TW202414869A - Bifunctional electrode and preparation method thereof and its application for zinc-air battery - Google Patents
Bifunctional electrode and preparation method thereof and its application for zinc-air battery Download PDFInfo
- Publication number
- TW202414869A TW202414869A TW111135250A TW111135250A TW202414869A TW 202414869 A TW202414869 A TW 202414869A TW 111135250 A TW111135250 A TW 111135250A TW 111135250 A TW111135250 A TW 111135250A TW 202414869 A TW202414869 A TW 202414869A
- Authority
- TW
- Taiwan
- Prior art keywords
- metal element
- cobalt
- doped
- nickel
- precursor
- Prior art date
Links
- 230000001588 bifunctional effect Effects 0.000 title claims abstract description 40
- 238000002360 preparation method Methods 0.000 title claims abstract description 20
- 229910052751 metal Inorganic materials 0.000 claims abstract description 131
- 239000002184 metal Substances 0.000 claims abstract description 124
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims abstract description 96
- 229910017052 cobalt Inorganic materials 0.000 claims abstract description 51
- 239000010941 cobalt Substances 0.000 claims abstract description 51
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims abstract description 51
- 238000000034 method Methods 0.000 claims abstract description 46
- 238000009713 electroplating Methods 0.000 claims abstract description 40
- 230000008569 process Effects 0.000 claims abstract description 37
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 35
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 33
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 33
- 229910000480 nickel oxide Inorganic materials 0.000 claims abstract description 32
- 239000004744 fabric Substances 0.000 claims abstract description 26
- 238000000137 annealing Methods 0.000 claims abstract description 23
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims abstract description 21
- 239000011777 magnesium Substances 0.000 claims abstract description 19
- 239000011572 manganese Substances 0.000 claims abstract description 18
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims abstract description 17
- 229910052749 magnesium Inorganic materials 0.000 claims abstract description 17
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 16
- UBEWDCMIDFGDOO-UHFFFAOYSA-N cobalt(2+);cobalt(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[O-2].[Co+2].[Co+3].[Co+3] UBEWDCMIDFGDOO-UHFFFAOYSA-N 0.000 claims abstract description 15
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 claims abstract description 13
- GNRSAWUEBMWBQH-UHFFFAOYSA-N oxonickel Chemical compound [Ni]=O GNRSAWUEBMWBQH-UHFFFAOYSA-N 0.000 claims abstract description 12
- 239000010949 copper Substances 0.000 claims abstract description 11
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims abstract description 10
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 claims abstract description 10
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims abstract description 10
- 229910052802 copper Inorganic materials 0.000 claims abstract description 10
- 229910052733 gallium Inorganic materials 0.000 claims abstract description 10
- 229910052742 iron Inorganic materials 0.000 claims abstract description 10
- 229910052750 molybdenum Inorganic materials 0.000 claims abstract description 10
- 239000011733 molybdenum Substances 0.000 claims abstract description 10
- 239000002243 precursor Substances 0.000 claims description 76
- 238000006243 chemical reaction Methods 0.000 claims description 39
- 229910052760 oxygen Inorganic materials 0.000 claims description 32
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 29
- 239000001301 oxygen Substances 0.000 claims description 29
- KBJMLQFLOWQJNF-UHFFFAOYSA-N nickel(ii) nitrate Chemical compound [Ni+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O KBJMLQFLOWQJNF-UHFFFAOYSA-N 0.000 claims description 16
- 238000006722 reduction reaction Methods 0.000 claims description 14
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 claims description 13
- 230000003197 catalytic effect Effects 0.000 claims description 11
- 239000011701 zinc Substances 0.000 claims description 11
- UFMZWBIQTDUYBN-UHFFFAOYSA-N cobalt dinitrate Chemical compound [Co+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O UFMZWBIQTDUYBN-UHFFFAOYSA-N 0.000 claims description 10
- 229910052720 vanadium Inorganic materials 0.000 claims description 10
- 229910021380 Manganese Chloride Inorganic materials 0.000 claims description 9
- GLFNIEUTAYBVOC-UHFFFAOYSA-L Manganese chloride Chemical compound Cl[Mn]Cl GLFNIEUTAYBVOC-UHFFFAOYSA-L 0.000 claims description 9
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical group [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 9
- 239000011565 manganese chloride Substances 0.000 claims description 9
- 235000002867 manganese chloride Nutrition 0.000 claims description 9
- 229940099607 manganese chloride Drugs 0.000 claims description 9
- 239000010936 titanium Substances 0.000 claims description 9
- 229910052719 titanium Inorganic materials 0.000 claims description 9
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 claims description 9
- 229910001981 cobalt nitrate Inorganic materials 0.000 claims description 8
- CHPZKNULDCNCBW-UHFFFAOYSA-N gallium nitrate Chemical compound [Ga+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O CHPZKNULDCNCBW-UHFFFAOYSA-N 0.000 claims description 8
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 7
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 claims description 7
- 229910052725 zinc Inorganic materials 0.000 claims description 7
- 229910001629 magnesium chloride Inorganic materials 0.000 claims description 6
- 229910052727 yttrium Inorganic materials 0.000 claims description 6
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 claims description 6
- 238000007747 plating Methods 0.000 claims description 5
- 229910002651 NO3 Inorganic materials 0.000 claims description 4
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 claims description 4
- ORTQZVOHEJQUHG-UHFFFAOYSA-L copper(II) chloride Chemical compound Cl[Cu]Cl ORTQZVOHEJQUHG-UHFFFAOYSA-L 0.000 claims description 4
- 229940044658 gallium nitrate Drugs 0.000 claims description 4
- 229910021550 Vanadium Chloride Inorganic materials 0.000 claims description 3
- 238000004140 cleaning Methods 0.000 claims description 3
- 238000001035 drying Methods 0.000 claims description 3
- 239000007789 gas Substances 0.000 claims description 3
- MVFCKEFYUDZOCX-UHFFFAOYSA-N iron(2+);dinitrate Chemical compound [Fe+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O MVFCKEFYUDZOCX-UHFFFAOYSA-N 0.000 claims description 3
- PDKHNCYLMVRIFV-UHFFFAOYSA-H molybdenum;hexachloride Chemical compound [Cl-].[Cl-].[Cl-].[Cl-].[Cl-].[Cl-].[Mo] PDKHNCYLMVRIFV-UHFFFAOYSA-H 0.000 claims description 3
- RPESBQCJGHJMTK-UHFFFAOYSA-I pentachlorovanadium Chemical compound [Cl-].[Cl-].[Cl-].[Cl-].[Cl-].[V+5] RPESBQCJGHJMTK-UHFFFAOYSA-I 0.000 claims description 3
- 229910001297 Zn alloy Inorganic materials 0.000 claims description 2
- 229910052746 lanthanum Inorganic materials 0.000 abstract description 9
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 abstract 2
- 230000007774 longterm Effects 0.000 description 22
- 229910020599 Co 3 O 4 Inorganic materials 0.000 description 15
- 230000010287 polarization Effects 0.000 description 15
- 230000002441 reversible effect Effects 0.000 description 15
- 239000010408 film Substances 0.000 description 13
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 12
- 238000012360 testing method Methods 0.000 description 11
- 230000008901 benefit Effects 0.000 description 10
- 239000011248 coating agent Substances 0.000 description 9
- 238000000576 coating method Methods 0.000 description 9
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Substances [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 9
- 238000010586 diagram Methods 0.000 description 8
- 239000007772 electrode material Substances 0.000 description 8
- 239000000463 material Substances 0.000 description 8
- 125000004122 cyclic group Chemical group 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 239000003792 electrolyte Substances 0.000 description 5
- 230000001965 increasing effect Effects 0.000 description 5
- 238000005259 measurement Methods 0.000 description 5
- 230000009467 reduction Effects 0.000 description 5
- 229910052715 tantalum Inorganic materials 0.000 description 5
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 5
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 4
- 229910000428 cobalt oxide Inorganic materials 0.000 description 4
- IVMYJDGYRUAWML-UHFFFAOYSA-N cobalt(ii) oxide Chemical compound [Co]=O IVMYJDGYRUAWML-UHFFFAOYSA-N 0.000 description 4
- 238000002050 diffraction method Methods 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 230000002829 reductive effect Effects 0.000 description 4
- WOCIAKWEIIZHES-UHFFFAOYSA-N ruthenium(iv) oxide Chemical compound O=[Ru]=O WOCIAKWEIIZHES-UHFFFAOYSA-N 0.000 description 4
- 238000013112 stability test Methods 0.000 description 4
- 238000001069 Raman spectroscopy Methods 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 239000010411 electrocatalyst Substances 0.000 description 3
- 238000005265 energy consumption Methods 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 229910052738 indium Inorganic materials 0.000 description 3
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 3
- 230000036647 reaction Effects 0.000 description 3
- 229910052702 rhenium Inorganic materials 0.000 description 3
- WUAPFZMCVAUBPE-UHFFFAOYSA-N rhenium atom Chemical compound [Re] WUAPFZMCVAUBPE-UHFFFAOYSA-N 0.000 description 3
- 239000010409 thin film Substances 0.000 description 3
- 238000004832 voltammetry Methods 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 2
- ZOIORXHNWRGPMV-UHFFFAOYSA-N acetic acid;zinc Chemical compound [Zn].CC(O)=O.CC(O)=O ZOIORXHNWRGPMV-UHFFFAOYSA-N 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000006731 degradation reaction Methods 0.000 description 2
- 239000008367 deionised water Substances 0.000 description 2
- 229910021641 deionized water Inorganic materials 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000007599 discharging Methods 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 239000000446 fuel Substances 0.000 description 2
- 229910001416 lithium ion Inorganic materials 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 229910001510 metal chloride Inorganic materials 0.000 description 2
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 2
- 239000002135 nanosheet Substances 0.000 description 2
- 150000002823 nitrates Chemical class 0.000 description 2
- 238000006116 polymerization reaction Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 239000004246 zinc acetate Substances 0.000 description 2
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 1
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- LZZYPRNAOMGNLH-UHFFFAOYSA-M Cetrimonium bromide Chemical compound [Br-].CCCCCCCCCCCCCCCC[N+](C)(C)C LZZYPRNAOMGNLH-UHFFFAOYSA-M 0.000 description 1
- 229910002441 CoNi Inorganic materials 0.000 description 1
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 1
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 1
- 229910021193 La 2 O 3 Inorganic materials 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 229910021536 Zeolite Inorganic materials 0.000 description 1
- AZFUOHYXCLYSQJ-UHFFFAOYSA-N [V+5].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O Chemical compound [V+5].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O AZFUOHYXCLYSQJ-UHFFFAOYSA-N 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 239000002041 carbon nanotube Substances 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 230000003749 cleanliness Effects 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 230000002860 competitive effect Effects 0.000 description 1
- 229920001940 conductive polymer Polymers 0.000 description 1
- 238000002484 cyclic voltammetry Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 238000012983 electrochemical energy storage Methods 0.000 description 1
- 238000002848 electrochemical method Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 235000019253 formic acid Nutrition 0.000 description 1
- 229910021389 graphene Inorganic materials 0.000 description 1
- 231100001261 hazardous Toxicity 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- JBFYUZGYRGXSFL-UHFFFAOYSA-N imidazolide Chemical compound C1=C[N-]C=N1 JBFYUZGYRGXSFL-UHFFFAOYSA-N 0.000 description 1
- 238000001566 impedance spectroscopy Methods 0.000 description 1
- VCJMYUPGQJHHFU-UHFFFAOYSA-N iron(3+);trinitrate Chemical compound [Fe+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O VCJMYUPGQJHHFU-UHFFFAOYSA-N 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- BQBYSLAFGRVJME-UHFFFAOYSA-L molybdenum(2+);dichloride Chemical compound Cl[Mo]Cl BQBYSLAFGRVJME-UHFFFAOYSA-L 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- -1 onium Chemical compound 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 125000000885 organic scaffold group Chemical group 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- BUVBYQUZAIPDHT-UHFFFAOYSA-N thiourea Chemical compound NC(N)=S.NC(N)=S BUVBYQUZAIPDHT-UHFFFAOYSA-N 0.000 description 1
- HQYCOEXWFMFWLR-UHFFFAOYSA-K vanadium(iii) chloride Chemical compound [Cl-].[Cl-].[Cl-].[V+3] HQYCOEXWFMFWLR-UHFFFAOYSA-K 0.000 description 1
- 239000010457 zeolite Substances 0.000 description 1
Landscapes
- Inert Electrodes (AREA)
Abstract
Description
本發明是有關於一種雙功能電極,且特別是有關於一種雙功能電極及其製備方法與在鋅空氣電池的應用。The present invention relates to a bifunctional electrode, and in particular to a bifunctional electrode and a preparation method thereof and an application in a zinc-air battery.
隨著環境和能源問題的日益突出,發展清潔、可再生的電化學儲能技術受到了人們的廣泛關注,主要的能量轉換元件有電池、超級電容、燃料電池三類,其中,鋰離子電池具有高重量能量密度,是目前最常見的電化學能源之一。然而,鋰離子電池仍存在安全性、製作環境要求嚴格、鈷鎳資源金屬的使用、高溫正極製程、有害溶劑使用、以及電池回收的問題等問題,應用範圍受到限制。As environmental and energy issues become increasingly prominent, the development of clean and renewable electrochemical energy storage technology has received widespread attention. The main energy conversion components are batteries, supercapacitors, and fuel cells. Among them, lithium-ion batteries have high gravimetric energy density and are one of the most common electrochemical energy sources. However, lithium-ion batteries still have problems such as safety, strict manufacturing environment requirements, the use of cobalt and nickel resource metals, high-temperature cathode processes, the use of hazardous solvents, and battery recycling issues, which limit their application scope.
金屬-空氣電池是一種以氧化金屬和還原氧氣為驅動的電化學電池,在理論能量密度方面具有很大的優勢,其中包括鋅空氣電池(Zinc-Air Battery,ZAB)(本發明的鋅空氣電池屬可充電的鋅空氣燃料電池)。鋅空氣電池的正極(陰極)如果能同時執行氧氣還原反應(ORR)與析氧反應(OER),則此電極具有氧化與還原雙功能,所得鋅空氣電池則可進行可逆反應,有利長時間穩定操作。Metal-air battery is an electrochemical battery driven by oxidizing metal and reducing oxygen. It has great advantages in theoretical energy density, including zinc-air battery (ZAB) (the zinc-air battery of the present invention is a rechargeable zinc-air fuel cell). If the positive electrode (cathode) of the zinc-air battery can perform oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) at the same time, the electrode has the dual functions of oxidation and reduction, and the resulting zinc-air battery can perform reversible reactions, which is conducive to long-term stable operation.
目前在鋅空氣電池的雙功能電極(即電極材料,具有ORR/ OER的催化活性)的研究上,多數由昂貴的金屬有機支架製作鈷基所得到。如採用昂貴的沸石咪唑酯骨架結構材料(ZIF)與鈷(Co)源(2021, Nano Energy),經長時間12小時(h)聚合與1000 oC/3h所得CoO x/Porous N-carbon(PNC),其電池表現最佳,於10 mA/cm 2電流密度下,比電容值為887 mAh g -1、能量密度為1020 Wh kg -1,經200 h運轉未有劣化,但保有較高的電壓間隙1.25 V(根據其長時間測試圖可知,充放電並不平穩,代表此電極材料的奈米顆粒有鬆脫掉落之問題)。或有研究採用昂貴的CoNi金屬有機支架模板需經長時間聚合(2019, Adv. Mater.),再搭配500 oC/NH 3氛圍裂解而得到雙金屬正極(CoNi-SAC/NC),組成電池其比電容值為750.9 mAh g -1、能量密度為886.1 Wh kg -1,電壓間隙0.82 V且循環充放電於95 h後未有劣化。或有研究經150 oC/6h壓力釜與300 oC/1h退火形成La 2O 3/Co 3O 4/MnO 2–CNTs 混成電極(2016, Appl. Energy),組成電池其比電容值為810 mAh g -1、能量密度為970 Wh kg -1,雖充放電於90h(543循環)後仍穩定,但電壓間隙由0.7 V增至0.8 V,有14.3%增加。或有研究Co 3O 4/MnO 2-CNT也採水熱與退火製程(2019, Nano Energy),組成電池其比電容值為770 mAh g -1、能量密度為> 842 Wh kg -1,充放電於135 h(810循環)後仍穩定,但電壓間隙由0.89 V增至1.25 V,有40%增加。或有研究Co摻雜NiO也採水熱與退火製程製作出所需粉體,再以導電高分子塗於碳纖紙完成空氣陰極 (2019, Appl. Catal. B),於 5 mA/cm 2下,組成電池其比電容值為830 mAh g -1、能量密度為 962 Wh kg -1,雖充放電於110 h (charge 3h/discharge 3h)後仍穩定,但電壓間隙由0.72 V增至0.82 V,增加了13.8%,增加的電壓間隙可能表示電極材料脫落的不良狀況。 At present, the research on bifunctional electrodes (i.e. electrode materials with ORR/OER catalytic activity) for zinc-air batteries is mostly based on expensive metal-organic scaffolds to make cobalt-based materials. For example, using expensive zeolite imidazolate framework material (ZIF) and cobalt (Co) source (2021, Nano Energy), after long-term polymerization for 12 hours (h) and 1000 o C/3h to obtain CoO x /Porous N-carbon (PNC), the battery performance is the best. At a current density of 10 mA/cm 2 , the specific capacitance value is 887 mAh g -1 and the energy density is 1020 Wh kg -1 . After 200 h of operation, there is no degradation, but a relatively high voltage gap of 1.25 V is maintained (according to its long-term test chart, the charging and discharging is not stable, which means that the nanoparticles of this electrode material have the problem of loosening and falling off). Some studies have used expensive CoNi metal organic scaffold templates that require long-term polymerization (2019, Adv. Mater.), and then combined with 500 o C/NH 3 atmosphere decomposition to obtain a bimetallic positive electrode (CoNi-SAC/NC). The assembled battery has a specific capacitance of 750.9 mAh g -1 , an energy density of 886.1 Wh kg -1 , a voltage gap of 0.82 V, and no degradation after 95 h of cyclic charge and discharge. Some studies have formed a La 2 O 3 /Co 3 O 4 /MnO 2 –CNTs hybrid electrode (2016, Appl. Energy) by annealing at 150 o C/6h in a pressure autoclave and 300 o C/1h. The assembled battery has a specific capacitance of 810 mAh g -1 and an energy density of 970 Wh kg -1 . Although it remains stable after 90h (543 cycles) of charge and discharge, the voltage gap increases from 0.7 V to 0.8 V, an increase of 14.3%. Some studies have also used hydrothermal and annealing processes for Co 3 O 4 /MnO 2 -CNT (2019, Nano Energy). The battery has a specific capacitance of 770 mAh g -1 and an energy density of > 842 Wh kg -1 . It remains stable after 135 h (810 cycles) of charge and discharge, but the voltage gap increases from 0.89 V to 1.25 V, a 40% increase. Some studies have also used hydrothermal and annealing processes to produce the required powder for Co-doped NiO, and then coated the carbon fiber paper with a conductive polymer to complete the air cathode (2019, Appl. Catal. B). At 5 mA/cm 2 , the battery has a specific capacitance of 830 mAh g -1 and an energy density of 962 Wh kg -1 . Although it remains stable after charging and discharging for 110 h (charge 3h/discharge 3h), the voltage gap increases from 0.72 V to 0.82 V, an increase of 13.8%. The increased voltage gap may indicate an adverse condition of electrode material detachment.
由上述可知,目前關於鋅空氣電池的雙功能電極材料的研究,多涉及耗時長且複雜的製程,同時配方複雜,但卻難以達成低的電壓間隙(例如小於0.86 V)、長時間穩定的特性(即多次的充放電循環)以及極小的電壓間隙異動等目標。因此,發展新的雙功能電極是目前的主要挑戰。As can be seen from the above, the current research on bifunctional electrode materials for zinc-air batteries involves time-consuming and complex processes, and the formula is complex, but it is difficult to achieve low voltage gap (for example, less than 0.86 V), long-term stable characteristics (i.e., multiple charge and discharge cycles), and extremely small voltage gap fluctuations. Therefore, the development of new bifunctional electrodes is the main challenge at present.
本發明提供一種雙功能電極及其製備方法與在鋅空氣電池的應用,其製程簡易與製程時間短,且所製造的雙功能電極具有優異的氧氣還原(ORR)/氧氣析出(OER)催化能力、低的電壓間隙且保持長時間穩定以及極小的電壓間隙異動之優點。The present invention provides a bifunctional electrode and a preparation method thereof and an application in a zinc-air battery. The preparation process is simple and the preparation time is short. The bifunctional electrode has the advantages of excellent oxygen reduction (ORR)/oxygen evolution (OER) catalytic ability, low voltage gap and long-term stability, and extremely small voltage gap fluctuation.
本發明一實施例提供一種雙功能電極的製備方法,包括以下步驟:提供碳布;將碳布置於電鍍液中;進行電鍍製程,以形成摻雜型氧化物於碳布上;以及進行退火製程,以獲得雙功能電極。摻雜型氧化物包括第一金屬元素摻雜的四氧化三鈷或第二金屬元素摻雜的氧化鎳,且摻雜型氧化物具有氧還原反應與析氧反應的催化活性。第一金屬元素選自鎳、鎵、鐵、鑭、鎂、銅和鉬中的一者。第二金屬元素選自鈷、鑭和錳中的一者。An embodiment of the present invention provides a method for preparing a bifunctional electrode, comprising the following steps: providing carbon cloth; arranging carbon in an electroplating solution; performing an electroplating process to form a doped oxide on the carbon cloth; and performing an annealing process to obtain a bifunctional electrode. The doped oxide includes cobalt tetraoxide doped with a first metal element or nickel oxide doped with a second metal element, and the doped oxide has catalytic activity for oxygen reduction reaction and oxygen evolution reaction. The first metal element is selected from one of nickel, gallium, iron, tantalum, magnesium, copper and molybdenum. The second metal element is selected from one of cobalt, tantalum and manganese.
在本發明的一實施例中,上述的電鍍製程包括:施加-0.8伏特的恆定電壓,持續5分鐘。上述的退火製程包括:以空氣為氣氛氣體,並在350 oC下持溫2小時。 In one embodiment of the present invention, the electroplating process includes: applying a constant voltage of -0.8V for 5 minutes. The annealing process includes: using air as the atmosphere gas and maintaining the temperature at 350 ° C for 2 hours.
在本發明的一實施例中,在上述的電鍍製程之後與退火製程之前,更包括清洗並乾燥摻雜型氧化物。In one embodiment of the present invention, after the electroplating process and before the annealing process, the doped oxide is further cleaned and dried.
在本發明的一實施例中,上述的電鍍液包括含有鈷的前驅物以及含有第一金屬元素的第一金屬前驅物。含鈷前驅物與第一金屬前驅物的莫耳比為1:0.025至1:0.05。In one embodiment of the present invention, the electroplating solution comprises a precursor containing cobalt and a first metal precursor containing a first metal element, and the molar ratio of the cobalt precursor to the first metal precursor is 1:0.025 to 1:0.05.
在本發明的一實施例中,上述的含鈷前驅物包括硝酸鈷。第一金屬前驅物包括選自硝酸鎳、硝酸鎵、硝酸鐵、硝酸鑭、氯化鎂、氯化銅、氯化鉬中的一者。In one embodiment of the present invention, the cobalt-containing precursor comprises cobalt nitrate. The first metal precursor comprises one selected from nickel nitrate, gallium nitrate, iron nitrate, onium nitrate, magnesium chloride, copper chloride, and molybdenum chloride.
在本發明的一實施例中,上述的電鍍液更包括含有第三金屬元素的第三金屬前驅物。第三金屬元素不同於第一金屬元素。第三金屬元素選自鎂、錳、鎳和釩中的一者。第一金屬前驅物以及第三前驅物的莫耳比為1:0.5。In one embodiment of the present invention, the electroplating solution further includes a third metal precursor containing a third metal element. The third metal element is different from the first metal element. The third metal element is selected from one of magnesium, manganese, nickel and vanadium. The molar ratio of the first metal precursor to the third precursor is 1:0.5.
在本發明的一實施例中,上述的第三金屬前驅物選自氯化鎂、氯化錳、硝酸鎳和氯化釩中的一者。In one embodiment of the present invention, the third metal precursor is selected from one of magnesium chloride, manganese chloride, nickel nitrate and vanadium chloride.
在本發明的一實施例中,上述的電鍍液包括含有鎳的前驅物以及含有第二金屬元素的第二金屬前驅物,且含鎳前驅物與第二金屬前驅物的莫耳比為1:0.05至1:0.075。In one embodiment of the present invention, the electroplating solution includes a precursor containing nickel and a second metal precursor containing a second metal element, and the molar ratio of the nickel precursor to the second metal precursor is 1:0.05 to 1:0.075.
在本發明的一實施例中,上述的含鎳前驅物包括硝酸鎳,且第二金屬前驅物選自硝酸鈷、硝酸鑭和氯化錳中的一者。In one embodiment of the present invention, the nickel-containing precursor comprises nickel nitrate, and the second metal precursor is selected from one of cobalt nitrate, nickel nitrate and manganese chloride.
本發明一實施例提供一種雙功能電極,包括摻雜型氧化物。摻雜型氧化物設置於碳布上。摻雜型氧化物包括第一金屬元素摻雜的四氧化三鈷或第二金屬元素摻雜的氧化鎳。第一金屬元素選自鎳、鎵、鐵、鑭、鎂、銅和鉬中的一者,且第二金屬元素選自鈷、鑭和錳中的一者。An embodiment of the present invention provides a bifunctional electrode, including a doped oxide. The doped oxide is disposed on a carbon cloth. The doped oxide includes cobalt tetraoxide doped with a first metal element or nickel oxide doped with a second metal element. The first metal element is selected from one of nickel, gallium, iron, tantalum, magnesium, copper and molybdenum, and the second metal element is selected from one of cobalt, tantalum and manganese.
在本發明的一實施例中,上述的第一金屬元素為鑭,且在第一金屬元素摻雜的四氧化三鈷中,鈷與鑭的莫耳比為1:0.025至1:0.05 。In one embodiment of the present invention, the first metal element is lumen, and in the cobalt tetroxide doped with the first metal element, the molar ratio of cobalt to lumen is 1:0.025 to 1:0.05.
在本發明的一實施例中,上述的鑭摻雜的四氧化三鈷包括第三金屬元素摻雜。第三金屬元素選自鎂、錳、鎳和釩中的一者。In one embodiment of the present invention, the above-mentioned vanadium-doped cobalt tetraoxide includes a third metal element doped therein. The third metal element is selected from one of magnesium, manganese, nickel and vanadium.
在本發明的一實施例中,上述在第三金屬元素摻雜與鑭摻雜的四氧化三鈷中,鑭與第三金屬元素的莫耳比為1:0.5。In one embodiment of the present invention, in the above-mentioned cobalt tetraoxide doped with a third metal element and titanium, the molar ratio of titanium to the third metal element is 1:0.5.
在本發明的一實施例中,上述第二金屬元素為鈷,且在第二金屬元素摻雜的氧化鎳中,鎳與鈷的莫耳比為1:0.05至1:0.075。In one embodiment of the present invention, the second metal element is cobalt, and in the nickel oxide doped with the second metal element, the molar ratio of nickel to cobalt is 1:0.05 to 1:0.075.
本發明一實施例提供一種鋅空氣電池,其中陽極為金屬鋅或鋅合金,且陰極為如上述中任一項所述的雙功能電極。One embodiment of the present invention provides a zinc air battery, wherein the anode is metallic zinc or a zinc alloy, and the cathode is a bifunctional electrode as described in any one of the above items.
基於上述,本發明透過電鍍製程5分鐘加上退火製程2小時的兩階段步驟,以形成包含摻雜型氧化物的雙功能電極,其具有製程時間短、製程簡易、低能耗且製程潔淨等優勢。此外,本發明包含摻雜型(即,摻雜其他金屬元素)氧化物的雙功能電極具有優異的氧氣還原(ORR)與氧氣析出(OER)的催化能力、低電壓間隙且保持長時間穩定的特性,且同時具有極小的電壓間隙異動的特點,適合作為鋅空氣電池的電催化電極材料。Based on the above, the present invention forms a bifunctional electrode comprising a doped oxide through a two-stage process of electroplating for 5 minutes and an annealing process for 2 hours, which has the advantages of short process time, simple process, low energy consumption and clean process. In addition, the bifunctional electrode comprising a doped (i.e., doped with other metal elements) oxide of the present invention has excellent oxygen reduction (ORR) and oxygen evolution (OER) catalytic ability, low voltage gap and long-term stability, and at the same time has the characteristics of extremely small voltage gap fluctuation, and is suitable as an electrocatalytic electrode material for zinc-air batteries.
為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。In order to make the above features and advantages of the present invention more clearly understood, embodiments are given below and described in detail with reference to the accompanying drawings.
參照本實施例之圖式以更全面地闡述本發明。然而,本發明亦可以各種不同的形式體現,而不應限於本文中所述之實施例。圖式中的層與區域的厚度會為了清楚起見而放大。相同或相似之參考號碼表示相同或相似之元件,以下段落將不再一一贅述。The present invention is more fully described with reference to the drawings of the present embodiment. However, the present invention may be embodied in various forms and should not be limited to the embodiments described herein. The thickness of layers and regions in the drawings are exaggerated for clarity. The same or similar reference numbers represent the same or similar elements, and the following paragraphs will not be repeated one by one.
應當理解,當諸如元件被稱為在另一元件「上」或「連接到」另一元件時,其可以直接在另一元件上或與另一元件連接,或者也可存在中間元件。若當元件被稱為「直接在另一元件上」或「直接連接到」另一元件時,則不存在中間元件。如本文所使用的,「連接」可以指物理及/或電性連接,而「電性連接」或「耦合」可為二元件間存在其它元件。It should be understood that when an element is referred to as being "on" or "connected to" another element, it can be directly on or connected to another element, or there can be intervening elements. If an element is referred to as being "directly on" or "directly connected to" another element, there are no intervening elements. As used herein, "connected" can refer to physical and/or electrical connections, and "electrically connected" or "coupled" can refer to the presence of other elements between two elements.
本文使用的「約」、「近似」或「實質上」包括所提到的值和在所屬技術領域中具有通常知識者能夠確定之特定值的可接受的偏差範圍內的平均值,考慮到所討論的測量和與測量相關的誤差的特定數量(即,測量系統的限制)。例如,「約」可以表示在所述值的一個或多個標準偏差內,或±30%、±20%、±10%、±5%內。再者,本文使用的「約」、「近似」或「實質上」可依光學性質、蝕刻性質或其它性質,來選擇較可接受的偏差範圍或標準偏差,而可不用一個標準偏差適用全部性質。As used herein, "about", "approximately" or "substantially" includes the referenced value and the average value within an acceptable deviation range of a specific value that can be determined by a person of ordinary skill in the art, taking into account the measurement in question and the specific amount of error associated with the measurement (i.e., the limitations of the measurement system). For example, "about" can mean within one or more standard deviations of the stated value, or within ±30%, ±20%, ±10%, ±5%. Furthermore, as used herein, "about", "approximately" or "substantially" can select a more acceptable deviation range or standard deviation depending on the optical properties, etching properties or other properties, and can apply to all properties without a single standard deviation.
使用本文中所使用的用語僅為闡述例示性實施例,而非限制本揭露。在此種情形中,除非在上下文中另有解釋,否則單數形式包括多數形式。The terms used herein are used to illustrate exemplary embodiments only, rather than to limit the present disclosure. In this case, unless otherwise explained in the context, the singular form includes the plural form.
圖1為本發明一實施例的雙功能電極的製備方法的流程圖。FIG. 1 is a flow chart of a method for preparing a bifunctional electrode according to an embodiment of the present invention.
請參照圖1,首先執行步驟S100:提供碳布。碳布(carbon cloth,CC)是作為電極支撐材料。由於後續的電鍍製程所沉積薄膜品質可與碳布的親水性與清潔度有密切關係,因此碳布可先經過多段的清洗。在本實施例中,清洗碳布的方法可例如包括但不限於以下步驟:首先,將碳布放進1莫耳濃度(M)的鹽酸(HCl)中,以超音波震盪機震盪並浸泡約12小時。接著,將碳布置於乙醇中,以超音波震盪機震盪並浸泡約10分鐘。接著,將碳布置於去離子水中,以超音波震盪機震盪並浸泡約10分鐘。隨後將碳布放置於烘箱中烘乾以備用,烘乾條件可例如是在60 oC下乾燥約2小時。 Please refer to FIG. 1 , first perform step S100: provide carbon cloth. Carbon cloth (CC) is used as an electrode support material. Since the quality of the film deposited by the subsequent electroplating process may be closely related to the hydrophilicity and cleanliness of the carbon cloth, the carbon cloth may first undergo multiple cleanings. In this embodiment, the method for cleaning the carbon cloth may, for example, include but is not limited to the following steps: First, place the carbon cloth in 1 molar concentration (M) of hydrochloric acid (HCl), shake it with an ultrasonic oscillator and soak it for about 12 hours. Then, place the carbon in ethanol, shake it with an ultrasonic oscillator and soak it for about 10 minutes. Then, place the carbon in deionized water, shake it with an ultrasonic oscillator and soak it for about 10 minutes. The carbon cloth is then placed in an oven to dry for use. The drying conditions may be, for example, drying at 60 ° C. for about 2 hours.
接著,執行步驟S102:將碳布置於電鍍液中。電鍍液的配製方法例如是將含有鈷的前驅物(即本文中的含鈷前驅物)或含有鎳的前驅物(即本文中的含鎳前驅物)與含有不同的二元/三元金屬元素的前驅物溶液(即本文中的第一金屬前驅物、第二金屬前驅物、第三金屬前驅物)混合所得。在本實施例中,含鈷前驅物例如是硝酸鈷(Co(NO 3) 2),含鎳前驅物例如是硝酸鎳(Ni(NO 3) 2),但不以此為限。在一些實施例中,當電鍍液以硝酸鈷(Co(NO 3) 2)作為主要前驅物(主要前驅物意指該成分在電鍍液中具有高占比)時,其他混合的前驅物可包括硝酸鹽類和/或金屬氯化物類。硝酸鹽類例如是但不限於硝酸鎳(Ni(NO 3) 2)、硝酸鎵(Ga(NO 3) 3)、硝酸鐵(Fe(NO 3) 3)、硝酸鑭(La(NO 3) 3)。金屬氯化物類例如是但不限於氯化鎂(MgCl 2)、氯化銅(CuCl 2)、氯化鉬(MoCl 2)、氯化錳(MnCl₂)、氯化釩(VCl 3)。在又一些實施例中,當電鍍液以硝酸鎳作為主要前驅物時,其他混合的前驅物可例如是但不限於硝酸鈷、硝酸鑭或氯化錳。 Then, step S102 is performed: carbon is arranged in the electroplating solution. The preparation method of the electroplating solution is, for example, mixing a precursor containing cobalt (i.e., the cobalt-containing precursor in this article) or a precursor containing nickel (i.e., the nickel-containing precursor in this article) with a precursor solution containing different binary/ternary metal elements (i.e., the first metal precursor, the second metal precursor, and the third metal precursor in this article). In this embodiment, the cobalt-containing precursor is, for example, cobalt nitrate (Co(NO 3 ) 2 ), and the nickel-containing precursor is, for example, nickel nitrate (Ni(NO 3 ) 2 ), but is not limited thereto. In some embodiments, when the electroplating solution uses cobalt nitrate (Co(NO 3 ) 2 ) as the main precursor (main precursor means that the component has a high proportion in the electroplating solution), other mixed precursors may include nitrates and/or metal chlorides. Nitrates include, but are not limited to, nickel nitrate (Ni(NO 3 ) 2 ), gallium nitrate (Ga(NO 3 ) 3 ), iron nitrate (Fe(NO 3 ) 3 ), and vanadium nitrate (La(NO 3 ) 3 ). Metal chlorides include, but are not limited to, magnesium chloride (MgCl 2 ), copper chloride (CuCl 2 ), molybdenum chloride (MoCl 2 ), manganese chloride (MnCl₂), and vanadium chloride (VCl 3 ). In some other embodiments, when the electroplating solution uses nickel nitrate as the main precursor, other mixed precursors may be, for example but not limited to, cobalt nitrate, nickel nitrate or manganese chloride.
詳細來說,在一些實施例中,電鍍液包括含有鈷的含鈷前驅物與含有第一金屬元素的第一金屬前驅物。含鈷前驅物可例如是硝酸鈷。第一金屬元素可選自鎳、鎵、鐵、鑭、鎂、銅和鉬中的一者,且第一金屬前驅物則對應選自但不限於硝酸鎳、硝酸鎵、硝酸鐵、硝酸鑭、氯化鎂、氯化銅和氯化鉬中的一者。在一些實施例中,含鈷前驅物與第一金屬前驅物的莫耳比大致為1:0.025至1:0.05。In detail, in some embodiments, the electroplating solution includes a cobalt-containing precursor containing cobalt and a first metal precursor containing a first metal element. The cobalt-containing precursor may be, for example, cobalt nitrate. The first metal element may be selected from one of nickel, gallium, iron, onium, magnesium, copper and molybdenum, and the first metal precursor corresponds to one selected from but not limited to nickel nitrate, gallium nitrate, iron nitrate, onium nitrate, magnesium chloride, copper chloride and molybdenum chloride. In some embodiments, the molar ratio of the cobalt-containing precursor to the first metal precursor is approximately 1:0.025 to 1:0.05.
在另一些實施例中,電鍍液更包括將含有第三金屬元素的第三金屬前驅物,使得電鍍液同時具有含有鈷的含鈷前驅物、含有第一金屬元素的第一金屬前驅物以及含有第三金屬元素的第三金屬前驅物。其中,第三金屬元素不同於第一金屬元素。第三金屬元素為選自鎂、錳、鎳和釩中的一者,因此第三金屬前驅物可對應選自但不限於氯化鎂、氯化錳、硝酸鎳和氯化釩中的一者。In other embodiments, the plating solution further includes a third metal precursor containing a third metal element, so that the plating solution simultaneously has a cobalt-containing precursor containing cobalt, a first metal precursor containing the first metal element, and a third metal precursor containing the third metal element. The third metal element is different from the first metal element. The third metal element is one selected from magnesium, manganese, nickel, and vanadium, so the third metal precursor may correspond to one selected from but not limited to magnesium chloride, manganese chloride, nickel nitrate, and vanadium chloride.
在一些實施例中,含鈷前驅物、第一金屬前驅物以及第三前驅物的莫耳比大致為1:0.05:0.025。In some embodiments, the molar ratio of the cobalt-containing precursor, the first metal precursor, and the third precursor is approximately 1:0.05:0.025.
在又一些實施例中,電鍍液可例如包括含有鎳的含鎳前驅物與含有第二金屬元素的第二金屬前驅物。其中,第二前驅物為硝酸鎳,且第二金屬元素選自鈷、鑭和錳中的一者,因此,第二金屬前驅物可對應選自但不限於硝酸鈷、硝酸鑭和氯化錳中的一者。在一些實施例中,鎳前驅物與第二金屬前驅物的莫耳比可大致為1:0.005至1:0.075。In some other embodiments, the electroplating solution may include, for example, a nickel-containing precursor containing nickel and a second metal precursor containing a second metal element. The second precursor is nickel nitrate, and the second metal element is selected from one of cobalt, onium and manganese. Therefore, the second metal precursor may correspond to one selected from but not limited to cobalt nitrate, onium nitrate and manganese chloride. In some embodiments, the molar ratio of the nickel precursor to the second metal precursor may be approximately 1:0.005 to 1:0.075.
接著,將碳布放入所製備完成的電鍍液中。Next, place the carbon cloth into the prepared electroplating solution.
接著,執行步驟S104:進行電鍍製程,以形成摻雜型氧化物於碳布上。在一些實施例中,電鍍製程的條件例如是施加-0.8伏特的恆定電壓,持續5分鐘。此時,摻雜型氧化物會以薄膜的形式沉積於碳布上。Then, step S104 is performed: an electroplating process is performed to form a doped oxide on the carbon cloth. In some embodiments, the electroplating process is performed under conditions such as applying a constant voltage of -0.8 volts for 5 minutes. At this time, the doped oxide is deposited on the carbon cloth in the form of a thin film.
根據所使用的電鍍液組成,摻雜型氧化物可包括第一金屬元素摻雜的四氧化三鈷(Co 3O 4)或第二金屬元素摻雜的氧化鎳(NiO),其中第一金屬元素選自鎳、鎵、鐵、鑭、鎂、銅和鉬中的一者,且第二金屬元素選自鈷、鑭和錳中的一者。在其他一些實施例中,第一金屬元素摻雜的四氧化三鈷更同時有第三金屬元素摻雜。第三金屬元素不同於第一金屬元素,且第三金屬元素選自鎂、錳、鎳和釩中的一者。 According to the composition of the electroplating solution used, the doped oxide may include cobalt tetraoxide (Co 3 O 4 ) doped with a first metal element or nickel oxide (NiO) doped with a second metal element, wherein the first metal element is selected from one of nickel, gallium, iron, vanadium, magnesium, copper and molybdenum, and the second metal element is selected from one of cobalt, vanadium and manganese. In some other embodiments, the cobalt tetraoxide doped with the first metal element is further doped with a third metal element. The third metal element is different from the first metal element, and the third metal element is selected from one of magnesium, manganese, nickel and vanadium.
接著,在電鍍製程之後,可選進行清洗並乾燥摻雜型氧化物的步驟。具體來說,在電鍍完成後,可以使用去離子水清洗後放進烘箱中乾燥,例如是75°C溫度烘乾2小時。Next, after the electroplating process, the doped oxide may be cleaned and dried. Specifically, after the electroplating process is completed, it may be cleaned with deionized water and then dried in an oven, for example, at 75°C for 2 hours.
接著,執行步驟S106:進行退火製程,以獲得雙功能電極。在一些實施例中,退火製程的條件可例如是以空氣為氣氛氣體,升溫速率可固定為5°C/min,並在350 oC下持溫2小時。至此,本發明包括摻雜型氧化物的雙功能電極已製備完成。 Then, step S106 is performed: an annealing process is performed to obtain a bifunctional electrode. In some embodiments, the annealing process may be performed under conditions such as air as an atmosphere gas, a heating rate of 5°C/min, and a temperature of 350 ° C for 2 hours. Thus, the bifunctional electrode including the doped oxide of the present invention has been prepared.
在本發明的實施例中,藉由上述的製備方法所製得的雙功能電極,可包括摻雜型氧化物。摻雜型氧化物可設置於碳布上。具體來說,摻雜型氧化物包括第一金屬元素摻雜的四氧化三鈷或第二金屬元素摻雜的氧化鎳,且摻雜型氧化物具有氧還原反應與析氧反應的催化活性。第一金屬元素選自鎳、鎵、鐵、鑭、鎂、銅和鉬中的一者,所述第二金屬元素選自鈷、鑭和錳中的一者。In an embodiment of the present invention, the bifunctional electrode prepared by the above-mentioned preparation method may include a doped oxide. The doped oxide may be disposed on a carbon cloth. Specifically, the doped oxide includes cobalt tetraoxide doped with a first metal element or nickel oxide doped with a second metal element, and the doped oxide has catalytic activity for oxygen reduction reaction and oxygen evolution reaction. The first metal element is selected from one of nickel, gallium, iron, yttrium, magnesium, copper and molybdenum, and the second metal element is selected from one of cobalt, yttrium and manganese.
在本發明中,製備包含不同金屬元素摻雜氧化物(即摻雜型氧化物)的雙功能電極的方法為透過兩階段步驟:電鍍製程5分鐘以及退火製程2小時,具有製程時間短、製程步驟簡易、低能耗且製程潔淨等優勢。此外,本發明包含摻雜型氧化物的雙功能電極具有優異的氧氣還原(ORR)與氧氣析出(OER)的催化能力、低電壓間隙且保持長時間穩定的特性,且同時具有極小的電壓間隙異動的特點,適合作為鋅空氣電池的電催化電極材料。In the present invention, a method for preparing a bifunctional electrode comprising oxides doped with different metal elements (i.e., doped oxides) is through two-stage steps: a 5-minute electroplating process and a 2-hour annealing process, which has the advantages of short process time, simple process steps, low energy consumption, and clean process. In addition, the bifunctional electrode comprising doped oxides of the present invention has excellent oxygen reduction (ORR) and oxygen evolution (OER) catalytic capabilities, low voltage gap and long-term stability, and at the same time has the characteristics of extremely small voltage gap fluctuation, and is suitable as an electrocatalytic electrode material for zinc-air batteries.
在本發明中,相較於包含四氧化三鈷或氧化鎳的電極,本發明的包含第一金屬元素摻雜的四氧化三鈷或第二金屬元素摻雜的氧化鎳的雙功能電極,可具有更優異的氧氣還原(ORR)與氧氣析出(OER)的催化能力。此外,也可獲得較低的電壓間隙,且保持長時間穩定以及極小的電壓間隙異動的優點,In the present invention, compared with the electrode containing cobalt tetraoxide or nickel oxide, the bifunctional electrode containing cobalt tetraoxide doped with the first metal element or nickel oxide doped with the second metal element can have better catalytic ability of oxygen reduction (ORR) and oxygen evolution (OER). In addition, a lower voltage gap can be obtained, and the advantages of maintaining long-term stability and extremely small voltage gap fluctuation can be obtained.
下文將藉由實例和比較例來更具體地描述本發明的雙功能電極的特徵。雖然描述了以下實施例,但是在不逾越本發明範疇之情況下,可適當地改變所用材料、其量及比率、處理細節以及處理流程等等。因此,不應由下文所述之實施例對本發明作出限制性地解釋。 < 實驗方法 > The following will describe the characteristics of the bifunctional electrode of the present invention in more detail through examples and comparative examples. Although the following embodiments are described, the materials used, their amounts and ratios, processing details, and processing procedures, etc. may be appropriately changed without exceeding the scope of the present invention. Therefore, the present invention should not be construed restrictively by the embodiments described below. < Experimental Methods >
雙功能電極的製備:已於上文中詳述,於此不再贅述。Preparation of bifunctional electrode: It has been described in detail above and will not be repeated here.
符號表示:以Ni 0.05-Co/CC-350為例,代表著將鈷/鎳前驅物以莫耳比1:0.05進行電鍍製程披覆於碳布上,接著在350°C下進行退火製程以獲得電池。其餘符號請依此類推。 Symbols represent: Taking Ni 0.05 -Co/CC-350 as an example, it means that the cobalt/nickel precursor is electroplated on the carbon cloth at a molar ratio of 1:0.05, and then annealed at 350°C to obtain a battery. The rest of the symbols are similar.
電池的製備:將製備完成之碳布放上裝置,反應面積為3.14 cm 2,並用疏水性碳紙做為擴散層蓋於其上,防止電解液滲出,接著放上蓋子將裝置鎖緊,以6 M氫氧化鉀與0.2 M醋酸鋅電解液填入電解槽,最後放入鋅片作為陽極。 Preparation of the battery: Place the prepared carbon cloth on the device with a reaction area of 3.14 cm2 , and cover it with hydrophobic carbon paper as a diffusion layer to prevent electrolyte leakage. Then put the lid on and lock the device. Fill the electrolytic cell with 6 M potassium hydroxide and 0.2 M zinc acetate electrolyte, and finally put in the zinc sheet as the anode.
三極電化學測量半電池特性:以實驗開發與採用的材料用作工作電極,飽和Hg/HgO電極用作參考電極,Pt片用作對電極,電解液則為0.1 M KOH,進行執行線性掃描伏安法、循環伏安法、阻抗頻譜法,以尋找最佳配方。一旦完成材料選擇,進行二極式全電池量測,陰極為自製試片、陽極為鋅片,電解液包括6 M氫氧化鉀與0.2 M醋酸鋅,主要利用此設備執行恆流充放電、線性掃描伏安法。 < 實驗結果 > Triode electrochemical measurement of half-cell characteristics: The materials developed and adopted in the experiment are used as the working electrode, the saturated Hg/HgO electrode is used as the reference electrode, the Pt sheet is used as the counter electrode, and the electrolyte is 0.1 M KOH. Linear scanning voltammetry, cyclic voltammetry, and impedance spectroscopy are performed to find the best formula. Once the material selection is completed, the diode full-cell measurement is performed. The cathode is a self-made test piece, the anode is a zinc sheet, and the electrolyte includes 6 M potassium hydroxide and 0.2 M zinc acetate. This equipment is mainly used to perform constant current charge and discharge and linear scanning voltammetry. < Experimental results >
圖2A為包含不同金屬元素摻雜的四氧化三鈷之雙功能電極,分別於氧氣還原反應(ORR)量測所得的極化曲線圖。圖2B為包含不同金屬元素摻雜的四氧化三鈷之雙功能電極,於析氧反應(OER)量測所得的極化曲線圖。FIG2A is a diagram showing polarization curves of a bifunctional electrode comprising cobalt oxide doped with different metal elements measured in oxygen reduction reaction (ORR). FIG2B is a diagram showing polarization curves of a bifunctional electrode comprising cobalt oxide doped with different metal elements measured in oxygen evolution reaction (OER).
請同時參照圖2A與圖2B,本實施例是採用線性伏安法的電化學技術,量測ORR反應的半波電位(V 1/2)、OER析氧反應於10 mA/cm 2下的V 10電位以及全電池反應電位(V 10-V 1/2),藉此尋找具有最小的可逆電池反應電壓,以做為最佳的材料組合。當含鈷前驅物(即主要前驅物)為硝酸鈷時,第一金屬元素以鎳、鎵、鎂、鐵、銅、鉬、鑭為輔,並加入電鍍液中以形成雙功能電極的材料(即第一金屬元素摻雜的四氧化三鈷)。接著經350°C的退火處理後,所得ORR與OER反應的極化曲線分別如圖2A與圖2B所示。由曲線所得的ORR反應半波電位與OER反應於10 mA/cm 2下的V 10電位,分別呈現於表1,同時摻雜對電鍍Co 3O 4可逆型全電池反應電位,亦計算於表1中。表1為摻雜對電鍍Co 3O 4可逆電極與全電池電位之影響。第一金屬元素包括鎳、鎵、鎂、鐵、銅、鉬、鑭,所得全電池電位分別為0.73、0.75、0.98、0.76、0.81、0.82、0.85、0.70 V,得到La 0.05-Co/CC-350具有最低電壓值,意味最適合做為鋅空氣電池的可逆電極。 Please refer to FIG. 2A and FIG. 2B at the same time. This embodiment uses the electrochemical technique of linear voltammetry to measure the half-wave potential (V 1/2 ) of the ORR reaction, the V 10 potential of the OER oxygen evolution reaction at 10 mA/cm 2 , and the full battery reaction potential (V 10 -V 1/2 ), thereby finding the material with the minimum reversible battery reaction voltage as the best material combination. When the cobalt-containing precursor (i.e., the main precursor) is cobalt nitrate, the first metal element is supplemented with nickel, gallium, magnesium, iron, copper, molybdenum, and tantalum, and is added to the plating solution to form a bifunctional electrode material (i.e., cobalt oxide doped with the first metal element). After annealing at 350°C, the polarization curves of the ORR and OER reactions are shown in Figures 2A and 2B, respectively. The ORR reaction half-wave potential and the V 10 potential of the OER reaction at 10 mA/cm 2 obtained from the curves are presented in Table 1, respectively. At the same time, the doping effect on the reversible full-cell reaction potential of electroplated Co 3 O 4 is also calculated in Table 1. Table 1 shows the effect of doping on the reversible electrode and full-cell potential of electroplated Co 3 O 4 . The first metal element includes nickel, gallium, magnesium, iron, copper, molybdenum, and rhenium. The obtained full battery potentials are 0.73, 0.75, 0.98, 0.76, 0.81, 0.82, 0.85, and 0.70 V, respectively. La 0.05 -Co/CC-350 has the lowest voltage value, which means it is most suitable as a reversible electrode for zinc air batteries.
表1. 摻雜對電鍍Co
3O
4可逆電極與全電池電位之影響
請繼續參照表1,當把第三金屬前驅物加入到製作La 0.05-Co/CC-350的電鍍液中,進行三元金屬元素(即具有第一金屬元素摻雜與第三金屬元素摻雜的四氧化三鈷)的電鍍,所得電極亦進行ORR反應半波電位、OER反應於10 mA/cm 2下的V 10電位、全電池電位三項電性的量測與評估。第三金屬元素包括鎂、錳、鎳、釩,所得全電池電位分別為0.71、0.73、0.72、0.87 V,如表1所示,得到M y-La 0.05-Co/CC-350比沒有添加第三金屬元素的La 0.05-Co/CC-350相比,添加第三金屬元素並沒有額外助益。因此,第三金屬元素並沒有添加的重要性。 Please continue to refer to Table 1. When the third metal precursor is added to the plating solution for making La 0.05 -Co/CC-350, electroplating of the ternary metal element (i.e., cobalt oxide doped with the first metal element and the third metal element) is carried out. The resulting electrode is also subjected to measurement and evaluation of three electrical properties: ORR reaction half-wave potential, OER reaction V 10 potential at 10 mA/cm 2 , and full cell potential. The third metal element includes magnesium, manganese, nickel, and vanadium, and the obtained full battery potential is 0.71, 0.73, 0.72, and 0.87 V, respectively. As shown in Table 1, it is found that My - La0.05 -Co/CC-350 has no additional benefit compared to La0.05 -Co/CC-350 without the third metal element. Therefore, the third metal element is not important to add.
請繼續參照表1,在本實施例中,對La 0.05-Co/CC-350進行額外披覆處理,如電鍍液中添加界面活性劑CTAB、添加分散用PVP高分子、添加硫脲(Thiourea)的硫源提供、外部披覆還原銀、外部披覆還原氧化石墨烯(rGO)、外部披覆CNT、外部披覆電鍍鎳、先披覆再披覆La 0.025-Co/CC-350等措施,檢視全電池電位分別為0.72、0.73、0.77、0.79、0.76、0.72、0.71、0.73 V,如表1所示。此結果顯示上述的額外披覆處理並沒有額外助益。 Please continue to refer to Table 1. In this embodiment, La 0.05 -Co/CC-350 is subjected to additional coating treatment, such as adding surfactant CTAB to the electroplating solution, adding PVP polymer for dispersion, adding thiourea (Thiourea) as a sulfur source, external coating with reduced silver, external coating with reduced graphene oxide (rGO), external coating with CNT, external coating with electroplated nickel, first coating and then coating La 0.025 -Co/CC-350, etc. The full battery potential is 0.72, 0.73, 0.77, 0.79, 0.76, 0.72, 0.71, and 0.73 V, respectively, as shown in Table 1. This result shows that the above-mentioned additional coating treatment has no additional benefit.
因此,由以上結果可知,La添加對四氧化三鈷的電池特性非常重要。Therefore, it can be seen from the above results that La addition is very important for the battery properties of cobalt tetroxide.
請繼續參照表1,當主要前驅物為硝酸鎳時,第二金屬元素以鈷、鑭、錳為輔,以5%或7.5%的第二金屬元素前驅物加入電鍍液中所得的對催化電極,經350°C退火後,測量其ORR與OER反應的極化曲線,由曲線所得的OER反應於10 mA/cm 2下的V 10電位與ORR反應半波電位,分別呈現於表1,同時摻雜對電鍍Co 3O 4可逆型全電池反應電位,亦計算於表1。此表1也顯示摻雜對電鍍NiO可逆電極與全電池電位之影響。當5%第二金屬元素包括鈷、鑭、錳添加,所得全電池電位分別為0.72、0.88、0.76 V,得到Co 0.05-Ni/CC-350有最低電壓值。當改變鈷含量為2.5%、5%、7.5%時,全電池電位分別為0.75、0.72、0.72 V。Co 0.05-Ni/CC-350與Co 0.075-Ni/CC-350皆適合做為鋅空氣電池的可逆電極。 Please continue to refer to Table 1. When the main precursor is nickel nitrate, the second metal element is supplemented with cobalt, rhenium, and manganese. The catalytic electrode obtained by adding 5% or 7.5% of the second metal element precursor to the electroplating solution is annealed at 350°C, and the polarization curves of the ORR and OER reactions are measured. The V 10 potential of the OER reaction at 10 mA/cm 2 and the ORR reaction half-wave potential obtained from the curve are presented in Table 1, respectively. At the same time, the doping effect on the reversible full-cell reaction potential of electroplated Co 3 O 4 is also calculated in Table 1. This Table 1 also shows the effect of doping on the reversible electrode and full-cell potential of electroplated NiO. When 5% of the second metal element including cobalt, rhenium and manganese is added, the full battery potential is 0.72, 0.88 and 0.76 V respectively, and Co 0.05 -Ni/CC-350 has the lowest voltage value. When the cobalt content is changed to 2.5%, 5% and 7.5%, the full battery potential is 0.75, 0.72 and 0.72 V respectively. Both Co 0.05 -Ni/CC-350 and Co 0.075 -Ni/CC-350 are suitable as reversible electrodes for zinc-air batteries.
圖3為不同鑭摻雜量於電鍍液中沉積的La Z-Co/CC-350 (Z= 0.025、0.05、0.075、0.1)電催化電極,經350 oC退火後,所得電催化電極其ORR(如圖3A所示)與OER(如圖3B所示)反應的極化曲線圖。主要半電池與全電池的相關電位數據則列於表2。實驗結果顯示,La 0.025-Co/CC-350與La 0.05-Co/CC-350二者反應電位值差異不大。 Figure 3 shows the polarization curves of the ORR (as shown in Figure 3A) and OER (as shown in Figure 3B) reactions of La Z -Co/CC-350 (Z = 0.025 , 0.05, 0.075 , 0.1) electrocatalytic electrodes deposited in the electroplating solution with different doping amounts. After annealing at 350 ° C, the obtained electrocatalytic electrodes have the following reactions:
表2. 在0.1 M KOH氧氣環境下Co/CC-250與不同鑭摻雜濃度之La
z-Co/CC-350(z= 0.025、0.05、0.075、0.1)薄膜於析氧反應、氧氣還原反應,量測所得之電位值,以及全電池反應的電位值。
圖4為La 0.025-Co/CC-350薄膜其電子顯微鏡微觀組織影像及其組成Co、O、La元素分布圖。該薄膜有奈米片狀結構的形貌,元素分布則證明La、Co、O都披覆到電極上。在本實施例中,藉由適當的鑭摻雜則可取代部分Co 3+,導致有較多的晶格取代型缺陷,進而有更多的催化活性位點,增進電子效益提升導電性,並藉XPS 分析探討鑭摻雜濃度以及取代Co造成二價鈷與三價鈷共存對性質之影響。 Figure 4 is an electron microscope microstructure image of La 0.025 -Co/CC-350 film and its composition Co, O, La element distribution diagram. The film has a nanosheet structure morphology, and the element distribution proves that La, Co, and O are all coated on the electrode. In this embodiment, appropriate doping with indium can replace part of Co 3+ , resulting in more lattice substitution defects, and thus more catalytic active sites, improving electronic efficiency and enhancing conductivity. XPS analysis is used to explore the influence of indium doping concentration and the coexistence of divalent cobalt and trivalent cobalt caused by replacing Co on properties.
圖5為Co/CC-250與La摻雜之La z-Co/CC-350 (z= 0.025、0.05、0.075、0.1)薄膜其XRD繞射分析圖。碳布貢獻了低角度的繞射峰,電鍍的薄膜為尖晶石結構的Co 3O 4( PDF#65-3103 ),其峰值位在31.4°、36.9°、 44.9°、59.5°、65.5°處相符,分別為(220)、(311)、(400)、(511)、(440)晶格面繞射所貢獻。退火350°C摻雜0.025 M La、0.05 M La後與無摻雜相比,峰值變得較寬、強度與結晶度因摻雜而下降,再提高至0.075 M La、0.1 M La摻雜可發現,此時已無明顯峰值存在。此結果說明電鍍薄膜主要是La摻雜的四氧化三鈷(La-Co 3O 4)。 Figure 5 shows the XRD diffraction analysis of Co/CC-250 and La-doped La z -Co/CC-350 (z= 0.025, 0.05, 0.075, 0.1) films. The carbon cloth contributes low-angle diffraction peaks. The electroplated film is spinel-structured Co 3 O 4 ( PDF#65-3103 ), and its peaks are at 31.4°, 36.9°, 44.9°, 59.5°, and 65.5°, which are contributed by the diffraction of the (220), (311), (400), (511), and (440) lattice planes, respectively. After annealing at 350°C and doping with 0.025 M La and 0.05 M La, the peak becomes wider, and the strength and crystallinity decrease due to doping. When the doping is increased to 0.075 M La and 0.1 M La, no obvious peak exists. This result shows that the electroplated film is mainly La-doped cobalt tetraoxide (La-Co 3 O 4 ).
圖6為Co/CC-250、La z-Co/CC-350(z=0.025、0.05、0.075、0.1)、PtC+RuO 2/CC充放電極化曲線。由表3可知,在10 mA/cm 2電流密度下,電壓間隙分別為1.64、1.01、1.01、1.70、1.60、0.99 V,電壓間隙越小代表充放電能力越好,因此可看出La 0.025-Co/CC-350、La 0.05-Co/CC-350與理想空氣電池觸媒PtC+RuO 2/CC電壓間隙相近,即有優異之充放電性能。 Figure 6 shows the charge-discharge polarization curves of Co/CC-250, La z -Co/CC-350 (z=0.025, 0.05, 0.075, 0.1), and PtC+RuO 2 /CC. As shown in Table 3, at a current density of 10 mA/cm 2 , the voltage gaps are 1.64, 1.01, 1.01, 1.70, 1.60, and 0.99 V, respectively. The smaller the voltage gap, the better the charge-discharge capability. Therefore, it can be seen that the voltage gaps of La 0.025 -Co/CC-350 and La 0.05 -Co/CC-350 are similar to those of the ideal air battery catalyst PtC+RuO 2 /CC, which means that they have excellent charge-discharge performance.
表3. Co/CC-250、La
z-Co/CC-350 (z= 0.025、0.05、0.075、0.1)、PtC+RuO
2/CC充放電極化曲線,在電流密度10 mA cm
-2下所得電壓間隙值
由充放電曲線上無法分辨La 0.025-Co/CC-350、La 0.05-Co/CC-350二者何者較佳,因此將採用長時間放電來評量。圖7為La 0.025-Co/CC-350、La 0.05-Co/CC-350、PtC+RuO 2/CC在2 mA cm -2電流密度下長時間放電圖。比電容量分別為789、635、736 mAh g Zn -1,能量密度分別為903、723、910 Wh kg -1。由此可看出,La 0.025-Co/CC-350有優異的表現,與理想可逆空氣電極PtC+RuO 2/CC有相近的特性。 It is not possible to tell which of La 0.025 -Co/CC-350 and La 0.05 -Co/CC-350 is better from the charge and discharge curves, so long-term discharge will be used for evaluation. Figure 7 shows the long-term discharge diagram of La 0.025 -Co/CC-350, La 0.05 -Co/CC-350, and PtC+RuO 2 /CC at a current density of 2 mA cm -2 . The specific capacities are 789, 635, and 736 mAh g Zn -1 , respectively, and the energy densities are 903, 723, and 910 Wh kg -1 , respectively. It can be seen that La 0.025 -Co/CC-350 has excellent performance and has similar characteristics to the ideal reversible air electrode PtC+RuO 2 /CC.
圖8為對La 0.025-Co/CC-350進行1 mA cm -2、2 mA cm -2、5 mA cm -2、10 mA cm -2、20 mA cm -2、最後回到2 mA cm -2不同電流密度下進行定電流放電實驗,平均放電電壓分別為1.17、1.13、1.05、0.93、0.74、1.14 V,可看出隨著電流密度的增加,平均放電電壓下降幅度增加但都保持平穩,具有可回復特性,可看出電池放電穩定性。 Figure 8 shows the constant current discharge experiment of La 0.025 -Co/CC-350 at different current densities of 1 mA cm -2 , 2 mA cm -2 , 5 mA cm -2 , 10 mA cm -2 , 20 mA cm -2 , and finally back to 2 mA cm -2. The average discharge voltages are 1.17, 1.13, 1.05, 0.93, 0.74, and 1.14 V, respectively. It can be seen that with the increase of current density, the average discharge voltage decreases more but remains stable, with a recoverable characteristic, which shows the discharge stability of the battery.
恆電流充放電法(Galvanostatic charge-discharge test)量測時,電流密度為2 mA cm -2,充電10分鐘,放電10分鐘,並循環300次,對La 0.025-Co/CC-350和Pt/C+RuO 2/CC進行長時間(100 h)充放電,進一步評估它們可充放電的穩定性。圖9為在2 mA cm -2電流密度下,La摻雜Co 3O 4、Pt/C+RuO 2/CC長時間循環充放電穩定性測試數據圖。結果顯示,Pt/C+RuO 2/CC其初始電壓間隙僅0.64 V,而La 0.025-Co/CC-350初始電壓間隙為0.86 V,但再經300次循環後,La 0.025-Co/CC-350電壓間隙為0.88 V,可看出電壓間隙僅增加0.02 V,僅有2.3%增加。而Pt/C+RuO 2/CC則無法完成300次的循環,且電壓間隙已大幅增加,因此可看出La 0.025-Co/CC-350具有優異的長時間充放電穩定性。 During the galvanostatic charge-discharge test, the current density was 2 mA cm -2 , the charge was 10 minutes, the discharge was 10 minutes, and the cycle was repeated 300 times. La 0.025 -Co/CC-350 and Pt/C+RuO 2 /CC were charged and discharged for a long time (100 h) to further evaluate their charge and discharge stability. Figure 9 shows the long-term cyclic charge and discharge stability test data of La-doped Co 3 O 4 and Pt/C+RuO 2 /CC at a current density of 2 mA cm -2 . The results show that the initial voltage gap of Pt/C+RuO 2 /CC is only 0.64 V, while the initial voltage gap of La 0.025 -Co/CC-350 is 0.86 V. However, after 300 cycles, the voltage gap of La 0.025 -Co/CC-350 is 0.88 V. It can be seen that the voltage gap has only increased by 0.02 V, a 2.3% increase. However, Pt/C+RuO 2 /CC cannot complete 300 cycles, and the voltage gap has increased significantly. Therefore, it can be seen that La 0.025 -Co/CC-350 has excellent long-term charge and discharge stability.
經過300次循環充放電測試後,將測試前與測試後的樣品以拉曼光譜分析鍵結與X射線光電子能譜儀(XPS)分析組成。圖10為La 0.025-Co/CC-350全電池測試前後之拉曼(Raman)圖。表4為La 0.025-Co/CC-350全電池測試前後XPS各元素含量表。二者分析結果,都未有明顯的變化,其中XPS元素含量分析幾乎不變,代表電極執行可逆的ORR與OER反應。 After 300 cycles of charge and discharge testing, the samples before and after the test were analyzed by Raman spectroscopy for bonding and X-ray photoelectron spectrometer (XPS) for composition. Figure 10 shows the Raman graph of the La 0.025 -Co/CC-350 full battery before and after the test. Table 4 shows the XPS element content of the La 0.025 -Co/CC-350 full battery before and after the test. There is no obvious change in the analysis results of both, and the XPS element content analysis is almost unchanged, indicating that the electrode performs reversible ORR and OER reactions.
表4. La
0.025-Co/CC-350全電池測試前後XPS各元素含量分析
圖11為未摻雜與5%鈷、鑭、錳前驅物加入電鍍液中所得的摻雜型NiO電催化電極,經350 oC退火後,所得(A) ORR與(B) OER反應的極化曲線。由曲線所得的ORR反應半波電位與OER反應於10 mA/cm 2下的V 10電位,亦分別呈現於表1。未摻雜與M 0.05-Ni/CC-350 (M= Co、La、Mn)其ORR反應半波電位分別為0.82、0.85、0.74、0.84 V;OER反應於10 mA/cm 2下的V10電位分別為1.67、1.57、1.62、1.60 V,全電池電位分別為0.85、0.72、0.88、0.76V,得到Co 0.05-Ni/CC-350有最低電壓值,最適合做為鋅空氣電池的可逆電極,所以將以其進行全電池測試。 Figure 11 shows the polarization curves of (A) ORR and (B) OER reactions of the undoped NiO electrocatalyst electrode obtained by adding 5% cobalt, lithium, and manganese precursors to the electroplating solution after annealing at 350 ° C. The ORR reaction half-wave potential and the V 10 potential of the OER reaction at 10 mA/cm 2 obtained from the curves are also presented in Table 1. The ORR half-wave potentials of undoped M 0.05 -Ni/CC-350 (M= Co, La, Mn) are 0.82, 0.85, 0.74, and 0.84 V, respectively; the V10 potentials of the OER reaction at 10 mA/cm 2 are 1.67, 1.57, 1.62, and 1.60 V, respectively; and the full battery potentials are 0.85, 0.72, 0.88, and 0.76 V, respectively. Co 0.05 -Ni/CC-350 has the lowest voltage value and is most suitable as a reversible electrode for zinc-air batteries, so it will be used for full battery testing.
圖12A與圖12B為Co 0.05-Ni/CC-350薄膜其電子顯微鏡低倍與高倍的微觀結構圖。該薄膜有如同La 0.05-Co/CC-350般的奈米片狀結構的形貌。圖13為摻雜M 0.05-Ni/CC-350(M 0.05= Co、La、Mn)薄膜其XRD繞射分析圖。碳布貢獻了低角度的繞射峰外,電鍍的薄膜驗證為NiO相,符合菱形晶系(rhombohedral)NiO標準卡PDF#44-1159,其兩個明顯峰值分別為(101)、(012)晶格面繞射所貢獻。 Figures 12A and 12B are low-power and high-power electron microscope microstructure images of Co 0.05 -Ni/CC-350 film. The film has a nanosheet structure morphology similar to La 0.05 -Co/CC-350. Figure 13 is an XRD diffraction analysis of the doped M 0.05 -Ni/CC-350 (M 0.05 = Co, La, Mn) film. In addition to the low-angle diffraction peaks contributed by the carbon cloth, the electroplated film is verified to be NiO phase, which is consistent with the rhombohedral NiO standard card PDF#44-1159. Its two obvious peaks are contributed by the diffraction of the (101) and (012) lattice planes.
圖14為在2 mA cm -2電流密度下,Co 0.05-Ni/CC-350與PtC+RuO 2/CC長時間放電圖。比電容量分別為714、740 mAh g Zn -1,能量密度分別為806、908 Wh kg -1。由此可看出,Co摻雜NiO有優異的表現,與理想可逆空氣電極PtC+RuO 2/CC有相近的特性。 Figure 14 shows the long-term discharge graphs of Co 0.05 -Ni/CC-350 and PtC+RuO 2 /CC at a current density of 2 mA cm -2 . The specific capacities are 714 and 740 mAh g Zn -1 , respectively, and the energy densities are 806 and 908 Wh kg -1 , respectively. It can be seen that Co-doped NiO has excellent performance and has similar characteristics to the ideal reversible air electrode PtC+RuO 2 /CC.
電流密度為2 mA cm -2,充電10分鐘,放電10分鐘,並循環240次,對Co 0.05-Ni/CC-350(鈷摻雜NiO) 和Pt/C+RuO 2/CC進行長時間(80 h)充放電,進一步評估它們可充放電的長效穩定性。圖15為在2 mA cm -2電流密度下,Co 0.05-Ni/CC-350與PtC+RuO 2/CC長時間循環充放電穩定性測試數據圖。結果顯示,Pt/C+RuO 2/CC在初始電壓間隙僅0.63 V,而鈷摻雜NiO其初始電壓間隙為0.87 V,但再經240次循環後,鈷摻雜NiO電壓間隙反而減小為0.85 V,可看出電壓間隙竟減小0.02 V,僅有2.3%減少。而Pt/C+RuO 2/CC於40h(120次循環充放電)就開始劣化,因此可看出鈷摻雜NiO具有優異的長時間充放電穩定性。 The current density was 2 mA cm -2 , the charge time was 10 minutes, the discharge time was 10 minutes, and the cycle was repeated 240 times. Co 0.05 -Ni/CC-350 (Cobalt-doped NiO) and Pt/C+RuO 2 /CC were charged and discharged for a long time (80 h) to further evaluate their long-term charge and discharge stability. Figure 15 shows the long-term cyclic charge and discharge stability test data of Co 0.05 -Ni/CC-350 and PtC+RuO 2 /CC at a current density of 2 mA cm -2 . The results show that the initial voltage gap of Pt/C+ RuO2 /CC is only 0.63 V, while the initial voltage gap of Co-doped NiO is 0.87 V. However, after 240 cycles, the voltage gap of Co-doped NiO is reduced to 0.85 V. It can be seen that the voltage gap is reduced by 0.02 V, only 2.3%. Pt/C+ RuO2 /CC begins to deteriorate after 40h (120 cycles of charge and discharge). Therefore, it can be seen that Co-doped NiO has excellent long-term charge and discharge stability.
綜上所述,本發明不僅製作出優異的改質摻雜型氧化物,如Co 3O 4與NiO,雙功能電極於碳布上,形成鑭(La)摻雜Co 3O 4與鈷(Co)摻雜NiO,具有優良的氧還原反應(ORR)與析氧反應(OER)之能力,適合作為可逆式鋅空氣電池之電催化電極材料並製作其元件。再者,本發明公開的製備方法亦具有製程簡易、製程時間極短、低能耗且潔淨製程等應用優勢,有利快速製造出具有競爭力之可逆式鋅空氣電池。 In summary, the present invention not only produces excellent modified doped oxides, such as Co 3 O 4 and NiO, but also forms dual-functional electrodes on carbon cloth to form La-doped Co 3 O 4 and Co-doped NiO, which have excellent oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) capabilities, and are suitable as electrocatalytic electrode materials for reversible zinc-air batteries and for making their components. Furthermore, the preparation method disclosed in the present invention also has application advantages such as simple process, extremely short process time, low energy consumption and clean process, which is conducive to the rapid manufacture of competitive reversible zinc-air batteries.
另一方面,在本發明的實施例中,La摻雜Co 3O 4於鹼性電解液內所得的全電池,開路電壓為1.42 V,於2 mA/cm 2下,比電容值為786 mAh g Zn -1、能量密度為903 Wh kg -1,於100小時內可穩定循環充放電300次,電壓間隙僅增加0.02 V至0.88 V,變動僅2.3%。而Co摻雜NiO其比電容值為714 mAh g Zn -1、能量密度為806 Wh kg -1,80小時內可穩定循環充放電240次,電壓間隙卻由0.87 V略減為0.85 V,變動僅2.3%。如此一來,可達成小的電壓間隙(0.86 V)、長時間穩定的特性、長時間保持極小的電壓間隙異動(2.3%,100h/300次循環)的優點。 On the other hand, in the embodiment of the present invention, the full battery obtained by La doping Co 3 O 4 in alkaline electrolyte has an open circuit voltage of 1.42 V, a specific capacitance of 786 mAh g Zn -1 , an energy density of 903 Wh kg -1 , and can be stably cycled for 300 times within 100 hours, with the voltage gap increasing by only 0.02 V to 0.88 V, a change of only 2.3%. The specific capacitance of Co doped NiO is 714 mAh g Zn -1 , an energy density of 806 Wh kg -1 , and can be stably cycled for 240 times within 80 hours, with the voltage gap slightly decreasing from 0.87 V to 0.85 V, a change of only 2.3%. This achieves the advantages of a small voltage gap (0.86 V), long-term stable characteristics, and a very small voltage gap fluctuation (2.3%, 100h/300 cycles) for a long time.
雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。Although the present invention has been disclosed as above by the embodiments, they are not intended to limit the present invention. Any person with ordinary knowledge in the relevant technical field can make some changes and modifications without departing from the spirit and scope of the present invention. Therefore, the protection scope of the present invention shall be defined by the scope of the attached patent application.
S100、S102、S104、S106:步驟S100, S102, S104, S106: Steps
圖1為本發明一實施例的雙功能電極的製備方法流程圖。 圖2A為形成包含不同金屬元素摻雜的四氧化三鈷的雙功能電極,在氧氣還原反應(ORR)量測所得的極化曲線圖。 圖2B為沉積包含不同金屬元素摻雜的四氧化三鈷的雙功能電極,在析氧反應(OER)量測所得的極化曲線圖。 圖3A為不同鑭摻雜量於電鍍液中沉積的電催化電極,經350 oC退火後,所得ORR反應的極化曲線圖。 圖3B為不同鑭摻雜量於電鍍液中沉積的電催化電極,經350 oC退火後,所得OER反應的極化曲線圖。 圖4為La 0.025-Co/CC-350薄膜其電子顯微鏡微觀組織影像及其組成Co、O、La元素分布圖。 圖5為Co/CC-250與La摻雜之La z-Co/CC-350(z= 0.025、0.05、0.075、0.1)薄膜其XRD繞射分析圖。 圖6為Co/CC-250、La z-Co/CC-350 (z= 0.025、0.05、0.075、0.1)、PtC+RuO 2/CC充放電極化曲線。 圖7為La 0.025-Co/CC-350、La 0.050-Co/CC-350、PtC+RuO 2/CC在2 mA cm -2電流密度下長時間放電圖。 圖8為不同電流密度下,La 0.025-Co/CC-350定電流放電測試圖。 圖9為在2 mA cm -2電流密度下,La摻雜Co 3O 4、Pt/C+ RuO 2/CC長時間循環充放電穩定性測試數據圖。 圖10為La 0.025-Co/CC-350全電池測試前後之拉曼圖。 圖11A為鈷、鑭、錳前驅物加入電鍍液中所得的摻雜型NiO電催化電極,經350 oC退火後,所得ORR反應的極化曲線圖。 圖11B為鈷、鑭、錳前驅物加入電鍍液中所得的摻雜型NiO電催化電極,經350 oC退火後,所得OER反應的極化曲線圖。 圖12A與圖12B為Co 0.05-Ni/CC-350(鈷摻雜NiO)薄膜其電子顯微鏡低倍與高倍的微觀結構圖。 圖13為摻雜MN-Ni/CC-350(MN= Co、La、Mn)薄膜其XRD繞射分析圖。 圖14為在2 mA cm -2電流密度下,Co 0.05-Ni/CC-350(鈷摻雜NiO)與PtC+RuO 2/CC長時間放電圖。 圖15為在2 mA cm -2電流密度下,Co 0.05-Ni/CC-350(鈷摻雜NiO)與PtC+RuO 2/CC長時間循環充放電穩定性測試數據圖。 FIG1 is a flow chart of a method for preparing a bifunctional electrode according to an embodiment of the present invention. FIG2A is a polarization curve diagram of a bifunctional electrode formed of cobalt tetroxide doped with different metal elements, measured in oxygen reduction reaction (ORR). FIG2B is a polarization curve diagram of a bifunctional electrode deposited with cobalt tetroxide doped with different metal elements, measured in oxygen evolution reaction (OER). FIG3A is a polarization curve diagram of an ORR reaction obtained by annealing an electrocatalytic electrode at 350 ° C after depositing different amounts of formic acid doping in an electroplating solution. Figure 3B shows the polarization curves of the OER reaction obtained after annealing at 350 ° C for the electrocatalytic electrode deposited in the electroplating solution with different amounts of titanium doping. Figure 4 shows the electron microscope microstructure image of La 0.025 -Co/CC-350 film and the distribution of Co, O, and La elements in its composition. Figure 5 shows the XRD diffraction analysis of Co/CC-250 and La-doped La z -Co/CC-350 (z= 0.025, 0.05, 0.075, 0.1) films. Figure 6 shows the charge-discharge polarization curves of Co/CC-250, La z -Co/CC-350 (z= 0.025, 0.05, 0.075, 0.1), and PtC+RuO 2 /CC. Figure 7 shows the long-term discharge graph of La 0.025 -Co/CC-350, La 0.050 -Co/CC-350, and PtC+RuO 2 /CC at a current density of 2 mA cm -2 . Figure 8 shows the constant current discharge test graph of La 0.025 -Co/CC-350 at different current densities. Figure 9 shows the long-term cycle charge-discharge stability test data of La doped Co 3 O 4 and Pt/C+ RuO 2 /CC at a current density of 2 mA cm -2. Figure 10 shows the Raman graph of La 0.025 -Co/CC-350 before and after the full battery test. Figure 11A is a doped NiO electrocatalytic electrode obtained by adding cobalt, titanium and manganese precursors to the electroplating solution. After annealing at 350 o C, the polarization curve of the ORR reaction is obtained. Figure 11B is a doped NiO electrocatalytic electrode obtained by adding cobalt, titanium and manganese precursors to the electroplating solution. After annealing at 350 o C, the polarization curve of the OER reaction is obtained. Figures 12A and 12B are low-power and high-power electron microscope microstructure images of Co 0.05 -Ni/CC-350 (cobalt-doped NiO) thin films. Figure 13 is an XRD diffraction analysis diagram of the doped MN-Ni/CC-350 (MN= Co, La, Mn) thin film. Figure 14 shows the long-term discharge graph of Co 0.05 -Ni/CC-350 (cobalt-doped NiO) and PtC+RuO 2 /CC at a current density of 2 mA cm -2 . Figure 15 shows the long-term cyclic charge-discharge stability test data of Co 0.05 -Ni/CC-350 (cobalt-doped NiO) and PtC+RuO 2 /CC at a current density of 2 mA cm -2.
S100、S102、S104、S106:步驟 S100, S102, S104, S106: Steps
Claims (15)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW111135250A TWI827263B (en) | 2022-09-16 | 2022-09-16 | Bifunctional electrode and preparation method thereof and its application for zinc-air battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW111135250A TWI827263B (en) | 2022-09-16 | 2022-09-16 | Bifunctional electrode and preparation method thereof and its application for zinc-air battery |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI827263B TWI827263B (en) | 2023-12-21 |
TW202414869A true TW202414869A (en) | 2024-04-01 |
Family
ID=90053454
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW111135250A TWI827263B (en) | 2022-09-16 | 2022-09-16 | Bifunctional electrode and preparation method thereof and its application for zinc-air battery |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI827263B (en) |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109576730B (en) * | 2018-11-20 | 2020-12-08 | 西北农林科技大学 | Preparation method and application of an iron-modified cobalt tetroxide nanosheet array electrode |
-
2022
- 2022-09-16 TW TW111135250A patent/TWI827263B/en active
Also Published As
Publication number | Publication date |
---|---|
TWI827263B (en) | 2023-12-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Ma et al. | A bifunctional electrocatalyst α-MnO 2-LaNiO 3/carbon nanotube composite for rechargeable zinc–air batteries | |
Zhang et al. | Porous perovskite LaNiO3 nanocubes as cathode catalysts for Li-O2 batteries with low charge potential | |
CN103477480B (en) | For the core shell structure bifunctional catalyst of metal air battery/fuel cell | |
Li et al. | Hybrid Li-air battery cathodes with sparse carbon nanotube arrays directly grown on carbon fiber papers | |
KR101746237B1 (en) | Ternary platinum alloy catalyst | |
He et al. | Titanium nitride catalyst cathode in a Li–air fuel cell with an acidic aqueous solution | |
KR102572952B1 (en) | Fabrication Method of Anode for Zinc-Ion Battery and Anode for Zinc-Ion Battery manufactured Therefrom and Aqueous Zinc-Ion Battery comprising the Same | |
JP5733912B2 (en) | Positive electrode for lithium air secondary battery, method for producing the same, and lithium air secondary battery | |
US20130330640A1 (en) | Metal supported nanowire cathode catalysts for li-air batteries | |
CN110102331B (en) | A high-performance oxygen evolution cobalt diselenide/nickel tetraselenide@NC/C composite catalyst and its preparation method and application | |
Cano et al. | New interpretation of the performance of nickel-based air electrodes for rechargeable zinc–air batteries | |
CN112366324B (en) | A multi-layer functional structure and a durable and stable electrically inflatable air electrode and its manufacturing method | |
Ding et al. | Ternary ptvco dendrites for the hydrogen evolution reaction, oxygen evolution reaction, overall water splitting and rechargeable Zn–air batteries | |
CN110451489A (en) | A kind of cobalt nitride is embedded in porous nitrogen-doped graphene material and preparation method and application | |
JP6566413B2 (en) | Catalyst for electrochemical oxygen reduction and / or oxygen generation | |
Yang et al. | Electrochemical properties of air electrodes based on MnO2 catalysts supported on binary carbons | |
Wang et al. | Structure-dependent electrocatalytic activity of La1-x Sr x MnO3 for oxygen reduction reaction | |
CN113948725B (en) | Preparation method of dual-functional microporous layer type gas diffusion layer, gas diffusion layer and catalytic electrode | |
Rao et al. | Cobalt-Lead-Manganese oxides combined cathode catalyst for air electrode in Zinc–air battery | |
Xu et al. | Bi-functional composite electrocatalysts consisting of nanoscale (La, Ca) oxides and carbon nanotubes for long-term zinc–air fuel cells and rechargeable batteries | |
TWI827263B (en) | Bifunctional electrode and preparation method thereof and its application for zinc-air battery | |
Li et al. | Electrochemical Evaluation of La1-x Ca x MnO3 in Zinc-air Batteries | |
Dilshad et al. | Manganese–cobalt oxide as an effective bifunctional cathode for rechargeable Zn–air batteries with a compact quad-cell battery design | |
CN115224293B (en) | An ORR and OER dual-functional catalyst and its preparation method and application | |
Wang et al. | Boosting the kinetics with graphene quantum dots (GQDs)-decorated NiCo2O4 nanosheets towards high-performance Li-O2 batteries |