TW202424274A - Porous metal plate material - Google Patents
Porous metal plate material Download PDFInfo
- Publication number
- TW202424274A TW202424274A TW112136543A TW112136543A TW202424274A TW 202424274 A TW202424274 A TW 202424274A TW 112136543 A TW112136543 A TW 112136543A TW 112136543 A TW112136543 A TW 112136543A TW 202424274 A TW202424274 A TW 202424274A
- Authority
- TW
- Taiwan
- Prior art keywords
- pores
- bridges
- porous metal
- electrolyte
- perforated metal
- Prior art date
Links
- 229910052751 metal Inorganic materials 0.000 title claims abstract description 126
- 239000002184 metal Substances 0.000 title claims abstract description 126
- 239000000463 material Substances 0.000 title claims abstract description 57
- 238000000034 method Methods 0.000 claims abstract description 20
- 238000004070 electrodeposition Methods 0.000 claims abstract description 16
- 239000011148 porous material Substances 0.000 claims description 103
- 239000000758 substrate Substances 0.000 claims description 68
- 239000003792 electrolyte Substances 0.000 claims description 51
- 239000003112 inhibitor Substances 0.000 claims description 21
- 238000009713 electroplating Methods 0.000 claims description 12
- 238000005868 electrolysis reaction Methods 0.000 claims description 10
- 238000004519 manufacturing process Methods 0.000 claims description 9
- 239000003795 chemical substances by application Substances 0.000 claims description 8
- 238000011144 upstream manufacturing Methods 0.000 claims description 6
- 239000003054 catalyst Substances 0.000 claims description 4
- 239000000446 fuel Substances 0.000 claims description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 43
- 229910052759 nickel Inorganic materials 0.000 description 21
- BHACDJLSNULRRK-UHFFFAOYSA-N [Ni].NS(N)(=O)=O Chemical compound [Ni].NS(N)(=O)=O BHACDJLSNULRRK-UHFFFAOYSA-N 0.000 description 19
- 239000000243 solution Substances 0.000 description 19
- 238000000151 deposition Methods 0.000 description 12
- 230000008021 deposition Effects 0.000 description 12
- REEBJQTUIJTGAL-UHFFFAOYSA-N 3-pyridin-1-ium-1-ylpropane-1-sulfonate Chemical compound [O-]S(=O)(=O)CCC[N+]1=CC=CC=C1 REEBJQTUIJTGAL-UHFFFAOYSA-N 0.000 description 11
- 238000009792 diffusion process Methods 0.000 description 10
- 239000007789 gas Substances 0.000 description 10
- 239000001257 hydrogen Substances 0.000 description 10
- 229910052739 hydrogen Inorganic materials 0.000 description 10
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 9
- 239000002023 wood Substances 0.000 description 9
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 7
- 239000001301 oxygen Substances 0.000 description 7
- 229910052760 oxygen Inorganic materials 0.000 description 7
- 238000006243 chemical reaction Methods 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- -1 hydrogen cations Chemical class 0.000 description 4
- 230000001965 increasing effect Effects 0.000 description 4
- KWIUHFFTVRNATP-UHFFFAOYSA-N Betaine Natural products C[N+](C)(C)CC([O-])=O KWIUHFFTVRNATP-UHFFFAOYSA-N 0.000 description 3
- 229910000990 Ni alloy Inorganic materials 0.000 description 3
- 229960003237 betaine Drugs 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 239000012528 membrane Substances 0.000 description 3
- 238000001465 metallisation Methods 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- KWIUHFFTVRNATP-UHFFFAOYSA-O N,N,N-trimethylglycinium Chemical compound C[N+](C)(C)CC(O)=O KWIUHFFTVRNATP-UHFFFAOYSA-O 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- JSPXPZKDILSYNN-UHFFFAOYSA-N but-1-yne-1,4-diol Chemical compound OCCC#CO JSPXPZKDILSYNN-UHFFFAOYSA-N 0.000 description 2
- 150000001768 cations Chemical class 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 230000002708 enhancing effect Effects 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 230000001788 irregular Effects 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 229910000510 noble metal Inorganic materials 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 238000007747 plating Methods 0.000 description 2
- TVDSBUOJIPERQY-UHFFFAOYSA-N prop-2-yn-1-ol Chemical compound OCC#C TVDSBUOJIPERQY-UHFFFAOYSA-N 0.000 description 2
- 239000007858 starting material Substances 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- KYPOHTVBFVELTG-OWOJBTEDSA-N (e)-but-2-enedinitrile Chemical compound N#C\C=C\C#N KYPOHTVBFVELTG-OWOJBTEDSA-N 0.000 description 1
- XFKYKTBPRBZDFG-UHFFFAOYSA-N 2-aminoacetonitrile;hydrochloride Chemical compound Cl.NCC#N XFKYKTBPRBZDFG-UHFFFAOYSA-N 0.000 description 1
- NYPGBHKJFKQTIY-TYYBGVCCSA-N 2-cyanoethylazanium;(e)-4-hydroxy-4-oxobut-2-enoate Chemical compound NCCC#N.OC(=O)\C=C\C(O)=O NYPGBHKJFKQTIY-TYYBGVCCSA-N 0.000 description 1
- JYTRKIATJUGNCP-UHFFFAOYSA-N 2-hydroxy-3-(2h-pyridin-1-yl)propane-1-sulfonic acid Chemical compound OS(=O)(=O)CC(O)CN1CC=CC=C1 JYTRKIATJUGNCP-UHFFFAOYSA-N 0.000 description 1
- RJPRZHQPROLZRW-UHFFFAOYSA-N 2-hydroxy-3-pyridin-1-ium-1-ylpropane-1-sulfonate Chemical compound [O-]S(=O)(=O)CC(O)C[N+]1=CC=CC=C1 RJPRZHQPROLZRW-UHFFFAOYSA-N 0.000 description 1
- KGIGUEBEKRSTEW-UHFFFAOYSA-N 2-vinylpyridine Chemical compound C=CC1=CC=CC=N1 KGIGUEBEKRSTEW-UHFFFAOYSA-N 0.000 description 1
- GLYYWBKHAJZWOQ-UHFFFAOYSA-N 3-(4-benzylpyridin-1-ium-1-yl)propane-1-sulfonate Chemical compound C1=C[N+](CCCS(=O)(=O)[O-])=CC=C1CC1=CC=CC=C1 GLYYWBKHAJZWOQ-UHFFFAOYSA-N 0.000 description 1
- JHUFGBSGINLPOW-UHFFFAOYSA-N 3-chloro-4-(trifluoromethoxy)benzoyl cyanide Chemical compound FC(F)(F)OC1=CC=C(C(=O)C#N)C=C1Cl JHUFGBSGINLPOW-UHFFFAOYSA-N 0.000 description 1
- 229910001369 Brass Inorganic materials 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- 229910001030 Iron–nickel alloy Inorganic materials 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- 229910001182 Mo alloy Inorganic materials 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 229910021586 Nickel(II) chloride Inorganic materials 0.000 description 1
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 1
- 239000007868 Raney catalyst Substances 0.000 description 1
- 229910000564 Raney nickel Inorganic materials 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 239000012670 alkaline solution Substances 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- SRSXLGNVWSONIS-UHFFFAOYSA-N benzenesulfonic acid Chemical compound OS(=O)(=O)C1=CC=CC=C1 SRSXLGNVWSONIS-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000010951 brass Substances 0.000 description 1
- DLDJFQGPPSQZKI-UHFFFAOYSA-N but-2-yne-1,4-diol Chemical compound OCC#CCO DLDJFQGPPSQZKI-UHFFFAOYSA-N 0.000 description 1
- OTJZCIYGRUNXTP-UHFFFAOYSA-N but-3-yn-1-ol Chemical compound OCCC#C OTJZCIYGRUNXTP-UHFFFAOYSA-N 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- CNKQLGPSNASPJH-UHFFFAOYSA-N formaldehyde;2,2,2-trichloroethane-1,1-diol Chemical compound O=C.OC(O)C(Cl)(Cl)Cl CNKQLGPSNASPJH-UHFFFAOYSA-N 0.000 description 1
- WOFDVDFSGLBFAC-UHFFFAOYSA-N lactonitrile Chemical compound CC(O)C#N WOFDVDFSGLBFAC-UHFFFAOYSA-N 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000011572 manganese Substances 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- DYUWTXWIYMHBQS-UHFFFAOYSA-N n-prop-2-enylprop-2-en-1-amine Chemical compound C=CCNCC=C DYUWTXWIYMHBQS-UHFFFAOYSA-N 0.000 description 1
- QMMRZOWCJAIUJA-UHFFFAOYSA-L nickel dichloride Chemical compound Cl[Ni]Cl QMMRZOWCJAIUJA-UHFFFAOYSA-L 0.000 description 1
- LGQLOGILCSXPEA-UHFFFAOYSA-L nickel sulfate Chemical compound [Ni+2].[O-]S([O-])(=O)=O LGQLOGILCSXPEA-UHFFFAOYSA-L 0.000 description 1
- 229910000363 nickel(II) sulfate Inorganic materials 0.000 description 1
- IDYNOORNKYEHHO-UHFFFAOYSA-N pent-3-yn-1-ol Chemical compound CC#CCCO IDYNOORNKYEHHO-UHFFFAOYSA-N 0.000 description 1
- 239000010970 precious metal Substances 0.000 description 1
- UIIIBRHUICCMAI-UHFFFAOYSA-N prop-2-ene-1-sulfonic acid Chemical compound OS(=O)(=O)CC=C UIIIBRHUICCMAI-UHFFFAOYSA-N 0.000 description 1
- XSUMSESCSPMNPN-UHFFFAOYSA-N propane-1-sulfonate;pyridin-1-ium Chemical compound C1=CC=NC=C1.CCCS(O)(=O)=O XSUMSESCSPMNPN-UHFFFAOYSA-N 0.000 description 1
- FVSKHRXBFJPNKK-UHFFFAOYSA-N propionitrile Chemical compound CCC#N FVSKHRXBFJPNKK-UHFFFAOYSA-N 0.000 description 1
- 150000003252 quinoxalines Chemical class 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- 239000010948 rhodium Substances 0.000 description 1
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- LMYRWZFENFIFIT-UHFFFAOYSA-N toluene-4-sulfonamide Chemical compound CC1=CC=C(S(N)(=O)=O)C=C1 LMYRWZFENFIFIT-UHFFFAOYSA-N 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- GPPXJZIENCGNKB-UHFFFAOYSA-N vanadium Chemical compound [V]#[V] GPPXJZIENCGNKB-UHFFFAOYSA-N 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D5/00—Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
- C25D5/60—Electroplating characterised by the structure or texture of the layers
- C25D5/605—Surface topography of the layers, e.g. rough, dendritic or nodular layers
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B11/00—Electrodes; Manufacture thereof not otherwise provided for
- C25B11/02—Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form
- C25B11/03—Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form perforated or foraminous
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B11/00—Electrodes; Manufacture thereof not otherwise provided for
- C25B11/04—Electrodes; Manufacture thereof not otherwise provided for characterised by the material
- C25B11/051—Electrodes formed of electrocatalysts on a substrate or carrier
- C25B11/052—Electrodes comprising one or more electrocatalytic coatings on a substrate
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B11/00—Electrodes; Manufacture thereof not otherwise provided for
- C25B11/04—Electrodes; Manufacture thereof not otherwise provided for characterised by the material
- C25B11/051—Electrodes formed of electrocatalysts on a substrate or carrier
- C25B11/055—Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material
- C25B11/057—Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material consisting of a single element or compound
- C25B11/061—Metal or alloy
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B11/00—Electrodes; Manufacture thereof not otherwise provided for
- C25B11/04—Electrodes; Manufacture thereof not otherwise provided for characterised by the material
- C25B11/051—Electrodes formed of electrocatalysts on a substrate or carrier
- C25B11/073—Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
- C25B11/075—Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of a single catalytic element or catalytic compound
- C25B11/089—Alloys
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D21/00—Processes for servicing or operating cells for electrolytic coating
- C25D21/12—Process control or regulation
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D5/00—Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
- C25D5/08—Electroplating with moving electrolyte e.g. jet electroplating
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D5/00—Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
- C25D5/10—Electroplating with more than one layer of the same or of different metals
- C25D5/12—Electroplating with more than one layer of the same or of different metals at least one layer being of nickel or chromium
- C25D5/14—Electroplating with more than one layer of the same or of different metals at least one layer being of nickel or chromium two or more layers being of nickel or chromium, e.g. duplex or triplex layers
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D5/00—Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
- C25D5/60—Electroplating characterised by the structure or texture of the layers
- C25D5/625—Discontinuous layers, e.g. microcracked layers
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D7/00—Electroplating characterised by the article coated
- C25D7/06—Wires; Strips; Foils
- C25D7/0614—Strips or foils
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/8605—Porous electrodes
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D1/00—Electroforming
- C25D1/08—Perforated or foraminous objects, e.g. sieves
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Automation & Control Theory (AREA)
- Electroplating Methods And Accessories (AREA)
- Electrolytic Production Of Metals (AREA)
Abstract
Description
本揭露係關於多孔金屬板材料,例如篩子(sieve)、篩網(screen)或板電極,以及關於生產這樣的多孔金屬板材料的電沉積製程。The present disclosure relates to porous metal sheet materials, such as sieves, screens or plate electrodes, and to electrodeposition processes for producing such porous metal sheet materials.
迄今為止,這樣的多孔板可例如藉由在含有電解液的電鍍浴中連接導電穿孔基板,例如平板(flat sheet)或鼓(drum),作為陰極而製成。在電沉積製程期間,維持優先生長(preferential growth)的條件,即金屬沉積不是在各個方向上均勻地生長,而是主要在電解質流的流動方向上生長。金屬板材料具有與穿孔底板相同尺寸以及形狀的孔隙,導致金屬板材料所期望的孔隙率。多孔金屬板材料可例如用作為過濾器或篩子或流通式板電極(flow-through plate electrode)。多孔板材料可為平面或非平面的。Hitherto, such porous plates can be produced, for example, by connecting a conductive perforated substrate, such as a flat sheet or a drum, as a cathode in an electroplating bath containing an electrolyte. During the electroplating process, preferential growth conditions are maintained, i.e. the metal deposit does not grow uniformly in all directions, but grows mainly in the flow direction of the electrolyte stream. The metal plate material has pores of the same size and shape as the perforated base plate, resulting in the desired porosity of the metal plate material. The porous metal plate material can be used, for example, as a filter or screen or a flow-through plate electrode. The porous plate material can be planar or non-planar.
可例如藉由維持電解質流在期望的生長方向穿過穿孔板的孔隙,及/或藉由對電解質添加有效量的光亮劑,及/或藉由使用脈衝電鍍電流來實現優先生長。Preferential growth can be achieved, for example, by maintaining an electrolyte flow through the pores of the perforated plate in the desired growth direction, and/or by adding an effective amount of a brightener to the electrolyte, and/or by using a pulsed plating current.
NL1021096揭露了使用具有狹縫狀(slit-shaped)穿孔的穿孔基板的製程,狹縫狀穿孔具有與狹縫的短側接壤(bordering)的短材料橋(material bridge),以及與狹縫的長側接壤的縱向材料橋。在電沉積製程期間,金屬的沉積主要發生在狹縫的短端(short end)處的短材料橋之上。這導致了在狹縫的短端處的針狀突起(pin-shaped protusion),且於是增加了比表面積(總面積m 2/網格面積m 2)。 NL1021096 discloses a process using a perforated substrate with slit-shaped through-holes having short material bridges bordering the short sides of the slits and longitudinal material bridges bordering the long sides of the slits. During the electrodeposition process, metal deposition occurs mainly on the short material bridges at the short ends of the slits. This results in pin-shaped protrusions at the short ends of the slits and thus increases the specific surface area (total area m 2 /grid area m 2 ).
由於增加了比表面積,這樣的金屬板材料特別適合作為透氣流通式板電極,例如用於水的電解。水的電解係用於生產氫氣的製程。在鹼性水電解中,將兩電極浸入高度濃縮的鹼性水溶液中,例如氫氧化鉀(KOH)溶液。藉由陰極室之中氫陽離子的還原生產氫氣,同時藉由陽極室之中氫氧根離子的氧化生產氧氣。因為氧化以及還原發生在電極的表面,所以電極的比表面積較佳地應該最大化。另一方面,產生的氫氣和氧氣應該迅速從電極表面釋放並排出,且應該避免氣泡堵塞電極的孔。Due to the increased specific surface area, such metal plate materials are particularly suitable as permeable flow-through plate electrodes, for example for water electrolysis. Water electrolysis is a process for producing hydrogen. In alkaline water electrolysis, two electrodes are immersed in a highly concentrated alkaline aqueous solution, such as a potassium hydroxide (KOH) solution. Hydrogen is produced by the reduction of hydrogen cations in the cathode chamber, while oxygen is produced by the oxidation of hydroxide ions in the anode chamber. Since oxidation and reduction occur on the surface of the electrode, the specific surface area of the electrode should preferably be maximized. On the other hand, the generated hydrogen and oxygen should be quickly released and discharged from the electrode surface, and bubbles should be avoided from clogging the pores of the electrode.
因此,期望提供一種可製成具有大幅增加的比表面積的金屬板材料。Therefore, it is desirable to provide a metal plate material that can be manufactured to have a significantly increased specific surface area.
為此,本發明提供一種多孔金屬板材料,包括穿孔金屬底板(base plate)及在穿孔金屬底板的至少一側之上具有針狀突起(pin-shaped protrusions)的電沉積層,係在保持優先生長條件的同時藉由電沉積所製成。穿孔金屬底板具有由材料橋所間隔的孔隙的圖案。孔隙包含由不同寬度(varying width)的橋所接壤的孔隙。To this end, the present invention provides a porous metal plate material, comprising a perforated metal base plate and an electro-deposited layer having pin-shaped protrusions on at least one side of the perforated metal base plate, which is made by electro-deposition while maintaining optimal growth conditions. The perforated metal base plate has a pattern of pores separated by material bridges. The pores include pores bordered by bridges of varying widths.
根據NL1021095的教示,突起僅在狹縫狀孔隙的外端(outer end)處生長於材料橋之上。現在已經發現,也可藉由改變相鄰的孔隙之間的最短距離來獲得突起,例如藉由改變材料橋的寬度及/或節點(nodal point)的寬度,對於非狹縫狀的孔隙也是如此。圖案可與高密度的橋一起使用,這提供了非常有效率的方法來優化所生產的多孔板材料的比表面積以及孔隙率(porosity)。According to the teaching of NL1021095, protrusions grow on material bridges only at the outer ends of slit-shaped pores. It has now been found that protrusions can also be obtained by varying the shortest distance between adjacent pores, for example by varying the width of the material bridges and/or the width of the nodal points, also for non-slit-shaped pores. Patterns can be used together with a high density of bridges, which provides a very efficient way to optimize the specific surface area and porosity of the produced porous plate material.
各個橋可例如各自具有固定的寬度,其中有些橋比其他橋更寬。舉例來說,在一列(row)孔隙的長度方向上的橋可具有比相鄰列的孔隙之間的橋更大或更小的寬度。替換地,或額外地,各個橋可各自具有不同的寬度,例如在孔隙不具有直線輪廓(straight outline)的一側。例如具有圓形或星形(star shaped)孔隙等就是此種情況。The bridges may for example each have a fixed width, with some being wider than others. For example, bridges in the length direction of a row of pores may have a greater or lesser width than bridges between pores in an adjacent row. Alternatively, or additionally, the bridges may each have a different width, for example on a side where the pore does not have a straight outline. This may be the case for example with round or star shaped pores, etc.
在特定實施例中,相鄰孔隙的最寬橋的寬度Ww與相鄰相同孔隙的最窄橋的寬度Wn的比例R Bridge為R>1,0。 In a specific embodiment, the ratio R Bridge of the width Ww of the widest bridge of adjacent pores to the width Wn of the narrowest bridge of adjacent same pores is R>1.0.
孔隙可為狹縫狀,但也可為多邊形,例如三角形或長方形、或圓形、卵形(oval)、 橢圓形、或星形。也可使用具有不同輪廓及/或尺寸的孔隙的組合。因此,本揭露也涉及一種多孔金屬板材料,包括穿孔金屬底板及在穿孔金屬底板的至少一側之上具有針狀突起的電沉積層,係在保持優先生長條件的同時藉由電沉積所製成,其中穿孔金屬底板具有由材料橋所間隔的孔隙的圖案,且其中孔隙為非狹縫狀的,例如三角形或長方形、或圓形、卵形、橢圓形、或星形。在這方面,針狀突起為電沉積材料的沉積峰(deposition peak)。The pores may be slit-shaped, but may also be polygonal, such as triangular or rectangular, or circular, oval, elliptical, or star-shaped. Combinations of pores with different profiles and/or sizes may also be used. Therefore, the present disclosure also relates to a porous metal plate material, comprising a perforated metal base plate and an electro-deposited layer having needle-like protrusions on at least one side of the perforated metal base plate, which is made by electro-deposition while maintaining optimal growth conditions, wherein the perforated metal base plate has a pattern of pores separated by material bridges, and wherein the pores are non-slit-shaped, such as triangular or rectangular, or circular, oval, elliptical, or star-shaped. In this regard, the needle-like protrusions are deposition peaks of the electro-deposited material.
如果比例R bridge>1,1,例如>1,4,則可實現好的結果。 Good results are achieved if the ratio R bridge >1.1, for example >1.4.
孔隙通常以規則圖案配置,例如以列與行(column)。如果到最近孔隙最大距離的位置偏離包含此孔隙的一列的最近中心線(the nearest center line)就可獲得高密度的針狀突起。在此情況下,可以在單一橋或具有雙峰的突起上獲得一孿生對(twin pair)的突起。The pores are usually arranged in a regular pattern, for example in columns. A high density of needle-like protrusions is obtained if the location of the maximum distance to the nearest pore is offset from the nearest center line of a column containing this pore. In this case, a twin pair of protrusions can be obtained on a single bridge or a protrusion with two peaks.
穿孔金屬基板之中的孔隙可例如具有大約5-500微米的寬度或直徑。孔隙可為對齊、平行、等距以及均勻的,但也可使用其他圖案。The pores in the perforated metal substrate may, for example, have a width or diameter of about 5-500 microns. The pores may be aligned, parallel, equidistant, and uniform, but other patterns may also be used.
在本揭露的脈絡中,橋係介於兩個相鄰孔隙之間的材料。如果兩孔隙之間的最短線不與另一孔隙或彼此更靠近的另一對孔隙之間的橋交叉(cross),則認為一對孔隙係相鄰的。橋上給定點處的橋寬度為給定點處的兩相鄰孔隙之間的最短距離。In the context of the present disclosure, a bridge is a material between two adjacent pores. A pair of pores is considered adjacent if the shortest line between the two pores does not cross the bridge between another pore or another pair of pores that are closer to each other. The width of the bridge at a given point on the bridge is the shortest distance between two adjacent pores at the given point.
多孔金屬板材料可例如藉由在含有電解液的電鍍浴中使用導電穿孔金屬基板作為陰極進行電沉積所製成,電解液包括至少一還原抑制劑,例如光亮劑或流平劑(levelling agent), 其中穿孔金屬基板具有由材料橋所間隔的孔隙的圖案, 其中電解液的流動維持自多孔金屬底板的上游側穿過孔隙至下游側, 其中孔隙包含由不同寬度的橋所接壤(bordered)的複數個孔隙。在這方面,如果寬度變化超過工程公差或測量裕度(measurement margin),則認為寬度是不同(varying)的。 The porous metal sheet material can be made, for example, by electrodeposition using a conductive perforated metal substrate as a cathode in an electroplating bath containing an electrolyte, the electrolyte including at least one reduction inhibitor, such as a brightener or a leveling agent, wherein the perforated metal substrate has a pattern of pores separated by material bridges, wherein the flow of the electrolyte is maintained from the upstream side of the porous metal substrate through the pores to the downstream side, wherein the pores include a plurality of pores bordered by bridges of different widths. In this regard, the width is considered to be varying if the width variation exceeds the engineering tolerance or measurement margin.
各個橋的寬度可不同及/或相鄰一孔隙的最寬的橋的寬度Ww與相鄰同一孔隙的最窄的橋的寬度Wn的比率R bridge為R>1,0。 The width of each bridge may be different and/or the ratio R bridge of the width Ww of the widest bridge adjacent to a pore to the width Wn of the narrowest bridge adjacent to the same pore may be R>1.0.
平均流速V被定義為體積流量(volume flow rate)與所有孔隙的接合橫斷面流通面積(joint cross sectional flow-through area),即所謂的開放面積(open area),之間的比率。平均流速V可例如為至少2cm/s。The average flow velocity V is defined as the ratio of the volume flow rate to the joint cross sectional flow-through area of all pores, the so-called open area. The average flow velocity V may, for example, be at least 2 cm/s.
如果平均流速為至少10cm/s,則可獲得非常不規則的突起結構,經發現此種突起結構對於透氣板電極的生產特別地有用。因此,本發明也關於一種電沉積製程,藉由在含有電解液的電鍍浴中使用導電穿孔金屬基板作為陰極進行電沉積,電解液包括至少一還原抑制劑,例如光亮劑或流平劑, 其中穿孔金屬基板具有由材料橋所間隔的孔隙的圖案, 其中電解液的流動以至少10cm/s的平均流速,例如至少12cm/s,維持自多孔金屬底板的上游側穿過孔隙至下游側, If the average flow rate is at least 10 cm/s, a very irregular protrusion structure can be obtained, which has been found to be particularly useful for the production of gas-permeable plate electrodes. Therefore, the present invention also relates to an electroplating process, by using a conductive perforated metal substrate as a cathode in an electroplating bath containing an electrolyte, the electrolyte comprising at least one reduction inhibitor, such as a brightener or a leveling agent, wherein the perforated metal substrate has a pattern of pores separated by material bridges, wherein the flow of the electrolyte is maintained from the upstream side of the porous metal substrate through the pores to the downstream side at an average flow rate of at least 10 cm/s, for example at least 12 cm/s,
替換地,或額外地,還可藉由改變節點連接相鄰材料橋的寬度來控制沉積峰的定位。因此,本發明也關於一種多孔金屬板料的製程,藉由在含有電解液的電鍍浴中使用導電穿孔金屬基板作為陰極進行電沉積,電解液包括至少一還原抑制劑,例如光亮劑或流平劑, 其中穿孔金屬基板具有由材料橋所間隔的孔隙的圖案, 其中電解液的流動維持自多孔金屬底板的上游側穿過孔隙至下游側, 其中所述橋包含至少兩組平行的橋列,此些列不被所述孔隙中斷,其中一組列與另一組列交叉。這樣,不同的橋列在節點處彼此交叉,如果的橋的寬度相等,則節點的寬度為橋本身的寬度的至少1,4倍。 Alternatively, or additionally, the positioning of the deposition peaks can also be controlled by changing the width of the bridges connecting the nodes to adjacent materials. Therefore, the present invention also relates to a process for the production of porous metal sheets by electroplating using a conductive perforated metal substrate as a cathode in a plating bath containing an electrolyte, the electrolyte including at least one reduction inhibitor, such as a brightener or a leveling agent, wherein the perforated metal substrate has a pattern of pores separated by material bridges, wherein the flow of the electrolyte is maintained from the upstream side of the porous metal substrate through the pores to the downstream side, wherein the bridges include at least two sets of parallel bridge rows, which are not interrupted by the pores, and one set of rows intersects with another set of rows. This way, different bridge trains cross each other at nodes, where the width of the nodes is at least 1,4 times the width of the bridges themselves, if the width of the bridges is equal.
在特定實施例中,孔隙的圖案以及橋可具有至少3階(order of 3)的旋轉對稱性,例如至少4。「旋轉對稱的階數」係指旋轉360°時,圖案與本身重合的次數。更高的階數或旋轉對稱性導致更大的節點。In certain embodiments, the pattern of pores and bridges may have a rotational symmetry of at least order 3, such as at least 4. The "order of rotational symmetry" refers to the number of times the pattern coincides with itself when rotated 360°. Higher orders or rotational symmetries result in larger nodes.
還原抑制劑抑制陽離子的還原並阻礙金屬的沉積。經發現,孔隙以及橋的局部幾何形狀,例如藉由改變相鄰孔隙之間的最短距離,特別是藉由改變橋及/或節點的寬度,可用以控制沿每個孔隙的輪廓的還原抑制劑的局部濃度的變化,導致所期望的沉積峰或突起的紋理以及圖案。Reduction inhibitors inhibit the reduction of cations and hinder metal deposition. It has been found that the local geometry of the pores and bridges, for example by changing the shortest distance between adjacent pores, in particular by changing the width of the bridges and/or nodes, can be used to control the variation of the local concentration of the reduction inhibitor along the contour of each pore, resulting in the desired texture and pattern of deposition peaks or protrusions.
合適的還原抑制劑包含光亮劑以及流平劑。在電沉積製程期間,這樣的化合物比金屬陽離子更容易被還原,所以它們抑制了金屬的沉積。具體的示例包含濃度大約0.75-23g/l的載體光亮劑(例如對甲苯磺醯胺(paratoluene sulfonamide)、苯磺酸(benzene sulphonic acid))、流平劑、第二類光亮劑 (例如烯丙基磺酸(allyl sulfonic acid)、甲醛水合氯醛(formaldehyde chloral hydrate))以及輔助光亮劑,例如烯丙基磺酸鈉(sodium allyl sulfonate)、丙基磺酸吡啶鎓(pyridinium propyl sulfonate),例如0.075-3.8g/l的濃度。替換地,或額外地,可使用濃度為0.075-3.8g/l的無機光亮劑,例如鈷或鋅。合適的光亮劑的特定示例包含例如1-(2-羥基-3-磺丙基)-吡啶甜菜鹼(1-(2-hydroxy-3-sulfopropyl)-pyridinium betaine)、1-(3-磺丙基)-吡啶甜菜鹼(1-(3-sulfopropyl)-pyridinium betaine;PPS)、丙腈(propionitrile)、羥基丙腈(hydroxy propionitril;HPN)、2-丁炔- 1,4-二醇(2-butyn-1,4-diol)、1,4丁炔二醇(1,4 butyndiol),3-丁炔-1-醇(3-butyn-1-ol),3-戊炔-1-醇(3-pentyn-1-ol),1-(3-磺丙基)( 1-(3-sulfopropyl)),2-乙烯基吡啶甜菜鹼(2-vinylpyridinium betaine),硫脲(thio ureum),富馬腈(fumaronitrile),炔丙醇(propargyl alcohol),胺基乙腈氯化氫(amino-acetonitril-hydrogen chloride),二烯丙胺(diallyl amine),2 -丙炔-1-醇(2-propyn-1-ol)、喹喔啉(chinoxaline)、3-胺基丙腈富馬酸酯(3-amino propionitril fumarate)、1,4-丁炔二醇二乙氧基酸酯(1,4-butyndiol diethoxylaat)、亞乙基氰醇(ethylene cyanohydrine)、1-(2-羥基-3-磺基丙基)吡啶(1-(2-hydroxy-3-sulfopropyl) pyridine)和4-芐基-1-(3-磺基丙基)-吡啶甜菜鹼(4-benzyl-1-(3-sulfopropyl)-pyridinium betaine)。Suitable reduction inhibitors include brighteners and leveling agents. During the electrodeposition process, such compounds are more easily reduced than metal cations, so they inhibit metal deposition. Specific examples include carrier brighteners (e.g., paratoluene sulfonamide, benzene sulphonic acid) at a concentration of about 0.75-23 g/l, leveling agents, second-class brighteners (e.g., allyl sulfonic acid, formaldehyde chloral hydrate), and auxiliary brighteners, such as sodium allyl sulfonate, pyridinium propyl sulfonate, for example, at a concentration of 0.075-3.8 g/l. Alternatively, or additionally, inorganic brighteners such as cobalt or zinc may be used in a concentration of 0.075-3.8 g/l. Specific examples of suitable brighteners include, for example, 1-(2-hydroxy-3-sulfopropyl)-pyridinium betaine, 1-(3-sulfopropyl)-pyridinium betaine (PPS), propionitrile, hydroxy propionitril (HPN), 2-butyn-1,4-diol, 1,4 butyndiol, 3-butyn-1-ol, 3-pentyn-1-ol, 1-(3-sulfopropyl), 2-vinylpyridinium betaine ... betaine, thio ureum, fumaronitrile, propargyl alcohol, amino-acetonitril-hydrogen chloride, diallyl amine, 2-propyn-1-ol, chinoxaline, 3-amino propionitril fumarate, 1,4-butyndiol diethoxylaat, ethylene cyanohydrine, 1-(2-hydroxy-3-sulfopropyl) pyridine and 4-benzyl-1-(3-sulfopropyl)-pyridinium betaine).
一般來說,較高濃度的還原抑制劑導致較大的突起。合適的濃度為例如250mg/l或更多。在電沉積製程期間,還原抑制劑會被消耗。電解質之中的還原抑制劑的平均濃度可維持在恆定的水平,例如透過用於測量以及計量的線上(in-line)系統。Generally speaking, higher concentrations of reduction inhibitors result in larger protrusions. Suitable concentrations are, for example, 250 mg/l or more. During the electrodeposition process, the reduction inhibitor is consumed. The average concentration of the reduction inhibitor in the electrolyte can be maintained at a constant level, for example by an in-line system for measurement and dosing.
此製程對於基於例如鎳或銅的多孔材料的生產特別地有用。合適的電解質包含胺基磺酸鎳、硫酸鎳或氯化鎳浴,例如50-800g/l的濃度,較佳為300-450g/l。This process is particularly useful for the production of porous materials based on, for example, nickel or copper. Suitable electrolytes include nickel sulfamide, nickel sulfate or nickel chloride baths, for example at a concentration of 50-800 g/l, preferably 300-450 g/l.
在電沉積製程期間,穿過穿孔金屬底板的電流可例如維持在大約5-20A/dm 2。其他參數,例如pH以及溫度可保持在電沉積常用的水平,例如低於6的pH以及高於50℃的溫度。 During the electrodeposition process, the current through the through-hole metal substrate may be maintained at, for example, about 5-20 A/dm 2 . Other parameters, such as pH and temperature, may be maintained at levels commonly used in electrodeposition, such as a pH below 6 and a temperature above 50° C.
如果用作為起始材料的穿孔金屬底板係由鎳或鎳合金所製成,則可獲得好的結果。也可使用其他導電材料,例如鋼、銅或黃銅。Good results are obtained if the perforated metal base used as starting material is made of nickel or a nickel alloy. Other conductive materials such as steel, copper or brass can also be used.
用作為所揭露的製程的起始材料的穿孔金屬底板可例如為板狀或為旋轉筒(rotating drum),例如能將電沉積製程配置為連續的卷對卷(roll-to-roll)製程。穿孔金屬底板可例如由電沉積所製成。The perforated metal substrate used as a starting material for the disclosed process may be, for example, in the form of a plate or a rotating drum, such that the electro-deposition process can be configured as a continuous roll-to-roll process. The perforated metal substrate may be produced, for example, by electro-deposition.
所生產的多孔金屬板材料可為扁平的、平面板(plane plate)或片(sheet)。替換地,它可以形成為圓柱或具有任何其他合適的構造。多孔金屬板材料可具有任何期望的厚度。如果將它用作為電極,它可例如具有厚達5mm的厚度(包含針狀突起的高度),例如至少大約0,01mm,例如0,8-1,3mm,例如厚達1mm。The porous metal sheet material produced can be flat, plane plate or sheet. Alternatively, it can be formed as a cylinder or have any other suitable configuration. The porous metal sheet material can have any desired thickness. If it is used as an electrode, it can, for example, have a thickness of up to 5 mm (including the height of the needle-like protrusions), such as at least about 0.01 mm, such as 0.8-1.3 mm, such as up to 1 mm.
針狀突起可自一側或自兩側延伸。為在穿孔金屬底板的兩側獲得突起,可在製程期間反轉電解質的流向。The needle-like protrusions can extend from one side or from both sides. To obtain protrusions on both sides of the perforated metal substrate, the flow direction of the electrolyte can be reversed during the process.
如果需要的話,針狀突起可全部具有基本上相同的長度或可為不同的長度。針狀突起可例如具有長達1000μm的長度。針狀突起可例如具有120-180μm的最大直徑。相鄰的針狀突起之間的核心至核心距離(core-to-core)可例如為大約150-300μm。If desired, the needle-like protrusions may all have substantially the same length or may be of different lengths. The needle-like protrusions may, for example, have a length of up to 1000 μm. The needle-like protrusions may, for example, have a maximum diameter of 120-180 μm. The core-to-core distance between adjacent needle-like protrusions may, for example, be about 150-300 μm.
所得多孔金屬板的有效表面積可例如為穿孔金屬底板的總表面積(寬度乘以高度)的至少4倍,例如至少6倍。可選地,可進一步增加多孔金屬板的比表面積,例如透過表面積增加塗層(surface area enhancing coating)。這樣的表面積增加塗層的示例,特別是用於鹼性電解(alkaline electrolysis),揭露於WO 2010/063695以及EP 3 159 433 A1中。在Kraglund, M. R., & Christensen, E. (2017)的論文〈使用非貴金屬催化劑的鹼性膜水電解〉(丹麥科技大學能源轉換與儲存系(Department of Energy Conversion and Storage, Technical University of Denmark))中,揭露了具有用於增加比表面積的雷尼鎳(Raney nickel)塗層的電極。The resulting effective surface area of the porous metal plate may for example be at least 4 times, for example at least 6 times, the total surface area (width times height) of the perforated metal base plate. Optionally, the specific surface area of the porous metal plate may be further increased, for example by a surface area enhancing coating. Examples of such surface area enhancing coatings, in particular for alkaline electrolysis, are disclosed in WO 2010/063695 and EP 3 159 433 A1. In the paper "Alkaline membrane water electrolysis using non-precious metal catalysts" by Kraglund, M. R., & Christensen, E. (2017) (Department of Energy Conversion and Storage, Technical University of Denmark), electrodes with a Raney nickel coating for increasing the specific surface area are disclosed.
多孔金屬板材料可例如用作為篩子、過濾器或篩網、或作為催化劑、作為紋理滾筒(textured roller)、或作為流通式板電極(flow-through plate electrode),例如電解電池(electrolysis cell)或燃料電池之中的陽極或陰極。這樣的電極在用於水的電解的電池中特別有用,更尤其是作為鹼性電解中的陰極。The porous metal sheet material can be used, for example, as a screen, filter or mesh, or as a catalyst, as a textured roller, or as a flow-through plate electrode, such as an anode or cathode in an electrolysis cell or a fuel cell. Such electrodes are particularly useful in cells for the electrolysis of water, more particularly as cathodes in alkaline electrolysis.
可用在電解電池之中的電極,包括: -電解質儲存器(reservoir); -膜或分隔器(separator),將電解質儲存器分隔成氧氣生產部以及氫氣生產部; -氣體擴散陽極,於析氧反應(oxygen evolution reaction;OER)部之中的分隔器的第一表面之上; -氣體擴散陰極,於析氫反應(hydrogen evolution reaction;HER)部之中的分隔器的第二表面之上; 其中氣體擴散陰極及/或陽極為根據本揭露的電極。 An electrode that can be used in an electrolytic cell includes: - an electrolyte reservoir; - a membrane or separator that separates the electrolyte reservoir into an oxygen production section and a hydrogen production section; - a gas diffusion anode on a first surface of the separator in an oxygen evolution reaction (OER) section; - a gas diffusion cathode on a second surface of the separator in a hydrogen evolution reaction (HER) section; wherein the gas diffusion cathode and/or anode is an electrode according to the present disclosure.
當氣體擴散陰極的針狀突起指向分隔器時,獲得非常好的結果。這導致在更低的電壓下獲得更高的電流密度。在零間隙配置下,針狀突起的尖端可例如抵接分隔器。Very good results are obtained when the needle-like protrusions of the gas diffusion cathode are pointed towards the separator. This leads to higher current density at lower voltage. In the zero-gap configuration, the tip of the needle-like protrusion can, for example, abut the separator.
電極可例如由非貴金屬或其合金所製成。在析氫反應(HER)中顯現出高催化活性的合金包含低-d-電子金屬(hypo-d-electronic metal),例如鎳或鐵,與高-d-電子元素(hyper-d-electronic element),例如鉬、鎢、鈦、鈮或銠的合金。使用鎳實現了非常好的結果。在非貴金屬中,鎳是在強鹼溶液中最穩定的金屬之一且也是用於形成氫氣與氧氣的良好催化劑。也可使用鎳合金。舉例來說,發現鐵鎳合金,例如包括有高達大約10%的鐵,特別合適作為陽極。發現包括有釩、鉬及/或錳的鎳合金特別合適用作為陰極。The electrode can be made of, for example, a non-noble metal or an alloy thereof. Alloys showing high catalytic activity in the hydrogen evolution reaction (HER) include low-d-electron metals (hypo-d-electronic metals), such as nickel or iron, and high-d-electron elements (hyper-d-electronic elements), such as alloys of molybdenum, tungsten, titanium, niobia or rhodium. Very good results have been achieved with nickel. Among the non-noble metals, nickel is one of the most stable metals in strong alkaline solutions and is also a good catalyst for the formation of hydrogen and oxygen. Nickel alloys can also be used. For example, it has been found that iron-nickel alloys, for example including up to about 10% iron, are particularly suitable as anodes. Nickel alloys comprising vanadium, molybdenum and/or manganese have been found to be particularly suitable for use as cathodes.
於下將參照透過示例顯現出多個實施例的圖式以更多的細節與益處來進一步解釋上述的態樣。The above aspects will be further explained below with more details and benefits with reference to the accompanying drawings which illustrate various embodiments by way of example.
實施例Embodiment 11
如第1A圖所示,提供了具有孔隙2的圖案以及橋3的穿孔金屬底板1。穿孔金屬底板係由電沉積鎳所製成的。As shown in FIG. 1A , a through-hole metal substrate 1 having a pattern of holes 2 and bridges 3 is provided. The through-hole metal substrate is made of electro-deposited nickel.
孔隙2為具有圓形邊緣的狹縫,具有0,44mm的長度以及0,22mm的寬度。The aperture 2 is a slit with rounded edges, having a length of 0.44 mm and a width of 0.22 mm.
卵形狹縫的外端之間的橋3具有不同寬度(varying width)。沿中心軸L1將孔隙2配置成線形。到最近孔隙2最大距離的位置P在較寬的節點處偏離中央線L1。每條線的孔隙2與相鄰線的孔隙2交錯。材料橋3包含三組平行橋列R1、R2、R3,這些列未被孔隙中斷。The bridges 3 between the outer ends of the oval slits have varying widths. The pores 2 are arranged in a line along the central axis L1. The position P of the maximum distance to the nearest pore 2 is offset from the central line L1 at the wider node. The pores 2 of each line are staggered with the pores 2 of the adjacent line. The material bridges 3 include three sets of parallel bridge rows R1, R2, R3, which are not interrupted by pores.
使用伍德鎳衝擊鍍浴(Wood’s nickel strike bath)活化並沖洗穿孔金屬基板1。然後將穿孔金屬底板放置在胺基磺酸鎳溶液的電解質浴之中作為流通式陰極,胺基磺酸鎳溶液包括有大於250mg/l的1-(3-磺丙基)-吡啶鎓甜菜鹼作為還原抑制劑。沉積在13A/dm 2/17Ah/dm 2下進行。維持電解質流以7cm/s的平均流速穿過穿孔金屬板。pH低於5。溫度高於50℃。 The perforated metal substrate 1 is activated and rinsed using a Wood's nickel strike bath. The perforated metal substrate is then placed in an electrolyte bath of a nickel sulfamide solution as a flow-through cathode, the nickel sulfamide solution including more than 250 mg/l of 1-(3-sulfopropyl)-pyridinium betaine as a reduction inhibitor. The deposition is carried out at 13A/ dm2 /17Ah/ dm2 . The electrolyte flow is maintained through the perforated metal plate at an average flow rate of 7cm/s. The pH is less than 5. The temperature is greater than 50°C.
所得的紋理(texture)顯示於第1B圖。突起4主要生長於位置P並向後彎曲至相應的孔隙的外端以形成唇形(lip-shaped)邊緣。The resulting texture is shown in Fig. 1B. The protrusions 4 mainly grow at positions P and bend back to the outer ends of the corresponding pores to form lip-shaped edges.
實施例Embodiment 22
如第2A圖所示,提供了具有孔隙2A的圖案以及橋3A的穿孔金屬底板1A。孔隙2A與第1A圖中的孔隙2相當類似,除了直的縱向側稍長之外。縱向側之間的最短寬度Ww與外端之間的最短寬度Wn之間的比率R bridge為R bridge= 1.1。 As shown in FIG. 2A , a perforated metal base plate 1A having a pattern of apertures 2A and bridges 3A is provided. Apertures 2A are quite similar to apertures 2 in FIG. 1A , except that the straight longitudinal sides are slightly longer. The ratio R bridge between the shortest width Ww between the longitudinal sides and the shortest width Wn between the outer ends is R bridge = 1.1.
穿孔金屬底板1A係由電沉積鎳所製成的。The through-hole metal substrate 1A is made of electro-deposited nickel.
使用伍德鎳衝擊鍍浴活化並沖洗穿孔金屬基板1A。然後將穿孔金屬底板1A放置在胺基磺酸鎳溶液的電解質浴之中作為流通式陰極,胺基磺酸鎳溶液包括有大於250mg/l的1-(3-磺丙基)-吡啶鎓甜菜鹼作為還原抑制劑。沉積在13A/dm 2/17Ah/dm 2下進行。維持電解質流以7cm/s的平均流速穿過穿孔金屬板。pH低於5。溫度高於50℃。 The perforated metal substrate 1A is activated and rinsed using a Wood nickel impact bath. The perforated metal substrate 1A is then placed in an electrolyte bath of a nickel sulfamide solution as a flow-through cathode, the nickel sulfamide solution including more than 250 mg/l of 1-(3-sulfopropyl)-pyridinium betaine as a reduction inhibitor. The deposition is carried out at 13A/ dm2 /17Ah/ dm2 . The electrolyte flow is maintained at an average flow rate of 7cm/s through the perforated metal plate. The pH is less than 5. The temperature is higher than 50°C.
所得的紋理顯示於第2B圖。突起4A主要生長於位置P之上。在圓形端處的橋具有兩個這樣的突起,由於短距離,其在底部融合。這導致了孿生峰(twin peak)突起。The resulting texture is shown in FIG. 2B . The protrusion 4A grows mainly above position P. The bridge at the rounded end has two such protrusions, which merge at the bottom due to the short distance. This results in twin peak protrusions.
實施例Embodiment 33
如第3A圖所示,提供了具有孔隙2B的圖案以及橋3B的穿孔金屬底板1B。孔隙2B為鑽石形且具有0,31mm的長度以及0,23mm的寬度。材料橋3包含三組橋3的平行列R1b、R2b、R3b,這些列未被孔隙2B中斷。As shown in FIG. 3A , a perforated metal base plate 1B having a pattern of apertures 2B and bridges 3B is provided. The apertures 2B are diamond-shaped and have a length of 0.31 mm and a width of 0.23 mm. The material bridges 3 comprise three parallel rows R1b, R2b, R3b of bridges 3 which are not interrupted by the apertures 2B.
在鑽石形孔隙2B的外點(outer point)處的橋3B具有0,11mm的寬度。在孔隙的側向側之間的橋3B具有0,18mm的寬度。The bridges 3B at the outer points of the diamond-shaped aperture 2B have a width of 0,11 mm. The bridges 3B between the lateral sides of the aperture have a width of 0,18 mm.
因此,相鄰孔隙的最寬的橋的寬度Ww與最窄的橋的寬度的比率R bridge為R bridge=1,7。沿中心軸L2將孔隙2B配置成線形。每條線的孔隙2B交錯配置,偏離相鄰線的孔隙2B。 Therefore, the ratio R bridge of the width Ww of the widest bridge to the width of the narrowest bridge of adjacent pores is R bridge = 1.7. The pores 2B are arranged in a line along the central axis L2. The pores 2B of each line are arranged in a staggered manner, offset from the pores 2B of the adjacent line.
使用伍德鎳衝擊鍍浴活化並沖洗穿孔金屬基板1B。然後將穿孔金屬底板1B放置在胺基磺酸鎳溶液的電解質浴之中作為流通式陰極,胺基磺酸鎳溶液包括有大於250mg/l的1-(3-磺丙基)-吡啶鎓甜菜鹼作為還原抑制劑。沉積在13A/dm 2/17Ah/dm 2下進行。維持電解質流以4,3cm/s的平均流速穿過穿孔金屬板。 The perforated metal substrate 1B was activated and rinsed using a Wood nickel impact bath. The perforated metal substrate 1B was then placed in an electrolyte bath of a nickel sulfamide solution as a flow-through cathode, the nickel sulfamide solution comprising more than 250 mg/l of 1-(3-sulfopropyl)-pyridinium betaine as a reduction inhibitor. The deposition was carried out at 13 A/dm 2 /17 Ah/dm 2. The electrolyte flow was maintained through the perforated metal plate at an average flow rate of 4,3 cm/s.
所得的紋理顯示於第3B圖。突起4B主要生長於三個相鄰孔隙之間的節點並在底部融合,特別是在較寬的橋上。The resulting texture is shown in Figure 3B. Protrusions 4B grow primarily at the nodes between three adjacent pores and fuse at the bottom, especially in the wider bridges.
實施例Embodiment 44
如第4A圖所示,提供了具有孔隙2C的圖案以及橋3C的穿孔金屬底板1C。孔隙2C為鑽石形且具有0,21mm的長度以及0,11mm的寬度。材料橋3C包含三組橋3C平行列R1c、R2c、R3c,這些列未被孔隙2C中斷。As shown in FIG. 4A , a perforated metal base plate 1C having a pattern of pores 2C and bridges 3C is provided. The pores 2C are diamond-shaped and have a length of 0.21 mm and a width of 0.11 mm. The material bridges 3C comprise three parallel rows of bridges 3C R1c, R2c, R3c, which are not interrupted by the pores 2C.
在鑽石形孔隙的外點處的橋3C具有0,11mm的寬度,其等於孔隙的側向側之間的橋3C的寬度Ww,所以比率R bridge=1。沿中心軸L3將孔隙2C配置成線形。每條線的孔隙2C偏離相鄰線的孔隙。 The bridges 3C at the outer points of the diamond-shaped apertures have a width of 0,11 mm, which is equal to the width Ww of the bridges 3C between the lateral sides of the aperture, so the ratio Rbridge = 1. The apertures 2C are arranged in a line along the central axis L3. The apertures 2C of each line are offset from the apertures of the adjacent line.
使用伍德鎳衝擊鍍浴活化並沖洗穿孔金屬基板1C。然後將穿孔金屬底板1C放置在胺基磺酸鎳溶液的電解質浴之中作為流通式陰極,胺基磺酸鎳溶液包括有大於250mg/l的1-(3-磺丙基)-吡啶鎓甜菜鹼作為還原抑制劑。沉積在13A/dm 2/17Ah/dm 2下進行。維持電解質流以4,7cm/s的平均流速穿過穿孔金屬板1C。 The perforated metal substrate 1C is activated and rinsed using a Wood nickel impact bath. The perforated metal substrate 1C is then placed in an electrolyte bath of a nickel sulfamide solution as a flow-through cathode, the nickel sulfamide solution comprising more than 250 mg/l of 1-(3-sulfopropyl)-pyridinium betaine as a reduction inhibitor. The deposition is carried out at 13 A/dm 2 /17 Ah/dm 2. The electrolyte flow is maintained through the perforated metal plate 1C at an average flow rate of 4,7 cm/s.
所得的紋理顯示於第4B圖。突起4C主要生長於三個相鄰孔隙之間的節點之上。The resulting texture is shown in Figure 4B. Protrusions 4C mainly grow on the nodes between three adjacent pores.
實施例Embodiment 55
如第5A圖所示,提供了具有孔隙2D的圖案以及橋3D的穿孔金屬底板1D。孔隙2D為狹縫狀且具有0,44mm的長度以及0,03mm的寬度。As shown in Fig. 5A, a perforated metal base plate 1D having a pattern of holes 2D and bridges 3D is provided. The holes 2D are slit-shaped and have a length of 0.44 mm and a width of 0.03 mm.
在孔隙2D的外點處的橋3D具有0,19mm的寬度。在孔隙2D的側向側之間的橋3D具有0,13mm的寬度。The bridges 3D at the outer points of the aperture 2D have a width of 0,19 mm. The bridges 3D between the lateral sides of the aperture 2D have a width of 0,13 mm.
因此,相鄰孔隙2D的最寬的橋的寬度Ww與最窄的橋的寬度的比率R bridge為R bridge=1,5。沿中心軸L4將孔隙2D配置成線形。每條線的孔隙2D交錯配置,偏離相鄰線的孔隙2D。 Therefore, the ratio R bridge of the width Ww of the widest bridge to the width of the narrowest bridge of adjacent pores 2D is R bridge =1.5. The pores 2D are arranged in a line along the central axis L4. The pores 2D of each line are arranged in a staggered manner, offset from the pores 2D of the adjacent line.
穿孔金屬底板1D係由電沉積鎳所製成的。The through-hole metal substrate 1D is made of electro-deposited nickel.
使用伍德鎳衝擊鍍浴活化並沖洗穿孔金屬基板1D。然後將穿孔金屬底板1D放置在胺基磺酸鎳溶液的電解質浴之中作為流通式陰極,胺基磺酸鎳溶液包括有大於250mg/l的1-(3-磺丙基)-吡啶鎓甜菜鹼作為還原抑制劑。沉積在13A/dm 2/17Ah/dm 2下進行。維持電解質流以10cm/s的平均流速穿過穿孔金屬板1D。 The perforated metal substrate 1D was activated and rinsed using a Wood's nickel impact bath. The perforated metal substrate 1D was then placed in an electrolyte bath of a nickel sulfamide solution as a flow-through cathode, the nickel sulfamide solution including more than 250 mg/l of 1-(3-sulfopropyl)-pyridinium betaine as a reduction inhibitor. The deposition was carried out at 13A/ dm2 /17Ah/ dm2 . The electrolyte flow was maintained at an average flow rate of 10cm/s through the perforated metal plate 1D.
所得的紋理顯示於第5B圖。突起4D主要以非常規則的圖案生長於孔隙2D的外端之間的較寬的橋之上。The resulting texture is shown in Figure 5B. The protrusions 4D grow primarily on the wider bridges between the outer ends of the pores 2D in a very regular pattern.
實施例Embodiment 66
如第6A圖所示,提供了具有孔隙2E的圖案以及橋3E的穿孔金屬底板1E。孔隙2E為具有0,07mm的等長三邊的三角形。As shown in Fig. 6A, a perforated metal base plate 1E is provided with a pattern of holes 2E and bridges 3E. The holes 2E are triangles with three equal sides of 0.07 mm.
每個三角形孔隙2E皆被相同尺寸但指向相反方向的四個三角形孔隙2E所環繞,導致橋3E的不同寬度。材料橋3E包含三組橋3E平行列R1e、R2e、R3e,這些列未被孔隙2E中斷。Each triangular pore 2E is surrounded by four triangular pores 2E of the same size but pointing in opposite directions, resulting in different widths of the bridge 3E. The material bridge 3E includes three parallel rows of bridges 3E R1e, R2e, and R3e, which are not interrupted by pores 2E.
穿孔金屬底板1E係由電沉積鎳所製成的。The perforated metal substrate 1E is made of electrodeposited nickel.
使用伍德鎳衝擊鍍浴活化並沖洗穿孔金屬基板1E。然後將穿孔金屬底板1E放置在胺基磺酸鎳溶液的電解質浴之中作為流通式陰極,胺基磺酸鎳溶液包括有大於250mg/l的1-(3-磺丙基)-吡啶鎓甜菜鹼作為還原抑制劑。沉積在13A/dm 2/17Ah/dm 2下進行。維持電解質流以17cm/s的平均流速穿過穿孔金屬板1E。 The perforated metal substrate 1E was activated and rinsed using a Wood nickel impact bath. The perforated metal substrate 1E was then placed in an electrolyte bath of a nickel sulfamide solution as a flow-through cathode, the nickel sulfamide solution including more than 250 mg/l of 1-(3-sulfopropyl)-pyridinium betaine as a reduction inhibitor. The deposition was carried out at 13A/ dm2 /17Ah/ dm2 . The electrolyte flow was maintained at an average flow rate of 17cm/s through the perforated metal plate 1E.
所得的紋理顯示於第6B圖。突起4E主要生長於三角形孔隙2E的尖端之間。The resulting texture is shown in Fig. 6B. The protrusions 4E mainly grow between the tips of the triangular pores 2E.
實施例Embodiment 77
如第7A圖所示,提供了具有孔隙2F的圖案以及橋3F的穿孔金屬底板1F。孔隙2F為具有0,06mm的直徑的圓形。As shown in Fig. 7A, a perforated metal base plate 1F is provided with a pattern of holes 2F and bridges 3F. The holes 2F are circular with a diameter of 0.06 mm.
相鄰孔隙之間的最短距離為0,10mm。The shortest distance between adjacent pores is 0,10 mm.
每個圓形孔隙2F皆被相同尺寸的六個圓形孔隙2F等距地環繞,導致橋3F的不同寬度。材料橋3F包含三組橋3F平行列R1f、R2f、R3f,這些列未被孔隙2E中斷。因此,三列橋3F在每個節點處彼此交叉。孔隙2F的圖案以及橋3F具有至少6階的旋轉對稱性。Each circular pore 2F is surrounded by six circular pores 2F of the same size at equal distances, resulting in different widths of bridges 3F. The material bridge 3F includes three parallel rows of bridges 3F R1f, R2f, R3f, which are not interrupted by pores 2E. Therefore, the three rows of bridges 3F cross each other at each node. The pattern of pores 2F and bridges 3F have rotational symmetry of at least order 6.
穿孔金屬底板1F係由電沉積鎳所製成的。The perforated metal substrate 1F is made of electrodeposited nickel.
使用伍德鎳衝擊鍍浴活化並沖洗穿孔金屬基板1F。然後將穿孔金屬底板1F放置在胺基磺酸鎳溶液的電解質浴之中作為流通式陰極,胺基磺酸鎳溶液包括有大於250mg/l的1-(3-磺丙基)-吡啶鎓甜菜鹼作為還原抑制劑。沉積在13A/dm 2/17Ah/dm 2下進行。維持電解質流以10,6cm/s的平均流速穿過穿孔金屬板1F。 The perforated metal substrate 1F is activated and rinsed using a Wood nickel impact bath. The perforated metal substrate 1F is then placed in an electrolyte bath of a nickel sulfamide solution as a flow-through cathode, the nickel sulfamide solution comprising more than 250 mg/l of 1-(3-sulfopropyl)-pyridinium betaine as a reduction inhibitor. The deposition is carried out at 13A/ dm2 /17Ah/ dm2 . The electrolyte flow is maintained through the perforated metal plate 1F at an average flow rate of 10,6cm/s.
所得的紋理顯示於第7B圖。突起4F主要生長於三個相鄰的圓形孔隙之間的節點之上。The resulting texture is shown in Figure 7B. Protrusions 4F mainly grow on the nodes between three adjacent circular pores.
實施例Embodiment 88
如第8A圖所示,提供了具有孔隙2G的圖案以及橋3G的穿孔金屬底板1G。孔隙2G為星形,具有最大寬度0,14mm。As shown in Fig. 8A, a perforated metal base plate 1G is provided with a pattern of holes 2G and bridges 3G. The holes 2G are star-shaped with a maximum width of 0.14 mm.
每個星形孔隙2G皆被相同形狀以及尺寸的六個孔隙2G所環繞,導致橋3G的不同寬度。材料橋3G包含三組橋3G的平行列R1g、R2g、R3g,這些列未被孔隙2G中斷。Each star-shaped pore 2G is surrounded by six pores 2G of the same shape and size, resulting in different widths of the bridges 3G. The material bridge 3G comprises three parallel rows R1g, R2g, R3g of bridges 3G which are not interrupted by pores 2G.
穿孔金屬底板1G係由電沉積鎳所製成的。The through-hole metal substrate 1G is made of electro-deposited nickel.
使用伍德鎳衝擊鍍浴活化並沖洗穿孔金屬基板1G。然後將穿孔金屬底板1G放置在胺基磺酸鎳溶液的電解質浴之中作為流通式陰極,胺基磺酸鎳溶液包括有大於250mg/l的1-(3-磺丙基)-吡啶鎓甜菜鹼作為還原抑制劑。沉積在13A/dm 2/17Ah/dm 2下進行。維持電解質流以9,3cm/s的平均流速穿過穿孔金屬板1G。 The perforated metal substrate 1G was activated and rinsed using a Wood nickel impact bath. The perforated metal substrate 1G was then placed in an electrolyte bath of a nickel sulfamide solution as a flow-through cathode, the nickel sulfamide solution comprising more than 250 mg/l of 1-(3-sulfopropyl)-pyridinium betaine as a reduction inhibitor. The deposition was carried out at 13A/ dm2 /17Ah/ dm2 . The electrolyte flow was maintained through the perforated metal plate 1G at an average flow rate of 9,3cm/s.
所得的紋理顯示於第8B圖。突起4G以不規則的圖案生長。The resulting texture is shown in Figure 8B. Protrusions 4G grow in an irregular pattern.
實施例Embodiment 99
如第8A圖所示,提供了具有孔隙2H的圖案以及橋3H的穿孔金屬底板1H。孔隙2H為方形(square),具有最大寬度0,14mm。As shown in Fig. 8A, a perforated metal base plate 1H having a pattern of holes 2H and bridges 3H is provided. The holes 2H are square with a maximum width of 0.14 mm.
每個方形孔隙2H皆被相同形狀以及尺寸的八個孔隙2H所環繞。材料橋3H包含兩組橋3H的平行列R1h、R2h,這些列未被孔隙2H中斷。第一組的列的橋3H與第二組的列的橋3H成直角,導致了節點5H具有相鄰材料橋3H的寬度的1.4倍的寬度。孔隙2H的圖案以及橋3H具有至少4階的旋轉對稱性。Each square pore 2H is surrounded by eight pores 2H of the same shape and size. The material bridges 3H comprise two parallel rows R1h, R2h of bridges 3H, which are not interrupted by pores 2H. The bridges 3H of the first row are at right angles to the bridges 3H of the second row, resulting in a node 5H having a width 1.4 times that of the adjacent material bridges 3H. The pattern of pores 2H and bridges 3H has a rotational symmetry of at least 4th order.
穿孔金屬底板1H係由電沉積鎳所製成的。The perforated metal base plate 1H is made of electro-deposited nickel.
使用伍德鎳衝擊鍍浴活化並沖洗穿孔金屬基板1H。然後將穿孔金屬底板1H放置在胺基磺酸鎳溶液的電解質浴之中作為流通式陰極,胺基磺酸鎳溶液包括有大於250mg/l的1-(3-磺丙基)-吡啶鎓甜菜鹼作為還原抑制劑。沉積發生在13A/dm 2/17Ah/dm 2。維持電解質流以9,3cm/s的平均流速穿過穿孔金屬板。 The perforated metal substrate 1H was activated and rinsed using a Wood's nickel impact bath. The perforated metal substrate 1H was then placed in an electrolyte bath of a nickel sulfamide solution as a flow-through cathode, the nickel sulfamide solution including more than 250 mg/l of 1-(3-sulfopropyl)-pyridinium betaine as a reduction inhibitor. Deposition took place at 13A/dm 2 /17Ah/dm 2 . The electrolyte flow was maintained through the perforated metal plate at an average flow rate of 9,3 cm/s.
所得的紋理顯示於第9B圖。突起4H以非常規則的圖案生長。The resulting texture is shown in Figure 9B. The protrusions 4H grow in a very regular pattern.
第10圖顯示了用於水的鹼性電解以生產氧氣以及氫氣的電解電池21。電解電池21包括填充有鹼性電解液的電解質儲存器22。膜或分隔器23將電解質儲存器22分隔成析氧反應(OER)部24以及析氫反應(HER)部25。氣體擴散陽極26架設至OER部24之中的分隔器23的第一表面。氣體擴散陰極27架設至HER部25之中的分隔器23的相反表面。FIG. 10 shows an electrolytic cell 21 for alkaline electrolysis of water to produce oxygen and hydrogen. The electrolytic cell 21 includes an electrolyte reservoir 22 filled with an alkaline electrolyte. A membrane or separator 23 separates the electrolyte reservoir 22 into an oxygen evolution reaction (OER) section 24 and a hydrogen evolution reaction (HER) section 25. A gas diffusion anode 26 is mounted to a first surface of the separator 23 in the OER section 24. A gas diffusion cathode 27 is mounted to the opposite surface of the separator 23 in the HER section 25.
氣體擴散陰極27為如第1B圖或第2B圖所示的多孔金屬板,且具有針狀突起29。針狀突起29向分隔器23的方向延伸。在第3圖的零間隙配置中,針狀突起29抵接分隔器23。氣體擴散陽極26可例如為常規的網狀(mesh)電極。The gas diffusion cathode 27 is a porous metal plate as shown in FIG. 1B or FIG. 2B and has needle-like protrusions 29. The needle-like protrusions 29 extend in the direction of the separator 23. In the zero-gap configuration of FIG. 3, the needle-like protrusions 29 abut the separator 23. The gas diffusion anode 26 can be, for example, a conventional mesh electrode.
電解電池21由雙極板(bipolar plate)28所接壤,雙極板28從電池堆的其他電池(未顯示)傳導電流或將電流傳導至電池堆的其他電池。The electrolytic cells 21 are bordered by bipolar plates 28 which conduct current from or to other cells in the stack (not shown).
1、1A、1B、1C、1D、1E、1F、1G:穿孔金屬底板 2、2A、2B、2C、2D、2E、2F、2G:孔隙 3、3A、3B、3C、3D、3E、3F、3G:橋 4、4A、4B、4C、4D、4E、4F、4G:突起 5H:節點 21:電解電池 22:電解質儲存器 23:分隔器 24:OER部 25:HER部 26:氣體擴散陽極 27:氣體擴散陰極 28:雙極板 29:針狀突起 L1:中心軸/中央線 L2、L3、L4:中心軸 R1、R1b、R1c、R1e、R1f、R1g、R1h、R2、R2b、R2c、R2c、R2c、R2e、R2f、R2g、R2h、R3、R3b、R3c、R3e、R3f、R3g:列 Rbridge:比率 P:位置 V:平均流速 Ww、Wn:寬度 1, 1A, 1B, 1C, 1D, 1E, 1F, 1G: Perforated metal base plate 2, 2A, 2B, 2C, 2D, 2E, 2F, 2G: Pores 3, 3A, 3B, 3C, 3D, 3E, 3F, 3G: Bridges 4, 4A, 4B, 4C, 4D, 4E, 4F, 4G: Protrusions 5H: Node 21: Electrolytic cell 22: Electrolyte storage 23: Separator 24: OER section 25: HER section 26: Gas diffusion anode 27: Gas diffusion cathode 28: Bipolar plate 29: Needle protrusions L1: Center axis/center line L2, L3, L4: Center axis R1, R1b, R1c, R1e, R1f, R1g, R1h, R2, R2b, R2c, R2c, R2e, R2f, R2g, R2h, R3, R3b, R3c, R3e, R3f, R3g: row Rbridge: ratio P: position V: average flow rate Ww, Wn: width
第1A圖:以上視圖顯示了用於本發明的製程的穿孔基板的例示性實施例; 第1B圖:顯示了使用第1A圖的基板所生產的多孔金屬板的細節照片; 第2A圖:以上視圖顯示了穿孔基板的第二例示性實施例。 第2B圖:顯示了使用第2A圖的基板所生產的多孔金屬板的細節照片; 第3A圖:以上視圖顯示了穿孔基板的第三例示性實施例; 第3B圖:顯示了使用第3A圖的基板所生產的多孔金屬板的細節照片; 第4A圖:以上視圖顯示了穿孔基板的第四例示性實施例; 第4B圖:顯示了使用第4A圖的基板所生產的多孔金屬板的細節照片; 第5A圖:以上視圖顯示了穿孔基板的第五例示性實施例; 第5B圖:顯示了使用第5A圖的基板所生產的多孔金屬板的細節照片; 第6A圖:以上視圖顯示了穿孔基板的第六例示性實施例; 第6B圖:顯示了使用第6A圖的基板所生產的多孔金屬板的細節照片; 第7A圖:以上視圖顯示了穿孔基板的第七例示性實施例; 第7B圖:顯示了使用第7A圖的基板所生產的多孔金屬板的細節照片; 第8A圖:以上視圖顯示了穿孔基板的第八例示性實施例; 第8B圖:顯示了使用第8A圖的基板所生產的多孔金屬板的細節照片; 第9A圖:以上視圖顯示了穿孔基板的第九例示性實施例; 第9B圖:顯示了使用第9A圖的基板所生產的多孔金屬板的細節照片; 第10圖:顯示了具有根據本發明的電極的電解電池。 FIG. 1A: The above view shows an exemplary embodiment of a perforated substrate used in the process of the present invention; FIG. 1B: Shows a detailed photograph of a porous metal plate produced using the substrate of FIG. 1A; FIG. 2A: The above view shows a second exemplary embodiment of the perforated substrate. FIG. 2B: A detailed photograph of a porous metal plate produced using the substrate of FIG. 2A is shown; FIG. 3A: The above view shows the third exemplary embodiment of the perforated substrate; FIG. 3B: A detailed photograph of a porous metal plate produced using the substrate of FIG. 3A is shown; FIG. 4A: The above view shows the fourth exemplary embodiment of the perforated substrate; FIG. 4B: A detailed photograph of a porous metal plate produced using the substrate of FIG. 4A is shown; FIG. 5A: The above view shows the fifth exemplary embodiment of the perforated substrate; FIG. 5B: A detailed photograph of a porous metal plate produced using the substrate of FIG. 5A is shown; FIG. 6A: The above view shows the sixth exemplary embodiment of the perforated substrate; FIG. 6B: A detailed photograph of a porous metal plate produced using the substrate of FIG. 6A is shown; FIG. 7A: The above view shows the seventh exemplary embodiment of the perforated substrate; FIG. 7B: A detailed photograph of a porous metal plate produced using the substrate of FIG. 7A is shown; FIG. 8A: The above view shows the eighth exemplary embodiment of the perforated substrate; FIG. 8B: A detailed photograph of a porous metal plate produced using the substrate of FIG. 8A is shown; FIG. 9A: The above view shows the ninth exemplary embodiment of the perforated substrate; FIG. 9B: A detailed photograph of a porous metal plate produced using the substrate of FIG. 9A is shown; FIG. 10: An electrolytic cell having an electrode according to the present invention is shown.
無without
2:孔隙 2: Porosity
3:橋 3: Bridge
L1:中心軸/中央線 L1: Center axis/center line
R1:列 R1: Column
R2:列 R2: Column
R3:列 R3: Column
P:位置 P: Position
Claims (12)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP22197665 | 2022-09-26 | ||
EP22197665.7 | 2022-09-26 |
Publications (1)
Publication Number | Publication Date |
---|---|
TW202424274A true TW202424274A (en) | 2024-06-16 |
Family
ID=83457210
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW112136543A TW202424274A (en) | 2022-09-26 | 2023-09-25 | Porous metal plate material |
Country Status (2)
Country | Link |
---|---|
TW (1) | TW202424274A (en) |
WO (1) | WO2024068552A1 (en) |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NL8002197A (en) * | 1980-04-15 | 1981-11-16 | Stork Screens Bv | METHOD FOR ELECTROLYTICALLY MANUFACTURING A SIEVE, IN PARTICULAR CYLINDER-SIEVE, AND Sieve |
NL8005427A (en) * | 1980-09-30 | 1982-04-16 | Veco Beheer Bv | METHOD FOR MANUFACTURING SCREEN MATERIAL, SCREENING MATERIAL OBTAINED AND APPARATUS FOR CARRYING OUT THE METHOD |
NL8601786A (en) * | 1986-07-08 | 1988-02-01 | Stork Screens Bv | METHOD FOR FORMING A METAL SCREEN MATERIAL, DEVICE FOR CARRYING OUT THIS METHOD AND FORMED METAL SCREEN MATERIAL |
NL1021095C2 (en) | 2002-07-17 | 2004-01-20 | Stork Veco Bv | Galvanic coating method for making mesh material useful as catalyst, involves pacification of metal skeleton structure before it is grown to desired thickness |
NL1021096C2 (en) | 2002-07-17 | 2004-01-20 | Stork Veco Bv | Galvanic coating method for making mesh material useful as catalyst, by preferential growth of short dams in metal skeleton structure |
IT1392168B1 (en) | 2008-12-02 | 2012-02-22 | Industrie De Nora Spa | ELECTRODE SUITABLE FOR USE AS CATHODE FOR HYDROGEN EVOLUTION |
EP3159433B1 (en) | 2015-10-20 | 2018-07-25 | MTV Metallveredlung GmbH & Co. KG | Electrode for the alkaline electrolysis of water |
-
2023
- 2023-09-25 WO PCT/EP2023/076404 patent/WO2024068552A1/en active Search and Examination
- 2023-09-25 TW TW112136543A patent/TW202424274A/en unknown
Also Published As
Publication number | Publication date |
---|---|
WO2024068552A1 (en) | 2024-04-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI487170B (en) | Cathode catalyst,cathode material and method for making the same and reactor using the same | |
US8142626B2 (en) | Electrolyzer and electrodes | |
JP2739607B2 (en) | Electrode | |
DE60300904T2 (en) | Solid oxide fuel cell in thin-film technology (SOFC) and process for its production | |
JP4439081B2 (en) | Electrolytic copper foil manufacturing method and apparatus used therefor | |
US9636639B2 (en) | Porous metallic membrane | |
AU606806B2 (en) | Method of electrolytic metal coating of a strip-shape metal substrate and apparatus for carrying out the method | |
TW202424274A (en) | Porous metal plate material | |
JP3621784B2 (en) | Liquid-permeable gas diffusion electrode | |
JP2024539383A (en) | Components and methods for electrochemical reduction of gaseous CO2 | |
JP2004522856A (en) | Method for producing electrical conductors, solar collectors, electrochemical cells and use of conductors produced by such a method | |
BR112019013822A2 (en) | electrode for electrolysis, electrolyser, electrode laminate, and, method to regenerate an electrode. | |
Kuleshov et al. | High-performance composite cathodes for alkaline electrolysis of water | |
EP0479840A1 (en) | Electrolytic cell for electrolytic processes in which gas is evolved. | |
US5480515A (en) | Electrolysis cell and method for gas-developing or gas-consuming electrolytic processes | |
CN1070435A (en) | Electrode | |
JPS60159184A (en) | Anode for electrolyzing water | |
US20230257891A1 (en) | Reactor for electrochemical synthesis | |
JP3934176B2 (en) | Electrolyzer for soda electrolysis | |
KR101262600B1 (en) | Fe-ni/cr-cnt metal separator for fuel cell and method of manufacturing the same | |
JP2002206186A (en) | Electrode structure and electrolysis method using this structure | |
JPH0741980A (en) | Electrolytic electrode | |
JP3677120B2 (en) | Liquid-permeable gas diffusion cathode | |
KR101328303B1 (en) | Anode electrode plate for electro-forming, method for preparing the same and method for preparing metal supporting body by using the same | |
JP3167054B2 (en) | Electrolytic cell |