TW202414520A - Stage apparatus, transfer apparatus, and article manufacturing method - Google Patents
Stage apparatus, transfer apparatus, and article manufacturing method Download PDFInfo
- Publication number
- TW202414520A TW202414520A TW112113222A TW112113222A TW202414520A TW 202414520 A TW202414520 A TW 202414520A TW 112113222 A TW112113222 A TW 112113222A TW 112113222 A TW112113222 A TW 112113222A TW 202414520 A TW202414520 A TW 202414520A
- Authority
- TW
- Taiwan
- Prior art keywords
- iron core
- stage
- fixed
- coil
- fine motion
- Prior art date
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 16
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical group [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims abstract description 197
- 239000000758 substrate Substances 0.000 claims abstract description 31
- 229910000831 Steel Inorganic materials 0.000 claims description 51
- 239000010959 steel Substances 0.000 claims description 51
- 238000000034 method Methods 0.000 claims description 24
- 238000004804 winding Methods 0.000 claims description 23
- 230000008859 change Effects 0.000 claims description 13
- 230000008569 process Effects 0.000 claims description 8
- 239000007787 solid Substances 0.000 claims description 7
- 239000000306 component Substances 0.000 description 168
- 239000013256 coordination polymer Substances 0.000 description 71
- 235000012431 wafers Nutrition 0.000 description 53
- 238000010586 diagram Methods 0.000 description 37
- 230000001133 acceleration Effects 0.000 description 19
- 230000004907 flux Effects 0.000 description 18
- 239000000853 adhesive Substances 0.000 description 9
- 230000001070 adhesive effect Effects 0.000 description 9
- 239000000463 material Substances 0.000 description 7
- 230000007246 mechanism Effects 0.000 description 5
- 101000827703 Homo sapiens Polyphosphoinositide phosphatase Proteins 0.000 description 4
- 102100023591 Polyphosphoinositide phosphatase Human genes 0.000 description 4
- 230000007723 transport mechanism Effects 0.000 description 4
- 230000009471 action Effects 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 239000008358 core component Substances 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 230000020169 heat generation Effects 0.000 description 2
- 238000005286 illumination Methods 0.000 description 2
- 230000005415 magnetization Effects 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 1
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 1
- 101100012902 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FIG2 gene Proteins 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70691—Handling of masks or workpieces
- G03F7/70716—Stages
- G03F7/70725—Stages control
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70691—Handling of masks or workpieces
- G03F7/70716—Stages
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70691—Handling of masks or workpieces
- G03F7/70758—Drive means, e.g. actuators, motors for long- or short-stroke modules or fine or coarse driving
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/683—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
- H01L21/687—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
- H01L21/68714—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
- H01L21/68764—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by a movable susceptor, stage or support, others than those only rotating on their own vertical axis, e.g. susceptors on a rotating caroussel
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/683—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
- H01L21/687—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
- H01L21/68714—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
- H01L21/68785—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by the mechanical construction of the susceptor, stage or support
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K41/00—Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
- H02K41/02—Linear motors; Sectional motors
- H02K41/03—Synchronous motors; Motors moving step by step; Reluctance motors
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P25/00—Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
- H02P25/02—Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
- H02P25/06—Linear motors
- H02P25/064—Linear motors of the synchronous type
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Power Engineering (AREA)
- Computer Hardware Design (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Manufacturing & Machinery (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Electromagnetism (AREA)
- Combustion & Propulsion (AREA)
- Chemical & Material Sciences (AREA)
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
- Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
- Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
- Linear Motors (AREA)
Abstract
Description
本發明涉及載台裝置、轉印裝置以及物品製造方法。The present invention relates to a stage device, a transfer device and an article manufacturing method.
將原版的圖形向基板轉印的轉印裝置可包括:由粗動致動器驅動的粗動載台;以及配置在粗動載台之上並保持基板的微動載台。在粗動載台與微動載台之間,可配置用於對微動載台相對於粗動載台的位置以及姿勢進行調整的微動致動器。另外,在粗動載台與微動載台之間,也可配置用於以非接觸方式將由粗動致動器提供給粗動載台的推力向微動載台傳遞的電磁致動器。 [先前技術文獻] [專利文獻] 專利文獻1:日本特開2005-109522號公報 專利文獻2:日本特開平8-130179號公報 A transfer device for transferring an original pattern to a substrate may include: a coarse motion stage driven by a coarse motion actuator; and a fine motion stage disposed on the coarse motion stage and holding the substrate. A fine motion actuator for adjusting the position and posture of the fine motion stage relative to the coarse motion stage may be disposed between the coarse motion stage and the fine motion stage. In addition, an electromagnetic actuator for transmitting the thrust provided to the coarse motion stage by the coarse motion actuator to the fine motion stage in a non-contact manner may also be disposed between the coarse motion stage and the fine motion stage. [Prior art document] [Patent document] Patent document 1: Japanese Patent Publication No. 2005-109522 Patent document 2: Japanese Patent Publication No. 8-130179
[發明所欲解決之問題] 當使微動載台加速時,會對微動載台作用力矩。若為了抵消這樣的力矩而使微動致動器動作,則來自微動致動器的發熱會增大。該發熱會導致微動載台的變形,該變形會導致重疊精度的降低。 本發明的目的在於提供有利於減小作用於微動載台的力矩的技術。 [解決問題之技術手段] 本發明的第1方面涉及一種保持基板的載台裝置,上述載台裝置包括:粗動載台;沿規定的平面驅動上述粗動載台的粗動致動器;保持上述基板的微動載台;用於調整上述微動載台相對於上述粗動載台的位置以及姿勢的微動致動器;以及用於以非接觸方式將由上述粗動致動器提供給上述粗動載台的推力向上述微動載台傳遞的電磁致動器,上述電磁致動器包括:固定於上述微動載台的可動鐵芯;固定於上述粗動載台的固定鐵芯;以及纏繞在上述固定鐵芯上的線圈,由上述微動載台保持的上述基板與上述線圈的最短距離大於上述基板與上述固定鐵芯的最短距離。 本發明的第2方面涉及一種將原版的圖形向基板轉印的轉印裝置,上述轉印裝置具有第1方面所涉及的載台裝置。 本發明的第3方面涉及一種物品製造方法,上述物品製造方法包括:通過第2方面所涉及的轉印裝置將原版的圖形向基板轉印的轉印工序;以及從進行過上述轉印工序的上述基板獲得物品的工序。 [發明之效果] 根據本發明,可提供有利於減小作用於微動載台的力矩的技術。 [Problem to be solved by the invention] When the micro-motion stage is accelerated, a torque is applied to the micro-motion stage. If the micro-motion actuator is operated to offset such a torque, the heat generated by the micro-motion actuator will increase. This heat will cause the micro-motion stage to deform, and this deformation will lead to a decrease in the overlap accuracy. The purpose of the present invention is to provide a technology that is conducive to reducing the torque acting on the micro-motion stage. [Technical means for solving the problem] The first aspect of the present invention relates to a stage device for holding a substrate, the stage device comprising: a coarse motion stage; a coarse motion actuator for driving the coarse motion stage along a predetermined plane; a fine motion stage for holding the substrate; a fine motion actuator for adjusting the position and posture of the fine motion stage relative to the coarse motion stage; and an electromagnetic actuator for transmitting the thrust provided to the coarse motion stage by the coarse motion actuator to the fine motion stage in a non-contact manner, the electromagnetic actuator comprising: a movable iron core fixed to the fine motion stage; a fixed iron core fixed to the coarse motion stage; and a coil wound on the fixed iron core, the shortest distance between the substrate held by the fine motion stage and the coil being greater than the shortest distance between the substrate and the fixed iron core. The second aspect of the present invention relates to a transfer device for transferring a pattern of an original plate to a substrate, the transfer device having the stage device of the first aspect. The third aspect of the present invention relates to a method for manufacturing an article, the method comprising: a transfer step for transferring a pattern of an original plate to a substrate by the transfer device of the second aspect; and a step for obtaining an article from the substrate after the transfer step. [Effect of the invention] According to the present invention, a technique for reducing the torque acting on the micro-motion stage can be provided.
以下,參照附圖對實施方式進行詳細說明。另外,以下的實施方式並不限定申請專利範圍所涉及的發明,另外,實施方式所說明的特徵的所有組合並非都是發明的必要構成。實施方式所說明的多個特徵之中的兩個以上的特徵可任意組合。另外,對相同或同樣的構成標註相同的附圖標記,省略重複說明。 在以下的說明中,根據XYZ座標系來說明方向。由X軸以及Y軸規定的XY平面典型為水平面,Z軸典型為與垂直方向平行。XY方向是與XY平面平行的方向。X軸方向是與X軸平行的方向,Y軸方向是與Y軸平行的方向,Z軸方向是與Z軸平行的方向。 圖1中例示性示出了一個實施方式的曝光裝置的構成。該曝光裝置可以作為使第1物體(例如基板)和第2物體(例如原版)相對地對齊的對齊裝置、或者將原版(倍縮光罩)的圖形向基板(晶圓)轉印的轉印裝置的一例來理解。可在地板691之上隔著架座來配置載台平板692,在其上配置晶圓載台裝置500。另外,可在地板691之上隔著架座698配置鏡筒平板696。可通過鏡筒平板696來支撐投影光學系687以及倍縮光罩平板694。可在倍縮光罩平板694之上配置倍縮光罩載台裝置695。可在倍縮光罩平板694的上方配置照明光學系699。照明光學系699可將倍縮光罩載台裝置695的倍縮光罩載台所載置的倍縮光罩的像向晶圓載台裝置500的晶圓載台所載置的晶圓投影,由此將倍縮光罩的圖形轉印到晶圓上。該曝光裝置也可以作為掃描曝光裝置來構成。 晶圓載台裝置500可作為對用作第1物體的基板進行定位的第1定位機構、或者作為保持基板的載台裝置來理解。倍縮光罩載台裝置695可作為用於對用作第2物體的倍縮光罩進行定位的第2定位機構來理解。第1定位機構以及第2定位機構中的至少一方可包括以下說明的電磁裝置或者電磁致動器。 上述的曝光裝置或者轉印裝置可在製造半導體器件等物品的物品製造方法中使用。物品製造方法可包括:通過上述的曝光裝置或者轉印裝置將原版的圖形向基板轉印的轉印工序;以及通過對進行過該轉印工序的基板進行處理來獲得物品的工序。基板的處理例如可包括蝕刻、成膜、切割等。 圖2中例示性示出了晶圓載台裝置500的整體的構成。XY滑塊104可在XY方向滑動自如地配置在載台基座105之上。在XY滑塊104上,可通過X滑塊102傳遞X軸方向的力,另外通過Y滑塊103傳遞Y軸方向的力。可在XY滑塊104之上搭載微動載台裝置101。可在X滑塊102以及Y滑塊103各自的兩側,設置分別在X軸方向以及Y軸方向驅動它們的粗動線性馬達106。 圖3中例示性示出了在晶圓載台裝置500中為方便起見使微動載台裝置101的微動載台(微動頂板)101-1向上方移動後的狀態。微動載台101-1保持晶圓。微動載台101-1也可以作為具有保持晶圓的卡盤的結構來理解。微動基座101-2可在XY滑塊104之上固定。在微動基座101-2之上,可設置進行Z傾動的精密定位的4個微動ZLM(第1微動致動器)101-6。另外,在微動基座101-2之上,可設置進行X軸以及圍繞Z軸的精密定位的2個微動XLM(第2微動致動器)101-4。另外,在微動基座101-2之上,可設置Y軸以及圍繞Z軸的精密定位的2個微動YLM(第3微動致動器)101-5。在微動基座101-2的中央部,可設置以將提供給XY滑塊104的X軸以及Y軸方向的加速力向微動基座101-2傳遞的方式發揮功能的微動電磁鐵101-3。 在此,微動基座101-2可作為粗動載台來理解。或者,XY滑塊104以及微動基座101-2也可以作為粗動載台來理解。另外,粗動線性馬達106可作為沿著XY平面即規定的平面驅動用作粗動載台的微動基座101-2的粗動致動器來理解。另外,微動ZLM101-6、微動XLM101-4以及Y微動YLM101-5可作為用於調整微動載台101-1相對於用作粗動載台的微動基座101-2的位置以及姿勢的微動致動器來理解。另外,微動電磁鐵101-3可作為用於以非接觸方式將由用作粗動致動器的粗動線性馬達106提供給用作粗動載台的微動基座101-2的推力向微動載台101-1傳遞的電磁致動器來理解。 圖4中示出了微動載台裝置101的構成,尤其是微動YLM101-5、微動ZLM101-6的詳細構成例。另外,在圖4中,示出了將磁軛的一部分去除掉的狀態。微動YLM101-5可由線性馬達構成。微動YLM101-5可包括微動YLM線圈基座101-52、微動YLM線圈101-51、微動YLM磁鐵101-53、微動YLM磁軛101-54、微動LM墊片101-70。可在微動基座101-2之上固定微動YLM線圈基座101-52,在其上固定微動YLM線圈101-51。微動YLM線圈101-51可以是具有在垂直方向延伸的直線部的長圓形線圈,以與該直線部面對的方式隔著空隙地配置4個微動YLM磁鐵101-53。可按照夾著這些磁鐵的方式配置用於使磁通通過的2個YLM磁軛101-54。磁鐵的磁化方向可以是X軸方向,在Y軸方向相鄰的磁鐵可以是相反極性,在X軸方向排列的磁鐵可以是相同極性。微動LM墊片101-70可被用於抵抗作用於一對磁鐵以及磁軛的吸引力而保持它們的位置。磁鐵、磁軛、墊片可固定在微動基座101-2。通過使電流在YLM線圈101-51流動,能在與直線部正交的方向也就是Y軸方向產生與電流成比例的力。另外,能通過使相互相反方向的電流在2個微動YLM101-5流動來產生圍繞Z軸的力矩。 微動ZLM101-6可由線性馬達構成。微動ZLM101-6可包括微動ZLM線圈基座101-62、微動ZLM線圈101-61、微動ZLM磁鐵101-63、微動ZLM磁軛101-64、微動LM墊片101-70。可在微動基座101-2之上固定微動ZLM線圈基座101-62,在其上固定微動ZLM線圈101-61。微動ZLM線圈101-61可以是具有在水平方向延伸的直線部的長圓形線圈,以與該直線部面對的方式隔著空隙地配置4個微動ZLM磁鐵101-63。可按照夾著這些磁鐵的方式配置用於使磁通通過的2個ZLM磁軛101-64。磁鐵的磁化方向可以是X軸方向,在Z軸方向相鄰的磁鐵可以是相反極性,在X軸方向排列的磁鐵可以是相同極性。微動LM墊片101-70可被用於抵抗作用在一對磁鐵以及磁軛的吸引力而保持它們的位置。磁鐵、磁軛、墊片可固定在微動頂板101。通過使電流在ZLM線圈101-61流動,能在與直線部正交的方向也就是Z軸方向產生與電流成比例的力。另外,通過在4個微動ZLM101-6流動的電流的方向的組合,能產生圍繞X軸的力矩、圍繞Y軸的力矩。 微動XLM101-4是與微動YLM101-5相同的構成,具有使微動YLM101-5旋轉了90度的配置。由此,能產生X軸方向的力和圍繞Z軸的力矩。 另外,也可以設置4個銷單元101-39,它們可作為在從微動載台101之上回收晶圓時以及在微動載台101-1載置晶圓時的臨時放置處發揮功能。為了穩定地臨時放置晶圓,銷單元101-39的數量優選為3個以上,但若最低為1個,也能實現交接。銷單元101-39具有使臨時放置或者載置晶圓的銷升降的升降機構。銷單元101-39可具有以下功能:驅動銷以便成為銷的上端從微動載台101-1的上表面突出的第1狀態;以及驅動銷以便成為銷的上端從微動載台101-1的上表面向下退避的第2狀態。在將晶圓載置到微動載台101-1之上的動作中,銷單元101-39在第1狀態下從未圖示的搬送機構接收晶圓,然後,在向第2狀態轉變的過程中,將銷上的晶圓交付給微動載台101-1。在將被載置在微動載台101-1之上的晶圓交付給未圖示的搬送機構的動作中,銷單元101-39使銷從第2狀態向第1狀態轉變。銷單元101-39在該過程中由銷接收被載置在微動載台101-1上的晶圓,在第1狀態下交付給未圖示的搬送機構。 微動載台裝置101也可以不具備銷單元101-39,在該場合,通過由微動ZLM101-6將微動載台101-1驅動至上方位置,可在與未圖示的搬送機構之間進行晶圓的交接。 圖5中例示性示出了粗動載台裝置,尤其是X滑塊102、Y滑塊103、XY滑塊104的詳細構成。XY滑塊104可包括XY滑塊下部件104-3、XY滑塊中部件104-2、XY滑塊上部件104-1。XY滑塊下部件104-3可沿XY方向滑動自如地被支撐於載台基座105之上,在其上配置XY滑塊中部件104-2,在其上配置XY滑塊上部件104-1。 X滑塊102可包括X梁102-1、2個X腳102-2、2個X偏航引導件102-3。2個X偏航引導件102-3可固定在載台基座105的2個側面。2個X腳102-2可由X梁102-1連結。一方的X腳102-2相對於一方的X偏航引導件102-3的側面以及載台基座105的上表面隔著空隙地面對,被支撐為可沿X軸方向滑動自如。另一方的X腳102-2相對於另一方的X偏航引導件102-3的側面以及載台基座105的上表面隔著空隙地面對,被支撐可沿X軸方向滑動自如。由此,X梁102-1與2個X腳102-2的一體物可被配置為沿X軸方向滑動自如。另外,X梁102-1的兩側面相對於XY滑塊中部件104-2的內側面隔著微小空隙且滑動自如地面對,可將XY滑塊104限制為在XY方向滑動自如。 Y滑塊103可包括Y梁103-1、Y腳103-2、Y偏航引導件103-3。2個Y偏航引導件103-3固定在載台基座105的2個側面,2個Y腳103-2可由Y梁103-1連結。一方的Y腳103-2相對於一方的Y偏航引導件103-3的側面以及載台基座105的上表面隔著空隙地面對,被支撐為可沿Y軸方向滑動自如。另一方的Y腳103-2相對於另一方的Y偏航引導件103-3的側面以及載台基座105的上表面隔著空隙地面對,被支撐為可沿Y軸方向滑動自如。由此,Y梁103-1與2個Y腳103-2的一體物可被配置為沿X軸方向滑動自如。另外,Y梁103-1的兩側面相對於XY滑塊上部件104-1的內側面隔著微小空隙且滑動自如地面對,可將XY滑塊104限制為在XY方向滑動自如。 圖6中例示性示出了粗動線性馬達106的詳細構成。粗動線性馬達106可包括多個線性馬達線圈106-1、線圈支撐板106-2、支柱106-3、線圈基座106-4、2個線性馬達磁鐵106-5、磁軛106-6、2個墊片106-7、以及臂106-8。 多個線性馬達線圈106-1可以是相鄰的線性馬達線圈106-1的相位彼此相差90度的2相線圈單元。多個線性馬達線圈106-1可固定在線圈支撐板106-2,經由支柱106-3固定在線圈基座106-4。線圈基座106-4既可以固定在載台平板692,也可以被支撐為通過載台平板692在線圈排列方向滑動自如。在線圈基座106-4滑動自如地被支撐的構成中,能夠吸收加速的反作用。2個線性馬達磁鐵106-5可以分別是4極磁鐵單元,它們可配置成隔著空隙從上下夾著線性馬達線圈106-1。 可在各線性馬達磁鐵106-5的背面配置磁軛106-6。墊片106-7可被用於抵抗吸引力而保持2個線性馬達磁鐵106-5的間隙。由線性馬達磁鐵106-5、磁軛106-6、墊片106-7構成的結構體可經由臂106-8而固定於X腳102-2或Y腳103-2。該結構體可對X梁與2個X腳的一體物或Y梁與2個Y腳的一體物提供X軸方向、Y軸方向的推力。另外,在該構成中,通過對2相的線圈之中的與磁鐵面對的線圈流過與位置相應的正弦波電流,能連續地產生力。 圖7中例示性示出了晶圓700上的多個照射區域的排列即照射區佈局圖。可在晶圓700上配置X軸方向的尺寸、Y軸方向的尺寸分別為Sx、Sy的照射區域701。多個照射區域701例如沿著步進/掃描軌跡進行掃描曝光。微動載台101-1在掃描曝光時可與倍縮光罩載台同步地在Y軸方向進行倍縮光罩載台的掃描量的1/投影倍率的掃描量的掃描驅動。另外,若掃描曝光結束,則微動載台101-1可一邊在Y軸方向進行U形轉彎一邊在X軸方向進行步進,進行下一個照射區域的掃描曝光。對於微動載台101-1的加速使用電磁鐵,對於位置控制使用線性馬達,由此能同時達成高精度的位置控制以及低發熱。 在使微動載台101-1加速時,可相對於微動載台101-1作用力矩。若為了抵消這樣的力矩而使微動ZLM101-6動作,則由此會使得來自微動ZLM101-6的發熱增大。該發熱會導致微動載台101-1的變形,該變形會導致重疊精度的降低。 為了抑制來自微動ZLM101-6的發熱,減小在使微動載台101-1加速時作用於微動載台101-1的力矩是有效的。為了減小在使微動載台101-1加速時作用於微動載台101-1的力矩,減小微動XLM101-4、微動YLM101-5、微動ZLM101-6與微動載台101-1的重心的距離是有效的。為此,減小微動基座101-2上的微動電磁鐵101-3的高度是有利的。 圖8、圖9、圖10中例示性示出了第1實施方式的組裝在曝光裝置或者晶圓載台裝置500中的微動電磁鐵101-3的構成。第1實施方式的微動電磁鐵101-3具有有利於減小在使微動載台101-1加速時作用於微動載台101-1的力矩的結構。微動電磁鐵101-3可包括固定鐵芯(第1構件)SC、支撐固定鐵芯SC的支撐構件101-30、可動鐵芯(第2構件)MC、支撐可動鐵芯MC的支撐構件101-31以及線圈101-36。支撐構件101-30將固定鐵芯SC固定於作為粗動載台的微動基座101-2,支撐構件101-31將可動鐵芯MC固定於微動載台101-1。線圈101-36纏繞在固定鐵芯SC上。線圈101-36的中心軸可與XY平面(作為粗動載台的微動基座101-2移動的平面)平行。固定鐵芯SC具有與可動鐵芯MC相向的第1端面,由微動載台101-1保持的晶圓700與線圈101-36的中心軸的距離可大於由微動載台101-1保持的晶圓700與該第1端面的中心的距離。 在圖8、圖9、圖10的例子中,可在微動基座101-2之上固定4個支撐構件101-30,在其上分別配置固定鐵芯SC,在各固定鐵芯SC上纏繞線圈101-36。固定鐵芯SC與可動鐵芯MC隔著微小空隙地面對。在此,由微動載台101-1保持的晶圓(基板)700與線圈101-36的最短距離Hcw大於由微動載台101-1保持的晶圓(基板)700與固定鐵芯SC的最短距離Hew。這樣的構成例如可通過在與XY平面垂直且與線圈101-36的中心軸平行的剖面中使固定鐵芯SC具有曲柄形狀來實現。通過設成Hcw>Hew,與圖4、圖35那樣的構成相比,能使固定鐵芯SC朝垂直下方下降地配置。由此,能降低微動基座101-2上的微動電磁鐵101-3的高度。 在此,在圖8、圖9、圖10所示的構成中,在使質量m的微動載台101-1以加速度a加速時作用於微動載台101-1的力矩M是M=m・a・(hg+hu+he)。另一方面,在圖4、圖35所示的構成中,在使質量m的微動載台101-1以加速度a加速時作用於微動載台101-1的力矩M是M=m・a・(hg+hu+he +hc)。因而,圖8、圖9、圖10所示的構成與圖4、圖35所示的構成相比,在使質量m的微動載台101-1以加速度a加速時作用於微動載台101-1的力矩M減小了m・a・hc。由此,為了抵消力矩而使微動ZLM101-6動作,由此能減少微動ZLM101-6所產生的熱。這有利於抑制微動載台101-1的變形,進而抑制重疊精度的降低。hg是由微動載台101-1以及與微動載台101-1一起移動的構成要素(可動鐵芯MC以及支撐構件101-31等)構成的結構體的重心G與微動載台101-1的下表面(微動基座101-2側的面)之間的Z軸方向距離。hu是微動載台101-1的下表面與微動電磁鐵101-3的上端(微動載台101-1側的端部)之間的Z軸方向距離。he是固定鐵芯SC的上端與微動電磁鐵101-3的作用點之間的Z軸方向距離。hc是線圈101-36的上端(微動載台101-1側的端部)與固定鐵芯SC的上端之間的Z軸方向距離。 圖34中示出了固定鐵芯SC的構成例。在圖34的例子中,固定鐵芯SC由多個電磁鋼板的層積體構成,層積方向是Z軸方向。各電磁鋼板由絕緣膜包覆。在圖34中,磁路中的磁通的方向由黑箭頭表示,磁通經過三維的路徑流動。在Z軸方向流動的磁通由粗的黑箭頭表示。粗的黑箭頭的方向由於與電磁鋼板的法線方向平行,所以,因電流的變化而產生的渦電流沿著電磁鋼板的面流動,沒有對其抑制的構成。因此,如粗的白底箭頭那樣,會產生大的渦電流。由此,固定鐵芯SC發熱,該熱向微動載台101-1傳遞,微動載台101-1變形,從而會導致重疊精度降低。另外,由粗的黑箭頭表示的Z軸方向的磁通由於具有與電磁鋼板的法線方向平行的方向,所以,會導致磁阻大、磁通的值降低、吸引力降低這樣的不利。 以下,對第1實施方式的組裝在曝光裝置或者晶圓載台裝置500中的微動電磁鐵101-3的改進例進行說明。 圖11中例示性示出了第1實施方式的微動電磁鐵101-3的改進例的構成。微動電磁鐵101-3可包括固定鐵芯(第1構件)SC、支撐固定鐵芯SC的支撐構件101-30、可動鐵芯(第2構件)MC、支撐可動鐵芯MC的支撐構件101-31以及線圈101-36。固定鐵芯(第1構件)SC可包括第1要素101-32、第2要素101-33、第3要素101-34以及第4要素101-35。可動鐵芯(第2構件)MC雖可包括要素101-38,但也可以除了要素101-38之外還包括1個或多個其他要素。固定鐵芯(第1構件)SC可具有第1端面E1,可動鐵芯(第2構件)MC可具有相對於第1端面E1隔著空隙地面對的第2端面E2。在該例子中,第1端面E1設在第2要素101-33、第3要素101-34以及第4要素101-35之各者,第2端面E2設在要素101-38。 固定鐵芯(第1構件)SC可由多個電磁鋼板的層積體構成。該多個電磁鋼板可分別由絕緣膜包覆。出於其他觀點,構成固定鐵芯(第1構件)SC的第1要素101-32、第2要素101-33、第3要素101-34以及第4要素101-35可分別由多個電磁鋼板的層積體構成。可動鐵芯(第2構件)MC可由多個電磁鋼板的層積體構成。出於其他觀點,構成可動鐵芯(第2構件)MC的至少1個要素即要素101-38可由多個電磁鋼板的層積體構成。該多個電磁鋼板可分別由絕緣膜包覆。 由固定鐵芯(第1構件)SC、可動鐵芯(第2構件)MC以及空隙(第1端面E1與第2端面E2之間的空間)構成的磁路可包括多個電磁鋼板的層積體的層積方向呈直角變化的至少1個變化部CP。變化部CP可包括層積方向為第1方向(例如Z軸方向)的第1部分(例如第1要素101-32)和層積方向為與第1方向正交的第2方向(例如X軸方向)的第2部分(例如第3要素101-34)的接觸部。變化部CP可包括使層積方向為第1方向的第1部分(例如第1要素101-32)和層積方向為與第1方向正交的第2方向的第2部分(例如第3要素101-34)隔著固體構件地面對的部分。該固體構件例如可以是分別包覆多個電磁鋼板的絕緣膜。 在圖11的改進例中,變化部CP設在固定鐵芯(第1構件)SC。另外,在圖11的改進例中,變化部CP包括使固定鐵芯(第1構件)SC和可動鐵芯(第2構件)MC隔著空隙面對的部分。後者的構成也可以作為以下構成來理解:構成變化部CP的第1部分以及第2部分之中的第1部分設在固定鐵芯(第1構件)SC,第2部分設在可動鐵芯(第2構件)MC。變化部CP既可以相對於可動鐵芯(第2構件)MC追加地設置,或也可以僅設在可動鐵芯(第2構件)MC。 固定鐵芯(第1構件)SC和可動鐵芯(第2構件)MC分別可由至少1個層積鐵芯構成。或者,固定鐵芯(第1構件)SC和可動鐵芯(第2構件)MC中的至少一方可由多個層積鐵芯構成。這樣的多個層積鐵芯可相互接近地配置,由固定構件固定。另外,層積鐵芯可通過層積相同形狀的電磁鋼板來構成。 第1要素101-32、第2要素101-33、第3要素101-34、第4要素101-35可由層積鐵芯構成。第1要素101-32、第2要素101-33、第3要素101-34、第4要素101-35既可以使用黏著材料而一體化,或也可以使用夾緊部件進行緊固而一體化。在該例子中,至少1個變化部CP設在固定鐵芯(第1構件)SC,線圈101-36纏繞在固定鐵芯(第1構件)SC上。線圈101-36可纏繞在固定鐵芯(第1構件)SC之中的與配置有變化部CP的部分不同的部分。通過使電流在線圈101-36中流動,在第1端面E1與第2端面E2之間產生吸引力。在圖11的改進例中,第1要素101-32具有E型的形狀,線圈101-36纏繞在第1要素101-32的中央的齒上。 變化部CP設置成通過由固定鐵芯(第1構件)SC、可動鐵芯(第2構件)MC以及空隙構成的磁路的磁通不會在它們的層積方向流經構成固定鐵芯(第1構件)SC、可動鐵芯(第2構件)MC的多個電磁鋼板。或者,變化部CP、固定鐵芯(第1構件)SC、可動鐵芯(第2構件)MC可設置成通過固定鐵芯(第1構件)SC、可動鐵芯(第2構件)MC的磁通沿著各電磁鋼板的面方向流動。或者,變化部CP可設置成由固定鐵芯(第1構件)SC、可動鐵芯(第2構件)MC以及空隙構成的磁路的磁阻比沒有變化部CP的場合小。或者,變化部CP可設置成在由固定鐵芯(第1構件)SC、可動鐵芯(第2構件)MC以及空隙構成的磁路中產生的渦電流比沒有變化部CP的場合小。 由包括變化部CP的鐵芯構成磁路有利於使磁路的形狀的自由度提高。另外,通過由多個要素構成像固定鐵芯(第1構件)SC以及可動鐵芯(第2構件)MC那樣的鐵芯,可使具有複雜形狀的鐵芯的製造變容易,另外可使線圈的安裝以及更換用的作業變容易。尤其是由夾緊構件緊固多個要素的構成有利於使線圈的更換作業變容易。 圖12例示性示出了第1實施方式的微動電磁鐵101-3的其他改進例的構成。未在此處言及的事項可依照圖11所示的改進例的構成。微動電磁鐵101-3可包括固定鐵芯(第1構件)SC、支撐固定鐵芯SC的支撐構件101b-30、可動鐵芯(第2構件)MC、支撐可動鐵芯MC的支撐構件(未圖示)以及線圈101-36。固定鐵芯(第1構件)SC可包括第1要素101b-32、第2要素101b-33、第3要素101b-34以及第4要素101b-35。可動鐵芯(第2構件)MC雖可包括要素101-38,但除了要素101-38之外還可以包括1個或多個其他要素。與圖8的例子同樣,固定鐵芯(第1構件)SC具有第1端面,可動鐵芯(第2構件)MC可具有相對於第1端面隔著空隙地面對的第2端面。在該例子中,第1端面設在第2要素101b-33、第3要素101b-34以及第4要素101b-35之各者,第2端面設在要素101-38。在圖12的改進例中,第2要素101b-33、第3要素101b-34以及第4要素101b-35在與XY平面垂直且與線圈101-36的中心軸平行的剖面中具有曲柄形狀,第1要素101b-32具有長方體形狀。 圖13、圖14、圖15中例示性示出了第2實施方式的組裝在曝光裝置或者晶圓載台裝置500中的微動電磁鐵101-3的構成。作為第2實施方式未言及的事項可依照第1實施方式。第2實施方式的微動電磁鐵101-3具有有利於減小在使微動載台101-1加速時作用於微動載台101-1的力矩的結構。微動電磁鐵101-3可包括固定鐵芯(第1構件)SC、支撐固定鐵芯SC的支撐構件101-30、可動鐵芯(第2構件)MC、支撐可動鐵芯MC的支撐構件101-31以及線圈101-36。支撐構件101-30將固定鐵芯SC固定在作為粗動載台的微動基座101-2,支撐構件101-31將可動鐵芯MC固定在微動載台101-1。線圈101-36纏繞在固定鐵芯SC上。線圈101-36的中心軸可按照相對於XY平面(作為粗動載台的微動基座101-2移動的平面)傾斜的角度配置。同樣,固定鐵芯SC之中的至少纏繞線圈101-36的部分可包括在相對於XY平面傾斜的方向延伸的部分。固定鐵芯SC優選像第1實施方式的改進例那樣包括變化部CP。 圖16、圖17、圖18例示性示出了第3實施方式的組裝在曝光裝置或者晶圓載台裝置500中的微動電磁鐵101-3的構成。作為第3實施方式未言及的事項可依照第1實施方式。第3實施方式的微動電磁鐵101-3具有有利於減小在使微動載台101-1加速時作用於微動載台101-1的力矩的結構。微動電磁鐵101-3可包括固定鐵芯(第1構件)SC、支撐固定鐵芯SC的支撐構件101-30、可動鐵芯(第2構件)MC、支撐可動鐵芯MC的支撐構件101-31以及線圈101-36。支撐構件101-30將固定鐵芯SC固定在作為粗動載台的微動基座101-2,支撐構件101-31將可動鐵芯MC固定在微動載台101-1。線圈101-36纏繞在固定鐵芯SC上。線圈101-36的中心軸可按照相對於XY平面(作為粗動載台的微動基座101-2移動的平面)垂直的角度配置。在與XY平面垂直且與線圈101-36的中心軸平行的剖面中,固定鐵芯SC可包括具有L形狀的部分。微動基座101-2也可以具有開口,微動電磁鐵101-3的一部分也可以配置在該開口之中。 以下,對第3實施方式的組裝在曝光裝置或者晶圓載台裝置500中的微動電磁鐵101-3的改進例進行說明。未在此處言及的事項可依照第1實施方式的改進例。圖19、圖20中例示性示出了第3實施方式的微動電磁鐵101-3的改進例的構成。另外,圖20中例示性示出了移除微動基座101-2的狀態的微動電磁鐵101-3的構成。 在該改進例中,對微動基座101-2設置4個開口301-21,各微動電磁鐵101-3的一部分可配置在對應的開口301-21之中。4個微動電磁鐵101-3各自的一部分也可以配置在微動基座101-2之下。各微動電磁鐵101-3可經由支撐構件301-30由微動基座101-2支撐。這樣的構成有利於降低微動基座101-2之上的微動電磁鐵101-3的高度以及減小微動電磁鐵101-3的XY方向上的尺寸。 微動電磁鐵101-3可包括固定鐵芯(第1構件)SC、支撐固定鐵芯SC的支撐構件301-30、可動鐵芯(第2構件)MC、支撐可動鐵芯MC的支撐構件101-31以及線圈301-36。固定鐵芯(第1構件)SC可包括第1要素301-32、第2要素301-33、第3要素301-34以及第4要素301-35。可動鐵芯(第2構件)MC雖可包括要素101-38,但也可以除了要素101-38之外還包括1個或多個其他要素。固定鐵芯(第1構件)SC可具有第1端面E1,可動鐵芯(第2構件)MC可具有相對於第1端面E1隔著空隙地面對的第2端面E2。在該例子中,第1端面E1設在第2要素301-33、第3要素301-34以及第4要素301-35之各者,第2端面E2設在要素101-38。 固定鐵芯(第1構件)SC可由多個電磁鋼板的層積體構成。該多個電磁鋼板可分別由絕緣膜包覆。出於其他觀點,構成固定鐵芯(第1構件)SC的第1要素301-32、第2要素301-33、第3要素301-34以及第4要素301-35可分別由多個電磁鋼板的層積體構成。可動鐵芯(第2構件)MC可由多個電磁鋼板的層積體構成。出於其他觀點,構成可動鐵芯(第2構件)MC的至少1個要素即要素101-38可由多個電磁鋼板的層積體構成。該多個電磁鋼板可分別由絕緣膜包覆。 由固定鐵芯(第1構件)SC、可動鐵芯(第2構件)MC以及空隙(第1端面E1與第2端面E2之間的空間)構成的磁路可包括多個電磁鋼板的層積體的層積方向呈直角變化的至少1個變化部CP。變化部CP可包括層積方向為第1方向(例如Y軸方向)的第1部分(例如第1要素301-32)和層積方向為與第1方向正交的第2方向(例如X軸方向)的第2部分(例如第3要素301-34)的接觸部。變化部CP可包括使層積方向為第1方向的第1部分(例如第1要素301-32)和層積方向為與第1方向正交的第2方向的第2部分(例如第3要素301-34)隔著固體構件地面對的部分。該固體構件例如可以是分別包覆多個電磁鋼板的絕緣膜。 在圖19、圖20的例子中,變化部CP設在固定鐵芯(第1構件)SC。另外,在圖19、圖20的例子中,變化部CP包括使固定鐵芯(第1構件)SC和可動鐵芯(第2構件)MC隔著空隙地面對的部分。後者的構成也可以被理解為以下構成:構成變化部CP的第1部分以及第2部分之中的第1部分設在固定鐵芯(第1構件)SC,第2部分設在可動鐵芯(第2構件)MC。變化部CP既可以相對於可動鐵芯(第2構件)MC追加地設置,或也可以僅設在可動鐵芯(第2構件)MC。在圖19、圖20的例子中,第2要素301-33、第3要素301-34以及第4要素301-3具有L型的形狀,第1要素301-32具有長方體形狀。 圖21中例示性示出了第3實施方式的微動電磁鐵101-3的其他改進例的構成。微動電磁鐵101-3可包括固定鐵芯(第1構件)SC、支撐固定鐵芯SC的支撐構件201a-30、可動鐵芯(第2構件)MC、支撐可動鐵芯MC的支撐構件101-31以及線圈201a-36。固定鐵芯(第1構件)SC可包括第1要素201a-32、第2要素201a-33、第3要素201a-34以及第4要素201a-35。可動鐵芯(第2構件)MC雖可包括要素101-38,但也可以除了要素101-38之外還包括1個或多個其他要素。固定鐵芯(第1構件)SC可具有第1端面E1,可動鐵芯(第2構件)MC可具有相對於第1端面E1隔著空隙地面對的第2端面E2。在該例子中,第1端面E1設在第2要素201a-33、第3要素201a-34以及第4要素201a-35之各者,第2端面E2設在要素101-38。在圖21的改進例中,第1要素201a-32具有E型的形狀,線圈201a-36纏繞在第1要素201a-32的中央的齒上。另外,在圖21的改進例中,第2要素201a-33、第3要素201a-34以及第4要素201a-35具有長方體形狀。 以下,參照圖27~圖31對圖21的改進例的微動電磁鐵101-3的組裝方法或者製造方法進行說明。圖27中示出了將圖21的改進例的微動電磁鐵101-3分解的狀態。第1要素201a-32與支撐構件201a-30可通過黏著劑、夾緊、嵌合等而結合。另外,線圈201a-36與線圈基座201a-42可通過黏著材料等而結合。另外,第2要素201b-33、第3要素201b-34以及第4要素201b-35可隔著末端部件墊片201a-40,通過黏著材料、夾緊、嵌合等而結合。 如圖28所例示那樣,可在微動基座101-2的開口201a-21中插入第1要素201a-32,將第1要素201a-32與支撐構件201a-30的結合體定位於微動基座101-2。並且,可將支撐構件201a-30固定在微動基座101-2。支撐構件201a-30相對於微動基座101-2的固定例如可通過螺釘緊固、黏著劑、夾緊、嵌合等來實現。 接下來,如圖29所例示那樣,可將線圈201a-36與線圈基座201a-42的結合體定位於微動基座101-2,將線圈基座201a-42固定在微動基座101-2。線圈基座201a-42相對於微動基座101-2的固定例如可通過螺釘緊固、黏著劑、夾緊、嵌合等來實現。 接下來,如圖30所例示那樣,末端部件基座201a-41例如可通過螺釘緊固、黏著劑、夾緊、嵌合等而固定在微動基座101-2。 接下來,如圖31所例示那樣,第2要素201b-33、第3要素201b-34、第4要素201b-35以及第2要素201b-33、第3要素201b-34以及第4要素201b-35的結合體可固定在末端部件基座201a-41。這可以通過利用螺釘緊固、黏著劑、夾緊、嵌合等將末端部件墊片201a-40固定在末端部件基座201a-41來實現。 可經由與上述相反的順序而返回圖28所示的狀態,如圖29所例示那樣,將新的線圈201a-36固定在微動基座101-2,然後經由圖30、圖31所例示的順序,進行線圈201a-36的更換。 在通過結合多個要素而形成固定鐵芯SC的場合,例如恐有在2個要素的邊界(例如第2要素201a-33與第1要素201a-32的邊界)沿著邊界面在2個要素間產生微小的相對偏移而產生顆粒之虞。作為其對策,可以在邊界面施予用於防止顆粒的塗覆,或也可以在邊界面附近設置回收盤,或也可以在邊界面附近設置捕集磁鐵。另外,當將末端部件墊片201a-40固定在末端部件基座201a-41時,也可以在兩者之間插入薄的墊片,將第1要素201a-32和第2要素201a-33、第3要素201a-34、第4要素201a-35維持成非接觸的狀態。 以下,對第4實施方式的曝光裝置以及微動電磁鐵101-3進行說明。作為第4實施方式未言及的事項可依照第1至第3實施方式。圖22中例示性示出了第4實施方式的微動電磁鐵101-3的構成。微動電磁鐵101-3可包括固定鐵芯(第1構件)SC、支撐固定鐵芯SC的支撐構件301a-30、可動鐵芯(第2構件)MC、支撐可動鐵芯MC的支撐構件301a-31以及線圈301a-36。固定鐵芯(第1構件)SC可包括第1要素301a-32、第2要素301a-37、第3要素301a-33、第4要素301a-34、第5要素301a-35。可動鐵芯(第2構件)MC雖可包括要素301a-38,但也可以除了要素301a-38以外還包括1個或多個其他要素。固定鐵芯(第1構件)SC可具有第1端面E1,可動鐵芯(第2構件)MC可具有相對於第1端面E1隔著空隙地面對的第2端面E2。在該例子中,第1端面E1設在第3要素301a-33、第4要素301a-34以及第5要素301a-35之各者,第2端面E2設在要素301a-38。 固定鐵芯(第1構件)SC可由多個電磁鋼板的層積體構成。該多個電磁鋼板可分別由絕緣膜包覆。出於其他觀點,構成固定鐵芯(第1構件)SC的一部分的第3要素301a-33、第4要素301a-34以及第5要素301a-35可由層積了多個電磁鋼板的層積鐵芯構成。另外,構成固定鐵芯(第1構件)SC的其他的一部分的第1要素301a-32以及第2要素301a-37可由可通過捲繞電磁鋼板而形成的纏繞鐵芯來構成。另外,在作為構成固定鐵芯(第1構件)SC的部件被使用的狀態下,纏繞鐵芯具有層積了多個電磁鋼板的結構的一個形態。可動鐵芯(第2構件)MC可由層積了多個電磁鋼板的層積鐵芯構成。出於其他觀點,構成可動鐵芯(第2構件)MC的至少1個要素即要素301a-38可由多個電磁鋼板的層積體構成。該多個電磁鋼板可分別由絕緣膜包覆。 由固定鐵芯(第1構件)SC、可動鐵芯(第2構件)MC以及空隙(第1端面E1與第2端面E2之間的空間)構成的磁路可包括多個電磁鋼板的層積體的層積方向呈直角變化的變化部CP、CP’。變化部CP可包括層積方向為第1方向(例如Z軸方向)的第1部分(例如第5要素301a-38)和層積方向為與第1方向正交的第2方向(例如X軸方向)的第2部分(例如第2要素301a-37)的接觸部。變化部CP可包括使層積方向為第1方向的第1部分(例如第5要素301a-38)和層積方向為與第1方向正交的第2方向的第2部分(例如第2要素301a-37)隔著固體構件地面對的部分。該固體構件例如可以是分別包覆多個電磁鋼板的絕緣膜。變化部CP’包括層積方向從第1方向(例如X軸方向)向與第1方向正交的第2方向(例如Z軸方向)緩慢變化的部分。包括層積方向緩慢變化的部分的變化部CP’可以是纏繞鐵芯的一部分。固定鐵芯(第1構件)SC包括層積方向為第1方向(例如X軸方向)的第1部分P1以及第2方向(例如Z軸方向)的第2部分P2,層積方向在第1部分P1與第2部分P2之間緩慢變化。變化部CP’是第1部分P1與第2部分P2之間的部分。 在圖22的例子中,變化部CP、CP’設在固定鐵芯(第1構件)SC。變化部CP以及CP’中的至少1個既可以相對於可動鐵芯(第2構件)MC追加地設置,或也可以僅設在可動鐵芯(第2構件)MC。也可以是,固定鐵芯(第1構件)SC以及可動鐵芯(第2構件)MC之中的一方由至少1個層積鐵芯構成,固定鐵芯(第1構件)SC以及可動鐵芯(第2構件)MC之中的另一方由纏繞鐵芯構成,變化部由纏繞鐵芯構成。 第1要素301a-32、第2要素301a-37、第3要素301a-33以及第4要素301a-34、第5要素301a-35既可以使用黏著材料而一體化,或也可以使用夾緊部件進行緊固而一體化。在該例子中,變化部CP、CP’設在固定鐵芯(第1構件)SC,線圈301a-36纏繞在固定鐵芯(第1構件)SC上。線圈301a-36可纏繞在固定鐵芯(第1構件)SC之中的與配置變化部CP、CP’的部分不同的部分。通過使電流在線圈301a-36中流通,在第1端面E1與第2端面E2之間產生吸引力。在圖22的例子中,第1要素301a-32以及第2要素301a-37具有U型的形狀,線圈301a-36纏繞在第1要素301a-32的1個齒以及第2要素301a-37的1個齒被一體化的部分。 變化部CP、CP’可設置成通過由固定鐵芯(第1構件)SC、可動鐵芯(第2構件)MC以及空隙構成的磁路的磁通不會在它們的層積方向流經構成固定鐵芯SC、可動鐵芯MC的多個電磁鋼板。或者,變化部CP、CP’、固定鐵芯(第1構件)SC、可動鐵芯(第2構件)MC設置成通過固定鐵芯SC、可動鐵芯MC的磁通沿著各電磁鋼板的面方向流通。或者,變化部CP、CP’可設置成由固定鐵芯(第1構件)SC、可動鐵芯(第2構件)MC以及空隙構成的磁路的磁阻比沒有變化部CP、CP’的場合小。或者,變化部CP、CP’可設置成在由固定鐵芯(第1構件)SC、可動鐵芯(第2構件)MC以及空隙構成的磁路中產生的渦電流比沒有變化部CP、CP’的場合小。 在圖22的例子中,具有第1端面E1的第3要素301a-33、第4要素301a-34以及第5要素301a-35的層積方向(Z軸方向)與具有第2端面E2的要素301a-38的層積方向(Z軸方向)相同。這會有助於減少空隙附近的磁阻而增加磁通。 也可以替代圖22的構成例,將第3要素301a-33、第4要素301a-34以及第5要素301a-35的層積方向設為X軸方向。這樣的構成會有助於減少第3要素301a-33、第4要素301a-34以及第5要素301a-35與第1要素301a-32以及第2要素301a-37的邊界部附近的磁阻而增加磁通。 圖23中例示性示出了第4實施方式的微動電磁鐵101-3的變形例的構成。作為變形例未言及的事項可依照圖22所示的第4實施方式的構成。微動電磁鐵101-3可包括固定鐵芯(第1構件)SC、支撐固定鐵芯SC的支撐構件301b-30、可動鐵芯(第2構件)MC、支撐可動鐵芯MC的支撐構件301b-31以及線圈301b-36。固定鐵芯(第1構件)SC可包括第1要素301b-32、第2要素301b-33。可動鐵芯(第2構件)MC可包括第3要素301b-37、第4要素301b-38。固定鐵芯(第1構件)SC可具有第1端面E1,可動鐵芯(第2構件)MC可具有相對於第1端面E1隔著空隙地面對的第2端面E2。在該例子中,第1端面E1設在第1要素301b-32以及第2要素301b-33之各者,第2端面E2設在第3要素301b-37以及第4要素301b-38之各者。 固定鐵芯(第1構件)SC可由多個電磁鋼板的層積體構成。該多個電磁鋼板可分別由絕緣膜包覆。出於其他觀點,構成固定鐵芯(第1構件)SC的一部分的第1要素301b-32以及第2要素301b-33可由多個電磁鋼板的層積體構成。另外,在作為構成固定鐵芯(第1構件)SC的部件被使用的狀態下,纏繞鐵芯也具有層積了多個電磁鋼板的結構的一個形態。可動鐵芯(第2構件)MC可由多個電磁鋼板的層積體構成。出於其他觀點,構成可動鐵芯(第2構件)MC的第3要素301b-37以及第4要素301b-38可由多個電磁鋼板的層積體構成。該多個電磁鋼板可分別由絕緣膜包覆。 由固定鐵芯(第1構件)SC、可動鐵芯(第2構件)MC以及空隙(第1端面E1與第2端面E2之間的空間)構成的磁路可包括多個電磁鋼板的層積體的層積方向呈直角變化的變化部CP’、CP”。在該例子中,變化部CP’設在固定鐵芯(第1構件)SC,變化部CP”設在可動鐵芯(第2構件)MC。 變化部CP’包括層積方向從第1方向(例如X軸方向)向與第1方向正交的第2方向(例如Z軸方向)緩慢變化的部分。包括層積方向緩慢變化的部分的變化部CP’可以是纏繞鐵芯的一部分。固定鐵芯(第1構件)SC包括層積方向為第1方向(例如X軸方向)的第1部分P1以及第2方向(例如Z軸方向)的第2部分P2,層積方向在第1部分P1與第2部分P2之間緩慢變化。變化部CP’是第1部分P1與第2部分P2之間的部分。 可動鐵芯(第2構件)MC包括層積方向為第1方向(例如X軸方向)的第3部分P3以及第2方向(例如Y軸方向)的第4部分P4,層積方向在第3部分P3與第4部分P4之間緩慢變化。變化部CP”是第3部分P3與第4部分P4之間的部分。 通過使電流在線圈301b-36中流動,在第1端面E1與第2端面E2之間產生吸引力。在圖23的例子中,第1要素301b-32以及第2要素301b-33具有U型的形狀,線圈301b-36纏繞在第1要素301a-32的1個齒以及第2要素301a-37的1個齒被一體化的部分。 變化部CP’、CP”可設置成通過由固定鐵芯(第1構件)SC、可動鐵芯(第2構件)MC以及空隙構成的磁路的磁通不會在它們的層積方向流經構成固定鐵芯SC、可動鐵芯MC的多個電磁鋼板。或者,變化部CP’、CP”、固定鐵芯(第1構件)SC、可動鐵芯(第2構件)MC可設置成通過固定鐵芯SC、可動鐵芯MC的磁通沿著各電磁鋼板的面方向流動。或者,變化部CP’、CP”可設置成由固定鐵芯(第1構件)SC、可動鐵芯(第2構件)MC以及空隙構成的磁路的磁阻比沒有變化部CP’、CP”的場合小。或者,變化部CP’、CP”可設置成在由固定鐵芯(第1構件)SC、可動鐵芯(第2構件)MC以及空隙構成的磁路中產生的渦電流比沒有變化部CP’、CP”的場合小。 在圖23的例子中,第1端面E1處的第1要素301b-32以及第2要素301b-33的層積方向(X軸方向)與第2端面E2處的第3要素301b-37以及第4要素301b-38的層積方向(X軸方向)相同。這會有助於減少空隙附近的磁阻而增加磁通。另外,在圖23的例子中,在由固定鐵芯(第1構件)SC、可動鐵芯(第2構件)MC以及空隙構成的磁路中,層積方向不會急劇地變化,這有利於使磁阻降低而使磁通增加。 圖24中例示性示出了支撐可動鐵芯MC的支撐構件301b-31的結構。支撐構件301b-31為了支撐可由纏繞鐵芯構成的可動鐵芯MC而可具有星形輪形狀。 在此,參照圖32對纏繞鐵芯進行說明。圖32的(a)中例示出纏繞鐵芯。圖32的(b)中是通過線切割等將圖32的(a)所例示的纏繞鐵芯切斷而得的纏繞鐵芯,這樣的纏繞鐵芯也被稱為切割芯。纏繞鐵芯可通過將環材纏繞於未圖示的芯來製造。如圖33所例示那樣,環材可通過圖33所例示的切割機來製造。將原卷材卷朝板通過方向輸送,由設在途中的包括圓刀的切割機切斷成所期望的寬度,獲得環材。該寬度根據切割機的圓刀的間隔來決定。 如圖32的(a)所例示那樣,纏繞鐵芯是多個電磁鋼板的層積體,1個纏繞鐵芯具有多個層積方向。換言之,纏繞鐵芯可作為構成前述的變化部的構件來利用。層積方向是在相對於電磁鋼板垂直的方向貫通纏繞鐵芯中的注目部位的方向。寬度方向是由切割機決定的方向,也是軸向。軸向是與各電磁鋼板的最大面的任意部位都平行的方向。 在一個方面,本發明的電磁裝置可具備由層積鐵芯或纏繞鐵芯構成的多個鐵芯構件和使該鐵芯構件產生磁通的線圈。在此,可以是某個層積鐵芯的層積方向與某個纏繞鐵芯的寬度方向正交,或者某個層積鐵芯與另外的層積鐵芯的層積方向正交,或者某個纏繞鐵芯與另外的纏繞鐵芯的寬度方向正交。 以下,關於晶圓載台裝置500的控制系統進行說明。圖25中例示性示出了晶圓載台裝置500的控制系統的構成。移動目標提供部5101提供移動目標。位置曲線生成器5102基於從移動目標提供部5101提供的移動目標,生成表示時間與該時間處的微動載台101-1的位置的關係的位置曲線。另外,位置曲線生成器5102根據所生成的位置曲線來生成目標位置。加速度曲線生成器5103基於從移動目標提供部5101提供的移動目標,生成表示時間與該時間處的微動載台101-1的加速度的關係的加速度曲線。另外,加速度曲線生成器5103根據所生成的加速度曲線來生成目標加速度。圖26中例示出了由位置曲線生成器5102生成的位置曲線以及由加速度曲線生成器5103生成的加速度曲線。 微動位置感測器5156測量微動載台101-1的位置。微動位置控制系統5121對應於根據由位置曲線生成器5102生成的位置曲線提供的目標位置和由微動位置感測器5156提供的當前位置的偏差,通過PID演算等產生操作量。電流放大器5122將與微動位置控制系統5121所產生的操作量相對應的電流供給至微動XLM101-4、微動YLM101-5。由此,微動載台101-1受到回饋控制。 粗動位置感測器5135測量微動基座101-2的位置。粗動位置控制系統5133對應於根據由位置曲線生成器5102生成的位置曲線提供的目標位置和由粗動位置感測器5135提供的當前位置的偏差,通過PID演算等產生操作量。電流放大器5131將與粗動位置控制系統5133產生的操作量以及從加速度曲線生成器5103提供的目標加速度相對應的電流供給至粗動線性馬達106。由此,微動基座101-2受到回饋控制以及前饋控制。 加速度曲線生成器5103所產生的目標加速度也被供給至電磁鐵電流控制系統5515,電磁鐵電流控制系統5515根據目標加速度來控制微動電磁鐵101-3。在微動載台101-1(微動載台裝置101)的加速時,主要由微動電磁鐵101-3對微動載台101-1提供力。可控制微動XLM101-4、微動YLM101-5以便產生用於使目標位置與所測量出的當前位置之間的微小的位置偏差降低的推力。由此,微動XLM101-4、微動YLM101-5所產生的熱將會減少。 粗動位置控制系統5133使微動基座101-2的位置根據位置曲線生成器5102所產生的位置曲線進行移動。微動電磁鐵101-3有利於以極小的發熱來產生大的吸引力。但是,必須要維持微動電磁鐵101-3的第1端面E1與第2端面E2之間的空隙。也就是,為了由微動電磁鐵101-3持續對微動載台101-1提供所期望的力,需要順應於微動載台101-1的移動來使微動電磁鐵101-3的定子(固定鐵芯以及線圈)移動,以維持空隙。另外,微動ZLM所產生的熱可通過減小微動基座101-2上的微動電磁鐵101-3的高度而減少。根據以上構成,可實現微動載台101-1的高精度的位置控制、發熱的減少以及重疊誤差的降低。 實現上述事項的是粗動位置控制系統5133。粗動位置也就是微動基座101-2的位置通過編碼器所代表的粗動位置感測器5135來測量,基於其與目標位置的偏差,由粗動位置控制系統5133驅動粗動線性馬達106。其結果,微動載台101-1(微動電磁鐵101-3的動子)的位置以及微動基座101-2(微動電磁鐵101-3的定子)的位置都基於位置曲線生成器5102的輸出來控制,維持空隙。測量微動載台101-1的位置的微動位置感測器5156也可以由測量微動載台101-1與微動基座101-2的相對位置的感測器來置換。 發明並不被限制於上述的實施方式,在發明的構思的範圍內可進行各種變形、變更。 Hereinafter, the implementation method will be described in detail with reference to the accompanying drawings. In addition, the following implementation method does not limit the invention involved in the scope of the patent application, and all combinations of the features described in the implementation method are not necessary components of the invention. Two or more of the multiple features described in the implementation method can be combined arbitrarily. In addition, the same figure mark is used to mark the same or similar components, and repeated description is omitted. In the following description, the direction is described according to the XYZ coordinate system. The XY plane defined by the X-axis and the Y-axis is typically a horizontal plane, and the Z-axis is typically parallel to the vertical direction. The XY direction is a direction parallel to the XY plane. The X-axis direction is a direction parallel to the X-axis, the Y-axis direction is a direction parallel to the Y-axis, and the Z-axis direction is a direction parallel to the Z-axis. FIG1 exemplarily shows the structure of an exposure device of an implementation method. The exposure device can be understood as an example of an alignment device for aligning a first object (e.g., substrate) and a second object (e.g., original plate) relative to each other, or a transfer device for transferring a pattern of an original plate (magnification mask) to a substrate (wafer). A stage plate 692 can be arranged on a floor 691 via a stand, and a wafer stage device 500 can be arranged thereon. In addition, a barrel plate 696 can be arranged on a floor 691 via a stand 698. The projection optical system 687 and the magnification mask plate 694 can be supported by the barrel plate 696. A magnification mask stage device 695 can be arranged on the magnification mask plate 694. An illumination optical system 699 can be arranged above the magnification mask plate 694. The illumination optical system 699 can project the image of the zoom mask carried by the zoom mask stage of the zoom mask stage device 695 onto the wafer carried by the wafer stage of the wafer stage device 500, thereby transferring the pattern of the zoom mask onto the wafer. The exposure device can also be configured as a scanning exposure device. The wafer stage device 500 can be understood as a first positioning mechanism for positioning a substrate used as a first object, or as a stage device for holding a substrate. The zoom mask stage device 695 can be understood as a second positioning mechanism for positioning a zoom mask used as a second object. At least one of the first positioning mechanism and the second positioning mechanism may include an electromagnetic device or an electromagnetic actuator described below. The above-mentioned exposure device or transfer device can be used in an article manufacturing method for manufacturing articles such as semiconductor devices. The article manufacturing method may include: a transfer process of transferring the original pattern to the substrate by the above-mentioned exposure device or transfer device; and a process of obtaining the article by processing the substrate that has undergone the transfer process. The processing of the substrate may include, for example, etching, film forming, cutting, etc. The overall structure of the wafer stage device 500 is shown in FIG2 as an example. The XY slider 104 can be freely slidably arranged on the stage base 105 in the XY direction. On the XY slider 104, the force in the X-axis direction can be transmitted through the X slider 102, and the force in the Y-axis direction can be transmitted through the Y slider 103. The micro-motion stage device 101 can be mounted on the XY slider 104. Coarse linear motors 106 for driving the X-axis direction and the Y-axis direction may be provided on both sides of the X-slide 102 and the Y-slide 103, respectively. FIG. 3 exemplarily shows a state in which the fine-motion stage (fine-motion top plate) 101-1 of the fine-motion stage device 101 is moved upward for convenience in the wafer stage device 500. The fine-motion stage 101-1 holds the wafer. The fine-motion stage 101-1 can also be understood as a structure having a chuck for holding the wafer. The fine-motion base 101-2 can be fixed on the XY slide 104. On the fine-motion base 101-2, four fine-motion ZLMs (first fine-motion actuators) 101-6 for precise positioning of the Z tilt can be provided. In addition, two fine motion XLMs (second fine motion actuators) 101-4 for precise positioning of the X axis and around the Z axis may be provided on the fine motion base 101-2. In addition, two fine motion YLMs (third fine motion actuators) 101-5 for precise positioning of the Y axis and around the Z axis may be provided on the fine motion base 101-2. In the central portion of the fine motion base 101-2, a fine motion electromagnet 101-3 may be provided that functions to transmit the acceleration forces in the X axis and Y axis directions provided to the XY slider 104 to the fine motion base 101-2. Here, the fine motion base 101-2 may be understood as a coarse motion stage. Alternatively, the XY slider 104 and the fine motion base 101-2 may also be understood as a coarse motion stage. In addition, the coarse motion linear motor 106 can be understood as a coarse motion actuator that drives the fine motion base 101-2 used as a coarse motion stage along the XY plane, that is, the prescribed plane. In addition, the fine motion ZLM101-6, the fine motion XLM101-4, and the Y fine motion YLM101-5 can be understood as fine motion actuators for adjusting the position and posture of the fine motion stage 101-1 relative to the fine motion base 101-2 used as a coarse motion stage. In addition, the fine motion electromagnet 101-3 can be understood as an electromagnetic actuator for transmitting the thrust provided by the coarse motion linear motor 106 used as a coarse motion actuator to the fine motion base 101-2 used as a coarse motion stage to the fine motion stage 101-1 in a non-contact manner. FIG4 shows the structure of the fine motion stage device 101, especially the detailed structure examples of the fine motion YLM101-5 and the fine motion ZLM101-6. In addition, FIG4 shows a state where a part of the magnetic yoke is removed. The fine motion YLM101-5 can be composed of a linear motor. The fine motion YLM101-5 can include a fine motion YLM coil base 101-52, a fine motion YLM coil 101-51, a fine motion YLM magnet 101-53, a fine motion YLM magnetic yoke 101-54, and a fine motion LM gasket 101-70. The fine motion YLM coil base 101-52 can be fixed on the fine motion base 101-2, and the fine motion YLM coil 101-51 can be fixed thereon. The fine motion YLM coil 101-51 can be an oblong coil having a straight line portion extending in the vertical direction, and four fine motion YLM magnets 101-53 are arranged in a manner facing the straight line portion with a gap therebetween. Two YLM yokes 101-54 for allowing magnetic flux to pass can be arranged in a manner of sandwiching these magnets. The magnetization direction of the magnet can be in the X-axis direction, the magnets adjacent in the Y-axis direction can be of opposite polarity, and the magnets arranged in the X-axis direction can be of the same polarity. The fine motion LM gasket 101-70 can be used to resist the attractive force acting on a pair of magnets and the yoke to maintain their position. The magnet, the yoke, and the gasket can be fixed to the fine motion base 101-2. By flowing current in the YLM coil 101-51, a force proportional to the current can be generated in the direction orthogonal to the straight line portion, that is, in the Y-axis direction. In addition, a torque around the Z-axis can be generated by flowing currents in opposite directions in the two micro-motion YLM101-5. The micro-motion ZLM101-6 can be composed of a linear motor. The micro-motion ZLM101-6 can include a micro-motion ZLM coil base 101-62, a micro-motion ZLM coil 101-61, a micro-motion ZLM magnet 101-63, a micro-motion ZLM magnetic yoke 101-64, and a micro-motion LM gasket 101-70. The micro-motion ZLM coil base 101-62 can be fixed on the micro-motion base 101-2, and the micro-motion ZLM coil 101-61 can be fixed thereon. The fine motion ZLM coil 101-61 can be an oblong coil having a straight line portion extending in the horizontal direction, and four fine motion ZLM magnets 101-63 are arranged in a manner facing the straight line portion with a gap therebetween. Two ZLM yokes 101-64 for allowing magnetic flux to pass can be arranged in a manner of sandwiching these magnets. The magnetization direction of the magnet can be in the X-axis direction, the magnets adjacent in the Z-axis direction can be of opposite polarity, and the magnets arranged in the X-axis direction can be of the same polarity. The fine motion LM gasket 101-70 can be used to resist the attractive force acting on a pair of magnets and the yoke and maintain their position. The magnet, the yoke, and the gasket can be fixed to the fine motion top plate 101. By allowing current to flow in the ZLM coil 101-61, a force proportional to the current can be generated in the direction orthogonal to the straight line portion, that is, in the Z-axis direction. In addition, by combining the directions of the currents flowing in the four micro-motion ZLM101-6, a torque around the X-axis and a torque around the Y-axis can be generated. The micro-motion XLM101-4 has the same structure as the micro-motion YLM101-5, and has a configuration in which the micro-motion YLM101-5 is rotated 90 degrees. Thus, a force in the X-axis direction and a torque around the Z-axis can be generated. In addition, four pin units 101-39 can also be provided, which can function as temporary placement when recovering wafers from the micro-motion stage 101 and when placing wafers on the micro-motion stage 101-1. In order to temporarily place the wafer stably, the number of pin units 101-39 is preferably 3 or more, but the handover can be achieved if the minimum number is 1. The pin unit 101-39 has a lifting mechanism for raising and lowering the pins for temporarily placing or mounting the wafer. The pin unit 101-39 may have the following functions: driving the pins so that the upper ends of the pins protrude from the upper surface of the fine motion stage 101-1 in a first state; and driving the pins so that the upper ends of the pins retreat downward from the upper surface of the fine motion stage 101-1 in a second state. In the action of placing the wafer onto the fine motion stage 101-1, the pin unit 101-39 receives the wafer from the unillustrated transport mechanism in the first state, and then, in the process of transitioning to the second state, delivers the wafer on the pins to the fine motion stage 101-1. In the action of delivering the wafer placed on the fine motion stage 101-1 to the unillustrated transport mechanism, the pin unit 101-39 changes the pin from the second state to the first state. In this process, the pin unit 101-39 receives the wafer placed on the fine motion stage 101-1 by the pin, and delivers it to the unillustrated transport mechanism in the first state. The fine motion stage device 101 may not have the pin unit 101-39. In this case, the fine motion stage 101-1 is driven to the upper position by the fine motion ZLM 101-6, so that the wafer can be delivered to the unillustrated transport mechanism. FIG. 5 exemplarily shows the coarse motion stage device, especially the detailed structure of the X slider 102, the Y slider 103, and the XY slider 104. The XY slider 104 may include an XY slider lower part 104-3, an XY slider middle part 104-2, and an XY slider upper part 104-1. The XY slider lower part 104-3 may be supported on the stage base 105 so as to slide freely in the XY direction, and the XY slider middle part 104-2 and the XY slider upper part 104-1 may be arranged thereon. The X slider 102 may include an X beam 102-1, two X legs 102-2, and two X yaw guides 102-3. The two X yaw guides 102-3 may be fixed on two sides of the stage base 105. The two X legs 102-2 may be connected by the X beam 102-1. The X-leg 102-2 on one side faces the side surface of the X-yaw guide 102-3 on one side and the upper surface of the stage base 105 with a gap therebetween, and is supported to be able to slide freely in the X-axis direction. The X-leg 102-2 on the other side faces the side surface of the X-yaw guide 102-3 on the other side and the upper surface of the stage base 105 with a gap therebetween, and is supported to be able to slide freely in the X-axis direction. Thus, the X-beam 102-1 and the two X-legs 102-2 can be configured to be able to slide freely in the X-axis direction. In addition, the two side surfaces of the X-beam 102-1 face the inner side surface of the XY slider middle component 104-2 with a small gap therebetween and can slide freely, and the XY slider 104 can be restricted to slide freely in the XY direction. The Y slider 103 may include a Y beam 103-1, a Y foot 103-2, and a Y yaw guide 103-3. Two Y yaw guides 103-3 are fixed on two sides of the stage base 105, and the two Y feet 103-2 may be connected by the Y beam 103-1. The Y foot 103-2 on one side faces the side of the Y yaw guide 103-3 on one side and the upper surface of the stage base 105 with a gap therebetween, and is supported to be able to slide freely along the Y axis direction. The Y foot 103-2 on the other side faces the side of the Y yaw guide 103-3 on the other side and the upper surface of the stage base 105 with a gap therebetween, and is supported to be able to slide freely along the Y axis direction. Thus, the integrated body of the Y beam 103-1 and the two Y legs 103-2 can be configured to slide freely along the X-axis direction. In addition, the two side surfaces of the Y beam 103-1 face the inner side surface of the upper part 104-1 of the XY slider with a small gap and slide freely, and the XY slider 104 can be restricted to slide freely in the XY direction. FIG. 6 exemplarily shows the detailed structure of the coarse linear motor 106. The coarse linear motor 106 may include a plurality of linear motor coils 106-1, a coil support plate 106-2, a support column 106-3, a coil base 106-4, two linear motor magnets 106-5, a magnetic yoke 106-6, two pads 106-7, and an arm 106-8. The plurality of linear motor coils 106-1 may be a two-phase coil unit in which the phases of the adjacent linear motor coils 106-1 differ by 90 degrees from each other. The plurality of linear motor coils 106-1 may be fixed to the coil support plate 106-2 and fixed to the coil base 106-4 via the support 106-3. The coil base 106-4 may be fixed to the stage plate 692 or supported to slide freely in the coil arrangement direction through the stage plate 692. In the structure in which the coil base 106-4 is supported to slide freely, the reaction of acceleration can be absorbed. The two linear motor magnets 106-5 may be four-pole magnet units, respectively, and they may be configured to sandwich the linear motor coil 106-1 from the top and bottom through a gap. A yoke 106-6 may be arranged on the back of each linear motor magnet 106-5. A gasket 106-7 may be used to resist the attraction force and maintain the gap between the two linear motor magnets 106-5. A structure composed of the linear motor magnet 106-5, the yoke 106-6, and the gasket 106-7 may be fixed to the X leg 102-2 or the Y leg 103-2 via the arm 106-8. The structure may provide thrust in the X-axis direction and the Y-axis direction to the integrated object of the X beam and the two X legs or the integrated object of the Y beam and the two Y legs. In addition, in this structure, by passing a sinusoidal wave current corresponding to the position through the coil of the two-phase coil facing the magnet, a force can be continuously generated. FIG7 exemplarily shows the arrangement of multiple irradiation areas on a wafer 700, i.e., an irradiation area layout diagram. Irradiation areas 701 having dimensions Sx and Sy in the X-axis direction and the Y-axis direction, respectively, can be arranged on the wafer 700. Multiple irradiation areas 701 are subjected to scanning exposure, for example, along a step/scan trajectory. During scanning exposure, the fine-motion stage 101-1 can be driven to scan in the Y-axis direction by a scanning amount of 1/projection magnification of the scanning amount of the magnification mask stage in synchronization with the magnification mask stage. In addition, if the scanning exposure is completed, the fine-motion stage 101-1 can perform a U-turn in the Y-axis direction while stepping in the X-axis direction to perform scanning exposure of the next irradiation area. Electromagnets are used for the acceleration of the fine motion stage 101-1, and linear motors are used for the position control, thereby achieving high-precision position control and low heat generation at the same time. When the fine motion stage 101-1 is accelerated, a torque can be applied to the fine motion stage 101-1. If the fine motion ZLM101-6 is operated to offset such a torque, the heat generated by the fine motion ZLM101-6 will increase. This heat will cause deformation of the fine motion stage 101-1, and this deformation will lead to a decrease in the overlap accuracy. In order to suppress the heat generated by the fine motion ZLM101-6, it is effective to reduce the torque acting on the fine motion stage 101-1 when the fine motion stage 101-1 is accelerated. In order to reduce the torque acting on the fine motion stage 101-1 when the fine motion stage 101-1 is accelerated, it is effective to reduce the distance between the fine motion XLM101-4, the fine motion YLM101-5, the fine motion ZLM101-6 and the center of gravity of the fine motion stage 101-1. To this end, it is advantageous to reduce the height of the fine motion electromagnet 101-3 on the fine motion base 101-2. FIG8, FIG9, and FIG10 exemplarily show the structure of the fine motion electromagnet 101-3 assembled in the exposure device or the wafer stage device 500 of the first embodiment. The fine motion electromagnet 101-3 of the first embodiment has a structure that is advantageous in reducing the torque acting on the fine motion stage 101-1 when the fine motion stage 101-1 is accelerated. The fine motion electromagnet 101-3 may include a fixed core (first component) SC, a support component 101-30 supporting the fixed core SC, a movable core (second component) MC, a support component 101-31 supporting the movable core MC, and a coil 101-36. The support component 101-30 fixes the fixed core SC to the fine motion base 101-2 as a coarse motion stage, and the support component 101-31 fixes the movable core MC to the fine motion stage 101-1. The coil 101-36 is wound around the fixed core SC. The central axis of the coil 101-36 may be parallel to the XY plane (the plane on which the fine motion base 101-2 as a coarse motion stage moves). The fixed core SC has a first end face facing the movable core MC, and the distance between the center axis of the wafer 700 held by the fine motion stage 101-1 and the coil 101-36 can be greater than the distance between the wafer 700 held by the fine motion stage 101-1 and the center of the first end face. In the examples of FIG8, FIG9, and FIG10, four supporting members 101-30 can be fixed on the fine motion base 101-2, and the fixed core SC is arranged thereon respectively, and the coil 101-36 is wound around each fixed core SC. The fixed core SC and the movable core MC face each other with a small gap therebetween. Here, the shortest distance Hcw between the wafer (substrate) 700 held by the fine-motion stage 101-1 and the coil 101-36 is greater than the shortest distance Hew between the wafer (substrate) 700 held by the fine-motion stage 101-1 and the fixed iron core SC. Such a configuration can be achieved, for example, by making the fixed iron core SC have a crank shape in a cross section perpendicular to the XY plane and parallel to the central axis of the coil 101-36. By setting Hcw>Hew, the fixed iron core SC can be configured to be lowered vertically downward compared to the configurations of Figures 4 and 35. As a result, the height of the fine-motion electromagnet 101-3 on the fine-motion base 101-2 can be reduced. Here, in the configurations shown in FIG8, FIG9, and FIG10, when the fine motion stage 101-1 of mass m is accelerated at an acceleration a, the torque M acting on the fine motion stage 101-1 is M=m·a·(hg+hu+he). On the other hand, in the configurations shown in FIG4 and FIG35, when the fine motion stage 101-1 of mass m is accelerated at an acceleration a, the torque M acting on the fine motion stage 101-1 is M=m·a·(hg+hu+he +hc). Therefore, in the configurations shown in FIG8, FIG9, and FIG10, compared with the configurations shown in FIG4 and FIG35, the torque M acting on the fine motion stage 101-1 of mass m is reduced by m·a·hc. Thus, the fine motion ZLM101-6 is actuated to offset the torque, thereby reducing the heat generated by the fine motion ZLM101-6. This is beneficial to suppress the deformation of the fine motion stage 101-1, thereby suppressing the reduction of the overlapping accuracy. hg is the distance in the Z-axis direction between the center of gravity G of the structure composed of the fine motion stage 101-1 and the components that move with the fine motion stage 101-1 (the movable iron core MC and the supporting member 101-31, etc.) and the lower surface of the fine motion stage 101-1 (the surface on the side of the fine motion base 101-2). hu is the distance in the Z-axis direction between the lower surface of the fine motion stage 101-1 and the upper end of the fine motion electromagnet 101-3 (the end on the side of the fine motion stage 101-1). he is the distance in the Z-axis direction between the upper end of the fixed core SC and the point of action of the fine-motion electromagnetic iron 101-3. hc is the distance in the Z-axis direction between the upper end of the coil 101-36 (the end on the fine-motion stage 101-1 side) and the upper end of the fixed core SC. FIG34 shows an example of the structure of the fixed core SC. In the example of FIG34, the fixed core SC is composed of a layered body of a plurality of electromagnetic steel plates, and the layered direction is the Z-axis direction. Each electromagnetic steel plate is covered with an insulating film. In FIG. 34 , the direction of the magnetic flux in the magnetic circuit is indicated by a black arrow, and the magnetic flux flows through a three-dimensional path. The magnetic flux flowing in the Z-axis direction is indicated by a thick black arrow. Since the direction of the thick black arrow is parallel to the normal direction of the electromagnetic steel plate, the eddy current generated by the change in the current flows along the surface of the electromagnetic steel plate, and there is no structure to suppress it. Therefore, as shown by the thick white arrow, a large eddy current is generated. As a result, the fixed iron core SC generates heat, and the heat is transmitted to the fine motion stage 101-1, and the fine motion stage 101-1 is deformed, which will lead to a decrease in the overlap accuracy. In addition, since the magnetic flux in the Z-axis direction indicated by the thick black arrow has a direction parallel to the normal direction of the electromagnetic steel plate, it will lead to disadvantages such as large magnetic resistance, reduced magnetic flux value, and reduced attraction. Hereinafter, an improved example of the fine motion electromagnet 101-3 assembled in the exposure device or the wafer stage device 500 of the first embodiment will be described. FIG11 exemplarily shows the structure of the improved example of the fine motion electromagnet 101-3 of the first embodiment. The fine motion electromagnet 101-3 may include a fixed iron core (first component) SC, a supporting component 101-30 supporting the fixed iron core SC, a movable iron core (second component) MC, a supporting component 101-31 supporting the movable iron core MC, and a coil 101-36. The fixed iron core (first component) SC may include a first element 101-32, a second element 101-33, a third element 101-34, and a fourth element 101-35. The movable iron core (second component) MC may include the element 101-38, but may include one or more other elements in addition to the element 101-38. The fixed iron core (first component) SC may have a first end face E1, and the movable iron core (second component) MC may have a second end face E2 facing the first end face E1 across a gap. In this example, the first end face E1 is provided at each of the second element 101-33, the third element 101-34, and the fourth element 101-35, and the second end face E2 is provided at the element 101-38. The fixed iron core (first component) SC may be composed of a laminate of a plurality of electromagnetic steel plates. The plurality of electromagnetic steel plates may be respectively covered with an insulating film. From another perspective, the first element 101-32, the second element 101-33, the third element 101-34, and the fourth element 101-35 constituting the fixed iron core (first component) SC may be respectively constituted by a layered body of a plurality of electromagnetic steel plates. The movable iron core (second component) MC may be constituted by a layered body of a plurality of electromagnetic steel plates. From another perspective, at least one element constituting the movable iron core (second component) MC, namely the element 101-38, may be constituted by a layered body of a plurality of electromagnetic steel plates. The plurality of electromagnetic steel plates may be respectively covered with an insulating film. The magnetic circuit formed by the fixed iron core (first component) SC, the movable iron core (second component) MC and the gap (the space between the first end face E1 and the second end face E2) may include at least one changing portion CP in which the stacked direction of the plurality of electromagnetic steel plates changes at right angles. The changing portion CP may include a contact portion of a first portion (e.g., the first element 101-32) whose stacked direction is a first direction (e.g., the Z-axis direction) and a second portion (e.g., the third element 101-34) whose stacked direction is a second direction (e.g., the X-axis direction) perpendicular to the first direction. The variable part CP may include a portion where a first portion (e.g., the first element 101-32) whose layer direction is a first direction and a second portion (e.g., the third element 101-34) whose layer direction is a second direction orthogonal to the first direction face each other via a solid component. The solid component may be, for example, an insulating film that covers a plurality of electromagnetic steel plates respectively. In the improved example of FIG. 11 , the variable part CP is provided in the fixed iron core (first component) SC. In addition, in the improved example of FIG. 11 , the variable part CP includes a portion where the fixed iron core (first component) SC and the movable iron core (second component) MC face each other via a gap. The latter configuration may also be understood as the following configuration: the first portion of the first portion and the second portion constituting the variable part CP is provided in the fixed iron core (first component) SC, and the second portion is provided in the movable iron core (second component) MC. The variable portion CP may be provided in addition to the movable iron core (second component) MC, or may be provided only in the movable iron core (second component) MC. The fixed iron core (first component) SC and the movable iron core (second component) MC may each be composed of at least one laminated iron core. Alternatively, at least one of the fixed iron core (first component) SC and the movable iron core (second component) MC may be composed of a plurality of laminated iron cores. Such a plurality of laminated iron cores may be arranged close to each other and fixed by a fixed component. In addition, the laminated iron core may be formed by laminating electromagnetic steel plates of the same shape. The first element 101-32, the second element 101-33, the third element 101-34, and the fourth element 101-35 can be composed of a laminated iron core. The first element 101-32, the second element 101-33, the third element 101-34, and the fourth element 101-35 can be integrated by using an adhesive material, or can be integrated by fastening using a clamping member. In this example, at least one variable portion CP is provided on the fixed iron core (first component) SC, and the coil 101-36 is wound around the fixed iron core (first component) SC. The coil 101-36 can be wound around a portion of the fixed iron core (first component) SC that is different from the portion where the variable portion CP is arranged. By causing current to flow in the coil 101-36, an attractive force is generated between the first end face E1 and the second end face E2. In the improved example of FIG11, the first element 101-32 has an E-shaped shape, and the coil 101-36 is wound around the central tooth of the first element 101-32. The variable portion CP is set so that the magnetic flux passing through the magnetic circuit composed of the fixed iron core (first component) SC, the movable iron core (second component) MC and the gap does not flow through the plurality of electromagnetic steel plates constituting the fixed iron core (first component) SC and the movable iron core (second component) MC in their layered direction. Alternatively, the variable part CP, the fixed iron core (first component) SC, and the movable iron core (second component) MC may be arranged so that the magnetic flux passing through the fixed iron core (first component) SC and the movable iron core (second component) MC flows along the surface direction of each electromagnetic steel plate. Alternatively, the variable part CP may be arranged so that the magnetic resistance of the magnetic circuit formed by the fixed iron core (first component) SC, the movable iron core (second component) MC, and the gap is smaller than that in the case where there is no variable part CP. Alternatively, the variable part CP may be arranged so that the eddy current generated in the magnetic circuit formed by the fixed iron core (first component) SC, the movable iron core (second component) MC, and the gap is smaller than that in the case where there is no variable part CP. The magnetic circuit formed by the iron core including the variable part CP is conducive to increasing the degree of freedom of the shape of the magnetic circuit. In addition, by constituting the iron core such as the fixed iron core (first component) SC and the movable iron core (second component) MC by multiple elements, it is possible to easily manufacture the iron core having a complex shape, and it is also possible to easily install and replace the coil. In particular, the configuration in which multiple elements are fastened by a clamping member is conducive to facilitating the replacement of the coil. FIG12 exemplarily shows the configuration of another improved example of the micro-motion electromagnet 101-3 of the first embodiment. Matters not mentioned here can be based on the configuration of the improved example shown in FIG11. The micro-motion electromagnet 101-3 may include a fixed core (first component) SC, a support component 101b-30 supporting the fixed core SC, a movable core (second component) MC, a support component (not shown) supporting the movable core MC, and a coil 101-36. The fixed core (first component) SC may include a first element 101b-32, a second element 101b-33, a third element 101b-34, and a fourth element 101b-35. The movable core (second component) MC may include the element 101-38, but may include one or more other elements in addition to the element 101-38. As in the example of FIG8 , the fixed iron core (first component) SC has a first end face, and the movable iron core (second component) MC may have a second end face facing the first end face with a gap therebetween. In this example, the first end face is provided at each of the second element 101b-33, the third element 101b-34, and the fourth element 101b-35, and the second end face is provided at the element 101-38. In the improved example of FIG12 , the second element 101b-33, the third element 101b-34, and the fourth element 101b-35 have a crank shape in a cross section perpendicular to the XY plane and parallel to the central axis of the coil 101-36, and the first element 101b-32 has a rectangular parallelepiped shape. FIG. 13, FIG. 14, and FIG. 15 exemplarily show the structure of the fine motion electromagnet 101-3 assembled in the exposure device or the wafer stage device 500 of the second embodiment. Matters not mentioned in the second embodiment can be based on the first embodiment. The fine motion electromagnet 101-3 of the second embodiment has a structure that is conducive to reducing the torque acting on the fine motion stage 101-1 when the fine motion stage 101-1 is accelerated. The fine motion electromagnet 101-3 may include a fixed iron core (first component) SC, a support component 101-30 supporting the fixed iron core SC, a movable iron core (second component) MC, a support component 101-31 supporting the movable iron core MC, and a coil 101-36. Support member 101-30 fixes the fixed core SC to the fine motion base 101-2 serving as a coarse motion stage, and support member 101-31 fixes the movable core MC to the fine motion stage 101-1. Coil 101-36 is wound around the fixed core SC. The center axis of coil 101-36 may be arranged at an angle inclined relative to the XY plane (the plane on which the fine motion base 101-2 serving as a coarse motion stage moves). Similarly, at least the portion of the fixed core SC around which coil 101-36 is wound may include a portion extending in a direction inclined relative to the XY plane. The fixed core SC preferably includes a variable portion CP as in the improved example of the first embodiment. FIG. 16, FIG. 17, and FIG. 18 exemplarily show the structure of the fine motion electromagnet 101-3 assembled in the exposure device or the wafer stage device 500 of the third embodiment. Matters not mentioned in the third embodiment may be in accordance with the first embodiment. The fine motion electromagnet 101-3 of the third embodiment has a structure that is conducive to reducing the torque acting on the fine motion stage 101-1 when the fine motion stage 101-1 is accelerated. The fine motion electromagnet 101-3 may include a fixed iron core (first component) SC, a support component 101-30 supporting the fixed iron core SC, a movable iron core (second component) MC, a support component 101-31 supporting the movable iron core MC, and a coil 101-36. The support member 101-30 fixes the fixed iron core SC to the fine motion base 101-2 serving as a coarse motion stage, and the support member 101-31 fixes the movable iron core MC to the fine motion stage 101-1. The coil 101-36 is wound around the fixed iron core SC. The center axis of the coil 101-36 can be arranged at an angle perpendicular to the XY plane (the plane in which the fine motion base 101-2 serving as a coarse motion stage moves). In a cross section perpendicular to the XY plane and parallel to the center axis of the coil 101-36, the fixed iron core SC may include a portion having an L shape. The fine motion base 101-2 may also have an opening, and a portion of the fine motion electromagnet 101-3 may also be arranged in the opening. Hereinafter, an improved example of the fine-motion electromagnet 101-3 assembled in the exposure device or the wafer stage device 500 of the third embodiment will be described. Matters not mentioned here can be implemented according to the improved example of the first embodiment. FIG. 19 and FIG. 20 exemplarily show the structure of the improved example of the fine-motion electromagnet 101-3 of the third embodiment. In addition, FIG. 20 exemplarily shows the structure of the fine-motion electromagnet 101-3 in a state where the fine-motion base 101-2 is removed. In this improved example, four openings 301-21 are provided in the fine-motion base 101-2, and a portion of each fine-motion electromagnet 101-3 can be arranged in the corresponding opening 301-21. A portion of each of the four fine-motion electromagnets 101-3 can also be arranged under the fine-motion base 101-2. Each fine motion solenoid 101-3 can be supported by the fine motion base 101-2 via a supporting member 301-30. Such a structure is conducive to reducing the height of the fine motion solenoid 101-3 on the fine motion base 101-2 and reducing the size of the fine motion solenoid 101-3 in the XY direction. The fine motion solenoid 101-3 may include a fixed iron core (first member) SC, a supporting member 301-30 supporting the fixed iron core SC, a movable iron core (second member) MC, a supporting member 101-31 supporting the movable iron core MC, and a coil 301-36. The fixed core (first component) SC may include a first element 301-32, a second element 301-33, a third element 301-34, and a fourth element 301-35. The movable core (second component) MC may include the element 101-38, but may include one or more other elements in addition to the element 101-38. The fixed core (first component) SC may have a first end face E1, and the movable core (second component) MC may have a second end face E2 facing the first end face E1 across a gap. In this example, the first end face E1 is provided at each of the second element 301-33, the third element 301-34, and the fourth element 301-35, and the second end face E2 is provided at the element 101-38. The fixed core (first component) SC may be composed of a plurality of layers of electromagnetic steel plates. The plurality of electromagnetic steel plates may be covered with insulating films, respectively. From another point of view, the first element 301-32, the second element 301-33, the third element 301-34, and the fourth element 301-35 constituting the fixed core (first component) SC may be composed of a plurality of layers of electromagnetic steel plates, respectively. The movable core (second component) MC may be composed of a plurality of layers of electromagnetic steel plates. From another point of view, at least one element constituting the movable core (second component) MC, namely the element 101-38, may be composed of a plurality of layers of electromagnetic steel plates. The plurality of electromagnetic steel plates may be respectively covered with an insulating film. The magnetic circuit formed by the fixed iron core (first component) SC, the movable iron core (second component) MC and the gap (the space between the first end face E1 and the second end face E2) may include at least one changing portion CP in which the stacked direction of the plurality of electromagnetic steel plates changes at right angles. The changing portion CP may include a contact portion of a first portion (e.g., first element 301-32) whose stacked direction is a first direction (e.g., Y-axis direction) and a second portion (e.g., third element 301-34) whose stacked direction is a second direction (e.g., X-axis direction) orthogonal to the first direction. The change portion CP may include a portion where a first portion (e.g., first element 301-32) whose layer direction is a first direction and a second portion (e.g., third element 301-34) whose layer direction is a second direction orthogonal to the first direction face each other via a solid component. The solid component may be, for example, an insulating film that covers a plurality of electromagnetic steel plates. In the examples of FIGS. 19 and 20, the change portion CP is provided in the fixed core (first component) SC. In addition, in the examples of FIGS. 19 and 20, the change portion CP includes a portion where the fixed core (first component) SC and the movable core (second component) MC face each other via a gap. The latter structure can also be understood as the following structure: the first part of the first part and the second part constituting the variable part CP is arranged on the fixed iron core (first component) SC, and the second part is arranged on the movable iron core (second component) MC. The variable part CP can be provided in addition to the movable iron core (second component) MC, or can be provided only on the movable iron core (second component) MC. In the examples of Figures 19 and 20, the second element 301-33, the third element 301-34 and the fourth element 301-3 have an L-shaped shape, and the first element 301-32 has a rectangular shape. Figure 21 exemplifies the structure of other improved examples of the micro-motion electromagnet 101-3 of the third embodiment. The micro-motion electromagnet 101-3 may include a fixed core (first component) SC, a support component 201a-30 supporting the fixed core SC, a movable core (second component) MC, a support component 101-31 supporting the movable core MC, and a coil 201a-36. The fixed core (first component) SC may include a first element 201a-32, a second element 201a-33, a third element 201a-34, and a fourth element 201a-35. The movable core (second component) MC may include the element 101-38, but may also include one or more other elements in addition to the element 101-38. The fixed iron core (first component) SC may have a first end face E1, and the movable iron core (second component) MC may have a second end face E2 facing the first end face E1 across a gap. In this example, the first end face E1 is provided at each of the second element 201a-33, the third element 201a-34, and the fourth element 201a-35, and the second end face E2 is provided at the element 101-38. In the improved example of FIG. 21, the first element 201a-32 has an E-shaped shape, and the coil 201a-36 is wound around the central tooth of the first element 201a-32. In addition, in the improved example of FIG. 21, the second element 201a-33, the third element 201a-34, and the fourth element 201a-35 have a rectangular parallelepiped shape. Hereinafter, the assembly method or manufacturing method of the micro-motion electromagnet 101-3 of the improved example of FIG. 21 will be described with reference to FIG. 27 to FIG. 31. FIG. 27 shows the state in which the micro-motion electromagnet 101-3 of the improved example of FIG. 21 is decomposed. The first element 201a-32 and the supporting member 201a-30 can be combined by adhesive, clamping, fitting, etc. In addition, the coil 201a-36 and the coil base 201a-42 can be combined by adhesive material, etc. In addition, the second element 201b-33, the third element 201b-34 and the fourth element 201b-35 can be combined by adhesive material, clamping, fitting, etc. through the end component gasket 201a-40. As shown in FIG. 28 , the first element 201a-32 can be inserted into the opening 201a-21 of the fine-motion base 101-2, and the combination of the first element 201a-32 and the supporting member 201a-30 can be positioned on the fine-motion base 101-2. Furthermore, the supporting member 201a-30 can be fixed to the fine-motion base 101-2. The fixing of the supporting member 201a-30 relative to the fine-motion base 101-2 can be achieved, for example, by screw tightening, adhesive, clamping, fitting, etc. Next, as shown in FIG. 29 , the combination of the coil 201a-36 and the coil base 201a-42 can be positioned on the fine-motion base 101-2, and the coil base 201a-42 can be fixed to the fine-motion base 101-2. The fixing of the coil base 201a-42 relative to the fine-motion base 101-2 can be achieved, for example, by screw tightening, adhesive, clamping, fitting, etc. Next, as shown in FIG. 30 , the end component base 201a-41 can be fixed to the fine-motion base 101-2, for example, by screw tightening, adhesive, clamping, fitting, etc. Next, as shown in FIG. 31 , the second element 201b-33, the third element 201b-34, the fourth element 201b-35, and the combination of the second element 201b-33, the third element 201b-34, and the fourth element 201b-35 can be fixed to the end component base 201a-41. This can be achieved by fixing the end component pad 201a-40 to the end component base 201a-41 by screw tightening, adhesive, clamping, fitting, etc. The state shown in FIG. 28 can be returned to by the reverse sequence to the above, and a new coil 201a-36 can be fixed to the fine-motion base 101-2 as shown in FIG. 29, and then the coil 201a-36 can be replaced by the sequence shown in FIG. 30 and FIG. 31. When a fixed core SC is formed by combining a plurality of elements, there is a risk that particles may be generated due to a slight relative offset between the two elements along the boundary surface at the boundary between the two elements (e.g., the boundary between the second element 201a-33 and the first element 201a-32). As a countermeasure, a device for preventing the particles from being coated may be applied to the boundary surface, or a recovery plate may be provided near the boundary surface, or a capture magnet may be provided near the boundary surface. In addition, when the end component gasket 201a-40 is fixed to the end component base 201a-41, a thin gasket may be inserted between the two to maintain the first element 201a-32 and the second element 201a-33, the third element 201a-34, and the fourth element 201a-35 in a non-contact state. The following describes the exposure device and the micro-motion electromagnet 101-3 of the fourth embodiment. Matters not mentioned in the fourth embodiment can be handled in accordance with the first to third embodiments. FIG. 22 exemplarily shows the structure of the micro-motion electromagnet 101-3 of the fourth embodiment. The micro-motion electromagnet 101-3 may include a fixed core (first component) SC, a supporting component 301a-30 supporting the fixed core SC, a movable core (second component) MC, a supporting component 301a-31 supporting the movable core MC, and a coil 301a-36. The fixed core (first component) SC may include a first element 301a-32, a second element 301a-37, a third element 301a-33, a fourth element 301a-34, and a fifth element 301a-35. The movable core (second component) MC may include the element 301a-38, but may include one or more other elements in addition to the element 301a-38. The fixed core (first component) SC may have a first end face E1, and the movable core (second component) MC may have a second end face E2 facing the first end face E1 across a gap. In this example, the first end face E1 is provided at each of the third element 301a-33, the fourth element 301a-34, and the fifth element 301a-35, and the second end face E2 is provided at the element 301a-38. The fixed core (first component) SC may be formed by a laminate of a plurality of electromagnetic steel plates. The plurality of electromagnetic steel plates may be covered with insulating films, respectively. From another viewpoint, the third element 301a-33, the fourth element 301a-34, and the fifth element 301a-35 constituting a part of the fixed core (first component) SC may be formed by a laminated core of a plurality of electromagnetic steel plates. In addition, the first element 301a-32 and the second element 301a-37 constituting another part of the fixed core (first component) SC may be formed by a wound core formed by winding electromagnetic steel plates. In addition, when the winding core is used as a component constituting the fixed core (first component) SC, the winding core has a structure in which a plurality of electromagnetic steel plates are stacked. The movable core (second component) MC may be composed of a laminated core in which a plurality of electromagnetic steel plates are stacked. From another viewpoint, at least one element constituting the movable core (second component) MC, namely, the element 301a-38, may be composed of a laminate of a plurality of electromagnetic steel plates. The plurality of electromagnetic steel plates may be respectively covered with an insulating film. The magnetic circuit formed by the fixed iron core (first component) SC, the movable iron core (second component) MC and the gap (the space between the first end face E1 and the second end face E2) may include the changing parts CP and CP' where the stacking direction of the stacked body of the plurality of electromagnetic steel plates changes at right angles. The changing part CP may include a contact part of a first part (e.g., the fifth element 301a-38) whose stacking direction is the first direction (e.g., the Z-axis direction) and a second part (e.g., the second element 301a-37) whose stacking direction is the second direction (e.g., the X-axis direction) orthogonal to the first direction. The changing portion CP may include a portion where a first portion (e.g., the fifth element 301a-38) whose layer direction is the first direction and a second portion (e.g., the second element 301a-37) whose layer direction is the second direction orthogonal to the first direction face each other through a solid component. The solid component may be, for example, an insulating film that covers a plurality of electromagnetic steel plates. The changing portion CP' includes a portion where the layer direction slowly changes from the first direction (e.g., the X-axis direction) to the second direction orthogonal to the first direction (e.g., the Z-axis direction). The changing portion CP' including the portion where the layer direction slowly changes may be a portion of the winding core. The fixed core (first component) SC includes a first portion P1 whose layer direction is a first direction (e.g., X-axis direction) and a second portion P2 whose layer direction is a second direction (e.g., Z-axis direction), and the layer direction slowly changes between the first portion P1 and the second portion P2. The changing portion CP' is a portion between the first portion P1 and the second portion P2. In the example of FIG. 22 , the changing portions CP and CP' are provided in the fixed core (first component) SC. At least one of the changing portions CP and CP' may be provided in addition to the movable core (second component) MC, or may be provided only in the movable core (second component) MC. Alternatively, one of the fixed core (first member) SC and the movable core (second member) MC may be composed of at least one laminated core, the other of the fixed core (first member) SC and the movable core (second member) MC may be composed of a wound core, and the variable portion may be composed of the wound core. The first element 301a-32, the second element 301a-37, the third element 301a-33, the fourth element 301a-34, and the fifth element 301a-35 may be integrated by using an adhesive material, or may be integrated by being fastened using a clamping member. In this example, the variable portions CP and CP' are provided on the fixed core (first member) SC, and the coil 301a-36 is wound around the fixed core (first member) SC. The coil 301a-36 can be wound around a portion of the fixed core (first member) SC that is different from the portion where the change portion CP, CP' is arranged. By flowing a current through the coil 301a-36, an attractive force is generated between the first end face E1 and the second end face E2. In the example of FIG22, the first element 301a-32 and the second element 301a-37 have a U-shape, and the coil 301a-36 is wound around a portion where one tooth of the first element 301a-32 and one tooth of the second element 301a-37 are integrated. The changing parts CP and CP' may be arranged so that the magnetic flux passing through the magnetic circuit formed by the fixed iron core (first component) SC, the movable iron core (second component) MC and the gap does not flow through the plurality of electromagnetic steel plates forming the fixed iron core SC and the movable iron core MC in their layer direction. Alternatively, the changing parts CP and CP', the fixed iron core (first component) SC and the movable iron core (second component) MC may be arranged so that the magnetic flux passing through the fixed iron core SC and the movable iron core MC flows along the surface direction of each electromagnetic steel plate. Alternatively, the changing parts CP and CP' may be arranged so that the magnetic resistance of the magnetic circuit formed by the fixed iron core (first component) SC, the movable iron core (second component) MC and the gap is smaller than that in the case where the changing parts CP and CP' are not provided. Alternatively, the change parts CP and CP' may be arranged so that the eddy current generated in the magnetic circuit formed by the fixed iron core (first component) SC, the movable iron core (second component) MC and the gap is smaller than that in the case where there is no change part CP and CP'. In the example of FIG. 22, the stacking direction (Z-axis direction) of the third element 301a-33, the fourth element 301a-34 and the fifth element 301a-35 having the first end face E1 is the same as the stacking direction (Z-axis direction) of the element 301a-38 having the second end face E2. This will help reduce the magnetic resistance near the gap and increase the magnetic flux. Alternatively, the configuration example of FIG. 22 may be replaced by setting the stacking direction of the third element 301a-33, the fourth element 301a-34 and the fifth element 301a-35 to the X-axis direction. Such a structure will help reduce the magnetic resistance near the boundary between the third element 301a-33, the fourth element 301a-34 and the fifth element 301a-35 and the first element 301a-32 and the second element 301a-37, thereby increasing the magnetic flux. FIG23 exemplarily shows the structure of a modified example of the micro-motion electromagnet 101-3 of the fourth embodiment. Matters not mentioned as a modified example can be in accordance with the structure of the fourth embodiment shown in FIG22. The micro-motion electromagnet 101-3 may include a fixed iron core (first member) SC, a supporting member 301b-30 supporting the fixed iron core SC, a movable iron core (second member) MC, a supporting member 301b-31 supporting the movable iron core MC, and a coil 301b-36. The fixed core (first component) SC may include a first element 301b-32 and a second element 301b-33. The movable core (second component) MC may include a third element 301b-37 and a fourth element 301b-38. The fixed core (first component) SC may have a first end face E1, and the movable core (second component) MC may have a second end face E2 facing the first end face E1 across a gap. In this example, the first end face E1 is provided at each of the first element 301b-32 and the second element 301b-33, and the second end face E2 is provided at each of the third element 301b-37 and the fourth element 301b-38. The fixed core (first component) SC may be formed of a laminate of a plurality of electromagnetic steel plates. The plurality of electromagnetic steel plates may be respectively covered with an insulating film. From another viewpoint, the first element 301b-32 and the second element 301b-33 constituting a part of the fixed iron core (first component) SC may be constituted by a layered body of a plurality of electromagnetic steel plates. In addition, when the winding core is used as a component constituting the fixed iron core (first component) SC, it also has a form of a structure in which a plurality of electromagnetic steel plates are stacked. The movable iron core (second component) MC may be constituted by a layered body of a plurality of electromagnetic steel plates. From another viewpoint, the third element 301b-37 and the fourth element 301b-38 constituting the movable iron core (second component) MC may be constituted by a layered body of a plurality of electromagnetic steel plates. The plurality of electromagnetic steel plates may be respectively covered with insulating films. The magnetic circuit formed by the fixed iron core (first component) SC, the movable iron core (second component) MC and the gap (the space between the first end face E1 and the second end face E2) may include a changing portion CP', CP" in which the layered direction of the layered body of the plurality of electromagnetic steel plates changes at right angles. In this example, the changing portion CP' is provided in the fixed iron core (first component) SC, and the changing portion CP" is provided in the movable iron core (second component) MC. The changing portion CP' includes a portion in which the layered direction slowly changes from a first direction (for example, the X-axis direction) to a second direction (for example, the Z-axis direction) orthogonal to the first direction. The changing portion CP' including the portion in which the layered direction slowly changes may be a portion of the winding iron core. The fixed iron core (first component) SC includes a first portion P1 whose stacking direction is a first direction (e.g., X-axis direction) and a second portion P2 whose stacking direction is a second direction (e.g., Z-axis direction), and the stacking direction slowly changes between the first portion P1 and the second portion P2. The changing portion CP' is a portion between the first portion P1 and the second portion P2. The movable iron core (second component) MC includes a third portion P3 whose stacking direction is a first direction (e.g., X-axis direction) and a fourth portion P4 whose stacking direction is a second direction (e.g., Y-axis direction), and the stacking direction slowly changes between the third portion P3 and the fourth portion P4. The change portion CP" is a portion between the third portion P3 and the fourth portion P4. By allowing current to flow in the coil 301b-36, an attractive force is generated between the first end face E1 and the second end face E2. In the example of Figure 23, the first element 301b-32 and the second element 301b-33 have a U-shape, and the coil 301b-36 is wound around one tooth of the first element 301a-32 and one tooth of the second element 301a-37 to be integrated. The change portions CP' and CP" can be arranged so that the magnetic flux passing through the magnetic circuit formed by the fixed iron core (first component) SC, the movable iron core (second component) MC and the gap will not flow through the multiple electromagnetic steel plates constituting the fixed iron core SC and the movable iron core MC in their layered direction. Alternatively, the variable parts CP', CP", the fixed iron core (first component) SC, and the movable iron core (second component) MC may be arranged so that the magnetic flux passing through the fixed iron core SC and the movable iron core MC flows along the surface direction of each electromagnetic steel plate. Alternatively, the variable parts CP', CP" may be arranged so that the magnetic resistance of the magnetic circuit formed by the fixed iron core (first component) SC, the movable iron core (second component) MC and the gap is smaller than that in the case where there is no variable part CP', CP". Alternatively, the variable parts CP', CP" may be arranged so that the eddy current generated in the magnetic circuit formed by the fixed iron core (first component) SC, the movable iron core (second component) MC and the gap is smaller than that in the case where there is no variable part CP', CP". In the example of Figure 23, the first element 301b at the first end face E1 -32 and the second element 301b-33 have the same layer direction (X-axis direction) as the third element 301b-37 and the fourth element 301b-38 at the second end face E2. This helps to reduce the magnetic resistance near the gap and increase the magnetic flux. In addition, in the example of FIG. 23, the fixed iron core (first component) SC, the movable iron core In the magnetic circuit formed by (second member) MC and the gap, the layer direction does not change drastically, which is beneficial to reduce the magnetic resistance and increase the magnetic flux. FIG24 shows an exemplary structure of the support member 301b-31 supporting the movable iron core MC. The support member 301b-31 may have a star wheel shape in order to support the movable iron core MC which may be formed by the winding iron core. Here, refer to FIG32 illustrates a wound iron core. FIG32(a) illustrates a wound iron core. FIG32(b) shows a wound iron core obtained by cutting the wound iron core illustrated in FIG32(a) by wire cutting or the like. Such a wound iron core is also called a cut core. The wound iron core can be manufactured by winding a ring material around a core not shown. As illustrated in FIG33, the ring material can be manufactured by FIG33. The original coil is transported in the direction of the plate passing, and is cut into the desired width by a cutter including a circular knife installed on the way to obtain a ring material. The width is determined by the interval between the circular knives of the cutter. As shown in (a) of Figure 32, the winding iron core is a layered body of multiple electromagnetic steel plates, and one winding iron core has multiple layering directions. In other words, the winding iron core can be It is used as a component constituting the aforementioned changing part. The stacking direction is the direction that passes through the focus area in the winding iron core in a direction perpendicular to the electromagnetic steel plate. The width direction is the direction determined by the cutting machine and is also the axial direction. The axial direction is the direction parallel to any part of the largest surface of each electromagnetic steel plate. In one aspect, the electromagnetic device of the present invention may have a stacked iron core or a winding iron core. A plurality of core components and a coil that generates a magnetic flux in the core component. Here, the stacking direction of a certain laminated core may be orthogonal to the width direction of a certain winding core, or the stacking direction of a certain laminated core may be orthogonal to another laminated core, or the width direction of a certain winding core may be orthogonal to another winding core. The control system of the wafer stage device 500 is described below. FIG. 25 exemplarily shows the structure of the control system of the wafer stage device 500. The moving target providing unit 5101 provides a moving target. The position curve generator 5102 generates a position curve representing the relationship between time and the position of the fine motion stage 101-1 at that time, based on the moving target provided by the moving target providing unit 5101. In addition, the position curve generator 5102 generates a target position based on the generated position curve. The acceleration curve generator 5103 generates an acceleration curve representing the relationship between time and the acceleration of the fine motion stage 101-1 at that time, based on the moving target provided by the moving target providing unit 5101. In addition, the acceleration curve generator 5103 generates a target acceleration based on the generated acceleration curve. FIG. 26 illustrates an example of a position curve generated by the position curve generator 5102 and an acceleration curve generated by the acceleration curve generator 5103. The fine motion position sensor 5156 measures the position of the fine motion stage 101-1. The fine motion position control system 5121 generates an operation amount through PID calculation or the like, corresponding to the deviation between the target position provided by the position curve generated by the position curve generator 5102 and the current position provided by the fine motion position sensor 5156. The current amplifier 5122 supplies the current corresponding to the operation amount generated by the fine motion position control system 5121 to the fine motion XLM101-4 and the fine motion YLM101-5. Thus, the fine motion stage 101-1 is subjected to feedback control. The coarse motion position sensor 5135 measures the position of the fine motion base 101-2. The coarse motion position control system 5133 generates an operation amount through PID calculation or the like, corresponding to the deviation between the target position provided by the position curve generated by the position curve generator 5102 and the current position provided by the coarse motion position sensor 5135. The current amplifier 5131 supplies a current corresponding to the operation amount generated by the coarse motion position control system 5133 and the target acceleration provided by the acceleration curve generator 5103 to the coarse motion linear motor 106. As a result, the fine motion base 101-2 is subjected to feedback control and feedforward control. The target acceleration generated by the acceleration curve generator 5103 is also supplied to the electromagnet current control system 5515, and the electromagnet current control system 5515 controls the fine motion electromagnet 101-3 according to the target acceleration. When the fine motion stage 101-1 (fine motion stage device 101) is accelerated, the fine motion electromagnet 101-3 mainly provides force to the fine motion stage 101-1. The fine motion XLM101-4 and the fine motion YLM101-5 can be controlled to generate a thrust for reducing a small position deviation between the target position and the measured current position. As a result, the heat generated by the fine motion XLM101-4 and the fine motion YLM101-5 will be reduced. The coarse motion position control system 5133 moves the position of the fine motion base 101-2 according to the position curve generated by the position curve generator 5102. The fine motion electromagnet 101-3 is conducive to generating a large attraction with very small heat. However, it is necessary to maintain the gap between the first end face E1 and the second end face E2 of the fine motion electromagnet 101-3. That is, in order for the fine motion electromagnet 101-3 to continuously provide the desired force to the fine motion stage 101-1, it is necessary to move the stator (fixed iron core and coil) of the fine motion electromagnet 101-3 in accordance with the movement of the fine motion stage 101-1 to maintain the gap. In addition, the heat generated by the fine motion ZLM can be reduced by reducing the height of the fine motion electromagnet 101-3 on the fine motion base 101-2. According to the above structure, high-precision position control of the fine motion stage 101-1, reduction of heat generation and reduction of overlap error can be achieved. The coarse motion position control system 5133 realizes the above matters. The coarse motion position, that is, the position of the fine motion base 101-2 is measured by the coarse motion position sensor 5135 represented by the encoder, and the coarse motion linear motor 106 is driven by the coarse motion position control system 5133 based on the deviation from the target position. As a result, the position of the fine motion stage 101-1 (the mover of the fine motion electromagnet 101-3) and the position of the fine motion base 101-2 (the stator of the fine motion electromagnet 101-3) are controlled based on the output of the position curve generator 5102 to maintain the gap. The fine motion position sensor 5156 that measures the position of the fine motion stage 101-1 can also be replaced by a sensor that measures the relative position of the fine motion stage 101-1 and the fine motion base 101-2. The invention is not limited to the above-mentioned implementation method, and various modifications and changes can be made within the scope of the concept of the invention.
SC:固定鐵芯(第1構件) MC:可動鐵芯(第2構件) 101-1:微動載台 101-2:微動基座 101-36:線圈 SC: Fixed iron core (1st component) MC: Movable iron core (2nd component) 101-1: Micro-motion stage 101-2: Micro-motion base 101-36: Coil
[圖1]例示性示出一個實施方式的曝光裝置的構成的圖。 [圖2]例示性示出一個實施方式的晶圓載台裝置的構成的圖。 [圖3]例示性示出一個實施方式的晶圓載台裝置的構成的圖。 [圖4]例示性示出一個實施方式的微動載台裝置的構成的圖。 [圖5]例示性示出一個實施方式的粗動載台裝置的構成的圖。 [圖6]例示性示出一個實施方式的粗動線性馬達的構成的圖。 [圖7]例示性示出照射區佈局圖的圖。 [圖8]例示性示出第1實施方式的組裝在曝光裝置或者晶圓載台裝置中的微動電磁鐵的構成的圖。 [圖9]例示性示出第1實施方式的組裝在曝光裝置或者晶圓載台裝置中的微動電磁鐵的構成的圖。 [圖10]例示性示出第1實施方式的組裝在曝光裝置或者晶圓載台裝置中的微動載台裝置的構成的圖。 [圖11]例示性示出第1實施方式的組裝在曝光裝置或者晶圓載台裝置中的微動電磁鐵的改進例的構成的圖。 [圖12]例示性示出第1實施方式的組裝在曝光裝置或者晶圓載台裝置中的微動電磁鐵的其他改進例的構成的圖。 [圖13]例示性示出第2實施方式的組裝在曝光裝置或者晶圓載台裝置中的微動電磁鐵的構成的圖。 [圖14]例示性示出第2實施方式的組裝在曝光裝置或者晶圓載台裝置中的微動電磁鐵的構成的圖。 [圖15]例示性示出第2實施方式的組裝在曝光裝置或者晶圓載台裝置中的微動載台裝置的構成的圖。 [圖16]例示性示出第3實施方式的組裝在曝光裝置或者晶圓載台裝置中的微動電磁鐵的構成的圖。 [圖17]例示性示出第3實施方式的組裝在曝光裝置或者晶圓載台裝置中的微動電磁鐵的構成的圖。 [圖18]例示性示出第3實施方式的組裝在曝光裝置或者晶圓載台裝置中的微動載台裝置的構成的圖。 [圖19]例示性示出第3實施方式的組裝在曝光裝置或者晶圓載台裝置中的微動電磁鐵的改進例的構成的圖。 [圖20]例示性示出第3實施方式的組裝在曝光裝置或者晶圓載台裝置中的微動電磁鐵的改進例的構成的圖。 [圖21]例示性示出第3實施方式的組裝在曝光裝置或者晶圓載台裝置中的微動電磁鐵的其他改進例的構成的圖。 [圖22]例示性示出第4實施方式的組裝在曝光裝置或者晶圓載台裝置中的微動電磁鐵的構成的圖。 [圖23]例示性示出第4實施方式的組裝在曝光裝置或者晶圓載台裝置中的微動電磁鐵的變形例的構成的圖。 [圖24]例示性示出第4實施方式的微動電磁鐵的變形例中的可動鐵芯的支撐構件的構成的圖。 [圖25]例示性示出一個實施方式中的晶圓載台裝置的控制系統的構成的圖。 [圖26]例示性示出位置曲線以及加速度曲線的圖。 [圖27]用於說明第3實施方式的微動電磁鐵的改進例的組裝方法或者製造方法的圖。 [圖28]用於說明第3實施方式的微動電磁鐵的改進例的組裝方法或者製造方法的圖。 [圖29]用於說明第3實施方式的微動電磁鐵的改進例的組裝方法或者製造方法的圖。 [圖30]用於說明第3實施方式的微動電磁鐵的改進例的組裝方法或者製造方法的圖。 [圖31]用於說明第3實施方式的微動電磁鐵的改進例的組裝方法或者製造方法的圖。 [圖32]用於例示性說明纏繞鐵芯的圖。 [圖33]用於例示性說明纏繞鐵芯的製造方法的圖。 [圖34]用於說明在具有複雜三維形狀的鐵芯中產生的渦電流的圖。 [圖35]例示性示出在使微動載台加速時作用於微動載台的力矩的圖。 [FIG. 1] A diagram showing an exemplary configuration of an exposure device according to an embodiment. [FIG. 2] A diagram showing an exemplary configuration of a wafer stage device according to an embodiment. [FIG. 3] A diagram showing an exemplary configuration of a wafer stage device according to an embodiment. [FIG. 4] A diagram showing an exemplary configuration of a fine-motion stage device according to an embodiment. [FIG. 5] A diagram showing an exemplary configuration of a coarse-motion stage device according to an embodiment. [FIG. 6] A diagram showing an exemplary configuration of a coarse-motion linear motor according to an embodiment. [FIG. 7] A diagram showing an exemplary irradiation area layout diagram. [FIG. 8] A diagram showing an exemplary configuration of a fine-motion electromagnet assembled in an exposure device or a wafer stage device according to the first embodiment. [FIG. 9] A diagram showing, by way of example, the configuration of a micro-motion electromagnet assembled in an exposure device or a wafer stage device according to the first embodiment. [FIG. 10] A diagram showing, by way of example, the configuration of a micro-motion stage device assembled in an exposure device or a wafer stage device according to the first embodiment. [FIG. 11] A diagram showing, by way of example, the configuration of an improved example of a micro-motion electromagnet assembled in an exposure device or a wafer stage device according to the first embodiment. [FIG. 12] A diagram showing, by way of example, the configuration of another improved example of a micro-motion electromagnet assembled in an exposure device or a wafer stage device according to the first embodiment. [FIG. 13] A diagram showing, by way of example, the configuration of a micro-motion electromagnet assembled in an exposure device or a wafer stage device according to the second embodiment. [FIG. 14] A diagram showing, by way of example, the configuration of a fine-motion electromagnet assembled in an exposure device or a wafer stage device according to the second embodiment. [FIG. 15] A diagram showing, by way of example, the configuration of a fine-motion stage device assembled in an exposure device or a wafer stage device according to the second embodiment. [FIG. 16] A diagram showing, by way of example, the configuration of a fine-motion electromagnet assembled in an exposure device or a wafer stage device according to the third embodiment. [FIG. 17] A diagram showing, by way of example, the configuration of a fine-motion electromagnet assembled in an exposure device or a wafer stage device according to the third embodiment. [FIG. 18] A diagram showing, by way of example, the configuration of a fine-motion stage device assembled in an exposure device or a wafer stage device according to the third embodiment. [FIG. 19] A diagram showing an exemplary structure of a modified example of a micro-motion electromagnet assembled in an exposure device or a wafer stage device according to the third embodiment. [FIG. 20] A diagram showing an exemplary structure of a modified example of a micro-motion electromagnet assembled in an exposure device or a wafer stage device according to the third embodiment. [FIG. 21] A diagram showing an exemplary structure of another modified example of a micro-motion electromagnet assembled in an exposure device or a wafer stage device according to the third embodiment. [FIG. 22] A diagram showing an exemplary structure of a micro-motion electromagnet assembled in an exposure device or a wafer stage device according to the fourth embodiment. [FIG. 23] A diagram showing an exemplary structure of a modified example of a micro-motion electromagnet assembled in an exposure device or a wafer stage device according to the fourth embodiment. [Figure 24] A diagram showing, by way of example, the structure of a support member for a movable iron core in a modified example of the micro-motion electromagnet of the fourth embodiment. [Figure 25] A diagram showing, by way of example, the structure of a control system for a wafer stage device in one embodiment. [Figure 26] A diagram showing, by way of example, a position curve and an acceleration curve. [Figure 27] A diagram for illustrating an assembly method or a manufacturing method of a modified example of the micro-motion electromagnet of the third embodiment. [Figure 28] A diagram for illustrating an assembly method or a manufacturing method of a modified example of the micro-motion electromagnet of the third embodiment. [Figure 29] A diagram for illustrating an assembly method or a manufacturing method of a modified example of the micro-motion electromagnet of the third embodiment. [Figure 30] A diagram for illustrating an assembly method or a manufacturing method of a modified example of the micro-motion electromagnet of the third embodiment. [Figure 31] A diagram for explaining an assembly method or a manufacturing method of an improved example of the fine motion electromagnet of the third embodiment. [Figure 32] A diagram for illustrating a winding iron core by way of example. [Figure 33] A diagram for illustrating a manufacturing method of a winding iron core by way of example. [Figure 34] A diagram for illustrating eddy currents generated in an iron core having a complex three-dimensional shape. [Figure 35] A diagram for illustrating a torque acting on the fine motion stage when the fine motion stage is accelerated.
101-2:微動基座 101-2: Micro-motion base
101-30:支撐構件 101-30: Support components
101-31:支撐構件 101-31: Support components
101-36:線圈 101-36: Coil
101-39:銷單元 101-39: Sales unit
SC:固定鐵芯(第1構件) SC: Fixed iron core (first component)
MC:可動鐵芯(第2構件) MC: Movable core (second component)
Claims (26)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022-075364 | 2022-04-28 | ||
JP2022075364A JP2023164057A (en) | 2022-04-28 | 2022-04-28 | Transfer device and article manufacturing method |
Publications (1)
Publication Number | Publication Date |
---|---|
TW202414520A true TW202414520A (en) | 2024-04-01 |
Family
ID=88477387
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW112113222A TW202414520A (en) | 2022-04-28 | 2023-04-10 | Stage apparatus, transfer apparatus, and article manufacturing method |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP2023164057A (en) |
KR (1) | KR20230153257A (en) |
CN (1) | CN116974147A (en) |
TW (1) | TW202414520A (en) |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3484684B2 (en) | 1994-11-01 | 2004-01-06 | 株式会社ニコン | Stage apparatus and scanning type exposure apparatus |
JP4012198B2 (en) | 1998-07-29 | 2007-11-21 | キヤノン株式会社 | Stage apparatus, exposure apparatus, and device manufacturing method |
-
2022
- 2022-04-28 JP JP2022075364A patent/JP2023164057A/en active Pending
-
2023
- 2023-04-04 KR KR1020230043903A patent/KR20230153257A/en active Pending
- 2023-04-10 TW TW112113222A patent/TW202414520A/en unknown
- 2023-04-25 CN CN202310459709.7A patent/CN116974147A/en active Pending
Also Published As
Publication number | Publication date |
---|---|
JP2023164057A (en) | 2023-11-10 |
KR20230153257A (en) | 2023-11-06 |
CN116974147A (en) | 2023-10-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4639517B2 (en) | Stage apparatus, lithography system, positioning method, and stage apparatus driving method | |
US6720680B1 (en) | Flat motor device and its driving method, stage device and its driving method, exposure apparatus and exposure method, and device and its manufacturing method | |
KR100325644B1 (en) | Stage system and stage driving method for use in exposure apparatus | |
US7075198B2 (en) | Alignment apparatus and exposure apparatus using the same | |
US6835941B1 (en) | Stage unit and its making method, and exposure apparatus and its making method | |
US6107703A (en) | Linear motor mechanism for exposure apparatus, and device manufacturing method using the same | |
US10261419B2 (en) | Magnet array for moving magnet planar motor | |
US11075573B2 (en) | Power minimizing controller for a stage assembly | |
US20100090545A1 (en) | Planar motor with wedge shaped magnets and diagonal magnetization directions | |
US20100167556A1 (en) | Three degree of movement mover and method for controlling a three degree of movement mover | |
JPH11191585A (en) | Stage device and aligner using it and/or device manufacture | |
KR100573670B1 (en) | Positioning device having three coil systems with an angle of 120 ° to each other and a transfer device comprising such a positioning device | |
TW201206028A (en) | Displacement device, lithographic apparatus and positioning method | |
JP2001037201A (en) | Motor device, stage equipment and exposure device | |
JP2007312516A (en) | Drive device, aligner, and method for manufacturing device | |
US6479991B1 (en) | Stage mechanism, exposure apparatus and device manufacturing method in which a coil unit of a driving mechanism is moved substantially in synchronism with a stage | |
TW202414520A (en) | Stage apparatus, transfer apparatus, and article manufacturing method | |
JP2008228406A (en) | Plane motor, positioning device, exposure device and method of manufacturing device | |
JP3639681B2 (en) | Stage apparatus and exposure apparatus using the same | |
EP4270423A1 (en) | Electromagnetic device, alignment apparatus, and article manufacturing method | |
TW202343542A (en) | Carrier device, transfer device, and article manufacturing device wherein the carrier device includes a coarse motion table, coarse motion actuator, a fine motion table, a fine motion actuator, and an electromagnetic actuator | |
US20040222707A1 (en) | Plane motor device with surrounding member surrounding coil unit and with cooling channel provided within surrounding member | |
US20130135603A1 (en) | C-core actuator for moving a stage | |
JP2002217024A (en) | E-type electromagnet, actuator, stage unit, aligner, and method of manufacturing device | |
JP2002217023A (en) | Electromagnet, electromagnetic actuator, stage unit, aligner, and method of manufacturing device |