TW202436092A - Anti-reflection film and image display device - Google Patents
Anti-reflection film and image display device Download PDFInfo
- Publication number
- TW202436092A TW202436092A TW113102020A TW113102020A TW202436092A TW 202436092 A TW202436092 A TW 202436092A TW 113102020 A TW113102020 A TW 113102020A TW 113102020 A TW113102020 A TW 113102020A TW 202436092 A TW202436092 A TW 202436092A
- Authority
- TW
- Taiwan
- Prior art keywords
- layer
- hard coating
- coating layer
- film
- reflection
- Prior art date
Links
- 239000010410 layer Substances 0.000 claims abstract description 196
- 239000002245 particle Substances 0.000 claims abstract description 147
- 239000011247 coating layer Substances 0.000 claims abstract description 128
- 239000010408 film Substances 0.000 claims abstract description 112
- 230000003373 anti-fouling effect Effects 0.000 claims abstract description 62
- 239000002105 nanoparticle Substances 0.000 claims abstract description 50
- 238000000576 coating method Methods 0.000 claims abstract description 37
- 229920005989 resin Polymers 0.000 claims abstract description 36
- 239000011347 resin Substances 0.000 claims abstract description 36
- 239000011248 coating agent Substances 0.000 claims abstract description 34
- 239000011230 binding agent Substances 0.000 claims abstract description 16
- 239000000758 substrate Substances 0.000 claims abstract description 16
- 239000010409 thin film Substances 0.000 claims abstract description 16
- 239000011164 primary particle Substances 0.000 claims abstract description 11
- 230000005484 gravity Effects 0.000 claims description 24
- 229910052809 inorganic oxide Inorganic materials 0.000 claims description 9
- 238000000034 method Methods 0.000 claims description 9
- 238000004544 sputter deposition Methods 0.000 claims description 9
- 238000005259 measurement Methods 0.000 claims description 5
- 239000000523 sample Substances 0.000 claims 2
- 230000000052 comparative effect Effects 0.000 description 24
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 21
- 230000015572 biosynthetic process Effects 0.000 description 14
- 125000001475 halogen functional group Chemical group 0.000 description 14
- 239000000463 material Substances 0.000 description 14
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 13
- 239000004926 polymethyl methacrylate Substances 0.000 description 13
- 239000011859 microparticle Substances 0.000 description 11
- 239000004840 adhesive resin Substances 0.000 description 10
- 229920006223 adhesive resin Polymers 0.000 description 10
- 239000008199 coating composition Substances 0.000 description 9
- 239000000203 mixture Substances 0.000 description 9
- 238000011282 treatment Methods 0.000 description 9
- 229920002284 Cellulose triacetate Polymers 0.000 description 7
- NNLVGZFZQQXQNW-ADJNRHBOSA-N [(2r,3r,4s,5r,6s)-4,5-diacetyloxy-3-[(2s,3r,4s,5r,6r)-3,4,5-triacetyloxy-6-(acetyloxymethyl)oxan-2-yl]oxy-6-[(2r,3r,4s,5r,6s)-4,5,6-triacetyloxy-2-(acetyloxymethyl)oxan-3-yl]oxyoxan-2-yl]methyl acetate Chemical compound O([C@@H]1O[C@@H]([C@H]([C@H](OC(C)=O)[C@H]1OC(C)=O)O[C@H]1[C@@H]([C@@H](OC(C)=O)[C@H](OC(C)=O)[C@@H](COC(C)=O)O1)OC(C)=O)COC(=O)C)[C@@H]1[C@@H](COC(C)=O)O[C@@H](OC(C)=O)[C@H](OC(C)=O)[C@H]1OC(C)=O NNLVGZFZQQXQNW-ADJNRHBOSA-N 0.000 description 7
- 239000000306 component Substances 0.000 description 7
- 150000001875 compounds Chemical class 0.000 description 7
- 229910052751 metal Inorganic materials 0.000 description 7
- 239000002184 metal Substances 0.000 description 7
- 229910052814 silicon oxide Inorganic materials 0.000 description 7
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 6
- 239000003795 chemical substances by application Substances 0.000 description 6
- 239000012788 optical film Substances 0.000 description 5
- 238000002360 preparation method Methods 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- 239000004925 Acrylic resin Substances 0.000 description 4
- 229920000178 Acrylic resin Polymers 0.000 description 4
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 4
- 229910004298 SiO 2 Inorganic materials 0.000 description 4
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- 239000003344 environmental pollutant Substances 0.000 description 4
- 229910052731 fluorine Inorganic materials 0.000 description 4
- 239000011737 fluorine Substances 0.000 description 4
- 239000011521 glass Substances 0.000 description 4
- 150000002739 metals Chemical class 0.000 description 4
- 229910000484 niobium oxide Inorganic materials 0.000 description 4
- URLJKFSTXLNXLG-UHFFFAOYSA-N niobium(5+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Nb+5].[Nb+5] URLJKFSTXLNXLG-UHFFFAOYSA-N 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- 239000010702 perfluoropolyether Substances 0.000 description 4
- 238000009832 plasma treatment Methods 0.000 description 4
- 231100000719 pollutant Toxicity 0.000 description 4
- 230000003746 surface roughness Effects 0.000 description 4
- 238000004381 surface treatment Methods 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 4
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- -1 acryl Chemical group 0.000 description 3
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 3
- 239000003522 acrylic cement Substances 0.000 description 3
- 239000000853 adhesive Substances 0.000 description 3
- 230000001070 adhesive effect Effects 0.000 description 3
- 230000003667 anti-reflective effect Effects 0.000 description 3
- 238000000149 argon plasma sintering Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 229910003437 indium oxide Inorganic materials 0.000 description 3
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 description 3
- 239000004973 liquid crystal related substance Substances 0.000 description 3
- 229910044991 metal oxide Inorganic materials 0.000 description 3
- 150000004706 metal oxides Chemical class 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 3
- 229910001887 tin oxide Inorganic materials 0.000 description 3
- 238000002834 transmittance Methods 0.000 description 3
- 238000007738 vacuum evaporation Methods 0.000 description 3
- 229910001928 zirconium oxide Inorganic materials 0.000 description 3
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical compound NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 description 2
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 2
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- 239000012190 activator Substances 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- 239000004927 clay Substances 0.000 description 2
- 239000008119 colloidal silica Substances 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 230000001186 cumulative effect Effects 0.000 description 2
- 238000001723 curing Methods 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- UHESRSKEBRADOO-UHFFFAOYSA-N ethyl carbamate;prop-2-enoic acid Chemical class OC(=O)C=C.CCOC(N)=O UHESRSKEBRADOO-UHFFFAOYSA-N 0.000 description 2
- 239000010419 fine particle Substances 0.000 description 2
- 150000002222 fluorine compounds Chemical class 0.000 description 2
- 125000000524 functional group Chemical group 0.000 description 2
- 238000007756 gravure coating Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 2
- 239000003999 initiator Substances 0.000 description 2
- 230000001678 irradiating effect Effects 0.000 description 2
- ZKATWMILCYLAPD-UHFFFAOYSA-N niobium pentoxide Chemical compound O=[Nb](=O)O[Nb](=O)=O ZKATWMILCYLAPD-UHFFFAOYSA-N 0.000 description 2
- 150000004767 nitrides Chemical class 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 229920005672 polyolefin resin Polymers 0.000 description 2
- 229920005591 polysilicon Polymers 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 238000005546 reactive sputtering Methods 0.000 description 2
- 238000002310 reflectometry Methods 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 235000012239 silicon dioxide Nutrition 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 239000012798 spherical particle Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- YRGLXIVYESZPLQ-UHFFFAOYSA-I tantalum pentafluoride Chemical compound F[Ta](F)(F)(F)F YRGLXIVYESZPLQ-UHFFFAOYSA-I 0.000 description 2
- 239000011787 zinc oxide Substances 0.000 description 2
- LOUICXNAWQPGSU-UHFFFAOYSA-N 2,2,3,3-tetrafluorooxirane Chemical compound FC1(F)OC1(F)F LOUICXNAWQPGSU-UHFFFAOYSA-N 0.000 description 1
- GZVHEAJQGPRDLQ-UHFFFAOYSA-N 6-phenyl-1,3,5-triazine-2,4-diamine Chemical compound NC1=NC(N)=NC(C=2C=CC=CC=2)=N1 GZVHEAJQGPRDLQ-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- 229920000877 Melamine resin Polymers 0.000 description 1
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 1
- 239000004695 Polyether sulfone Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- 101100012902 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FIG2 gene Proteins 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 description 1
- 235000010724 Wisteria floribunda Nutrition 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 239000006096 absorbing agent Substances 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 238000010306 acid treatment Methods 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 239000002518 antifoaming agent Substances 0.000 description 1
- 229910000410 antimony oxide Inorganic materials 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 239000002216 antistatic agent Substances 0.000 description 1
- OYLGJCQECKOTOL-UHFFFAOYSA-L barium fluoride Chemical compound [F-].[F-].[Ba+2] OYLGJCQECKOTOL-UHFFFAOYSA-L 0.000 description 1
- 229910001632 barium fluoride Inorganic materials 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 239000000440 bentonite Substances 0.000 description 1
- 229910000278 bentonite Inorganic materials 0.000 description 1
- SVPXDRXYRYOSEX-UHFFFAOYSA-N bentoquatam Chemical compound O.O=[Si]=O.O=[Al]O[Al]=O SVPXDRXYRYOSEX-UHFFFAOYSA-N 0.000 description 1
- CXKCTMHTOKXKQT-UHFFFAOYSA-N cadmium oxide Inorganic materials [Cd]=O CXKCTMHTOKXKQT-UHFFFAOYSA-N 0.000 description 1
- CFEAAQFZALKQPA-UHFFFAOYSA-N cadmium(2+);oxygen(2-) Chemical compound [O-2].[Cd+2] CFEAAQFZALKQPA-UHFFFAOYSA-N 0.000 description 1
- WUKWITHWXAAZEY-UHFFFAOYSA-L calcium difluoride Chemical compound [F-].[F-].[Ca+2] WUKWITHWXAAZEY-UHFFFAOYSA-L 0.000 description 1
- 229910001634 calcium fluoride Inorganic materials 0.000 description 1
- BRPQOXSCLDDYGP-UHFFFAOYSA-N calcium oxide Chemical compound [O-2].[Ca+2] BRPQOXSCLDDYGP-UHFFFAOYSA-N 0.000 description 1
- 239000000292 calcium oxide Substances 0.000 description 1
- ODINCKMPIJJUCX-UHFFFAOYSA-N calcium oxide Inorganic materials [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- IYRWEQXVUNLMAY-UHFFFAOYSA-N carbonyl fluoride Chemical compound FC(F)=O IYRWEQXVUNLMAY-UHFFFAOYSA-N 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000012461 cellulose resin Substances 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 230000015271 coagulation Effects 0.000 description 1
- 238000005345 coagulation Methods 0.000 description 1
- 229910052681 coesite Inorganic materials 0.000 description 1
- 229940075614 colloidal silicon dioxide Drugs 0.000 description 1
- 238000004040 coloring Methods 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 238000003851 corona treatment Methods 0.000 description 1
- 239000007822 coupling agent Substances 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000007766 curtain coating Methods 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 125000000113 cyclohexyl group Chemical class [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 238000001312 dry etching Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 238000001227 electron beam curing Methods 0.000 description 1
- 238000005566 electron beam evaporation Methods 0.000 description 1
- 125000003700 epoxy group Chemical group 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- IPZIVCLZBFDXTA-UHFFFAOYSA-N ethyl n-prop-2-enoylcarbamate Chemical class CCOC(=O)NC(=O)C=C IPZIVCLZBFDXTA-UHFFFAOYSA-N 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 230000004313 glare Effects 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- PGFXOWRDDHCDTE-UHFFFAOYSA-N hexafluoropropylene oxide Chemical compound FC(F)(F)C1(F)OC1(F)F PGFXOWRDDHCDTE-UHFFFAOYSA-N 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- ORUIBWPALBXDOA-UHFFFAOYSA-L magnesium fluoride Chemical compound [F-].[F-].[Mg+2] ORUIBWPALBXDOA-UHFFFAOYSA-L 0.000 description 1
- 229910001635 magnesium fluoride Inorganic materials 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 1
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 1
- JDSHMPZPIAZGSV-UHFFFAOYSA-N melamine Chemical compound NC1=NC(N)=NC(N)=N1 JDSHMPZPIAZGSV-UHFFFAOYSA-N 0.000 description 1
- 150000007974 melamines Chemical class 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 229910001507 metal halide Inorganic materials 0.000 description 1
- 150000005309 metal halides Chemical class 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 239000005543 nano-size silicon particle Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 239000010955 niobium Substances 0.000 description 1
- JFNLZVQOOSMTJK-KNVOCYPGSA-N norbornene Chemical compound C1[C@@H]2CC[C@H]1C=C2 JFNLZVQOOSMTJK-KNVOCYPGSA-N 0.000 description 1
- 239000012044 organic layer Substances 0.000 description 1
- 239000011146 organic particle Substances 0.000 description 1
- VTRUBDSFZJNXHI-UHFFFAOYSA-N oxoantimony Chemical compound [Sb]=O VTRUBDSFZJNXHI-UHFFFAOYSA-N 0.000 description 1
- BPUBBGLMJRNUCC-UHFFFAOYSA-N oxygen(2-);tantalum(5+) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ta+5].[Ta+5] BPUBBGLMJRNUCC-UHFFFAOYSA-N 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 239000013500 performance material Substances 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920002492 poly(sulfone) Polymers 0.000 description 1
- 229920006122 polyamide resin Polymers 0.000 description 1
- 229920001230 polyarylate Polymers 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920005668 polycarbonate resin Polymers 0.000 description 1
- 239000004431 polycarbonate resin Substances 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920001225 polyester resin Polymers 0.000 description 1
- 239000004645 polyester resin Substances 0.000 description 1
- 229920006393 polyether sulfone Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 239000009719 polyimide resin Substances 0.000 description 1
- 239000003505 polymerization initiator Substances 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229920005990 polystyrene resin Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000011342 resin composition Substances 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 238000007761 roller coating Methods 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 238000010079 rubber tapping Methods 0.000 description 1
- 239000011163 secondary particle Substances 0.000 description 1
- 150000004760 silicates Chemical class 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- LIVNPJMFVYWSIS-UHFFFAOYSA-N silicon monoxide Chemical compound [Si-]#[O+] LIVNPJMFVYWSIS-UHFFFAOYSA-N 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 229910052682 stishovite Inorganic materials 0.000 description 1
- 239000004575 stone Substances 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 229910001936 tantalum oxide Inorganic materials 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- 239000002562 thickening agent Substances 0.000 description 1
- 150000003568 thioethers Chemical class 0.000 description 1
- 239000013008 thixotropic agent Substances 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 239000011135 tin Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 239000004408 titanium dioxide Substances 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 229910052905 tridymite Inorganic materials 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 150000003672 ureas Chemical class 0.000 description 1
- 150000003673 urethanes Chemical class 0.000 description 1
- 239000004034 viscosity adjusting agent Substances 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 230000002087 whitening effect Effects 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B1/00—Optical elements characterised by the material of which they are made; Optical coatings for optical elements
- G02B1/10—Optical coatings produced by application to, or surface treatment of, optical elements
- G02B1/11—Anti-reflection coatings
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B1/00—Optical elements characterised by the material of which they are made; Optical coatings for optical elements
- G02B1/10—Optical coatings produced by application to, or surface treatment of, optical elements
- G02B1/14—Protective coatings, e.g. hard coatings
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B1/00—Optical elements characterised by the material of which they are made; Optical coatings for optical elements
- G02B1/10—Optical coatings produced by application to, or surface treatment of, optical elements
- G02B1/18—Coatings for keeping optical surfaces clean, e.g. hydrophobic or photo-catalytic films
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1335—Structural association of cells with optical devices, e.g. polarisers or reflectors
- G02F1/133502—Antiglare, refractive index matching layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K59/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
- H10K59/80—Constructional details
- H10K59/8791—Arrangements for improving contrast, e.g. preventing reflection of ambient light
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Chemical & Material Sciences (AREA)
- Nonlinear Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Mathematical Physics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Surface Treatment Of Optical Elements (AREA)
- Laminated Bodies (AREA)
- Devices For Indicating Variable Information By Combining Individual Elements (AREA)
Abstract
本發明之抗反射膜(101)具備依序設置於在透明膜基材(10)之一個主面上具備硬塗層(11)之硬塗膜(1)之硬塗層(11)上的抗反射層(5)及防污層(7)。硬塗層包含黏合劑樹脂、平均一次粒徑為1~8 μm之微米粒子、及平均一次粒徑為100 nm以下之奈米粒子。抗反射層包含折射率不同之複數個薄膜之積層體。抗反射膜之由測定長度12 mm之粗糙度曲線求出之凹凸之平均間隔RSm為120 μm以上,由1 μm×1 μm之區域之三維表面性狀求出之算術平均高度Sa為2.0 nm以上。The anti-reflection film (101) of the present invention comprises an anti-reflection layer (5) and an anti-fouling layer (7) sequentially arranged on a hard coating layer (11) of a hard coating film (1) having a hard coating layer (11) on one main surface of a transparent film substrate (10). The hard coating layer comprises a binder resin, micron particles with an average primary particle size of 1 to 8 μm, and nanoparticles with an average primary particle size of less than 100 nm. The anti-reflection layer comprises a laminate of a plurality of thin films with different refractive indices. The average interval RSm of the concavities and convexities of the anti-reflection film obtained from a roughness curve with a measured length of 12 mm is greater than 120 μm, and the arithmetic mean height Sa obtained from the three-dimensional surface properties of a 1 μm×1 μm area is greater than 2.0 nm.
Description
本發明係關於一種在透明膜基材上具備抗反射層之抗反射膜。進而,本發明係關於一種具備該抗反射膜之圖像顯示裝置。The present invention relates to an anti-reflection film having an anti-reflection layer on a transparent film substrate and an image display device having the anti-reflection film.
在液晶顯示器、或有機EL顯示器等圖像顯示裝置之視認側表面,出於防止由外部光之反射引起之畫質降低、提高對比度等目的,使用抗反射膜。抗反射膜在透明膜上具備包含折射率不同之複數個薄膜之積層體之抗反射層。Anti-reflection film is used on the viewing side surface of image display devices such as liquid crystal displays or organic EL displays to prevent image quality degradation caused by reflection of external light and to improve contrast. The anti-reflection film has an anti-reflection layer composed of a laminate of multiple thin films with different refractive indices on a transparent film.
為了防止由外部光之映入引起之對比度降低,有實施防眩(antiglare)處理之方法。例如,在專利文獻1~3中,揭示有一種防眩性抗反射膜,其於在透明膜上形成有包含微粒子之硬塗層之防眩性硬塗膜上設置有抗反射層。防眩性抗反射膜藉由使硬塗層包含粒徑為μm級之微粒子(微米粒子)而形成表面凹凸,使外部光發生散射反射,藉此減少外部光之映入。In order to prevent the contrast from being reduced due to the reflection of external light, there is a method of implementing antiglare treatment. For example, in patent documents 1 to 3, an antiglare anti-reflection film is disclosed, in which an anti-reflection layer is provided on an antiglare hard coating film having a hard coating layer containing microparticles formed on a transparent film. The antiglare anti-reflection film forms surface irregularities by making the hard coating layer contain microparticles (micrometer particles) with a particle size of μm order, so that external light is scattered and reflected, thereby reducing the reflection of external light.
專利文獻1~3中揭示有防眩性硬塗層除了包含微米粒子,亦包含平均一次粒徑為100 nm以下之奈米粒子。專利文獻1中記載了藉由使平均一次粒徑為20 nm之二氧化矽粒子凝集而形成無定形之二次粒子,從而提高表面之光擴散性。專利文獻2中記載了表面經改性之奈米二氧化矽粒子具有抑制有機微粒子(微米粒子)之沉澱並使其浮上到表面之作用,因此能夠調整防眩性。專利文獻3(參照實施例6~8)中記載了防眩性硬塗層藉由包含奈米二氧化矽粒子,而於硬塗層之表面形成微細之凹凸,硬塗層與抗反射層之密接性提高。 [先前技術文獻] [專利文獻] Patent documents 1 to 3 disclose that the anti-glare hard coating layer contains nanoparticles with an average primary particle size of less than 100 nm in addition to micron particles. Patent document 1 states that the light diffusion of the surface is improved by agglomerating silica particles with an average primary particle size of 20 nm to form amorphous secondary particles. Patent document 2 states that the surface-modified nanosilica particles have the function of inhibiting the precipitation of organic microparticles (micron particles) and making them float to the surface, so that the anti-glare property can be adjusted. Patent document 3 (refer to Examples 6 to 8) states that the anti-glare hard coating layer contains nanosilica particles, thereby forming fine concave and convex on the surface of the hard coating layer, and the adhesion between the hard coating layer and the anti-reflection layer is improved. [Prior art literature] [Patent literature]
[專利文獻1]日本專利特開2008-40064號公報 [專利文獻2]日本專利特開2009-204728號公報 [專利文獻3]國際公開2021/106797號 [Patent Document 1] Japanese Patent Publication No. 2008-40064 [Patent Document 2] Japanese Patent Publication No. 2009-204728 [Patent Document 3] International Publication No. 2021/106797
[發明所欲解決之問題][The problem the invention is trying to solve]
先前之防眩性抗反射膜存在如下課題:硬塗層與抗反射層之密接性較低,若長時間暴露於外部光,則抗反射層(及設置於其上之防污層)容易剝離,隨著使用,光學特性、或防污性降低。Previous anti-glare anti-reflection films had the following problems: the adhesion between the hard coating layer and the anti-reflection layer was low, and if exposed to external light for a long time, the anti-reflection layer (and the anti-fouling layer disposed thereon) would easily peel off, and with use, the optical properties or anti-fouling properties would deteriorate.
如專利文獻3中所提出,藉由使防眩性硬塗層之表面存在奈米粒子,硬塗層與抗反射層之密接性有提高之傾向。但是,專利文獻3之實施例6~8之抗反射膜雖然抗反射層之密接性良好,但在圖像顯示裝置之黑顯示時,存在外部光之反射光看起來發白模糊(白暈),黑顯示之顏色之稠密性差、明處對比度低之課題。As proposed in Patent Document 3, by making the surface of the anti-glare hard coating layer have nanoparticles, the adhesion between the hard coating layer and the anti-reflection layer tends to be improved. However, although the anti-reflection film of Examples 6 to 8 of Patent Document 3 has good adhesion of the anti-reflection layer, when the image display device is in black display, the reflected light of the external light appears whitish and blurred (white halo), the density of the color of the black display is poor, and the contrast of the bright area is low.
鑒於上述情況,本發明之目的在於提供一種防眩性硬塗層與抗反射層之密接性較高、且反射光之白暈較少、具有良好之視認性之抗反射膜。 [解決問題之技術手段] In view of the above situation, the purpose of the present invention is to provide an anti-reflection film with high adhesion between the anti-glare hard coating layer and the anti-reflection layer, less halo of reflected light, and good visibility. [Technical means to solve the problem]
本發明之抗反射膜具備依序設置於在透明膜基材之一個主面上具備硬塗層之硬塗膜之硬塗層上的抗反射層及防污層。硬塗層包含黏合劑、粒徑為1~8 μm之微粒子(微米粒子)、及平均一次粒徑為100 nm以下之微粒子(奈米粒子)。The anti-reflection film of the present invention has an anti-reflection layer and an anti-fouling layer sequentially disposed on a hard coating layer of a hard coating film having a hard coating layer on one main surface of a transparent film substrate. The hard coating layer contains a binder, microparticles (micron particles) with a particle size of 1 to 8 μm, and microparticles (nanoparticles) with an average primary particle size of less than 100 nm.
抗反射層包含折射率不同之複數個薄膜之積層體。構成抗反射層之薄膜較佳為無機氧化物。抗反射層可為藉由濺鍍形成之濺鍍膜。在硬塗層與抗反射層之間可設置包含無機氧化物之底塗劑層。The anti-reflection layer comprises a laminate of a plurality of thin films having different refractive indices. The thin film constituting the anti-reflection layer is preferably an inorganic oxide. The anti-reflection layer may be a sputtered film formed by sputtering. A primer layer comprising an inorganic oxide may be disposed between the hard coating layer and the anti-reflection layer.
抗反射膜之表面(防污層之表面)較佳為由測定長度12 mm之粗糙度曲線求出之凹凸之平均間隔RSm為120 μm以上,較佳為由1 μm×1 μm之區域之三維表面性狀求出之算術平均高度Sa為2.0 nm以上。抗反射膜之表面之由測定長度12 mm之粗糙度曲線求出之算術平均粗糙度Ra亦可為30~500 nm。The surface of the anti-reflection film (the surface of the anti-fouling layer) preferably has an average interval RSm of 120 μm or more obtained from a roughness curve with a measured length of 12 mm, and preferably has an arithmetic mean height Sa of 2.0 nm or more obtained from the three-dimensional surface properties of a 1 μm×1 μm area. The arithmetic mean roughness Ra of the surface of the anti-reflection film obtained from a roughness curve with a measured length of 12 mm can also be 30~500 nm.
硬塗層中所含之微米粒子之比重較佳為1.25以上。在硬塗層中含有2種以上之微米粒子之情形時,較佳為微米粒子之平均比重為1.25以上,在微米粒子之總計100重量份中,比重為1.25以上之粒子之比率較佳為85重量份以上。The specific gravity of the micron particles contained in the hard coating layer is preferably 1.25 or more. When the hard coating layer contains two or more types of micron particles, the average specific gravity of the micron particles is preferably 1.25 or more, and the proportion of particles with a specific gravity of 1.25 or more is preferably 85 parts by weight or more in 100 parts by weight of the total micron particles.
硬塗層中之微米粒子之量相對於黏合劑樹脂100重量份較佳為0.5~12重量份。硬塗層中之奈米粒子之量相對於黏合劑100重量份較佳為25~120重量份。奈米粒子之平均一次粒徑較佳為15 nm以上。 [發明之效果] The amount of micron particles in the hard coating layer is preferably 0.5 to 12 parts by weight relative to 100 parts by weight of the adhesive resin. The amount of nanoparticles in the hard coating layer is preferably 25 to 120 parts by weight relative to 100 parts by weight of the adhesive. The average primary particle size of the nanoparticles is preferably greater than 15 nm. [Effects of the invention]
具有上述之Sa及RSm之抗反射膜之硬塗層與抗反射層之密接性較高、發揮較高之防眩性,並且反射光之白暈較少,具有良好之視認性。在圖像顯示介質之視認側表面配置有該抗反射膜之圖像顯示裝置顯示出優異之防眩性,明處對比度較高,並且抗反射層及防污層難以剝離,因此在長期使用後亦能夠維持優異之光學特性及防污性。The hard coating layer of the anti-reflection film with Sa and RSm mentioned above has a higher adhesion with the anti-reflection layer, exhibits a higher anti-glare property, and has less halo of reflected light, which has good visibility. The image display device with the anti-reflection film disposed on the visual side surface of the image display medium shows excellent anti-glare property, high contrast in bright areas, and the anti-reflection layer and anti-fouling layer are difficult to peel off, so it can maintain excellent optical characteristics and anti-fouling properties even after long-term use.
圖1為表示本發明之一實施方式之抗反射膜之積層構成例之剖視圖。抗反射膜101在硬塗膜1之硬塗層11上具備抗反射層5,在抗反射層5上具備防污層7。硬塗膜1在透明膜基材10之一個主面上具備硬塗層11。抗反射層5為折射率不同之2層以上之無機薄膜之積層體。在硬塗層11與抗反射層5之間亦可設置底塗劑層3。FIG1 is a cross-sectional view showing an example of a laminated structure of an antireflection film according to an embodiment of the present invention. The antireflection film 101 has an antireflection layer 5 on a hard coating layer 11 of a hard coating film 1, and an antifouling layer 7 on the antireflection layer 5. The hard coating film 1 has a hard coating layer 11 on one main surface of a transparent film substrate 10. The antireflection layer 5 is a laminate of two or more inorganic thin films having different refractive indices. A primer layer 3 may also be provided between the hard coating layer 11 and the antireflection layer 5.
[硬塗膜] 硬塗膜1在透明膜基材10之一個主面上具備硬塗層11。藉由在抗反射層5形成面側設置硬塗層11,能夠提高抗反射膜之表面硬度、或耐擦傷性等機械特性。 [Hard coating film] The hard coating film 1 has a hard coating layer 11 on one main surface of a transparent film substrate 10. By providing the hard coating layer 11 on the side where the anti-reflection layer 5 is formed, the mechanical properties such as the surface hardness or scratch resistance of the anti-reflection film can be improved.
<透明膜基材> 透明膜基材10之可見光透過率較佳為80%以上、更佳為90%以上。作為構成透明膜基材10之樹脂材料,例如,較佳為透明性、機械強度及熱穩定性優異之樹脂材料。作為樹脂材料之具體例,可例舉出三乙醯纖維素等纖維素系樹脂、聚酯系樹脂、聚醚碸系樹脂、聚碸系樹脂、聚碳酸酯系樹脂、聚醯胺系樹脂、聚醯亞胺系樹脂、聚烯烴系樹脂、(甲基)丙烯酸系樹脂、環狀聚烯烴系樹脂(降莰烯系樹脂)、聚芳酯系樹脂、聚苯乙烯系樹脂、聚乙烯醇系樹脂、及該等之混合物。 <Transparent film substrate> The visible light transmittance of the transparent film substrate 10 is preferably 80% or more, and more preferably 90% or more. As the resin material constituting the transparent film substrate 10, for example, a resin material having excellent transparency, mechanical strength and thermal stability is preferred. Specific examples of resin materials include cellulose resins such as triacetyl cellulose, polyester resins, polyether sulfone resins, polysulfone resins, polycarbonate resins, polyamide resins, polyimide resins, polyolefin resins, (meth)acrylic resins, cyclic polyolefin resins (norbornene resins), polyarylate resins, polystyrene resins, polyvinyl alcohol resins, and mixtures thereof.
透明膜基材之厚度並無特別限定,就強度、或處理性等作業性、薄層性等觀點而言,較佳為5~300 μm左右、更佳為10~250 μm、進而較佳為20~200 μm。The thickness of the transparent film substrate is not particularly limited, but is preferably about 5 to 300 μm, more preferably 10 to 250 μm, and even more preferably 20 to 200 μm from the viewpoints of strength, workability such as handling, and thinness.
<硬塗層> 藉由在透明膜基材10之主面上設置硬塗層11從而形成硬塗膜1。硬塗層11包含黏合劑樹脂及微粒子,作為微粒子,包含粒徑為1 μm以上之微米粒子及粒徑為100 nm以下之奈米粒子。硬塗層11利用由微米粒子形成之表面凹凸而發揮防眩性,由奈米粒子形成之微細之表面凹凸有助於提高抗反射層5之密接性。 <Hard coating layer> The hard coating film 1 is formed by providing a hard coating layer 11 on the main surface of the transparent film substrate 10. The hard coating layer 11 includes a binder resin and fine particles, and the fine particles include micron particles with a particle size of 1 μm or more and nanoparticles with a particle size of 100 nm or less. The hard coating layer 11 exerts anti-glare properties by utilizing the surface roughness formed by the micron particles, and the fine surface roughness formed by the nanoparticles helps to improve the adhesion of the anti-reflection layer 5.
硬塗層11之厚度並無特別限定,為了實現較高之硬度,較佳為2 μm以上、更佳為4 μm以上、進而較佳為5 μm以上。另一方面,若硬塗層11之厚度過大,則有無法適當地形成硬塗層之表面凹凸之情形、或有由於凝集破壞而導致膜強度降低之情形。因此,硬塗層11之厚度較佳為20 μm以下、更佳為15 μm以下、進而較佳為12 μm以下。又,硬塗層11之厚度較佳為微米粒子之平均粒徑之1.2~4倍之範圍、更佳為1.5~3倍之範圍內。藉由使微米粒子之粒徑與硬塗層之厚度之比為上述範圍,形成於硬塗層表面之凹凸形狀容易成為防眩性優異者。The thickness of the hard coating layer 11 is not particularly limited. In order to achieve higher hardness, it is preferably 2 μm or more, more preferably 4 μm or more, and further preferably 5 μm or more. On the other hand, if the thickness of the hard coating layer 11 is too large, the surface unevenness of the hard coating layer may not be properly formed, or the film strength may be reduced due to coagulation failure. Therefore, the thickness of the hard coating layer 11 is preferably 20 μm or less, more preferably 15 μm or less, and further preferably 12 μm or less. In addition, the thickness of the hard coating layer 11 is preferably in the range of 1.2 to 4 times the average particle size of the micron particles, and more preferably in the range of 1.5 to 3 times. By setting the ratio of the particle size of the micronized particles to the thickness of the hard coating layer within the above range, the concavo-convex shape formed on the surface of the hard coating layer can easily become one with excellent anti-glare properties.
硬塗膜之霧度較佳為1~35%、更佳為2~30%,亦可為3~25%、4~20%、5~17%或6~15%。若硬塗膜之霧度為上述範圍,則能夠兼顧防眩性與圖像之清晰性。於霧度過小之情形時,有防眩性差之情形,於霧度過大之情形時,存在透射光之散射較大、圖像之清晰性降低之傾向。The haze of the hard coating is preferably 1-35%, more preferably 2-30%, and may also be 3-25%, 4-20%, 5-17%, or 6-15%. If the haze of the hard coating is within the above range, both anti-glare and image clarity can be taken into account. When the haze is too small, the anti-glare property may be poor, and when the haze is too large, the scattering of the transmitted light is large, and the image clarity tends to be reduced.
硬塗層11之表面之由1 μm×1 μm之區域之三維表面性狀算出之算術平均高度Sa較佳為2.0 nm以上。硬塗層11之表面之由測定長度12 mm之粗糙度曲線算出之凹凸之平均間隔RSm較佳為120 μm以上。The arithmetic mean height Sa calculated from the three-dimensional surface properties of the 1 μm×1 μm area of the surface of the hard coating layer 11 is preferably 2.0 nm or more. The average interval RSm of the concavities and convexities calculated from the roughness curve of the measured length of 12 mm on the surface of the hard coating layer 11 is preferably 120 μm or more.
算術平均高度Sa係由使用原子力顯微鏡(AFM)之1 μm見方之觀察圖像依據ISO 25178算出之值,係表示nm規模之微細之凹凸之形成程度之指標。存在硬塗層11之算術平均高度Sa越大,則抗反射層5之密接性越提高之傾向。存在硬塗層11中所含之奈米粒子之粒徑越大、奈米粒子之含量越多,則Sa越大之傾向。硬塗層11之算術平均高度Sa更佳為2.3 nm以上、進而較佳為2.5 nm以上,亦可為2.7 nm以上、2.9 nm以上或3.0 nm以上。The arithmetic mean height Sa is a value calculated according to ISO 25178 from an observation image of 1 μm square using an atomic force microscope (AFM), and is an indicator of the degree of formation of fine concavo-convex on the nm scale. The larger the arithmetic mean height Sa of the hard coating layer 11, the higher the adhesion of the anti-reflection layer 5 tends to be. The larger the particle size of the nanoparticles contained in the hard coating layer 11 and the higher the content of the nanoparticles, the larger Sa tends to be. The arithmetic mean height Sa of the hard coating layer 11 is preferably 2.3 nm or more, and further preferably 2.5 nm or more, and may also be 2.7 nm or more, 2.9 nm or more, or 3.0 nm or more.
另一方面,若由奈米粒子形成之表面凹凸變得粗大,則有無法實現充分之密接性之情形。又,若由奈米粒子形成之表面凹凸變大,則有微米粒子之形狀難以反映在硬塗層11之表面形狀上,防眩性降低之情形。因此,硬塗層11之算術平均高度Sa較佳為10 nm以下、更佳為8.0 nm以下、進而較佳為7.0 nm以下,亦可為6.0 nm以下、5.5 nm以下、5.0 nm以下或4.5 nm以下。On the other hand, if the surface unevenness formed by the nanoparticles becomes coarse, sufficient adhesion may not be achieved. In addition, if the surface unevenness formed by the nanoparticles becomes large, the shape of the micronized particles is difficult to reflect on the surface shape of the hard coating layer 11, and the anti-glare property is reduced. Therefore, the arithmetic mean height Sa of the hard coating layer 11 is preferably 10 nm or less, more preferably 8.0 nm or less, and further preferably 7.0 nm or less, and may also be 6.0 nm or less, 5.5 nm or less, 5.0 nm or less, or 4.5 nm or less.
凹凸之平均間隔RSm係根據利用觸針式表面粗糙度測定器所測定之長度12 mm之截面曲線通過截止值0.8 mm之廣域濾波器而得到之粗糙度曲線,依據JIS B0601:2001算出之粗糙度曲線要素之平均長度,係表示 μm規模之凹凸之面密度之指標。存在硬塗層11之凹凸之平均間隔RSm越小,則由微米粒子形成於硬塗層之表面之凹凸之密度越高、防眩性越優異之傾向。另一方面,若RSm過小,則存在圖像顯示裝置之黑顯示時,外部光之反射圖像容易看起來發白模糊、黑色之「稠密性」較差、明處對比度降低之傾向(參照圖2之「比較例2」)。The average interval RSm of the concave and convex is a roughness curve obtained by passing a cross-sectional curve of 12 mm in length measured by a stylus-type surface roughness tester through a wide-area filter with a cutoff value of 0.8 mm. It is the average length of the roughness curve element calculated in accordance with JIS B0601:2001 and is an index indicating the surface density of the concave and convex on the μm scale. The smaller the average interval RSm of the concave and convex of the hard coating layer 11 is, the higher the density of the concave and convex formed on the surface of the hard coating layer by micron particles is, and the better the anti-glare property tends to be. On the other hand, if RSm is too small, when the image display device is in black display, the reflected image of the external light tends to look whitish and blurred, the "density" of black is poor, and the contrast in the bright area tends to decrease (refer to "Comparison Example 2" in Figure 2).
藉由使硬塗層11之凹凸之平均間隔RSm為120 μm以上,黑色之稠密性良好,能夠實現明處對比度高之顯示。硬塗層11之凹凸之平均間隔RSm更佳為130 μm以上,亦可為140 μm以上或150 μm以上。By making the average interval RSm of the concavoconvexity of the hard coating layer 11 120 μm or more, the density of black is good, and a display with high contrast in bright areas can be achieved. The average interval RSm of the concavoconvexity of the hard coating layer 11 is more preferably 130 μm or more, and may be 140 μm or more or 150 μm or more.
另一方面,若硬塗層11之凹凸之平均間隔RSm過大,則有無法充分地發揮防眩性之情形。因此,硬塗層11之凹凸之平均間隔RSm較佳為250 μm以下、更佳為220 μm以下、進而較佳為200 μm以下、亦可為180 μm以下或170 μm以下。On the other hand, if the average interval RSm of the concavoconvexity of the hard coating layer 11 is too large, the anti-glare property may not be fully exerted. Therefore, the average interval RSm of the concavoconvexity of the hard coating layer 11 is preferably 250 μm or less, more preferably 220 μm or less, further preferably 200 μm or less, and may be 180 μm or less or 170 μm or less.
硬塗層11之表面之由測定長度12 mm之截面曲線通過截止值0.8 mm之廣域濾波器而得到之粗糙度曲線依據JIS B0601:2001算出之算術平均粗糙度Ra較佳為30~500 nm。算術平均粗糙度Ra係表示有助於光之散射之次微米至μm規模之高度之凹凸之形成程度之指標,存在硬塗層11中所含之微米粒子之粒徑越大、微米粒子之含量越多,則Sa越大之傾向。The roughness curve of the surface of the hard coating layer 11 obtained by measuring a cross-sectional curve of 12 mm in length through a wide-area filter with a cutoff value of 0.8 mm is preferably 30 to 500 nm in arithmetic average roughness Ra calculated in accordance with JIS B0601:2001. The arithmetic average roughness Ra is an indicator of the degree of formation of sub-micron to μm-scale high concavities and convexities that contribute to light scattering. There is a tendency that the larger the particle size of the micron particles contained in the hard coating layer 11 and the more the content of the micron particles, the larger the Sa.
存在硬塗層11之算術平均粗糙度Ra越大,則防眩性越優異之傾向。另一方面,於硬塗層11之算術平均粗糙度Ra過大之情形時,光散射較大,可能成為圖像之清晰性之降低、或反射光之白暈之原因。硬塗層11之算術平均粗糙度Ra更佳為50~400 nm、進而較佳為60~300 nm,亦可為70~250 nm或80~200 nm。There is a tendency that the greater the arithmetic average roughness Ra of the hard coating layer 11, the better the anti-glare property. On the other hand, when the arithmetic average roughness Ra of the hard coating layer 11 is too large, light scattering is large, which may cause a decrease in image clarity or a whitening of reflected light. The arithmetic average roughness Ra of the hard coating layer 11 is more preferably 50 to 400 nm, more preferably 60 to 300 nm, and may also be 70 to 250 nm or 80 to 200 nm.
用於形成硬塗層11之組合物包含黏合劑樹脂(或作為其前驅物之硬化性樹脂)、粒徑為1 μm以上之微米粒子、及粒徑為100 nm以下之奈米粒子。The composition used to form the hard coating layer 11 includes a binder resin (or a curable resin as a precursor thereof), micron particles having a particle size of 1 μm or more, and nanoparticles having a particle size of 100 nm or less.
(黏合劑樹脂) 作為硬塗層11之黏合劑樹脂,較佳為使用熱硬化性樹脂、光硬化性樹脂、電子束硬化性樹脂等硬化性樹脂。作為硬化性樹脂之種類,可例舉出聚酯系、丙烯酸系、胺基甲酸酯系、丙烯醯基胺基甲酸酯系、醯胺系、聚矽氧系、矽酸鹽系、環氧系、三聚氰胺系、氧雜環丁烷系、丙烯酸醯基胺基甲酸酯系等。該等之中,就硬度較高、能夠光硬化而言,較佳為丙烯酸系樹脂、丙烯醯基胺基甲酸酯系樹脂及環氧系樹脂,其中較佳為丙烯酸系樹脂及丙烯醯基胺基甲酸酯系樹脂。黏合劑樹脂之折射率一般為1.4~1.6左右。 (Adhesive resin) As the adhesive resin of the hard coating layer 11, it is preferable to use a curable resin such as a thermosetting resin, a light curing resin, an electron beam curing resin, etc. Examples of the curable resin include polyester series, acrylic series, urethane series, acryl urethane series, amide series, polysilicone series, silicate series, epoxy series, melamine series, cyclohexane series, acrylate urethane series, etc. Among them, acrylic resin, acrylamide resin and epoxy resin are preferred in terms of higher hardness and ability to be photocured, among which acrylic resin and acrylamide resin are preferred. The refractive index of adhesive resin is generally around 1.4~1.6.
光硬化性之黏合劑樹脂成分包含具有2個以上之光聚合性(較佳為紫外線聚合性)之官能基之多官能化合物。多官能化合物可為單體亦可為低聚物。作為光聚合性之多官能化合物,較佳為使用1分子中包含2個以上(甲基)丙烯醯基之化合物(多官能(甲基)丙烯酸酯)。The photocurable adhesive resin component includes a multifunctional compound having two or more photopolymerizable (preferably UV-polymerizable) functional groups. The multifunctional compound may be a monomer or an oligomer. As the photopolymerizable multifunctional compound, a compound having two or more (meth)acrylic groups in one molecule (multifunctional (meth)acrylate) is preferably used.
(微米粒子) 硬塗層11藉由包含粒徑為1 μm以上之微粒子(微米粒子),從而在硬塗層之表面形成100 μm左右之週期之凹凸,賦予防眩性。硬塗層中所含之微米粒子(粒徑為1 μm以上之粒子)之平均粒徑較佳為1~8 μm、更佳為2~5 μm。於微米粒子之粒徑較小之情形時,存在防眩性不足之傾向。於微米粒子之粒徑較大之情形時,存在圖像之清晰度降低之傾向。於硬塗層含有2種以上之微米粒子之情形時,較佳為微米粒子(粒徑為1 μm以上之粒子)整體之平均粒徑在上述範圍內。平均粒徑係藉由庫爾特計數法測定之重量平均粒徑。 (Micron particles) The hard coating layer 11 includes microparticles (micron particles) with a particle size of 1 μm or more, thereby forming periodic irregularities of about 100 μm on the surface of the hard coating layer, thereby imparting anti-glare properties. The average particle size of the micron particles (particles with a particle size of 1 μm or more) contained in the hard coating layer is preferably 1 to 8 μm, and more preferably 2 to 5 μm. When the particle size of the micron particles is smaller, there is a tendency for the anti-glare properties to be insufficient. When the particle size of the micron particles is larger, there is a tendency for the clarity of the image to decrease. When the hard coating layer contains two or more types of micron particles, it is preferred that the average particle size of the micron particles (particles with a particle size of 1 μm or more) as a whole is within the above range. The average particle size is the weight average particle size measured by the Coulter counter method.
微米粒子之形狀無特別限制,就減少眩光之觀點而言,較佳為長徑比為1.5以下之球狀粒子。球狀粒子之長徑比較佳為1.3以下、更佳為1.1以下。The shape of the micronized particles is not particularly limited, but from the perspective of reducing glare, spherical particles with an aspect ratio of 1.5 or less are preferred. The aspect ratio of the spherical particles is preferably 1.3 or less, and more preferably 1.1 or less.
作為微米粒子之材料,可無特別限制地使用二氧化矽、氧化鋁、二氧化鈦、氧化鋯、氧化鈣、氧化錫、氧化銦、氧化鎘、氧化銻等各種金屬氧化物微粒子、玻璃微粒子、包含聚甲基丙烯酸甲酯、聚苯乙烯、聚胺基甲酸酯、丙烯酸系樹脂-苯乙烯共聚物、苯并胍胺、三聚氰胺、聚碳酸酯、聚矽氧等各種透明聚合物之交聯或未交聯之有機系微粒子。該等微粒子可適當地選擇1種或2種以上使用。就能夠製作具有μm級之粒徑且長徑比較小、粒徑之均勻性較高之微粒子,且為高密度而言,作為微米粒子之材料,特佳為聚矽氧。As materials for micronized particles, various metal oxide particles such as silicon dioxide, aluminum oxide, titanium dioxide, zirconium oxide, calcium oxide, tin oxide, indium oxide, cadmium oxide, antimony oxide, glass particles, crosslinked or uncrosslinked organic particles of various transparent polymers such as polymethyl methacrylate, polystyrene, polyurethane, acrylic resin-styrene copolymer, benzoguanamine, melamine, polycarbonate, polysilicone, etc. can be used without particular limitation. One or more of these particles can be appropriately selected for use. It is possible to produce particles with a particle size of μm level and a relatively small length diameter, and a relatively high uniformity of the particle size, and in terms of high density, polysilicone is particularly preferred as a material for micronized particles.
較佳為微米粒子與硬塗層之黏合劑樹脂之折射率差較小。藉由減小黏合劑與微米粒子之折射率差,黏合劑樹脂與微米粒子之界面處之光散射減少,霧度降低,因此能夠實現透明感較高之顯示。另一方面,於硬塗層之霧度過小之情形時,有防眩性變得不充分之情形。就使硬塗層具有適度之霧度並且實現透明感較高之顯示之觀點而言,黏合劑樹脂與微米粒子之折射率差較佳為0.01~0.10左右,亦可為0.02~0.06。It is preferred that the refractive index difference between the micron particles and the binder resin of the hard coating layer is smaller. By reducing the refractive index difference between the binder and the micron particles, light scattering at the interface between the binder resin and the micron particles is reduced, and the haze is reduced, so that a display with a higher sense of transparency can be achieved. On the other hand, when the haze of the hard coating layer is too small, the anti-glare property may become insufficient. From the perspective of making the hard coating layer have an appropriate haze and achieving a display with a higher sense of transparency, the refractive index difference between the binder resin and the micron particles is preferably about 0.01 to 0.10, and can also be 0.02 to 0.06.
微米粒子之比重較佳為1.25以上、更佳為1.28以上,可為1.30以上。微米粒子之比重亦可為2.0以下、1.70以下、1.50以下或1.40以下。微米粒子之比重較佳為大於奈米粒子之比重。The specific gravity of the micron particles is preferably 1.25 or more, more preferably 1.28 or more, and can be 1.30 or more. The specific gravity of the micron particles can also be 2.0 or less, 1.70 or less, 1.50 or less, or 1.40 or less. The specific gravity of the micron particles is preferably greater than that of the nanoparticles.
在微米粒子之比重較大之情形時,微米粒子容易沉澱而偏靠於透明膜基材10之附近。隨之,奈米粒子偏靠於硬塗層11之表面(與抗反射層5或底塗劑層3之界面)附近,在面內均勻地形成微細之凹凸,因此存在抗反射層之密接性提高之傾向。When the specific gravity of the micron particles is large, the micron particles are easily precipitated and tend to be close to the transparent film substrate 10. As a result, the nanoparticles tend to be close to the surface of the hard coating layer 11 (the interface with the anti-reflection layer 5 or the primer layer 3), and fine concavities and convexities are uniformly formed in the surface, so there is a tendency to improve the adhesion of the anti-reflection layer.
在硬塗層11中微米粒子與奈米粒子並存之情形時,若微米粒子存在於硬塗層之表面附近,則存在表面之凹凸之平均間隔RSm變小,由於反射光之白暈而使得明處對比度降低之傾向。藉由使用比重較大而容易沉澱之微米粒子,存在反映微米粒子之形狀而形成於硬塗層之表面之凹凸之間隔變大、RSm變大之傾向。In the case where micron particles and nanoparticles coexist in the hard coating layer 11, if the micron particles exist near the surface of the hard coating layer, the average interval RSm of the surface concavities and convexities becomes smaller, and the contrast of the bright area tends to decrease due to the halo of the reflected light. By using micron particles with a large specific gravity and easy precipitation, there is a tendency that the interval of the concavities and convexities formed on the surface of the hard coating layer becomes larger due to the shape of the micron particles, and RSm tends to increase.
於硬塗層中含有2種以上之微米粒子之情形時,較佳為微米粒子(粒徑為1 μm以上之粒子)平均比重為上述範圍。即使微米粒子之平均比重為1.25以上,在比重未達1.25之微米粒子之比率較大之情形時,有存在於硬塗層之表面附近之微米粒子之量變多、硬塗層之RSm變小之傾向。因此,微米粒子之總計100重量份中,比重為1.25以上之粒子之量較佳為85重量份以上、更佳為90重量份以上,亦可為95重量份以上、99重量份以上或100重量份。When the hard coating layer contains two or more types of micron particles, it is preferred that the average specific gravity of the micron particles (particles with a particle size of 1 μm or more) is within the above range. Even if the average specific gravity of the micron particles is 1.25 or more, when the ratio of micron particles with a specific gravity less than 1.25 is large, the amount of micron particles present near the surface of the hard coating layer increases and the RSm of the hard coating layer tends to decrease. Therefore, out of a total of 100 parts by weight of micron particles, the amount of particles with a specific gravity of 1.25 or more is preferably 85 parts by weight or more, more preferably 90 parts by weight or more, and may also be 95 parts by weight or more, 99 parts by weight or more, or 100 parts by weight.
硬塗層中之微米粒子之含量無特別限制。就在硬塗層之表面均勻地形成凹凸之觀點而言,微米粒子之含量相對於黏合劑樹脂100重量份較佳為0.5~12重量份、更佳為1~10重量份,亦可為1.5~7重量份或2~5重量份。於微米粒子之含量較小之情形時,有硬塗層之RSm較大、防眩性不足之情形。另一方面,於微米粒子之含量過大之情形時,即使使用高密度之微米粒子,亦存在RSm變小、由於反射光之白暈而導致明處對比度降低之傾向。The content of micron particles in the hard coating layer is not particularly limited. From the viewpoint of uniformly forming unevenness on the surface of the hard coating layer, the content of micron particles is preferably 0.5 to 12 parts by weight, more preferably 1 to 10 parts by weight, and may also be 1.5 to 7 parts by weight or 2 to 5 parts by weight relative to 100 parts by weight of the adhesive resin. When the content of micron particles is small, the RSm of the hard coating layer may be large and the anti-glare property may be insufficient. On the other hand, when the content of micron particles is too large, even if high-density micron particles are used, there is a tendency for RSm to become small and the contrast in bright areas to decrease due to the halo of reflected light.
如上所述,藉由調整微米粒子之比重、粒徑及含量,能夠調整硬塗層11之表面形狀,賦予防眩性、並且減少白暈。微米粒子之含量越多,則由微米粒子形成之凸部之數量變得越多,因此存在RSm變小之傾向。又,存在微米粒子之平均粒徑越大、微米粒子之含量越多,則Ra越大之傾向。於微米粒子之比重較小、存在於表面附近之微米粒子之比率較大之情形時,存在RSm變小、Ra變大之傾向。As described above, by adjusting the specific gravity, particle size, and content of the micron particles, the surface shape of the hard coating layer 11 can be adjusted to impart anti-glare properties and reduce halo. The greater the content of the micron particles, the greater the number of convex portions formed by the micron particles, and therefore there is a tendency for RSm to decrease. In addition, there is a tendency for Ra to increase as the average particle size of the micron particles increases and the content of the micron particles increases. When the specific gravity of the micron particles is smaller and the ratio of the micron particles present near the surface is greater, there is a tendency for RSm to decrease and Ra to increase.
(奈米粒子) 硬塗層11中藉由除了包含粒徑為1 μm以上之微米粒子以外,亦包含粒徑為100 nm以下之奈米粒子,從而在硬塗層之表面形成較由微米粒子形成之凹凸小尺寸之微細之凹凸,存在硬塗層11與形成於其上之抗反射層5之密接性提高之傾向。 (Nano particles) The hard coating layer 11 contains nano particles with a particle size of 100 nm or less in addition to micro particles with a particle size of 1 μm or more, thereby forming fine concavities and convexities smaller in size than those formed by micro particles on the surface of the hard coating layer, and there is a tendency to improve the adhesion between the hard coating layer 11 and the anti-reflection layer 5 formed thereon.
作為奈米粒子之材料,較佳為無機氧化物。作為無機氧化物,可例舉出氧化矽、氧化鈦、氧化鋁、氧化鋯、氧化鈦、氧化鈮、氧化鋅、氧化錫、氧化鈰、氧化鎂等金屬或半金屬之氧化物。無機氧化物可為複數種(半)金屬之複合氧化物。在例示之無機氧化物中,就低折射率、透明性優異、且密接性提高效果較高之方面而言,較佳為氧化矽。其中,就能夠製作粒徑之均勻性較高之微粒子、分散性優異且為低密度之方面而言,作為奈米粒子之材料,特佳為膠體二氧化矽。出於提高與黏合劑樹脂之親和性、或提高硬塗層之硬度等目的,亦可在奈米粒子之表面導入丙烯醯基、環氧基等官能基。As the material of nanoparticles, inorganic oxides are preferred. As inorganic oxides, metal or semimetal oxides such as silicon oxide, titanium oxide, aluminum oxide, zirconium oxide, titanium oxide, niobium oxide, zinc oxide, tin oxide, niobium oxide, and magnesium oxide can be cited. The inorganic oxide can be a composite oxide of multiple (semi) metals. Among the inorganic oxides exemplified, silicon oxide is preferred in terms of low refractive index, excellent transparency, and high adhesion improvement effect. Among them, colloidal silicon dioxide is particularly preferred as the material of nanoparticles in terms of being able to produce microparticles with high uniformity of particle size, excellent dispersibility, and low density. In order to improve the affinity with the adhesive resin or to increase the hardness of the hard coating layer, functional groups such as acryl and epoxy groups can also be introduced into the surface of the nanoparticles.
奈米粒子之比重較佳為小於微米粒子之比重。藉由使奈米粒子為相對低之比重,從而奈米粒子容易偏靠於硬塗層11之表面附近,微細之凹凸均勻地形成於面內,因此具有抗反射層之密接性提高之傾向。奈米粒子之比重較佳為未達1.25,可為1.23以下或1.21以下。奈米粒子之比重亦可為0.80以上、0.90以上、0.95以上或1.00以上。膠體二氧化矽之比重一般為1.05~1.20左右。The specific gravity of nanoparticles is preferably smaller than that of micron particles. By making the specific gravity of nanoparticles relatively low, the nanoparticles are easily biased near the surface of the hard coating layer 11, and fine concavoconvexities are uniformly formed in the surface, so that the adhesion of the anti-reflection layer tends to be improved. The specific gravity of nanoparticles is preferably less than 1.25, and can be less than 1.23 or less than 1.21. The specific gravity of nanoparticles can also be greater than 0.80, greater than 0.90, greater than 0.95, or greater than 1.00. The specific gravity of colloidal silica is generally about 1.05 to 1.20.
奈米粒子之粒徑越大、奈米粒子之含量越多,則由奈米粒子形成之奈米尺寸之凹凸之高度及面密度越大、硬塗層11之算術平均高度Sa變得越大,隨之,有抗反射層5之密接性提高之傾向。The larger the particle size of the nanoparticles and the higher the content of the nanoparticles, the greater the height and surface density of the nano-sized concavities and convexities formed by the nanoparticles, the greater the arithmetic mean height Sa of the hard coating layer 11 becomes, and accordingly, the adhesion of the anti-reflection layer 5 tends to be improved.
就提高黏合劑中之分散性、並且增大硬塗層之Sa而提高抗反射層之密接性之觀點而言,奈米粒子之平均一次粒徑較佳為15 nm以上、更佳為20 nm以上,亦可為25 nm以上或30 nm以上。另一方面,就形成有助於密接性提高之微細之凹凸形狀並且抑制硬塗層表面處之反射光之著色之觀點而言,奈米粒子之平均一次粒徑較佳為90 nm以下、更佳為70 nm以下,亦可為60 nm以下、55 nm以下或50 nm以下。From the viewpoint of improving the dispersibility in the binder and increasing the Sa of the hard coat layer to improve the adhesion of the anti-reflection layer, the average primary particle size of the nanoparticles is preferably 15 nm or more, more preferably 20 nm or more, and may be 25 nm or more or 30 nm or more. On the other hand, from the viewpoint of forming a fine concavo-convex shape that helps to improve the adhesion and suppressing the coloring of the reflected light at the surface of the hard coat layer, the average primary particle size of the nanoparticles is preferably 90 nm or less, more preferably 70 nm or less, and may be 60 nm or less, 55 nm or less, or 50 nm or less.
硬塗層中之奈米粒子之含量並無特別限制,就增大硬塗層之Sa而提高抗反射層之密接性之觀點而言,奈米粒子之含量相對於黏合劑樹脂100重量份較佳為25重量份以上,亦可為30重量份以上或35重量份以上。另一方面,於奈米粒子之含量過大之情形時,硬塗層之RSm變小,容易產生反射光之白暈。因此,硬塗層中之奈米粒子之含量相對於黏合劑樹脂100重量份較佳為120重量份以下、更佳為100重量份以下、進而較佳為80重量份以下,亦可為70重量份以下、60重量份以下、55重量份以下、50重量份以下或45重量份以下。The content of nanoparticles in the hard coating layer is not particularly limited. From the perspective of increasing the Sa of the hard coating layer and improving the adhesion of the anti-reflection layer, the content of nanoparticles is preferably 25 parts by weight or more relative to 100 parts by weight of the adhesive resin, and can also be 30 parts by weight or more or 35 parts by weight or more. On the other hand, when the content of nanoparticles is too large, the RSm of the hard coating layer becomes smaller, and it is easy to produce halo of reflected light. Therefore, the content of nanoparticles in the hard coating layer is preferably 120 parts by weight or less, more preferably 100 parts by weight or less, and further preferably 80 parts by weight or less relative to 100 parts by weight of the adhesive resin. It can also be 70 parts by weight or less, 60 parts by weight or less, 55 parts by weight or less, 50 parts by weight or less, or 45 parts by weight or less.
(硬塗層之形成) 硬塗組合物包含上述之黏合劑樹脂成分、微米粒子及奈米粒子,根據需要包含溶劑。於黏合劑樹脂成分為硬化性樹脂時,組合物中較佳為含有適當之聚合起始劑。例如,於黏合劑樹脂成分為光硬化型樹脂之情形時,較佳為組合物中含有光聚合起始劑。 (Formation of hard coating layer) The hard coating composition comprises the above-mentioned binder resin component, microparticles and nanoparticles, and optionally a solvent. When the binder resin component is a curable resin, the composition preferably contains a suitable polymerization initiator. For example, when the binder resin component is a photocurable resin, the composition preferably contains a photopolymerization initiator.
硬塗組合物除了上述以外,還可含有調平劑、黏度調整劑(觸變劑、增黏劑等)、抗靜電劑、防黏連劑、分散劑、分散穩定劑、抗氧化劑、紫外線吸收劑、消泡劑、界面活性劑、潤滑劑等添加劑。In addition to the above, the hard coating composition may also contain additives such as leveling agents, viscosity modifiers (thickening agents, etc.), antistatic agents, anti-adhesion agents, dispersants, dispersion stabilizers, antioxidants, ultraviolet absorbers, defoaming agents, surfactants, lubricants, etc.
作為觸變劑,可例舉出有機黏土、氧化聚烯烴、改性脲等。其中,較佳為膨潤石等有機黏土。觸變劑之調配相對於黏合劑100重量份,較佳為0.3~5重量份左右。作為調平劑,例如可例舉出氟系或聚矽氧系之調平劑,調平劑之調配量相對於黏合劑100重量份較佳為0.01~3重量份左右。As the activator, organic clay, oxidized polyolefin, modified urea, etc. can be cited. Among them, organic clay such as bentonite is preferred. The amount of the activator to be prepared is preferably about 0.3 to 5 parts by weight relative to 100 parts by weight of the adhesive. As the leveling agent, for example, fluorine-based or polysilicone-based leveling agents can be cited, and the amount of the leveling agent to be prepared is preferably about 0.01 to 3 parts by weight relative to 100 parts by weight of the adhesive.
將上述硬塗組合物塗佈於透明膜基材10上,根據需要進行溶劑之去除及樹脂之硬化,藉此形成硬塗層11。The hard coating composition is applied onto a transparent film substrate 10, and the solvent is removed and the resin is cured as needed to form a hard coating layer 11.
作為硬塗組合物之塗佈方法,可採用棒塗法、輥塗法、凹版塗佈法、桿塗法、孔縫式塗佈法、簾塗法、噴注式塗佈法、缺角輪塗佈法等任意適當之方法。塗佈後之加熱溫度根據硬塗組合物之組成等設定為適當之溫度即可,例如為50℃~150℃左右。於黏合劑樹脂成分為光硬化性樹脂時,藉由照射紫外線等活性能量射線來進行光硬化。照射光之累積光量例如為100~500 mJ/cm 2左右。 As a coating method of the hard coating composition, any appropriate method such as rod coating, roller coating, gravure coating, rod coating, hole coating, curtain coating, spray coating, and notch wheel coating can be adopted. The heating temperature after coating can be set to an appropriate temperature according to the composition of the hard coating composition, for example, about 50°C to 150°C. When the adhesive resin component is a photocurable resin, light curing is performed by irradiating active energy rays such as ultraviolet rays. The cumulative light amount of the irradiated light is, for example, about 100 to 500 mJ/ cm2 .
在硬塗層11上形成抗反射層5之前,出於進一步提高硬塗層11與抗反射層5之密接性等目的,亦可進行硬塗層11之表面處理。作為表面處理,可例舉出電暈處理、電漿處理、火焰處理、臭氧處理、底塗劑處理、輝光處理、鹼處理、酸處理、利用偶合劑之處理等表面改質處理。作為表面處理,可進行真空電漿處理。在利用真空電漿等之乾蝕刻處理中,硬塗層表面之樹脂成分容易被選擇性地蝕刻,硬塗層表面及其附近之奈米粒子之存在比率變高,因此存在硬塗層表面之算術平均高度Sa變大之傾向。Before forming the anti-reflection layer 5 on the hard coating layer 11, the hard coating layer 11 may be subjected to surface treatment for the purpose of further improving the adhesion between the hard coating layer 11 and the anti-reflection layer 5. Examples of the surface treatment include surface modification treatments such as corona treatment, plasma treatment, flame treatment, ozone treatment, primer treatment, radiant treatment, alkali treatment, acid treatment, and treatment using a coupling agent. As the surface treatment, vacuum plasma treatment may be performed. In dry etching treatment using vacuum plasma or the like, the resin component on the hard coating surface is easily selectively etched, and the existence ratio of nanoparticles on the hard coating surface and in the vicinity thereof becomes higher, so there is a tendency for the arithmetic mean height Sa of the hard coating surface to become larger.
[抗反射膜] 在硬塗膜1之硬塗層11上,根據需要隔著底塗劑層3形成抗反射層5,在抗反射層5上形成防污層7,藉此能夠得到抗反射膜。 [Anti-reflection film] Anti-reflection layer 5 is formed on hard coating layer 11 of hard coating film 1 via primer layer 3 as needed, and anti-fouling layer 7 is formed on anti-reflection layer 5, thereby obtaining an anti-reflection film.
<底塗劑層> 較佳為在硬塗層11與抗反射層5之間設置底塗劑層3。作為底塗劑層3之材料,可例舉出矽、鎳、鉻、錫、金、銀、鉑、鋅、鈦、銦、鎢、鋁、鋯、鈀等金屬;該等金屬之合金;該等金屬之氧化物、氟化物、硫化物或氮化物;等。其中,底塗劑層之材料較佳為無機氧化物,特佳為氧化矽或氧化銦。構成底塗劑層3之無機氧化物亦可為氧化銦錫(ITO)等複合氧化物。 <Undercoat layer> It is preferred to provide an undercoat layer 3 between the hard coat layer 11 and the anti-reflection layer 5. Examples of the material of the undercoat layer 3 include metals such as silicon, nickel, chromium, tin, gold, silver, platinum, zinc, titanium, indium, tungsten, aluminum, zirconium, and palladium; alloys of these metals; oxides, fluorides, sulfides, or nitrides of these metals; and the like. Among them, the material of the undercoat layer is preferably an inorganic oxide, particularly preferably silicon oxide or indium oxide. The inorganic oxide constituting the undercoat layer 3 may also be a composite oxide such as indium tin oxide (ITO).
於底塗劑層3為氧化矽之情形時,就透光率較高、且對有機層(硬塗層)與無機層(抗反射層)兩者之黏接力較高之方面而言,特佳為氧量少於化學計量組成者。非化學計量組成之底塗劑層3之氧量較佳為化學計量組成之60~99%左右。例如,在形成氧化矽(SiO x)層作為底塗劑層3之情形時,x較佳為1.20~1.98。 When the primer layer 3 is silicon oxide, the oxygen content is preferably less than the stoichiometric composition in terms of higher light transmittance and higher adhesion to both the organic layer (hard coat layer) and the inorganic layer (anti-reflection layer). The oxygen content of the non-stoichiometric primer layer 3 is preferably about 60-99% of the stoichiometric composition. For example, when a silicon oxide (SiO x ) layer is formed as the primer layer 3, x is preferably 1.20-1.98.
底塗劑層3之厚度例如為1~20 nm左右,較佳為3~15 nm。若底塗劑層之厚度為上述範圍,則能夠兼顧與硬塗層11之密接性與較高之透光性。The thickness of the primer layer 3 is, for example, about 1 to 20 nm, preferably 3 to 15 nm. If the thickness of the primer layer is within the above range, both the adhesion with the hard coating layer 11 and the high light transmittance can be taken into consideration.
<抗反射層> 抗反射層5由折射率不同之2層以上之薄膜形成。一般而言,抗反射層以入射光與反射光之反轉之相位相互抵消之方式調整薄膜之光學膜厚(折射率與厚度之積)。藉由將抗反射層製成折射率不同之2層以上之薄膜之多層積層體,能夠在可見光之寬頻帶之波長範圍內減小反射率。 <Anti-reflection layer> The anti-reflection layer 5 is formed of two or more thin films with different refractive indices. Generally speaking, the anti-reflection layer adjusts the optical film thickness (the product of the refractive index and the thickness) of the thin film in such a way that the reversed phases of the incident light and the reflected light cancel each other out. By making the anti-reflection layer into a multi-layered body of two or more thin films with different refractive indices, the reflectivity can be reduced within the wavelength range of a wide band of visible light.
作為構成抗反射層5之薄膜之材料,可例舉出金屬之氧化物、氮化物、氟化物等。抗反射層5較佳為高折射率層與低折射率層之交替積層體。為了減少與防污層之界面處之反射,作為抗反射層5之最外層而設置之薄膜54較佳為低折射率層。As the material constituting the thin film of the anti-reflection layer 5, metal oxides, nitrides, fluorides, etc. can be cited. The anti-reflection layer 5 is preferably an alternating layer of high refractive index layers and low refractive index layers. In order to reduce reflection at the interface with the antifouling layer, the thin film 54 provided as the outermost layer of the anti-reflection layer 5 is preferably a low refractive index layer.
高折射率層51、53例如折射率為1.9以上,較佳為2.0以上。作為高折射率材料,可例舉出氧化鈦、氧化鈮、氧化鋯、氧化鉭、氧化鋅、氧化銦、氧化銦錫(ITO)、銻摻雜氧化錫(ATO)等。其中,較佳為氧化鈦或氧化鈮。低折射率層52、54例如折射率為1.6以下,較佳為1.5以下。作為低折射率材料,可例舉出氧化矽、氮化鈦、氟化鎂、氟化鋇、氟化鈣、氟化鉿、氟化鑭等。其中較佳為氧化矽。特佳為交替地積層作為高折射率層之氧化鈮(Nb 2O 5)薄膜51、33與作為低折射率層之氧化矽(SiO 2)薄膜52、54。除了低折射率層與高折射率層以外,亦可設置折射率為1.6~1.9左右之中折射率層。 The high refractive index layers 51 and 53 have a refractive index of, for example, 1.9 or more, preferably 2.0 or more. Examples of high refractive index materials include titanium oxide, niobium oxide, zirconium oxide, tantalum oxide, zinc oxide, indium oxide, indium tin oxide (ITO), antimony-doped tin oxide (ATO), etc. Among them, titanium oxide or niobium oxide is preferred. The low refractive index layers 52 and 54 have a refractive index of, for example, 1.6 or less, preferably 1.5 or less. Examples of low refractive index materials include silicon oxide, titanium nitride, magnesium fluoride, barium fluoride, calcium fluoride, tantalum fluoride, and tantalum fluoride. Among them, silicon oxide is preferred. Particularly preferably, Nb2O5 thin films 51 and 33 as high refractive index layers and SiO2 thin films 52 and 54 as low refractive index layers are alternately laminated. In addition to the low refractive index layers and the high refractive index layers, a medium refractive index layer having a refractive index of about 1.6 to 1.9 may also be provided.
高折射率層及低折射率層之膜厚分別為5~200 nm左右,較佳為15~150 nm左右。根據折射率、或積層構成等以可見光之反射率變小之方式設計各層之膜厚即可。例如,作為高折射率層與低折射率層之積層構成,可例舉出從硬塗膜側起,為光學膜厚25 nm~55 nm左右之高折射率層51、光學膜厚35 nm~55 nm左右之低折射率層52、光學膜厚80 nm~240 nm左右之高折射率層53及光學膜厚120 nm~150 nm左右之低折射率層54之4層構成。The thickness of the high refractive index layer and the low refractive index layer is about 5 to 200 nm, preferably about 15 to 150 nm. The thickness of each layer can be designed in such a way that the reflectivity of visible light becomes smaller according to the refractive index or the layered structure. For example, as a layered structure of the high refractive index layer and the low refractive index layer, there can be cited a four-layer structure from the hard coating side, which is a high refractive index layer 51 with an optical film thickness of about 25 nm to 55 nm, a low refractive index layer 52 with an optical film thickness of about 35 nm to 55 nm, a high refractive index layer 53 with an optical film thickness of about 80 nm to 240 nm, and a low refractive index layer 54 with an optical film thickness of about 120 nm to 150 nm.
構成抗反射層5之薄膜之成膜方法並無特別限定,可為濕式塗佈法、乾式塗佈法之任意者。就能夠形成膜厚均勻之薄膜之方面而言,較佳為真空蒸鍍、CVD、濺鍍、電子束蒸鍍等乾式塗佈法。其中,就容易形成膜厚之均勻性優異、緻密且高強度之膜之觀點而言,較佳為濺鍍法。藉由利用濺鍍法形成抗反射層,從而存在設置於抗反射層5上之防污層7之耐磨耗性提高之傾向。The film forming method of the thin film constituting the anti-reflection layer 5 is not particularly limited, and may be any of a wet coating method and a dry coating method. From the perspective of being able to form a thin film with uniform film thickness, a dry coating method such as vacuum evaporation, CVD, sputtering, and electron beam evaporation is preferred. Among them, from the perspective of being easy to form a film with excellent uniformity of film thickness, a dense and high-strength film, a sputtering method is preferred. By forming the anti-reflection layer by sputtering, there is a tendency for the wear resistance of the anti-fouling layer 7 disposed on the anti-reflection layer 5 to be improved.
在濺鍍法中,藉由卷對卷方式,能夠一邊將長條之硬塗膜向一個方向(長度方向)搬送,一邊連續成膜薄膜。在濺鍍法中,一邊將氬氣等惰性氣體及根據需要之氧氣等反應性氣體導入腔室內一邊進行成膜。利用濺鍍法之氧化物層之成膜可藉由使用氧化物靶之方法及使用金屬靶之反應性濺鍍之任一者來實施。為了以高速率將金屬氧化物成膜,較佳為使用金屬靶之反應性濺鍍。In the sputtering method, a long strip of hard coating film can be transported in one direction (lengthwise) by a roll-to-roll method while continuously forming a thin film. In the sputtering method, an inert gas such as argon and a reactive gas such as oxygen as needed are introduced into a chamber while film formation is performed. The formation of an oxide layer by sputtering can be performed by either a method using an oxide target or reactive sputtering using a metal target. In order to form a metal oxide film at a high rate, reactive sputtering using a metal target is preferred.
<防污層> 抗反射膜在抗反射層5上具備防污層7作為最表面層(頂塗層)。藉由在最表面設置防污層,能夠降低來自外部環境之污染(指紋、手垢、塵埃等)之影響,並且容易去除附著於表面之污染物質。 <Antifouling layer> The antireflection film has an antifouling layer 7 as the outermost layer (top coating) on the antireflection layer 5. By providing the antifouling layer on the outermost surface, the influence of pollution (fingerprints, hand dirt, dust, etc.) from the external environment can be reduced, and pollutants attached to the surface can be easily removed.
為了維持抗反射層5之抗反射特性,防污層7較佳為與抗反射層5之最表面之低折射率層54之折射率差較小。防污層7之折射率較佳為1.6以下、更佳為1.55以下。In order to maintain the antireflection property of the antireflection layer 5, the antifouling layer 7 preferably has a smaller refractive index difference than the outermost low refractive index layer 54 of the antireflection layer 5. The refractive index of the antifouling layer 7 is preferably 1.6 or less, more preferably 1.55 or less.
作為防污層7之材料,較佳為含氟化合物。含氟化合物能夠賦予防污性,並且亦有助於低折射率化。其中,就撥水性優異、能夠發揮較高之防污性之方面而言,較佳為含有全氟聚醚骨架之氟系聚合物。就提高防污性之觀點而言,特佳為具有能夠剛直地排列之主鏈結構之全氟聚醚。作為全氟聚醚之主鏈骨架之結構單元,較佳為可具有碳原子數1~4之支鏈之全氟伸烷基氧化物,例如可例舉出全氟亞甲基氧化物(-CF 2O-)、全氟伸乙基氧化物(-CF 2CF 2O-)、全氟伸丙基氧化物(-CF 2CF 2CF 2O-)、全氟異伸丙基氧化物(-CF(CF 3)CF 2O-)等。 As the material of the antifouling layer 7, a fluorine-containing compound is preferred. Fluorine-containing compounds can impart antifouling properties and also contribute to lowering the refractive index. Among them, from the perspective of excellent water repellency and the ability to exert higher antifouling properties, a fluorine-based polymer containing a perfluoropolyether skeleton is preferred. From the perspective of improving antifouling properties, a perfluoropolyether having a main chain structure that can be arranged rigidly is particularly preferred. As the structural unit of the main chain skeleton of perfluoropolyether, perfluoroalkylene oxide having a branched chain of 1 to 4 carbon atoms is preferred, for example, perfluoromethylene oxide ( -CF2O- ), perfluoroethylene oxide ( -CF2CF2O- ), perfluoropropylene oxide (-CF2CF2CF2O-), perfluoroisopropylene oxide (-CF ( CF3 ) CF2O- ), etc.
防污層可藉由反向塗佈法、模塗法、凹版塗佈法等濕式法、或真空蒸鍍法、CVD法等乾式法來形成。防污層之厚度通常為2~50 nm左右。存在防污層7之厚度越大,則防污性越提高之傾向。又,存在防污層7之厚度越大,則由磨耗引起之防污特定之降低越被抑制之傾向。防污層之厚度較佳為3 nm以上,亦可為5 nm以上或7 nm以上。另一方面,就在防污層之表面形成反映了硬塗層表面之凹凸形狀之表面形狀而提高防眩性之觀點而言,防污層之厚度較佳為30 nm以下、更佳為20 nm以下,亦可為15 nm以下。The antifouling layer can be formed by a wet method such as reverse coating, mold coating, gravure coating, or a dry method such as vacuum evaporation, CVD, etc. The thickness of the antifouling layer is usually about 2 to 50 nm. There is a tendency that the antifouling property is improved as the thickness of the antifouling layer 7 is larger. In addition, there is a tendency that the reduction of the antifouling property caused by abrasion is suppressed as the thickness of the antifouling layer 7 is larger. The thickness of the antifouling layer is preferably greater than 3 nm, and may be greater than 5 nm or greater than 7 nm. On the other hand, from the viewpoint of improving the anti-glare property by forming a surface shape on the surface of the antifouling layer that reflects the concave-convex shape of the hard coating surface, the thickness of the antifouling layer is preferably less than 30 nm, more preferably less than 20 nm, and may be less than 15 nm.
為了提高防污染性及污染物質之去除性,防污層7之水接觸角較佳為100°以上、更佳為102°以上,進而較佳為105°以上。水接觸角越大,則撥水性越高,存在污染物質之附著防止效果、污染物質去除性提高之傾向。水接觸角一般為125°以下。In order to improve the anti-pollution property and the removal property of pollutants, the water contact angle of the anti-pollution layer 7 is preferably 100° or more, more preferably 102° or more, and further preferably 105° or more. The larger the water contact angle, the higher the water repellency, and there is a tendency to improve the effect of preventing the adhesion of pollutants and the removal property of pollutants. The water contact angle is generally 125° or less.
<抗反射膜之表面形狀> 抗反射膜之表面即防污層7之表面之由1 μm×1 μm之區域之三維表面性狀算出之算術平均高度Sa較佳為2.0 nm以上。防污層7之表面之算術平均高度Sa更佳為2.3 nm以上,進而較佳為2.5 nm以上,亦可為2.7 nm以上、2.9 nm以上或3.0 nm以上。防污層7之表面之算術平均高度Sa較佳為10 nm以下、更佳為8.0 nm以下、進而較佳為7.0 nm以下,亦可為6.0 nm以下、5.5 nm以下、5.0 nm以下或4.5 nm以下。 <Surface shape of anti-reflection film> The arithmetic mean height Sa of the surface of the anti-reflection film, i.e., the surface of the anti-fouling layer 7, calculated from the three-dimensional surface properties of the area of 1 μm×1 μm is preferably 2.0 nm or more. The arithmetic mean height Sa of the surface of the anti-fouling layer 7 is more preferably 2.3 nm or more, and further preferably 2.5 nm or more, and may also be 2.7 nm or more, 2.9 nm or more, or 3.0 nm or more. The arithmetic mean height Sa of the surface of the anti-fouling layer 7 is preferably 10 nm or less, more preferably 8.0 nm or less, and further preferably 7.0 nm or less, and may also be 6.0 nm or less, 5.5 nm or less, 5.0 nm or less, or 4.5 nm or less.
形成於硬塗層11上之抗反射層5和防污層7之厚度較小,因此在防污層7之表面容易形成反映了硬塗層11之表面形狀之凹凸形狀。因此,藉由調整硬塗層11中所含之粒子之粒徑、或調配量等來調整硬塗層之表面形狀,能夠得到具有上述Sa之抗反射膜。又,亦可藉由對硬塗層11實施真空電漿處理等表面處理來調整表面形狀。Since the thickness of the antireflection layer 5 and the antifouling layer 7 formed on the hard coating layer 11 is small, it is easy to form a concavo-convex shape reflecting the surface shape of the hard coating layer 11 on the surface of the antifouling layer 7. Therefore, by adjusting the particle size or the amount of particles contained in the hard coating layer 11 to adjust the surface shape of the hard coating layer, an antireflection film having the above-mentioned Sa can be obtained. In addition, the surface shape can also be adjusted by performing a surface treatment such as vacuum plasma treatment on the hard coating layer 11.
在防污層7之表面之算術平均高度Sa為上述範圍之情形時,硬塗層11之表面亦具有同等之Sa,因此抗反射膜之硬塗層11與抗反射層5及防污層7之密接性優異。When the arithmetic mean height Sa of the surface of the antifouling layer 7 is within the above range, the surface of the hard coating layer 11 also has the same Sa, so the hard coating layer 11 of the antireflection film has excellent adhesion with the antireflection layer 5 and the antifouling layer 7.
防污層7之表面之由測定長度12 mm之粗糙度曲線算出之凹凸之平均間隔RSm較佳為120 μm以上。防污層7之表面之RSm更佳為130 μm以上、亦可為140 μm以上或150 μm以上。藉由使抗反射膜之表面之RSm為上述範圍,黑顯示時之反射光之白暈減少、能夠實現明處對比度優異之顯示。防污層7之表面之凹凸之平均間隔RSm較佳為250 μm以下、更佳為220 μm以下、進而較佳為200 μm以下,亦可為180 μm以下或170 μm以下。The average interval RSm of the concavities and convexities on the surface of the antifouling layer 7 calculated from the roughness curve of the measured length of 12 mm is preferably 120 μm or more. The RSm of the surface of the antifouling layer 7 is more preferably 130 μm or more, and may be 140 μm or more or 150 μm or more. By making the RSm of the surface of the antireflection film within the above range, the halo of the reflected light during black display is reduced, and a display with excellent contrast in bright areas can be achieved. The average interval RSm of the concavities and convexities on the surface of the antifouling layer 7 is preferably 250 μm or less, more preferably 220 μm or less, and further preferably 200 μm or less, and may be 180 μm or less or 170 μm or less.
防污層7之表面之由測定長度12 mm之粗糙度曲線算出之算術平均粗糙度Ra較佳為30~500 nm、更佳為50~400 nm、進而較佳為60~300 nm,亦可為70~250 nm或80~200 nm。藉由使抗反射膜之表面之Ra為上述範圍,具有防眩性優異之傾向。The arithmetic mean roughness Ra of the surface of the antifouling layer 7 calculated from the roughness curve of the measured length of 12 mm is preferably 30-500 nm, more preferably 50-400 nm, further preferably 60-300 nm, and may also be 70-250 nm or 80-200 nm. When the Ra of the surface of the antireflection film is within the above range, it tends to have excellent anti-glare properties.
在防污層7之表面容易形成反映了硬塗層11之表面形狀之凹凸形狀,因此藉由調整硬塗層11中所含之粒子之粒徑、或調配量等來調整硬塗層之表面形狀,能夠得到具有上述RSm及Ra之抗反射膜。The surface of the antifouling layer 7 easily forms an uneven shape reflecting the surface shape of the hard coating layer 11. Therefore, by adjusting the particle size or the amount of particles contained in the hard coating layer 11 to adjust the surface shape of the hard coating layer, an antireflection film having the above-mentioned RSm and Ra can be obtained.
[抗反射膜之使用形態] 抗反射膜例如配置於液晶顯示器、或有機EL顯示器等圖像顯示裝置之表面使用。例如,藉由在包含液晶單元、或有機EL單元等圖像顯示介質之面板之視認側表面配置抗反射膜,能夠降低外部光之反射、提高圖像顯示裝置之視認性。 [Use of anti-reflection film] Anti-reflection film is used on the surface of image display devices such as liquid crystal display or organic EL display. For example, by configuring an anti-reflection film on the viewing side surface of a panel containing image display media such as liquid crystal unit or organic EL unit, the reflection of external light can be reduced and the visibility of the image display device can be improved.
抗反射膜可直接貼合於圖像顯示裝置之表面使用,亦可與其他膜積層。例如,藉由在透明膜基材10之硬塗層未形成面貼合偏光件,能夠形成附抗反射層之偏光板。The anti-reflection film can be directly attached to the surface of the image display device, or can be laminated with other films. For example, by attaching a polarizer to the surface of the transparent film substrate 10 where the hard coating layer is not formed, a polarizing plate with an anti-reflection layer can be formed.
表面之算術平均高度Sa及凹凸之平均間隔RSm為上述範圍之抗反射膜不易產生反射光之白暈,具有優異之視認性,並且硬塗層11與抗反射層5及防污層7之密接性優異。具備該抗反射膜之圖像顯示裝置之明處對比度較高、視認性優異,並且不易產生抗反射層及防污層之剝離、或磨耗,即使在長期使用器件之情形時,亦保持優異之視認性及防污性。 [實施例] The anti-reflection film with the arithmetic mean height Sa of the surface and the average interval RSm of the concave and convex in the above range is not easy to produce halo of reflected light, has excellent visibility, and the hard coating layer 11 has excellent adhesion with the anti-reflection layer 5 and the anti-fouling layer 7. The image display device with the anti-reflection film has a high contrast in bright areas and excellent visibility, and it is not easy to produce peeling or wear of the anti-reflection layer and the anti-fouling layer. Even when the device is used for a long time, it still maintains excellent visibility and anti-fouling properties. [Example]
以下,例舉實施例對本發明進行更詳細之說明,但本發明並不限定於以下之實施例。The present invention is described in more detail below with reference to the following embodiments, but the present invention is not limited to the following embodiments.
[實施例1] <防眩性硬塗膜之製作> (硬塗組合物之製備) 在胺基甲酸酯丙烯酸酯系之光硬化型樹脂組合物(荒川化學工業製造之「BEAMSET 577」)中,以二氧化矽粒子之量相對於樹脂成分100重量份為40重量份之方式,添加平均一次粒徑為40 nm之膠體二氧化矽(奈米二氧化矽)之60重量%分散液。在該溶液之固形物成分100重量份中混合聚矽氧粒子(Momentive Performance Materials Japan製造之「Tospearl 130」、平均粒徑3.0 μm、折射率1.43、真比重1.32)5.0重量份、作為觸變劑之有機化膨潤石(KUNIMINE INDUSTRIES CO., LTD.製造之「Sumecton SAN」)2.0重量份、光聚合起始劑(IGM Resins製造之「OMNIRAD 907」)3.0重量份、及聚矽氧系調平劑(共榮社化學製造之「Polyflow LE303」)0.15重量份,用乙酸乙酯稀釋,製備固形物成分濃度30重量%之硬塗組合物。 [Example 1] <Preparation of anti-glare hard coating film> (Preparation of hard coating composition) A 60 wt% dispersion of colloidal silica (nanosilica) having an average primary particle size of 40 nm was added to a urethane acrylate-based photocurable resin composition ("BEAMSET 577" manufactured by Arakawa Chemical Industries) in such a manner that the amount of silica particles was 40 parts by weight relative to 100 parts by weight of the resin component. 5.0 parts by weight of polysilicone particles ("Tospearl 130" manufactured by Momentive Performance Materials Japan, average particle size 3.0 μm, refractive index 1.43, true specific gravity 1.32), 2.0 parts by weight of organic expanded stone ("Sumecton SAN" manufactured by KUNIMINE INDUSTRIES CO., LTD.) as a thixotropic agent, 3.0 parts by weight of a photopolymerization initiator ("OMNIRAD 907" manufactured by IGM Resins), and 0.15 parts by weight of a polysilicone leveling agent ("Polyflow LE303" manufactured by Kyoeisha Chemical) were mixed with 100 parts by weight of the solid content of the solution, and diluted with ethyl acetate to prepare a hard coating composition with a solid content concentration of 30% by weight.
<硬塗層之形成> 使用Comma Coater(註冊商標)將上述之硬塗組合物塗佈於厚度60 μm之三乙醯纖維素(TAC)膜(富士膠片製造之「FUJITAC TG60UL」),在60℃下加熱1分鐘。然後,用高壓汞燈照射累積光量300 mJ/cm 2之紫外線,使塗佈層硬化,形成厚度6.0 μm之防眩性硬塗層。 <Formation of hard coating layer> The above hard coating composition was applied to a 60 μm thick triacetyl cellulose (TAC) film ("FUJITAC TG60UL" manufactured by Fuji Film) using Comma Coater (registered trademark) and heated at 60°C for 1 minute. Then, the coated layer was cured by irradiating with ultraviolet light at a cumulative light intensity of 300 mJ/ cm2 using a high-pressure mercury lamp to form an anti-glare hard coating layer with a thickness of 6.0 μm.
<底塗劑層及抗反射層之形成> 將形成有硬塗層之三乙醯纖維素膜導入卷對卷方式之濺鍍成膜裝置,一邊使膜行進,一邊在硬塗層之表面進行轟擊處理(利用氬氣之電漿處理)後,成膜1.5 nm之ITO層作為底塗劑層,在其上依序成膜10.1 nm之Nb 2O 5層、27.5 nm之SiO 2層、105.0 nm之Nb 2O 5層及83.5 nm之SiO 2層。在底塗劑層及SiO 2層之成膜中使用Si靶,在Nb 2O 5層之成膜中使用Nb靶。在SiO 2層之成膜及Nb 2O 5層之成膜中,藉由電漿發射監控(PEM)控制,以成膜模式維持過渡區域之方式調整導入之氧量。 <Formation of primer layer and anti-reflection layer> The triacetyl cellulose film with hard coating layer formed was introduced into a roll-to-roll sputtering film forming device. While the film was being moved, the surface of the hard coating layer was bombarded (using argon plasma treatment), and then a 1.5 nm ITO layer was formed as a primer layer. A 10.1 nm Nb 2 O 5 layer, a 27.5 nm SiO 2 layer, a 105.0 nm Nb 2 O 5 layer, and an 83.5 nm SiO 2 layer were sequentially formed thereon. Si targets were used for the formation of the primer layer and SiO 2 layer, and Nb targets were used for the formation of the Nb 2 O 5 layer. In the formation of the SiO 2 layer and the Nb 2 O 5 layer, the amount of oxygen introduced was adjusted by plasma emission monitoring (PEM) control in such a way that the transition region was maintained in the film formation mode.
<防污層之形成> 將包含含有全氟聚醚基之烷氧基矽烷化合物之固形物成分濃度20%之防污塗佈劑(信越化學工業製造之「KY1903-1」)乾燥並固化而成者作為蒸鍍源,在加熱溫度260℃下藉由真空蒸鍍法在抗反射層上形成厚度8 nm之防污層。 <Formation of antifouling layer> Antifouling coating agent containing alkoxysilane compound containing perfluoropolyether group with a solid content concentration of 20% ("KY1903-1" manufactured by Shin-Etsu Chemical Co., Ltd.) was dried and solidified as an evaporation source, and an antifouling layer with a thickness of 8 nm was formed on the antireflection layer by vacuum evaporation at a heating temperature of 260°C.
[實施例2、比較例1~5] 在硬塗組合物之製備中,將微米粒子之種類及調配量、以及二氧化矽粒子之粒徑及調配量如表1所示進行變更,除此以外,與實施例1同樣地進行防眩性硬塗膜之製作、底塗劑層及抗反射層之形成及防污層之形成。比較例2中,作為微米粒子,使用交聯聚甲基丙烯酸甲酯(PMMA)粒子(積水化成品工業製造之「Technopolymer SSX-103」;平均粒徑3.0 μm、折射率1.50、比重1.20)。比較例3~比較例5中,作為微米粒子,併用聚矽氧粒子與交聯PMMA粒子。 [Example 2, Comparative Examples 1 to 5] In the preparation of the hard coating composition, the type and amount of micronized particles, and the particle size and amount of silica particles were changed as shown in Table 1. Otherwise, the preparation of the anti-glare hard coating film, the formation of the primer layer and the anti-reflection layer, and the formation of the antifouling layer were carried out in the same manner as in Example 1. In Comparative Example 2, cross-linked polymethyl methacrylate (PMMA) particles ("Technopolymer SSX-103" manufactured by Sekisui Chemicals Co., Ltd.; average particle size 3.0 μm, refractive index 1.50, specific gravity 1.20) were used as micronized particles. In Comparative Examples 3 to 5, polysilicone particles and cross-linked PMMA particles were used in combination as micronized particles.
[評價] <表面形狀之測定> 在抗反射膜之三乙醯纖維素膜側之面(抗反射層未形成面),經由厚度20 μm之丙烯酸系黏合劑貼合厚度1.3 mm之載玻片(MATSUNAMI製造之「MICRO SLIDE GLASS」45×50 mm),製作測定用試樣。 [Evaluation] <Measurement of surface shape> A 1.3 mm thick slide glass ("MICRO SLIDE GLASS" 45×50 mm manufactured by MATSUNAMI) was bonded to the triacetyl cellulose film side of the anti-reflection film (the side without the anti-reflection layer) via a 20 μm thick acrylic adhesive to prepare a sample for measurement.
使用具有前端部(金剛石)之曲率半徑R=2 μm之測定針之觸針式表面粗糙度測定器(小阪研究所製造 高精度微細形狀測定器「Surfcorder ET4000」),藉由下述條件測定防污層表面之粗糙度曲線,依據JIS B0601:2001求出算術平均粗糙度Ra及粗糙度曲線要素之平均長度RSm。 掃描速度:0.1 mm/秒 測定長度:12 mm 截止值:0.8 mm Using a stylus surface roughness tester (Kosaka Laboratory, high-precision fine shape tester "Surfcorder ET4000") with a tip (diamond) having a curvature radius of R = 2 μm, the roughness curve of the antifouling layer surface was measured under the following conditions, and the arithmetic mean roughness Ra and the average length RSm of the roughness curve element were calculated in accordance with JIS B0601: 2001. Scanning speed: 0.1 mm/sec Measuring length: 12 mm Cutoff value: 0.8 mm
使用原子力顯微鏡(Bruker製造之「Dimemsion3100」、控制器:NanoscopeV),藉由下述之條件測定防污層表面之三維表面性狀,依據ISO 25178求出算術平均高度Sa。 測定模式:輕敲模式 懸臂(cantilever):Si單晶 測定視野:1 μm×1 μm Using an atomic force microscope ("Dimemsion 3100" manufactured by Bruker, controller: Nanoscope V), the three-dimensional surface properties of the antifouling layer were measured under the following conditions, and the arithmetic mean height Sa was calculated in accordance with ISO 25178. Measurement mode: Tapping mode Cantilever: Si single crystal Measurement field: 1 μm×1 μm
<反射視認性> 在抗反射膜之三乙醯纖維素膜側之面(抗反射層未形成面)經由厚度20 μm之丙烯酸系黏合劑貼合黑色丙烯酸系樹脂板。對該試樣之抗反射膜側之面,以1000勒克斯之照度從30 cm之距離照射台燈之光,目視確認來自抗反射膜之反射光。將正反射光之周邊區域被視認為黑色者(參照圖2之「實施例1」)設為○、將整體被視認為白暈者(參照圖2之「比較例2」)設為×。 <Reflection visibility> A black acrylic resin plate was bonded to the triacetyl cellulose film side of the anti-reflection film (the side without the anti-reflection layer) via a 20 μm thick acrylic adhesive. The anti-reflection film side of the sample was illuminated with a desk lamp at an illumination of 1000 lux from a distance of 30 cm, and the reflected light from the anti-reflection film was visually confirmed. The area around the positive reflected light that was perceived as black (refer to "Example 1" in Figure 2) was set as ○, and the area that was perceived as white as a whole (refer to "Comparative Example 2" in Figure 2) was set as ×.
<密接性> 在抗反射膜之三乙醯纖維素膜側之面(抗反射層未形成面)經由厚度25 μm之丙烯酸系黏合劑貼合厚度1.3 mm之玻璃板,向岩崎電氣製造之耐候促進性試驗機「EYESUPER UV TESTER SUV-W161」投入試樣,在黑色面板溫度80℃、金屬鹵化物燈照射強度150 mW/cm 2之條件下實施120小時之促進耐候試驗。 <Adhesion> A 1.3 mm thick glass plate was bonded to the triacetyl cellulose film side of the anti-reflection film (the side without the anti-reflection layer) via a 25 μm thick acrylic adhesive. The sample was placed in the "EYESUPER UV TESTER SUV-W161" weathering acceleration tester manufactured by Iwasaki Electric Co., Ltd., and an accelerated weathering test was carried out for 120 hours under the conditions of a black panel temperature of 80°C and a metal halide lamp irradiation intensity of 150 mW/ cm2 .
在促進耐候試驗後之試樣之防污層側之表面以1 mm間隔劃入切痕,形成100格之棋盤格,依據JIS K 5400 8.5:1990之劃格試驗法(塗裝之密接性試驗)實施密接性試驗。對防污層及抗反射層在方格之面積之1/4以上之區域剝離之棋盤格之個數進行計數。將剝離棋盤格數為10格以上之情況設為×,將9格以下之情況設為○。The surface of the antifouling layer of the sample after the accelerated weathering test is cut into 100 squares at intervals of 1 mm, and the adhesion test is carried out according to the grid test method (coating adhesion test) of JIS K 5400 8.5:1990. The number of squares peeled off from the antifouling layer and the anti-reflection layer in an area of more than 1/4 of the square area is counted. The case where the number of peeled squares is more than 10 is set as ×, and the case where the number of peeled squares is less than 9 is set as ○.
[評價結果] 將上述實施例及比較例之抗反射膜之硬塗層之構成(硬塗層之微粒子之種類及相對於黏合劑樹脂100重量份之調配量)及抗反射膜之評價結果示於表1。將實施例1及比較例2之抗反射膜之反射光之觀察照片示於圖2。 [Evaluation Results] The composition of the hard coating layer of the anti-reflection film of the above-mentioned embodiment and comparative example (the type of microparticles of the hard coating layer and the amount thereof formulated relative to 100 parts by weight of the binder resin) and the evaluation results of the anti-reflection film are shown in Table 1. The observation photographs of the reflected light of the anti-reflection film of embodiment 1 and comparative example 2 are shown in Figure 2.
[表1]
作為微米粒子調配了5重量份之聚矽氧粒子、作為奈米粒子調配了40重量份之粒徑40 nm之二氧化矽粒子之實施例1中,硬塗層與抗反射層及防污層之密接性較高、並且具有無反射光之白暈之良好之視認性。將奈米二氧化矽粒子之調配量變更為30重量份之實施例2亦同樣。作為奈米粒子調配了40重量份之粒徑10 nm之二氧化矽粒子之比較例1中,Sa較小、硬塗層與抗反射層及防污層之密接性不充分。In Example 1, in which 5 parts by weight of polysilicon particles are formulated as micron particles and 40 parts by weight of silica particles with a particle size of 40 nm are formulated as nanoparticles, the hard coating layer has high adhesion to the anti-reflection layer and the anti-fouling layer, and has good visibility without halo of reflected light. The same is true for Example 2 in which the formulation amount of nano-silicon particles is changed to 30 parts by weight. In Comparative Example 1, in which 40 parts by weight of silica particles with a particle size of 10 nm are formulated as nanoparticles, Sa is small, and the adhesion between the hard coating layer and the anti-reflection layer and the anti-fouling layer is insufficient.
作為微米粒子調配了3重量份之聚矽氧粒子與1重量份之PMMA粒子、作為奈米粒子調配了粒徑40 nm之二氧化矽粒子20重量份之比較例4中,Sa較小,與比較例1同樣地,密接性不充分。奈米粒子之量變更為10重量份之比較例5中,Sa小於比較例4、密接性不充分。In Comparative Example 4, in which 3 parts by weight of polysilicon particles and 1 part by weight of PMMA particles were mixed as micron particles, and 20 parts by weight of silica particles with a particle size of 40 nm were mixed as nanoparticles, Sa was smaller, and the adhesion was insufficient as in Comparative Example 1. In Comparative Example 5, in which the amount of nanoparticles was changed to 10 parts by weight, Sa was smaller than that of Comparative Example 4, and the adhesion was insufficient.
認為比較例1中,奈米粒子之粒徑較小,比較例4、5中奈米粒子之量較少,因此在硬塗層之表面未充分形成奈米規模之凹凸,與實施例1、2相比密接性較差。It is believed that in Comparative Example 1, the particle size of the nanoparticles is smaller, and the amount of the nanoparticles in Comparative Examples 4 and 5 is less, so nanoscale concavities and convexities are not fully formed on the surface of the hard coating layer, and the adhesion is poorer than that of Examples 1 and 2.
作為微米粒子調配了PMMA粒子15重量份、作為奈米粒子調配了粒徑40 nm之二氧化矽粒子40重量份之比較例2中,硬塗層與抗反射層及防污層之密接性良好,但在反射光中觀測到白暈,與實施例1、2相比視認性差。比較例2中,由於微米粒子之量較多,因此硬塗層中之微米粒子之面內密度較高,凹凸之平均間隔RSm較小被認為係反射光之白暈之主要原因。In Comparative Example 2, in which 15 parts by weight of PMMA particles were prepared as micron particles and 40 parts by weight of silica particles with a particle size of 40 nm were prepared as nanoparticles, the adhesion between the hard coating layer and the anti-reflection layer and the antifouling layer was good, but halo was observed in the reflected light, and the visibility was poor compared with Examples 1 and 2. In Comparative Example 2, since the amount of micron particles was large, the in-plane density of the micron particles in the hard coating layer was high, and the average interval RSm of the concave and convex was small, which was considered to be the main cause of the halo of the reflected light.
作為微米粒子調配了3重量份之聚矽氧粒子與1重量份之PMMA粒子之比較例3亦與比較例2同樣地,在反射光下觀測到白暈。比較例3亦與比較例2同樣地,認為RSm較小係白暈之主要原因。比較例3中,微米粒子之調配與比較例4、5相同,雖然微米粒子之量少於實施例1、2,但凹凸之平均間隔RSm變小。認為比較例3中,比重相對較小之PMMA粒子容易存在於硬塗層之表面附近,在硬塗層之表面附近,PMMA之微米粒子與奈米二氧化矽粒子密集,因此RSm變小。Comparative Example 3, in which 3 parts by weight of polysilicone particles and 1 part by weight of PMMA particles are prepared as micron particles, also observed halo under reflected light, similar to Comparative Example 2. Similar to Comparative Example 2, Comparative Example 3 is considered to be mainly caused by the smaller RSm. In Comparative Example 3, the preparation of micron particles is the same as that of Comparative Examples 4 and 5. Although the amount of micron particles is less than that of Examples 1 and 2, the average interval RSm of the concave and convex becomes smaller. It is believed that in Comparative Example 3, PMMA particles with a relatively small specific gravity are easy to exist near the surface of the hard coating layer, and near the surface of the hard coating layer, PMMA micron particles and nano-silica particles are densely packed, so RSm becomes smaller.
由上述實施例與比較例之對比可知,藉由在硬塗層中並存微米粒子與奈米粒子,調整該等粒子之種類、粒徑、調配量等,增大nm規模之表面凹凸之指標即Sa,並增大μm規模之凹凸週期之指標即RSm,能夠得到硬塗層與抗反射層及防污層之密接性優異、且反射光之白暈較少、視認性優異之抗反射膜。From the comparison between the above-mentioned embodiments and the comparative examples, it can be seen that by coexisting micron particles and nano particles in the hard coating layer, adjusting the type, particle size, and blending amount of the particles, increasing the nm-scale surface unevenness index Sa, and increasing the μm-scale unevenness period index RSm, it is possible to obtain an anti-reflection film with excellent adhesion between the hard coating layer and the anti-reflection layer and the anti-fouling layer, less halo of reflected light, and excellent visibility.
1:硬塗膜 3:底塗劑層 5:抗反射層 7:防污層 10:透明膜基材 11:硬塗層 51:高折射率層 52:低折射率層 53:高折射率層 54:低折射率層 101:抗反射膜 1: Hard coating film 3: Primer layer 5: Anti-reflection layer 7: Anti-fouling layer 10: Transparent film substrate 11: Hard coating layer 51: High refractive index layer 52: Low refractive index layer 53: High refractive index layer 54: Low refractive index layer 101: Anti-reflection film
圖1為表示抗反射膜之積層構成例之剖視圖。 圖2為實施例及比較例之抗反射膜之反射光之觀察照片。 FIG1 is a cross-sectional view showing an example of a laminated structure of an anti-reflection film. FIG2 is a photograph showing the observation of reflected light of the anti-reflection film of the embodiment and the comparative example.
1:硬塗膜 1: Hard coating film
3:底塗劑層 3: Base coating layer
5:抗反射層 5: Anti-reflective layer
7:防污層 7: Antifouling layer
10:透明膜基材 10: Transparent film substrate
11:硬塗層 11: Hard coating
51:高折射率層 51: High refractive index layer
52:低折射率層 52: Low refractive index layer
53:高折射率層 53: High refractive index layer
54:低折射率層 54: Low refractive index layer
101:抗反射膜 101: Anti-reflective film
Claims (10)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2023028562A JP7515646B1 (en) | 2023-02-27 | 2023-02-27 | Anti-reflection film and image display device |
JP2023-028562 | 2023-02-27 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW202436092A true TW202436092A (en) | 2024-09-16 |
TWI880595B TWI880595B (en) | 2025-04-11 |
Family
ID=
Also Published As
Publication number | Publication date |
---|---|
KR20240133570A (en) | 2024-09-04 |
CN118550010A (en) | 2024-08-27 |
JP7515646B1 (en) | 2024-07-12 |
JP2024121444A (en) | 2024-09-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI786475B (en) | Anti-reflection film and image display device | |
KR101898833B1 (en) | Anti-glare film, polarizing plate, and image display device | |
TWI534002B (en) | Optical laminate and method for manufacturing optical laminate | |
TWI628457B (en) | Anti-glare film, polarizing plate, liquid crystal panel, and image display device | |
TW567338B (en) | Antireflection film, polarizing plate, and apparatus for displaying an image | |
KR101918334B1 (en) | Anti-glare film, polarized light plate, and image display device | |
KR101471692B1 (en) | Hard-coated antiglare film, polarizing plate and image display including the same, and method for producing the same | |
KR101567630B1 (en) | Optical laminate, polarising plate and display device | |
CN102859398B (en) | Optical multilayered product, polarizer, and display device | |
KR20110033254A (en) | Flexible High Refractive Index Antireflection Film | |
JP2010085759A (en) | Antiglare film, antireflective film, polarizing plate and image display device | |
CN108027456A (en) | Antireflective coating and display device | |
JP2009080256A (en) | Antiglare film | |
JP5408991B2 (en) | Optical film, polarizing plate, and image display device | |
JP2009258602A (en) | Optical film, polarizing plate and image display device | |
JP2009265651A (en) | Optical film, polarizing plate, and image display apparatus | |
JP2008257160A (en) | Optical laminate, polarizing plate and image display apparatus | |
JP7343273B2 (en) | Anti-glare film, method for producing anti-glare film, optical member and image display device | |
TW202436092A (en) | Anti-reflection film and image display device | |
TWI265307B (en) | Antiglare optical film, polarizing plate and display unit using the same | |
TW202429134A (en) | Optical film | |
KR20140036771A (en) | Optical laminate, polarizing plate and image display using the same | |
KR20250047678A (en) | Anti-reflection film and image display device | |
TW202426261A (en) | Optical film in which the stains are less noticeable when the stains such as fingerprints are adhered thereon and the performance in wiping and removing the adhered contaminants is excellent | |
TW202449423A (en) | Anti-reflection film and image display device |