light shaping, nitride-based semiconductor materials (e.g., GaN, InGaN, AlGaN, InGaAlN, etc.) can also use QWI in the second region.
在一些情況下,該磊晶成長層堆包括具有傾斜側面的一平台式蝕刻結構。平台式蝕刻通常將相鄰光電裝置的活性層彼此分離,使得那些裝置可以在製備期間分離或個別地進行定位及供應。在一些情況下,該第二個區域的外緣構成該等傾斜側面的一部分。因此,該第二區域可以是量子井互相混合的,使得該第二區域的外緣具有比靠近中心之該活性層的區域還高的能隙。In some cases, the epitaxial growth layer stack includes a terrace etch structure with tilted side surfaces. Terrace etching generally separates active layers of adjacent optoelectronic devices from each other so that those devices can be separated or individually positioned and supplied during preparation. In some cases, the outer edge of the second region constitutes a portion of the tilted side surfaces. Thus, the second region can be quantum well intermixed so that the outer edge of the second region has a higher bandgap than the region of the active layer near the center.
可以對平台式蝕刻光電裝置的傾斜側壁進行處理以進一步減少不期望的非輻射復合中心。在一些情況下,在表面傾斜側邊上配置一介電層。該介電層可以包括Al2O3、SiO2等。或者,傾斜側邊的表面被一再成長半導體層覆蓋。該再成長層的材料具有比該活性層的材料還大的能隙。在一些情況下,該再成長層的材料包含比該活性層的材料還高的Al含量。The inclined sidewalls of the terrace etched optoelectronic device can be treated to further reduce undesirable non-radiative recombination centers. In some cases, a dielectric layer is disposed on the inclined side of the surface. The dielectric layer may include Al2O3, SiO2, etc. Alternatively, the surface of the inclined side is covered by a regrown semiconductor layer. The material of the regrown layer has a larger energy gap than the material of the active layer. In some cases, the material of the regrown layer contains a higher Al content than the material of the active layer.
該第二電荷載子傳輸層的頂面通常包括發射區域。在一些情況下,例如,作為體積發射器,該光電裝置的側面不用反射材料來覆蓋。對於頂面發射器,側面可以用金屬或反射層來覆蓋。在一些情況下,該發射表面(亦即,通常構造成發射光之頂面的區域)具有與該第二電荷載子傳輸層或配置在該第二電荷載子傳輸層上的一接觸層的頂面大致相同的尺寸。在一些其它情況下,發射表面可能小於實際頂面。The top surface of the second charge carrier transport layer typically includes an emitting region. In some cases, for example, as a volume emitter, the side surfaces of the optoelectronic device are not covered with a reflective material. For a top emitter, the side surfaces may be covered with a metal or a reflective layer. In some cases, the emitting surface (i.e., the region of the top surface that is typically configured to emit light) has approximately the same size as the top surface of the second charge carrier transport layer or a contact layer disposed on the second charge carrier transport layer. In some other cases, the emitting surface may be smaller than the actual top surface.
在一些態樣中,該光電裝置包括一頂部接觸層,該頂部接觸層具有配置在該發射表面上或相鄰於該發射表面且與該第二電荷載子傳輸層電連接的一透明導電層。就這一點而言,該光電裝置可以包括一接觸層,其包含一高摻雜半導體材料。In some embodiments, the optoelectronic device includes a top contact layer having a transparent conductive layer disposed on or adjacent to the emitting surface and electrically connected to the second charge transport layer. In this regard, the optoelectronic device may include a contact layer comprising a highly doped semiconductor material.
在一些其它情況下,該層堆的該活性層包括單一量子井或具有複數個交替的阻障層及量子井層的多量子井結構,其中可選地,該等阻障層具有比該等量子井層還高的Al含量。為了依據所提出的原理修改各層,可以各別修改該等量子井層及該等阻障層中的一些或全部或其組合。In some other cases, the active layer of the layer stack includes a single quantum well or a multiple quantum well structure having a plurality of alternating barrier layers and quantum well layers, wherein the barrier layers optionally have a higher Al content than the quantum well layers. To modify the layers according to the proposed principles, some or all of the quantum well layers and the barrier layers or a combination thereof may be modified individually.
依據所提出原理的複數個光電裝置可以配置成列與行,以形成顯示器的一部分。各別的光電裝置可以使它們的輻射場型進行各別調整,但是特定的光電裝置可組合在一起並以類似或至少特定方式來進行調整以提供預定且期望的輻射場型。A plurality of optoelectronic devices according to the proposed principles can be arranged in rows and columns to form part of a display. Individual optoelectronic devices can have their radiation pattern adjusted individually, but specific optoelectronic devices can be combined together and adjusted in a similar or at least specific manner to provide a predetermined and desired radiation pattern.
在一些態樣中,構造成發射不同波長的光之三個光電裝置組合在一起作為子像素,每個子像素提供特定的輻射場型。因此,它們的活性層相應地被修改。然而,與同一個像素相關聯的光電裝置之修改可能會因不同的材料成分、不同的光發射等原因而有所不同。在一些情況下,顯示器因而包括依據所提出原理的複數個光電裝置以及配置在像素及/或複數個光電裝置的發射表面上方之一個以上的光學結構。In some embodiments, three optoelectronic devices configured to emit light of different wavelengths are combined together as sub-pixels, each sub-pixel providing a specific radiation pattern. Therefore, their active layers are modified accordingly. However, the modifications of the optoelectronic devices associated with the same pixel may vary due to different material compositions, different light emission, etc. In some cases, the display thus includes a plurality of optoelectronic devices according to the proposed principles and one or more optical structures arranged above the emission surface of the pixel and/or the plurality of optoelectronic devices.
其它態樣係有關於一種用於製備具有預定光分佈特性的光電裝置之方法。為了依據所提出的原理製備光電裝置,需要根據期望的輻射場型來獲得活性層的活化部分及去活化部分之所需形狀及配置。Other aspects relate to a method for preparing an optoelectronic device with predetermined light distribution characteristics. In order to prepare an optoelectronic device according to the proposed principle, it is necessary to obtain the desired shape and configuration of the activated and deactivated parts of the active layer according to the desired radiation field pattern.
因此,為了找到用於製備第一部分及第二部分的遮罩層,如果不進行試驗及測試,則對期望結果的模擬可能是合適的。各種模擬可能性都是合適的。例如,可以假設在整個發射表面及活性層上具有均勻的光分佈。為了正確地模擬光電裝置的非相干光源,複數個偶極子虛擬地密集分佈在活性表面上並各別進行模擬。這樣的模擬對每個偶極子提供關於光取出及遠場的資訊,其對應於活性層的一個小區域。Therefore, in order to find the mask layers for preparing the first part and the second part, simulations of the desired results may be appropriate, if not trials and tests. Various simulation possibilities are suitable. For example, a uniform light distribution over the entire emitting surface and the active layer can be assumed. In order to correctly simulate the incoherent light source of the optoelectronic device, a plurality of dipoles are virtually densely distributed on the active surface and simulated individually. Such a simulation provides information about the light extraction and the far field for each dipole, which corresponds to a small area of the active layer.
藉由選擇性地開啟或關閉虛擬偶極子,可以產生發射表面及活性層的輻射場型。因此,對資料進行後處理將提供偶極子,偶極子必須在模擬中進行激發或活化來實現所需的輻射場型。由此獲得二元遮罩,其確認磊晶成長活性層之第一區域的第一部分及第二部分,其中第一部分應該發光,而第二部分不應該發光。By selectively switching virtual dipoles on or off, the radiation pattern of the emitting surface and the active layer can be generated. Post-processing of the data will therefore provide the dipoles that must be excited or activated in the simulation to achieve the desired radiation pattern. A binary mask is thus obtained, which identifies a first part and a second part of the first region of the epitaxially grown active layer, where the first part should emit light and the second part should not.
在一些情況下,本發明人提出重新使用Zn擴散至活性層中,這用於基於磷化物的半導體材料,以透過量子井互相混合來引起電位障。In some cases, the inventors propose to reuse Zn diffusion into the active layer, which is used in phosphide-based semiconductor materials to induce potential barriers through quantum well intermixing.
一種類似製程適用於構造第一區域的活化部分及去活化部分之遮罩層。相同的遮罩層亦可以用於構造在活性層的外緣中之量子井互相混合。在這方面,可以使用所提出的原理來將光引導到位於發射表面上方的已知吸收體周圍,以提高整體光取出效率。A similar process is applied to construct the mask layer of the active and deactivated parts of the first region. The same mask layer can also be used to construct the quantum well intermixing in the outer edge of the active layer. In this regard, the proposed principle can be used to guide light around a known absorber located above the emitting surface to improve the overall light extraction efficiency.
在一些態樣中,本發明人現在提出一種用於製備光電裝置的方法,其包括以下步驟:在一載體基板上磊晶成長一第一摻雜類型的一第一電荷載子傳輸層;以及在該第一電荷載子傳輸層上磊晶成長一活性層。該活性層包括一第一區域及圍繞該第一區域的一第二區域。該活性層亦構造成回應於通過該活性層的電流而發光。In some aspects, the inventors now propose a method for preparing an optoelectronic device, comprising the steps of: epitaxially growing a first charge carrier transport layer of a first doping type on a carrier substrate; and epitaxially growing an active layer on the first charge carrier transport layer. The active layer includes a first region and a second region surrounding the first region. The active layer is also configured to emit light in response to a current passing through the active layer.
依據所提出的原理,提供一第一個結構化遮罩層。該結構化遮罩層至少覆蓋該活性層的該第一區域。更具體地,該第一遮罩層構造成使其覆蓋該活性層的一第一部分且包括暴露該第一區域的一第二部分之頂面的至少一個凹槽。According to the proposed principle, a first structured mask layer is provided. The structured mask layer covers at least the first region of the active layer. More specifically, the first mask layer is structured to cover a first portion of the active layer and include at least one groove exposing a top surface of a second portion of the first region.
在一後續步驟中,該第一區域的該第二部分被修改或改變,使得該第二部分構造成不發光或與該第一部分相比發射顯著減少的光。In a subsequent step, the second portion of the first region is modified or altered such that the second portion is configured to emit no light or to emit significantly reduced light compared to the first portion.
再者,此方法亦包括在該活性層上磊晶成長一第二電荷載子傳輸層的步驟。在這點上,在該活性層上磊晶成長該第二電荷載子傳輸層的步驟可以在提供該結構化遮罩層的步驟之前進行,但亦可以在之後進行。Furthermore, the method also includes the step of epitaxially growing a second charge carrier transport layer on the active layer. At this point, the step of epitaxially growing the second charge carrier transport layer on the active layer can be performed before the step of providing the structured mask layer, but can also be performed after.
當將電流注入該活性層時,該活性層或其部分的修改亦改變輻射場型。因此,適當的修改會產生期望的輻射場型。依據所提出原理之光電裝置的製備不限於磷化物材料系統,而是可以普遍適用於氮化物、砷化物及磷化物系統以及更稀有的直接半導體材料。When a current is injected into the active layer, the modification of the active layer or parts thereof also changes the radiation pattern. Thus, appropriate modification will result in the desired radiation pattern. The fabrication of optoelectronic devices according to the proposed principle is not limited to phosphide material systems, but can be generally applied to nitride, arsenide and phosphide systems as well as to more exotic direct semiconductor materials.
改變或修改第二部分的步驟可以以不同的方式進行,其中一種方式包括將摻雜物添加至第二部分的步驟,其中摻雜物濃度在5e17 1/cm 3與7e18 1/cm 3之間的範圍內。在一些情況下,摻雜物可以首先沉積在第二部分上方的暴露表面上及隨後擴散至其中。沉積及擴散的步驟可以以不同的製程參數進行,例如但不限於不同的溫度。再者,可以在將摻雜物擴散於該活性層之後執行退火步驟。 The step of changing or modifying the second portion can be performed in different ways, one of which includes the step of adding a dopant to the second portion, wherein the dopant concentration is in a range between 5e17 1/cm 3 and 7e18 1/cm 3. In some cases, the dopant can be first deposited on the exposed surface above the second portion and then diffused therein. The steps of deposition and diffusion can be performed with different process parameters, such as but not limited to different temperatures. Furthermore, an annealing step can be performed after the dopant is diffused in the active layer.
在一些情況下,該第一結構化遮罩層暴露該活性層的該第二區域之頂面部分。摻雜物(特別是Zn或Mg)隨後擴散至該第一區域的該第二部分中且擴散至該活性層的該第二區域中。因此,會在該第一區域的該第二部分中引起局部量子井互相混合,並且在該活性層的該第二區域中引起量子井互相混合。在這方面,局部量子井互相混合的表述意指在該活性層中或多或少明確界定的摻雜物材料邊界,從而產生電位障。In some cases, the first structured mask layer exposes a top surface portion of the second region of the active layer. Dopants, in particular Zn or Mg, then diffuse into the second portion of the first region and into the second region of the active layer. As a result, local quantum well intermixing is induced in the second portion of the first region and in the second region of the active layer. In this respect, the expression local quantum well intermixing means more or less well-defined boundaries of dopant material in the active layer, which result in electrical potential barriers.
摻雜物擴散會在該活性層內產生局部電位障,以防止電荷載子在能隙增加的部分中復合。電位障就像電荷載子的陷阱,將它們集中在之間的電位「谷」上。在一些其它情況下,局部地增加在活性層內的缺陷密度,使得電荷載子在那些局部高缺陷密度處被散射。一些電荷載子可能會在缺陷密度增加的區域中復合,但是它們是非輻射性的。缺陷密度可以在比缺陷密度的量測極限大至少一個數量級的範圍內。在一些另外的情況下,可以選擇性地蝕刻該等第二部分的暴露表面以在能隙及電位結構中產生擾動。Dopant diffusion creates a local potential barrier within the active layer that prevents charge carriers from recombination in the portion where the energy gap is increased. The potential barrier acts like a trap for charge carriers, concentrating them in the potential "valleys" in between. In some other cases, the defect density within the active layer is locally increased so that charge carriers are scattered at those local high defect densities. Some charge carriers may recombine in areas of increased defect density, but they are non-radiative. The defect density can be in a range of at least one order of magnitude greater than the measurement limit of the defect density. In some other cases, the exposed surfaces of the second portions can be selectively etched to create perturbations in the energy gap and potential structure.
可以組合各種方法來實現期望的能隙擾動,並因此在該活性層中實現在裝置操作期間發光的區域及不發光的區域之圖案。Various approaches can be combined to achieve the desired bandgap perturbation and thus a pattern of regions in the active layer that emit light and regions that do not emit light during device operation.
在一些態樣中,該第一結構化遮罩層的材料覆蓋置中地位於該活性層的該第一區域中之一第一部分。至少一個凹槽圍繞所述材料。在一些態樣中,當從上方觀看時,由該結構化遮罩層的材料覆蓋之該第一部分的形狀可以包括實質上圓形或橢圓形形式。替代地或附加地,當從上方觀看時,由該結構化遮罩層的材料覆蓋之該第一部分的形狀包括一個以上的環。該結構化遮罩層的材料之該一個以上的環被一各別環形凹槽包圍。因此,在一些情況下,該結構化遮罩層包括材料及凹槽的交替圓形部分,而材料及/或凹槽的寬度可以是不同的。In some embodiments, the material of the first structured mask layer covers a first portion centrally located in the first region of the active layer. At least one groove surrounds the material. In some embodiments, the shape of the first portion covered by the material of the structured mask layer can include a substantially circular or elliptical form when viewed from above. Alternatively or additionally, the shape of the first portion covered by the material of the structured mask layer includes more than one ring when viewed from above. The more than one ring of material of the structured mask layer is surrounded by a respective annular groove. Therefore, in some cases, the structured mask layer includes alternating circular portions of material and grooves, and the width of the material and/or grooves can be different.
在一些另外的情況下,用於修改該第一區域的第一部分及第二部分的該第一遮罩與用於該活性層中之該第二區域的量子井互相混合的遮罩分離。因此,在一些情況下提供一第二結構化遮罩層,以覆蓋該第一區域並暴露該活性層之該第二區域的頂面部分。然後,將摻雜物(特別是Zn及Mg中之一)擴散至該第二區域中,從而在該活性層的該第二個區域中引起量子井互相混合。在某些情況下,同時沉積該第一遮罩層及該第二遮罩層。In some other cases, the first mask for modifying the first and second portions of the first region is separate from the mask for quantum well intermixing in the second region of the active layer. Therefore, in some cases a second structured mask layer is provided to cover the first region and expose the top surface portion of the second region of the active layer. Then, a dopant (particularly one of Zn and Mg) is diffused into the second region, thereby causing quantum well intermixing in the second region of the active layer. In some cases, the first mask layer and the second mask layer are deposited simultaneously.
一些態樣係有關於該光電裝置的製備及該層疊的製備。在一些情況下,在該第二電荷載子傳輸層上設置一結構化蝕刻遮罩。然後,執行平台式蝕刻,以至少蝕刻該第二電荷載子傳輸層及該活性層。所得結構包括傾斜表面。該第二區域的外緣構成傾斜側面的一部分。上述平台式蝕刻可以在設置該第一結構化遮罩層之前執行。Some aspects relate to the preparation of the optoelectronic device and the preparation of the layer stack. In some cases, a structured etch mask is set on the second charge carrier transport layer. Then, a terrace etching is performed to etch at least the second charge carrier transport layer and the active layer. The resulting structure includes a tilted surface. The outer edge of the second region constitutes a portion of the tilted side surface. The above-mentioned terrace etching can be performed before setting the first structured mask layer.
可以進一步處理該等傾斜表面,以減少懸鍵、表面缺陷等。例如,可以在該等傾斜側面上沉積一介電層。作為一個替代方案,在某些情況下,在該等傾斜側面上再成長一半導體材料層,其中該半導體材料層的能隙大於該活性層的能隙。使用一再成長層可以減少該第二區域的整體尺寸以有利於該第一區域,直到該活性層的該第二區域實質上是該再成長層的界面為止。因此,該第二區域的總面積或尺寸可以相當小並且受限於與該活性層的邊緣相鄰的幾個層。The inclined surfaces may be further treated to reduce hanging bonds, surface defects, etc. For example, a dielectric layer may be deposited on the inclined side surfaces. As an alternative, in some cases, a layer of semiconductor material is regrown on the inclined side surfaces, wherein the energy gap of the semiconductor material layer is greater than the energy gap of the active layer. The use of a regrown layer can reduce the overall size of the second region in favor of the first region until the second region of the active layer is essentially the interface of the regrown layer. Thus, the total area or size of the second region can be quite small and limited to a few layers adjacent to the edge of the active layer.
在一些態樣中,形成一頂部接觸層,其具有配置在一發射表面上或相鄰於該發射表面且電連接至該第二電荷載子傳輸層的一透明導電層。In some embodiments, a top contact layer is formed having a transparent conductive layer disposed on or adjacent to an emitting surface and electrically connected to the second charge carrier transporting layer.
一些態樣係有關於該層堆及該活性層的製備。在一些情況下,磊晶成長該活性層的步驟包括磊晶成長複數個交替的量子井層及阻障層的步驟。該等阻擋層可以包含Al。在該等阻障層中的Al含量高於該等量子井層中之Al含量。Some aspects are related to the preparation of the layer stack and the active layer. In some cases, the step of epitaxially growing the active layer includes the step of epitaxially growing a plurality of alternating quantum well layers and barrier layers. The barrier layers may contain Al. The Al content in the barrier layers is higher than the Al content in the quantum well layers.
如上所述,可以根據期望的輻射場型來模擬該第一結構化遮罩。在這種情況下,提供該第一結構化遮罩層的步驟包括回應於評估複數個虛擬偶極子之期望分佈特性的遠場之模擬結果來結構化一遮罩層材料,每個虛擬偶極子代表該活性層的一小區域。As described above, the first structured mask can be simulated according to the desired radiation pattern. In this case, the step of providing the first structured mask layer includes structuring a mask layer material in response to simulation results of a remote field evaluating the desired distribution characteristics of a plurality of virtual dipoles, each virtual dipole representing a small area of the active layer.
以下實施例及實例揭露依據所提出原理的各種態樣及其組合。實施例及實例並不總是按比例來繪製的。同樣地,不同的元件可以在尺寸方面放大或縮小來顯示,以強調個別態樣。不言而喻,圖式中所示之實施例及實例的個別態樣可以在不需額外的費力且不與依據本發明的原理相矛盾之情況下彼此組合。一些態樣顯示規則的結構或形式。應該注意的是,實際上可能會出現與理想形式的輕微差異及偏差,但這並不與本發明概念相矛盾。The following embodiments and examples disclose various aspects and combinations thereof according to the proposed principles. The embodiments and examples are not always drawn to scale. Similarly, different elements may be shown enlarged or reduced in size to emphasize individual aspects. It goes without saying that individual aspects of the embodiments and examples shown in the drawings can be combined with each other without additional effort and without contradicting the principles according to the invention. Some aspects show regular structures or forms. It should be noted that slight differences and deviations from the ideal form may occur in practice, but this does not contradict the concept of the invention.
此外,各個圖式及態樣不一定以正確的尺寸來顯示,個別元素之間的比例基本上也不必是正確的。一些態樣藉由放大顯示來突顯。然而,諸如「在上方」、「在正上方」、「在下方」、「在正下方」、「較大」、「較小」等術語係圖式中元件的正確表示。因此,可根據圖式來推斷出元件之間的關係。In addition, the various figures and aspects are not necessarily shown in the correct size, and the proportions between individual elements are not necessarily correct. Some aspects are highlighted by enlarging the display. However, terms such as "above", "directly above", "below", "directly below", "larger", "smaller", etc. are correct representations of the elements in the figures. Therefore, the relationship between the elements can be inferred based on the figures.
圖1說明傳統的光電裝置,但是所提出的原理亦適用於具有成列與行之複數個µ-LED的完整陣列。這個光電裝置包括具有傾斜表面30、頂面以及底面的平台式蝕刻半導體本體。底面與高度p摻雜接觸層11形成底部接觸,在高度p摻雜接觸層11上沉積電荷載子傳輸層12。FIG1 illustrates a conventional optoelectronic device, but the proposed principle is also applicable to a complete array of multiple µ-LEDs arranged in rows and columns. The optoelectronic device comprises a terraced etched semiconductor body having an inclined surface 30, a top surface and a bottom surface. The bottom surface forms a bottom contact with a highly p-doped contact layer 11, on which a charge carrier transport layer 12 is deposited.
多量子井結構20配置在第一電荷載子傳輸層12上,並且包括複數個交替的阻障層及量子井層(這裡未詳細顯示)。光電裝置的頂側包括第二n摻雜電荷載子傳輸層14,隨後是在第二電荷載子傳輸層14上面的電流分佈層15。透明接觸層16(例如,導電金屬氧化物)沉積在電流分佈層15的半導體材料上面。接觸層16的頂面形成光電裝置的頂部發射表面19,但是光也從側面發射。The multi-quantum well structure 20 is arranged on the first charge carrier transport layer 12 and includes a plurality of alternating barrier layers and quantum well layers (not shown in detail here). The top side of the optoelectronic device includes a second n-doped charge carrier transport layer 14, followed by a current distribution layer 15 on top of the second charge carrier transport layer 14. A transparent contact layer 16 (e.g., a conductive metal oxide) is deposited on top of the semiconductor material of the current distribution layer 15. The top surface of the contact layer 16 forms the top emitting surface 19 of the optoelectronic device, but light is also emitted from the side.
傾斜側壁被個別絕緣材料31覆蓋,絕緣材料31從裝置的底側(即底部接觸層11)一直延伸至到接觸層16的頂面。在傾斜側壁30上之層31的材料包括絕緣透明材料,其亦在接觸層16的部分頂面上延伸。結果,主發射表面19可以稍微小於下面之電荷分佈層15的頂面之相應面積。然而,使用適當厚度的鈍化層31可以充當AR塗層,甚至增加光的輸出耦合。The sloping sidewalls are covered with a respective insulating material 31 extending from the bottom side of the device (i.e. the bottom contact layer 11) all the way to the top surface of the contact layer 16. The material of the layer 31 on the sloping sidewalls 30 comprises an insulating transparent material which also extends over part of the top surface of the contact layer 16. As a result, the main emitting surface 19 can be slightly smaller than the corresponding area of the top surface of the underlying charge distribution layer 15. However, with a suitable thickness the passivation layer 31 can act as an AR coating and even increase the outcoupling of light.
在依據圖1之光電裝置的操作中,從接觸層11的底側並且從頂側經由層16的透明導電金屬氧化物感應電荷載子。因此,所得的光電裝置類似於所謂的垂直µ-LED,其特徵在於:從兩個相對側將電荷載子注入。或者,光電裝置可以被實施為水平µ-LED,其中頂部接觸區域位於光電器件的同一側。In operation of the optoelectronic device according to FIG1 , charge carriers are induced from the bottom side of the contact layer 11 and from the top side via the transparent conductive metal oxide of layer 16. The resulting optoelectronic device is thus similar to a so-called vertical µ-LED, which is characterized in that charge carriers are injected from two opposite sides. Alternatively, the optoelectronic device can be implemented as a horizontal µ-LED, in which the top contact area is located on the same side of the optoelectronic device.
在操作中感應的個別電荷載子將分別擴散通過摻雜電荷載子傳輸層12及14,並且在活性層20及其多量子井結構中復合。由於光電裝置的小尺寸,可以採取像量子井互相混合或再成長的手段,以藉由在活性層20的側邊(亦即,層31與活性層20之間的界面)處提供電位障來增加光電裝置的量子效率。In operation, the induced individual charge carriers will diffuse through the doped charge carrier transport layers 12 and 14, respectively, and recombine in the active layer 20 and its multiple quantum well structure. Due to the small size of the optoelectronic device, measures such as intermixing or re-growth of quantum wells can be taken to increase the quantum efficiency of the optoelectronic device by providing an electric potential barrier at the side of the active layer 20 (i.e., the interface between layer 31 and the active layer 20).
當從上方觀看時,依據圖1的光電裝置類似於實質上圓形的形狀,其中主發射表面19存在於光電裝置的中心,具有大約5µm的直徑。例如,光電裝置的輻射場型將因此主要是等向性的,提供實質上相等的光分佈。When viewed from above, the optoelectronic device according to Fig. 1 resembles a substantially circular shape, wherein the main emitting surface 19 is present in the center of the optoelectronic device with a diameter of approximately 5 μm. For example, the radiation pattern of the optoelectronic device will therefore be mainly isotropic, providing a substantially equal light distribution.
這樣的結構所產生之遠場呈現在圖2中,其Lambertionality因數LF為1.24。如圖所示,遠場的光分佈在大約20°的角度處提供兩個最大值,而光輻射在中心周圍約0°角度範圍內下降約10%。因此,當直接從正面觀看時,與大約20°的角度相比,人們可能會感覺到稍小的亮度。當使用光學元件時,若考慮到這種現象會導致光學元件更加昂貴。The far field produced by such a structure is shown in Figure 2, and its Lambertionality factor LF is 1.24. As shown in the figure, the light distribution of the far field provides two maxima at an angle of about 20°, and the light radiation decreases by about 10% within an angle range of about 0° around the center. Therefore, when viewing directly from the front, people may feel slightly smaller brightness compared to an angle of about 20°. When using optical components, taking this phenomenon into consideration will cause the optical components to be more expensive.
本文提出的原理現在利用各種技術來改進光電裝置的輻射場型,並且更具體地,藉由局部地修改及改變裝置的活性區域來調整光電裝置的遠場,進而以期望的輻射場型發射光。圖3A及3B說明能夠對其輻射場型進行調整之這樣的修改之兩個實例。The principles presented herein now utilize various techniques to improve the radiation pattern of optoelectronic devices and, more specifically, to tune the far field of an optoelectronic device by locally modifying and changing the active area of the device to emit light with a desired radiation pattern. Figures 3A and 3B illustrate two examples of such modifications that can adjust its radiation pattern.
圖3A說明具有層堆的光電裝置,所述層堆包括第一電荷載子傳輸層12、第二電荷載子傳輸層14及配置在兩個電荷載子傳輸層之間的活性層20。更具體地,第一電荷載子傳輸層12沉積且配置在接觸及電流分佈層11上。電流分佈層11被高度摻雜以將電荷載子注入至電荷載子傳輸層12中。電荷載子傳輸層12及14沿著其厚度可以具有不同的摻雜物濃度。電荷載子傳輸層12及14中之摻雜物的任何分佈都有利於將電荷載子分配及注入至活性層20中。FIG3A illustrates an optoelectronic device having a layer stack including a first charge carrier transport layer 12, a second charge carrier transport layer 14, and an active layer 20 disposed between the two charge carrier transport layers. More specifically, the first charge carrier transport layer 12 is deposited and disposed on the contact and current distribution layer 11. The current distribution layer 11 is highly doped to inject charge carriers into the charge carrier transport layer 12. The charge carrier transport layers 12 and 14 may have different dopant concentrations along their thickness. Any distribution of dopants in the charge carrier transport layers 12 and 14 is beneficial to the distribution and injection of charge carriers into the active layer 20.
此外,可以提供小的未摻雜區域直接相鄰於活性層20的多量子井結構,並且特別是在電荷載子傳輸層12與活性層20之間,以防止n摻雜物從第一電荷載子傳輸層12不期望地擴散至活性層20中。可在裝置的n側上沉積超晶格結構。Furthermore, a small undoped region of the multi-quantum well structure may be provided directly adjacent to the active layer 20, and in particular between the charge carrier transport layer 12 and the active layer 20, to prevent undesired diffusion of n dopants from the first charge carrier transport layer 12 into the active layer 20. A superlattice structure may be deposited on the n-side of the device.
在第二電荷載子傳輸層14上面沉積另一個電荷分佈層15。在層15上沉積充當接觸層的透明金屬導電氧化層16。層16的頂面亦代表依據提出的原理之光電裝置的主發射表面19。A further charge distribution layer 15 is deposited on top of the second charge carrier transport layer 14. A transparent metal conductive oxide layer 16 is deposited on the layer 15, which acts as a contact layer. The top surface of the layer 16 also represents the main emitting surface 19 of the optoelectronic device according to the proposed principle.
在本實施例中的光電裝置包括平台式蝕刻側壁,其隨後被介電層31覆蓋。在俯視圖中,光電裝置具有圓形或多邊形狀,例如,六邊形或八邊形形狀。介電層31與活性層20之間的界面通常包括複數個懸鍵及其它非輻射復合中心,其通常降低光電裝置的整體量子效率。隨著裝置尺寸的縮小以及在某些材料系統中(主要起因於電荷載子的擴散長度),這種效應變得更大。對於某些材料系統,電荷載子的擴散長度可在光電裝置本身的相應尺寸之範圍內,或甚至比光電裝置本身的相應尺寸還長。結果,電荷載子可能在操作期間擴散至活性層20的外緣中,隨後在其界面的表面缺陷處被捕獲,並且接著非輻射地復合,從而降低整體量子效率。The optoelectronic device in this embodiment includes a terrace-type etched sidewall, which is subsequently covered by a dielectric layer 31. In a top view, the optoelectronic device has a circular or polygonal shape, for example, a hexagonal or octagonal shape. The interface between the dielectric layer 31 and the active layer 20 typically includes a plurality of dangling bonds and other non-radiative recombination centers, which typically reduce the overall quantum efficiency of the optoelectronic device. This effect becomes greater as the device size decreases and in certain material systems (primarily due to the diffusion length of charge carriers). For certain material systems, the diffusion length of charge carriers may be within the range of the corresponding size of the optoelectronic device itself, or even longer than the corresponding size of the optoelectronic device itself. As a result, charge carriers may diffuse into the outer edge of the active layer 20 during operation, be subsequently trapped at surface defects at its interface, and then recombine non-radiatively, thereby reducing the overall quantum efficiency.
為了增加其量子效率,利用量子井互相混合,而附加的p摻雜物材料在側邊處從第二電荷載子傳輸層14擴散至量子層20。擴散摻雜物材料(例如,Zn或Mg)會在活性層20的外部及側邊部分中導致量子井互相混合,從而增加活性層20中位於活性層20與介電層31之間的邊緣及界面處之能隙。這種量子井互相混合產生電位障,以防止電荷載子擴散至側邊。In order to increase its quantum efficiency, quantum well intermixing is utilized, and additional p-doped materials diffuse from the second charge carrier transporting layer 14 to the quantum layer 20 at the side. The diffused doping material (e.g., Zn or Mg) causes quantum well intermixing in the outer and side portions of the active layer 20, thereby increasing the energy gap at the edge and interface between the active layer 20 and the dielectric layer 31 in the active layer 20. This quantum well intermixing generates an electric potential barrier to prevent charge carriers from diffusing to the side.
依據所提出的原理,用於在側邊處引起量子井互相混合的摻雜物進一步用於局部地調整在活性層20的中心區域內之某些區域處的能隙。更具體地,活性層20實際上被分成第一中心區域21被第二區域22包圍,其中第二區域22亦包含在活性層20的界面與介電層31之間的量子井互相混合區域。然而,中心區域21亦包含局部部分41及41',在此處發生由附加摻雜物引起的量子井互相混合。為在第二區域22內互相混合之量子井的相鄰部分40可以或可以不完全側向地延伸至蝕刻平台30。According to the proposed principle, the dopants used to induce quantum well intermixing at the sides are further used to locally adjust the energy gap at certain regions within the central region of the active layer 20. More specifically, the active layer 20 is actually divided into a first central region 21 surrounded by a second region 22, wherein the second region 22 also includes a quantum well intermixing region between the interface of the active layer 20 and the dielectric layer 31. However, the central region 21 also includes local portions 41 and 41' where quantum well intermixing caused by additional dopants occurs. The adjacent portion 40 of the quantum well intermixing in the second region 22 may or may not completely extend laterally to the etched platform 30.
因此,在中心區域21中之第一部分41、41'的位置處產生局部電位障,以在其間的未摻雜區域42中捕獲電荷載子。當從上方觀看時,活性層20包括在第一區域中的複數個第二部分42,其在裝置的操作中會導致光發射;以及在第一區域中的複數個第一部分41,其在裝置的操作中會產生顯著減少的光發射或根本沒有光發射。Thus, a local potential barrier is generated at the location of the first portions 41, 41' in the central region 21 to capture charge carriers in the undoped region 42 therebetween. When viewed from above, the active layer 20 comprises a plurality of second portions 42 in the first region, which lead to light emission during operation of the device, and a plurality of first portions 41 in the first region, which lead to significantly reduced light emission or no light emission at all during operation of the device.
圖3B說明依據所提出原理之光電裝置的另一個實施例。此光電裝置件包括平台式蝕刻層堆,其具有兩個電荷載子傳輸層12及14以及在其間的活性層20。層堆的底面被接觸及電荷分佈層11覆蓋。形成主發射表面19的頂面包含透明金屬接觸層16的材料。光電裝置的側邊30係傾斜的且被鈍化層31覆蓋。作為量子井互相混合區域40的一個替代,這裡的再成長材料32以類似的方式防止非輻射表面復合。此未顯示進一步所需的製備步驟。FIG. 3B illustrates another embodiment of an optoelectronic device according to the proposed principle. This optoelectronic device comprises a terrace-type etched layer stack having two charge carrier transport layers 12 and 14 and an active layer 20 therebetween. The bottom surface of the layer stack is covered by a contact and charge distribution layer 11. The top surface forming the main emitting surface 19 comprises the material of the transparent metal contact layer 16. The side 30 of the optoelectronic device is inclined and covered by a passivation layer 31. As an alternative to the quantum well intermixing region 40, the regrown material 32 here prevents recombination of non-radiating surfaces in a similar manner. Further required preparation steps are not shown.
光電裝置的活性層20包括中心的第一區域21由第二區域22包圍,第二區域22形成傾斜側邊及與再成長材料32的界面。活性層20的第一區域21包括第一部分42及配置在其間的第二部分41(反之亦然)。第一部分42構造成用於光電裝置的光發射,而第二部分41在操作中表現出顯著減少的光發射。這是藉由修改在那些部分41內之能隙結構來實現的,在當前情況下是藉由將缺陷引入那些部分中來實現的。這些缺陷會導致電荷載子在沒有光發射的情況下進行復合或簡單地散射回到第一部分42中。The active layer 20 of the optoelectronic device comprises a central first region 21 surrounded by a second region 22, which forms the inclined side and the interface with the regrown material 32. The first region 21 of the active layer 20 comprises a first portion 42 and a second portion 41 arranged therebetween (or vice versa). The first portions 42 are configured for light emission of the optoelectronic device, while the second portions 41 exhibit significantly reduced light emission in operation. This is achieved by modifying the energy gap structure within those portions 41, in the present case by introducing defects into those portions. These defects cause the charge carriers to recombine or simply scatter back into the first portion 42 without light emission.
第二部分可以以不同的方式修改,其中一些方式呈現在本申請案中,但不限於此。除了已經說明摻雜物擴散至第二部分之外,還可以形成其凹槽,用絕緣材料或較高能隙材料填充這些凹槽。在兩種情況下,都會產生電位障,其以排斥方式將電荷載子捕獲在其間的第一部分42中。作為替代,或者此外,可以增加缺陷密度,使得電荷載子會在那些缺陷處散射或非輻射地復合。The second portion can be modified in different ways, some of which are presented in the present application, but are not limited thereto. In addition to the diffusion of dopants into the second portion as already described, recesses thereof can also be formed, filling these recesses with insulating materials or with higher energy gap materials. In both cases, an electric potential barrier is created, which traps charge carriers in the first portion 42 therebetween in a repulsive manner. Alternatively, or in addition, the defect density can be increased so that charge carriers scatter or recombine non-radiatively at those defects.
圖4A在活性層及其第一區域的俯視圖中說明形成局部產生的光M1、M2及M3之圖案的發射偶極子/發射活性區之三種可能配置。為了簡單起見,活性層的第一個區域具有圓形形狀。每個第一區域包括複數個第一部分42及複數個第二部分41,兩者均配置成圍繞中心的環。在三個可能的實施例中,第一區域的中心部分配置成發光,從而類似於第一部分42。FIG. 4A illustrates three possible configurations of emission dipoles/emitting active regions forming a pattern of locally generated light M1, M2 and M3 in a top view of an active layer and its first region. For simplicity, the first region of the active layer has a circular shape. Each first region comprises a plurality of first portions 42 and a plurality of second portions 41, both arranged as a ring around a center. In three possible embodiments, the central portion of the first region is arranged to emit light, thus similar to the first portion 42.
可以模擬圖4A所示之輻射場型。為此目的,第一區域的整個區域被分成複數個環,每個環具有相同的厚度。厚度可能取決於模擬解析度,但應取決於實際考量,亦即,各個環應足夠厚,以便在這樣的裝置之製造過程中進行製備。現在可以模擬去活化環(不發光的環)及活化環(發光的場型之環)並從中獲得遠場特性。The radiation pattern shown in FIG. 4A can be simulated. For this purpose, the entire area of the first region is divided into a plurality of rings, each of which has the same thickness. The thickness may depend on the simulation resolution, but should be determined by practical considerations, namely that the individual rings should be thick enough to be fabricated in the manufacturing process of such a device. It is now possible to simulate deactivated rings (rings that do not emit light) and activated rings (rings of the pattern that emit light) and obtain the far-field characteristics therefrom.
圖4B提供輻射場型M1、M2及和M3的遠場特性。可以觀察到,所有三種輻射場型藉由θ=0°的小角度處添加額外的最大值來修改圖2中所示之遠場。總體Lambertionality因數LF降至約1.1,相當於減少約13%。各個場型的曲線非常相似,這表示對於期望的或給定的遠場來說,複數個不同場型通常是可能的。FIG4B provides the far-field characteristics of the radiation patterns M1, M2 and M3. It can be observed that all three radiation patterns modify the far field shown in FIG2 by adding an additional maximum at a small angle of θ = 0°. The overall Lambertionality factor LF drops to about 1.1, which corresponds to a reduction of about 13%. The curves for the various patterns are very similar, indicating that for a desired or given far field, a plurality of different patterns are generally possible.
圖4C說明另外三種可能的輻射場型,其中Lambertionality因數LF等於1.1。對於低於1.15的值,已經發現在具有複數個環段(總共23個)的本設計中,那些環段中的大約50%必須被關閉。當然,甚至對於相同的Lambertionality因數LF,具有不同厚度的環段或提供不同的設計會導致不同的解決方案。此外,輻射場型以及特別是活化環段的位置及數量強烈地依賴於整體晶片設計。其它晶片設計或用於模擬輻射場型(例如,六邊形場型而不是圓環段場型)的不同設定會在活性層的不同部分在被去活化及活化的情況下會分別導致不同的結果。FIG. 4C illustrates three further possible radiation patterns, where the Lambertionality factor LF is equal to 1.1. For values below 1.15, it has been found that in the present design with a plurality of ring segments (23 in total), approximately 50% of those ring segments have to be switched off. Of course, even for the same Lambertionality factor LF, having ring segments of different thicknesses or providing different designs will lead to different solutions. Furthermore, the radiation pattern and in particular the position and number of active ring segments strongly depend on the overall chip design. Other chip designs or different settings for simulating the radiation pattern (e.g., a hexagonal pattern instead of a circular ring segment pattern) will lead to different results when different parts of the active layer are deactivated and activated, respectively.
在示例性場型M4中,幾乎所有環(包含中心)都已被去活化,僅留下兩個環存在。雖然這樣的輻射場型產生類似圖4B所示之遠場,但整體亮度會降低。因此,其它解決方案(例如,具有較大發光總面積的場型M5或M6)係較佳的。In the exemplary pattern M4, almost all the rings (including the center) have been deactivated, leaving only two rings. Although such a radiation pattern produces a far field similar to that shown in FIG. 4B, the overall brightness is reduced. Therefore, other solutions (e.g., patterns M5 or M6 with a larger total luminous area) are preferred.
在場型M5中,中心區域亦被去活化,而場型M6證明在開啟中心區域的情況下可以實現1.1的Lambertionality因數。在此,與其它場型M2及M3中的一些一樣,活化外環,導致活性層的相對大面積配置成用於光發射。因此,場型M2、M3及M6提供高亮度,同時維持低的Lambertionality因數LF。In the configuration M5, the central region is also deactivated, while the configuration M6 demonstrates that a Lambertionality factor of 1.1 can be achieved with the central region switched on. Here, as in some of the other configurations M2 and M3, the outer ring is activated, resulting in a relatively large area of the active layer being configured for light emission. Thus, the configurations M2, M3 and M6 provide high brightness while maintaining a low Lambertionality factor LF.
圖5A至5E說明依據所提出原理之製備光電裝置的第一實施例。5A to 5E illustrate a first embodiment of fabricating an optoelectronic device according to the proposed principle.
光電裝置實質上作為磊晶層堆成長在載體基板18上,載體基板18已事先適當地被準備用於磊晶成長。上面可以進行磊晶成長的典型基板包括藍寶石或Al2O3基板、GaN基板、GaAs基板等,部分取決於所使用的基材系統。載體基板可以在上面成長有一層或多層緩衝層,其用於提供光滑且無缺陷的表面或調整晶格常數與隨後使用之基材系統一致。The optoelectronic device is essentially grown as an epitaxial layer stack on a carrier substrate 18, which has been appropriately prepared for epitaxial growth. Typical substrates on which epitaxial growth can be performed include sapphire or Al2O3 substrates, GaN substrates, GaAs substrates, etc., depending in part on the substrate system used. The carrier substrate can have one or more buffer layers grown on it, which are used to provide a smooth and defect-free surface or to adjust the lattice constant to be consistent with the substrate system subsequently used.
在準備的基板18之頂面上沉積第一高度摻雜接觸層11。此層或隨後的層分別或以組合方式使用各種成長及沉積技術來磊晶沉積。這些技術包括但不限於化學氣相沉積(CVD)、物理氣相沉積(PVD)、原子層沉積(ALD)等。A first highly doped contact layer 11 is deposited on the top surface of the prepared substrate 18. This layer or subsequent layers are epitaxially deposited using various growth and deposition techniques, either individually or in combination. These techniques include, but are not limited to, chemical vapor deposition (CVD), physical vapor deposition (PVD), atomic layer deposition (ALD), etc.
接觸層11形成作為附加緩衝層,其隨後亦用於提供依據所提出原理之光電裝置的底部接觸。在接觸層11上面沉積n摻雜電荷載子傳輸層12。The contact layer 11 is formed as an additional buffer layer, which is subsequently also used to provide a bottom contact of the optoelectronic device according to the proposed principle. On top of the contact layer 11, an n-doped charge carrier transport layer 12 is deposited.
在這點上,術語「電荷載子傳輸層」可以包括具有各種材料組成物(例如,具有不同In、Ga或Al含量、不同或變化的摻雜物濃度等的三元或四元組成物)之一個以上的子層。熟悉該項技藝者將認識到實現這樣的電荷載子傳輸層的各種可能性。電荷載子傳輸層12構造成將電荷載子傳輸並注入活性區域20中。In this regard, the term "charge carrier transport layer" may include one or more sublayers having various material compositions (e.g., ternary or quaternary compositions with different In, Ga or Al contents, different or varying dopant concentrations, etc.). One skilled in the art will recognize various possibilities for realizing such a charge carrier transport layer. The charge carrier transport layer 12 is configured to transport and inject charge carriers into the active region 20.
形成活性區域20作為多量子井結構,其具有以交替順序彼此疊在一起之複數個阻障層25及量子井層24。本文說明複數個阻障層及量子井層24,但是可以使用較多或較少的那些層。本實施例中之多量子井結構包括像InGaAlN或InGaAlP的四元系。各別阻障層25及量子井層24之間的不同能隙係藉由在各別層中使用不同的鋁含量來實現。更具體地,較高的鋁含量通常導致較高的能隙。調整In含量會在活性層中造成一些應變。這可改變能隙,從而根據藉由調整QW厚度所造成的侷限變化產生不同顏色的光。最後,在多量子井結構20上面沉積p摻雜電荷載子傳輸層14。The active region 20 is formed as a multiple quantum well structure having a plurality of barrier layers 25 and quantum well layers 24 stacked on top of each other in an alternating order. A plurality of barrier layers and quantum well layers 24 are described herein, but more or fewer of those layers may be used. The multiple quantum well structure in the present embodiment includes a quaternary system like InGaAlN or InGaAlP. Different energy gaps between the individual barrier layers 25 and quantum well layers 24 are achieved by using different aluminum contents in the individual layers. More specifically, a higher aluminum content generally results in a higher energy gap. Adjusting the In content causes some strain in the active layer. This can change the energy gap, thereby producing different colors of light depending on the confinement changes caused by adjusting the QW thickness. Finally, a p-doped charge carrier transport layer 14 is deposited on the multi-quantum well structure 20.
在磊晶成長如圖5A所示之層堆之後,在第二電荷載子傳輸層14的頂面上沉積遮罩層材料60。遮罩層60作為用於量子井互相混合以及活性層20內之部分的選擇性去活化或活化之後續擴散製程的硬遮罩層。遮罩層材料60隨後被結構化以分別形成複數個凹槽61及62。After epitaxially growing the stack as shown in FIG5A, a mask layer material 60 is deposited on top of the second charge carrier transport layer 14. The mask layer 60 serves as a hard mask for subsequent diffusion processes for intermixing of quantum wells and selective deactivation or activation of portions within the active layer 20. The mask layer material 60 is then structured to form a plurality of recesses 61 and 62, respectively.
凹槽61及62暴露第二電荷載子傳輸層14的部分頂面。此外,凹槽62亦界定光電裝置的活性層20內之第二區域,第二區域圍繞具有第一部分及第二部分之第一區域。後者相應地由凹槽61及遮蔽材料界定。在圖5B中說明所產生的結構。在已經執行量子井互相混合之後進行後續平台式蝕刻製程的情況下,凹槽62亦可以界定光電裝置的邊界。The grooves 61 and 62 expose a portion of the top surface of the second charge carrier transport layer 14. In addition, the groove 62 also defines a second region within the active layer 20 of the optoelectronic device, the second region surrounding the first region having the first portion and the second portion. The latter is correspondingly defined by the groove 61 and the masking material. The resulting structure is illustrated in FIG. 5B. In the case of a subsequent terrace etching process after quantum well intermixing has been performed, the groove 62 can also define the boundaries of the optoelectronic device.
圖5C說明後續步驟。首先,將像Zn的附加p摻雜物沉積在第二電荷載子傳輸層14的暴露表面上。此沉積可以藉由使用在第一溫度下將Zn沉積在層14的頂面上之相應前驅物來實現。設定第一溫度以避免沉積在頂面上的Zn顯著地擴散至第二電荷載子傳輸層14中。此步驟允許精確量化沉積在各個暴露部分上之摻雜物的總量。在此製程的一個後續步驟中,調整其參數,亦即,升高溫度以引發頂面上的摻雜物擴散至第二電荷載子傳輸層14以及活性層20的個別阻障層24及量子井層25中。擴散過程由沉積在表面上之Zn量、溫度及擴散時間來進行控制。可以執行額外的表面處理或預處理步驟以最佳化量子井互相混合製程。5C illustrates the subsequent steps. First, additional p-doping, such as Zn, is deposited on the exposed surface of the second charge carrier transport layer 14. This deposition can be achieved by using a corresponding precursor for depositing Zn on the top surface of the layer 14 at a first temperature. The first temperature is set to avoid significant diffusion of the Zn deposited on the top surface into the second charge carrier transport layer 14. This step allows accurate quantification of the total amount of dopants deposited on each exposed portion. In a subsequent step of this process, its parameters are adjusted, i.e. the temperature is increased to induce diffusion of the dopants on the top surface into the second charge carrier transport layer 14 and the respective barrier layer 24 and quantum well layer 25 of the active layer 20. The diffusion process is controlled by the amount of Zn deposited on the surface, the temperature and the diffusion time. Additional surface treatment or pre-treatment steps can be performed to optimize the quantum well intermixing process.
選擇製程參數,使得在活性層20的個別部分40及41中發生量子井互相混合。更具體地,在活性層的部分40處之量子井互相混合類似於在平台式蝕刻製程步驟中形成之光電裝置的邊緣及邊界處之傳統量子井互相混合。The process parameters are selected such that quantum well intermixing occurs in the individual portions 40 and 41 of the active layer 20. More specifically, the quantum well intermixing at the portion 40 of the active layer is similar to conventional quantum well intermixing at the edges and boundaries of an optoelectronic device formed in a mesa etching process step.
相反地,量子井互相混合的部分41代表活性層20的第一個區域內之第一部分,其被去活化而不再配置成在裝置的操作中發光。在量子井互相混合的部分41之間的部分42沒有被摻雜且它們的能隙實質上維持不變。因此,在裝置的操作中,這些部分42代表活性層20的第一區域中之配置成發光的部分。In contrast, the quantum well intermixed portions 41 represent the first portion within the first region of the active layer 20 that is deactivated and no longer configured to emit light during operation of the device. Portions 42 between the quantum well intermixed portions 41 are not doped and their energy gaps remain substantially unchanged. Therefore, during operation of the device, these portions 42 represent portions of the first region of the active layer 20 that are configured to emit light.
在遮罩層60的設計及模擬中必須先驗地考量摻雜物可能以非直線方式在結構化遮罩層60下方擴散至活性層20中的情況,以便在活性層20內實現適當界定的第一部分及第二部分。最佳化的擴散製程可以完全防止擴散不足且允許摻雜物以實質上直線的方式擴散至活性層中。這將在活性層20內提供適當界定的第一部分及第二部分。活化部分係那些沒有擴散有附加摻雜物的那些部分,而在包含Zn作為摻雜物的部分中,將發生量子井互相混合,因此被稱為去活化部分。當從上方觀看時,整體結構類似於光電裝置之先前模擬及期望的輻射場型。此外,第二區域14亦包括一個量子井互相混合區域,從而防止電荷載子到達光電裝置的外緣及邊界。In the design and simulation of the mask layer 60, it must be considered a priori that the dopant may diffuse into the active layer 20 in a non-linear manner under the structured mask layer 60 in order to achieve a properly defined first and second portion within the active layer 20. An optimized diffusion process can completely prevent underdiffusion and allow the dopant to diffuse into the active layer in a substantially linear manner. This will provide a properly defined first and second portion within the active layer 20. The activated portions are those portions in which no additional dopant is diffused, while in the portions containing Zn as a dopant, quantum well intermixing will occur, and are therefore referred to as deactivated portions. When viewed from above, the overall structure resembles the previously simulated and expected radiation field pattern of the optoelectronic device. In addition, the second region 14 also includes a quantum well intermixing region, thereby preventing the charge carriers from reaching the periphery and boundaries of the optoelectronic device.
圖5D說明已經依據所提出原理進行製備之光電裝置的俯視圖。FIG. 5D illustrates a top view of an optoelectronic device that has been fabricated according to the proposed principles.
在此具體實施例中,光電裝置形成有矩形形狀的第二區域40。光電裝置包括平台式蝕刻側壁,使得量子井互相混合藉由建立電位障來防止注入的電荷載子到達側邊。In this embodiment, the optoelectronic device is formed with a rectangular shaped second region 40. The optoelectronic device includes terrace etched sidewalls to allow intermixing of quantum wells by creating potential barriers to prevent injected charge carriers from reaching the sides.
接在光電裝置的邊緣及外部區域之後,活性層20的第一區域中之個別部分41及42從鄰近外部邊緣40開始交替,其中中心部分42未被摻雜而配置成用於光發射。配置成用於發光或不用於發光之個別矩形結構的厚度係不同的且已經被計算以獲得期望的輻射場型。Following the edge and the outer region of the optoelectronic device, individual portions 41 and 42 in the first region of the active layer 20 alternate starting from near the outer edge 40, wherein the central portion 42 is undoped and configured for light emission. The thickness of the individual rectangular structures configured for light emission or not is different and has been calculated to obtain the desired radiation pattern.
在從第二電荷載子傳輸層14移除遮罩層60之後,在頂面上沉積p摻雜電流分佈層15,接著沉積透明金屬氧化物接觸層16。圖5E所示之取得結構在光電裝置的中心第一區域21內包括複數個量子井互相混合部分。第一區域21被第二區域22圍繞,其中第二區域22包括相鄰於裝置的側邊之活性層20的量子井互相混合區域。在裝置的操作中,活性層20的第一區域中之部分42配置成發射光,而第一區域中之量子井互相混合部分41將完全不發射任何光或至少顯著地減少光的發射。所得場型提供由光電裝置發射之光的修改遠場分佈。After removing the mask layer 60 from the second charge carrier transport layer 14, a p-doped current distribution layer 15 is deposited on the top surface, followed by a transparent metal oxide contact layer 16. The resulting structure shown in Figure 5E includes a plurality of quantum well intermixing portions in a central first region 21 of the optoelectronic device. The first region 21 is surrounded by a second region 22, wherein the second region 22 includes a quantum well intermixing region of the active layer 20 adjacent to the side of the device. In operation of the device, a portion 42 in the first region of the active layer 20 is configured to emit light, while the quantum well intermixing portion 41 in the first region will not emit any light at all or at least significantly reduce the emission of light. The resulting field pattern provides a modified far-field distribution of light emitted by the optoelectronic device.
圖6A至6D說明依據所提出的原理製備光電裝置的另一個實施例。圖6A所示之層堆主要類似於圖5A之先前描述的層堆,其具有沉積在載體基板18上的接觸層11以及沉積在層11上面的電荷載子傳輸層12。圖6A的活性層20亦包括複數個交替的阻障層及量子井層。活性層20包括作為材料系統的InGaAlP,阻障層及量子井層具有不同的Al含量及可選In含量,其中需要不同的可選In含量,以實現活性區域設計的波長匹配。與先前的實施例相比,遮罩層60的材料直接沉積在活性層20的最後子層上且接著如圖6A所示進行結構化。Figures 6A to 6D illustrate another embodiment of preparing an optoelectronic device according to the proposed principle. The layer stack shown in Figure 6A is mainly similar to the previously described layer stack of Figure 5A, having a contact layer 11 deposited on a carrier substrate 18 and a charge carrier transport layer 12 deposited on layer 11. The active layer 20 of Figure 6A also includes a plurality of alternating barrier layers and quantum well layers. The active layer 20 includes InGaAlP as a material system, the barrier layers and quantum well layers having different Al contents and optional In contents, wherein different optional In contents are required to achieve wavelength matching of the active area design. Compared to the previous embodiments, the material of the mask layer 60 is directly deposited on the last sublayer of the active layer 20 and then structured as shown in Figure 6A.
依據本發明,將修改活性層之位於由結構化遮罩60暴露的表面下方的部分,以便防止從那裡發射光。According to the present invention, the portion of the active layer below the surface exposed by the structured mask 60 is modified to prevent light from being emitted therefrom.
為此目的,如圖6B所示,可以蝕刻活性層20的暴露部分,亦即,蝕刻阻障層及量子井層的暴露部分。深度可以變化,但是要足以顯著地減少從那些部分發射光。圖6B所示之取得結構在活性層材料內形成複數個凹槽;在裝置的操作中,在這些凹槽處不會發生電荷載子復合。在此亦可以藉由適當的附加手段來防止因例如層20中之蝕刻損壞、懸鍵等而導致的表面復合。For this purpose, as shown in FIG. 6B , exposed portions of the active layer 20, i.e. exposed portions of the barrier layer and the quantum well layer, can be etched. The depth can vary, but is sufficient to significantly reduce the light emitted from those portions. The resulting structure shown in FIG. 6B forms a plurality of recesses in the active layer material; during operation of the device, no recombination of charge carriers occurs at these recesses. Surface recombination due to, for example, etching damage, hanging keys, etc. in layer 20 can also be prevented by appropriate additional means.
類似於先前的實施例,活性層20內之蝕刻部分62的橫向尺寸由遮罩層來界定且遵循先前模擬的輻射場型。隨後,如圖6C所示,以絕緣層材料70填充凹槽62。絕緣層材料70完全填充凹槽62,而且亦在活性層20之最上面子層的頂面上提供少量絕緣層。在後續步驟中,移除在主動源層20上面的絕緣層材料,而不移除在凹槽62內的絕緣材料。用材料填充凹槽的製程可以採用再成長製程,但亦可以應用其它技術。Similar to the previous embodiment, the lateral dimensions of the etched portion 62 within the active layer 20 are defined by the mask layer and follow the previously simulated radiation pattern. Subsequently, as shown in Figure 6C, the groove 62 is filled with an insulating layer material 70. The insulating layer material 70 completely fills the groove 62 and also provides a small amount of insulating layer on the top surface of the uppermost sublayer of the active layer 20. In a subsequent step, the insulating layer material above the active source layer 20 is removed without removing the insulating material within the groove 62. The process of filling the groove with material can adopt a re-growth process, but other techniques can also be applied.
在本實施例中使用絕緣層材料。然而,亦可以利用能隙超過活性層材料的能隙之半導體材料。在這兩種情況下,減少那些部分內之電荷載子的復合,並且建立電位障以將電荷載子捕獲在已填充凹槽之間的部分42中。In the present embodiment, an insulating layer material is used. However, semiconductor materials with energy gaps exceeding the energy gap of the active layer material can also be used. In both cases, recombination of charge carriers in those portions is reduced and an electrical potential barrier is established to trap charge carriers in the portions 42 between the filled grooves.
現在參考圖6D,其說明所提出之製備方法的後續步驟。在活性層20及填充有材料的凹槽上沉積第二電荷載子傳輸層14的材料。在某些情況下,可以先沉積少量未摻雜材料的阻擋層,以防止第二電荷載子傳輸層之的摻雜子層的摻雜物擴散至活性層或填充在凹槽內的材料中。Referring now to FIG. 6D , the subsequent steps of the proposed preparation method are illustrated. The material of the second charge carrier transport layer 14 is deposited on the active layer 20 and the grooves filled with the material. In some cases, a small amount of a barrier layer of undoped material may be deposited first to prevent the dopant of the doped layer of the second charge carrier transport layer from diffusing into the active layer or the material filled in the grooves.
類似於先前的實施例,在其上沉積接觸或電荷載子分佈層15。完成的結構包括活性層20,其具有未修改的第一部分42及第二部分41;在裝置的操作中,僅在第二部分41處減少光發射或根本沒有光發射。各個部分的橫向尺寸產生特定的輻射場型,所述輻射場型將提供按期望的需要最佳化的遠場。Similar to the previous embodiments, a contact or charge carrier distribution layer 15 is deposited thereon. The finished structure comprises an active layer 20 having an unmodified first portion 42 and a second portion 41; in operation of the device, light emission is reduced or absent only at the second portion 41. The lateral dimensions of the various portions produce a specific radiation pattern that will provide a far field optimized to the desired needs.
可以進一步處理光電裝置,亦即,對其進行平台式蝕刻,以形成複數個分離的光電裝置。The optoelectronic device may be further processed, ie, beta-etched, to form a plurality of separate optoelectronic devices.
1:光電裝置 11:接觸層 12,14:電荷載子傳輸層 15:電荷分佈層 16:接觸層 18:載體基板 19:頂部發射表面 20:活性層 21:第一區域 22:第二區域 24:量子井層 25:阻障層 30:傾斜側壁 31:鈍化層 32:再成長材料 40:量子井互相混合區域 41,41':第二部分 42:第一部分 60:遮罩層 61:移除的遮罩層 62:凹槽 70:絕緣層材料 1: Photoelectric device 11: Contact layer 12,14: Charge carrier transport layer 15: Charge distribution layer 16: Contact layer 18: Carrier substrate 19: Top emitting surface 20: Active layer 21: First region 22: Second region 24: Quantum well layer 25: Barrier layer 30: Inclined sidewall 31: Passivation layer 32: Regrown material 40: Quantum well intermixing region 41,41': Second part 42: First part 60: Mask layer 61: Removed mask layer 62: Groove 70: Insulating layer material
依據所提出原理之另外的態樣及實施例相對於結合所附圖式詳細描述之各種實施例及實例將變得顯而易見,其中 圖1顯示被實施為µ-LED之傳統光電裝置的實施例; 圖2說明圖1的光電裝置之模擬遠場; 圖3A顯示依據所提出原理之一些態樣的光電裝置之第一實施例; 圖3B說明依據所提出原理之一些態樣的光電裝置之第二實施例; 圖4A顯示個別光電裝置的活性層之圖案化第一區域的不同俯視圖,以概述所提出原理的一些態樣; 圖4B說明依據所提出原理的一些態樣之圖4A的光電裝置之遠場及輻射場型; 圖4C顯示個別光電裝置的活性層之圖案化第一區域的不同俯視圖,以概述所提出原理的一些態樣; 圖5A至5E說明依據所提出原理的一些態樣之製備光電裝置的一些步驟; 圖6A至6D顯示依據所提出原理的一些態樣之製備光電裝置的一些步驟。 Additional aspects and embodiments according to the proposed principles will become apparent from the various embodiments and examples described in detail in conjunction with the accompanying drawings, in which FIG. 1 shows an embodiment of a conventional optoelectronic device implemented as a µ-LED; FIG. 2 illustrates a simulated far field of the optoelectronic device of FIG. 1 ; FIG. 3A shows a first embodiment of an optoelectronic device according to some aspects of the proposed principles; FIG. 3B illustrates a second embodiment of an optoelectronic device according to some aspects of the proposed principles; FIG. 4A shows different top views of a patterned first region of an active layer of individual optoelectronic devices to outline some aspects of the proposed principles; FIG. 4B illustrates the far field and radiation pattern of the optoelectronic device of FIG. 4A according to some aspects of the proposed principles; FIG. 4C shows different top views of the patterned first region of the active layer of each optoelectronic device to outline some aspects of the proposed principle; FIGS. 5A to 5E illustrate some steps of preparing an optoelectronic device according to some aspects of the proposed principle; FIGS. 6A to 6D show some steps of preparing an optoelectronic device according to some aspects of the proposed principle.
1:光電裝置 1: Optoelectronic devices
12,14:電荷載子傳輸層 12,14: Charge carrier transport layer
15:電荷分佈層 15: Charge distribution layer
16:接觸層 16: Contact layer
19:頂部發射表面 19: Top emitting surface
20:活性層 20: Active layer
21:第一區域 21: First area
22:第二區域 22: Second area
24:量子井層 24: Quantum Well Layer
25:阻障層 25: Barrier layer
30:傾斜側壁 30: Leaning sidewalls
31:鈍化層 31: Passivation layer
40:量子井互相混合區域 40: Quantum well intermixing region
41,41':第二部分 41,41': Part 2
42:第一部分 42: Part 1
Claims (25)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
WOPCT/EP2023/052084 | 2023-01-27 | ||
PCT/EP2023/052084 WO2024156371A1 (en) | 2023-01-27 | 2023-01-27 | Optoelectronic device and method for manufacturing the same |
Publications (1)
Publication Number | Publication Date |
---|---|
TW202445884A true TW202445884A (en) | 2024-11-16 |
Family
ID=85150946
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW113102428A TW202445884A (en) | 2023-01-27 | 2024-01-22 | Optoelectronic device and method for processing the same |
Country Status (2)
Country | Link |
---|---|
TW (1) | TW202445884A (en) |
WO (1) | WO2024156371A1 (en) |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB201420452D0 (en) | 2014-11-18 | 2014-12-31 | Mled Ltd | Integrated colour led micro-display |
CN114730824A (en) * | 2019-09-20 | 2022-07-08 | 奥斯兰姆奥普托半导体股份有限两合公司 | Optoelectronic components, semiconductor structures and methods |
DE102019131422A1 (en) * | 2019-11-21 | 2021-05-27 | OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung | Optoelectronic component and method for its production |
DE102020113716A1 (en) | 2020-05-20 | 2021-11-25 | Bayerische Motoren Werke Aktiengesellschaft | Dashboard for automobiles with micro-LED display |
CN111916536B (en) * | 2020-07-29 | 2024-08-23 | 华南理工大学 | Micron-sized forward-mounted LED device with micron-sized hole array and preparation method thereof |
EP4352797A1 (en) * | 2021-06-08 | 2024-04-17 | ams-OSRAM International GmbH | Optoelectronic device and method for processing the same |
-
2023
- 2023-01-27 WO PCT/EP2023/052084 patent/WO2024156371A1/en unknown
-
2024
- 2024-01-22 TW TW113102428A patent/TW202445884A/en unknown
Also Published As
Publication number | Publication date |
---|---|
WO2024156371A1 (en) | 2024-08-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5037169B2 (en) | Nitride-based semiconductor light-emitting device and manufacturing method thereof | |
EP2912698B1 (en) | Nanowire sized opto-electronic structure and method for modifying selected portions of same | |
CN112397621B (en) | Epitaxial wafer of ultraviolet light emitting diode and preparation method thereof | |
US8501510B2 (en) | Optoelectronic component with three-dimension quantum well structure and method for producing the same | |
TW201145575A (en) | Method of fabricating a vertical light emitting diode (LED) | |
JP2023510976A (en) | Micro LED and its manufacturing method | |
TWI497762B (en) | Method for manufacturing an optoelectronic semiconductor wafer | |
JP2023536363A (en) | LED device and method for manufacturing LED device | |
JP7701994B2 (en) | Optoelectronic devices and methods for fabricating same | |
JP5777343B2 (en) | Surface emitting laser and manufacturing method thereof | |
KR20220140608A (en) | High-resolution monolithic RGB array | |
CN118369765A (en) | Optoelectronic device, optoelectronic device and method for manufacturing the device | |
TW202445884A (en) | Optoelectronic device and method for processing the same | |
JP2024531317A (en) | Method and optoelectronic device | |
CN117916882A (en) | Optoelectronic devices and optoelectronic semiconductor devices | |
JP7656735B2 (en) | Optoelectronic devices and methods for processing same | |
WO2024156597A1 (en) | Optoelectronic device and method for processing the same | |
KR101295468B1 (en) | Light emitting device and method of fabricating the same | |
CN113892193B (en) | Method for manufacturing semiconductor device and optoelectronic device | |
US20230420483A1 (en) | Etch protection and quantum mechanical isolation in light emitting diodes | |
JP2023010072A (en) | Semiconductor light-emitting element, vehicle lamp, and method for manufacturing semiconductor light-emitting element | |
WO2025073587A1 (en) | µLED ARRANGEMENT AND METHOD FOR PRODUCING THE SAME | |
US20220123172A1 (en) | Optoelectronic semiconductor device comprising first and second regions of a first semiconductor layer and method for manufacturing an optoelectronic semiconductor device | |
TW202343823A (en) | Segmented and quantum mechanically isolated active regions in light emitting diodes | |
WO2024052295A1 (en) | Optoelectronic device and method for processing the same |