TW202445514A - Method for monitoring brightness chances in images and device thereof - Google Patents
Method for monitoring brightness chances in images and device thereof Download PDFInfo
- Publication number
- TW202445514A TW202445514A TW112116580A TW112116580A TW202445514A TW 202445514 A TW202445514 A TW 202445514A TW 112116580 A TW112116580 A TW 112116580A TW 112116580 A TW112116580 A TW 112116580A TW 202445514 A TW202445514 A TW 202445514A
- Authority
- TW
- Taiwan
- Prior art keywords
- image
- brightness
- mask
- grayscale value
- images
- Prior art date
Links
- 238000012544 monitoring process Methods 0.000 title claims abstract description 26
- 238000000034 method Methods 0.000 title claims abstract description 21
- 230000000873 masking effect Effects 0.000 claims abstract description 6
- 238000012360 testing method Methods 0.000 claims description 6
- 238000010586 diagram Methods 0.000 description 8
- 238000005516 engineering process Methods 0.000 description 7
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 5
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 5
- 238000001514 detection method Methods 0.000 description 3
- 101000827703 Homo sapiens Polyphosphoinositide phosphatase Proteins 0.000 description 2
- 102100023591 Polyphosphoinositide phosphatase Human genes 0.000 description 2
- 101100012902 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FIG2 gene Proteins 0.000 description 2
- 238000010191 image analysis Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 239000000969 carrier Substances 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30232—Surveillance
Landscapes
- Closed-Circuit Television Systems (AREA)
- Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)
- Image Analysis (AREA)
Abstract
Description
本發明是有關於一種應用於工業自動化的圖像識別技術,且特別是有關於一種監控圖像中亮度改變的方法及其裝置。The present invention relates to an image recognition technology applied to industrial automation, and in particular to a method and device for monitoring brightness changes in an image.
在工業自動化(Automation)技術中,自動化設備機台常利用影像擷取技術進行物件檢測、圖像中特徵點擷取、工件對位…等操作,而影像的擷取會受到拍攝環境及影像擷取時使用的參數所影響。換言之,維持拍攝環境的穩定是影像擷取技術應用於工業自動化技術中的重要因素。In industrial automation technology, automated equipment often uses image capture technology to perform operations such as object detection, feature point capture in images, and workpiece alignment. Image capture is affected by the shooting environment and the parameters used when capturing the image. In other words, maintaining a stable shooting environment is an important factor in the application of image capture technology in industrial automation technology.
目前可利用影像分析監測結合人員識別的方式來確認拍攝環境的穩定。舉例而言,可對拍攝影像的關鍵區域進行亮度或是銳利度等參數的監控,並讓人員確認以確保前述環境沒有因為外在因素(例如,人為調整/相機光圈設定被調整…等)而變異,或可透過人員識別來避開一些物料或背景在正常情況下即有亮度/銳利度的變異區域,確保所取得區域的圖像數值不受到前述因素影響而具備足夠的參考價值。然而,以人員識別的方式常有誤差,甚至常有失誤發生,導致前述影像分析監測的準確率受到質疑。Currently, image analysis monitoring combined with personnel identification can be used to confirm the stability of the shooting environment. For example, parameters such as brightness or sharpness can be monitored in key areas of the captured image, and personnel can be asked to confirm to ensure that the aforementioned environment has not changed due to external factors (for example, human adjustment/camera aperture setting adjustment, etc.), or some materials or backgrounds that normally have brightness/sharpness variation areas can be avoided through personnel identification to ensure that the image values of the acquired area are not affected by the aforementioned factors and have sufficient reference value. However, errors and even mistakes often occur in the method of personnel identification, which has led to doubts about the accuracy of the aforementioned image analysis monitoring.
本發明提供一種監控圖像中亮度改變的方法及其裝置,其可自動地忽略圖像中不具參考價值或具備較低參考價值的區域,並利用圖像中具參考價值的區域來判斷圖像亮度是否改變,以在工業自動化技術中節約人力並降低人為錯誤的機率。The present invention provides a method and device for monitoring brightness changes in an image, which can automatically ignore areas in the image that have no reference value or have a lower reference value, and use areas in the image that have a reference value to determine whether the image brightness has changed, so as to save manpower and reduce the probability of human error in industrial automation technology.
本發明實施例所述的一種監控圖像中亮度改變的方法包括以下步驟:經由圖像擷取裝置以從擷取區域擷取並獲得多個第一圖像;依據所述多個第一圖像產生忽略遮罩;依據所述多個第一圖像產生灰階平均圖像,且藉由所述忽略遮罩遮蔽所述灰階平均圖像以獲得參考圖像;經由所述影像擷取裝置從所述擷取區域擷取第二圖像;藉由所述忽略遮罩遮蔽所述第二圖像,並將經遮蔽的所述第二圖像減去所述參考圖像中各像素位置的灰階值以獲得待測圖像;以及依據所述待測圖像判斷所述第二圖像中的亮度是否改變。A method for monitoring brightness changes in an image described in an embodiment of the present invention includes the following steps: capturing and obtaining multiple first images from a capture area through an image capture device; generating an ignore mask based on the multiple first images; generating a grayscale average image based on the multiple first images, and masking the grayscale average image by the ignore mask to obtain a reference image; capturing a second image from the capture area through the image capture device; masking the second image by the ignore mask, and subtracting the grayscale value of each pixel position in the reference image from the masked second image to obtain an image to be tested; and determining whether the brightness in the second image has changed based on the image to be tested.
本發明實施例所述的一種監控圖像中亮度改變的裝置包括圖像擷取裝置及處理器。圖像擷取裝置用以從擷取區域擷取多個第一圖像及第二圖像。處理器耦接所述圖像擷取裝置。處理器經配置以:經由所述圖像擷取裝置從擷取區域擷取並獲得多個第一圖像,依據所述多個第一圖像產生忽略遮罩,依據所述多個第一圖像產生灰階平均圖像,且藉由所述忽略遮罩遮蔽所述灰階平均圖像以獲得參考圖像,經由所述影像擷取裝置以從所述擷取區域擷取第二圖像,藉由所述忽略遮罩遮蔽所述第二圖像,並將經遮蔽的所述第二圖像減去所述參考圖像中各像素位置的灰階值以獲得待測圖像,以及依據所述待測圖像判斷所述第二圖像中的亮度是否改變。The device for monitoring brightness change in an image described in an embodiment of the present invention comprises an image capturing device and a processor. The image capturing device is used to capture a plurality of first images and second images from a capture area. The processor is coupled to the image capturing device. The processor is configured to: capture and obtain multiple first images from a capture area through the image capture device, generate an ignore mask based on the multiple first images, generate a grayscale average image based on the multiple first images, and mask the grayscale average image by the ignore mask to obtain a reference image, capture a second image from the capture area through the image capture device, mask the second image by the ignore mask, and subtract the grayscale value of each pixel position in the reference image from the masked second image to obtain a test image, and determine whether the brightness in the second image changes based on the test image.
基於上述,本發明實施例所述的監控圖像中亮度改變的方法及其裝置利用圖像擷取裝置所獲得的圖像自動地計算並產生不具參考價值或具備較低參考價值的圖像遮罩作為忽略遮罩,以去除掉圖像中可能誤判圖像亮度的區域。然後,利用此忽略遮罩來對其他圖像進行遮蔽及作為圖像的亮度改變的參考,以達到近乎全自動化監控圖像亮度,以節約人力並降低人為錯誤的機率。Based on the above, the method and device for monitoring brightness changes in images described in the embodiments of the present invention use the images obtained by the image capture device to automatically calculate and generate an image mask with no reference value or with a lower reference value as an ignore mask to remove the area in the image that may misjudge the image brightness. Then, the ignore mask is used to mask other images and serve as a reference for the brightness change of the image, so as to achieve nearly fully automatic monitoring of image brightness, save manpower and reduce the probability of human error.
圖1是依照本發明一實施例的一種監控圖像中亮度改變的裝置100的裝置示意圖。監控圖像中亮度改變的裝置100包括圖像擷取裝置110以及處理器120。圖像擷取裝置110用以從擷取區域109擷取圖像。詳細來說,如圖1所示,工業自動化設備具備載具105,載具105上方放置物件107(例如,PCB板)。擷取區域109中包括有載具105的一部分及物件107的一部分。FIG. 1 is a schematic diagram of a
圖像擷取裝置110從擷取區域109擷取圖像,這些圖像在本實施例中可用於進行圖像中亮度改變的監控以外,還可用來作為進行物件檢測、圖像中特徵點擷取、工件對位…等工業自動化中影像處理技術所使用的圖像。The
處理器120耦接並控制圖像擷取裝置120。記憶體130耦接處理器120以暫存圖像及正在處理中的相應資料。處理器120用以執行符合本發明實施例所述監控圖像中亮度改變的方法。The
在正常情況下,因不同產品載具、物料或背景可能會有亮度/銳利度的變異或瑕疵區域,而這些區域在圖像上難以作為判斷圖像亮度改變的參考。另外,擷取區域109中的某些區域因為亮度已經飽和,若是亮度再提高,此些區域仍難以有明顯改變。同理,擷取區域109中的某些區域因為亮度已經過暗或極低,若是亮度再降低,此些區域仍難以有明顯改變。Under normal circumstances, different product carriers, materials or backgrounds may have brightness/sharpness variations or defective areas, and these areas are difficult to use as a reference for judging image brightness changes. In addition, some areas in the
因此,本實施例所述監控圖像中亮度改變的裝置及方法透過比較所蒐集的圖像之間灰階差異較大的像素位置產生相對應的忽略遮罩,從而利用此忽略遮罩去除可能作為圖像亮度誤判的區域後,再將經由忽略遮罩遮蔽後的圖像與正常圖像的平均亮度進行比較,從而達成自動化監控圖像亮度是否改變的功能。Therefore, the device and method for monitoring brightness changes in images described in this embodiment generates a corresponding ignore mask by comparing the pixel positions with larger grayscale differences between the collected images, and then uses this ignore mask to remove areas that may be misjudged as image brightness. The image masked by the ignore mask is then compared with the average brightness of a normal image, thereby achieving the function of automatically monitoring whether the image brightness has changed.
圖2是依照本發明一實施例的一種監控圖像中亮度改變的方法200的流程圖。圖3是方法200中各圖像的示意圖。圖2可適用於圖1監控圖像中亮度改變的裝置100,且方法200主要透過圖1處理器120實現。Fig. 2 is a flow chart of a
請同時參閱圖2與圖3,於步驟S210中,圖1處理器120經由圖1圖像擷取裝置110以從擷取區域109擷取並獲得多個第一圖像310。本實施例所述的多個第一圖像310及後文所述的第二圖像320皆由圖1圖像擷取裝置110所擷取,為方便後續說明而將這些圖像以不同名稱標示。Please refer to FIG. 2 and FIG. 3 together. In step S210, the
於步驟S220中,圖1處理器120依據這些第一圖像310計算並產生忽略遮罩315。本實施例是利用擷取時間相近的兩個第一圖像310作為本發明實施例中用以產生忽略遮罩315的基礎圖像。然則,只要是由圖1圖像擷取裝置110擷取的圖像,皆可作為本發明實施例產生忽略遮罩315的基礎圖像,並不受限於此。於後續實施例(如,圖4與圖5及相應描述)將詳細說明如何利用依序擷取的兩個第一圖像310計算並產生忽略遮罩315。In step S220, the
於步驟S230中,圖1處理器120依據這些第一圖像310計算並產生灰階平均圖像317,並且藉由忽略遮罩315遮蔽灰階平均圖像317以獲得參考圖像319。本實施例是以經蒐集的多個第一圖像310中每個像素位置的灰階值進行平均以產生灰階平均圖像317,並且利用前述忽略遮罩315將灰階平均圖像317中參考價值低的區域遮蔽,從而產生參考圖像319。參考圖像319主要是記錄灰階平均圖像317中並未被忽略遮罩315所遮蔽的像素位置及其灰階值。未被忽略遮罩315遮蔽的這些像素位置用於作為判斷圖像中的亮度是否改變的參考價值較高。本實施例是先以第一圖像310將這些參考價值較高的像素位置及其灰階值先行整理成為此參考圖像319,以於後續判斷圖像中的亮度是否改變時使用。In step S230, the
至此,本實施例在步驟S240至步驟S270中便利用步驟S220的忽略遮罩315及步驟S230的參考圖像319來對其他圖像(如,第二圖像320)加以處理,從而判斷第二圖像320中的亮度是否改變。At this point, in steps S240 to S270, this embodiment uses the ignore mask 315 of step S220 and the reference image 319 of step S230 to process other images (such as the second image 320) to determine whether the brightness in the second image 320 changes.
詳細來說,於步驟S240中,圖1處理器120經由圖1影像擷取裝置110以從圖1擷取區域109擷取第二圖像320。於步驟S250中,圖1處理器120藉由忽略遮罩315遮蔽第二圖像320,以將參考價值低的區域忽略。於步驟S260中,圖1處理器120將經遮蔽的第二圖像320減去參考圖像319中各像素位置的灰階值取絕對值以獲得第二圖像320與參考圖像319間的差異圖像,即待測圖像325。於步驟S260中,圖1處理器120便依據待測圖像325判斷第二圖像320中的亮度是否改變。Specifically, in step S240, the
步驟S260的詳細步驟為,處理器計算待測圖像325中各像素的平均灰階值。需注意的是,待測圖像325有部分像素位置受到遮蔽,因此這些像素位置對應的灰階值不計算在前述平均灰階值中。接著,處理器判斷前述平均灰階值是否超過一個亮度閥值,此亮度閥值可由應用本發明實施例者設定,例如為『10』。當前述平均灰階值超過亮度閥值『10』時,處理器便進行提示操作,藉以利用此提示操作來呈現出「待測圖像的亮度已受到改變」的信息給相應人員。亮度閥值可為單一數值或數值範圍。The detailed steps of step S260 are that the processor calculates the average grayscale value of each pixel in the image to be tested 325. It should be noted that some pixel positions of the image to be tested 325 are blocked, so the grayscale values corresponding to these pixel positions are not calculated in the aforementioned average grayscale value. Then, the processor determines whether the aforementioned average grayscale value exceeds a brightness threshold value, and this brightness threshold value can be set by the user of the embodiment of the present invention, for example, to "10". When the aforementioned average grayscale value exceeds the brightness threshold value "10", the processor performs a prompt operation, thereby using this prompt operation to present the information "the brightness of the image to be tested has been changed" to the corresponding personnel. The brightness threshold value can be a single value or a range of values.
在此詳細說明圖2步驟S220中產生忽略遮罩315的詳細步驟。圖4為圖2步驟S220的詳細流程圖。圖5是圖4中各圖像的示意圖。The detailed steps of generating the ignore mask 315 in step S220 of FIG2 are described in detail. FIG4 is a detailed flow chart of step S220 of FIG2. FIG5 is a schematic diagram of each image in FIG4.
請同時參照圖4與圖5。於步驟S410中,處理器獲得依序擷取的兩個第一圖像310之間的差異圖像510。詳言之,處理器將兩個第一圖像310中每個像素位置對應的灰階值相減以產生差異圖像510。Please refer to FIG. 4 and FIG. 5 . In step S410 , the processor obtains a difference image 510 between two sequentially captured first images 310 . Specifically, the processor subtracts the grayscale value corresponding to each pixel position in the two first images 310 to generate the difference image 510 .
本實施例的步驟S420與步驟S430是擷取第一圖像310中極暗區域(例如,灰階值小於第一臨界灰階值(例如為『25』)的像素位置的集合)與極亮區域(例如,灰階值大於第二臨界灰階值(例如為『230』)的像素位置的集合),這兩個參考價值低的區域作為亮度遮罩,以排除參考價值低的像素。應用本實施例者可依其需求調整第一臨界灰階值與第二臨界灰階值的數值,例如第一臨界灰階值亦可以是『10』、第一臨界灰階值亦可以是『245』。Step S420 and step S430 of this embodiment are to capture the extremely dark area (e.g., the set of pixel positions with grayscale values less than the first critical grayscale value (e.g., "25")) and the extremely bright area (e.g., the set of pixel positions with grayscale values greater than the second critical grayscale value (e.g., "230")) in the first image 310. These two areas with low reference values are used as brightness masks to exclude pixels with low reference values. The user of this embodiment can adjust the values of the first critical grayscale value and the second critical grayscale value according to their needs. For example, the first critical grayscale value can also be "10" or "245".
詳細來說,在此以第一灰階值為25而第二灰階值為230為例,於步驟S420中,處理器比對第一圖像310的其中之一的每個像素位置的灰階值及第一臨界灰階值,以擷取第一圖像310小於第一臨界灰階值的區域,進而獲得第一亮度遮罩520。據此,第一圖像310中被第一亮度遮罩520遮蔽的每個像素的灰階值小於第一臨界灰階值。於步驟S430中,處理器比對第一圖像310的其中之一的每個像素位置的灰階值及第二臨界灰階值,以擷取第一圖像310大於第二臨界灰階值的區域,進而獲得第二亮度遮罩530。據此,第一圖像310中被第二亮度遮罩530遮蔽的每個像素的灰階值大於第二臨界灰階值。本實施例是將圖5中兩個第一圖像310靠左側的圖像作為『第一圖像310的其中之一』,應用本實施例者可依其需求將第一圖像310中任一圖像作為本實施例中步驟S410至步驟S440所述的『第一圖像310的其中之一』。In detail, taking the first grayscale value as 25 and the second grayscale value as 230 as an example, in step S420, the processor compares the grayscale value of each pixel position of one of the first images 310 with the first critical grayscale value to capture the area of the first image 310 that is less than the first critical grayscale value, and then obtains the first brightness mask 520. Accordingly, the grayscale value of each pixel in the first image 310 that is masked by the first brightness mask 520 is less than the first critical grayscale value. In step S430, the processor compares the grayscale value of each pixel position of one of the first images 310 with the second critical grayscale value to capture the area of the first image 310 that is greater than the second critical grayscale value, thereby obtaining the second brightness mask 530. Accordingly, the grayscale value of each pixel in the first image 310 that is masked by the second brightness mask 530 is greater than the second critical grayscale value. In this embodiment, the image on the left side of the two first images 310 in FIG. 5 is taken as "one of the first images 310". The user of this embodiment can take any of the first images 310 as "one of the first images 310" described in steps S410 to S440 of this embodiment according to their needs.
於步驟S440中,處理器依據步驟S410的差異圖像510、步驟S420的第一亮度遮罩520及步驟S430的第二亮度遮罩530以計算獲得忽略遮罩315。本發明實施例中,最為簡便地產生忽略遮罩315的方式即是將差異圖像510、第一亮度遮罩520及第二亮度遮罩530相加總即可產生粗略的忽略遮罩315。本發明另一實施例中,則可由圖4中步驟S441至步驟S445來產生忽略遮罩315。In step S440, the processor calculates the ignore mask 315 according to the difference image 510 in step S410, the first brightness mask 520 in step S420, and the second brightness mask 530 in step S430. In the embodiment of the present invention, the simplest way to generate the ignore mask 315 is to add the difference image 510, the first brightness mask 520, and the second brightness mask 530 to generate a rough ignore mask 315. In another embodiment of the present invention, the ignore mask 315 can be generated by steps S441 to S445 in FIG. 4.
於步驟S441中,處理器將差異圖像510、第一亮度遮罩520及第二亮度遮罩530中各個像素位置的灰階值相加總以產生量測不計圖像540。In step S441 , the processor adds up the grayscale values of each pixel position in the difference image 510 , the first brightness mask 520 , and the second brightness mask 530 to generate the measurement-ignored image 540 .
於步驟S442中,處理器依據量測不計圖像540中各像素的灰階值來計算一個灰階參考值X。詳細來說,請參見圖6,圖6是將量測不計圖像540中各個灰階值(於X軸呈現)所具備的像素數量(於Y軸呈現)以直方圖呈現的示意圖,亦即,以直方圖呈現每個灰階值對應的像素數量。圖6中灰階值愈小,表示此些像素位置對於圖像亮度的參考價值高、變異小。因此,本發明實施例從灰階值0開始計數及累加到某一像素數量,此像素數量可為圖像整體像素數量的30%且對應於步驟S442所計算的灰階參考值X。換句話說,灰階值0到此灰階參考值X的像素數目的總和約等於圖像整體像素數量的30%,表示灰階值低於灰階參考值X的對應區域為全部圖像面積的30%具備參考價值的區域。全部像素數量的30%是一亮度參考依據的區域,視拍攝情況不同,若已知亮度穩定區域極小,百分比數可能要往下調整。但若一般穩定區域大於30%,即可使用全部像素數量的30%作為參考區域。其中,上述「約等於」可以完全等於,也可以不完全等於(即在一容忍範圍內,例如正負10%以內)。In step S442, the processor calculates a grayscale reference value X according to the grayscale value of each pixel in the measured disregarded image 540. For details, please refer to FIG. 6, which is a schematic diagram showing the number of pixels (presented on the Y axis) having each grayscale value (presented on the X axis) in the measured disregarded image 540 in a histogram, that is, the number of pixels corresponding to each grayscale value is presented in a histogram. In FIG. 6, the smaller the grayscale value, the higher the reference value of these pixel positions for the image brightness and the smaller the variation. Therefore, the embodiment of the present invention starts counting and accumulating from the grayscale value 0 to a certain number of pixels, which may be 30% of the total number of pixels of the image and corresponds to the grayscale reference value X calculated in step S442. In other words, the sum of the number of pixels from the grayscale value 0 to the grayscale reference value X is approximately equal to 30% of the total number of pixels of the image, indicating that the corresponding area with a grayscale value lower than the grayscale reference value X is an area with a reference value of 30% of the total image area. 30% of the total number of pixels is an area based on brightness reference. Depending on the shooting situation, if the brightness stable area is known to be extremely small, the percentage may need to be adjusted downward. However, if the general stable area is greater than 30%, 30% of the total number of pixels can be used as the reference area. The above “approximately equal to” may be completely equal to or may not be completely equal to (i.e. within a tolerance range, such as within plus or minus 10%).
回到圖4與圖5,於步驟S443中,處理器基於步驟S442的灰階參考值X來比對量測不計圖像540中各像素位置的灰階值。於步驟S444中,當量測不計圖像540中各像素位置的灰階值大於步驟S442的灰階參考值X時,處理器記錄對應的像素位置,並依據所記錄的這些像素位置產生忽略遮罩315。大於灰階參考值X的灰階值表示對於圖像亮度的參考價值小且變異高,所以在亮度檢測尚可於以忽略。因此,步驟S441至步驟S444即產生忽略遮罩315。於本實施例中,為避免圖像飄移或誤差等因素,於步驟S445中,處理器會將忽略遮罩315中各區域適度地擴張一擴張像素值(例如,適度擴張『5』個像素),從而產生經擴張後的忽略遮罩315。Returning to FIG. 4 and FIG. 5 , in step S443, the processor compares the grayscale value of each pixel position in the measured disregarded image 540 based on the grayscale reference value X of step S442. In step S444, when the grayscale value of each pixel position in the measured disregarded image 540 is greater than the grayscale reference value X of step S442, the processor records the corresponding pixel position and generates the ignore mask 315 based on the recorded pixel positions. The grayscale value greater than the grayscale reference value X indicates that the reference value for the image brightness is small and the variation is high, so it can be ignored in the brightness detection. Therefore, the ignore mask 315 is generated in steps S441 to S444. In this embodiment, in order to avoid factors such as image drift or error, in step S445, the processor will appropriately expand each area in the ignore mask 315 by an expanded pixel value (for example, appropriately expand "5" pixels), thereby generating an expanded ignore mask 315.
本實施例在圖4與圖5的步驟S441至步驟S445雖然是以依序擷取的兩個第一圖像310經由差異圖像510、第一亮度遮罩520、第二亮度遮罩530來產生量測不計圖像540,應用本實施例者亦可從多個第一圖像310中的任意兩個來產生與蒐集大量的量測不計圖像540並將這些量測不計圖像540進行平均以產生多張量測不計圖像的平均圖像545,並利用此平均圖像545按照前述步驟S444的方式產生與調整忽略遮罩315。Although the present embodiment uses two sequentially captured first images 310 in steps S441 to S445 in FIG. 4 and FIG. 5 to generate the measurement-ignored image 540 via the difference image 510, the first brightness mask 520, and the second brightness mask 530, the user of the present embodiment may also generate and collect a large number of measurement-ignored images 540 from any two of the plurality of first images 310 and average these measurement-ignored images 540 to generate an average image 545 of the plurality of measurement-ignored images, and utilize this average image 545 to generate and adjust the ignore mask 315 in the manner of the aforementioned step S444.
所述待測圖像判斷所述第二圖像中的亮度是否改變包括下列步驟。先計算所述待測圖像中各像素的平均灰階值,再判斷所述平均灰階值是否超過亮度閥值。當所述平均灰階值超過所述亮度閥值時,進行提示操作,所述提示操作用以呈現所述待測圖像的亮度已受到改變。The step of judging whether the brightness of the second image has changed includes the following steps: calculating the average grayscale value of each pixel in the image to be tested, and then judging whether the average grayscale value exceeds the brightness threshold value. When the average grayscale value exceeds the brightness threshold value, performing a prompt operation, the prompt operation is used to show that the brightness of the image to be tested has been changed.
綜上所述,本發明實施例所述的監控圖像中亮度改變的方法及其裝置利用圖像擷取裝置所獲得的圖像自動地計算並產生不具參考價值或具備較低參考價值的圖像遮罩作為忽略遮罩,以去除掉圖像中可能誤判圖像亮度的區域。然後,利用此忽略遮罩來對其他圖像進行遮蔽及作為圖像的亮度改變的參考,以達到近乎全自動化監控圖像亮度,以節約人力並降低人為錯誤的機率。In summary, the method and device for monitoring brightness changes in an image described in the embodiment of the present invention utilizes the image obtained by the image capture device to automatically calculate and generate an image mask with no reference value or with a lower reference value as an ignore mask to remove the area in the image that may misjudge the image brightness. Then, the ignore mask is used to mask other images and as a reference for the brightness change of the image, so as to achieve nearly fully automatic monitoring of image brightness, save manpower and reduce the probability of human error.
100:監控圖像中亮度改變的裝置 105:載具 107:物件 109:擷取區域 110:圖像擷取裝置 120:處理器 130:記憶體 S210~S270、S410~S445:監控圖像中亮度改變的方法的各步驟 310:第一圖像 315:忽略遮罩 317:灰階平均圖像 319:參考圖像 320:第二圖像 325:待測圖像 510:差異圖像 520:第一亮度遮罩 530:第二亮度遮罩 540:測量不計圖像 545:多張量測不計圖像的平均圖像 X:灰階參考值 100: Device for monitoring brightness changes in an image 105: Vehicle 107: Object 109: Capture area 110: Image capture device 120: Processor 130: Memory S210~S270, S410~S445: Steps of a method for monitoring brightness changes in an image 310: First image 315: Ignore mask 317: Grayscale average image 319: Reference image 320: Second image 325: Image to be measured 510: Difference image 520: First brightness mask 530: Second brightness mask 540: Measurement disregarded image 545: Average image of multiple measurement disregarded images X: Grayscale reference value
圖1是依照本發明一實施例的一種監控圖像中亮度改變的裝置100的裝置示意圖。
圖2是依照本發明一實施例的一種監控圖像中亮度改變的方法200的流程圖。
圖3是方法200中各圖像的示意圖。
圖4為圖2步驟S220的詳細流程圖。
圖5是圖4中各圖像的示意圖。
圖6是將量測不計圖像540中各個灰階值(於X軸呈現)所具備的像素數量(於Y軸呈現)以直方圖呈現的示意圖。
FIG. 1 is a schematic diagram of a
S210~S270:監控圖像中亮度改變的方法的各步驟 S210~S270: Steps of the method for monitoring brightness changes in an image
Claims (10)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW112116580A TWI831688B (en) | 2023-05-04 | 2023-05-04 | Method for monitoring brightness chances in images and device thereof |
CN202311673933.2A CN118898561A (en) | 2023-05-04 | 2023-12-07 | Method and device for monitoring brightness changes in images |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW112116580A TWI831688B (en) | 2023-05-04 | 2023-05-04 | Method for monitoring brightness chances in images and device thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI831688B TWI831688B (en) | 2024-02-01 |
TW202445514A true TW202445514A (en) | 2024-11-16 |
Family
ID=90824603
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW112116580A TWI831688B (en) | 2023-05-04 | 2023-05-04 | Method for monitoring brightness chances in images and device thereof |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN118898561A (en) |
TW (1) | TWI831688B (en) |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4525719B2 (en) * | 2007-08-31 | 2010-08-18 | カシオ計算機株式会社 | Gradation correction apparatus, gradation correction method, and program |
FR3053126B1 (en) * | 2016-06-27 | 2019-07-26 | Saint-Gobain Glass France | METHOD AND DEVICE FOR LOCATING THE ORIGIN OF A DEFECT AFFECTING A STACK OF THIN LAYERS DEPOSITED ON A SUBSTRATE |
CN110706182B (en) * | 2019-10-10 | 2022-12-09 | 普联技术有限公司 | Method and device for detecting flatness of shielding case, terminal equipment and storage medium |
US20230067287A1 (en) * | 2020-02-07 | 2023-03-02 | Semiconductor Energy Laboratory Co., Ltd. | Image processing system |
WO2021160522A1 (en) * | 2020-02-12 | 2021-08-19 | Asml Netherlands B.V. | Method for determining a mask pattern comprising optical proximity corrections using a trained machine learning model |
KR102692173B1 (en) * | 2020-06-16 | 2024-08-06 | 주식회사 엘엑스세미콘 | Dimming value filter apparatus, image data processing apparatus and display device for controlling local dimming |
CN115564682A (en) * | 2022-07-18 | 2023-01-03 | 芯动微电子科技(珠海)有限公司 | Method and system for image enhancement with uneven illumination |
-
2023
- 2023-05-04 TW TW112116580A patent/TWI831688B/en active
- 2023-12-07 CN CN202311673933.2A patent/CN118898561A/en active Pending
Also Published As
Publication number | Publication date |
---|---|
TWI831688B (en) | 2024-02-01 |
CN118898561A (en) | 2024-11-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7388609B2 (en) | Dynamic identification and correction of defective pixels | |
US5033015A (en) | Automated system for testing an imaging sensor | |
US9232121B2 (en) | Image sensor defect identification using blurring techniques | |
CN108780050B (en) | Method and device for detecting lens, electronic equipment and computer readable storage medium | |
US8355063B2 (en) | Camera noise reduction for machine vision systems | |
JP3329805B2 (en) | Automatic visual inspection device and visual inspection method | |
US9905018B2 (en) | Imaging apparatus, image processing method, and medium | |
TW202445514A (en) | Method for monitoring brightness chances in images and device thereof | |
TW201715627A (en) | Defect recognition system | |
CN114283170A (en) | Light spot extraction method | |
EP0428626B1 (en) | Automated system for testing an imaging sensor | |
JP4865204B2 (en) | Image processing method, image processing apparatus, and semiconductor inspection apparatus | |
JPH06309434A (en) | Method and device for processing picture | |
US20240302261A1 (en) | Particle detection method, electronic device, and storage medium | |
CN110646728A (en) | Breaker fault analysis method and device based on the moving speed of circuit breaker contacts | |
JPH09178427A (en) | Image position measuring method | |
US20230419529A1 (en) | Method and apparatus for acquiring master data of an object | |
JPH08159712A (en) | Pattern recognition method | |
JP3112002B2 (en) | Particle monitor device | |
CN113758426B (en) | Cloth width determining method and device, electronic equipment and readable storage medium | |
JPH05130512A (en) | Picture element defect measuring instrument for solid-state image pickup element | |
US20240281948A1 (en) | Image processing device, and image processing method | |
JP2003059991A (en) | Appearance inspection device and appearance inspection method | |
JPH0719284B2 (en) | Anomaly detection device | |
JPH09190533A (en) | Vehicle detecting device |