[go: up one dir, main page]

TW202414111A - Method for electron beam-induced processing of a defect of a microlithographic photomask - Google Patents

Method for electron beam-induced processing of a defect of a microlithographic photomask Download PDF

Info

Publication number
TW202414111A
TW202414111A TW112128014A TW112128014A TW202414111A TW 202414111 A TW202414111 A TW 202414111A TW 112128014 A TW112128014 A TW 112128014A TW 112128014 A TW112128014 A TW 112128014A TW 202414111 A TW202414111 A TW 202414111A
Authority
TW
Taiwan
Prior art keywords
mask
defect
determined
image
electron beam
Prior art date
Application number
TW112128014A
Other languages
Chinese (zh)
Other versions
TWI871713B (en
Inventor
吉爾 塔博恩
Original Assignee
德商卡爾蔡司Smt有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 德商卡爾蔡司Smt有限公司 filed Critical 德商卡爾蔡司Smt有限公司
Publication of TW202414111A publication Critical patent/TW202414111A/en
Application granted granted Critical
Publication of TWI871713B publication Critical patent/TWI871713B/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/20Masks or mask blanks for imaging by charged particle beam [CPB] radiation, e.g. by electron beam; Preparation thereof
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/68Preparation processes not covered by groups G03F1/20 - G03F1/50
    • G03F1/72Repair or correction of mask defects
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F1/00Etching metallic material by chemical means
    • C23F1/10Etching compositions
    • C23F1/12Gaseous compositions
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F4/00Processes for removing metallic material from surfaces, not provided for in group C23F1/00 or C23F3/00
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/68Preparation processes not covered by groups G03F1/20 - G03F1/50
    • G03F1/72Repair or correction of mask defects
    • G03F1/74Repair or correction of mask defects by charged particle beam [CPB], e.g. focused ion beam
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/68Preparation processes not covered by groups G03F1/20 - G03F1/50
    • G03F1/80Etching
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70605Workpiece metrology
    • G03F7/70616Monitoring the printed patterns
    • G03F7/7065Defects, e.g. optical inspection of patterned layer for defects
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70605Workpiece metrology
    • G03F7/70653Metrology techniques
    • G03F7/70655Non-optical, e.g. atomic force microscope [AFM] or critical dimension scanning electron microscope [CD-SEM]
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70605Workpiece metrology
    • G03F7/706835Metrology information management or control
    • G03F7/706837Data analysis, e.g. filtering, weighting, flyer removal, fingerprints or root cause analysis
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70605Workpiece metrology
    • G03F7/706835Metrology information management or control
    • G03F7/706839Modelling, e.g. modelling scattering or solving inverse problems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement or ion-optical arrangement
    • H01J37/147Arrangements for directing or deflecting the discharge along a desired path
    • H01J37/1471Arrangements for directing or deflecting the discharge along a desired path for centering, aligning or positioning of ray or beam
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/22Optical, image processing or photographic arrangements associated with the tube
    • H01J37/222Image processing arrangements associated with the tube
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/26Electron or ion microscopes; Electron or ion diffraction tubes
    • H01J37/28Electron or ion microscopes; Electron or ion diffraction tubes with scanning beams
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/305Electron-beam or ion-beam tubes for localised treatment of objects for casting, melting, evaporating, or etching
    • H01J37/3053Electron-beam or ion-beam tubes for localised treatment of objects for casting, melting, evaporating, or etching for evaporating or etching
    • H01J37/3056Electron-beam or ion-beam tubes for localised treatment of objects for casting, melting, evaporating, or etching for evaporating or etching for microworking, e. g. etching of gratings or trimming of electrical components
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/04Means for controlling the discharge
    • H01J2237/047Changing particle velocity
    • H01J2237/0473Changing particle velocity accelerating
    • H01J2237/04735Changing particle velocity accelerating with electrostatic means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/245Detection characterised by the variable being measured
    • H01J2237/24571Measurements of non-electric or non-magnetic variables
    • H01J2237/24585Other variables, e.g. energy, mass, velocity, time, temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/30Electron or ion beam tubes for processing objects
    • H01J2237/317Processing objects on a microscale
    • H01J2237/3174Etching microareas
    • H01J2237/31742Etching microareas for repairing masks
    • H01J2237/31744Etching microareas for repairing masks introducing gas in vicinity of workpiece

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Data Mining & Analysis (AREA)
  • Plasma & Fusion (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Preparing Plates And Mask In Photomechanical Process (AREA)

Abstract

Method for electron beam-induced processing of a defect (D) of a microlithographic photomask (100), including the steps of: (a) providing (S1) an activating electron beam (202) at a first acceleration voltage (EHT1) and a process gas in the region (112) of a defect (D) of the photomask (100) for the purpose of repairing the defect (D), and (b) producing (S2) at least one image (110) of the photomask (100), in which the region (112) of the defect (D) is captured at least in part, by providing an electron beam (202) at at least one second acceleration voltage (EHT2, EHT3, EHT4) which differs from the first acceleration voltage (EHT1), for the purpose of determining a quality of the repaired defect (D).

Description

用於微影光罩之缺陷的電子束誘發處理的方法Method for electron beam induction treatment of defects in lithography masks

本發明有關於一種用於電子束誘發處理一微影光罩的一缺陷的方法。The present invention relates to a method for electron beam induction treatment of a defect in a lithography mask.

優先權申請案DE 10 2022 118 874.4的內容全部以參考方式併入本文。The content of the priority application DE 10 2022 118 874.4 is incorporated herein by reference in its entirety.

微影用於產生微結構零件,例如積體電路。使用具有照明系統和投影系統的微影設備來執行微影處理。在此,利用照明系統照明的光罩(標線)的影像利用投影系統投影到基板上,例如矽晶圓上,其塗有感光層(光阻劑)並設置於投影系統的影像平面上,以將光罩結構轉移至基板的感光塗層上。Lithography is used to produce microstructured parts, such as integrated circuits. Lithography is performed using a lithography apparatus having an illumination system and a projection system. Here, an image of a mask (reticle) illuminated by the illumination system is projected by the projection system onto a substrate, such as a silicon wafer, which is coated with a photosensitive layer (photoresist) and is arranged on the image plane of the projection system, in order to transfer the mask structure to the photosensitive coating of the substrate.

在積體電路產生中對較小結構的需求的推動下,目前正在開發使用波長範圍在0.1nm至30nm之間、特別是光波長為13.5nm的EUV微影設備。Driven by the need for smaller structures in integrated circuit production, EUV lithography equipment is being developed using wavelengths ranging from 0.1nm to 30nm, particularly light at a wavelength of 13.5nm.

在這種情況下,微影光罩或光罩本身的結構尺寸是從幾nm到數百nm之間。這種光罩的產生非常複雜且造成成本高昂。特別地,這種情況是因為光罩必須是無缺陷的,以確保利用光罩在矽晶圓上產生的結構表現出期望的功能。特別地,光罩上的結構的品質決定了利用光罩在晶圓上產生的積體電路的品質。In this case, the structure size of the lithography mask or the mask itself ranges from a few nm to hundreds of nm. The production of such masks is very complex and costly. This is the case, in particular, because the mask must be defect-free to ensure that the structures produced on the silicon wafer using the mask exhibit the desired functionality. In particular, the quality of the structures on the mask determines the quality of the integrated circuits produced on the wafer using the mask.

正是出於這個原因,需要檢查微影光罩是否有缺陷,並且針對發現的缺陷進行修復。典型的缺陷包括缺乏設想的結構,例如由於蝕刻處理未成功進行,以及存在非理想的結構,例如,由於蝕刻處理進行得太快或在錯誤的位置產生影響。可藉由針對性地蝕刻多餘的材料或在適當的位置有針對性地沉積附加材料來補救這些缺陷;舉例來說,這可以藉由電子束誘發處理(FEBIP,「聚焦電子束誘發處理」)以非常有針對性的方式實現。It is for this reason that lithography masks need to be inspected for defects and repaired if found. Typical defects include the absence of the intended structure, e.g. due to an unsuccessful etching process, and the presence of non-ideal structures, e.g. due to the etching process being carried out too quickly or affecting the process at the wrong location. These defects can be remedied by targeted etching of excess material or targeted deposition of additional material at the right location; this can be achieved, for example, in a very targeted manner by means of electron beam induction processing (FEBIP, "focused electron beam induction processing").

DE 10 2017 208 114 A1描述了一種用於微影光罩的粒子束誘發蝕刻的方法。在這種情況下,在微影光罩上待蝕刻的位置處提供粒子束(特別是電子束)和蝕刻氣體。粒子束活化微影光罩的材料和蝕刻氣體之間的局部化學反應,導致微影光罩的材料被局部燒蝕。DE 10 2017 208 114 A1 describes a method for particle beam induced etching of a lithography mask. In this case, a particle beam (in particular an electron beam) and an etching gas are provided at the locations to be etched on the lithography mask. The particle beam activates a local chemical reaction between the material of the lithography mask and the etching gas, resulting in localized ablation of the material of the lithography mask.

相對於背景,本發明之目的在於提供一種用於電子束誘發處理一微影光罩的一缺陷的改進方法。Against this background, an object of the present invention is to provide an improved method for electron beam induction processing of a defect in a lithography mask.

因此,建議用於電子束誘發處理一微影光罩的一缺陷的方法,包括以下步驟: a)在該光罩的該缺陷的區域中提供處於一第一加速電壓的一活化電子束)和一處理氣體以修復該缺陷,以及 b)為了判定修復的該缺陷的品質,藉由提供處於不同於該第一加速電壓的至少一個第二加速電壓的一電子束(202)而產生該光罩的至少一個影像(110),其中該缺陷的該區域至少部分地被擷取。 Therefore, a method for electron beam induced treatment of a defect in a lithography mask is proposed, comprising the following steps: a) providing an activating electron beam at a first accelerating voltage and a treatment gas in the region of the defect in the mask to repair the defect, and b) in order to determine the quality of the repaired defect, generating at least one image (110) of the mask by providing an electron beam (202) at at least one second accelerating voltage different from the first accelerating voltage, wherein the region of the defect is at least partially captured.

例如基於電子束的電子與光罩的材料的相互作用而產生步驟b)中產生的光罩的至少一個影像。電子束的電子的能量取決於提供給電子束(初級束)的加速電壓。加速電壓越大,電子的能量越高。電子的能量越高,其進入光罩材料的穿透深度越大,且電子與光罩材料相互作用的相互作用容積越大。換句話說,改變加速電壓允許從光罩中的不同深度層記錄光罩的影像。For example, at least one image of the reticle generated in step b) is generated based on the interaction of the electrons of the electron beam with the material of the reticle. The energy of the electrons of the electron beam depends on the accelerating voltage provided to the electron beam (primary beam). The greater the accelerating voltage, the higher the energy of the electrons. The higher the energy of the electrons, the greater the penetration depth into the reticle material and the greater the interaction volume of the electrons interacting with the reticle material. In other words, changing the accelerating voltage allows recording images of the reticle from different depth layers in the reticle.

利用以至少一個第二加速電壓提供電子束來產生光罩的至少一個影像,因此可從與第一加速電壓所允許的深度不同的深度來獲取用於判定修復缺陷的品質的資訊。By providing the electron beam with at least one second accelerating voltage to generate at least one image of the reticle, information useful for determining the quality of the repaired defect can be obtained from a depth different from the depth allowed by the first accelerating voltage.

電子束(初級束)的電子與光罩材料的相互作用例如包括初級束的電子與待檢查物件的原子的相互作用,並產生二次電子。此外,相互作用還可包括例如背散射電子。The interaction between the electrons of the electron beam (primary beam) and the mask material includes, for example, the interaction between the electrons of the primary beam and the atoms of the object to be inspected, and the generation of secondary electrons. In addition, the interaction may also include, for example, backscattered electrons.

舉例來說,在光罩和/或一部分的光罩上掃描電子束。For example, an electron beam is scanned over a reticle and/or a portion of a reticle.

如果在步驟b)中產生了光罩的多個影像,其中擷取至少部分的缺陷區域,然後,特別以這樣的方式產生多個影像,使得它們擷取和/或代表光罩的同一個區域。If in step b) a plurality of images of the reticle are generated, in which at least parts of the defect area are captured, then the plurality of images are generated in particular in such a way that they capture and/or represent the same area of the reticle.

如果在步驟b)中產生光罩的多個影像,則這表示是利用提供處於相應的第二加速電壓的電子束來產生多個影像中的每一個。具體地,用於產生多個影像的多個第二加速電壓彼此不同(即,成對式不同)且與第一加速電壓也不同。If multiple images of the mask are generated in step b), this means that each of the multiple images is generated using an electron beam provided at a corresponding second accelerating voltage. Specifically, the multiple second accelerating voltages used to generate the multiple images are different from each other (i.e., different in pairs) and are also different from the first accelerating voltage.

例如利用掃描電子顯微鏡(SEM)記錄光罩的至少一張影像。舉例來說,光罩的至少一個影像具有幾nm數量級的空間解析度。For example, at least one image of the mask is recorded using a scanning electron microscope (SEM). For example, the at least one image of the mask has a spatial resolution on the order of a few nm.

舉例來說,該方法可包括判定修復缺陷的品質的步驟。For example, the method may include the step of determining the quality of the repaired defect.

步驟a)中的缺陷修復例如包括缺陷的蝕刻,在該蝕刻的範圍內,從光罩局部燒蝕材料,或者在缺陷區域中的光罩上沉積材料。The defect repair in step a) comprises, for example, etching of the defect, locally ablating material from the mask within the scope of the etching, or depositing material on the mask in the defect area.

藉由所提出的方法,可以在步驟b)之後的光罩的後處理期間更佳地蝕刻掉缺陷區域中的多餘結構,也就是例如藉由重新執行步驟a),或可以更佳地增強缺陷區域中缺少的結構。具體地,所提出的方法允許更佳且更準確地蝕刻掉缺陷的邊緣區域,或者可以更佳且更準確地增強缺陷的邊緣區域中的缺失結構。By means of the proposed method, redundant structures in the defect region can be better etched away during post-processing of the mask after step b), i.e., for example, by re-performing step a), or missing structures in the defect region can be better enhanced. Specifically, the proposed method allows better and more accurate etching away of the edge region of the defect, or missing structures in the edge region of the defect can be better and more accurately enhanced.

舉例來說,微影光罩是用於EUV微影設備的光罩。在這種情況下,EUV代表「極紫外線」並且表示工作光的波長範圍在0.1nm和30nm之間,特別是13.5nm。在EUV微影設備內,光束成形和照明系統用於將EUV輻射引導到光罩(也稱為「標線」)上,該光罩特別地呈現反射光學元件(反射光罩)的形式。光罩具有利用EUV微影設備的投影系統以縮小的方式成像到晶圓等上的結構。For example, a lithography mask is a mask used in an EUV lithography system. In this case, EUV stands for "extreme ultraviolet" and refers to the wavelength range of the working light between 0.1nm and 30nm, in particular 13.5nm. Within the EUV lithography system, beam shaping and illumination systems are used to direct the EUV radiation onto a mask (also called a "reticle"), which in particular takes the form of a reflective optical element (reflective mask). The mask has a structure that is imaged in a reduced form onto a wafer, etc., using the projection system of the EUV lithography system.

舉例來說,微影光罩還可以是用於DUV微影設備的光罩。在這種情況下,DUV代表「深紫外線」並且表示工作光波長範圍在30nm和250nm之間、特別是193nm或248nm。在DUV微影設備內,光束成形和照明系統用於將DUV輻射引導到光罩上,特別是透射光學元件(透射光罩)的形式。光罩具有利用DUV微影設備的投影系統以縮小的方式成像到晶圓等上的結構。For example, a lithography mask can also be a mask for a DUV lithography system. In this case, DUV stands for "deep ultraviolet" and refers to an operating wavelength range between 30 nm and 250 nm, in particular 193 nm or 248 nm. In a DUV lithography system, beam shaping and illumination systems are used to direct the DUV radiation onto the mask, in particular in the form of transmission optics (transmission mask). The mask has a structure that is imaged in a reduced form onto a wafer or the like using the projection system of the DUV lithography system.

舉例來說,微影光罩包括基板和利用塗層形成在基板上的結構。舉例來說,光罩是透射光罩,在這種情況下,要成像的圖案以透明基板上的吸收(即,不透明或部分不透明)塗層的形式實現。或者,光罩也可以是反射光罩,例如,尤其用於EUV微影。光罩還可用於奈米壓印微影(NIL)。For example, a lithography mask comprises a substrate and a structure formed on the substrate by means of a coating. For example, the mask is a transmissive mask, in which case the pattern to be imaged is realized in the form of an absorbing (i.e., opaque or partially opaque) coating on a transparent substrate. Alternatively, the mask can also be a reflective mask, for example, especially for EUV lithography. The mask can also be used for nanoimprint lithography (NIL).

舉例來說,基板包括二氧化矽(SiO 2),例如熔融石英。舉例來說,結構化塗層包括鉻、鉻化合物、鉭化合物和/或由矽、氮、氧、鉬和/或釕製成的化合物。基板和/或塗層還可以包含其他材料。 By way of example, the substrate comprises silicon dioxide (SiO 2 ), such as fused silica. By way of example, the structured coating comprises chromium, chromium compounds, tantalum compounds and/or compounds made of silicon, nitrogen, oxygen, molybdenum and/or ruthenium. The substrate and/or the coating may also contain other materials.

在用於EUV微影設備的光罩的情況下,基板可以包括鉬層和矽層的交替順序。In the case of a mask for EUV lithography equipment, the substrate may include an alternating sequence of molybdenum and silicon layers.

使用所提出的方法,可以修復光罩的缺陷,特別是光罩的結構化塗層的缺陷。特別地,缺陷因為錯誤地將光罩的塗層(例如,吸收塗層或反射塗層)施加到基板上。此方法可用於增強光罩上缺乏塗層的位置。此外,可使用此方法從光罩上錯誤施加塗層的位置去除塗層。Using the proposed method, defects of a photomask, in particular defects of a structured coating of the photomask, can be repaired. In particular, the defects are caused by incorrectly applying a coating of the photomask, such as an absorbing coating or a reflective coating, to a substrate. This method can be used to enhance locations on the photomask where the coating is absent. Furthermore, this method can be used to remove the coating from locations on the photomask where the coating was incorrectly applied.

已修復缺陷的品質檢測,特別是已修復缺陷的品質。已修復缺陷的品質檢測,特別是缺陷參數。已修復缺陷的品品檢測,例如是已修復缺陷與光罩的預定配置之間的對應程度,對應程度大意味著已修復缺陷的品質較高。光罩的結構化塗層的已修復缺陷的品質檢測,例如是結構化塗層的已修復缺陷與結構化塗層的預定配置之間的對應程度。Quality inspection of repaired defects, especially the quality of the repaired defects. Quality inspection of repaired defects, especially defect parameters. Quality inspection of repaired defects, for example, the degree of correspondence between the repaired defects and the predetermined configuration of the mask, a greater degree of correspondence means a higher quality of the repaired defects. Quality inspection of repaired defects of the structured coating of the mask, for example, the degree of correspondence between the repaired defects of the structured coating and the predetermined configuration of the structured coating.

判定已修復缺陷的品質包括例如根據由參考數據判定出的參考參數,從光罩的至少一個產生的影像判定出參數的偏差和/或偏差程度的判定。Determining the quality of the repaired defect includes, for example, determining a deviation and/or a degree of deviation of the parameter from at least one image generated from the reticle based on reference parameters determined from the reference data.

舉例來說,可以在步驟a)中提供和/或產生光罩的至少一部分的影像,在該影像中擷取了缺陷,特別是完全擷取了缺陷。舉例來說,可以將影像中缺陷的幾何形狀判定為步驟a)中的修復形狀。舉例來說,判定缺陷的二維幾何形狀。所判定的缺陷的幾何形狀在下文中被稱為所謂的修復形狀。舉例來說,修復形狀包含n個像素。在步驟a)中以第一加速電壓產生電子束並且例如將電子束引導至修復形狀的n個像素中的每一個。For example, in step a), an image of at least a portion of the mask can be provided and/or generated, in which the defect is captured, in particular the defect is completely captured. For example, the geometric shape of the defect in the image can be determined as the repair shape in step a). For example, the two-dimensional geometric shape of the defect is determined. The determined geometric shape of the defect is referred to as the so-called repair shape in the following. For example, the repair shape contains n pixels. In step a), an electron beam is generated with a first accelerating voltage and, for example, the electron beam is guided to each of the n pixels of the repair shape.

舉例來說,處理氣體是前導物氣體和/或蝕刻氣體。例如,處理氣體可以是多種氣體組分的混合物,即處理氣體混合物。舉例來說,處理氣體可以是多種氣體組分的混合物,其中每種氣體組分僅具有特定的分子類型。For example, the process gas is a precursor gas and/or an etching gas. For example, the process gas can be a mixture of multiple gas components, i.e., a process gas mixture. For example, the process gas can be a mixture of multiple gas components, wherein each gas component has only a specific molecular type.

特別地,主族元素、金屬或過渡元素的烷基化合物可被認為是適合讓突起結構沉積或生長的前導物氣體。其例子包括環戊二烯基(三甲基)鉑(CpPtMe 3Me=CH 4)、甲基環戊二烯基(三甲基)鉑(MeCpPtMe 3)、四甲基錫(SnMe 4)、三甲基鎵(GaMe 3)、二茂鐵(Cp 2Fe)、雙芳基鉻(Ar 2Cr)和/或羰基化合物主族元素、金屬或過渡元素,例如,六羰基鉻(Cr(CO) 6)、六羰基鉬(Mo(CO) 6)、六羰基鎢(W(CO) 6)、八羰基二鈷(Co 2(CO) 8)、十二羰基三釕(Ru 3(CO) 12)、五羰基鐵(Fe(CO) 5)、和/或主族元素、金屬或過渡元素的醇鹽化合物,例如,四乙氧基矽烷(Si(OC 2H 5) 4)、四異丙氧基鈦(Ti(OC 3H 7) 4)和/或主族元素、金屬或過渡元素的鹵化物,例如,六氟化鎢(WF 6)、六氯化鎢(WCl 6)、四氯化鈦(TiCl 4)、三氟化硼(BCl 3)、四氯化矽(SiCl 4)和/或與主族元素、金屬或過渡元素的複合物,例如,雙(六氟乙醯丙酮)銅(Cu(C 5F 6HO 2) 2)、三氟乙醯丙酮二甲基金(Me 2Au(C 5F 3H 4O 2))和/或有機化合物,例如一氧化碳(CO)、二氧化碳(CO 2)、脂肪族和/或芳香烴,還有更多相同的。 In particular, alkyl compounds of main group elements, metals or transition elements can be considered as suitable precursor gases for the deposition or growth of protrusion structures. Examples include cyclopentadienyl (trimethyl) platinum ( CpPtMe3Me = CH4 ), methylcyclopentadienyl (trimethyl) platinum (MeCpPtMe3), tetramethyltin ( SnMe4 ), trimethylgallium ( GaMe3 ), ferrocene ( Cp2Fe ), chromium diaryls ( Ar2Cr ) and/or carbonyl compounds of main group elements, metals or transition elements, such as chromium hexacarbonyl (Cr(CO) 6 ), molybdenum hexacarbonyl (Mo(CO) 6 ), tungsten hexacarbonyl (W(CO) 6 ), dicobalt octacarbonyl ( Co2 (CO) 8 ), triruthenium dodecacarbonyl ( Ru3 (CO) 12 ), iron pentacarbonyl (Fe(CO) 5 ), and/or alkoxide compounds of main group elements, metals or transition elements, for example, tetraethoxysilane (Si(OC 2 H 5 ) 4 ), tetraisopropoxytitanium (Ti(OC 3 H 7 ) 4 ) and/or halides of main group elements, metals or transition elements, for example, tungsten hexafluoride (WF 6 ), tungsten hexachloride (WCl 6 ), titanium tetrachloride (TiCl 4 ), boron trifluoride (BCl 3 ), silicon tetrachloride (SiCl 4 ) and/or complexes with main group elements, metals or transition elements, for example, bis(hexafluoroacetylacetonate)copper (Cu(C 5 F 6 HO 2 ) 2 ), trifluoroacetylacetonate dimethylgold (Me 2 Au(C 5 F 3 H 4 O 2 )) and/or organic compounds such as carbon monoxide (CO), carbon dioxide (CO 2 ), aliphatic and/or aromatic hydrocarbons, and more of the same.

舉例來說,蝕刻氣體可以包括:二氟化氙(XeF 2)、二氯化氙(XeCl 2)、四氯化氙(XeCl 4)、蒸汽(H 2O)、重水(D 2O)、氧氣(O 2)、臭氧(O 3)、氨(NH 3)、亞硝醯氯(NOCl)和/或以下鹵化物化合物之一:XNO、XONO 2、X 2O、XO 2、X 2O 2、X 2O 4、X 2O 6,其中X是鹵化物。在申請人的美國專利申請(編號為13/0103281)中對於用來蝕刻一個或多個沉積測試結構的其他蝕刻氣體有詳細說明。 For example, the etching gas may include: xenon difluoride ( XeF2 ), xenon dichloride ( XeCl2 ), xenon tetrachloride ( XeCl4 ), steam ( H2O ), heavy water ( D2O ), oxygen ( O2 ), ozone ( O3 ), ammonia ( NH3 ), nitrosyl chloride (NOCl) and/or one of the following halogenide compounds: XNO, XONO2 , X2O , XO2 , X2O2 , X2O4 , X2O6 , where X is a halide . Other etching gases used to etch one or more deposition test structures are described in detail in applicant's U.S. patent application ( serial number 13/0103281).

處理氣體可以包括另外的附加氣體,例如氧化氣體,例如過氧化氫(H 2O 2)、一氧化二氮(N 2O)、氮氧化物(NO)、二氧化氮(NO 2)、硝酸(HNO 3)和其他含氧氣體和/或鹵化物,例如氯(Cl 2)、氯化氫(HCl)、氟化氫(HF)、碘(I 2)、碘化氫(HI)、溴(Br 2)、溴化氫(HBr)、三氯化磷(PCl 3)、五氯化磷(PCl 5)、三氟化磷(PF 3)及其他含鹵素氣體及/或還原性氣體,如氫氣(H 2)、氨(NH 3)、甲烷(CH 4)和其他含氫氣體。這些附加氣體可用於例如蝕刻處理、作為緩衝氣體、作為鈍化介質等。 The process gas may include additional gases, such as oxidizing gases, such as hydrogen peroxide ( H2O2 ), nitrous oxide ( N2O ), nitrogen oxides (NO), nitrogen dioxide ( NO2 ), nitric acid ( HNO3 ) and other oxygen-containing gases and/or halides, such as chlorine ( Cl2 ), hydrogen chloride (HCl), hydrogen fluoride (HF), iodine ( I2 ), hydrogen iodide (HI), bromine ( Br2 ), hydrogen bromide (HBr), phosphorus trichloride ( PCl3 ), phosphorus pentachloride ( PCl5 ), phosphorus trifluoride ( PF3 ) and other halogen-containing gases and/or reducing gases, such as hydrogen ( H2 ), ammonia ( NH3 ), methane ( CH4 ) and other hydrogen-containing gases. These additional gases may be used, for example, in etching processes, as buffer gases, as passivation media, etc.

舉例來說,藉由裝置提供啟動電子束,該裝置可以包括:用於在變化的加速電壓下產生電子束的電子源;電子束引導裝置(例如,掃描單元),其配置為將電子束引導至光罩的修復形狀的各個像素;電子束整形裝置(例如,電子或電子束光學元件),其配置為整形電子束、特別是聚焦電子束;至少一個儲存容器,其配置為儲存處理氣體或處理氣體的至少一種氣態組分;至少一個氣體供應裝置,其配置為以預定氣體量流量向修復形狀的相應像素提供處理氣體或處理氣體中的至少一種氣體組分;以及至少一個偵測器,其用於偵測二次電子和/或背散射電子。For example, a starting electron beam is provided by a device, which may include: an electron source for generating an electron beam under a varying acceleration voltage; an electron beam guiding device (e.g., a scanning unit) configured to guide the electron beam to each pixel of the repair shape of the mask; an electron beam shaping device (e.g., an electron or electron beam optical element) configured to shape the electron beam, in particular to focus the electron beam; at least one storage container configured to store a processing gas or at least one gaseous component of the processing gas; at least one gas supply device configured to provide the processing gas or at least one gaseous component of the processing gas to the corresponding pixel of the repair shape at a predetermined gas flow rate; and at least one detector for detecting secondary electrons and/or backscattered electrons.

舉例來說,在該方法的步驟a)中使用改良的掃描電子顯微鏡以提供電子束。For example, in step a) of the method a modified scanning electron microscope is used to provide the electron beam.

在步驟a)中,活化電子束特別活化光罩材料和處理氣體之間的局部化學反應,這導致材料從氣相局部沉積在光罩上或導致材料的轉變使光罩進入氣相。In step a), the activating electron beam activates in particular a local chemical reaction between the photomask material and the process gas, which results in a local deposition of material from the gas phase on the photomask or in a transformation of the material into the gas phase.

在步驟a)中,例如使用電子束引導裝置在修復形狀的每個像素處連續提供活化電子束。活化電子束在每個像素處保留預定的暫留時間,以便在相應像素的位置引發處理氣體和光罩材料之間的化學反應。舉例來說,暫留時間為100 ns。然而,也可以採用其他數值的暫留時間。舉例來說,活化粒子束在修復形狀的每個像素處的暫留時間小於或等於500ns、小於或等於400ns、小於或等於300ns、小於或等於200ns、小於或等於100ns和/或小於或等於50ns。In step a), an activating electron beam is continuously provided at each pixel of the repaired shape, for example, using an electron beam guiding device. The activating electron beam retains a predetermined dwell time at each pixel so as to induce a chemical reaction between the processing gas and the mask material at the location of the corresponding pixel. For example, the dwell time is 100 ns. However, other values of dwell time may also be used. For example, the dwell time of the activating particle beam at each pixel of the repaired shape is less than or equal to 500ns, less than or equal to 400ns, less than or equal to 300ns, less than or equal to 200ns, less than or equal to 100ns and/or less than or equal to 50ns.

舉例來說,該方法的步驟b)中的光罩的至少一個影像是使用與用於在該方法的步驟a)中提供活化電子束的相同的改良的掃描電子顯微鏡來記錄的。舉例來說,該方法的步驟b)中的光罩的至少一個影像是使用與記錄光罩的至少一部分的影像以判定步驟a)中的缺陷的修復形狀的相同的改良的掃描電子顯微鏡記錄的。For example, at least one image of the reticle in step b) of the method is recorded using the same improved scanning electron microscope used to provide the activating electron beam in step a) of the method. For example, at least one image of the reticle in step b) of the method is recorded using the same improved scanning electron microscope used to record an image of at least a portion of the reticle to determine the repaired shape of the defect in step a).

在步驟b)中,例如利用電子束引導裝置在光罩或一部分的光罩上引導(掃描)電子束。電子束(初級束)的電子與光罩的材料相互作用並且例如產生二次電子和/或背散射電子,其利用至少一個偵測器來偵測。光罩的至少一個影像是基於擷取的二次電子和/或背散射電子產生的。In step b), an electron beam is guided (scanned) on the mask or a portion of the mask, for example using an electron beam guiding device. The electrons of the electron beam (primary beam) interact with the material of the mask and, for example, generate secondary electrons and/or backscattered electrons, which are detected using at least one detector. At least one image of the mask is generated based on the captured secondary electrons and/or backscattered electrons.

根據一實施例,至少一個第二加速電壓是大於第一加速電壓。According to one embodiment, at least one second accelerating voltage is greater than the first accelerating voltage.

導致光罩的深度會大於施加第一加速電壓得到的可能深度,可在步驟b)中產生至少一個影像時可擷取到步驟b)中的修復過程中使用的影像。The depth of the mask is caused to be greater than the possible depth obtained by applying the first accelerating voltage, and when at least one image is generated in step b), an image used in the restoration process in step b) can be captured.

舉例來說,第一加速電壓和第二加速電壓均在大於或等於0.2kV、0.4kV和/或0.6kV的範圍內。舉例來說,第一加速電壓和第二加速電壓的各自為小於或等於2kV、4kV、6kV、8kV和/或10kV的範圍內。舉例來說,第一加速電壓和第二加速電壓的範圍各自0.6kV與2kV之間或0.2kV與10kV之間。For example, the first accelerating voltage and the second accelerating voltage are both within the range of greater than or equal to 0.2 kV, 0.4 kV and/or 0.6 kV. For example, the first accelerating voltage and the second accelerating voltage are each within the range of less than or equal to 2 kV, 4 kV, 6 kV, 8 kV and/or 10 kV. For example, the first accelerating voltage and the second accelerating voltage are each within the range of 0.6 kV to 2 kV or 0.2 kV to 10 kV.

此外,例如第一加速電壓位於小於1kV的範圍內,第二加速電壓位於1kV以上的範圍。In addition, for example, the first accelerating voltage is in a range of less than 1 kV, and the second accelerating voltage is in a range of more than 1 kV.

根據另一實施例,為了獲取與光罩的結構相關的深度資訊,使用電子束在相應的多個第二加速電壓下產生光罩的多個影像,第二加速電壓不同於第一加速電壓且第二加速電壓亦彼此不同。According to another embodiment, in order to obtain depth information related to the structure of the mask, multiple images of the mask are generated using an electron beam under corresponding multiple second accelerating voltages, where the second accelerating voltages are different from the first accelerating voltage and the second accelerating voltages are also different from each other.

特別是在光罩的多個影像中擷取光罩的相同影像部分。特別是在垂直於光罩的主延伸平面的方向上獲取光罩的結構的深度資訊。In particular, the same image portion of the reticle is captured in a plurality of images of the reticle. In particular, depth information of the structure of the reticle is acquired in a direction perpendicular to a main extension plane of the reticle.

舉例來說,光罩的結構是光罩的結構化塗層。For example, the structure of the mask is the structured coating of the mask.

根據另一實施例,相對於步驟a),步驟b)是在現場進行的。According to another embodiment, step b) is performed on-site relative to step a).

結果可以在步驟a)中修復之後立即在現場檢查光罩的修復缺陷的品質。具體地,可以立即判斷修復的品質是否滿足已知品質水準(例如,修復的缺陷與參考數據的偏差程度是否小於預定閾值)。舉例來說,如果所判定的品質達標,則僅可以從處理設備(例如,掃描電子顯微鏡設備)輸出(例如,排出)光罩。As a result, the quality of the repaired defects of the photomask can be checked on site immediately after the repair in step a). Specifically, it can be immediately determined whether the quality of the repair meets the known quality level (e.g., whether the degree of deviation of the repaired defects from the reference data is less than a predetermined threshold). For example, the photomask can only be output (e.g., discharged) from the processing equipment (e.g., scanning electron microscope equipment) if the determined quality meets the standard.

特別是光罩在步驟a)和b)期間保持在相同位置。舉例來說,光罩在步驟a)和b)期間也保持在相同的位置和方向。舉例來說,將光罩設置在樣品台上以便執行步驟a),並且在步驟b)期間光罩也保持在該樣品台上。In particular, the photomask remains in the same position during steps a) and b). For example, the photomask also remains in the same position and orientation during steps a) and b). For example, the photomask is placed on a sample stage for performing step a), and the photomask also remains on the sample stage during step b).

根據另一實施例,步驟a)和b)是在一真空環境中進行,並且在步驟a)和b)之間將該光罩保持在該真空環境中。According to another embodiment, steps a) and b) are performed in a vacuum environment, and the photomask is kept in the vacuum environment between steps a) and b).

因此,可以根據步驟b)中判定的品質將光罩從真空環境中排出。Therefore, the photomask can be discharged from the vacuum environment according to the quality determined in step b).

根據另一實施例,使用相同的掃描電子顯微鏡裝置進行步驟a)和b),和/或由相同的電子源產生處於該第一加速電壓下的該電子束(202)和處於該至少一個第二加速電壓下的該電子束。According to another embodiment, steps a) and b) are performed using the same scanning electron microscope device, and/or the electron beam (202) at the first accelerating voltage and the electron beam at the at least one second accelerating voltage are generated by the same electron source.

舉例來說,電子源包括用於釋放電子的陰極和用於沿著陽極的方向將所釋放的電子的陽極加速。舉例來說,根據施加在陰極和陽極之間的加速電壓,電子在陽極的方向上從陰極加速到陽極。舉例來說,電子源包括用於調整施加在陰極和陽極之間的加速電壓的調整設備。舉例來說,陽極具有通道開口,以便提供加速電子作為電子束。For example, the electron source comprises a cathode for releasing electrons and an anode for accelerating the released electrons in the direction of the anode. For example, according to an accelerating voltage applied between the cathode and the anode, the electrons are accelerated from the cathode to the anode in the direction of the anode. For example, the electron source comprises an adjusting device for adjusting the accelerating voltage applied between the cathode and the anode. For example, the anode has a channel opening so as to provide the accelerated electrons as an electron beam.

根據另一實施例,此方法包括以下步驟: 使用該光罩的所產生的該至少一個影像的一影像分析和/或基於該光罩的所產生的該至少一個影像與用於該至少一個第二加速電壓的參考數據的一比較,以判定修復的該缺陷的品質。 According to another embodiment, the method comprises the following steps: An image analysis using the at least one image generated by the mask and/or a comparison based on the at least one image generated by the mask and reference data for the at least one second accelerating voltage to determine the quality of the repaired defect.

用於至少一個第二加速電壓的參考數據特別包括用於至少一個第二加速電壓中的每一個的參考數據。換句話說,為至少一個第二加速電壓中的每一個提供和/或產生單獨的參考數據。The reference data for at least one second accelerating voltage particularly comprises reference data for each of the at least one second accelerating voltage. In other words, separate reference data is provided and/or generated for each of the at least one second accelerating voltage.

特別地,影像分析包括電腦輔助影像分析。In particular, image analysis includes computer-assisted image analysis.

根據另一實施例,此方法包括以下步驟: 使用基於該光罩的一已知模型的一模擬來產生該參考數據,其中,在該模擬期間,基於該電子束與該光罩的該已知模型之間的一模擬相互作用來產生至少一個參考影像,該電子束對應於該至少一個第二加速電壓。 According to another embodiment, the method comprises the steps of: generating the reference data using a simulation based on a known model of the reticle, wherein during the simulation, at least one reference image is generated based on a simulated interaction between the electron beam and the known model of the reticle, the electron beam corresponding to the at least one second accelerating voltage.

具體地,光罩的已知模型對應於無缺陷光罩和/或光罩的目標配置。舉例來說,光罩的已知模型包括光罩的數位模型,例如光罩的CAD模型。Specifically, the known model of the reticle corresponds to a defect-free reticle and/or a target configuration of the reticle. For example, the known model of the reticle includes a digital model of the reticle, such as a CAD model of the reticle.

根據另一實施例,在該光罩的所產生的該至少一個影像中擷取在該缺陷之外的一區域,並且該方法包括以下步驟: 基於在該缺陷之外的該區域的一影像分析來產生該參考數據。 According to another embodiment, a region outside the defect is captured in the at least one image generated of the mask, and the method comprises the following steps: Generating the reference data based on an image analysis of the region outside the defect.

缺陷外部的區域特別是光罩的無缺陷和/或未修復的區域。缺陷外部的區域特別是在步驟a)之前無缺陷的區域。The area outside the defect is in particular a defect-free and/or unrepaired area of the mask. The area outside the defect is in particular a defect-free area before step a).

在實施例中,根據光罩的至少一個產生的影像判定參數和/或可測量屬性的偏差和/或偏差程度,在判定已修復缺陷的品質期間,根據參考參數或參考數據的可測量參考特性來判定。例如針對至少一個第二加速電壓中的每一個判定所述偏差和/或偏差的程度。In an embodiment, the deviation and/or degree of deviation of the parameter and/or measurable property is determined based on at least one generated image of the mask, and during the determination of the quality of the repaired defect, the determination is made based on a measurable reference characteristic of a reference parameter or reference data. For example, the deviation and/or degree of deviation is determined for each of the at least one second accelerating voltage.

從光罩的至少一個產生的影像判定的參數和/或由此判定的可測量特性例如是光罩的至少一個產生的影像中的結構輪廓的參數/可測量特性,光罩的至少一個產生的影像中的結構的尺寸和/或光罩的至少一個產生的影像的強度分佈(intensity profile)。舉例來說,參考參數和/或可測量參考特性是根據參考數據、參考尺寸和/或參考強度分佈所判定的參考輪廓的參數/可測量特性。The parameter determined from the at least one generated image of the reticle and/or the measurable characteristic determined therefrom is, for example, a parameter/measurable characteristic of the outline of a structure in the at least one generated image of the reticle, a size of a structure in the at least one generated image of the reticle and/or an intensity profile of the at least one generated image of the reticle. For example, the reference parameter and/or the measurable reference characteristic is a parameter/measurable characteristic of a reference outline determined based on reference data, reference size and/or reference intensity profile.

根據另一實施例,已修復的該缺陷(D)的品質的判定(S4)包括: 判定該光罩的所產生的該至少一個影像中的一個或多個結構的一輪廓,和/或 基於所判定的該輪廓來判定該一個或多個結構的一尺寸。 According to another embodiment, the determination (S4) of the quality of the repaired defect (D) includes: Determining a contour of one or more structures in the at least one image generated by the mask, and/or Determining a size of the one or more structures based on the determined contour.

一個或多個結構的輪廓例如包括光罩的一個或多個結構的邊緣和/或輪廓。判定光罩的一個或多個結構的輪廓例如包括數學函數擬合,例如線性函數(例如,直線),光罩的一種或多種結構和/或至少一個產生的影像中光罩的一種或多種結構的部分。The contours of the one or more structures include, for example, edges and/or contours of the one or more structures of the mask. Determining the contours of the one or more structures of the mask includes, for example, fitting a mathematical function, such as a linear function (e.g., a straight line), the one or more structures of the mask and/or portions of the one or more structures of the mask in at least one generated image.

也可以藉由判定至少一個產生的影像中的光罩的一個或多個結構的輪廓來擷取(例如,非常小的)結構的模糊邊緣和/或邊界。由於非常小的成像結構和所產生的影像的有限的空間分辨率,可能會出現模糊的邊緣和/或邊界。藉由判定輪廓可以更準確地測量一個或多個結構的尺寸。Blurred edges and/or boundaries of (e.g., very small) structures may also be captured by determining the outline of one or more structures of the reticle in at least one generated image. Blurred edges and/or boundaries may occur due to the very small imaged structures and the limited spatial resolution of the generated images. By determining the outline, the size of the one or more structures may be more accurately measured.

一個或多個結構的尺寸例如包括相應結構的大小(例如寬度或長度)或多個結構之間的間距。The dimensions of one or more structures include, for example, the size (eg, width or length) of the corresponding structure or the spacing between multiple structures.

根據另一實施例,在判定已修復缺陷的品質期間,判定出所判定的該輪廓與參考數據中的一參考輪廓的一偏差,和/或判定出所判定的該尺寸與參考數據中的一參考尺寸的一偏差,特別是針對該至少一個第二加速電壓中的每一個。According to another embodiment, during the determination of the quality of the repaired defect, a deviation of the determined profile from a reference profile in the reference data is determined, and/or a deviation of the determined size from a reference size in the reference data is determined, in particular for each of the at least one second accelerating voltage.

舉例來說,參考數據包含參考影像。例如,參考影像基於純模擬。也可以基於參考光罩或待修復光罩或已修復光罩的參考區域的電子束應用參考影像。參考影像可以是例如參考光罩或待修復光罩或已修復光罩的參考區域的SEM影像。For example, the reference data includes a reference image. For example, the reference image is based on a pure simulation. The reference image can also be based on an electron beam application of a reference mask or a reference region of a mask to be repaired or a repaired mask. The reference image can be, for example, a SEM image of a reference mask or a reference region of a mask to be repaired or a repaired mask.

根據另一實施例,在判定已修復該缺陷的品質期間,判定出該光罩的所產生的該至少一個影像的一強度分佈,以及判定出所判定的該強度分佈與參考數據(R)的一參考強度分佈的一偏差,特別是針對該至少一個第二加速電壓中的每一個。According to another embodiment, during the determination of the quality of the repaired defect, an intensity distribution of the at least one image produced of the mask is determined, and a deviation of the determined intensity distribution from a reference intensity distribution of reference data (R) is determined, in particular for each of the at least one second accelerating voltage.

舉例來說,強度分佈是一維強度分佈,其沿著影像中的線再產生對應影像的強度。在其他範例中,強度分佈也可以是二維強度分佈。For example, the intensity distribution is a one-dimensional intensity distribution that reproduces the intensity of the corresponding image along a line in the image. In other examples, the intensity distribution can also be a two-dimensional intensity distribution.

根據另一實施例,針對所產生的該影像的一區域,其包括該光罩的一個或多個結構的一輪廓,而判定出所判定的該強度分佈與該參考強度分佈的該偏差。According to another embodiment, the deviation of the determined intensity distribution from the reference intensity distribution is determined for a region of the generated image that includes an outline of one or more structures of the mask.

結果,可以偵測一個或多個結構的輪廓(例如邊界和/或邊緣)處的強度分佈的變化。As a result, changes in the intensity distribution at the contours (e.g. boundaries and/or edges) of one or more structures can be detected.

根據另一實施例,所判定的該強度分佈是一維或二維強度分佈。According to another embodiment, the intensity distribution determined is a one-dimensional or two-dimensional intensity distribution.

根據另一實施例,在判定已修復的該缺陷的品質期間,判定出根據該光罩的所產生的該至少一個影像所判定的一參數與根據參考數據所判定出的一參考參數的之間的一偏差的一程度。該方法包括以下步驟: 判定出所判定的該偏差是否小於一預定閾值,和/或 如果所判定的該偏差小於該預定閾值,則控制一HMI單元以輸出一通訊:「滿意」,和/或控制一光罩輸出單元一輸出修復後的該光罩,和/或 如果所判定的該偏差大於或等於該預定閾值,則控制該HMI單元(242)輸出通訊:「不滿意」。 According to another embodiment, during the determination of the quality of the repaired defect, the degree of deviation between a parameter determined based on the at least one image generated by the mask and a reference parameter determined based on the reference data is determined. The method comprises the following steps: Determining whether the determined deviation is less than a predetermined threshold, and/or If the determined deviation is less than the predetermined threshold, controlling an HMI unit to output a communication: "satisfactory", and/or controlling a mask output unit to output the repaired mask, and/or If the determined deviation is greater than or equal to the predetermined threshold, controlling the HMI unit (242) to output a communication: "unsatisfactory".

因此,可基於所判定的相對於參考數據的偏差來判定光罩的修復的品質等級。Therefore, the quality level of the repair of the reticle can be determined based on the determined deviation relative to the reference data.

使用光罩輸出單元輸出修復後的光罩例如包括從處理設備(例如,掃描電子顯微鏡設備)輸出光罩,其中執行步驟a)和b)。輸出修復後的光罩例如包括從真空環境和/或真空外殼輸出和/或排出光罩,其中執行步驟a)和b)。Outputting the repaired mask using the mask output unit includes, for example, outputting the mask from a processing device (e.g., a scanning electron microscope device), wherein steps a) and b) are performed. Outputting the repaired mask includes, for example, outputting and/or exhausting the mask from a vacuum environment and/or a vacuum enclosure, wherein steps a) and b) are performed.

因此,如果所判定的光罩修復的品質等級相對於預定規格是足夠的和/或令人滿意的,則修復後的光罩可只從處理設備(例如掃描電子顯微鏡設備)、真空環境和/或真空外殼輸出。然而,如果相對於預定規格來說所判定的品質等級不達標和/或不令人滿意,則將光罩保留在處理設備(例如,掃描電子顯微鏡設備)中、真空環境中和/或真空外殼中。然後可以在該處對光罩進行進一步的檢查和/或處理。Therefore, if the determined quality level of the reticle repair is sufficient and/or satisfactory relative to the predetermined specifications, the repaired reticle can only be exported from the processing equipment (e.g., scanning electron microscope equipment), vacuum environment and/or vacuum enclosure. However, if the determined quality level is not up to standard and/or satisfactory relative to the predetermined specifications, the reticle is retained in the processing equipment (e.g., scanning electron microscope equipment), vacuum environment and/or vacuum enclosure. The reticle can then be further inspected and/or processed there.

具體來說,HMI單元是人機介面單元。舉例來說,HMI單元包括顯示裝置,例如電腦、筆記型電腦、平板電腦和/或智慧型手機的顯示器,用於以文字或影像的形式輸出通訊。另外或作為替代,HMI單元例如也可以包括用於輸出語音通訊的揚聲器。Specifically, an HMI unit is a human-machine interface unit. For example, an HMI unit includes a display device, such as a display of a computer, laptop, tablet and/or smartphone, for outputting communications in the form of text or images. In addition or as an alternative, the HMI unit may also include a speaker for outputting voice communications, for example.

在本案中,「一」或「一個」不必被理解為僅限於一個元件。相反,也可以提供多個元件,例如兩個、三個或更多個。本文中使用的任何其他數字也不應被理解為對元件的確切數量進行限制。相反,除非另有說明,也可能有數值增多和減少的偏差。In the present case, "one" or "an" is not necessarily to be understood as being limited to one element. Instead, multiple elements may be provided, for example two, three or more. Any other numerals used herein should not be understood as limiting the exact number of elements. On the contrary, unless otherwise specified, there may also be deviations of increasing and decreasing values.

本發明的進一步可能的實施方式還包括上下文中相對於示例性實施例所描述的特徵或實施例的未明確提及的組合。在這種情況下,本領域技術人員也將增加各個態樣作為本發明的相應基本形式的改良或補充。Further possible implementations of the present invention also include combinations not explicitly mentioned in the context relative to the features or embodiments described in the exemplary embodiments. In this case, those skilled in the art will also add various aspects as improvements or supplements to the corresponding basic forms of the present invention.

除非另有說明,相同或功能相同的元件在附圖中具有相同的附圖標號。 另外要注意的是,附圖中的圖式不一定會按比例繪製。Unless otherwise specified, identical or functionally identical components have the same reference numerals in the accompanying drawings. It should also be noted that the drawings in the accompanying drawings are not necessarily drawn to scale.

圖1示意性地示出微影光罩100的細節的平面圖。在所示的示例中,光罩100是透射微影光罩100。光罩100包括基板102。基板102是光學透明的,尤其是在光罩100曝光的波長下。舉例來說,基板102的材料包括熔融石英。1 schematically shows a plan view of details of a lithography mask 100. In the example shown, the mask 100 is a transmission lithography mask 100. The mask 100 includes a substrate 102. The substrate 102 is optically transparent, especially at the wavelength to which the mask 100 is exposed. For example, the material of the substrate 102 includes fused silica.

結構化塗層104(圖案元件104)已施加至基板102。在所示的範例中,塗層104以週期條帶106、106’設置在基板102上。換句話說,光罩100具有週期結構106、106’。舉例來說,光罩100用於透過光刻產生衍射光柵(光柵)。光罩100的塗層圖案還可以不同於所示出的塗層圖案和/或可以用於產生不同的組件。A structured coating 104 (pattern element 104) has been applied to a substrate 102. In the example shown, the coating 104 is provided on the substrate 102 in periodic strips 106, 106'. In other words, the mask 100 has a periodic structure 106, 106'. The mask 100 is used, for example, to produce a diffraction grating (grating) by photolithography. The coating pattern of the mask 100 can also differ from the coating pattern shown and/or can be used to produce different components.

具體地,塗層104是由吸波材料製成的塗層。舉例來說,塗層104的材料包括鉻層。舉例而言,塗層104的厚度範圍為50nm至100nm。光罩100的基板102上的塗層104所形成的結構106的結構大小B1、B2例如是20至200nm。結構大小B1、B2也可以大於200nm,例如為微米量級。結構大小B1、B2在光罩100的不同位置也可以不同。Specifically, the coating 104 is a coating made of an absorbing material. For example, the material of the coating 104 includes a chromium layer. For example, the thickness of the coating 104 ranges from 50 nm to 100 nm. The structural sizes B1 and B2 of the structure 106 formed by the coating 104 on the substrate 102 of the mask 100 are, for example, 20 to 200 nm. The structural sizes B1 and B2 can also be greater than 200 nm, for example, in the micrometer range. The structural sizes B1 and B2 can also be different at different positions of the mask 100.

在其他例子中,所提到的其他材料和其他層厚度(例如更薄的層厚度,例如「薄EUV光罩吸收器」)也可以用於基板102和塗層104。In other examples, other materials and other layer thicknesses mentioned (eg, thinner layer thicknesses, such as “thin EUV mask absorber”) may also be used for the substrate 102 and the coating 104 .

取代圖1所示的透射式光罩100,光罩100還可以是反射式光罩。Instead of the transmissive light mask 100 shown in FIG. 1 , the light mask 100 may also be a reflective light mask.

有時,例如因為蝕刻處理未完全如預期運作,在光罩的產生過程中可能會出現缺陷D。在圖1中,這種缺陷D用陰影線表示。這是多餘的材料,因為在光罩100的模板中即使將彼此相鄰的兩個塗層區域104設想為分離的,也不會將塗層104從該區域去除。也可以說缺陷D形成網。在這種情況下,缺陷D的大小對應於結構大小B2。小於結構大小B2(例如5至20nm數量級)的其他缺陷也是已知的。為了確保使用光罩100在微影設備中產生的結構在晶圓上具有期望的形狀並且因此以這種方式產生的(半導體)組件實現期望的功能,有必要進行缺陷的修復,例如圖1所示的缺陷D或其他缺陷。在這個例子中,需要以有針對性的方式去除所述網,例如透過粒子束誘發蝕刻。Sometimes, defects D may occur during the production of the mask, for example because the etching process did not work completely as expected. In FIG. 1 , such defects D are indicated by hatching. This is excess material, because in the template of the mask 100, the coating 104 is not removed from this area even if two coating areas 104 that are adjacent to each other are conceived as separated. It can also be said that the defects D form a network. In this case, the size of the defect D corresponds to the structure size B2. Other defects that are smaller than the structure size B2 (for example, of the order of 5 to 20 nm) are also known. In order to ensure that the structure produced in the lithography equipment using the mask 100 has the desired shape on the wafer and that the (semiconductor) component produced in this way therefore realizes the desired function, it is necessary to repair defects such as the defect D shown in FIG. 1 or other defects. In this example, the web needs to be removed in a targeted manner, for example by particle beam induced etching.

圖2示出沿著圖1中的II-II線的光罩100的剖面圖。用陰影線描繪的塗層104是有缺陷的,並且表示待修復的缺陷D。Fig. 2 shows a cross-sectional view of the photomask 100 along the line II-II in Fig. 1. The coating layer 104 depicted with hatching is defective and indicates a defect D to be repaired.

圖3示出用於微影光罩的缺陷的電子束誘發處理的設備200,例如,圖1和圖2中的光罩100的缺陷D。圖3示意性地示出裝置200的幾個組件的剖面,該裝置200可用於缺陷D的電子束誘發修復(在這種情況下為蝕刻)光罩100。此外,裝置200還可用於在實施修復處理之前、期間和之後對光罩、特別是光罩100的結構化塗層104和缺陷D進行成像。FIG3 shows an apparatus 200 for electron beam induced processing of defects in a lithography mask, such as defect D of the mask 100 of FIG1 and FIG2. FIG3 schematically shows a cross section of several components of the apparatus 200, which can be used for electron beam induced repair (in this case, etching) of the defect D in the mask 100. In addition, the apparatus 200 can also be used to image the mask, in particular the structured coating 104 of the mask 100, and the defect D before, during, and after the repair process is performed.

圖3所示的裝置200代表改良的掃描電子顯微鏡200。在這種情況下,電子束202用於修復缺陷D。使用電子束202作為活化粒子束具有以下優點:電子束202基本上不會損壞光罩100,或只能造成輕微損壞,特別是光罩100的基板102。The device 200 shown in FIG3 represents a modified scanning electron microscope 200 . In this case, an electron beam 202 is used to repair the defect D. Using the electron beam 202 as the activating particle beam has the following advantages: the electron beam 202 does not substantially damage the mask 100 , or only causes slight damage, in particular the substrate 102 of the mask 100 .

在實施例中,除了電子束202之外,也可以使用用於活化光罩100的局部修復處理的雷射光束(圖3中未示出)。In an embodiment, in addition to the electron beam 202, a laser beam (not shown in FIG. 3) may also be used for the local repair process of the activation mask 100.

裝置200主要設置在真空外殼204。利用真空幫浦206將真空外殼204所包圍的空間保持在一定氣壓(真空環境244)。The device 200 is mainly disposed in a vacuum housing 204. A vacuum pump 206 is used to maintain a certain pressure (vacuum environment 244) in the space surrounded by the vacuum housing 204.

舉例來說,裝置200是用於微影光裝置的修復裝置(修復工具),例如用於DUV或EUV微影裝置的光罩。For example, the apparatus 200 is a repair apparatus (repair tool) for a lithography apparatus, such as a mask for a DUV or EUV lithography apparatus.

將待處理的光罩100設置在樣品台208上。舉例來說,利用樣品台208將以幾nm的精確度光罩100的位置設置在三個正交空間方向上並且例如附加地在三個正交旋轉軸上。The reticle 100 to be processed is placed on a sample stage 208. The position of the reticle 100 is set, for example, with a precision of a few nm in three orthogonal spatial directions and, for example, additionally on three orthogonal rotational axes using the sample stage 208.

裝置200包括電子柱210。電子柱210包括電子源212,其用於提供電子束202的。舉例來說,電子源212具有用於釋放電子的陰極214和用於沿陽極216的方向加速所釋放的電子的陽極216。將加速電壓施加在陰極214和陽極216之間的電壓源218處。此外,陽極216例如具有通道開口220以便提供加速電子作為電子束202。藉由調整電壓源218處的加速電壓,可調整由電子源212產生的電子束202的電子的能量。The device 200 includes an electron column 210. The electron column 210 includes an electron source 212 for providing an electron beam 202. For example, the electron source 212 has a cathode 214 for releasing electrons and an anode 216 for accelerating the released electrons in the direction of the anode 216. An accelerating voltage is applied at a voltage source 218 between the cathode 214 and the anode 216. In addition, the anode 216 has, for example, a channel opening 220 in order to provide the accelerated electrons as the electron beam 202. By adjusting the accelerating voltage at the voltage source 218, the energy of the electrons of the electron beam 202 generated by the electron source 212 can be adjusted.

電子柱210還包括電子或束光學元件222。電子源212產生電子束202,且電子或束光元件222聚焦電子束202並將電子束202引導到柱210的輸出處的光罩100。電子柱210還包括偏轉單元224(掃描單元224),其配置為在光罩100的表面上方引導(掃描)電子束202。也可以使用設置在柱210外部的偏轉單元(掃描單元)(未示出)以取代設置在柱210內的偏轉單元224(掃描單元224)。The electron column 210 further includes an electron or beam optical element 222. The electron source 212 generates the electron beam 202, and the electron or beam optical element 222 focuses the electron beam 202 and directs the electron beam 202 to the reticle 100 at the output of the column 210. The electron column 210 further includes a deflection unit 224 (scanning unit 224) configured to direct (scan) the electron beam 202 over the surface of the reticle 100. Instead of the deflection unit 224 (scanning unit 224) provided inside the column 210, a deflection unit (scanning unit) (not shown) provided outside the column 210 may also be used.

設備200還包括偵測器226,用於偵測由入射電子束202在光罩100的材料中產生的二次電子和/或背散射電子。舉例來說,如圖所示,偵測器226以環形方式設置在電子柱210內的電子束202周圍。作為偵測器226的替代和/或除了偵測器226之外,設備200還可以包含用於偵測二次電子和/或反向散射電子的其他/另外的偵測器(圖3中未示出)。The device 200 also includes a detector 226 for detecting secondary electrons and/or backscattered electrons generated by the incident electron beam 202 in the material of the mask 100. For example, as shown, the detector 226 is arranged in a ring around the electron beam 202 in the electron column 210. As an alternative to the detector 226 and/or in addition to the detector 226, the device 200 may also include other/additional detectors (not shown in FIG. 3 ) for detecting secondary electrons and/or backscattered electrons.

設備200還包括氣體供應單元228,用於將處理氣體供應到光罩100的表面。舉例來說,氣體供應單元228包括閥230和氣體管線232。利用電子柱210將電子束230引導到光罩100的表面上的位置,所述電子束230可與氣體供應單元228經由閥從外部供應的處理氣體結合,以進行電子束誘發處理(EBIP)222和氣體管線232。特別地,所述處理包括材料的沉積和/或蝕刻。The apparatus 200 further includes a gas supply unit 228 for supplying a processing gas to the surface of the photomask 100. For example, the gas supply unit 228 includes a valve 230 and a gas line 232. The electron beam 230 is guided to a position on the surface of the photomask 100 using the electron column 210, and the electron beam 230 can be combined with a processing gas supplied from the outside via the valve of the gas supply unit 228 to perform electron beam induction processing (EBIP) 222 and the gas line 232. In particular, the processing includes deposition and/or etching of a material.

設備200還包括電腦設備234,例如電腦,其具有控制裝置236、產生裝置238、判定裝置240和輸出裝置242。在圖3的範例中,電腦設備234設置在真空外殼204的外部。The device 200 further includes a computer device 234, such as a computer, which has a control device 236, a generation device 238, a determination device 240, and an output device 242. In the example of FIG.

電腦設備234,特別是控制裝置236,是用於控制裝置200。舉例來說,控制裝置236藉由控制電子柱210來控制供應電子束202。在此過程中,控制裝置236特別用於控制電壓源218的加速電壓的設置,並因此控制初級電子束202的能量。此外,控制裝置236藉由驅動掃描單元224來控制在光罩100的表面上引導電子束202。此外,電腦設備234藉由控制氣體供應單元228來控制供應處理氣體。The computer device 234, in particular the control device 236, is used to control the device 200. For example, the control device 236 controls the supply of the electron beam 202 by controlling the electron column 210. In this process, the control device 236 is particularly used to control the setting of the acceleration voltage of the voltage source 218, and thus control the energy of the primary electron beam 202. In addition, the control device 236 controls the guidance of the electron beam 202 on the surface of the mask 100 by driving the scanning unit 224. In addition, the computer device 234 controls the supply of the process gas by controlling the gas supply unit 228.

此外,電腦設備234,特別是產生裝置238,從設備200的偵測器226和/或其他偵測器接收測量數據,並從測量數據產生影像108、110(圖1和4),被在監視器(未示出)上可以顯示該影像。此外,從測量數據產生的影像108、110可儲存在電腦設備234的儲存單元(未示出)中。舉例來說,所產生的影像108、110的空間解析度是幾nm的量級。Furthermore, the computer device 234, in particular the generating device 238, receives the measurement data from the detector 226 and/or other detectors of the device 200 and generates the images 108, 110 (FIGS. 1 and 4) from the measurement data, which can be displayed on a monitor (not shown). Furthermore, the images 108, 110 generated from the measurement data can be stored in a storage unit (not shown) of the computer device 234. For example, the spatial resolution of the generated images 108, 110 is of the order of a few nm.

為了準備光罩100的修復,設備200(特別是電腦設備234和/或產生裝置238)特別配置成根據設備200的偵測器226和/或其他偵測器的測量數據產生至少一部份的光罩100的至少一個影像108。圖1示出根據修復缺陷D之前所取得的測量數據所產生的影像108。In order to prepare for the repair of the reticle 100, the apparatus 200 (particularly the computer apparatus 234 and/or the generating device 238) is particularly configured to generate at least one image 108 of at least a portion of the reticle 100 based on measurement data of the detector 226 and/or other detectors of the apparatus 200. FIG. 1 shows the image 108 generated based on measurement data obtained before the defect D is repaired.

為了檢查修復後的光罩100,特別是光罩100的結構化塗層104,裝置200(特別是電腦設備234和/或產生裝置238)特別配置為根據偵測器226和/或其他偵測器的測量數據產生至少一部分的光罩100的至少一個影像110。圖4示出了根據缺陷D修復後所取得的測量數據所產生的影像110。In order to inspect the repaired mask 100, in particular the structured coating 104 of the mask 100, the device 200 (in particular the computer device 234 and/or the generating device 238) is particularly configured to generate at least one image 110 of at least a portion of the mask 100 based on the measurement data of the detector 226 and/or other detectors. FIG4 shows the image 110 generated based on the measurement data obtained after the defect D is repaired.

電腦設備234,特別是判定裝置240,配置為識別在修復之前產生的影像108中的缺陷D(圖1),定位所述缺陷並判定缺陷D的幾何形狀112(修復形狀112)。所判定出的缺陷D的幾何形狀112,即修復形狀112,例如是二維幾何形狀。The computer device 234, in particular the determination device 240, is configured to identify the defect D (FIG. 1) in the image 108 generated before the repair, locate the defect and determine the geometric shape 112 (repair shape 112) of the defect D. The determined geometric shape 112 of the defect D, i.e., the repair shape 112, is, for example, a two-dimensional geometric shape.

電腦設備234,特別是判定裝置240,也配置為判定缺陷D修復後產生的影像110中的已修復缺陷D的品質。The computer device 234, in particular the determination device 240, is also configured to determine the quality of the repaired defect D in the image 110 generated after the defect D is repaired.

以下參考圖4至圖11描述用於微影光罩的缺陷(例如圖1和圖2所示的光罩100的缺陷D)的電子束誘發處理的方法。A method for electron beam induction treatment of a defect of a lithography mask (eg, defect D of the mask 100 shown in FIGS. 1 and 2 ) is described below with reference to FIGS. 4 to 11 .

在所述方法的第一步驟S1中,在光罩100的缺陷D的區域112中提供處於第一加速電壓EHT1的活化電子束202和處理氣體,以用於修復缺陷D。In the first step S1 of the method, an activation electron beam 202 at a first acceleration voltage EHT1 and a processing gas are provided in the region 112 of the defect D of the reticle 100 for repairing the defect D.

例如使用圖3所示的設備200來修復光罩100(圖1和圖2)的結構化塗層104的缺陷D。為此,記錄光罩100的至少一部分的影像108,在影像108中判定缺陷D的幾何形狀作為修復形狀112,並將修復形狀112劃分為多個像素。隨後,在提供處理氣體的情況下,利用電子束202在缺陷D的區域112中掃描光罩100,從而對幾何形狀為修復形狀112的缺陷D進行處理和矯正。在這種情況下,活化電子束202被連續地引導到修復形狀112的每個像素。電子束202在修復形狀112的每個像素處停留預定的停留時間。在這種情況下,透過電子束202在修復形狀112的每個像素處活化處理氣體的化學反應。舉例來說,處理氣體包括蝕刻氣體。舉例來說,化學反應導致與待蝕刻的缺陷D的材料產生揮發性反應產物,所述揮發性反應產物在室溫下至少部分為氣態並且可以使用泵系統(未示出)將其抽走。舉例來說,在多個重複週期上在與修復形狀112的像素相對應的缺陷D的區域112中掃描光罩100。為了(完全)去除缺陷D區域中的塗層104(圖1和圖2),在修復形狀112的每個像素處需要例如一百次、一千次、一萬次、十萬次或一百萬次的重複循環。For example, the apparatus 200 shown in FIG. 3 is used to repair a defect D of a structured coating 104 of a photomask 100 (FIGS. 1 and 2). To this end, an image 108 of at least a portion of the photomask 100 is recorded, the geometric shape of the defect D is determined in the image 108 as a repair shape 112, and the repair shape 112 is divided into a plurality of pixels. Subsequently, the photomask 100 is scanned in the region 112 of the defect D using an electron beam 202 while providing a processing gas, thereby processing and correcting the defect D having a geometric shape of the repair shape 112. In this case, the activated electron beam 202 is continuously guided to each pixel of the repair shape 112. The electron beam 202 stays at each pixel of the repair shape 112 for a predetermined dwell time. In this case, a chemical reaction of a treatment gas is activated at each pixel of the repaired shape 112 by the electron beam 202. For example, the treatment gas includes an etching gas. For example, the chemical reaction results in the production of volatile reaction products with the material of the defect D to be etched, which are at least partially gaseous at room temperature and can be pumped away using a pump system (not shown). For example, the mask 100 is scanned in the area 112 of the defect D corresponding to the pixel of the repaired shape 112 over a plurality of repetition cycles. In order to (completely) remove the coating 104 in the area of the defect D (FIGS. 1 and 2), for example, one hundred, one thousand, ten thousand, one hundred thousand or one million repetition cycles are required at each pixel of the repaired shape 112.

圖4和圖5示出圖1和圖2所示的光罩100的修復結果。在這種情況下,圖4示出修復後的光罩100的平面圖,並且圖5示出修復後的光罩100沿圖4中的V-V線的剖面圖。4 and 5 show the repair results of the photomask 100 shown in FIG1 and FIG2. In this case, FIG4 shows a plan view of the repaired photomask 100, and FIG5 shows a cross-sectional view of the repaired photomask 100 along the V-V line in FIG4.

利用修復去除了缺陷D區域中的塗層104(在圖1和圖2中以陰影線示出)。然而,在這樣的修復期間,可能的狀況是不僅僅去除缺陷D本身,而且非期望地修改到光罩100的塗層104的額外結構106。舉例來說,圖5示出在缺陷D的修復期間,塗層結構106的側壁114的一部分也被修改到。圖5示出以凹陷116和突出118的形式對側壁114的損壞(例如,不正確保留的突出腳部118)。舉例來說,缺陷D的進一步有缺陷的修復和/或光罩100的期望結構106的有缺陷的修改,其在圖5中未示出或僅使用虛線示出,也可以包括在缺陷D的基部中錯誤保留殘餘材料120。此外,例如,也可能出現期望結構106的不正確圓角122或底切124。儘管圖5中未示出,但是對期望結構106的側壁114的損壞也可以是側壁114具有非期望的傾斜(即,偏離圖5中的垂直方向)的形式。The coating 104 in the area of the defect D is removed by repair (shown as hatching in FIGS. 1 and 2 ). However, during such repair, it is possible that not only the defect D itself is removed, but also additional structures 106 to the coating 104 of the mask 100 are undesirably modified. For example, FIG. 5 shows that during the repair of the defect D, a portion of the sidewall 114 of the coating structure 106 is also modified. FIG. 5 shows damage to the sidewall 114 in the form of a depression 116 and a protrusion 118 (e.g., a protruding foot 118 that is not properly retained). For example, further defective repair of the defect D and/or defective modification of the desired structure 106 of the reticle 100, which is not shown in FIG. 5 or is shown only using dashed lines, may also include erroneous retention of residual material 120 in the base of the defect D. In addition, for example, incorrect fillets 122 or undercuts 124 of the desired structure 106 may also occur. Although not shown in FIG. 5 , damage to the sidewall 114 of the desired structure 106 may also be in the form of the sidewall 114 having an undesired tilt (i.e., deviating from the vertical direction in FIG. 5 ).

在修復缺陷D期間對光罩100的結構106進行這種非必要的修改可能會導致修復後的光罩100無法滿足指定的品質要求。檢查修復後的光罩100是否有對結構106進行這種不需要的修改是有利的。為此,如果光罩100保留在設備200(圖3)中,例如保留在設備200的真空外殼204內和/或樣品台208上,則是特別有利的。Such undesirable modifications to the structure 106 of the reticle 100 during the repair of the defect D may result in the repaired reticle 100 failing to meet the specified quality requirements. It is advantageous to inspect the repaired reticle 100 for such undesirable modifications to the structure 106. For this purpose, it is particularly advantageous if the reticle 100 remains in the apparatus 200 ( FIG. 3 ), for example, within the vacuum housing 204 of the apparatus 200 and/or on the sample stage 208.

在該方法的第二步驟中,利用電子束202掃描產生光罩100的至少一個影像110(圖4),該影像至少部分地擷取缺陷D的區域112(圖1),以判定修復缺陷的品質D。為此,適當地設定電壓源218(圖3)的加速電壓EHT1至EHT4,並且因此適當地設定電子束202中的電子的能量。In the second step of the method, at least one image 110 ( FIG. 4 ) of the mask 100 is generated by scanning with the electron beam 202, the image at least partially capturing the area 112 ( FIG. 1 ) of the defect D, in order to determine the quality D of the repaired defect. To this end, the accelerating voltages EHT1 to EHT4 of the voltage source 218 ( FIG. 3 ) are appropriately set, and thus the energy of the electrons in the electron beam 202 is appropriately set.

圖6示出電子束202的電子與光罩100的材料的相互作用。加速電壓EHT1至EHT4越大,因此電子束202的能量越大,電子束202進入光罩100的材料的穿透深度T越大。此外,互動容積的大小128-134,其中電子束202的電子與光罩100的材料相互作用,也隨著加速電壓EHT1至EHT4的增加而增加。作為範例,圖6示出提供電子束202的四個不同的加速電壓EHT1、EHT2、EHT3和EHT4。在這種情況下,以下情況適用:EHT4大於EHT3、EHT3大於EHT2且EHT2大於EHT1。從圖6明顯看出,各電子束202進入光罩100的材料的穿透深度T1、T2、T3和T4隨著加速電壓EHT1、EHT2、EHT3和EHT4的增加而增加。此外,互動容積128、130、132、134的大小也隨著加速電壓EHT1、EHT2、EHT3和EHT4的增加而增加。FIG. 6 illustrates the interaction of electrons of the electron beam 202 with the material of the reticle 100. The greater the accelerating voltage EHT1 to EHT4, and thus the greater the energy of the electron beam 202, the greater the penetration depth T of the electron beam 202 into the material of the reticle 100. Furthermore, the size of the interaction volume 128-134, in which the electrons of the electron beam 202 interact with the material of the reticle 100, also increases with increasing accelerating voltages EHT1 to EHT4. As an example, FIG. 6 illustrates four different accelerating voltages EHT1, EHT2, EHT3, and EHT4 for providing the electron beam 202. In this case, the following applies: EHT4 is greater than EHT3, EHT3 is greater than EHT2, and EHT2 is greater than EHT1. 6, the penetration depths T1, T2, T3, and T4 of each electron beam 202 into the material of the mask 100 increase with increasing accelerating voltages EHT1, EHT2, EHT3, and EHT4. In addition, the sizes of the interaction volumes 128, 130, 132, and 134 also increase with increasing accelerating voltages EHT1, EHT2, EHT3, and EHT4.

舉例來說,在步驟S1中以第一加速電壓EHT1提供活化電子束202。For example, in step S1, an activating electron beam 202 is provided with a first accelerating voltage EHT1.

舉例來說,在步驟S2中使用電子束202在至少一個第二加速電壓EHT2、EHT3和EHT4下產生光罩100的至少一個影像110,其中第二加速電壓EHT2、EHT3和EHT4大於第一加速電壓EHT1。在所示的範例中,在步驟S2中使用電子束202產生與影像110類似的光罩100的四個影像。在這種情況下,例如以加速電壓EHT1記錄第一影像(未示出),也就是說以與步驟S1中用於修復缺陷D的加速電壓EHT1相同的加速電壓EHT1記錄第一影像(未示出)。此外,例如,以加速電壓EHT2記錄第二影像(未示出),以加速電壓EHT3記錄第三影像(未示出),並且以加速電壓EHT4記錄第四影像110(圖4)。For example, in step S2, at least one image 110 of the mask 100 is generated using the electron beam 202 at at least one second accelerating voltage EHT2, EHT3, and EHT4, wherein the second accelerating voltages EHT2, EHT3, and EHT4 are greater than the first accelerating voltage EHT1. In the example shown, four images of the mask 100 similar to the image 110 are generated using the electron beam 202 in step S2. In this case, for example, the first image (not shown) is recorded at the accelerating voltage EHT1, that is, the first image (not shown) is recorded at the same accelerating voltage EHT1 as the accelerating voltage EHT1 used to repair the defect D in step S1. Furthermore, for example, the second image (not shown) is recorded with the acceleration voltage EHT2, the third image (not shown) is recorded with the acceleration voltage EHT3, and the fourth image 110 (FIG. 4) is recorded with the acceleration voltage EHT4.

透過使用不同的加速電壓EHT1至EHT4產生類似於圖4中的影像110的光罩100的多個影像,可以獲得關於塗層104和由塗層104形成的結構106的深度資訊,如圖6所示。具體地,深度T垂直於光罩100的主延伸平面,其中光罩100的主延伸平面位於XY平面中(圖4)。舉例來說,可藉由施加加速電壓EHT2來檢測位於深度T2處的結構106的側壁114中的錯誤凹陷116(圖6)。此外,例如,可藉由施加加速電壓EHT4來偵測位於深度T4處的結構106的錯誤突出118。By generating a plurality of images of the reticle 100 similar to the image 110 in FIG. 4 using different accelerating voltages EHT1 to EHT4, depth information about the coating 104 and the structure 106 formed by the coating 104 can be obtained, as shown in FIG. 6. Specifically, the depth T is perpendicular to the main extension plane of the reticle 100, wherein the main extension plane of the reticle 100 is located in the XY plane (FIG. 4). For example, an erroneous depression 116 in the sidewall 114 of the structure 106 located at the depth T2 can be detected by applying the accelerating voltage EHT2 (FIG. 6). In addition, for example, an erroneous protrusion 118 of the structure 106 located at the depth T4 can be detected by applying the accelerating voltage EHT4.

在該方法的第三步驟S3中產生至少一個第二加速電壓EHT2、EHT3、EHT4的參考數據R,以便將光罩100的至少一個產生的影像110與參考數據R進行比較。在所示的範例中,針對加速電壓EHT1、EHT2、EHT3、EHT4中的每一個產生參考數據R。舉例來說,參考數據R包括參考影像、參考尺寸(圖6中的150至156)和參考強度分佈(圖8中的170至174)。In a third step S3 of the method, reference data R of at least one second accelerating voltage EHT2, EHT3, EHT4 is generated so as to compare at least one generated image 110 of the mask 100 with the reference data R. In the example shown, reference data R is generated for each of the accelerating voltages EHT1, EHT2, EHT3, EHT4. For example, the reference data R includes a reference image, a reference size (150 to 156 in FIG. 6 ) and a reference intensity distribution (170 to 174 in FIG. 8 ).

舉例來說,可基於光罩100的已知模型(未示出)(即,用於製造光罩100的模板)進行模擬,以產生參考數據R。在模擬期間,針對加速電壓EHT1、EHT2、EHT2中的每一個產生基於電子束的模擬相互作用的參考影像,該參考影像對應於相應的加速電壓EHT1、EHT2、EHT3、EHT4與光罩100的已知模型。例如,EHT3、EHT4。For example, a simulation may be performed based on a known model (not shown) of the reticle 100 (i.e., a template used to manufacture the reticle 100) to generate reference data R. During the simulation, a reference image based on a simulated interaction of the electron beam is generated for each of the accelerating voltages EHT1, EHT2, EHT3, EHT4 and the known model of the reticle 100. For example, EHT3, EHT4.

舉例來說,如果在光罩100的產生的影像110中擷取到缺陷D外部的區域136,還可以從光罩100的實際記錄的影像(例如影像110)產生參考數據R。然後,可以基於區域136的影像分析來產生參考數據R。舉例來說,所產生的影像110的區域126包括多個週期帶狀結構106、106’,其中缺陷D僅存在於兩個帶狀結構106之間(圖1)。因此,其他結構106’可以用作參考結構。For example, if a region 136 outside the defect D is captured in the generated image 110 of the reticle 100, reference data R can also be generated from the actually recorded image of the reticle 100 (e.g., image 110). Then, the reference data R can be generated based on the image analysis of the region 136. For example, the region 126 of the generated image 110 includes a plurality of periodic strip-shaped structures 106, 106', wherein the defect D exists only between two strip-shaped structures 106 (FIG. 1). Therefore, the other structure 106' can be used as a reference structure.

在該方法的第四步驟S4中,使用光罩100的至少一個產生的影像110的影像分析和/或基於光罩100的至少一個產生的影像110與至少一個第二加速電壓EHT2、EHT3、EHT4的參考數據R的比較,來進行修復的缺陷D的品質判定。In the fourth step S4 of the method, the quality of the repaired defect D is determined using image analysis of at least one generated image 110 of the mask 100 and/or comparison of at least one generated image 110 of the mask 100 with reference data R of at least one second accelerating voltage EHT2, EHT3, EHT4.

在所示的範例中,透過根據加速電壓EHTl、EHT2、EHT3和EHT4產生的光罩100的四個影像(例如影像110)中的每一個的影像分析來判定修復的缺陷D的品質。在這種情況下,在四個產生的影像或從其導出的參數中的每一個與加速電壓EHT1、EHT2、EHT3、EHT4的對應參考數據R之間進行比較。In the example shown, the quality of the repaired defect D is determined by image analysis of each of four images (e.g., image 110) of the reticle 100 generated based on accelerating voltages EHT1, EHT2, EHT3, and EHT4. In this case, a comparison is made between each of the four generated images or parameters derived therefrom and the corresponding reference data R of the accelerating voltages EHT1, EHT2, EHT3, and EHT4.

在第四步驟S4的第一個實施例中,在所產生的光罩100的影像中,例如在影像110中,判定一個或多個結構106、106’的輪廓138。圖4示出塗層結構106、106’的這種輪廓138。與圖4相反,結構106、106’,例如具有幾nm到幾百nm的量級,在真實影像110中通常是(非常)模糊的。藉由判定輪廓138,例如將線擬合到結構106、106’的模糊邊界,可以更好地識別結構106、106’的輪廓和/或邊界。In a first embodiment of the fourth step S4, in the generated image of the mask 100, for example in the image 110, the contours 138 of one or more structures 106, 106' are determined. Fig. 4 shows such contours 138 of coated structures 106, 106'. In contrast to Fig. 4, structures 106, 106', for example of the order of a few nm to a few hundred nm, are usually (very) blurry in the real image 110. By determining the contours 138, for example fitting lines to the blurry boundaries of the structures 106, 106', the contours and/or boundaries of the structures 106, 106' can be better identified.

在步驟S4的第一實施例中,隨後基於所判定的輪廓138來測量結構106的尺寸140至146(圖6)。舉例來說,在針對加速電壓EHT1產生的影像中測量結構寬度140,在針對加速電壓EHT2產生的影像中測量結構寬度142,在針對加速電壓EHT3產生的影像中測量結構寬度144,並且在針對加速電壓EHT4產生的影像110中測量結構寬度146。因此,針對結構106的不同深度Tl至T4判定結構106的結構寬度140至146。In a first embodiment of step S4, the dimensions 140 to 146 ( FIG. 6 ) of the structure 106 are then measured based on the determined outline 138. For example, the structure width 140 is measured in the image generated for the accelerating voltage EHT1, the structure width 142 is measured in the image generated for the accelerating voltage EHT2, the structure width 144 is measured in the image generated for the accelerating voltage EHT3, and the structure width 146 is measured in the image 110 generated for the accelerating voltage EHT4. Thus, the structure widths 140 to 146 of the structure 106 are determined for different depths T1 to T4 of the structure 106.

在所示的範例中,該尺寸是結構106的結構寬度140-146。在其他範例中,除了結構寬度140至146之外或取代結構寬度140至146,此尺寸還可包含兩個結構106之間的距離A,如圖5所示。In the example shown, the dimension is the structure width 140-146 of the structure 106. In other examples, in addition to or instead of the structure width 140-146, the dimension may also include the distance A between two structures 106, as shown in FIG. 5 .

此外,對於每個加速電壓EHT1至EHT4,在步驟S3中產生的參考數據R中判定參考輪廓148(圖4)和參考尺寸150至156(圖6)。Furthermore, for each of the accelerating voltages EHT1 to EHT4, a reference profile 148 (FIG. 4) and reference sizes 150 to 156 (FIG. 6) are determined in the reference data R generated in step S3.

於是,結構106的尺寸140至146相應地與參考尺寸150至156進行比較,如圖7所示。具體地,對於四個加速電壓EHT1至EHT4中的每一個判定結構106的尺寸140至146與相應參考尺寸150至156的偏差。(作為範例,圖7中的加速電壓EHT2處的偏差158具有附圖標號)。The dimensions 140 to 146 of the structure 106 are then compared to the reference dimensions 150 to 156, respectively, as shown in FIG7. Specifically, the deviations of the dimensions 140 to 146 of the structure 106 from the corresponding reference dimensions 150 to 156 are determined for each of the four accelerating voltages EHT1 to EHT4. (As an example, the deviation 158 at the accelerating voltage EHT2 in FIG7 has a reference number).

基於測量的偏差158(圖7)判定修復的缺陷D的品質水平,例如相應偏差158的大小G。舉例來說,偏差158的大小G越小,品質等級越高。The quality level of the repaired defect D is determined based on the measured deviation 158 ( FIG. 7 ), such as the size G of the corresponding deviation 158. For example, the smaller the size G of the deviation 158, the higher the quality level.

代替或補充參考尺寸150至156,參考尺寸150至156在圖中示出並且直接在所產生的結構106’的影像中(例如,在圖4中的影像110中)測量,結構106’未受缺陷D的損害,也可以在基於光罩100的已知模型的模擬影像中測量參考尺寸。Instead of or in addition to the reference dimensions 150 to 156, which are shown in the figures and measured directly in a generated image of the structure 106' (for example, in the image 110 in FIG. 4), the structure 106' is not damaged by the defect D, the reference dimensions can also be measured in a simulated image based on a known model of the mask 100.

在第四步驟S4的第二實施例中,光罩100的每個產生的影像(例如,影像110)的強度分佈160、162、164(圖8),也就是說,在決定修復缺陷D的品質時判定出每個加速電壓EHT1至EHT4。圖8的頂部透過範例示出了加速電壓EHT2、EHT3和EHT4的對應強度分佈160、162、164。儘管圖8中未示出,但也可以判定出加速電壓EHT1的強度分佈。In the second embodiment of the fourth step S4, the intensity distribution 160, 162, 164 (FIG. 8) of each generated image (e.g., image 110) of the mask 100, that is, each accelerating voltage EHT1 to EHT4 is determined in determining the quality of repairing the defect D. The top of FIG8 shows the corresponding intensity distributions 160, 162, 164 of the accelerating voltages EHT2, EHT3, and EHT4 by way of example. Although not shown in FIG8, the intensity distribution of the accelerating voltage EHT1 can also be determined.

在所示的範例中,強度分佈160、162、164是一維強度分佈,其反映沿著線166(圖8)的對應影像(例如,影像110)的強度。圖8的中心示出具有塗層104的影像(例如,影像110)中的光罩100的細節,即由基板102包圍的結構106。此外,示出判定強度所沿著的線166。在其他範例中也可以判定二維強度分佈。In the example shown, the intensity distributions 160, 162, 164 are one-dimensional intensity distributions that reflect the intensity of a corresponding image (e.g., image 110) along line 166 (FIG. 8). The center of FIG. 8 shows a detail of the reticle 100 in an image (e.g., image 110) having a coating 104, i.e., a structure 106 surrounded by a substrate 102. In addition, the line 166 along which the intensity is determined is shown. In other examples, a two-dimensional intensity distribution may also be determined.

在結構106的輪廓138的區域中強度分佈160、162、164各自具有最大值。此外,圖8示出強度分佈160、162、164的偏差168。In the region of the contour 138 of the structure 106, the intensity distributions 160, 162, 164 each have a maximum. FIG. 8 also shows a deviation 168 of the intensity distributions 160, 162, 164.

此外,針對步驟S3中產生的參考數據R中的加速電壓EHT2至EHT4(或EHT1至EHT4)中的每一個而判定出參考強度分佈170、172、174。於是,相應地判定出所產生的強度分佈160至164與參考數據R的參考強度分佈170至174的偏差168。作為範例,圖9示出加速電壓EHT4的強度分佈164與參考強度分佈174的偏差168。In addition, reference intensity distributions 170, 172, 174 are determined for each of the accelerating voltages EHT2 to EHT4 (or EHT1 to EHT4) in the reference data R generated in step S3. Then, deviations 168 of the generated intensity distributions 160 to 164 from the reference intensity distributions 170 to 174 of the reference data R are determined accordingly. As an example, FIG. 9 shows the deviation 168 of the intensity distribution 164 of the accelerating voltage EHT4 from the reference intensity distribution 174.

針對不同深度T1至T4,透過判定出各種加速電壓EHT2至EHT4(或EHT1至EHT4)的強度分佈160至164以及相應地判定出這些強度分佈160至164相對於不同加速電壓的參考強度分佈170至174的偏差,以獲得關於結構106的深度資訊(圖6)。For different depths T1 to T4, by determining intensity distributions 160 to 164 for various accelerating voltages EHT2 to EHT4 (or EHT1 to EHT4) and correspondingly determining deviations of these intensity distributions 160 to 164 relative to reference intensity distributions 170 to 174 for different accelerating voltages, depth information about the structure 106 is obtained ( FIG. 6 ).

可判定出對應偏差168的大小H(圖9)。基於所判定的偏差168,例如尺寸H,判定出已修復缺陷D的品質等級。舉例來說,偏差168的大小H越小,品質水平越高。The size H ( FIG. 9 ) of the corresponding deviation 168 may be determined. Based on the determined deviation 168, such as the size H, the quality level of the repaired defect D is determined. For example, the smaller the size H of the deviation 168, the higher the quality level.

圖10示出曲線圖176、178、180,其將偏差168的大小H表示為沿著線166(圖8,中心)的位置的函數。具體地,曲線圖176將強度分佈164與參考強度分佈174(即,對於加速電壓EHT4)的偏差168的大小H描述為沿著線166的位置的函數。此外,曲線圖178將強度分佈162與參考強度分佈172(即,對於加速電壓EHT3)的偏差168的大小H描述為沿著線166的位置的函數。此外,曲線圖180描述了強度分佈160與參考強度分佈170(即,對於加速電壓EHT2)的偏差168的大小H,其作為沿著線166的位置的函數。FIG10 shows graphs 176, 178, 180 that represent the magnitude H of the deviation 168 as a function of the position along the line 166 (FIG. 8, center). Specifically, graph 176 depicts the magnitude H of the deviation 168 of the intensity distribution 164 from the reference intensity distribution 174 (i.e., for accelerating voltage EHT4) as a function of the position along the line 166. In addition, graph 178 depicts the magnitude H of the deviation 168 of the intensity distribution 162 from the reference intensity distribution 172 (i.e., for accelerating voltage EHT3) as a function of the position along the line 166. In addition, graph 180 depicts the magnitude H of the deviation 168 of the intensity distribution 160 from the reference intensity distribution 170 (i.e., for accelerating voltage EHT2) as a function of the position along the line 166.

步驟S4的第一和第二實施例也可以彼此組合,使得可以測量結構106的尺寸140至146並與參考尺寸150至156進行比較,並且還可以判定出強度分佈160至164,並將其與一個影像(例如,圖4中的影像110)中的參考強度分佈170至174進行比較。The first and second embodiments of step S4 may also be combined with each other such that dimensions 140 to 146 of structure 106 may be measured and compared to reference dimensions 150 to 156, and intensity distributions 160 to 164 may be determined and compared to reference intensity distributions 170 to 174 in an image (e.g., image 110 in FIG. 4 ).

在判定修復缺陷D的品質時,可判定從光掩模100的至少一個產生的影像110所判定出的參數(例如,輪廓138、尺寸140至146、強度分佈160至164)與從參考數據所判定出的參考參數(例如,參考輪廓148、參考尺寸150至156、參考強度分佈170至174)的偏差程度。When determining the quality of the repaired defect D, the degree of deviation between the parameters determined from at least one generated image 110 of the photomask 100 (e.g., the profile 138, the dimensions 140 to 146, the intensity distribution 160 to 164) and the reference parameters determined from the reference data (e.g., the reference profile 148, the reference dimensions 150 to 156, the reference intensity distribution 170 to 174) can be determined.

在該方法的第五步驟S5中判定出所判定的偏差是否小於預定閾值。然後,可以控制輸出裝置242(HMI單元)輸出通訊:「滿意」和/或如果判定的偏差小於預定閾值,則可以控制光罩輸出單元輸出修復後的光罩100。In the fifth step S5 of the method, it is determined whether the determined deviation is less than a predetermined threshold. Then, the output device 242 (HMI unit) can be controlled to output a communication: "satisfactory" and/or if the determined deviation is less than the predetermined threshold, the mask output unit can be controlled to output the repaired mask 100.

舉例來說,設備200(圖3)的輸出裝置242輸出通訊:「滿意」。舉例來說,輸出裝置242具有人機介面(HMI),例如用於輸出通訊的顯示單元和/或揚聲器。For example, the output device 242 of the apparatus 200 ( FIG. 3 ) outputs the communication: “Satisfied.” For example, the output device 242 has a human machine interface (HMI) such as a display unit and/or a speaker for outputting the communication.

透過例如設備200的光罩輸出單元(未示出)將修復後的光罩100從設備200的真空殼體204輸出和/或排出。The repaired reticle 100 is output and/or exhausted from the vacuum housing 204 of the apparatus 200 through, for example, a reticle output unit (not shown) of the apparatus 200 .

在該方法的第六步驟S6中,如果判定的偏差大於或等於預定閾值,則控制HMI單元242輸出資訊:「不滿意」。In the sixth step S6 of the method, if the determined deviation is greater than or equal to the predetermined threshold, the HMI unit 242 is controlled to output the message: "Unsatisfactory".

舉例來說,設備200(圖3)的輸出裝置242也輸出通訊:「不滿意」。For example, the output device 242 of the apparatus 200 (FIG. 3) also outputs the communication: "unsatisfied".

在步驟S6中,光罩100具體地不從設備200的真空殼體204輸出和/或排出,而是保留在真空殼體204中以用於進一步檢查和/或用於後處理。In step S6 , the photomask 100 is specifically not exported and/or exhausted from the vacuum enclosure 204 of the apparatus 200 , but remains in the vacuum enclosure 204 for further inspection and/or for post-processing.

有利的是,因此可以在光罩100從設備200(例如從真空外殼204)排出之前判定缺陷D的修復品質等級。Advantageously, the repair quality level of the defect D can therefore be determined before the reticle 100 is ejected from the apparatus 200 (eg, from the vacuum enclosure 204 ).

儘管已經參考示例性實施例描述了本發明,但是能利用各種方式修改本發明。Although the present invention has been described with reference to exemplary embodiments, the present invention can be modified in various ways.

100:光罩 102:基板 104:塗層 106:結構 106':結構 108:影像 110:影像 112:修復形狀 114:壁 116:凹陷 118:突出 120:殘餘材料 122:圓角 124:底切 126:區域 128:容積 130:容積 132:容積 134:容積 136:區域 138:輪廓 140:尺寸 142:尺寸 144:尺寸 146:尺寸 148:參考輪廓 150:參考尺寸 152:參考尺寸 154:參考尺寸 156:參考尺寸 158:偏差 160:強度分佈 162:強度分佈 164:強度分佈 166:線 168:偏差 170:參考強度分佈 172:參考強度分佈 174:參考強度分佈 176:曲線圖 178:曲線圖 180:曲線圖 200:設備 202:電子束 204:真空外殼 206:真空泵 208:樣品台 210:電子柱 212:電子源 214:陰極 216:陽極 218:電壓源 220:通道開口 222:電子或束光學 224:掃描單元 226:偵測器 228:供氣單元 230:閥 232:瓦斯管線 234:電腦設備 236:控制裝置 238:產生裝置 240:判定裝置 242:輸出裝置 244:真空環境 A:距離 B1:結構大小 B2:結構大小 D:缺陷 EHT1:加速電壓 EHT2:加速電壓 EHT3:加速電壓 EHT4:加速電壓 G:大小 H:大小 R:參考數據 T:深度 T1:深度 T2:深度 T3:深度 T4:深度 X:方向 Y:方向 Z:方向 100: mask 102: substrate 104: coating 106: structure 106': structure 108: image 110: image 112: repair shape 114: wall 116: recess 118: protrusion 120: residual material 122: fillet 124: undercut 126: area 128: volume 130: volume 132: volume 134: volume 136: area 138: profile 140: size 142: size 144: size 146: size 148: reference profile 150: reference size 152: reference size 154: reference size 156: reference dimensions 158: deviation 160: intensity distribution 162: intensity distribution 164: intensity distribution 166: line 168: deviation 170: reference intensity distribution 172: reference intensity distribution 174: reference intensity distribution 176: curve graph 178: curve graph 180: curve graph 200: equipment 202: electron beam 204: vacuum housing 206: vacuum pump 208: sample stage 210: electron column 212: electron source 214: cathode 216: anode 218: voltage source 220: channel opening 222: electron or beam optics 224: scanning unit 226: detector 228: gas supply unit 230: valve 232: gas pipeline 234: computer equipment 236: control device 238: generating device 240: judging device 242: output device 244: vacuum environment A: distance B1: structure size B2: structure size D: defect EHT1: accelerating voltage EHT2: accelerating voltage EHT3: accelerating voltage EHT4: accelerating voltage G: size H: size R: reference data T: depth T1: depth T2: depth T3: depth T4: depth X: direction Y: direction Z: direction

本發明的進一步有利的結構和態樣是附屬請求項的主題以及下文中將描述的本發明的示例性實施例的主題。以下參考附圖基於優選實施例詳細解釋本發明。Further advantageous structures and aspects of the present invention are the subject of the dependent claims and the subject of the exemplary embodiments of the present invention to be described below. The present invention is explained in detail based on preferred embodiments with reference to the accompanying drawings.

圖1示意性地示出根據一實施例在結構化塗層中具有缺陷的微影光罩的細節;FIG. 1 schematically illustrates details of a lithography mask having defects in a structured coating according to one embodiment;

圖2示出沿著圖1中的II-II線的光罩的剖面圖;FIG2 shows a cross-sectional view of the photomask along line II-II in FIG1;

圖3示出根據一實施例用於圖1之微影光罩的缺陷的電子束誘發處理的設備;FIG. 3 shows an apparatus for electron beam induction treatment of defects of the lithography mask of FIG. 1 according to one embodiment;

圖4示出類似圖1的視圖,其中已經使用圖3的裝置修復了缺陷;FIG4 shows a view similar to FIG1 , wherein the defect has been repaired using the apparatus of FIG3 ;

圖5示出光罩沿圖4中的V-V線的剖面圖;FIG5 shows a cross-sectional view of the photomask along line V-V in FIG4 ;

圖6示出相似於圖5的視圖,其中示出修復後結構化塗層的尺寸;FIG. 6 shows a view similar to FIG. 5 , showing the dimensions of the repaired structured coating;

圖7示出圖6的尺寸與參考尺寸相比的偏差;FIG. 7 shows the deviation of the dimensions of FIG. 6 compared to the reference dimensions;

圖8示出與參考強度分佈(底部)相比的圖4(頂部)的光罩影像的一維強度分佈;FIG8 shows the one-dimensional intensity distribution of the reticle image of FIG4 (top) compared to a reference intensity distribution (bottom);

圖9示出圖8的強度分佈之一與參考強度分佈的比較的細節;FIG9 shows details of a comparison of one of the intensity distributions of FIG8 with a reference intensity distribution;

圖10示出強度分佈與圖8的參考強度分佈的偏差的曲線圖;以及FIG. 10 is a graph showing deviations of the intensity distribution from the reference intensity distribution of FIG. 8 ; and

圖11示出根據實施例的用於對來自圖1和圖4的光罩的缺陷進行電子束誘發處理的方法流程圖。FIG. 11 is a flow chart illustrating a method for performing electron beam induction processing on defects from the photomask of FIGS. 1 and 4 according to an embodiment.

100:光罩 100: Photomask

102:基板 102: Substrate

104:塗層 104: Coating

106’:結構 106’:Structure

128:容積 128: Volume

130:容積 130: Volume

132:容積 132: Volume

134:容積 134: Volume

140:尺寸 140:Size

142:尺寸 142:Size

144:尺寸 144:Size

146:尺寸 146:Size

150:參考尺寸 150: Reference size

152:參考尺寸 152: Reference size

154:參考尺寸 154: Reference size

156:參考尺寸 156: Reference size

202:電子束 202:Electron beam

EHT1:加速電壓 EHT1: Acceleration voltage

EHT2:加速電壓 EHT2: Acceleration voltage

EHT3:加速電壓 EHT3: Acceleration voltage

EHT4:加速電壓 EHT4: Acceleration voltage

R:參考數據 R: Reference data

T:深度 T: Depth

T1:深度 T1: Depth

T2:深度 T2: Depth

T3:深度 T3: Depth

T4:深度 T4: Depth

Claims (15)

一種用於電子束誘發處理一微影光罩(100)的一缺陷(D)的方法,包括以下步驟: a)在該光罩(100)的該缺陷(D)的區域(112)中提供(S1)處於一第一加速電壓(EHT1)的一活化電子束(202)和一處理氣體以修復該缺陷(D),以及 b)為了判定修復的該缺陷(D)的品質,藉由提供處於不同於該第一加速電壓(EHTl)的至少一個第二加速電壓(EHT2、EHT3、EHT4)的一電子束(202)而產生(S2)該光罩(100)的至少一個影像(110),其中該缺陷(D)的該區域(112)至少部分地被擷取, 其中為了獲取與該光罩(100)的一結構(106)相關的深度資訊,使用在對應的多個第二加速電壓(EHT2、EHT3、EHT4)下的該電子束(202)產生該光罩(100)的多個影像(110),該等第二加速電壓(EHT2、EHT3、EHT4)不同於該第一加速電壓(EHT1)並且該等第二加速電壓(EHT2、EHT3、EHT4)也彼此不同。 A method for electron beam induction treatment of a defect (D) of a lithography mask (100), comprising the following steps: a) providing (S1) an activating electron beam (202) at a first accelerating voltage (EHT1) and a treatment gas in a region (112) of the defect (D) of the mask (100) to repair the defect (D), and b) in order to determine the quality of the repaired defect (D), generating (S2) at least one image (110) of the mask (100) by providing an electron beam (202) at at least one second accelerating voltage (EHT2, EHT3, EHT4) different from the first accelerating voltage (EHT1), wherein the region (112) of the defect (D) is at least partially captured, In order to obtain depth information related to a structure (106) of the mask (100), the electron beam (202) is used under a plurality of corresponding second accelerating voltages (EHT2, EHT3, EHT4) to generate a plurality of images (110) of the mask (100), wherein the second accelerating voltages (EHT2, EHT3, EHT4) are different from the first accelerating voltage (EHT1) and the second accelerating voltages (EHT2, EHT3, EHT4) are also different from each other. 如請求項1所述之方法,其中該至少一個第二加速電壓(EHT2、EHT3、EHT4)大於該第一加速電壓(EHT1)。The method of claim 1, wherein the at least one second accelerating voltage (EHT2, EHT3, EHT4) is greater than the first accelerating voltage (EHT1). 如請求項1或2所述之方法,其中相對於步驟a),步驟b)是在現場進行的。The method of claim 1 or 2, wherein step b) is performed on-site relative to step a). 如請求項1至3中任一所述之方法,其中步驟a)和b)是在一真空環境(244)中進行,並且在步驟a)和b)之間將該光罩(100)保持在該真空環境(244)中。A method as described in any one of claims 1 to 3, wherein steps a) and b) are performed in a vacuum environment (244), and the mask (100) is maintained in the vacuum environment (244) between steps a) and b). 如請求項1至4中任一所述之方法,其中使用相同的掃描電子顯微鏡裝置(200)進行步驟a)和b),和/或由相同的電子源(212)產生處於該第一加速電壓(EHT1)下的該電子束(202)和處於該至少一個第二加速電壓(EHT2、EHT3、EHT4)下的該電子束(202)。A method as described in any one of claims 1 to 4, wherein steps a) and b) are performed using the same scanning electron microscope device (200), and/or the electron beam (202) at the first accelerating voltage (EHT1) and the electron beam (202) at the at least one second accelerating voltage (EHT2, EHT3, EHT4) are generated by the same electron source (212). 如請求項1至5中任一所述的方法,其包括以下步驟: 使用該光罩(100)的所產生的該至少一個影像(110)的一影像分析和/或基於該光罩(100)的所產生的該至少一個影像(110)與用於該至少一個第二加速電壓(EHT2、EHT3、EHT4)的參考數據(R)的一比較,以判定(S4)修復的該缺陷(D)的品質。 A method as claimed in any one of claims 1 to 5, comprising the following steps: Using an image analysis of the at least one image (110) generated by the mask (100) and/or a comparison based on the at least one image (110) generated by the mask (100) and a reference data (R) for the at least one second accelerating voltage (EHT2, EHT3, EHT4) to determine (S4) the quality of the defect (D) repaired. 如請求項6所述之方法,其包括以下步驟: 使用基於該光罩(100)的一已知模型的一模擬來產生(S3)該參考數據(R),其中,在該模擬期間,基於該電子束(202)與該光罩(100)的該已知模型之間的一模擬相互作用來產生至少一個參考影像,該電子束對應於該至少一個第二加速電壓(EHT2、EHT3、EHT4)。 The method as claimed in claim 6, comprising the following steps: Using a simulation based on a known model of the mask (100) to generate (S3) the reference data (R), wherein, during the simulation, at least one reference image is generated based on a simulated interaction between the electron beam (202) and the known model of the mask (100), the electron beam corresponding to the at least one second accelerating voltage (EHT2, EHT3, EHT4). 如請求項6或7所述之方法,其中在該光罩(100)的所產生的該至少一個影像中擷取在該缺陷(D)之外的一區域(136),並且該方法包括以下步驟: 基於在該缺陷(D)之外的該區域(136)的一影像分析來產生(S3)該參考數據(R)。 A method as claimed in claim 6 or 7, wherein a region (136) outside the defect (D) is captured in the at least one image generated of the mask (100), and the method comprises the following steps: Generating (S3) the reference data (R) based on an image analysis of the region (136) outside the defect (D). 如請求項1至8中任一所述的方法,其中,已修復的該缺陷(D)的品質的判定(S4)包括: 判定該光罩(100)的所產生的該至少一個影像(110)中的一個或多個結構(106)的一輪廓(138),和/或 基於所判定的該輪廓(138)來判定該一個或多個結構(106)的一尺寸(140、142、144、146)。 A method as described in any one of claims 1 to 8, wherein the determination (S4) of the quality of the repaired defect (D) comprises: Determining a contour (138) of one or more structures (106) in the at least one image (110) generated by the mask (100), and/or Determining a size (140, 142, 144, 146) of the one or more structures (106) based on the determined contour (138). 如請求項9所述之方法,其中,在判定(S4)已修復缺陷(D)的品質期間,判定出所判定的該輪廓(138)與參考數據(R)中的一參考輪廓的一偏差,和/或判定出所判定的該尺寸(140、142、144、146)與參考數據(R)中的一參考尺寸(150、152、154、156)的一偏差(158)。A method as described in claim 9, wherein, during the determination (S4) of the quality of the repaired defect (D), a deviation between the determined profile (138) and a reference profile in the reference data (R) is determined, and/or a deviation (158) between the determined dimension (140, 142, 144, 146) and a reference dimension (150, 152, 154, 156) in the reference data (R) is determined. 如請求項10所述之方法,其中,判定出所判定的該輪廓(138)與該參考數據(R)中的該參考輪廓的該偏差,和/或判定出所判定的該尺寸(140、142、144、146)與該參考數據(R)中的該參考尺寸(150、152、154、156)的該偏差(158)是針對該至少一個第二加速電壓(EHT2、EHT3、EHT4)中的每一個。A method as described in claim 10, wherein the deviation of the determined profile (138) from the reference profile in the reference data (R) and/or the deviation (158) of the determined size (140, 142, 144, 146) from the reference size (150, 152, 154, 156) in the reference data (R) is determined for each of the at least one second accelerating voltage (EHT2, EHT3, EHT4). 如請求項1至11中任一所述的方法,其中,在判定(S4)已修復該缺陷(D)的品質期間,判定出該光罩(100)的所產生的該至少一個影像(110)的一強度分佈(160、162、164),以及判定出所判定的該強度分佈(160、162、164)與參考數據(R)的一參考強度分佈(170、172、174)的一偏差(168),特別是針對該至少一個第二加速電壓(EHT2、EHT3、EHT4)中的每一個。A method as described in any one of claims 1 to 11, wherein, during the determination (S4) of the quality of the defect (D) having been repaired, an intensity distribution (160, 162, 164) of the at least one image (110) generated by the mask (100) is determined, and a deviation (168) between the determined intensity distribution (160, 162, 164) and a reference intensity distribution (170, 172, 174) of reference data (R) is determined, in particular for each of the at least one second accelerating voltage (EHT2, EHT3, EHT4). 如請求項12所述之方法,其中,針對所產生的該影像(110)的一區域(126),其包括該光罩(100)的一個或多個結構(108)的一輪廓(138),而判定出所判定的該強度分佈(160、162、164)與該參考強度分佈(170、172、174)的該偏差(168)。A method as described in claim 12, wherein the deviation (168) of the determined intensity distribution (160, 162, 164) from the reference intensity distribution (170, 172, 174) is determined for a region (126) of the generated image (110) that includes a contour (138) of one or more structures (108) of the mask (100). 如請求項12或13所述之方法,其中所判定的該強度分佈(160、162、164)是一維或二維強度分佈。A method as described in claim 12 or 13, wherein the intensity distribution (160, 162, 164) determined is a one-dimensional or two-dimensional intensity distribution. 如請求項1至14中任一所述的方法,其中: 在判定已修復的該缺陷(D)的品質期間,判定出根據該光罩(100)的所產生的該至少一個影像所判定的一參數與根據參考數據所判定出的一參考參數的之間的一偏差的一程度,以及 該方法包括以下步驟: 判定出所判定的該偏差是否小於一預定閾值,和/或 如果所判定的該偏差小於該預定閾值,則控制(S5)一HMI單元(242)以輸出一通訊:「滿意」,和/或控制一光罩輸出單元一輸出修復後的該光罩(100),和/或 如果所判定的該偏差大於或等於該預定閾值,則控制(S6)該HMI單元(242)輸出通訊:「不滿意」。 A method as described in any one of claims 1 to 14, wherein: During the determination of the quality of the repaired defect (D), a degree of deviation between a parameter determined based on the at least one image generated by the mask (100) and a reference parameter determined based on reference data is determined, and The method comprises the following steps: Determining whether the determined deviation is less than a predetermined threshold, and/or If the determined deviation is less than the predetermined threshold, controlling (S5) an HMI unit (242) to output a communication: "satisfactory", and/or controlling a mask output unit to output the repaired mask (100), and/or If the determined deviation is greater than or equal to the predetermined threshold, controlling (S6) the HMI unit (242) to output a communication: "unsatisfactory".
TW112128014A 2022-07-27 2023-07-26 Method for electron beam-induced processing of a defect of a microlithographic photomask TWI871713B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102022118874.4A DE102022118874B3 (en) 2022-07-27 2022-07-27 Method for electron beam-induced processing of a defect in a photomask for microlithography
DE102022118874.4 2022-07-27

Publications (2)

Publication Number Publication Date
TW202414111A true TW202414111A (en) 2024-04-01
TWI871713B TWI871713B (en) 2025-02-01

Family

ID=

Also Published As

Publication number Publication date
US20240036456A1 (en) 2024-02-01
DE102022118874B3 (en) 2023-11-23
KR20240015588A (en) 2024-02-05
CN117471845A (en) 2024-01-30

Similar Documents

Publication Publication Date Title
JP5930022B2 (en) Method and apparatus for processing a substrate using a focused particle beam
US9990737B2 (en) Apparatus and method for correlating images of a photolithographic mask
TW201841192A (en) Method and apparatus for analyzing a defective location of a photolithographic mask
US20230109566A1 (en) Method and apparatus for setting a side wall angle of a pattern element of a photolithographic mask
JP2024153689A (en) Method and apparatus for repairing defects in lithography masks - Patents.com
TWI854297B (en) Method and apparatus for repairing a defect of a sample using a focused particle beam
US20240069434A1 (en) Method and apparatus for particle beam-induced processing of a defect of a microlithographic photomask
TWI871713B (en) Method for electron beam-induced processing of a defect of a microlithographic photomask
TW202414111A (en) Method for electron beam-induced processing of a defect of a microlithographic photomask
WO2024023165A1 (en) Method, lithography mask, use of a lithography mask, and processing arrangement
TWI839822B (en) Method for particle beam-induced processing of a defect of a microlithographic photomask