TW202428513A - Low carbon emission process for the production of silicon - Google Patents
Low carbon emission process for the production of silicon Download PDFInfo
- Publication number
- TW202428513A TW202428513A TW112135933A TW112135933A TW202428513A TW 202428513 A TW202428513 A TW 202428513A TW 112135933 A TW112135933 A TW 112135933A TW 112135933 A TW112135933 A TW 112135933A TW 202428513 A TW202428513 A TW 202428513A
- Authority
- TW
- Taiwan
- Prior art keywords
- carbon
- silicon
- plasma
- gas
- silicon dioxide
- Prior art date
Links
- 229910052799 carbon Inorganic materials 0.000 title claims abstract description 98
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 title claims abstract description 96
- 238000000034 method Methods 0.000 title claims abstract description 86
- 230000008569 process Effects 0.000 title claims abstract description 69
- 229910052710 silicon Inorganic materials 0.000 title claims abstract description 69
- 239000010703 silicon Substances 0.000 title claims abstract description 69
- 238000004519 manufacturing process Methods 0.000 title claims description 28
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 86
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 68
- 239000000377 silicon dioxide Substances 0.000 claims abstract description 38
- 230000009467 reduction Effects 0.000 claims abstract description 26
- 238000007323 disproportionation reaction Methods 0.000 claims abstract description 17
- 239000007789 gas Substances 0.000 claims description 58
- 235000012239 silicon dioxide Nutrition 0.000 claims description 35
- 238000006243 chemical reaction Methods 0.000 claims description 27
- 238000010791 quenching Methods 0.000 claims description 19
- 229910052760 oxygen Inorganic materials 0.000 claims description 13
- 239000007787 solid Substances 0.000 claims description 13
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 12
- 230000000171 quenching effect Effects 0.000 claims description 12
- 239000001301 oxygen Substances 0.000 claims description 11
- 230000015572 biosynthetic process Effects 0.000 claims description 10
- 238000011084 recovery Methods 0.000 claims description 10
- 239000000463 material Substances 0.000 claims description 5
- 239000003054 catalyst Substances 0.000 claims description 3
- 238000005453 pelletization Methods 0.000 claims description 3
- 238000005979 thermal decomposition reaction Methods 0.000 claims description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 65
- 238000006722 reduction reaction Methods 0.000 description 21
- 239000003570 air Substances 0.000 description 14
- 229910002092 carbon dioxide Inorganic materials 0.000 description 12
- 239000000203 mixture Substances 0.000 description 12
- 239000010453 quartz Substances 0.000 description 7
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 6
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 6
- 238000010586 diagram Methods 0.000 description 6
- 238000010891 electric arc Methods 0.000 description 6
- 239000002912 waste gas Substances 0.000 description 6
- 229910002091 carbon monoxide Inorganic materials 0.000 description 5
- 229910052681 coesite Inorganic materials 0.000 description 5
- 229910052906 cristobalite Inorganic materials 0.000 description 5
- 239000002245 particle Substances 0.000 description 5
- 229910052682 stishovite Inorganic materials 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- 229910052905 tridymite Inorganic materials 0.000 description 5
- 150000001412 amines Chemical class 0.000 description 4
- 229910052786 argon Inorganic materials 0.000 description 4
- 239000003245 coal Substances 0.000 description 4
- 238000001816 cooling Methods 0.000 description 4
- 238000005469 granulation Methods 0.000 description 4
- 230000003179 granulation Effects 0.000 description 4
- 230000008595 infiltration Effects 0.000 description 4
- 238000001764 infiltration Methods 0.000 description 4
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 4
- 229910010271 silicon carbide Inorganic materials 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical compound NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 description 3
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- MWUXSHHQAYIFBG-UHFFFAOYSA-N Nitric oxide Chemical compound O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 3
- 229910004298 SiO 2 Inorganic materials 0.000 description 3
- 238000004364 calculation method Methods 0.000 description 3
- 239000003610 charcoal Substances 0.000 description 3
- 238000010494 dissociation reaction Methods 0.000 description 3
- 230000005593 dissociations Effects 0.000 description 3
- 239000000428 dust Substances 0.000 description 3
- 230000002349 favourable effect Effects 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 239000002006 petroleum coke Substances 0.000 description 3
- 238000004064 recycling Methods 0.000 description 3
- 239000002028 Biomass Substances 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- 239000002250 absorbent Substances 0.000 description 2
- 230000002745 absorbent Effects 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 239000006227 byproduct Substances 0.000 description 2
- 239000001569 carbon dioxide Substances 0.000 description 2
- 238000010531 catalytic reduction reaction Methods 0.000 description 2
- 239000011335 coal coke Substances 0.000 description 2
- 238000007872 degassing Methods 0.000 description 2
- 239000003344 environmental pollutant Substances 0.000 description 2
- 229910002804 graphite Inorganic materials 0.000 description 2
- 239000010439 graphite Substances 0.000 description 2
- 239000005431 greenhouse gas Substances 0.000 description 2
- 230000036541 health Effects 0.000 description 2
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 2
- 238000004377 microelectronic Methods 0.000 description 2
- 230000007935 neutral effect Effects 0.000 description 2
- 239000013618 particulate matter Substances 0.000 description 2
- 231100000719 pollutant Toxicity 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 238000011946 reduction process Methods 0.000 description 2
- 150000004760 silicates Chemical class 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 239000002023 wood Substances 0.000 description 2
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910001021 Ferroalloy Inorganic materials 0.000 description 1
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 1
- 238000003723 Smelting Methods 0.000 description 1
- 238000003916 acid precipitation Methods 0.000 description 1
- 238000003915 air pollution Methods 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- 239000012080 ambient air Substances 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 238000010314 arc-melting process Methods 0.000 description 1
- 230000000035 biogenic effect Effects 0.000 description 1
- 229960004424 carbon dioxide Drugs 0.000 description 1
- 230000035425 carbon utilization Effects 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 238000007036 catalytic synthesis reaction Methods 0.000 description 1
- 239000011280 coal tar Substances 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 238000005262 decarbonization Methods 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000002924 energy minimization method Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000012851 eutrophication Methods 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 239000003546 flue gas Substances 0.000 description 1
- 235000019253 formic acid Nutrition 0.000 description 1
- 239000002803 fossil fuel Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 210000003734 kidney Anatomy 0.000 description 1
- 210000004185 liver Anatomy 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 210000000653 nervous system Anatomy 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000003389 potentiating effect Effects 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 229910021487 silica fume Inorganic materials 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000004227 thermal cracking Methods 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/46—Removing components of defined structure
- B01D53/62—Carbon oxides
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B33/00—Silicon; Compounds thereof
- C01B33/02—Silicon
- C01B33/021—Preparation
- C01B33/023—Preparation by reduction of silica or free silica-containing material
- C01B33/025—Preparation by reduction of silica or free silica-containing material with carbon or a solid carbonaceous material, i.e. carbo-thermal process
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2258/00—Sources of waste gases
- B01D2258/02—Other waste gases
- B01D2258/025—Other waste gases from metallurgy plants
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Inorganic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Environmental & Geological Engineering (AREA)
- Analytical Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Silicon Compounds (AREA)
Abstract
Description
本發明的標的係關於元素矽的生產,並且,更具體地,係關於電弧爐中的元素矽的生產。The subject matter of the present invention relates to the production of elemental silicon and, more particularly, to the production of elemental silicon in an arc furnace.
元素矽有許多工業應用,例如鋼、汽車、微電子和太陽能工業。矽酸鹽形式的矽佔地殼的90%,是地殼中含量第二豐富的元素。然而,矽酸鹽形式的矽無法直接應用於工業用途。例如石英、SiO 2形式中的矽必須被還原成其元素形式,即Si。 Elemental silicon has many industrial applications, such as steel, automotive, microelectronics and the solar industry. Silicon in the form of silicates accounts for 90% of the Earth's crust, making it the second most abundant element in the Earth's crust. However, silicon in the form of silicates cannot be used directly for industrial purposes. Silicon in the form of, for example, quartz, SiO2, must be reduced to its elemental form, i.e. Si.
用於工業應用的元素矽可以具有範圍廣泛的純度。例如,作為鋼中的合金元素,通常使用純度為95%到99%之間的矽。這稱為冶金級矽。對於高階應用,例如微電子應用,需要高純度的矽,通常為99.9999999%。Elemental silicon used in industrial applications can have a wide range of purities. For example, as an alloying element in steel, silicon with a purity between 95% and 99% is usually used. This is called metallurgical grade silicon. For advanced applications, such as microelectronics, high purity silicon is required, typically 99.9999999%.
元素矽的生產依賴冶金級矽的生產,冶金級矽的生產透過二氧化矽的碳熱還原進行,而二氧化矽的碳熱還原透過電弧熔煉製程進行。在此過程中,透過在電弧爐中將石英SiO 2加熱至超過1800°C的高溫,石英SiO 2在煤、石油焦或木炭等碳源的存在下被還原成矽。 The production of elemental silicon relies on the production of metallurgical grade silicon, which is produced by the carbothermal reduction of silicon dioxide, which is carried out by an arc melting process. In this process, quartz SiO2 is reduced to silicon in the presence of a carbon source such as coal, petroleum coke or charcoal by heating it to high temperatures of over 1800°C in an arc furnace.
在此過程中,碳與二氧化矽SiO 2中的氧反應以產生氣態一氧化碳和元素矽。生成矽的總化學計量反應如下。 SiO 2(s) + 2 C(s) = Si(l) + 2 CO(g) In this process, carbon reacts with oxygen in silicon dioxide SiO 2 to produce gaseous carbon monoxide and elemental silicon. The overall stoichiometric reaction to form silicon is as follows. SiO 2 (s) + 2 C(s) = Si(l) + 2 CO(g)
此過程使用過量的二氧化矽進行,以防止碳化矽SiC的產生。 2 SiC + SiO 2+ SiC = 2 Si + 2 CO This process is done with excess silicon dioxide to prevent the formation of silicon carbide SiC. 2 SiC + SiO 2 + SiC = 2 Si + 2 CO
這些反應為高度吸熱反應並發生在超過1800度的高溫。由於吸熱性質和高溫需求,此過程需要大量電能,在工業規模下生產每公斤的矽需要13至15 kWh的電能。These reactions are highly endothermic and occur at temperatures exceeding 1800 degrees. Due to the endothermic nature and the high temperatures required, the process requires a large amount of electricity, 13 to 15 kWh per kilogram of silicon produced on an industrial scale.
此製程在電弧爐中(EAF)進行,其中,能量由埋電弧提供(submerged electric arc),這代表電弧在石英和碳的反應負載物(reacting load)中產生並維持。The process is carried out in an electric arc furnace (EAF) where the energy is provided by a submerged electric arc, meaning the arc is generated and maintained in a reacting load of quartz and carbon.
在爐中的最高溫遠高於2000°C,這可以在電弧於負載物內部深處維持的位置觀察到。在爐中的該點處,二氧化矽的還原反應產生了CO(g),CO(g)向上移動並在1000至1300°C的升高的溫度下離開負載物 [文獻1]。The maximum temperature in the furnace is well over 2000°C, which can be observed where the arc is maintained deep inside the load. At this point in the furnace, the reduction reaction of silica produces CO(g), which moves upward and leaves the load at an elevated temperature of 1000 to 1300°C [1].
由於此類型的爐的尺寸和複雜性,其頂部建造為開放式,這代表空氣可以輕鬆地滲透到爐中,並且空氣中的氧氣在高溫過程中與CO(g)反應以產生CO 2(g)。藉由與氧氣的反應,空氣中的氮氣被加熱至其反應狀態,從而產生NO x。CO 2(g)和NO x這兩種副產物對環境而言是汙染物,其中,CO 2(g)大幅導致全球暖化,因為其為強力的溫室氣體;NO x導致酸雨、優養化、光化學空氣汙染、以及臭氧層的損耗,並且有害於人體健康 [文獻2]。 Due to the size and complexity of this type of furnace, it is built with an open top, which means that air can easily penetrate the furnace and the oxygen in the air reacts with CO(g) in a high temperature process to produce CO 2 (g). By reacting with the oxygen, the nitrogen in the air is heated to its reactive state, thereby producing NO x . Both CO 2 (g) and NO x are pollutants to the environment, with CO 2 (g) contributing significantly to global warming as it is a potent greenhouse gas, and NO x causing acid rain, eutrophication, photochemical air pollution, and depletion of the ozone layer, and being harmful to human health [Reference 2].
在商業矽工廠中,每生產一公斤的矽,CO 2(g)的直接排放量可高達五公斤。每生產一公斤的矽,由矽生產產生的全球CO 2足跡為11.3 kg e。 Direct emissions of CO 2 (g) can be as high as five kilograms per kilogram of silicon produced in a commercial silicon plant. The global CO 2 footprint resulting from silicon production is 11.3 kg e per kilogram of silicon produced.
除了CO 2(g)形式的碳的製程排放之外,初始碳是一種不可再生的資源,其透過二氧化矽的碳熱還原被消耗。在矽製造工業中常見的碳源有:煤、煤焦、石油焦(petcoke)、木屑以及木炭。前三者可以分類為化石碳材料,其餘稱為生物來源材料。在矽工廠中,使用上述碳源的混合物是常見的做法,其中大部分(>60wt.%)為化石類型,即煤、煤焦和石油焦。平均而言,為了在爐中製造一公斤的矽,有大約1.5公斤的碳被不可逆地消耗。 In addition to process emissions of carbon in the form of CO2 (g), initial carbon is a non-renewable resource that is consumed by carbothermal reduction of silicon dioxide. Common carbon sources in the silicon manufacturing industry are: coal, coal coke, petcoke, wood chips and charcoal. The first three can be classified as fossil carbon materials, the rest are called biogenic materials. In silicon plants, it is common practice to use a mixture of the above carbon sources, of which the majority (>60wt.%) is of fossil type, namely coal, coal coke and petcoke. On average, in order to produce one kilogram of silicon in a furnace, about 1.5 kilograms of carbon are irreversibly consumed.
因此,需要發展減少二氧化碳CO 2排放、氮氧化物NO x排放及減少不可再生碳的使用的矽生產製程。 Therefore, there is a need to develop silicon production processes that reduce carbon dioxide ( CO2 ) emissions, nitrogen oxide (NOx ) emissions and reduce the use of non-renewable carbon.
透過選擇性催化還原製程(SCR)或選擇性非催化還原製程(SNCR)在廢氣料流中捕捉NO x可以減少工業製程的NO x排放。然而,由於來自工業製程所使用的開放式爐頂的高度稀釋氣體,NO x減量塔變得過於龐大和昂貴。 NOx emissions from industrial processes can be reduced by capturing NOx in the exhaust gas stream through a selective catalytic reduction process (SCR) or a selective non-catalytic reduction process (SNCR). However, due to the highly dilute gases coming from the open furnace tops used in industrial processes, NOx abatement towers become too large and expensive.
可以使用例如胺製程從矽製造爐中捕捉CO 2。然而,由於空氣中高度稀釋的CO 2,該製程在經濟上變得不可行。目前用於從工業氣體流中吸收CO 2的最先進的煙道氣捕捉溶劑是胺的水溶液,特別是單乙醇胺的水溶液。即使在最好的情況下,從富胺料流中去除CO 2所需的主要能量(115至140 kJ/mol CO 2)也主導了製程的能量需求 [文獻5]。這種製程的主要限制為:高能量強度,也稱為能量損失;以及吸收劑的損失,因為進入汽提塔的所有吸收劑都無法再生 [文獻6]。乙醇胺也存在某些健康風險,因為乙醇胺會對肝臟和腎臟造成傷害,當高度暴露於乙醇胺時,也會對神經系統造成傷害。並且,所捕捉的CO 2必須被隔離、儲存或在異地使用,從而導致在運輸過程中額外的CO 2排放、洩漏和低效率。 CO 2 can be captured from silicon furnaces using, for example, an amine process. However, this process becomes economically unviable due to the high dilution of CO 2 in air. The most advanced flue gas capture solvents currently used to absorb CO 2 from industrial gas streams are aqueous solutions of amines, especially monoethanolamine. Even in the best case, the main energy required to remove CO 2 from the amine-rich stream (115 to 140 kJ/mol CO 2 ) dominates the energy requirements of the process [Reference 5]. The main limitations of this process are: high energy intensity, also known as energy losses; and losses of absorbent, since all the absorbent entering the stripper cannot be regenerated [Reference 6]. Ethanolamine also presents certain health risks, as it can cause damage to the liver and kidneys, and at high exposures, to the nervous system. Also, the captured CO2 must be isolated and stored or used off-site, resulting in additional CO2 emissions, leaks, and inefficiencies in the transportation process.
為了減少來自矽生產製程的CO 2排放,已經制定數種工業新措施。例如,已經提出用由熱裂解產生的生物碳取代不可再生的碳,並且使用封閉式電弧爐,從而限制CO氧化成CO 2。CO隨後可以用於其他工業應用 [文獻7]。 Several new industrial measures have been developed to reduce CO 2 emissions from silicon production processes. For example, it has been proposed to replace non-renewable carbon with biochar produced by thermal cracking and to use closed arc furnaces, thereby limiting the oxidation of CO to CO 2 . The CO can then be used for other industrial applications [Reference 7].
生物碳的使用具有許多缺點,包含:由生物質例如木頭生產生物碳所需的高能量需求、地球生產生物質的能力有限、用於農業的有用土地被取代、以及生物碳的碳熱還原最終導致CO 2被釋放到大氣中的事實。 The use of biochar has many disadvantages, including: the high energy requirements required to produce biochar from biomass such as wood, the limited capacity of the earth to produce biomass, the displacement of useful land for agriculture, and the fact that carbon thermal reduction of biochar ultimately results in the release of CO2 into the atmosphere.
作為世界上主要的矽製造商之一,Elkem正在與國立臺灣師範大學(NTNU)以及SINTEF合作研究廢氣再循環,作為藉由增加廢氣中CO 2的濃度以改善碳捕捉製程 [文獻8] 的可行方法。在傳統的矽生產製程中,CO 2的濃度相對較低,其只有幾個百分點,使得CO 2捕捉製程在經濟上是不可行的。透過將廢氣再循環回到爐中,CO 2的濃度可以增加超過20%,從而使傳統的CO 2製程在經濟上可負擔。然而,尚不清楚如何在使用開放式埋電弧爐的矽熔煉爐中避免空氣滲透。一個提議是可以使用封閉式電弧爐,其如下參照PCT公開第WO 2020/243812 A8號中所描述。但是,即使CO 2被有效地捕捉並且經濟上可行,其仍無法使用在矽生產製程,並且需要被隔離和儲存。 Elkem, one of the world's major silicon manufacturers, is working with the National Taiwan Normal University (NTNU) and SINTEF to investigate waste gas recycling as a possible way to improve carbon capture processes by increasing the CO 2 concentration in the waste gas [Reference 8]. In conventional silicon production processes, CO 2 concentrations are relatively low, only a few percentage points, making CO 2 capture processes economically unfeasible. By recycling the waste gas back into the furnace, the CO 2 concentration can be increased by more than 20%, making conventional CO 2 processes economically affordable. However, it is unclear how to avoid air infiltration in silicon smelting furnaces using open submerged arc furnaces. One proposal is to use a closed arc furnace, which is described below in PCT Publication No. WO 2020/243812 A8. However, even if CO2 is captured efficiently and economically feasible, it cannot be used in the silicon production process and needs to be isolated and stored.
在美國專利第4,860,096號中提出了一種安裝有轉移弧電漿電弧焊炬的封閉式爐,以從傳統原料生產矽。該發明人主張使用轉移弧焊炬代替石墨電極是有利的,因為理論上相比於轉移電漿電弧,將SiO 2碳熱還原成Si所需的能量較少。此外,該發明人主張,因為避免了石墨電極的使用,有望獲得更高品質的矽產物。然而,使用此製程將SiO 2還原為Si的實際產率未知,與之相反,經過充分驗證的埋電弧製程產生85至90%的轉化率。此產率參數對於估算製程的能量效率是非常重要的。這種爐的另一個缺點是需要用水冷卻來操作轉移電漿電弧焊炬。水冷卻可能會導致水從焊炬洩漏到熔融的矽浴上,這可能造成災難性的蒸汽錘和爆炸。此外,擴大這種爐的規模的潛力受到質疑,因為市售的轉移電弧焊炬的額定功率最多只有幾兆瓦,比全規模矽生產所需的約為數百兆瓦的功率低得多。 In U.S. Patent No. 4,860,096, a closed furnace equipped with a transferred arc plasma arc torch is proposed to produce silicon from traditional raw materials. The inventor claims that the use of a transferred arc torch instead of a graphite electrode is advantageous because theoretically less energy is required to carbon-thermally reduce SiO2 to Si compared to a transferred plasma arc. In addition, the inventor claims that a higher quality silicon product is expected because the use of graphite electrodes is avoided. However, the actual yield of reducing SiO2 to Si using this process is unknown, in contrast to the well-proven submerged arc process that produces a conversion rate of 85 to 90%. This yield parameter is very important for estimating the energy efficiency of the process. Another disadvantage of this furnace is the need for water cooling to operate the transferred plasma arc torch. Water cooling could result in water leaking from the torch onto the molten silicon bath, which could cause a catastrophic steam hammer and explosion. In addition, the potential for scaling up such furnaces is questionable, as commercially available transferred arc torches are rated at a few megawatts at best, much lower than the hundreds of megawatts required for full-scale silicon production.
封閉式電弧爐(EAF)例如在先前提到的PCT公開第WO 2020/243812 A8號中已提出,其中描述了一種消耗性電極真空電弧爐,更具體地,描述了一種直流電消耗性電極真空電弧爐,其中,通常不需要水冷卻來冷卻爐的電極或任何其他部件,包含爐的殼體、凸緣端口和電連接。Enclosed electric arc furnaces (EAFs) have been proposed, for example, in the previously mentioned PCT publication No. WO 2020/243812 A8, which describes a consumable electrode vacuum arc furnace, and more specifically, a direct current consumable electrode vacuum arc furnace, in which water cooling is generally not required to cool the electrodes or any other components of the furnace, including the furnace shell, flange ports and electrical connections.
此類型的封閉式爐藉由使滲入爐中的空氣最少化,以使爐氣富含CO(g),從而使CO 2(g)的形成最少化。 This type of closed furnace minimizes the formation of CO 2 (g) by minimizing the infiltration of air into the furnace so that the furnace gas is enriched in CO (g).
處於其原始形式的CO(g)被認為是許多有用的化學物質的基礎材料,所述化學物質包含但不限於甲醇、乙醇和甲酸。因此,從環境的觀點來看,此種封閉式電弧爐相比於開放式電弧爐的主要優點是:封閉式電弧爐允許回收作為矽生產製程的碳熱還原的主要副產物的CO(g)。然而,從全球經濟和市場需求的觀點來看,這第一步驟沒有針對低碳排放矽製程提供可行的解決方法,因為此方法產生的CO(g)只能用於其他工業製程或二次製程。例如,為了透過催化合成製造有用的化學物質如甲醇,在CO(g)的品質、可用性和消耗率方面提出嚴格的要求。因此,在這種方法下,生產矽所產生的CO(g)需要被儲存並需要進一步提升等級,直到其可以隨時隨地根據市場需求及CO(g)短缺用於二次製程。因此,也可以預期CO(g)需要透過依賴燃燒化石燃料的傳統運輸方式運送到二次製程場所,然而燃燒化石燃料又會排放CO 2(g)。另外,CO(g)在轉化成有用的化學物質的二次製程中會損失,因為此種工業製程的產率沒有達到100%,從而造成更高的碳足跡。 CO(g) in its raw form is considered to be a building block for many useful chemicals, including but not limited to methanol, ethanol and formic acid. Therefore, from an environmental point of view, the main advantage of such a closed arc furnace over an open arc furnace is that the closed arc furnace allows the recovery of CO(g) which is the main by-product of the carbothermal reduction of the silicon production process. However, from the point of view of global economy and market needs, this first step does not provide a viable solution for a low carbon emission silicon process, since the CO(g) produced by this method can only be used in other industrial processes or secondary processes. For example, in order to produce useful chemicals such as methanol by catalytic synthesis, strict requirements are imposed on the quality, availability and consumption rate of CO(g). Therefore, under this approach, the CO(g) generated by the production of silicon needs to be stored and further upgraded until it can be used in secondary processes anytime and anywhere according to market demand and CO(g) shortage. Therefore, it can also be expected that CO(g) needs to be transported to the secondary process site through traditional transportation methods that rely on burning fossil fuels, which in turn emit CO 2 (g). In addition, CO(g) is lost in the secondary process of conversion into useful chemicals because the yield of such industrial processes does not reach 100%, resulting in a higher carbon footprint.
由於對矽以及以非永續的方式使用化石碳的需求不斷增加,需要一種透過碳熱還原生產矽的循環製程,其中,碳被捕捉並返回到製程中。Due to the increasing demand for silicon and the unsustainable use of fossil carbon, a cyclic process for producing silicon by carbothermal reduction is needed, in which the carbon is captured and returned to the process.
因此,需要一種對環境友善的矽生產製程,其具有低碳足跡、減少了有限自然資源的消耗,並且具有低污染物排放料量,如低NO x排放量。 Therefore, there is a need for an environmentally friendly silicon production process that has a low carbon footprint, reduces consumption of limited natural resources, and has low pollutant emissions, such as low NOx emissions.
因此,需要提供一種新穎的矽生產製程。Therefore, a novel silicon production process is needed.
本文所描述的實施例在一種態樣中提供一種透過二氧化矽的碳熱還原生產矽的製程,其具有低碳足跡、低NO x排放量、以及減少的碳形式的資源使用量。 Embodiments described herein provide, in one aspect, a process for producing silicon via carbothermal reduction of silicon dioxide having a low carbon footprint, low NO x emissions, and reduced resource usage in the form of carbon.
並且,本文所描述的實施例在另一個態樣中提供一種碳捕捉方法,用於透過二氧化矽的碳熱還原生產矽的製程,該碳捕捉方法結合使用CO(g)的熱電漿和高壓歧化反應。Furthermore, the embodiments described herein provide, in another aspect, a carbon capture method for a process for producing silicon by carbothermal reduction of silicon dioxide, the carbon capture method combining the use of hot plasma and high pressure disproportionation reaction of CO(g).
此外,本文所描述的實施例在另一個態樣中提供一種結合CO(s)的熱電漿分解-超快速淬火-歧化反應以生成固體碳的製程,其中,所述CO(s)透過使用封閉式電弧爐將二氧化矽碳熱還原為矽而生成。In addition, the embodiments described herein provide, in another aspect, a process for producing solid carbon by combining hot plasma decomposition-ultra-fast quenching-disproportionation reaction of CO(s), wherein the CO(s) is produced by carbon thermal reduction of silicon dioxide to silicon using a closed arc furnace.
此外,本文所描述的實施例在另一個態樣中提供一種透過將二氧化矽碳熱還原成矽以生產高濃度CO(g)料流的製程。Additionally, embodiments described herein provide, in another aspect, a process for producing a high concentration CO(g) stream by carbothermal reduction of silicon dioxide to silicon.
另外,本文所描述的實施例在另一個態樣中提供在一種封閉式電弧爐用於在將二氧化矽碳熱還原為矽的過程中,為了捕捉碳而將過量的空氣及/或氧氣的存在最少化的用途。Additionally, embodiments described herein provide, in another aspect, use of a closed arc furnace for minimizing the presence of excess air and/or oxygen during the carbothermic reduction of silicon dioxide to silicon in order to capture carbon.
並且,本文所描述的實施例在另一個態樣中提供一種由純或濃縮的CO(g)料流形成電漿氣體流,以經由熱分解形成固體碳的製程。Furthermore, the embodiments described herein provide, in another aspect, a process for forming a plasma gas stream from a pure or concentrated CO(g) stream to form solid carbon via thermal decomposition.
此外,本文所描述的實施例在另一個態樣中提供一種由電漿炬產生的CO(g)電漿的超快速淬火製程,其中,該製程使用縮擴噴嘴將電漿氣體的熱能轉化為動能以快速降低其溫度,從而將固體形式的碳的形成和回收最大化。In addition, the embodiments described herein provide, in another aspect, an ultra-fast quenching process of CO(g) plasma generated by a plasma torch, wherein the process uses a converging nozzle to convert the thermal energy of the plasma gas into kinetic energy to rapidly reduce its temperature, thereby maximizing the formation and recovery of carbon in solid form.
另外,本文所描述的實施例在另一個態樣中提供一種惰性及/或還原性淬火氣體用於在縮擴噴嘴之後避免碳與氧的逆反應,以增加CO(s)電漿流中的碳回收率的用途。Additionally, embodiments described herein provide, in another aspect, the use of an inert and/or reducing quench gas to increase carbon recovery in a CO(s) plasma stream by avoiding the reverse reaction of carbon with oxygen after a converging nozzle.
並且,本文所描述的實施例在另一個態樣中提供一種使用或不使用催化劑將CO(g)進行歧化反應為固體碳的高壓/中等溫度製程。Furthermore, the embodiments described herein provide, in another aspect, a high pressure/moderate temperature process for the disproportionation of CO(g) to solid carbon with or without a catalyst.
此外,本文所描述的實施例在另一種態樣提供一種透過二氧化矽的碳熱還原在矽生產中回收碳的製程,其中,該製程透過對碳(所述碳從來自封閉式電弧爐的CO(g)料流中捕捉)和含有二氧化矽的材料進行造粒來進行。Additionally, embodiments described herein provide, in another aspect, a process for recovering carbon in silicon production by carbothermal reduction of silica, wherein the process is performed by pelletizing carbon captured from a CO(g) stream from a closed arc furnace and a silica-containing material.
上述缺點可以透過本發明的標的至少部分地克服,本發明的標的在矽生產中,透過以傳統碳熱還原的方法將二氧化矽還原為矽,使用兩步驟製程進行碳的捕捉和再利用。在第一步驟中,提供了由碳熱還原爐製造乾淨的CO(g)的方法。在第二步驟中,提供了從CO(g)中回收碳,然後將所述碳送回至碳熱還原步驟的方法。The above disadvantages can be at least partially overcome by the subject matter of the present invention, which uses a two-step process to capture and reuse carbon in silicon production by reducing silicon dioxide to silicon by conventional carbothermal reduction. In the first step, a method is provided for producing clean CO(g) from a carbothermal reduction furnace. In the second step, a method is provided for recovering carbon from CO(g) and then returning the carbon to the carbothermal reduction step.
參照圖1,其顯示了利用碳回收來生產矽的製程的示意圖,其中,將二氧化矽201和碳202連續供給至封閉式電弧爐(CEAF)203。CEAF 203可以在真空狀態、大氣壓狀態下操作,或曝露在抽氣通風中以避免向環境的逸散性排放。在需要非常低的NO x和CO 2排放的情況下,特別是在碳熱還原製程開始時,為了在透過電弧施加能量之前以及在施加負操作壓力(即,低於大氣壓力)的操作過程中允許將爐內的殘餘氧氣最少化,真空額定的CEAF是較佳的。 Referring to FIG. 1 , a schematic diagram of a process for producing silicon with carbon recovery is shown, wherein silicon dioxide 201 and carbon 202 are continuously fed to a closed electric arc furnace (CEAF) 203. The CEAF 203 may be operated in a vacuum state, in an atmospheric pressure state, or exposed to an exhaust draft to avoid fugitive emissions to the environment. Where very low NO x and CO 2 emissions are required, particularly at the beginning of a carbothermal reduction process, a vacuum rated CEAF is preferred in order to allow minimization of residual oxygen within the furnace prior to application of energy via the arc and during operation at a negative operating pressure (i.e., below atmospheric pressure).
CEAF 203透過將滲入爐內的氣體最少化以使爐氣富含CO(g),從而將CO 2(g)的形成最少化,這意味著來自爐內的碳熱還原過程的CO(g)不可以被來自周圍環境的空氣中的氧氣氧化。 CEAF 203 minimizes the formation of CO 2 (g) by minimizing the gas infiltration into the furnace so that the furnace gas is enriched with CO (g), which means that CO (g) from the carbothermal reduction process in the furnace cannot be oxidized by oxygen in the ambient air.
CEAF 203中的反應環境是由使空氣的滲入最少化的封閉結構控制,這意味著來自爐內環境中的空氣的氮氣的存在已最少化至零。這會抑制來自空氣的氮氣和氧氣在高溫下反應形成NO x。 The reaction environment in CEAF 203 is controlled by a closed structure that minimizes air infiltration, which means that the presence of nitrogen from the air in the furnace environment has been minimized to zero. This inhibits the nitrogen and oxygen from the air from reacting at high temperatures to form NOx .
不含NO x的CO(g)料流含有大量的矽灰形式的顆粒,矽灰是SiO 2到Si的不完全還原反應的副產物。為了進一步加工CO(g),顆粒物在除塵步驟204被濾除。 The NOx -free CO(g) stream contains a large amount of particulate matter in the form of silica fume, which is a byproduct of the incomplete reduction reaction of SiO2 to Si. In order to further process the CO(g), the particulate matter is filtered out in the dust removal step 204.
現在不含顆粒的CO(g)料流進入脫碳過程,透過脫碳過程,固體碳被回收並可返回矽工廠以與二氧化矽重新反應。回收CO(g)的第一步驟與從CO(g)中提取碳的第二步驟相結合,允許了在矽生產製程中實現現場循環碳利用。The now particle-free CO(g) stream enters a decarbonization process where the solid carbon is recovered and can be returned to the silicon plant to re-react with silica. The first step of CO(g) recovery combined with the second step of extracting carbon from the CO(g) allows for on-site recycling of carbon in the silicon production process.
為了從CO(g)中捕捉碳,有兩種方法可以使用。To capture carbon from CO(g), two methods can be used.
第一種方法發生在電漿反應器205中,其中,CO(g)供給至可以導通電流的電漿中,並且,所述電漿可以將CO(g)的溫度升高至C和O可以以其元素形式共存的程度。總反應可以寫成如下。 CO(g) = C(g) + O(g) The first method occurs in a plasma reactor 205, where CO(g) is fed into a plasma that can conduct an electric current and the plasma can raise the temperature of CO(g) to a point where C and O can coexist in their elemental forms. The overall reaction can be written as follows. CO(g) = C(g) + O(g)
第二種方法發生在歧化反應器206中,其中,CO(g)分子在升高的溫度和壓力下反應,以從2莫耳的CO(g)中提取1莫耳的固體形式的C。總反應可以寫成如下。 CO(g) + CO(g) = C(s) + CO 2(g) The second process occurs in the disproportionation reactor 206, where CO(g) molecules react at elevated temperature and pressure to extract 1 mole of solid C from 2 moles of CO(g). The overall reaction can be written as follows. CO(g) + CO(g) = C(s) + CO 2 (g)
每種方法都可以單獨(獨自)使用或組合使用,以最大化碳回收率。Each method can be used alone (on its own) or in combination to maximize carbon recovery.
從兩種方法(205和206)獲得的碳在與二氧化矽201混合之前會經過碳收集及造粒步驟207,然後其可以供給回CEAF 203以產生額外的矽。The carbon obtained from both processes (205 and 206) goes through a carbon collection and pelletizing step 207 before being mixed with silicon dioxide 201, which can then be fed back to the CEAF 203 to produce additional silicon.
剩餘的廢氣208經由排氣管離開此製程。Remaining waste gas 208 leaves the process through an exhaust pipe.
參照圖2,其顯示了利用碳捕捉來生產矽的新穎製程的示例性示意圖。例如石英形式的二氧化矽以及例如煤、煤焦、木炭和木屑及/或它們的混合物的形式的碳,透過輸送帶1輸送至用於臨時批量儲存的開放式進料斗2。接著,碳與二氧化矽的混合物可以進料至封閉式進料斗4,封閉式進料斗4經由氣密閥3如閘閥與開放環境隔離。Referring to Figure 2, an exemplary schematic diagram of a novel process for producing silicon using carbon capture is shown. Silicon dioxide, for example in the form of quartz, and carbon, for example in the form of coal, coal tar, charcoal and sawdust and/or mixtures thereof, are transported via a conveyor belt 1 to an open feed hopper 2 for temporary bulk storage. The mixture of carbon and silicon dioxide can then be fed to a closed feed hopper 4, which is isolated from the open environment via an airtight valve 3, such as a gate valve.
封閉式進料斗4連接到真空幫浦5並與CEAF 9隔離,真空幫浦5用於去除封閉式進料斗4中的殘餘空氣。The closed feed hopper 4 is connected to a vacuum pump 5 and isolated from the CEAF 9. The vacuum pump 5 is used to remove residual air in the closed feed hopper 4.
為了在製程開始時將NO x的形成最少化,一旦使用真空幫浦5對封閉式進料斗4和CEAF 9進行除氣,則藉由打開閥8從來源7注入氬氣,一旦CEAF 9內部的壓力達到大氣壓程度,閥8就會關閉。 In order to minimize the formation of NO x at the beginning of the process, once the closed feed hopper 4 and the CEAF 9 are degassed using the vacuum pump 5, argon is injected from the source 7 by opening the valve 8, and once the pressure inside the CEAF 9 reaches atmospheric pressure, the valve 8 is closed.
這種除氣過程需要重複進行,以確保殘餘空氣被從系統內移除。This degassing process needs to be repeated to ensure that residual air is removed from the system.
為了裝載CEAF 9,氣密閥3打開以將碳與二氧化矽的混合物卸載到封閉式進料斗4中,然後關閉。然後,真空幫浦5運轉,以透過除氣過程將困在封閉式進料斗4中的空氣移除,該除氣過程透過經由閥8的開啟和關閉向封閉式進料斗4回填來自來源7的氬氣來進行。To load the CEAF 9, the airtight valve 3 is opened to unload the mixture of carbon and silica into the closed feed hopper 4 and then closed. The vacuum pump 5 is then operated to remove the air trapped in the closed feed hopper 4 by a degassing process by backfilling the closed feed hopper 4 with argon from a source 7 via the opening and closing of the valve 8.
接著,閥6打開以將諸如石英和碳的原料混合物卸載到CEAF 9中。Next, valve 6 is opened to unload the raw material mixture such as quartz and carbon into CEAF 9.
例如石英形式的二氧化矽與碳源的碳熱還原在CEAF 9中在不存在空氣的情況下發生,這使得來自製程的NO x的排放量低,並形成富含熱CO(g)的料流。 The carbothermal reduction of silicon dioxide, for example in the form of quartz, with a carbon source occurs in the CEAF 9 in the absence of air, which results in low NO x emissions from the process and the formation of a hot CO(g)-rich stream.
富含熱CO(g)的料流帶著來自二氧化矽與碳的不完全還原反應的細氧化矽顆粒離開CEAF 9。熱氣體流中的大部分細顆粒物經由熱旋風器10清除,例如允許處理熱氣體的耐火內襯旋風器。The hot CO(g)-rich stream leaves the CEAF 9 carrying fine silica particles from the incomplete reduction reaction of silica with carbon. Most of the fine particles in the hot gas stream are removed by a hot cyclone 10, such as a refractory lined cyclone allowing the processing of hot gases.
離開熱旋風器10的氣體被引導至熱交換器11,在熱交換器11中氣體溫度降低,例如低於150°C。接著,可透過高效過濾系統12,例如可與HEPA過濾器組合的袋式集塵過濾器,來清除冷卻後的氣體中未被熱旋風器10捕捉的殘餘顆粒物,以將顆粒去除效率最大化。The gas leaving the hot cyclone 10 is directed to a heat exchanger 11, where the gas temperature is reduced, for example, to below 150° C. The gas can then be filtered through a high-efficiency filter system 12, such as a bag filter that can be combined with a HEPA filter, to remove residual particles not captured by the hot cyclone 10 from the cooled gas to maximize particle removal efficiency.
現在不含顆粒物之富含CO的氣體流由抽風機(ID)風扇13驅動。ID風扇13確保操作過程的壓力保持略低於大氣壓力,以避免任何CO(g)逸散排放到周圍環境,並且確保操作人員的安全。The now particulate-free CO-rich gas stream is driven by an exhaust (ID) fan 13. The ID fan 13 ensures that the process pressure is kept slightly below atmospheric pressure to avoid any escaping emission of CO(g) into the surrounding environment and to ensure the safety of the operating personnel.
氣體壓縮機14將富含CO(g)的料流的壓力增加到足夠高的中等程度,例如高達10 atm,以使得電漿炬16能夠適當操作。The gas compressor 14 increases the pressure of the CO(g) rich stream to a moderately high level sufficiently high, such as up to 10 atm, to enable the plasma torch 16 to operate properly.
在電漿炬16的操作期間,需要緩衝槽15來維持CO(g)的壓力。加壓後的CO(g)進入電漿炬16,在其中分解為C(g)和O(g)。含有C(g)的電漿進入能高效防止C(g)和O(g)向CO(g)的逆反應的淬火系統17,從而使CO(g)的還原最少化。此淬火系統17的另一個作用是將電漿氣體的溫度降低至碳氣體C(g)冷凝成其固體形式C(s)的點。During the operation of the plasma torch 16, the buffer tank 15 is required to maintain the pressure of CO(g). The pressurized CO(g) enters the plasma torch 16 where it decomposes into C(g) and O(g). The plasma containing C(g) enters the quench system 17 which is highly effective in preventing the back reaction of C(g) and O(g) to CO(g), thereby minimizing the reduction of CO(g). Another function of this quench system 17 is to reduce the temperature of the plasma gas to the point where the carbon gas C(g) condenses into its solid form C(s).
一旦形成,C(s)在淬火的氣體流中保持穩定並進入冷旋風器18,透過冷旋風器18,大部分的C(s)透過氣流的氣旋效應與氣體流分離。Once formed, C(s) remains stable in the quenched gas stream and enters the cold cyclone 18, through which most of the C(s) is separated from the gas stream by the cyclonic effect of the gas stream.
離開冷旋風器18的氣體應由熱交換器19進一步冷卻,並且至足夠冷,例如低於150°C,以透過可在過濾系統20如袋式除塵器中使用的市售過濾材料進行過濾,袋式除塵器可與HEPA過濾器結合以將從氣體流中去除剩餘的C(s)的效率最大化。The gas leaving the cold cyclone 18 should be further cooled by the heat exchanger 19 and to be cold enough, e.g., below 150°C, to be filtered through commercially available filter materials that can be used in a filter system 20 such as a bag filter, which can be combined with a HEPA filter to maximize the efficiency of removing remaining C(s) from the gas stream.
從C(s)中清除的殘餘CO(g)料流由鼓風機21驅動進入氣體壓縮機22,以將其壓力增加到選定的值,例如從(下文)表1中的選定值,以將其進一步處理進入CO(g)歧化反應器23中,該反應器23可以在高達100 atm以及在高溫例如800°C下運行,以將一部分的CO(g)轉化為C(s)。例如,如果CO(g)的轉化率需要為75%,以使C(s)的回收率為30%,則反應器23需要在25 atm和800°C的溫度下操作。為了加強反應過程並減少這樣的歧化過程的能量需求,可以使用例如鐵的催化劑材料。The residual CO(g) stream purged from C(s) is driven by a blower 21 into a gas compressor 22 to increase its pressure to a selected value, such as the selected value from Table 1 (below), for further processing into a CO(g) disproportionation reactor 23, which can be operated at up to 100 atm and at a high temperature, such as 800°C, to convert a portion of the CO(g) to C(s). For example, if the conversion of CO(g) needs to be 75% so that the recovery of C(s) is 30%, then the reactor 23 needs to be operated at 25 atm and a temperature of 800°C. In order to enhance the reaction process and reduce the energy requirements of such a disproportionation process, a catalyst material such as iron can be used.
離開歧化反應器23的熱氣體在被排放至大氣前由熱交換器24冷卻。為了避免有害的CO(g)排放至大氣中,可以透過熱氧化劑將剩餘的CO(g)氧化成CO 2(g)。此時,濃縮的CO 2(g)料流可以進一步被濃縮並於異地再利用,以用於有用的工業或商業用途。 The hot gases leaving the disproportionator 23 are cooled by a heat exchanger 24 before being discharged to the atmosphere. To avoid harmful CO(g) emissions to the atmosphere, the remaining CO(g) can be oxidized to CO2 (g) by a thermal oxidizer. At this point, the concentrated CO2 (g) stream can be further concentrated and reused off-site for useful industrial or commercial purposes.
然後,將從歧化反應器23收集的C(s)與從冷旋風器18和過濾系統20收集的C(s)一起轉移到壓塊/造粒單元25以與石英混合,使得來自將二氧化矽還原成矽的主要碳熱還原的一部分的碳返回到該製程中,從而在該製程中實現循環碳利用。The C(s) collected from the disproportionation reactor 23 is then transferred to the briquetting/granulation unit 25 together with the C(s) collected from the cold cyclone 18 and the filtration system 20 to be mixed with quartz so that the carbon from a portion of the primary carbon thermal reduction of silica to silicon is returned to the process, thereby achieving circular carbon utilization in the process.
熱電漿可以透過本領域專家已知的幾種方法形成,包含但不限制於交流電電弧和直流電電弧、射頻電感耦合源(RF-IC)、以及微波。在這些方法中,電弧和RF-IC是受到關注的,因為它們已用於工業熱電漿炬,它們可以處理高流量的氣體,並且更重要的是,它們可以產生此製程的電漿炬16所需的非常高溫的電漿。理想地,電漿炬16可以提升大量CO(g)的溫度至8000°C,以最大化CO(g)到C(g)的解離率,並且該溫度不低於5000°C以維持C(g)。兩種或更多種的熱電漿產生方法的組合也是可行的。例如,可以將電弧所產生的電漿與RF-IC源結合,以增加氣體體積及/或CO(g)在熱電漿區域中的滯留。Hot plasma can be formed by several methods known to experts in the field, including but not limited to AC arc and DC arc, radio frequency inductively coupled source (RF-IC), and microwave. Of these methods, arc and RF-IC are of interest because they have been used in industrial hot plasma torches, they can handle high flow rates of gas, and more importantly, they can produce the very high temperature plasma required by the plasma torch 16 of this process. Ideally, the plasma torch 16 can elevate the temperature of the bulk CO(g) to 8000°C to maximize the dissociation rate of CO(g) to C(g), and the temperature is not less than 5000°C to maintain C(g). Combinations of two or more hot plasma generation methods are also possible. For example, the arc-generated plasma can be combined with an RF-IC source to increase the gas volume and/or CO(g) retention in the hot plasma region.
參照圖3,其顯示了用於第一步驟碳捕捉的電漿炬16和淬火系統17的示例性垂直剖面示意圖。電漿炬101由電源102施加電能,並且CO(g)料流103在一個或多個位置進入電漿炬101,例如在使用直流(DC)電弧炬的情況下,經由氣體分配器104進入電漿炬101,其中,可以透過更高流量的電漿氣體來增加電弧的電壓以增強功率位準。3, there is shown an exemplary vertical cross-sectional schematic diagram of a plasma torch 16 and a quenching system 17 for first-stage carbon capture. The plasma torch 101 is powered by a power source 102, and a CO(g) stream 103 enters the plasma torch 101 at one or more locations, such as through a gas distributor 104 in the case of a direct current (DC) arc torch, where the arc voltage can be increased by a higher flow of plasma gas to enhance the power level.
透過氣體分配器105注入防護氣體(shield gas),例如氬氣。防護氣體與形成氣體的電漿的比率可以低至10%或甚至更低。對於採用例如由銅製成的管狀電極配置或同軸電極配置的電弧電漿炬,不需要使用防護氣體。這是有利的,因為氣體流保持富含CO(g)的狀態。電漿炬106的前端是水冷式凸緣,該凸緣可以直接連接至具有漸縮-漸擴形狀的淬火模組107,該漸縮-漸擴形狀允許熱電漿氣體在漸擴區域110中達到超過1馬赫的速率。進入淬火模組107的電漿氣體被壓縮到漸縮區域108中,使氣體速度在通過區域109中達到1馬赫。一旦其進入漸擴區域110,電漿氣體在達到超過1馬赫的速度時會膨脹,使其熱能轉換為動能。大於5×10 7°C/s的冷卻速率 [文獻9] 確保在電漿中的C(g)轉化為C(s)。由於電漿CO(g)在淬火中的滯留時間因其高速度而受到限制,因此CO(g)到C(s)的部分轉化是可預期的。為了更進一步加強淬火過程,諸如惰性氣體(例如,Ar、He、N 2)的淬火氣體、或諸如CO(g)、H 2(g)或CH 4(g)的還原性氣體、或是氣體的組合,應該經由氣體分配器111注入。冷的淬火氣體與從漸擴區域110排出的氣體接觸,使得氣體的總溫度下降,進一步避免C(s)與氧氣的逆反應。使沒有轉化為C(s)的剩餘CO(g)進一步進行如前所述的歧化反應,以將總碳捕捉率最大化。 A shield gas, such as argon, is injected through a gas distributor 105. The ratio of shield gas to plasma forming gas can be as low as 10% or even lower. For arc plasma torches that employ a tubular electrode configuration or a coaxial electrode configuration, for example, made of copper, no shield gas is required. This is advantageous because the gas flow remains rich in CO(g). The front end of the plasma torch 106 is a water-cooled flange that can be directly connected to a quench module 107 having a convergent-divergent shape that allows the hot plasma gas to reach velocities exceeding Mach 1 in the divergent region 110. The plasma gas entering the quench module 107 is compressed into the gradient zone 108, causing the gas velocity to reach Mach 1 in the pass zone 109. Once it enters the gradient zone 110, the plasma gas expands when it reaches a velocity exceeding Mach 1, converting its thermal energy into kinetic energy. A cooling rate greater than 5×10 7 °C/s [Reference 9] ensures that C(g) in the plasma is converted to C(s). Since the residence time of the plasma CO(g) in the quench is limited by its high velocity, partial conversion of CO(g) to C(s) is expected. To further enhance the quenching process, a quenching gas such as an inert gas (e.g., Ar, He, N2 ), or a reducing gas such as CO(g), H2 (g) or CH4 (g), or a combination of gases, should be injected through the gas distributor 111. The cold quenching gas contacts the gas exhausted from the gradual expansion area 110, so that the total temperature of the gas is reduced, further avoiding the reverse reaction of C(s) and oxygen. The remaining CO(g) that is not converted to C(s) is further subjected to the disproportionation reaction as described above to maximize the total carbon capture rate.
透過兩個示例進一步呈現如何在電漿反應器205和歧化反應器23中由氣態CO生產固體碳。Two examples are used to further illustrate how solid carbon is produced from gaseous CO in the plasma reactor 205 and the disproportionation reactor 23.
方法 1 :用於碳捕捉的 CO 電漿。假設熱電漿達到局部熱力學平衡,可以使用吉布斯自由能最小化方法來預測一氧化碳的電漿組成。然後,可以在廣泛的溫度範圍內計算C-O熱力學平衡組成。使用HSC商用軟體v. 8計算一氧化碳電漿組成,並且結果顯示在圖4a至圖6。為了預測CO的電漿狀態溫度,定義電漿是有必要的。對於被視為電漿的氣體,應該有足夠的電離物質存在。一般來說,如果氣體有至少1%電離(電離度),則其可以視為電漿(考慮到高導電性)。電離度可以寫成如下。 其中,n i和n n分別為離子和中性物質的數量密度。 Method 1 : CO plasma for carbon capture . The plasma composition of carbon monoxide can be predicted using the Gibbs free energy minimization method, assuming that the hot plasma reaches local thermodynamic equilibrium. The CO thermodynamic equilibrium composition can then be calculated over a wide range of temperatures. The CO plasma composition was calculated using HSC commercial software v. 8 and the results are shown in Figures 4a to 6. In order to predict the plasma state temperature of CO, it is necessary to define a plasma. For a gas to be considered a plasma, there should be enough ionized species present. In general, if a gas has at least 1% ionization (ionization degree), it can be considered a plasma (taking into account the high conductivity). The ionization degree can be written as follows. Here, n i and n n are the number densities of ions and neutral species, respectively.
為了計算電離度,必須計算CO氣體在不同溫度下的粒子數量密度。圖5顯示在大氣壓力下所計算的CO電漿的粒子數量密度。有了粒子的數量密度,便可以根據上述的方程式估算在不同溫度下的電漿的電離度。該計算結果如圖6所示。In order to calculate the ionization degree, the particle number density of CO gas at different temperatures must be calculated. Figure 5 shows the particle number density of CO plasma calculated at atmospheric pressure. With the particle number density, the ionization degree of plasma at different temperatures can be estimated according to the above equation. The calculation result is shown in Figure 6.
如圖6所示,在低於6000°C時,電離度非常低(<0.05%)。在7800°C時,CO電漿的電離度達到1%。因此,可以說CO電漿在高於7800°C的溫度形成。As shown in Figure 6, the ionization degree is very low (<0.05%) below 6000°C. At 7800°C, the ionization degree of CO plasma reaches 1%. Therefore, it can be said that CO plasma is formed at a temperature above 7800°C.
然而,CO在低得多的溫度下開始解離為單原子物質(即,C和O),該溫度約為3000°C,此時它們的數量密度變成大於1016 m -3。如圖6所示,在超過8000°C的溫度下,CO原子化為游離的O(g)和C(g)原子。在10000°C以上,電漿的組成主要是原子的氧和碳。如果可以達到非常高的淬火速率,則碳可以直接轉化成固相並被捕捉。在較低溫下的淬火速率應該高於CO形成動力學的速率。 However, CO begins to dissociate into monatomic species (i.e., C and O) at much lower temperatures, around 3000°C, at which point their number density becomes greater than 1016 m -3 . As shown in Figure 6, at temperatures above 8000°C, CO atomizes into free O(g) and C(g) atoms. Above 10,000°C, the composition of the plasma is primarily atomic oxygen and carbon. If very high quenching rates can be achieved, carbon can be directly converted to the solid phase and trapped. The quenching rate at lower temperatures should be higher than the rate for the CO formation kinetics.
如圖4a和圖4b所示,在較低溫度(< 2100°C) 下形成碳在熱力學上是有利的,碳可能透過此反應形成:CO + CO = C + CO 2。這意味著在由CO所組成的反應系統中,碳和CO 2(g)的形成在熱力學上是有利的,並且,CO(g)應該衰變為這些物質。 As shown in Figures 4a and 4b, the formation of carbon is thermodynamically favorable at lower temperatures (< 2100°C), and carbon may be formed through the reaction: CO + CO = C + CO 2 . This means that in a reaction system consisting of CO, the formation of carbon and CO 2 (g) is thermodynamically favorable, and CO(g) should decay into these species.
方法 2 :用於碳捕捉的 CO 解離。由2莫耳的CO到1莫耳的碳和1莫耳的CO 2的歧化反應顯示CO到碳的解離是可行的。 CO(g) + CO(g) = CO 2(g) + C(s) Method 2 : CO dissociation for carbon capture . The disproportionation reaction of 2 mol of CO to 1 mol of carbon and 1 mol of CO 2 shows that the dissociation of CO to carbon is feasible. CO(g) + CO(g) = CO 2 (g) + C(s)
如果該反應是可行的,則由於氣體反應物的體積減少(2莫耳的CO(g)轉化為1莫耳的CO 2(g)),預期該反應應在高壓下進行,並且為了減緩C與CO 2的逆反應,低溫應是有利的。事實上,如圖7所示,熱力學計算的結果與此預期相符。 If the reaction is feasible, it is expected that the reaction should be carried out at high pressure due to the reduction in the volume of the gaseous reactants (2 mol of CO(g) converted to 1 mol of CO 2 (g)), and low temperature should be favorable in order to slow down the reverse reaction of C and CO 2. In fact, as shown in Figure 7, the results of the thermodynamic calculations are consistent with this expectation.
根據圖7所顯示的結果,從熱力學角度來看,在低溫時CO傾向於轉化為CO 2和C。然而,預期此反應會非常緩慢。為了提高反應速率,如果壓力增加,則可以在更高的溫度下進行CO到CO 2的轉化。例如,在超過100 atm的壓力下,如果反應溫度從400°C升高到800°C,則可以獲得幾乎相同的碳轉化率。 According to the results shown in Figure 7, from a thermodynamic point of view, CO tends to be converted to CO2 and C at low temperatures. However, this reaction is expected to be very slow. In order to increase the reaction rate, if the pressure is increased, the conversion of CO to CO2 can be carried out at a higher temperature. For example, at a pressure of more than 100 atm, if the reaction temperature is increased from 400°C to 800°C, almost the same carbon conversion rate can be obtained.
表1總結了在800°C和不同的操作壓力下的C-O系統的熱力學平衡計算結果。簡而言之,反應壓力越高,則碳轉化率就越高。
表1 - 在800°C下的C-O系統的熱力學平衡組成*
因此,理論上證明,可以透過使用非轉移直流電漿炬從CO(g)中提取固體形態的碳,然後對剩餘的CO(g)進行極端淬火和高壓-中等溫度催化處理,以捕捉更多的碳。Therefore, it is theoretically demonstrated that solid carbon can be extracted from CO(g) using a non-transferring DC plasma torch and then the remaining CO(g) is subjected to extreme quenching and high pressure-moderate temperature catalytic treatment to capture more carbon.
儘管以上說明已提供實施例的示例,惟應當理解,在未脫離所述實施例之操作精神及原則的情況下,仍可修改所述實施例之某些特徵及/或功能。因此,上文中已描述的內容旨在說明所述實施例,而非予以限制,並且所屬技術領域中具有通常知識者亦將理解,在未脫離所附申請專利範圍所界定之實施例的範圍的情況下,亦可做出其他變化及修改。Although the above description has provided examples of embodiments, it should be understood that certain features and/or functions of the embodiments may be modified without departing from the spirit and principles of operation of the embodiments. Therefore, what has been described above is intended to illustrate the embodiments rather than to limit them, and a person of ordinary skill in the art will understand that other changes and modifications may be made without departing from the scope of the embodiments as defined by the attached patent claims.
參考文獻 [1] Nils Eivind Kamfjord, Mass and Energy Balances of the Silicon Process (2012), PhD Thesis, Norwegian University of Science and Technology。 [2] Edin Henrik Myrhaug, Halvard Tveit, Nils Eivind Kamfjord, GeirJohan Andersen and Åslaug Grøvlen, NO xEmissions from Silicon Production (2012), Silicon for the Chemical and Solar Industry XI Bergen -Ulvik, Norway。 [3] T. Lindstad1,2, S.E.Olsen1,2, G. Tranell2, T. Færden3 and J. Lubetsky, Greenhouse Gas Emissions from Ferroalloy Production (2007), INFACON XI, New Delhi, India, 18-21。 [4] Gudrun Saevarsdottir, Thordur Magnusson, and Halvor Kvande, Reducing the Carbon Footprint: Primary Production of Aluminum and Silicon with Changing Energy Systems, Journal of Sustainable Metallurgy (2021), 7:848–857。 [5] K. Z. House, A. C. Baclig, M. Ranjan , E. A. van Nierop , J. Wilcox , and H. J. Herzog, Economic and energetic analysis of capturing CO 2from ambient air (2011), PNAS, 108 (51) 20428-20433。 [6] IECM Technical Documentation: Amine-based Post-Combustion CO 2Capture (2018)。 [7] Elkem, The road to climate neutral metal production [https://www.elkem.com/innovation/long-term-rd/the-road-to-climate-neutral-metal-production/]。 [8] I. Solheim, V. Andersen, and R. Jensen, Recirculating off-gas contributes to carbon capture (2021) [https://www.sintef.no/en/latest-news/2021/recirculating-off-gas-contributes-to-carbon-capture/]。 [9] Benny T. Kuan, and Peter J. Witt, Modelling supersonic quenching of magnesium vapour in a Laval nozzle (2013) Chemical Engineering Science Volume 87, Pages 23-39。 References [1] Nils Eivind Kamfjord, Mass and Energy Balances of the Silicon Process (2012), PhD Thesis, Norwegian University of Science and Technology. [2] Edin Henrik Myrhaug, Halvard Tveit, Nils Eivind Kamfjord, GeirJohan Andersen and Åslaug Grøvlen, NO x Emissions from Silicon Production (2012), Silicon for the Chemical and Solar Industry XI Bergen -Ulvik, Norway. [3] T. Lindstad1,2, SEOlsen1,2, G. Tranell2, T. Færden3 and J. Lubetsky, Greenhouse Gas Emissions from Ferroalloy Production (2007), INFACON XI, New Delhi, India, 18-21. [4] Gudrun Saevarsdottir, Thordur Magnusson, and Halvor Kvande, Reducing the Carbon Footprint: Primary Production of Aluminum and Silicon with Changing Energy Systems, Journal of Sustainable Metallurgy (2021), 7:848–857. [5] KZ House, AC Baclig, M. Ranjan, EA van Nierop, J. Wilcox, and HJ Herzog, Economic and energetic analysis of capturing CO 2 from ambient air (2011), PNAS, 108 (51) 20428-20433. [6] IECM Technical Documentation: Amine-based Post-Combustion CO 2 Capture (2018). [7] Elkem, The road to climate neutral metal production [https://www.elkem.com/innovation/long-term-rd/the-road-to-climate-neutral-metal-production/]. [8] I. Solheim, V. Andersen, and R. Jensen, Recirculating off-gas contributes to carbon capture (2021) [https://www.sintef.no/en/latest-news/2021/recirculating-off- gas-contributes-to-carbon-capture/]. [9] Benny T. Kuan, and Peter J. Witt, Modeling supersonic quenching of magnesium vapor in a Laval nozzle (2013) Chemical Engineering Science Volume 87, Pages 23-39.
本申請案主張於2022年9月20日提交之目前待審中的美國臨時申請第63/408,442號的優先權權益,上述案件透過引用併入本文中。This application claims the benefit of priority to currently pending U.S. Provisional Application No. 63/408,442, filed on September 20, 2022, which is incorporated herein by reference.
1:輸送帶 2:開放式進料斗 3:氣密閥 4:封閉式進料斗 5:真空幫浦 6:閥 7:來源 8:閥 9:封閉式電弧爐(CEAF) 10:熱旋風器 11:熱交換器 12:高效過濾系統 13:抽風機風扇(ID風扇) 14:氣體壓縮機 15:緩衝槽 16:電漿炬 17:淬火系統 18:冷旋風器 19:熱交換器 20:過濾系統 21:鼓風機 22:氣體壓縮機 23:歧化反應器 24:熱交換器 25:壓塊/造粒單元 101:電漿炬 102:電源 103:CO(g)料流 104:氣體分配器 105:氣體分配器 106:電漿炬 107:淬火模組 108:漸縮區域 109:通過區域 110:漸擴區域 111:氣體分配器 201:二氧化矽 202:碳 203:封閉式電弧爐(CEAF) 204:除塵步驟 205:電漿反應器 206:歧化反應器 207:碳收集及造粒步驟 208:廢氣 1: Conveyor belt 2: Open feed hopper 3: Airtight valve 4: Closed feed hopper 5: Vacuum pump 6: Valve 7: Source 8: Valve 9: Closed electric arc furnace (CEAF) 10: Hot cyclone 11: Heat exchanger 12: High efficiency filter system 13: Exhaust fan (ID fan) 14: Gas compressor 15: Buffer tank 16: Plasma torch 17: Quenching system 18: Cold cyclone 19: Heat exchanger 20: Filter system 21: Blower 22: Gas compressor 23: Disproportionation reactor 24: Heat exchanger 25: Briquetting/granulation unit 101: Plasma torch 102: Power supply 103: CO(g) feed stream 104: Gas distributor 105: Gas distributor 106: Plasma torch 107: Quenching module 108: Converging zone 109: Passing zone 110: Expanding zone 111: Gas distributor 201: Silica 202: Carbon 203: Closed electric arc furnace (CEAF) 204: Dust removal step 205: Plasma reactor 206: Disproportionation reactor 207: Carbon collection and granulation step 208: Waste gas
為了更好地理解本文所描述的實施例並且更清楚的顯示實施例是如何實施,現在將僅透過示例的方式參照所附圖式,所附圖式至少顯示一個示例性實施例,並且其中: 圖1是根據一個示例性實施例利用碳回收來生產矽的製程的示例性示意圖; 圖2是根據一個示例性實施例利用碳捕捉來生產矽的製程的示例性示意圖; 圖3是根據一個示例性實施例用於第一步驟碳捕捉的電漿炬和淬火模組的示例性垂直剖面示意圖; 圖4a和圖4b是顯示CO(g)在範圍廣泛的溫度(100至10000°C)下的熱力學平衡組成的兩張曲線圖,其中,圖4a的Y軸為kmol,X軸的單位為溫度(°C),圖4b的Y軸的單位為Log(kmol),X軸為溫度(°C); 圖5是顯示在1 atm下的CO電漿的組成的曲線圖; 圖6是顯示在1 atm下的CO電漿的電離度的曲線圖; 圖7a、圖7b、圖7c和圖7d是分別依序顯示在400、600、800和1000°C和1至200 bar的壓力範圍下的C-O反應系統的熱力學平衡的四張曲線圖。 In order to better understand the embodiments described herein and to more clearly show how the embodiments are implemented, reference will now be made to the accompanying drawings by way of example only, which show at least one exemplary embodiment, and in which: FIG. 1 is an exemplary schematic diagram of a process for producing silicon using carbon recovery according to an exemplary embodiment; FIG. 2 is an exemplary schematic diagram of a process for producing silicon using carbon capture according to an exemplary embodiment; FIG. 3 is an exemplary vertical cross-sectional schematic diagram of a plasma torch and quenching module for first-stage carbon capture according to an exemplary embodiment; Figures 4a and 4b are two graphs showing the thermodynamic equilibrium composition of CO(g) over a wide range of temperatures (100 to 10000°C), wherein the Y-axis of Figure 4a is kmol and the unit of the X-axis is temperature (°C), and the unit of the Y-axis of Figure 4b is Log (kmol) and the X-axis is temperature (°C); Figure 5 is a graph showing the composition of CO plasma at 1 atm; Figure 6 is a graph showing the ionization of CO plasma at 1 atm; Figures 7a, 7b, 7c and 7d are four graphs showing the thermodynamic equilibrium of the C-O reaction system at 400, 600, 800 and 1000°C and a pressure range of 1 to 200 bar, respectively.
201:二氧化矽 201:Silicon dioxide
202:碳 202: Carbon
203:封閉式電弧爐(CEAF) 203: Closed Arc Furnace (CEAF)
204:除塵步驟 204: Dust removal step
205:電漿反應器 205: Plasma reactor
206:歧化反應器 206: Disproportionation Reactor
207:碳收集及造粒步驟 207: Carbon collection and granulation steps
208:廢氣 208: Waste gas
Claims (10)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US202263408442P | 2022-09-20 | 2022-09-20 | |
US63/408,442 | 2022-09-20 |
Publications (1)
Publication Number | Publication Date |
---|---|
TW202428513A true TW202428513A (en) | 2024-07-16 |
Family
ID=90453634
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW112135933A TW202428513A (en) | 2022-09-20 | 2023-09-20 | Low carbon emission process for the production of silicon |
Country Status (2)
Country | Link |
---|---|
TW (1) | TW202428513A (en) |
WO (1) | WO2024059929A1 (en) |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4248627A (en) * | 1978-05-16 | 1981-02-03 | Trw Inc. | Process for the manufacture and use of high purity carbonaceous reductant from carbon monoxide-containing gas mixtures |
US4897852A (en) * | 1988-08-31 | 1990-01-30 | Dow Corning Corporation | Silicon smelting process |
US5749937A (en) * | 1995-03-14 | 1998-05-12 | Lockheed Idaho Technologies Company | Fast quench reactor and method |
WO2009073048A1 (en) * | 2007-06-04 | 2009-06-11 | New York Energy Group | Apparatus and method for dissociating carbon dioxide |
US20130283852A1 (en) * | 2012-04-26 | 2013-10-31 | General Electric Company | Method and systems for co2 separation |
-
2023
- 2023-09-20 TW TW112135933A patent/TW202428513A/en unknown
- 2023-09-20 WO PCT/CA2023/000025 patent/WO2024059929A1/en unknown
Also Published As
Publication number | Publication date |
---|---|
WO2024059929A1 (en) | 2024-03-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2433341C1 (en) | Method to burn carbon-containing fuel using hard oxygen carrier | |
CN103354887B (en) | For carbon dioxide conversion being become the method and system of chemical raw material | |
CN110022964B (en) | Method for separating and fixing carbon dioxide and/or carbon monoxide in waste gas | |
US8758710B2 (en) | Process for treating a flue gas | |
US9005570B2 (en) | Method for treating a carbon dioxide-containing waste gas from an electrofusion process | |
AU2012315483B2 (en) | Chemical looping removal of ventilation air methane | |
JP2010521278A (en) | Novel series power plant process and method for providing a hydrogen carrier reversibly usable in the power plant process | |
RU2004101734A (en) | MAGNETO-HYDRODYNAMIC METHOD FOR PRODUCING ELECTRIC ENERGY AND SYSTEM FOR ITS IMPLEMENTATION | |
EP3986596B1 (en) | Method and a direct reduction plant for producing direct reduced iron | |
WO2011137113A1 (en) | Off gas treatment using a metal reactant alloy composition | |
JP4601576B2 (en) | Method and apparatus for producing hydrogen gas and carbon monoxide gas from combustible waste | |
TW202428513A (en) | Low carbon emission process for the production of silicon | |
CN110125160A (en) | A kind of method of the burning chemistry chains processing plant of poor iron ore as oxygen carrier | |
CN216790895U (en) | Electric arc furnace flue gas carbon dioxide recovery system | |
RU2699339C2 (en) | Integrated energy-saving process of production of metals or alloys | |
JPWO2023171467A5 (en) | ||
CN110947262B (en) | Hydrate-based particulate matter/exhaust gas co-removal system and method | |
US20020124466A1 (en) | Method for the treatment of coal | |
US11578280B2 (en) | Method for the treatment of granulated liquid slag in a horizontal furnace | |
CN219531692U (en) | Near zero emission system for deep utilization of tail gas of silicomanganese ore heating furnace | |
CN116390892B (en) | Converting solid waste into syngas and hydrogen | |
JPH10231488A (en) | Method for utilizing synthetic clean gas obtained from waste | |
KR101231604B1 (en) | Decomposition Method of Carbon Dioxide by Thermochemical Cycle Using Germanium Oxide | |
CN116202331A (en) | Near zero emission system for deep utilization of tail gas of silicomanganese ore heating furnace | |
CN117414700A (en) | Flue gas desulfurization method for industrial silicon ore heating furnace |