[go: up one dir, main page]

TW202409402A - Intelligence - Google Patents

Intelligence Download PDF

Info

Publication number
TW202409402A
TW202409402A TW112117858A TW112117858A TW202409402A TW 202409402 A TW202409402 A TW 202409402A TW 112117858 A TW112117858 A TW 112117858A TW 112117858 A TW112117858 A TW 112117858A TW 202409402 A TW202409402 A TW 202409402A
Authority
TW
Taiwan
Prior art keywords
building
virtual
window
tintable windows
sky
Prior art date
Application number
TW112117858A
Other languages
Chinese (zh)
Inventor
阿迪亞 迪阿里
福雷斯特坎寧 休斯
譚雅 邁克
尼迪沙亞查倫 迪瓦里
莉莎蘿莉塔 馬昆斯
里普利伊斯拉 利斯特
Original Assignee
美商唯景公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商唯景公司 filed Critical 美商唯景公司
Publication of TW202409402A publication Critical patent/TW202409402A/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B9/00Screening or protective devices for wall or similar openings, with or without operating or securing mechanisms; Closures of similar construction
    • E06B9/24Screens or other constructions affording protection against light, especially against sunshine; Similar screens for privacy or appearance; Slat blinds
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B9/00Screening or protective devices for wall or similar openings, with or without operating or securing mechanisms; Closures of similar construction
    • E06B9/24Screens or other constructions affording protection against light, especially against sunshine; Similar screens for privacy or appearance; Slat blinds
    • E06B2009/2464Screens or other constructions affording protection against light, especially against sunshine; Similar screens for privacy or appearance; Slat blinds featuring transparency control by applying voltage, e.g. LCD, electrochromic panels
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/163Operation of electrochromic cells, e.g. electrodeposition cells; Circuit arrangements therefor

Landscapes

  • Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Image Analysis (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)

Abstract

Methods of controlling tintable window(s) comprising determining one or more transmissivities of the one or more tintable windows, wherein the one or more transmissivities are determined to generate a target illuminance level, or approximately the target illuminance level, at one or more grid points in an internal space of a virtual representation of the building, the one or more transmissivities determined based at least in part on attenuated clear sky data that is based at least in part on a predicted clear sky illuminance and readings from a plurality of sensors, and holding, or transitioning, the one or more tintable windows to an end tint state associated with the one or more determined transmissivities.

Description

智慧wisdom

相關申請案之交互參照Cross-reference to related applications

本申請案主張發明名稱為「INTELLIGENCE」且於2022年5月13日申請之美國臨時專利申請案第63/364,698號之利益及優先權;本申請案係於2023年4月27日申請之發明名稱為「VIRTUALLY VIEWING DEVICES IN A FACILITY」之美國專利申請案第18/034,328號的部分連續申請案,其係在35 U.S.C. §371下於2021年11月2日申請且發明名稱為「VIRTUALLY VIEWING DEVICES IN A FACILITY」之國際PCT申請案第PCT/US2021/057678號的國家階段申請案;PCT/US2021/057678主張於2020年11月3日申請之發明名稱為「ACCOUNTING FOR DEVICES IN A FACILITY」之美國臨時專利申請案第63/109,306號及於2021年6月24日申請之發明名稱為「VIRTUALLY VIEWING DEVICES IN A FACILITY」之美國臨時專利申請案第63/214,741號之利益及優先權;PCT/US2021/057678係於2021年4月15日申請之發明名稱為「INTERACTION BETWEEN AN ENCLOSURE AND ONE OR MORE OCCUPANTS」之國際PCT申請案第PCT/US21/27418號的部分連續申請案;PCT/US2021/057678亦係於2021年5月21日申請之發明名稱為「ENVIRONMENTAL ADJUSTMENT USING ARTIFICIAL INTELLIGENCE」之國際PCT申請案第PCT/US21/33544號的部分連續申請案;PCT/US2021/057678亦係於2021年5月5日申請之發明名稱為「DEVICE ENSEMBLES AND COEXISTENCE MANAGEMENT OF DEVICES之國際PCT申請案第PCT/US2021/030798號的部分連續申請案;PCT/US2021/057678亦係於2020年7月13日申請之發明名稱為「AUTOMATED COMMISSIONING OF CONTROLLERS IN A WINDOW NETWORK」之美國專利申請案序號第16/946,947號的部分連續申請案,其係在35 U.S.C. §371下於2017年11月20日申請之發明名稱為「AUTOMATED COMMISSIONING OF CONTROLLERS IN A WINDOW NETWORK」之國際PCT申請案第PCT/US2017/062634號的國家階段申請案(指明美國);國際PCT申請案第PCT/US2017/062634號主張於2016年11月23日申請之美國臨時專利申請案第62/426,126號及美國臨時專利申請案第62/551,649號,二者之發明名稱皆為「發明名稱為「AUTOMATED COMMISSIONING OF CONTROLLERS IN A WINDOW NETWORK」之利益及優先權;PCT/US2021/057678亦係於2021年3月24日申請之發明名稱為「COMMISSIONING WINDOW NETWORKS」之美國專利申請案序號第17/211,697號的部分連續申請案,其係於2017年10月6日申請之發明名稱為「COMMISSIONING WINDOW NETWORKS」之美國專利申請案序號第15/727,258號的連續申請案;PCT/US2021/057678亦係於2021年10月6日申請之發明名稱為「MULTI-SENSOR HAVING A LIGHT DIFFUSING ELEMENT AROUND A PERIPHERY OF A RING OF PHOTOSENSORS」之美國專利申請案序號第17/450,091號的部分連續申請案,其係於2020年5月11日申請之發明名稱為「ADJUSTING WINDOW TINT BASED AT LEAST IN PART ON SENSED SUN RADIATION」之美國專利申請案序號第16/871,976號的連續申請案,其係於2015年10月6日申請且發明名稱為「MULTI-SENSOR HAVING A LIGHT DIFFUSING ELEMENT AROUND A PERIPHERY OF A RING OF PHOTOSENSORS」之美國專利申請案序號第14/998,019號(現在係於2020年6月23日發布之美國專利第10,690,540號)的連續申請案;PCT/US2021/057678亦係於2019年11月26日申請之發明名稱為「SENSING SUN RADIATION」之美國專利申請案序號第16/696,887號的部分連續申請案,其係於2016年10月6日申請且發明名稱為「MULTI-SENSOR」之美國專利申請案序號第15/287,646號(現在係美國專利序號第10,533,892號)的連續申請案,其係於2015年10月6日申請之發明名稱為「MULTI-SENSOR HAVING A LIGHT DIFFUSING ELEMENT AROUND A PERIPHERY OF A RING OF PHOTOSENSORS」之美國專利申請案第14/998,019號(現在係美國專利第10,690,540號)的部分連續申請案;PCT/US2021/057678亦係於2021年7月20日申請之發明名稱為「WINDOW ANTENNAS」之美國專利申請案序號第17/380,785號的部分連續申請案,其主張於2018年11月6日申請之發明名稱為「WINDOW ANTENNAS」之美國專利申請案序號第16/099,424號之優先權,其係在35 U.S.C. §371下於2017年5月4日申請之發明名稱為「WINDOW ANTENNAS」之國際PCT申請案第PCT/US17/31106號的國家階段申請案;PCT/US2021/057678亦係於2021年7月26日申請之發明名稱為「WINDOW ANTENNAS」之美國專利申請案序號第17/385,810號的部分連續申請案,其主張美國專利申請案序號第16/099,424號之優先權;PCT/US2021/057678亦係於2020年9月11日申請之發明名稱為「WIRELESSLY POWERED AND POWERING ELECTROCHROMIC WINDOWS」之美國專利申請案序號第16/980,305號的部分連續申請案,其係在35 U.S.C. §371下於2019年3月13日申請之發明名稱為「WIRELESSLY POWERED AND POWERING ELECTROCHROMIC WINDOWS」之國際PCT申請案第PCT/US19/22129號的國家階段申請案;本申請案有關於發明名稱為「CONTROL METHODS AND SYSTEMS USING EXTERNAL 3D MODELING AND NEURAL NETWORKS」且於2021年2月5日申請之美國專利申請案第17/250,586號,其係在35 U.S.C. §371下之發明名稱為「CONTROL METHODS AND SYSTEMS USING EXTERNAL 3D MODELING AND NEURAL NETWORKS」且於2019年8月14日申請之國際PCT申請案第PCT/US2019/046524號的國家階段申請案;PCT/US2019/046524主張於2018年8月15日申請且發明名稱為「CONTROL METHODS AND SYSTEMS USING EXTERNAL 3D MODELING AND NEURAL NETWORKS」之美國臨時專利申請案第62/764,821號、於2018年10月15日申請且發明名稱為「CONTROL METHODS AND SYSTEMS USING EXTERNAL 3D MODELING AND NEURAL NETWORKS」之美國臨時專利申請案第62/745,920號、及於2019年2月14日申請且發明名稱為「CONTROL METHODS AND SYSTEMS USING EXTERNAL 3D MODELING AND NEURAL NETWORKS」之美國臨時專利申請案第62/805,841號之利益及優先權;國際PCT申請案第PCT/US2019/046524亦係於2019年3月20日申請且發明名稱為「CONTROL METHODS AND SYSTEMS USING EXTERNAL 3D MODELING AND SCHEDULE-BASED」之國際PCT申請案第PCT/US2019/023268號的部分連續申請案,其主張於2018年3月21日申請且發明名稱為「METHODS AND SYSTEMS FOR CONTROLLING TINTABLE WINDOWS WITH CLOUD DETECTION」之美國臨時專利申請案第62/646,260號及於2018年5月3日申請且發明名稱為「CONTROL METHODS AND SYSTEMS USING EXTERNAL 3D MODELING AND SCHEDULE-BASED COMPUTING」之美國臨時專利申請案第62/666,572號之利益及優先權;國際PCT申請案第PCT/US2019/023268號係於2018年6月20日申請且發明名稱為「CONTROL METHOD FOR TINTABLE WINDOWS」之美國專利申請案第16/013,770號的部分連續申請案,其係發明名稱為「CONTROL METHOD FOR TINTABLE WINDOWS」且於2016年11月9日申請之美國專利申請案第15/347,677號的連續申請案;美國專利申請案第15/347,677號係於2015年5月7日申請且發明名稱為「CONTROL METHOD FOR TINTABLE WINDOWS」之國際PCT申請案第PCT/US15/29675的部分連續申請案,其主張於2014年5月9日申請且發明名稱為「CONTROL METHOD FOR TINTABLE WINDOWS」之第61/991,375號之利益及優先權;美國專利申請案第15/347,677號亦係於2013年2月21日申請且發明名稱為「CONTROL METHOD FOR TINTABLE WINDOWS」之美國專利申請案第13/772,969號的部分連續申請案;國際PCT申請案第PCT/US2019/046524號亦係發明名稱為「APPLICATIONS FOR CONTROLLING OPTICALLY SWITCHABLE DEVICES」且於2019年6月11日申請之美國專利申請案第16/438,177號的部分連續申請案,其係於2014年10月7日申請且發明名稱為「APPLICATIONS FOR CONTROLLING OPTICALLY SWITCHABLE DEVICES」之美國專利申請案第14/391,122號的連續申請案;美國專利申請案第14/391,122號係在發明名稱為「APPLICATIONS FOR CONTROLLING OPTICALLY SWITCHABLE DEVICES」且於2013年4月12日申請之國際PCT申請案第PCT/US2013/036456號的35 U.S.C. §371下的國家階段申請案,其主張發明名稱為「APPLICATIONS FOR CONTROLLING OPTICALLY SWITCHABLE DEVICES」且於2012年4月13日申請之美國臨時專利申請案第61/624,175號之優先權及利益;本申請案有關於2020年9月18日申請之發明名稱為「CONTROL METHODS AN SYSTEMS USING EXTERNAL 3D MODELING AND SCHEDULE-BASED COMPUTING」之美國專利申請案第16/982,535號,其係在發明名稱為「CONTROL METHODS AN SYSTEMS USING EXTERNAL 3D MODELING AND SCHEDULE-BASED COMPUTING」且於2019年3月20日申請之國際PCT申請案第PCT/US2019/023268號之35 U.S.C. §371下的國家階段申請案;PCT/US2019/023268主張於2018年3月21日申請且發明名稱為「METHODS AND SYSTEMS FOR CONTROLLING TINTABLE WINDOWS WITH CLOUD DETECTION」之美國臨時專利申請案第62/646,260號及於2018年5月3日申請且發明名稱為「CONTROL METHODS AND SYSTEMS USING EXTERNAL 3D MODELING AND SCHEDULE-BASED COMPUTING」之美國臨時專利申請案第62/666,572號之利益及優先權;PCT/US2019/023268亦係發明名稱為「CONTROL METHOD FOR TINTABLE WINDOWS」且於2018年6月20日申請之美國專利申請案16/013,770號的部分連續申請案,其係發明名稱為「CONTROL METHOD FOR TINTABLE WINDOWS」且於2016年11月9日申請之美國專利申請案第15/347,677號的連續申請案,其係於2015年5月7日申請之發明名稱為「CONTROL METHOD FOR TINTABLE WINDOWS」之國際專利申請案第PCT/US15/29675號的部分連續申請案,其主張發明名稱為「CONTROL METHOD FOR TINTABLE WINDOWS」且於2014年5月9日申請之美國臨時專利申請案第61/991,375號之優先權及利益;美國專利申請案第15/347,677號亦係發明名稱為「CONTROL METHOD FOR TINTABLE WINDOWS」且於2013年2月21日申請之美國專利申請案第13/772,969號的部分連續申請案;本申請案有關於2021年8月12日申請之發明名稱為「AUTOMATED COMMISSIONING OF CONTROLLERS IN A WINDOW NETWORK」之美國專利申請案序號第17/400,596號,其係發明名稱為「AUTOMATED COMMISSIONING OF CONTROLLERS IN A WINDOW NETWORK」且於2019年5月21日申請之美國專利申請案第16/462,916號的連續申請案;美國專利申請案第16/462,916號係於2018年9月6日申請之發明名稱為「METHOD OF COMMISSIONING ELECTROCHROMIC WINDOWS」之美國專利申請案第16/082,793號的部分連續申請案,其係在35 U.S.C. §371下於2017年3月3日申請之發明名稱為METHOD OF COMMISSIONING ELECTROCHROMIC WINDOWS」之國際PCT申請案第PCT/US2017/020805號的國家階段申請案,其主張於2016年8月2日申請之美國臨時專利申請案第62,370,174號及於2016年3月9日申請之美國臨時專利申請案第62/305,892號,二者之發明名稱皆係「METHOD OF COMMISSIONING ELECTROCHROMIC WINDOWS」之利益及優先權;This application claims the benefit of and priority to U.S. Provisional Patent Application No. 63/364,698, filed on May 13, 2022, entitled “INTELLIGENCE”; this application is a continuation-in-part of U.S. Patent Application No. 18/034,328, filed on April 27, 2023, entitled “VIRTUALLY VIEWING DEVICES IN A FACILITY”, which was a continuation-in-part application under 35 U.S.C. §371 filed on November 2, 2021, entitled “VIRTUALLY VIEWING DEVICES IN A FACILITY”. PCT/US2021/057678 claims the benefit of and priority to U.S. Provisional Patent Application No. 63/109,306 filed on November 3, 2020, entitled “ACCOUNTING FOR DEVICES IN A FACILITY” and U.S. Provisional Patent Application No. 63/214,741 filed on June 24, 2021, entitled “VIRTUALLY VIEWING DEVICES IN A FACILITY”; PCT/US2021/057678 is a national phase application of an international PCT application No. PCT/US2021/057678, entitled “INTERACTION BETWEEN AN ENCLOSURE AND ONE OR MORE” filed on April 15, 2021, entitled “ OCCUPANTS”; PCT/US2021/057678 is also a continuation-in-part of international PCT application No. PCT/US21/33544 filed on May 21, 2021, entitled “ENVIRONMENTAL ADJUSTMENT USING ARTIFICIAL INTELLIGENCE”; PCT/US2021/057678 is also a continuation-in-part of international PCT application No. PCT/US2021/33544 filed on May 21, 2021, entitled “DEVICE ENSEMBLES AND COEXISTENCE MANAGEMENT OF DEVICES; PCT/US2021/057678 is also a continuation-in-part of U.S. Patent Application Serial No. 16/946,947 filed on July 13, 2020, entitled “AUTOMATED COMMISSIONING OF CONTROLLERS IN A WINDOW NETWORK,” which is an invention under 35 U.S.C. §371 filed on November 20, 2017, entitled “AUTOMATED COMMISSIONING OF CONTROLLERS IN A WINDOW NETWORK.” NETWORK” (specifies the United States); International PCT Application No. PCT/US2017/062634 claims the benefit and priority of U.S. Provisional Patent Application No. 62/426,126 filed on November 23, 2016 and U.S. Provisional Patent Application No. 62/551,649, both of which are entitled “AUTOMATED COMMISSIONING OF CONTROLLERS IN A WINDOW NETWORK”; PCT/US2021/057678 is also an invention filed on March 24, 2021, entitled “COMMISSIONING WINDOW NETWORKS”, which is a continuation-in-part of U.S. Patent Application Serial No. 17/211,697 filed on October 6, 2017, entitled “COMMISSIONING WINDOW NETWORKS”; PCT/US2021/057678 is also a continuation-in-part of U.S. Patent Application Serial No. 17/450,091 filed on October 6, 2021, entitled “MULTI-SENSOR HAVING A LIGHT DIFFUSING ELEMENT AROUND A PERIPHERY OF A RING OF PHOTOSENSORS”, which is a continuation-in-part of U.S. Patent Application Serial No. 15/727,258 filed on October 6, 2017, entitled “COMMISSIONING WINDOW NETWORKS”; PCT/US2021/057678 is also a continuation-in-part of U.S. Patent Application Serial No. 17/450,091 filed on October 6, 2021, entitled “MULTI-SENSOR HAVING A LIGHT DIFFUSING ELEMENT AROUND A PERIPHERY OF A RING OF PHOTOSENSORS”, which is a continuation-in-part of U.S. Patent Application Serial No. 17/450,091 filed on May 11, 2020, entitled “ADJUSTING WINDOW TINT BASED AT LEAST IN PART ON SENSED SUN RADIATION”, which is a continuation-in-part of U.S. Patent Application Serial No. 16/871,976 filed on October 6, 2015 and entitled “MULTI-SENSOR HAVING A LIGHT DIFFUSING ELEMENT AROUND A PERIPHERY OF A RING OF PHOTOSENSORS” (now U.S. Patent No. 10,690,540 issued on June 23, 2020); PCT/US2021/057678 also filed on November 26, 2019 and entitled “SENSING SUN RADIATION”. RADIATION”, which is a continuation-in-part of U.S. Patent Application Serial No. 16/696,887 filed on October 6, 2016 and entitled “MULTI-SENSOR” (now U.S. Patent Serial No. 10,533,892), which is a continuation-in-part of U.S. Patent Application Serial No. 15/287,646 filed on October 6, 2016 and entitled “MULTI-SENSOR”, which is a continuation-in-part of U.S. Patent Application Serial No. 10,533,892 filed on October 6, 2015 and entitled “MULTI-SENSOR HAVING A LIGHT DIFFUSING ELEMENT AROUND A PERIPHERY OF A RING OF PHOTOSENSORS” (now U.S. Patent No. 10,690,540); PCT/US2021/057678 is also a continuation-in-part of U.S. Patent Application Serial No. 17/380,785 filed on July 20, 2021, entitled “WINDOW ANTENNAS”, which claims priority to U.S. Patent Application Serial No. 16/099,424 filed on November 6, 2018, entitled “WINDOW ANTENNAS”, which is an invention entitled “WINDOW ANTENNAS” filed on May 4, 2017 under 35 U.S.C. §371. ANTENNAS”; PCT/US2021/057678 is also a continuation-in-part of U.S. Patent Application Serial No. 17/385,810 filed on July 26, 2021, entitled “WINDOW ANTENNAS”, claiming priority to U.S. Patent Application Serial No. 16/099,424; PCT/US2021/057678 is also a continuation-in-part of U.S. Patent Application Serial No. 16/980,305 filed on September 11, 2020, entitled “WIRELESSLY POWERED AND POWERING ELECTROCHROMIC WINDOWS”, which is a continuation-in-part under 35 U.S.C. §371 of PCT International Application No. PCT/US19/22129, filed on March 13, 2019, entitled “WIRELESSLY POWERED AND POWERING ELECTROCHROMIC WINDOWS”; This application is related to U.S. Patent Application No. 17/250,586, filed on February 5, 2021, entitled “CONTROL METHODS AND SYSTEMS USING EXTERNAL 3D MODELING AND NEURAL NETWORKS”, which is an invention under 35 U.S.C. §371 entitled “CONTROL METHODS AND SYSTEMS USING EXTERNAL 3D MODELING AND NEURAL NETWORKS”. NETWORKS” and the national phase application of PCT application No. PCT/US2019/046524 filed on August 14, 2019; PCT/US2019/046524 claims U.S. Provisional Patent Application No. 62/764,821 filed on August 15, 2018 and entitled “CONTROL METHODS AND SYSTEMS USING EXTERNAL 3D MODELING AND NEURAL NETWORKS” and U.S. Provisional Patent Application No. 62/764,821 filed on October 15, 2018 and entitled “CONTROL METHODS AND SYSTEMS USING EXTERNAL 3D MODELING AND NEURAL NETWORKS” and U.S. Provisional Patent Application No. 62/745,920, filed on February 14, 2019, entitled “CONTROL METHODS AND SYSTEMS USING EXTERNAL 3D MODELING AND NEURAL NETWORKS”; International PCT Application No. PCT/US2019/046524, also filed on March 20, 2019, entitled “CONTROL METHODS AND SYSTEMS USING EXTERNAL 3D MODELING AND NEURAL NETWORKS” PCT/US2019/023268, entitled “METHODS AND SYSTEMS FOR CONTROLLING TINTABLE WINDOWS WITH CLOUD DETECTION”, and U.S. Provisional Patent Application No. 62/646,260, filed on March 21, 2018, entitled “CONTROL METHODS AND SYSTEMS USING EXTERNAL 3D MODELING AND SCHEDULE-BASED”. PCT Application No. 16/013,770, filed on June 20, 2018, entitled “CONTROL METHOD FOR TINTABLE WINDOWS”, which is a continuation-in-part of U.S. Patent Application No. 15/347,677, filed on November 9, 2016, entitled “CONTROL METHOD FOR TINTABLE WINDOWS”; U.S. Patent Application No. 15/347,677, filed on May 7, 2015, entitled “CONTROL METHOD FOR TINTABLE WINDOWS” WINDOWS”, which claims the benefit and priority of U.S. Patent Application No. 61/991,375 filed on May 9, 2014 and entitled “CONTROL METHOD FOR TINTABLE WINDOWS”; U.S. Patent Application No. 15/347,677 is also a continuation-in-part of U.S. Patent Application No. 13/772,969 filed on February 21, 2013 and entitled “CONTROL METHOD FOR TINTABLE WINDOWS”; International PCT Application No. PCT/US2019/046524 is also a continuation-in-part of U.S. Patent Application No. 61/991,375 filed on May 9, 2014 and entitled “CONTROL METHOD FOR TINTABLE WINDOWS”; International PCT Application No. PCT/US2019/046524 is also a continuation-in-part of U.S. Patent Application No. 61/991,375 filed on May 9, 2014 and entitled “CONTROL METHOD FOR TINTABLE WINDOWS” DEVICES” and filed on June 11, 2019, which is a continuation-in-part of U.S. Patent Application No. 16/438,177, filed on June 11, 2019, entitled “APPLICATIONS FOR CONTROLLING OPTICALLY SWITCHABLE DEVICES”, which is a continuation-in-part of U.S. Patent Application No. 14/391,122, filed on October 7, 2014, entitled “APPLICATIONS FOR CONTROLLING OPTICALLY SWITCHABLE DEVICES”; U.S. Patent Application No. 14/391,122 is a continuation-in-part of International PCT Application No. PCT/US2013/036456, filed on April 12, 2013, entitled “APPLICATIONS FOR CONTROLLING OPTICALLY SWITCHABLE DEVICES”, at 35 U.S.C. §371, claiming priority to and the benefit of U.S. Provisional Patent Application No. 61/624,175, filed on April 13, 2012, entitled “APPLICATIONS FOR CONTROLLING OPTICALLY SWITCHABLE DEVICES”; this application is related to U.S. Patent Application No. 16/982,535, filed on September 18, 2020, entitled “CONTROL METHODS AN SYSTEMS USING EXTERNAL 3D MODELING AND SCHEDULE-BASED COMPUTING”, which is a patent application filed on September 18, 2020, entitled “CONTROL METHODS AN SYSTEMS USING EXTERNAL 3D MODELING AND SCHEDULE-BASED COMPUTING”. PCT/US2019/023268, filed on March 20, 2019, and entitled “COMPUTING”, a national phase application under 35 U.S.C. §371; PCT/US2019/023268, claiming U.S. Provisional Patent Application No. 62/646,260, filed on March 21, 2018, and entitled “METHODS AND SYSTEMS FOR CONTROLLING TINTABLE WINDOWS WITH CLOUD DETECTION” and U.S. Provisional Patent Application No. 62/646,260, filed on May 3, 2018, and entitled “CONTROL METHODS AND SYSTEMS USING EXTERNAL 3D MODELING AND SCHEDULE-BASED PCT/US2019/023268 is also a continuation-in-part of U.S. Patent Application No. 16/013,770, filed on June 20, 2018, entitled “CONTROL METHOD FOR TINTABLE WINDOWS,” which is a continuation-in-part of U.S. Patent Application No. 15/347,677, filed on November 9, 2016, entitled “CONTROL METHOD FOR TINTABLE WINDOWS,” which is a continuation-in-part of U.S. Patent Application No. 15/347,677, filed on November 9, 2016, entitled “CONTROL METHOD FOR TINTABLE WINDOWS,” which is a continuation-in-part of U.S. Patent Application No. 15/347,677, filed on May 7, 2015, entitled “CONTROL METHOD FOR TINTABLE WINDOWS”, which claims priority to and the benefit of U.S. Provisional Patent Application No. 61/991,375 filed on May 9, 2014, entitled “CONTROL METHOD FOR TINTABLE WINDOWS”; U.S. Patent Application No. 15/347,677 is also a continuation-in-part of U.S. Patent Application No. 13/772,969 filed on February 21, 2013, entitled “CONTROL METHOD FOR TINTABLE WINDOWS”; This application is related to the invention filed on August 12, 2021, entitled “AUTOMATED COMMISSIONING OF CONTROLLERS IN A WINDOW NETWORK”, which is a continuation-in-part of U.S. Patent Application No. 16/462,916, filed on May 21, 2019, entitled “AUTOMATED COMMISSIONING OF CONTROLLERS IN A WINDOW NETWORK”; U.S. Patent Application No. 16/462,916, filed on September 6, 2018, entitled “METHOD OF COMMISSIONING ELECTROCHROMIC WINDOWS”, which is a continuation-in-part of U.S. Patent Application No. 16/082,793, filed on September 6, 2018, entitled “METHOD OF COMMISSIONING ELECTROCHROMIC WINDOWS”, which is a continuation-in-part of U.S. Patent Application No. 16/082,793, filed on March 3, 2017, entitled “METHOD OF COMMISSIONING ELECTROCHROMIC WINDOWS” under 35 U.S.C. §371. WINDOWS”, claiming the benefit and priority of U.S. Provisional Patent Application No. 62,370,174 filed on August 2, 2016 and U.S. Provisional Patent Application No. 62/305,892 filed on March 9, 2016, both of which are titled “METHOD OF COMMISSIONING ELECTROCHROMIC WINDOWS”;

美國專利申請案第16/462,916號係在35 U.S.C. §371下之國際PCT申請案第PCT/US2017/062634號的國家階段申請案,其主張於2017年8月29日申請之美國臨時專利申請案第62/551,649號及於2016年11月23日申請之美國臨時專利申請案第62/426,126號之利益及優先權;美國專利申請案第16/462,916號係於2015年11月24日申請之美國專利申請案第14/951,410號的部分連續申請案;美國專利申請案第14/951,410號主張於2015年10月29日申請之美國臨時專利申請案第62/348,181號及於2014年11月26日申請之美國臨時專利申請案第62/085,179號之利益及優先權;美國專利申請案第14/951,410號係於2014年11月13日申請之美國專利第14/401,081號的部分連續申請案,其係在35 U.S.C. §371下於2013年5月24日申請之國際PCT申請案第PCT/US2013/042765號的國家階段申請案;PCT/US2013/042765主張於2012年5月25日申請之美國臨時專利申請案第61/652,021號之利益及優先權;美國專利申請案第14/951,410號亦係於2014年8月26日申請之美國專利申請案第14/468,778號的部分連續申請案,其係於2012年5月23日申請之美國專利申請案第13/479,137號的連續申請案,其係於2011年3月16日申請之美國專利申請案第13/049750號的連續申請案,其係於2010年12月17日申請之美國專利申請案第12/971,576號的部分連續申請案,其主張於2009年12月22日申請之美國臨時專利申請案第61/289,319號之利益及優先權;美國專利申請案第14/951,410號亦係於2012年4月17日申請之第13/449,248號的部分連續申請案;本申請案有關於發明名稱為「AUTOMATED COMMISSIONING OF CONTROLLERS IN A WINDOW NETWORK」且於2023年1月24日申請之美國專利申請案第18/100,773號,其係於2020年7月13日申請之發明名稱為「AUTOMATED COMMISSIONING OF CONTROLLERS IN A WINDOW NETWORK」之美國專利申請案序號第16/946,947號的連續申請案,其係在35 U.S.C. §371下於2017年11月20日申請之發明名稱為「AUTOMATED COMMISSIONING OF CONTROLLERS IN A WINDOW NETWORK」之國際PCT申請案第PCT/US2017/062634號的國家階段申請案(指明美國);國際PCT申請案第PCT/US2017/062634號主張於2016年11月23日申請之美國臨時專利申請案第62/426,126號及美國臨時專利申請案第62/551,649號,二者之發明名稱皆為「AUTOMATED COMMISSIONING OF CONTROLLERS IN A WINDOW NETWORK」之利益及優先權;本申請案有關於2022年9月9日申請之發明名稱為「METHODS OF CONTROLLING MULTI-ZONE TINTABLE WINDOWS」之美國專利申請案第17/931,014號,其係於2018年3月21日申請之發明名稱為「METHODS OF CONTROLLING MULTI-ZONE TINTABLE WINDOWS」之美國專利申請案序號第15/762,077號的連續申請案;美國專利申請案序號第15/762,077號係發明名稱為「METHODS OF CONTROLLING MULTI-ZONE TINTABLE WINDOWS」且於2018年3月21日申請之美國專利申請案第15/762,077號的連續申請案,其係在35 U.S.C. §371下於2016年9月30日申請之發明名稱為「METHODS OF CONTROLLING MULTI-ZONE TINTABLE WINDOWS」之國際PCT申請案第PCT/US2016/055005號的國家階段申請案;國際PCT申請案第PCT/US2016/055005號係於2016年4月18日申請之美國專利申請案第15/094897號的部分連續申請案;國際PCT申請案第PCT/US2016/055005號主張於2015年10月1日申請之美國臨時專利申請案第62/236,032號之利益及優先權;美國專利申請案第14/137,644號係於2013年11月13日申請之國際PCT申請案第PCT/US2013/069913號的部分連續申請案;國際PCT申請案第PCT/US2013/069913號主張於2012年12月21日申請之美國臨時專利申請案第61/740,651號及於2012年11月13日申請之美國臨時專利申請案第61/725,980號之利益及優先權;第14/137,644號係於2013年3月13日申請之國際PCT申請案第PCT/US2013/031098號的部分連續申請案;國際PCT申請案第PCT/US2013/031098號主張於2012年3月13日申請之美國臨時專利申請案第61/610,241號之利益及優先權;此等申請案之各者特此以全文引用方式併入本文中並用於所有目的。U.S. Patent Application No. 16/462,916 is a national phase application of International PCT Application No. PCT/US2017/062634 under 35 U.S.C. §371, claiming the benefit of and priority to U.S. Provisional Patent Application No. 62/551,649 filed on August 29, 2017 and U.S. Provisional Patent Application No. 62/426,126 filed on November 23, 2016; U.S. Patent Application No. 16/462,916 is a national phase application of International PCT Application No. PCT/US2017/062634 filed on November 24, 2015 under 35 U.S.C. §371, claiming the benefit of and priority to U.S. Provisional Patent Application No. 62/551,649 filed on August 29, 2017 and U.S. Provisional Patent Application No. 62/426,126 filed on November 23, 2016; U.S. Patent Application No. 16/462,916 is a national phase application of U.S. Patent Application No. 14/951,416 filed on November 24, 2015 0; U.S. Patent Application No. 14/951,410 claims the benefit of and priority to U.S. Provisional Patent Application No. 62/348,181 filed on October 29, 2015 and U.S. Provisional Patent Application No. 62/085,179 filed on November 26, 2014; U.S. Patent Application No. 14/951,410 is a continuation-in-part of U.S. Patent Application No. 14/401,081 filed on November 13, 2014, which is a continuation-in-part of 35 U.S.C. §371 of PCT International Application No. PCT/US2013/042765 filed on May 24, 2013; PCT/US2013/042765 claims the benefit of and priority to U.S. Provisional Patent Application No. 61/652,021 filed on May 25, 2012; U.S. Patent Application No. 14/951,410 is also a continuation-in-part of U.S. Patent Application No. 14/468,778 filed on August 26, 2014, which is a continuation-in-part of U.S. Patent Application No. 13/479,137 filed on May 23, 2012. 13/049,750, filed on March 16, 2011, which is a continuation-in-part of U.S. Patent Application No. 12/971,576, filed on December 17, 2010, which claims the benefit of and priority to U.S. Provisional Patent Application No. 61/289,319, filed on December 22, 2009; U.S. Patent Application No. 14/951,410, which is also a continuation-in-part of U.S. Patent Application No. 13/449,248, filed on April 17, 2012; This application relates to an invention entitled "AUTOMATED 18/100,773, filed on January 24, 2023, and entitled “AUTOMATED COMMISSIONING OF CONTROLLERS IN A WINDOW NETWORK,” which is a continuation-in-part of U.S. Patent Application Serial No. 16/946,947, filed on July 13, 2020, and entitled “AUTOMATED COMMISSIONING OF CONTROLLERS IN A WINDOW NETWORK,” which is a continuation-in-part of U.S. Patent Application Serial No. 16/946,947, filed on November 20, 2017, and entitled “AUTOMATED COMMISSIONING OF CONTROLLERS IN A WINDOW NETWORK,” under 35 U.S.C. §371. NETWORK” (specifies the United States); International PCT Application No. PCT/US2017/062634 claims the benefit and priority of U.S. Provisional Patent Application No. 62/426,126 filed on November 23, 2016 and U.S. Provisional Patent Application No. 62/551,649, both of which are entitled “AUTOMATED COMMISSIONING OF CONTROLLERS IN A WINDOW NETWORK”; This application is related to the invention filed on September 9, 2022, entitled “METHODS OF CONTROLLING MULTI-ZONE TINTABLE WINDOWS”, which is a continuation-in-part of U.S. Patent Application Serial No. 15/762,077, filed on March 21, 2018, entitled “METHODS OF CONTROLLING MULTI-ZONE TINTABLE WINDOWS”; U.S. Patent Application Serial No. 15/762,077, filed on March 21, 2018, entitled “METHODS OF CONTROLLING MULTI-ZONE TINTABLE WINDOWS”, which is a continuation-in-part of U.S. Patent Application Serial No. 15/762,077, filed on March 21, 2018, entitled “METHODS OF CONTROLLING MULTI-ZONE TINTABLE WINDOWS”, which is a continuation-in-part of U.S. Patent Application Serial No. 15/762,077, filed on September 30, 2016, entitled “METHODS OF CONTROLLING MULTI-ZONE TINTABLE WINDOWS” under 35 U.S.C. §371. PCT/US2016/055005 is a national phase application of international PCT application No. PCT/US2016/055005 filed on April 18, 2016, of U.S. Patent Application No. 15/094897 filed on April 18, 2016; PCT/US2016 /055005 claims the benefit of and priority to U.S. Provisional Patent Application No. 62/236,032 filed on October 1, 2015; U.S. Patent Application No. 14/137,644 is a continuation-in-part of International PCT Application No. PCT/US2013/069913 filed on November 13, 2013; International PCT Application No. PCT/US2013/069913 claims the benefit and priority of U.S. Provisional Patent Application No. 61/740,651 filed on December 21, 2012 and U.S. Provisional Patent Application No. 61/725,980 filed on November 13, 2012; International PCT No. 14/137,644 filed on March 13, 2013 Continuation-in-Part of Application No. PCT/US2013/031098; International PCT Application No. PCT/US2013/031098 claims the benefit of and priority to U.S. Provisional Patent Application No. 61/610,241 filed on March 13, 2012; each of which is hereby incorporated by reference in its entirety and for all purposes.

電致變色為材料在置於不同電子狀態時,通常藉由經受電壓改變而展現光學性質之可逆電化學介導之改變的現象。光學性質通常為顏色、透射率、吸收率及反射率中之一者或多者。一種熟知的電致變色材料為氧化鎢(WO 3)。氧化鎢為一種陰極電致變色材料,其中藉由電化學還原發生對藍色透明之著色轉變。 Electrochromism is the phenomenon whereby a material exhibits a reversible electrochemically mediated change in optical properties when placed in different electronic states, usually by being subjected to a change in voltage. The optical property is usually one or more of color, transmittance, absorptivity, and reflectivity. A well-known electrochromic material is tungsten oxide (WO 3 ). Tungsten oxide is a cathodic electrochromic material in which the color transition to blue transparency occurs by electrochemical reduction.

電致變色材料可併入至,例如,用於住宅、商業、及其他用途的窗中。此類窗的顏色、透射率、吸收率、及/或反射率可藉由改變電致變色材料的特徵而改變,亦即,電致變色窗係可以電子方式變暗或變亮的窗。將小電壓施加至窗的電致變色裝置將導致其等變暗;反轉該電壓導致其等變亮。此能力允許控制通過窗之光量,且為電致變色窗呈現用作節能裝置的機會。Electrochromic materials can be incorporated into, for example, windows for residential, commercial, and other uses. The color, transmittance, absorptivity, and/or reflectance of such windows can be changed by changing the characteristics of the electrochromic material; that is, electrochromic windows are windows that can be electronically darkened or lightened. Applying a small voltage to an electrochromic device in a window will cause it to darken; reversing the voltage causes it to lighten. This capability allows for control of the amount of light passing through the window and presents opportunities for electrochromic windows to be used as energy-saving devices.

儘管電致變色係在1960年代發現,電致變色裝置且尤其係電致變色窗仍遭受各種問題,且儘管在電致變色技術、設備、軟體、及製造及/或使用電致變色裝置的相關方法上取得許多最新進展,仍未開始實現其等的全部商業潛能。Despite the discovery of electrochromism in the 1960s, electrochromic devices, and electrochromic windows in particular, continue to suffer from various problems, and despite advances in electrochromic technology, equipment, software, and the manufacture and/or use of electrochromic devices Many recent advances in methods have yet to begin to realize their full commercial potential.

實施例係關於一種控制一建築物中的一或多個可著色窗的方法。該方法包含判定該一或多個可著色窗的一或多個透射率。該一或多個透射率經判定以在該建築物的一虛擬表示的一內部空間中的一或多個網格點產生一目標照度位準或大約該目標照度位準,該一或多個透射率係至少部分地基於經衰減晴空資料而判定,該經衰減晴空資料係至少部分地基於一經預測晴空照度及來自複數個感測器的讀數。該方法進一步包含將該一或多個可著色窗保持或轉變成與該一或多個經判定透射率相關聯的一最後色調狀態。Embodiments relate to a method of controlling one or more tintable windows in a building. The method includes determining one or more transmittances of the one or more tintable windows. the one or more transmittances determined to produce a target illuminance level at or about the target illuminance level at one or more grid points in an interior space of a virtual representation of the building, the one or more Transmittance is determined based at least in part on attenuated clear sky data based at least in part on a predicted clear sky illumination and readings from a plurality of sensors. The method further includes maintaining or transitioning the one or more tintable windows to a final tint state associated with the one or more determined transmittances.

實施例係關於一種控制一建築物中的一或多個可著色窗的方法。該方法包含判定該建築物中的一或多個可著色窗的一或多個透射率。該一或多個透射率係基於經衰減晴空資料而判定,以在該建築物的一虛擬表示的一內部空間中產生一目標照度位準或大約該目標照度位準。該方法進一步包含基於過去覆寫值的一統計評估預測一覆寫色調值。額外地,該方法包含將該一或多個可著色窗保持或轉變成與經判定的該一或多個透射率相關聯的一或多個最後色調狀態,或者若一覆寫係原地的,則保持或轉變成該覆寫色調值。An embodiment relates to a method of controlling one or more tintable windows in a building. The method includes determining one or more transmittances of the one or more tintable windows in the building. The one or more transmittances are determined based on attenuated clear sky data to produce a target illumination level or approximately the target illumination level in an interior space of a virtual representation of the building. The method further includes predicting an override tint value based on a statistical evaluation of past override values. Additionally, the method includes maintaining or transitioning the one or more tintable windows to one or more final tint states associated with the determined one or more transmittances, or if an override is in place, maintaining or transitioning to the override tint value.

實施例係關於一種控制一建築物中的一或多個可著色窗的方法。該方法包含使用該建築物的一虛擬表示接收該建築物的一內部條件的一目標位準。該目標位準包含該建築物的一內部空間中的一照度位準、至該建築物的該內部空間中的一熱取得、或該建築物的該內部空間中的光的一顏色中之一或多者。該方法進一步包含判定該建築物中的一或多個可著色窗的一或多個透射率,其中該一或多個透射率經判定以產生該建築物中的該目標位準或大約該目標位準。額外地,該方法包含將該一或多個可著色窗保持或轉變成與經判定的該一或多個透射率相關聯的一最後色調狀態。Embodiments relate to a method of controlling one or more tintable windows in a building. The method includes receiving a target level of an internal condition of the building using a virtual representation of the building. The target level includes one of an illuminance level in an interior space of the building, a heat gain in the interior space of the building, or a color of light in the interior space of the building Or more. The method further includes determining one or more transmittances of one or more tintable windows in the building, wherein the one or more transmittances are determined to produce the target level in the building or approximately the target Level. Additionally, the method includes maintaining or transitioning the one or more tintable windows to a final tint state associated with the determined one or more transmittances.

實施例係關於一種用於控制一建築物中的一或多個可著色窗的色調的設備,該設備包含經組態以操作地耦接至該一或多個可著色窗的至少一個控制器,該至少一個控制器進一步經組態以執行控制一建築物中的一或多個可著色窗的該等方法的任一者或指揮該任一方法的執行。An embodiment relates to a device for controlling the tint of one or more tintable windows in a building, the device comprising at least one controller configured to be operatively coupled to the one or more tintable windows, the at least one controller further configured to execute any of the methods for controlling one or more tintable windows in a building or to direct the execution of any of the methods.

實施例係關於一種儲存電腦可執行指令的非暫時性電腦可讀取媒體,該等電腦可執行指令用於控制一建築物中之可著色窗的一或多個區的色調,當由一或多個處理器讀取時,導致該一或多個處理器執行控制一建築物中的一或多個可著色窗的該等方法的任一者的操作。Embodiments relate to a non-transitory computer-readable medium storing computer-executable instructions for controlling the tint of one or more zones of tintable windows in a building when operated by one or more When read by multiple processors, operations that cause the one or more processors to perform any one of the methods of controlling one or more tintable windows in a building.

實施例係關於一種用於控制一建築物中之可著色窗的一或多個區的色調的系統,該系統包含經組態以操作地耦接至該一或多個可著色窗且經組態以執行控制一建築物中的一或多個可著色窗的該等方法的任一者的一網路。An embodiment relates to a system for controlling the tint of one or more zones of tintable windows in a building, the system comprising a network configured to be operatively coupled to the one or more tintable windows and configured to perform any of the methods of controlling the one or more tintable windows in a building.

將更詳細地參考附圖來描述此等及其他特徵以及實施例。These and other features and embodiments will be described in more detail with reference to the accompanying drawings.

根據以下實施方式,本發明之額外態樣及優點對於熟習此項技術者將變得顯而易見,其中僅展示及描述本發明之說明性實施例。應認識到,本發明能夠具有其他及不同實施例,且其若干細節能夠在各種顯而易見的方面進行修改,該等修改皆不背離本發明。因此,附圖及描述在本質上應視為說明性而非限制性的。Additional aspects and advantages of the invention will become apparent to those skilled in the art from the following detailed description, in which only illustrative embodiments of the invention are shown and described. As will be realized, the invention is capable of other and different embodiments, and its several details are capable of modifications in various obvious respects, all without departing from the invention. Accordingly, the drawings and descriptions are to be regarded as illustrative in nature and not restrictive.

於下文參照附圖描述不同態樣。繪示於圖式中的特徵可不按比例。在以下描述中,闡述眾多特定細節以提供對所呈現實施方案的透徹理解。所揭示的實施方案可在沒有此等特定細節之一或多者的情況下實踐。在其他情況下,未詳細地描述為人所熟知的操作,以避免不必要地混淆所揭示的實施方案。雖然所揭示的實施方案將結合特定實施例描述,將瞭解並未意圖限制所揭示的實施方案。Different aspects are described below with reference to the accompanying drawings. Features depicted in the drawings may not be to scale. In the following description, numerous specific details are set forth to provide a thorough understanding of the embodiments presented. The disclosed embodiments may be practiced without one or more of these specific details. In other cases, well-known operations are not described in detail to avoid unnecessarily obscuring the disclosed embodiments. Although the disclosed embodiments will be described in conjunction with specific embodiments, it will be understood that there is no intent to limit the disclosed embodiments.

數字範圍包括定義範圍的數字。意圖使於本說明書中通篇給定的每一個最大數值限制包括每一個數值下限,彷彿此類數值下限於本文中明確地寫出。於本說明書中通篇給定的每一個最小數值限制將包括每一個數值上限,彷彿此類數值上限於本文中明確地寫出。於本說明書中通篇給定的每一個數值範圍將包括落在此類較廣數值範圍內的每一個較窄數值範圍,彷彿此類較窄數值範圍於本文中明確地寫出。Numerical ranges are inclusive of the numbers defining the range. It is intended that every maximum numerical limitation given throughout this specification include every lower numerical limitation, as if such lower numerical limitations were expressly written herein. Every minimum numerical limitation given throughout this specification will include every upper numerical limitation, as if such upper numerical limitations were expressly written herein. Every numerical range given throughout this specification will include every narrower numerical range falling within such broader numerical range, as if such narrower numerical ranges were expressly written herein.

用語「可著色窗(tintable window)」係指包含一或多個光學可切換裝置(例如,電致變色裝置)的窗(例如,建築窗)。可著色窗的一實例係具有一或多個可著色裝置的電致變色窗。在涉及可著色窗之調測的實例中,可著色窗有時稱為「絕緣玻璃單元(insulated glass unit)」或「IGU」。The term "tintable window" refers to a window (eg, architectural window) that contains one or more optically switchable devices (eg, electrochromic devices). An example of a tintable window is an electrochromic window having one or more tintable devices. In examples involving commissioning of tinted windows, tinted windows are sometimes referred to as "insulated glass units" or "IGUs."

於本文中提供的標頭未意圖限制本揭露。The headings provided herein are not intended to limit the present disclosure.

除非於本文中另外定義,於本文中使用的所有技術及科學用語具有與所屬技術領域中具有通常知識者所通常瞭解的相同意義。包括本文所包括之用語之各種科學辭典皆為所屬技術領域中具有通常知識者所熟知且可用。雖然發現相似或等效於本文描述之該等方法及材料的任何方法及材料使用在本文揭露之實施例的實踐或測試中,仍描述一些方法及材料。Unless otherwise defined herein, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art. Various scientific dictionaries including the terms included herein are well known and available to one of ordinary skill in the art. Although any methods and materials similar or equivalent to those described herein are found to be useful in the practice or testing of the embodiments disclosed herein, some methods and materials are still described.

即將於下文定義的用語藉由參考整個說明書而更完整地描述。由於所描述的特定方法、協定、及試劑可取決於所屬技術領域中具有通常知識者使用其等的背景而變化,將瞭解本揭露不限於所描述的特定方法、協定、及試劑。The terms that are to be defined below are more fully described by reference to the entire specification. Because the specific methods, protocols, and reagents described may vary depending on the context in which one of ordinary skill in the art uses them, it will be understood that the present disclosure is not limited to the specific methods, protocols, and reagents described.

如本文中所使用的,除非上下文另外明確地指示,單數用語「一(a/an)」及「該(the)」包括複數參考。 I. 可著色窗及窗控制器的介紹及背景 As used herein, the singular terms "a/an" and "the" include plural references unless the context clearly indicates otherwise. I. Introduction and background of tinted windows and window controllers

為使讀者適應本文揭示之系統、設備、及方法的實施例,提供電致變色裝置、可著色窗、及窗控制器的簡要討論。此初始討論僅提供為背景,且隨後描述的實施例不限於此初始討論的特定特徵及製造程序。此外,應瞭解可著色窗在一些態樣中可包括一或多個電致變色裝置,且額外地或替代地在其他態樣中包括一或多個其他光學可切換裝置。 A. 電致變色裝置 In order to orient the reader to embodiments of the systems, apparatus, and methods disclosed herein, a brief discussion of electrochromic devices, tintable windows, and window controllers is provided. This initial discussion is provided only as background, and the embodiments described subsequently are not limited to the specific features and manufacturing procedures of this initial discussion. Furthermore, it should be understood that a tintable window may include one or more electrochromic devices in some aspects, and additionally or alternatively include one or more other optically switchable devices in other aspects. A. Electrochromic Devices

參看 1A 至圖 1C描述電致變色窗片之特定實例,以說明本文中所描述之實施例。 1A為以玻璃片材 105開始製造之電致變色窗片 100的橫截面表示(參見 1C之截面切線X’-X’)。 1B展示電致變色窗片 100之端視圖(參見 1C之檢視視角Y-Y’),且 1C展示電致變色窗片 100之俯視圖。 1A展示在玻璃片材 105上之製造之後的電致變色窗片,邊緣經刪除以產生圍繞片之周邊的區 140。電致變色窗片亦已經雷射刻畫且已連接匯流排。匯流排(亦稱為匯流棒)係用於分布電流的金屬帶或棒。玻璃窗片 105具有擴散障壁 110及在擴散障壁上之第一透明導電氧化物層(TCO) 115。在此實例中,邊緣刪除製程移除TCO 115及擴散障壁 110兩者,但在其他實施例中,僅移除TCO,使擴散障壁保持完整。TCO層 115為用以形成在玻璃片材上製造之電致變色裝置之電極的兩個導電層中之第一者。在此實例中,玻璃片材包括底層玻璃及擴散障壁層。因此,在此實例中,形成擴散障壁,且接著形成第一TCO、電致變色堆疊 125(例如,具有電致變色離子導體及相對電極層)以及第二TCO 130。在一個實施例中,電致變色裝置(電致變色堆疊及第二TCO)在整合沈積系統中製造,其中玻璃片材在堆疊製造期間在任何時間皆不離開整合沈積系統。在一個實施例中,亦使用整合沈積系統形成第一TCO層,其中玻璃片材在沈積電致變色堆疊及(第二)TCO層期間不離開整合沈積系統。在一個實施例中,所有層(擴散障壁、第一TCO、電致變色堆疊及第二TCO)沈積於整合沈積系統中,其中玻璃片材在沈積期間不離開整合沈積系統。在此實例中,在沈積電致變色堆疊 125之前,穿過TCO 115及擴散障壁 110切出隔離溝 120。溝 120被製成為預期電隔離TCO 115的在製造完成之後將駐存於匯流排1下方之區(參見 1A)。進行此操作以避免電致變色裝置在匯流排下方的電荷堆積及著色,此可為非所需的。 Specific examples of electrochromic window sheets are described with reference to FIGS. 1A to 1C to illustrate the embodiments described herein. FIG. 1A is a cross - sectional representation of an electrochromic window sheet 100 manufactured starting with a glass sheet 105 (see the cross-sectional tangent X'-X' of FIG. 1C ). FIG . 1B shows an end view of the electrochromic window sheet 100 (see the viewing angle Y-Y' of FIG. 1C ), and FIG . 1C shows a top view of the electrochromic window sheet 100. FIG . 1A shows the electrochromic window sheet after manufacture on a glass sheet 105 , with the edges removed to create a region 140 around the periphery of the sheet. The electrochromic window sheet has also been laser-etched and connected to a bus bar. A bus bar (also called a bus bar) is a metal strip or rod used to distribute current. The glass window 105 has a diffusion barrier 110 and a first transparent conductive oxide layer (TCO) 115 on the diffusion barrier. In this example, the edge deletion process removes both the TCO 115 and the diffusion barrier 110 , but in other embodiments, only the TCO is removed, leaving the diffusion barrier intact. The TCO layer 115 is the first of two conductive layers used to form electrodes for an electrochromic device fabricated on the glass sheet. In this example, the glass sheet includes a bottom layer of glass and a diffusion barrier layer. Thus, in this example, a diffusion barrier is formed, and then a first TCO, an electrochromic stack 125 (e.g., having an electrochromic ion conductor and an opposing electrode layer), and a second TCO 130 are formed. In one embodiment, the electrochromic device (electrochromic stack and second TCO) is fabricated in an integrated deposition system, wherein the glass sheet does not leave the integrated deposition system at any time during the stack fabrication. In one embodiment, the first TCO layer is also formed using the integrated deposition system, wherein the glass sheet does not leave the integrated deposition system during deposition of the electrochromic stack and (second) TCO layer. In one embodiment, all layers (diffusion barrier, first TCO, electrochromic stack, and second TCO) are deposited in an integrated deposition system, wherein the glass sheet does not leave the integrated deposition system during deposition. In this example, isolation trenches 120 are cut through TCO 115 and diffusion barrier 110 prior to deposition of electrochromic stack 125. Trench 120 is made to electrically isolate the region of TCO 115 that will reside below bus 1 after fabrication is complete (see FIG. 1A ). This is done to avoid charge accumulation and coloring of the electrochromic device below the bus, which may be undesirable.

在形成電致變色裝置後,執行邊緣刪除製程及額外雷射刻劃。 1A描繪在此實例中已自雷射劃線溝 150155160165周圍之周邊區移除裝置的區 140。溝 150160165穿過電致變色堆疊且亦穿過第一TCO及擴散障壁。溝 155穿過第二TCO 130及電致變色堆疊,但未穿過第一TCO 115。將雷射劃線溝 150155160165製成為隔離電致變色裝置之部分 135145170175,該等部分在自可操作電致變色裝置進行邊緣刪除製程期間潛在地被損壞。在此實例中,雷射劃線溝 150 160165穿過第一TCO以輔助隔離裝置(雷射劃線溝 155未穿過第一TCO,否則其將切斷匯流排2與第一TCO及因此電致變色堆疊之電通信)。用於雷射刻劃製程之一或多個雷射通常(但非必需)為脈衝型雷射,例如二極體泵抽式固態雷射。舉例而言,可使用來自IPG Photonics(馬薩諸塞州牛津市(Oxford, Massachusetts))或來自Ekspla(立陶宛維爾紐斯(Vilnius, Lithuania))之合適雷射來執行雷射刻劃製程。亦可以機械方式,例如藉由金剛石尖端刻劃執行刻劃。本領域中一般熟習此項技術者將瞭解,雷射刻劃製程可按不同深度執行及/或在單個製程中執行,由此雷射切割深度在圍繞電致變色裝置之周邊的連續路徑期間發生變化或不變化。在一個實施例中,執行邊緣刪除至第一TCO之深度。 After forming the electrochromic device, an edge deletion process and additional laser scribing are performed. 1A depicts an area 140 in which the device has been removed from the peripheral area around laser scribed trenches 150 , 155 , 160 , and 165 in this example. Trench 150 , 160 and 165 pass through the electrochromic stack and also through the first TCO and diffusion barrier. Trench 155 passes through the second TCO 130 and the electrochromic stack, but not through the first TCO 115 . Laser scribed trenches 150 , 155 , 160 , and 165 are formed to isolate portions 135 , 145 , 170 , and 175 of the electrochromic device that are potentially damaged during the edge deletion process from the operable electrochromic device. . In this example, laser scribed trenches 150 , 160 , and 165 pass through the first TCO to aid in isolation (laser scribed trench 155 does not pass through the first TCO, otherwise it would cut off bus 2 from the first TCO and hence electrical communication of electrochromic stacks). One or more of the lasers used in the laser scribing process are typically, but not necessarily, pulsed lasers, such as diode pumped solid-state lasers. For example, the laser scribing process can be performed using a suitable laser from IPG Photonics (Oxford, Massachusetts) or from Ekspla (Vilnius, Lithuania). Grading can also be performed mechanically, such as by diamond tip scribing. Those of ordinary skill in the art will appreciate that the laser scribing process can be performed at different depths and/or in a single process, whereby the depth of laser cutting occurs during a continuous path around the perimeter of the electrochromic device To change or not to change. In one embodiment, edge deletion is performed to the depth of the first TCO.

在雷射劃線完成之後,附接匯流排。將非穿透匯流排1施加至第二TCO。將非穿透式匯流排2施加至未沈積(例如,由於保護第一TCO免於裝置沈積的遮罩)裝置的區,與第一TCO接觸,或在此實例中,施加至使用邊緣刪除製程(例如,使用具有XY或XYZ電流計之設備的雷射切除)將材料向下移除至第一TCO的區域。在此實例中,匯流排1及匯流排2兩者為非穿透式匯流排。穿透匯流排為通常經壓入至電致變色堆疊中且穿過電致變色堆疊以使得在堆疊的底部處與TCO接觸的匯流排。非穿透式匯流排為不穿透至電致變色堆疊層中,而是在導電層(例如,TCO)之表面上進行電及實體接觸的匯流排。After the laser scribing is complete, the busbars are attached. Apply non-penetrating busbar 1 to the second TCO. Non-penetrating bus bars 2 are applied to areas of the device that are not deposited (e.g., due to a mask that protects the first TCO from device deposition), in contact with the first TCO, or in this example, applied using an edge deletion process (eg, laser ablation using a device with an XY or XYZ galvanometer) Remove material down to the area of the first TCO. In this example, both Bus 1 and Bus 2 are non-penetrating busses. A feedthrough busbar is a busbar that is typically pressed into the electrochromic stack and passes through the electrochromic stack so that it contacts the TCO at the bottom of the stack. Non-penetrating busses are busses that do not penetrate into the electrochromic stack but make electrical and physical contact on the surface of the conductive layer (eg, TCO).

可使用非傳統匯流排,例如用篩檢及微影圖案化方法製造之匯流排,來電連接TCO層。在一個實施例中,經由絲網印刷(或使用另一圖案化方法)導電墨水,繼之以熱固化或燒結墨水來與裝置之透明導電層建立電通信。使用上文所描述之裝置組態的優點包括例如比使用穿透式匯流排之習知技術更簡單的製造及更少的雷射刻劃。Non-traditional busbars, such as those fabricated using screening and photolithography patterning methods, can be used to electrically connect the TCO layer. In one embodiment, electrical communication is established with the transparent conductive layer of the device via screen printing (or using another patterning method) of conductive ink, followed by thermal curing or sintering the ink. Advantages of using the device configuration described above include, for example, simpler fabrication and less laser scribing than conventional techniques using through-type busbars.

在連接匯流排後,將裝置整合至絕緣玻璃單元(IGU)中,其包括,例如,用於匯流排及類似者的布線。在一些實施例中,匯流排中之一者或兩者在成品IGU內部,然而,在一個實施例中,一個匯流排在IGU之密封件外部且一個匯流排在IGU內部。在前一實施例中,使用區 140與用以形成IGU之間隔物之一個面進行密封。因此,至匯流排之電線或其他連接件在間隔物與玻璃之間延行。由於諸多間隔物由例如不鏽鋼之導電金屬製成,故需要採取步驟以避免歸因於匯流排及至其之連接器與金屬間隔物之間的電通信所致的短路。在本文中所描述之實施例中,兩個匯流排在成品IGU之主要密封件內部。 After the buses are connected, the device is integrated into an insulating glass unit (IGU), which includes, for example, wiring for the buses and the like. In some embodiments, one or both of the buses are inside the finished IGU, however, in one embodiment, one bus is outside the seal of the IGU and one bus is inside the IGU. In the former embodiment, area 140 is used to seal with one face of a partition used to form the IGU. Thus, wires or other connections to the buses run between the partition and the glass. Because many partitions are made of conductive metals such as stainless steel, steps need to be taken to avoid short circuits due to electrical communication between the buses and connectors thereto and the metal partitions. In the embodiment described herein, the two bus bars are inside the primary seal of the finished IGU.

2A顯示相關於 1A 至圖 1C描述之整合至IGU 200中的電致變色窗片的橫截面示意圖。間隔物 205用以將電致變色窗片與第二窗片 210分開。IGU 200中之第二窗片 210為非電致變色窗片,然而,本文中所揭示之實施例不限於此。舉例而言,窗片 210上可具有電致變色裝置及/或一或多個塗層,諸如低E塗層及其類似者。窗片 201亦可為層壓玻璃,諸如 2B中所描繪(窗片 201經由樹脂 235層壓至強化窗格 230)。主要密封材料 215在間隔物 205與電致變色窗片的玻璃 201之間。此主要密封材料亦在間隔物 205 第二玻璃窗片 210之間。次要密封件 220圍繞間隔物 205之周邊。匯流排佈線/引線橫穿密封件以連接至控制器。次要密封件 220可遠厚於所描繪厚度。此等密封件輔助將濕氣保持在IGU的內部容積 225之外。其亦用以防止IGU之內部之氬氣或其他氣體逸出。 FIG . 2A shows a cross-sectional schematic diagram of an electrochromic window integrated into an IGU 200 as described with respect to FIGS. 1A to 1C . A spacer 205 is used to separate the electrochromic window from a second window 210 . The second window 210 in the IGU 200 is a non-electrochromic window, however, the embodiments disclosed herein are not limited thereto. For example, the window 210 may have an electrochromic device and/or one or more coatings, such as a low-E coating and the like. The window 201 may also be a laminated glass, such as depicted in FIG . 2B (the window 201 is laminated to the reinforced pane 230 via a resin 235 ). A primary sealing material 215 is between the spacer 205 and the glass 201 of the electrochromic window. This primary seal is also between the spacer 205 and the second glass pane 210. A secondary seal 220 surrounds the perimeter of the spacer 205. The busbar wiring/leads run across the seal to connect to the controller. The secondary seal 220 can be much thicker than depicted. These seals help keep moisture out of the interior volume 225 of the IGU. They also serve to prevent argon or other gases from escaping from the interior of the IGU.

3A以橫截面示意地描繪電致變色裝置 300。電致變色裝置 300包括基板 302、第一導電層(CL) 304、電致變色層(EC) 306、離子導電層(IC) 308、相對電極層(CE) 310及第二導電層(CL) 314。層 304306308310314統稱為電致變色堆疊 320。可操作以在電致變色堆疊 320上施加電位之電壓源 316實現使電致變色裝置自例如脫色狀態轉變至有色狀態(所描繪)。可相對於基板反轉層之次序。 Figure 3A schematically depicts an electrochromic device 300 in cross-section. The electrochromic device 300 includes a substrate 302 , a first conductive layer (CL) 304 , an electrochromic layer (EC) 306 , an ion conductive layer (IC) 308 , a counter electrode layer (CE) 310 and a second conductive layer (CL) 314 . Layers 304 , 306 , 308 , 310 , and 314 are collectively referred to as electrochromic stack 320 . A voltage source 316 operable to apply a potential across the electrochromic stack 320 effects transition of the electrochromic device from, for example, a decolorized state to a colored state (depicted). The order of the layers can be reversed relative to the substrate.

具有如所描述之相異層的電致變色裝置可製造為所有固態裝置及/或所有無機裝置。此類裝置及製造其等之方法更詳細地描述於2009年12月22日申請且將Mark Kozlowski等人指名為發明人之發明名稱為「Fabrication of Low-Defectivity Electrochromic Devices」之美國專利申請案序號第12/645,111號及於2009年12月22日申請且將Zhongchun Wang等人指名為發明人之發明名稱為「Electrochromic Devices」之美國專利申請案序號第12/645,159號中,二個申請案特此以全文引用方式併入本文中。然而,應理解,堆疊中之層中之任何一或多者可含有一些量之有機材料。對於可以小量存在於一或多個層中之液體可據稱係相同情況。亦應理解,可藉由使用液體組分之製程(諸如,使用溶液-凝膠之某些製程或化學氣相沈積)來沈積或另外形成固態材料。Electrochromic devices with different layers as described can be made as all solid-state devices and/or all inorganic devices. Such devices and methods of making them are described in more detail in U.S. Patent Application Serial No. 12/645,111, filed on December 22, 2009, and named Mark Kozlowski et al. as inventors, and U.S. Patent Application Serial No. 12/645,159, filed on December 22, 2009, and named Zhongchun Wang et al. as inventors, and named "Electrochromic Devices", both of which are hereby incorporated by reference in their entirety. However, it should be understood that any one or more of the layers in the stack may contain some amount of organic material. The same can be said for liquids that may be present in small amounts in one or more layers. It should also be understood that solid materials may be deposited or otherwise formed by processes that use liquid components (e.g., certain processes using solution-gel or chemical vapor deposition).

另外,應理解,對脫色狀態與有色狀態之間的轉變之參考系非限制性的且表明可實施的電致變色轉變的諸多實例當中之僅一個實例。除非本文中(包括前述討論)另外指定,不論何時對脫色-有色轉變(或等效地清透-著色轉變)進行參考,對應裝置或程序涵蓋其他光學狀態轉變,諸如非反射-反射、透明-不透明等。進一步地,用語「脫色(bleached)」或「清透(clear)」係指光學中性狀態,例如,無色、透明,或半透明。再者,除非本文中另外指定,否則電致變色轉變之「色彩」或「色調」不限於任何特定波長或波長範圍。如本領域中熟習此項技術者所理解,適當的電致變色及相對電極材料之選擇控管相關光學轉變。Additionally, it should be understood that the reference frame to the transition between the decolored and colored states is non-limiting and represents only one example among many of the electrochromic transitions that may be implemented. Unless otherwise specified herein (including the foregoing discussion), whenever reference is made to a depigmented-to-pigmented transition (or equivalently a clear-pigmented transition), the corresponding device or procedure encompasses other optical state transitions, such as non-reflective-reflective, clear-pigmented Opaque etc. Further, the terms "bleached" or "clear" refer to an optically neutral state, such as colorless, transparent, or translucent. Furthermore, unless otherwise specified herein, the "color" or "hue" of an electrochromic transition is not limited to any specific wavelength or range of wavelengths. As understood by those skilled in the art, appropriate selection of electrochromic and counter electrode materials governs the associated optical transitions.

在本文描述的實施例中,電致變色裝置在脫色/清透狀態與有色/著色狀態之間可逆地循環。在一些狀況下,當裝置處於脫色狀態時,將電位施加至電致變色堆疊 320,使得堆疊中之可用離子主要駐存於相對電極 310中。當反轉電致變色堆疊上之電位時,跨越離子導電層 308將離子輸送至電致變色材料 306且使材料轉變至有色狀態。以類似方式,本文中所描述之實施例的電致變色裝置可在不同色調位準(例如,脫色狀態、最暗色狀態以及脫色狀態與最暗色狀態之間的中間位準)之間可逆地循環。 In the embodiments described herein, the electrochromic device reversibly cycles between a decolorized/clear state and a colored/colored state. In some cases, when the device is in the decolorized state, a potential is applied to the electrochromic stack 320 so that the available ions in the stack reside primarily in the opposing electrode 310. When the potential on the electrochromic stack is reversed, the ions are transported across the ion conductive layer 308 to the electrochromic material 306 and the material is transformed to a colored state. In a similar manner, the electrochromic device of the embodiments described herein can reversibly cycle between different hue levels (e.g., a decolorized state, a darkest state, and an intermediate level between the decolorized state and the darkest state).

再次參看 3A,電壓源 316可經組態以結合輻射及其他環境感測器而操作。如本文中所描述,電壓源 316與裝置控制器(此圖中未展示)介接。另外,電壓源 316可與能量管理系統介接,該能量管理系統根據諸如當年時間、當日時間及所量測環境條件之各種準則而控制電致變色裝置。此能量管理系統結合大面積電致變色裝置(例如,電致變色窗)可顯著地降低建築物之能量消耗。 Referring again to FIG. 3A , voltage source 316 can be configured to operate in conjunction with radiation and other environmental sensors. As described herein, voltage source 316 interfaces with a device controller (not shown in this figure). Additionally, voltage source 316 can interface with an energy management system that controls the electrochromic device based on various criteria such as time of year, time of day, and measured environmental conditions. This energy management system combined with large area electrochromic devices (e.g., electrochromic windows) can significantly reduce the energy consumption of a building.

具有合適的光學、電、熱及機械性質之任何材料可用作基板 302。此類基板包括例如玻璃、塑膠及鏡面材料。合適的玻璃包括透明或經著色鹼石灰玻璃,包括鹼石灰漂浮玻璃。玻璃可經回火或未回火。 Any material with suitable optical, electrical, thermal, and mechanical properties can be used as substrate 302 . Such substrates include, for example, glass, plastic, and mirror materials. Suitable glasses include clear or tinted soda lime glass, including soda lime float glass. Glass may be tempered or untempered.

在許多狀況下,基板為經大小設定以用於住宅窗應用之玻璃窗格。此玻璃窗格之大小可取決於住宅之特定需要而廣泛地變化。在其他狀況下,基板為建築用玻璃。建築用玻璃通常用於商業建築物,但亦可用於住宅建築物,且通常(但不一定)將室內環境與室外環境分離。在某些實施例中,建築用玻璃為至少20吋×20吋,且可大得多,例如大至約80吋×120吋。建築用玻璃通常為至少約2 mm厚,通常在約3 mm與約6 mm厚之間。當然,電致變色裝置可伸縮至小於或大於建築用玻璃的基板。另外,電致變色裝置可設置於任何大小及形狀之鏡面上。In many cases, the substrate is a glass pane sized for use in residential window applications. The size of this glass pane can vary widely depending on the specific needs of the residence. In other cases, the substrate is architectural glass. Architectural glass is typically used in commercial buildings, but can also be used in residential buildings, and typically (but not necessarily) separates an indoor environment from an outdoor environment. In some embodiments, the architectural glass is at least 20 inches by 20 inches, and can be much larger, such as up to about 80 inches by 120 inches. Architectural glass is typically at least about 2 mm thick, typically between about 3 mm and about 6 mm thick. Of course, the electrochromic device can be extended to substrates that are smaller or larger than architectural glass. In addition, the electrochromic device can be disposed on a mirror of any size and shape.

導電層 304在基板 302之頂部上。在某些實施例中,導電層 304314中之一者或兩者為無機及/或固體的。導電層 304314可由數種不同材料製成,包括導電氧化物、薄金屬塗層、導電金屬氮化物及複合導體。通常,導電層 304314至少在電致變色層展現電致變色之波長範圍內為透明的。透明導電氧化物包括金屬氧化物及摻雜有一或多種金屬之金屬氧化物。此類金屬氧化物及經摻雜金屬氧化物之實例包括氧化銦、氧化銦錫、經摻雜氧化銦、氧化錫、經摻雜氧化錫、氧化鋅、氧化鋁鋅、經摻雜氧化鋅、氧化釕、經摻雜氧化釕及其類似者。由於氧化物常用於此等層,因此其有時被稱作「透明導電氧化物」(TCO)層。亦可使用實質上透明的薄金屬塗層以及TCO及金屬塗層之組合。 Conductive layer 304 is on top of substrate 302. In some embodiments, one or both of conductive layers 304 and 314 are inorganic and/or solid. Conductive layers 304 and 314 can be made of a number of different materials, including conductive oxides, thin metal coatings, conductive metal nitrides, and composite conductors. Typically, conductive layers 304 and 314 are transparent at least in the wavelength range in which the electrochromic layer exhibits electrochromism. Transparent conductive oxides include metal oxides and metal oxides doped with one or more metals. Examples of such metal oxides and doped metal oxides include indium oxide, indium tin oxide, doped indium oxide, tin oxide, doped tin oxide, zinc oxide, aluminum zinc oxide, doped zinc oxide, ruthenium oxide, doped ruthenium oxide, and the like. Because oxides are often used in such layers, they are sometimes referred to as "transparent conductive oxide" (TCO) layers. Substantially transparent thin metal coatings and combinations of TCOs and metal coatings may also be used.

在一些實施例中,諸如玻璃基板之市售基板含有透明導電層塗層。此類產品可用於基板及導電層二者。此類玻璃之實例包含由俄亥俄州托萊多(Toledo, Ohio)之皮爾金頓(Pilkington)以TEC Glass™商標及由賓夕法尼亞州匹茲堡(Pittsburgh, Pennsylvania)之PPG工業(PPG Industries)以SUNGATE™ 300及SUNGATE™ 500商標出售之導電層塗佈之玻璃。TEC Glass™為用氟化氧化錫導電層塗佈之玻璃。In some embodiments, commercially available substrates such as glass substrates contain a transparent conductive layer coating. Such products can be used for both the substrate and the conductive layer. Examples of such glasses include conductive layer coated glasses sold by Pilkington of Toledo, Ohio under the TEC Glass™ trademark and by PPG Industries of Pittsburgh, Pennsylvania under the SUNGATE™ 300 and SUNGATE™ 500 trademarks. TEC Glass™ is glass coated with a fluorinated tin oxide conductive layer.

在本發明的一些實施例中,將相同導電層用於二個導電層(亦即,導電層)。在一些實施例中,將不同的導電材料用於各導電層。例如,在一些實施例中,將TEC Glass™用於基板(浮法玻璃)及導電層(氟化氧化錫),且將氧化銦錫(ITO)用於導電層。在採用TEC Glass™的一些實施例中,在玻璃基板與TEC導電層之間存在鈉擴散障壁。導電層之功能將由電壓源 316在電致變色堆疊 320之表面上方提供的電位散佈至堆疊之內部區域,具有相對較小的歐姆(ohmic)電位降。經由至導電層之電連接將電位轉移至導電層。在一些實施例中,匯流排(一個與導電層 304接觸且一個與導電層 314接觸)在電壓源 316與導電層 304314之間提供電連接。亦可利用其他習知方式將導電層 304314連接至電壓源 316In some embodiments of the invention, the same conductive layer is used for both conductive layers (ie, conductive layers). In some embodiments, different conductive materials are used for each conductive layer. For example, in some embodiments, TEC Glass™ is used for the substrate (float glass) and conductive layer (fluorinated tin oxide), and indium tin oxide (ITO) is used for the conductive layer. In some embodiments using TEC Glass™, a sodium diffusion barrier exists between the glass substrate and the TEC conductive layer. The function of the conductive layer is to spread the potential provided by voltage source 316 above the surface of electrochromic stack 320 to the interior regions of the stack with a relatively small ohmic potential drop. The potential is transferred to the conductive layer via an electrical connection to the conductive layer. In some embodiments, busbars (one in contact with conductive layer 304 and one in contact with conductive layer 314 ) provide electrical connections between voltage source 316 and conductive layers 304 and 314 . Other conventional methods may also be used to connect the conductive layers 304 and 314 to the voltage source 316 .

電致變色層 306覆疊導電層 304。在一些實施例中,電致變色層 306為無機及/或固體的。電致變色層可含有數種不同電致變色材料中之任何一或多種,包括金屬氧化物。此類金屬氧化物包括氧化鎢(WO 3)、氧化鉬(MoO 3)、氧化鈮(Nb 2O 5)、氧化鈦(TiO 2)、氧化銅(CuO)、氧化銥(Ir 2O 3)、氧化鉻(Cr 2O 3)、氧化錳(Mn 2O 3)、氧化釩(V 2O 5)、氧化鎳(Ni 2O 3)、氧化鈷(Co 2O 3)及其類似者。在操作期間,電致變色層 306將離子轉移至相對電極層 310且自相對電極層接收離子以引起光學轉變。 Electrochromic layer 306 overlies conductive layer 304 . In some embodiments, electrochromic layer 306 is inorganic and/or solid. The electrochromic layer may contain any one or more of several different electrochromic materials, including metal oxides. Such metal oxides include tungsten oxide (WO 3 ), molybdenum oxide (MoO 3 ), niobium oxide (Nb 2 O 5 ), titanium oxide (TiO 2 ), copper oxide (CuO), and iridium oxide (Ir 2 O 3 ) , chromium oxide (Cr 2 O 3 ), manganese oxide (Mn 2 O 3 ), vanadium oxide (V 2 O 5 ), nickel oxide (Ni 2 O 3 ), cobalt oxide (Co 2 O 3 ) and the like. During operation, electrochromic layer 306 transfers ions to and receives ions from the counter electrode layer 310 to cause optical transitions.

通常,電致變色材料之著色(或任何光學性質之改變,例如,吸光率、反射比及透射率)藉由至材料內之可逆離子注入(例如,插入)及電荷平衡電子之對應注入來引起。通常,負責光學轉變之某一分率之離子不可逆地束縛於電致變色材料中。不可逆地束縛之離子中之一些或全部用以補償材料中之「盲電荷」。在大部分電致變色材料中,適合離子包含鋰離子(Li+)及氫離子(H+)(亦即,質子)。然而,在一些情況下,其他離子將為適合的。在各種實施例中,鋰離子用以產生電致變色現象。將鋰離子插入至氧化鎢(WO 3-y(0 < y ≤ ~0.3))中導致氧化鎢從透明(脫色狀態)變成藍色(有色狀態)。 Typically, coloration (or changes in any optical properties, such as absorbance, reflectance, and transmittance) of electrochromic materials is caused by reversible ion implantation (e.g., insertion) into the material and the corresponding injection of charge-balancing electrons . Typically, a certain fraction of the ions responsible for the optical transition are irreversibly bound in the electrochromic material. Some or all of the irreversibly bound ions serve to compensate for "blind charges" in the material. In most electrochromic materials, suitable ions include lithium ions (Li+) and hydrogen ions (H+) (ie, protons). However, in some cases other ions will be suitable. In various embodiments, lithium ions are used to create electrochromic phenomena. The insertion of lithium ions into tungsten oxide (WO 3-y (0 < y ≤ ~0.3)) causes the tungsten oxide to change from transparent (decolorized state) to blue (colored state).

再次參看 3A,在電致變色堆疊 320中,離子導電層 308包夾於電致變色層 306與相對電極層 310之間。在一些實施例中,相對電極層 310為無機及/或固體的。相對電極層可包括數種不同材料中之一或多者,該等材料在電致變色裝置處於脫色狀態時充當離子儲集器。在藉由例如施加適當電位開始電致變色轉變期間,相對電極層將其容納之離子中之一些或全部轉移至電致變色層,將電致變色層改變為有色狀態。同時,在NiWO之狀況下,相對電極層隨著離子之損失而有色。 Referring again to FIG. 3A , in electrochromic stack 320 , ion conductive layer 308 is sandwiched between electrochromic layer 306 and counter electrode layer 310 . In some embodiments, counter electrode layer 310 is inorganic and/or solid. The counter electrode layer may include one or more of several different materials that act as ion reservoirs when the electrochromic device is in the decolorized state. During the initiation of an electrochromic transition, for example by application of an appropriate potential, the counter electrode layer transfers some or all of its accommodated ions to the electrochromic layer, changing the electrochromic layer to a colored state. At the same time, in the case of NiWO, the counter electrode layer becomes colored with the loss of ions.

在一些實施例中,與WO 3互補之用於相對電極之適合材料包含氧化鎳(NiO)、氧化鎳鎢(NiWO)、氧化鎳釩、氧化鎳鉻、氧化鎳鋁、氧化鎳錳、氧化鎳鎂、氧化鉻(Cr 2O 3)、氧化錳(MnO 2)、及普魯士藍(Prussian blue)。 In some embodiments, suitable materials for the counter electrode that are complementary to WO3 include nickel oxide (NiO), nickel tungsten oxide (NiWO), nickel vanadium oxide, nickel chromium oxide, nickel aluminum oxide, nickel manganese oxide, nickel oxide Magnesium, chromium oxide (Cr 2 O 3 ), manganese oxide (MnO 2 ), and Prussian blue.

當自由氧化鎳鎢製成之相對電極 310移除電荷(亦即,將離子自相對電極 310輸送至電致變色層 306)時,相對電極層將自透明狀態轉變至有色狀態。 When the counter electrode 310 made of nickel tungsten oxide removes charges (i.e., transports ions from the counter electrode 310 to the electrochromic layer 306 ), the counter electrode layer changes from a transparent state to a colored state.

在所描繪之電致變色裝置中,離子導電層 308存在於電致變色層 306與相對電極層 310之間。離子導電層 308使用為當電致變色裝置在脫色狀態與有色狀態之間轉變時離子輸送通過其(以電解質方式)的介質。較佳地,離子導電層 308對於用於電致變色及相對電極層之相關離子高度導電,但具有在正常操作期間出現的可忽略的電子轉移之足夠低電子導電性。具有高離子導電性的薄離子導電層准許快速離子導電且因此快速切換用於高效能電致變色裝置。在某些實施例中,離子導電層 308為無機及/或固體的。 In the electrochromic device depicted, an ionically conductive layer 308 is present between the electrochromic layer 306 and the counter electrode layer 310 . Ion conductive layer 308 serves as a medium through which ions are transported (electrolytically) when the electrochromic device transitions between the dechromic and colored states. Preferably, ion conductive layer 308 is highly conductive to the relevant ions for the electrochromic and counter electrode layers, but has sufficiently low electronic conductivity that negligible electron transfer occurs during normal operation. Thin ion-conducting layers with high ion conductivity permit rapid ion conduction and therefore fast switching for high-efficiency electrochromic devices. In certain embodiments, ion conductive layer 308 is inorganic and/or solid.

適合離子導電層(用於具有相異IC層之電致變色裝置)之實例包含矽酸鹽、氧化矽、氧化鎢、氧化鉭、氧化鈮及硼酸鹽。此等材料可摻雜有不同摻雜劑,包括鋰。鋰摻雜之氧化矽包括氧化鋰矽鋁。在一些實施例中,離子導電層包括基於矽酸鹽之結構。在一些實施例中,氧化矽鋁(SiAlO)用於離子導電層 308Examples of suitable ionically conductive layers for use in electrochromic devices with distinct IC layers include silicates, silicon oxide, tungsten oxide, tantalum oxide, niobium oxide, and borates. These materials can be doped with various dopants, including lithium. Lithium-doped silicon oxide includes lithium silicon aluminum oxide. In some embodiments, the ionically conductive layer includes a silicate-based structure. In some embodiments, silicon aluminum oxide (SiAlO) is used for ion conductive layer 308 .

電致變色裝置 300可包括一或多個額外層(未圖示),諸如一或多個被動層。用於改良某些光學性質之被動層可包含於電致變色裝置 300中。用於提供濕度及耐刮擦性之被動層亦可包含於電致變色裝置 300中。舉例而言,可利用抗反射或保護性氧化物或氮化物層來處理導電層。其他被動層可用以氣密密封電致變色裝置 300Electrochromic device 300 may include one or more additional layers (not shown), such as one or more passive layers. Passive layers for improving certain optical properties may be included in electrochromic device 300 . Passive layers for providing humidity and scratch resistance may also be included in electrochromic device 300 . For example, the conductive layer can be treated with an anti-reflective or protective oxide or nitride layer. Other passive layers may be used to hermetically seal electrochromic device 300 .

3B係在脫色狀態中(或轉變至脫色狀態)之電致變色裝置的示意橫截面。根據特定實施例,電致變色裝置 400包括氧化鎢電致變色層(EC) 406及氧化鎳鎢相對電極層(CE) 410。電致變色裝置 400亦包含基板 402、導電層(CL) 404、離子導電層(IC) 408及導電層(CL) 414 Figure 3B is a schematic cross-section of an electrochromic device in a decolorized state (or transitioning to a decolorized state). According to a particular embodiment, electrochromic device 400 includes a tungsten oxide electrochromic layer (EC) 406 and a nickel tungsten oxide counter electrode layer (CE) 410 . The electrochromic device 400 also includes a substrate 402 , a conductive layer (CL) 404 , an ion conductive layer (IC) 408 , and a conductive layer (CL) 414 .

電源 416經組態以經由至導電層 404414之合適連接(例如,匯流排)將電位及/或電流施加至電致變色堆疊 420。在一些實施例中,電壓源經組態以施加幾伏特之電位以便驅動裝置自一個光學狀態至另一光學狀態之轉變。如 3B所示之電位的極性使得離子(此實例中係鋰離子)主要駐存(如藉由虛線箭號指示的)在氧化鎳鎢相對電極層 410Power source 416 is configured to apply a potential and/or current to electrochromic stack 420 via appropriate connections (e.g., buss) to conductive layers 404 and 414. In some embodiments, the voltage source is configured to apply a potential of several volts to drive the device from one optical state to another. The polarity of the potential shown in FIG. 3B causes ions (in this example, lithium ions) to reside primarily (as indicated by the dashed arrows) in the nickel tungsten oxide counter electrode layer 410.

3C 3B所示但係在有色狀態(或轉變至有色狀態)中之電致變色裝置 400的示意性橫截面。在 3C中,電壓源 416的極性經反轉,使得電致變色層更具正性以接受額外的鋰離子,且因此轉變至有色狀態。如由虛線箭頭所指示,跨越離子導電層 408將鋰離子輸送至氧化鎢電致變色層 406。以有色狀態展示氧化鎢電致變色層 406。亦以有色狀態展示氧化鎳鎢相對電極 410。如所解釋,氧化鎳鎢在其放棄(去插入)鋰離子時逐漸地變得更不透明。在此實例中,存在協同效應,其中層 406410兩者至有色狀態之轉變對於減少透射穿過堆疊及基板之光的量為相加性的。 Figure 3C is a schematic cross-section of electrochromic device 400 shown in Figure 3B but in a colored state (or transitioning to a colored state). In Figure 3C , the polarity of voltage source 416 is reversed, making the electrochromic layer more positive to accept additional lithium ions, and thus transition to a colored state. As indicated by the dashed arrow, lithium ions are transported across the ion conductive layer 408 to the tungsten oxide electrochromic layer 406 . Tungsten oxide electrochromic layer 406 is shown in a colored state. Nickel tungsten oxide counter electrode 410 is also shown in a colored state. As explained, nickel tungsten oxide gradually becomes more opaque as it gives up (deintercalates) lithium ions. In this example, there is a synergistic effect where the transition of both layers 406 and 410 to the colored state is additive in reducing the amount of light transmitted through the stack and substrate.

如上文描述的,電致變色裝置可包括藉由對離子具有高導電性且對於電子具有高電阻性的離子導電(IC)層分開的電致變色(EC)層及相對電極(CE)層。如習知地理解,離子導電層因此防止電致變色層與相對電極層之間的短路。離子導電層允許電致變色層及相對電極層保持電荷且因此維持其等的脫色或有色狀態。在具有相異層之電致變色裝置中,組件形成包含離子導電層之堆疊,所述離子導電層包夾於電致變色電極層與相對電極層之間。此等三個堆疊組件之間的邊界由組合物及/或微結構中之突然改變來限定。因此,所述裝置具有帶兩個突變介面之三個相異層。As described above, an electrochromic device may include an electrochromic (EC) layer and a counter electrode (CE) layer separated by an ion conductive (IC) layer that is highly conductive to ions and highly resistive to electrons. As is conventionally understood, the ionically conductive layer thus prevents short circuiting between the electrochromic layer and the counter electrode layer. The ionically conductive layer allows the electrochromic layer and counter electrode layer to retain charge and thus maintain their decolorized or colored state. In electrochromic devices with distinct layers, the assembly forms a stack including an ionically conductive layer sandwiched between an electrochromic electrode layer and a counter electrode layer. The boundaries between these three stacked components are defined by abrupt changes in composition and/or microstructure. Therefore, the device has three distinct layers with two abrupt interfaces.

根據某些實施例,相對電極層及電致變色層形成為彼此緊鄰,有時直接接觸,無需分開地沈積離子導電層。在一些實施例中,使用具有界面區而非相異IC層的電致變色裝置。此類裝置及製造其等之方法描述於2010年4月30日申請之美國專利第8,300,298號及美國專利申請案序號第12/772,075號及於2010年6月11日申請之美國專利申請案序號第12/814,277號及第12/814,279號中,三個專利申請案及專利之各者的發明名稱為「Electrochromic Devices」,各將Zhongchun Wang等人指名為發明人,且各以全文引用方式併入本文中。 B. 窗控制器 According to certain embodiments, the counter electrode layer and the electrochromic layer are formed adjacent to each other, sometimes in direct contact, without the need for separate deposition of an ionically conductive layer. In some embodiments, electrochromic devices having an interface region rather than distinct IC layers are used. Such devices and methods of making the same are described in U.S. Patent No. 8,300,298 filed on April 30, 2010 and U.S. Patent Application Serial No. 12/772,075 and U.S. Patent Application Serial No. 12/814,277 and 12/814,279 filed on June 11, 2010, each of which is entitled "Electrochromic Devices," each of which names Zhongchun Wang et al. as the inventor, and each of which is incorporated herein by reference in its entirety. B. Window Controller

窗控制器可用以控制可著色窗的著色。例如,通訊中的窗控制器可用以調整電致變色窗的色調位準及關聯透射率。在一些實施例中,窗控制器能夠使電致變色窗在包括脫色狀態及有色狀態的多個色調狀態(位準)之間轉變。在一個態樣中,窗控制器能夠將電致變色窗轉變至四個色調位準(包括脫色狀態及有色狀態)的任一者。在另一態樣中,窗控制器能夠將電致變色窗轉變至四或更多個色調位準的任一者。Window controllers can be used to control the tinting of tintable windows. For example, a window controller in a communication can be used to adjust the tint level and associated transmittance of an electrochromic window. In some embodiments, the window controller is capable of transitioning the electrochromic window between multiple tint states (levels) including a de-tinted state and a tinted state. In one aspect, the window controller is capable of transitioning the electrochromic window to any of four tint levels, including a bleached state and a tinted state. In another aspect, the window controller can convert the electrochromic window to any of four or more tone levels.

在一些實施例中,電致變色窗可包括在IGU(例如,IGU裝置 200)的一個窗片上的電致變色裝置(例如,電致變色裝置 400)及在IGU的另一窗片上的另一電致變色裝置(例如,電致變色裝置 400)。若窗控制器能夠使各電致變色裝置在二種狀態(脫色狀態與有色狀態)之間轉變,電致變色窗能夠實現四種不同狀態(色調位準),二個電致變色裝置皆有色的有色狀態、一個電致變色裝置有色的第一中間狀態、另一電致變色裝置有色的第二中間狀態、及二個電致變色裝置皆脫色的脫色狀態。多窗格電致變色窗的實施例進一步描述於指名Robin Friedman等人係發明人之發明名稱為「MULTI-PANE ELECTROCHROMIC WINDOWS」之美國專利第8,270,059號中,其特此以全文引用方式併入本文中。 In some embodiments, an electrochromic window may include an electrochromic device (e.g., electrochromic device 400) on one window of the IGU (e.g., IGU device 200 ) and another electrochromic device on another window of the IGU. Electrochromic device (eg, electrochromic device 400 ). If the window controller can make each electrochromic device transition between two states (decolorized state and colored state), the electrochromic window can achieve four different states (tone levels), and both electrochromic devices are colored. a colored state, a first intermediate state in which one electrochromic device is colored, a second intermediate state in which the other electrochromic device is colored, and a decolorized state in which both electrochromic devices are decolored. Embodiments of multi-pane electrochromic windows are further described in U.S. Patent No. 8,270,059, entitled "MULTI-PANE ELECTROCHROMIC WINDOWS," naming Robin Friedman et al. as inventors, which is hereby incorporated by reference in its entirety. .

在一些實施例中,窗控制器能夠轉變具有電致變色裝置之電致變色窗,該電致變色裝置能夠在兩個或多於兩個色調位準之間轉變。舉例而言,窗控制器可能夠使電致變色窗轉變至脫色狀態、一或多個中間位準及有色狀態。在一些其他實施例中,窗控制器能夠使併有電致變色裝置之電致變色窗在脫色狀態與有色狀態之間的任何數目個色調位準之間轉變。用於使電致變色窗轉變至(多個)中間色調位準之方法及控制器的實施例進一步描述於指名Disha Mehtani等人係發明人之發明名稱為「CONTROLLING TRANSITIONS IN OPTICALLY SWITCHABLE DEVICES」之美國專利第8,254,013號中,其特此以全文引用方式併入本文中。In some embodiments, a window controller is capable of transforming an electrochromic window having an electrochromic device that is capable of transforming between two or more tint levels. For example, a window controller may be capable of transforming an electrochromic window to a detinted state, one or more intermediate levels, and a tinted state. In some other embodiments, a window controller is capable of transforming an electrochromic window having an electrochromic device between any number of tint levels between the detinted state and the tinted state. Embodiments of methods and controllers for transitioning an electrochromic window to intermediate tone levels are further described in U.S. Patent No. 8,254,013, entitled “CONTROLLING TRANSITIONS IN OPTICALLY SWITCHABLE DEVICES,” naming Disha Mehtani et al. as inventors, which is hereby incorporated by reference in its entirety.

在一些實施例中,窗控制器可對電致變色窗中之一或多個電致變色裝置供電。通常,窗控制器之此功能利用下文更詳細地描述之一或多個其他功能而強化。本文中所描述之窗控制器不限於具有對其相關聯之電致變色裝置供電以用於控制目的之功能的彼等窗控制器。亦即,用於電致變色窗之電源可與窗控制器分離,其中控制器具有其自身的電源且引導將電力自窗電源施加至窗。然而,將電源包含於窗控制器內且組態控制器以直接為窗供電為便利的,此係因為其避免需要用於對電致變色窗供電之單獨佈線。In some embodiments, a window controller may power one or more electrochromic devices in an electrochromic window. Typically, this function of the window controller is enhanced with one or more other functions described in more detail below. The window controllers described herein are not limited to those window controllers that have the function of powering their associated electrochromic devices for control purposes. That is, the power supply for the electrochromic window may be separate from the window controller, wherein the controller has its own power supply and directs the application of power from the window power supply to the window. However, it is convenient to include the power supply within the window controller and configure the controller to directly power the window because it avoids the need for separate wiring for powering the electrochromic window.

另外,此章節中所描述之窗控制器經描述為獨立控制器,其可經組態以在不將窗控制器整合至建築物控制網路或建築物管理系統(BMS)中之情況下控制單一窗或複數個電致變色窗之功能。然而,可將窗控制器整合至建築物控制網路或BMS中。Additionally, the window controllers described in this section are described as stand-alone controllers that can be configured to control without integrating the window controller into the building control network or building management system (BMS). The function of a single window or multiple electrochromic windows. However, the window controller can be integrated into the building control network or BMS.

4描繪所揭示實施例之窗控制器 450的一些組件及窗控制器系統的其他組件的簡化方塊圖。窗控制器之組件的更多細節可見於二者均指名Stephen Brown為發明人,二者之發明名稱皆為「CONTROLLER FOR OPTICALLY-SWITCHABLE WINDOWS」且二者皆於2012年4月17日申請之美國專利申請案序號第13/449,248號及第13/449,251號中,且可見於指名Stephen Brown等人為發明人且於2012年4月17日申請之發明名稱為「CONTROLLING TRANSITIONS IN OPTICALLY SWITCHABLE DEVICES」之美國專利序號第13/449,235號中,其等全部皆特此以全文引用方式併入本文中。 FIG4 depicts a simplified block diagram of some components of the window controller 450 of the disclosed embodiment and other components of the window controller system. Further details of the components of the window controller can be found in U.S. Patent Application Serial Nos. 13/449,248 and 13/449,251, both naming Stephen Brown as inventor, both entitled “CONTROLLER FOR OPTICALLY-SWITCHABLE WINDOWS” and both filed on April 17, 2012, and in U.S. Patent Serial No. 13/449,235, naming Stephen Brown et al. as inventors and entitled “CONTROLLING TRANSITIONS IN OPTICALLY SWITCHABLE DEVICES”, all of which are hereby incorporated by reference in their entirety.

4中,窗控制器 450的經繪示組件包括微處理器 455或其他處理器、脈衝寬度調變器 460、一或多個輸入 465、及具有組態檔案 475的電腦可讀取媒體 470(例如,記憶體)。窗控制器 450經由網路 480(有線或無線)與電致變色窗中的一或多個電致變色裝置 400電子通信以將指令發送至一或多個電致變色裝置 400。在一些實施例中,窗控制器 450可為經由網路(有線或無線)與主窗控制器通信的本地窗控制器。 4 , the illustrated components of the window controller 450 include a microprocessor 455 or other processor, a pulse width modulator 460 , one or more inputs 465 , and a computer readable medium 470 (e.g., memory) having a configuration file 475. The window controller 450 electronically communicates with one or more electrochromic devices 400 in the electrochromic window via a network 480 (wired or wireless) to send commands to the one or more electrochromic devices 400. In some embodiments, the window controller 450 may be a local window controller that communicates with a master window controller via a network (wired or wireless).

在所揭示實施例中,窗控制器 450可指示PWM 460將電壓及/或電流施加至電致變色窗 502,以使其轉變成四或更多個不同色調位準的任一者。在所揭示實施例中,電致變色窗 502可轉變成描述如下的至少八個不同色調位準:0(最亮)、5、10、15、20、25、30、及35(最暗)。色調位準可線性地對應於透射通過電致變色窗 502之光的視覺透射率值及太陽輻射熱取得係數(SHGC)值。例如,使用上述八個色調位準,最亮色調位準0可對應於SHGC值0.80、色調位準5可對應於SHGC值0.70、色調位準10可對應於SHGC值0.60、色調位準15可對應於SHGC值0.50、色調位準20可對應於SHGC值0.40、色調位準25可對應於SHGC值0.30、色調位準30可對應於SHGC值0.20、且色調位準35(最暗)可對應於SHGC值0.10。 In the disclosed embodiment, the window controller 450 can instruct the PWM 460 to apply a voltage and/or current to the electrochromic window 502 to cause it to transition to any of four or more different hue levels. In the disclosed embodiment, the electrochromic window 502 can transition to at least eight different hue levels described as follows: 0 (brightest), 5, 10, 15, 20, 25, 30, and 35 (darkest). The hue levels can linearly correspond to the visual transmittance values and solar radiation heat gain coefficient (SHGC) values of light transmitted through the electrochromic window 502 . For example, using the above eight tone levels, the brightest tone level 0 may correspond to a SHGC value of 0.80, tone level 5 may correspond to a SHGC value of 0.70, tone level 10 may correspond to a SHGC value of 0.60, tone level 15 may correspond to a SHGC value of 0.50, tone level 20 may correspond to a SHGC value of 0.40, tone level 25 may correspond to a SHGC value of 0.30, tone level 30 may correspond to a SHGC value of 0.20, and tone level 35 (darkest) may correspond to a SHGC value of 0.10.

窗控制器 450或與窗控制器 450通訊的主控制器可採用任何一或多個控制邏輯組件以基於來自外部感測器 510及/或其他輸入的信號判定期望色調位準。窗控制器 450可指示PWM 460將電壓及/或電流施加至電致變色窗 502,以將其轉變成期望色調位準。 The window controller 450 or a host controller in communication with the window controller 450 may employ any one or more control logic components to determine the desired tint level based on signals from the external sensor 510 and/or other inputs. The window controller 450 may instruct the PWM 460 to apply voltage and/or current to the electrochromic window 502 to convert it to the desired tint level.

應瞭解用以實施上文描述之技術的控制邏輯及其他邏輯可以電路、處理器(包括通用微處理器、數位信號處理器、特殊應用積體電路、諸如現場可程式化閘陣列的可程式化邏輯等)、電腦、電腦軟體、諸如感測器的裝置、或其組合的形式實施。基於本揭露及本文提供之教示內容,所屬技術領域中具有通常知識者將知道且理解使用硬體及/或硬體及軟體的組合實施所揭示技術的其他方式及/或方法。It should be understood that control logic and other logic used to implement the techniques described above may be circuits, processors (including general-purpose microprocessors, digital signal processors, application special integrated circuits, programmable circuits such as field programmable gate arrays). logic, etc.), a computer, computer software, a device such as a sensor, or a combination thereof. Based on this disclosure and the teachings provided herein, one of ordinary skill in the art will know and understand other ways and/or methods of implementing the disclosed technology using hardware and/or combinations of hardware and software.

描述於本申請案中的軟體、韌體、或機器指令的組件或函數的任一者可實施為使用任何合適之使用,例如,習知或物件導向技術的電腦語言(諸如Java、C++、或Python)之待由處理器執行的程式碼。程式碼可作為一系列指令或命令儲存在電腦或機器可讀取媒體上,諸如隨機存取記憶體(RAM)、唯讀記憶體(ROM)、可程式化記憶體(EEPROM)、諸如硬碟機或軟磁的磁性媒體、或諸如CD-ROM的光學媒體。任何此類電腦或機器可讀取媒體可駐留在單一計算設備上或內,且可存在於系統或網路內的不同計算設備上或內。在一些實施方案中,電腦或機器可讀取媒體係非暫時性媒體。Any of the components or functions of software, firmware, or machine instructions described in this application may be implemented using any suitable computer language using, for example, conventional or object-oriented technologies (such as Java, C++, or Python) code to be executed by the processor. Program code may be stored as a sequence of instructions or commands in a computer or on a machine-readable medium such as random access memory (RAM), read only memory (ROM), programmable memory (EEPROM), such as a hard drive machine or soft-magnetic magnetic media, or optical media such as CD-ROM. Any such computer or machine-readable media may reside on or within a single computing device, and may exist on or within different computing devices within a system or network. In some embodiments, the computer or machine-readable media is non-transitory media.

在本文揭示的一些實施例中,一或多個電致變色裝置操作地耦接至至少一個控制器及/或處理器。控制器可包含處理單元(例如,CPU或GPU)。控制器可接收輸入(例如,來自至少一個裝置或投影媒體)。控制器可包含電路、電佈線、光學佈線、插口及/或插座。控制器可接收輸入及/或遞送輸出。控制器可包含多個(例如,子)控制器。操作(例如,如本文中所揭示)可由單個控制器或由複數個控制器來執行。至少兩個操作可各自由不同控制器執行。至少兩個操作可由同一控制器執行。裝置及/或媒體可由單個控制器或由複數個控制器來控制。至少兩個裝置及/或媒體可由不同控制器來控制。至少兩個裝置及/或媒體可由同一控制器來控制。控制器可為控制系統之部分。控制系統可包含主控制器、樓層(例如,包含網路控制器)控制器或本地控制器。本地控制器可為目標控制器。例如,本地控制器可係窗控制器(例如,控制可著色窗)、封閉體控制器、或組件控制器。控制器可為階層式控制系統之部分。階層式控制系統可包含指揮一或多個控制器(例如,樓層控制器、本地控制器(例如,窗控制器)、封閉體控制器、及/或組件控制器)的主控制器。目標可包含裝置或媒體。裝置可包含電致變色窗、感測器、發射體、天線、接收器、收發器或致動器。In some embodiments disclosed herein, one or more electrochromic devices are operatively coupled to at least one controller and/or processor. The controller may include a processing unit (e.g., a CPU or GPU). The controller may receive input (e.g., from at least one device or projection medium). The controller may include circuits, electrical wiring, optical wiring, sockets and/or receptacles. The controller may receive input and/or deliver output. The controller may include multiple (e.g., sub) controllers. Operations (e.g., as disclosed herein) may be performed by a single controller or by a plurality of controllers. At least two operations may each be performed by a different controller. At least two operations may be performed by the same controller. Devices and/or media may be controlled by a single controller or by a plurality of controllers. At least two devices and/or media may be controlled by different controllers. At least two devices and/or media may be controlled by the same controller. The controller may be part of a control system. The control system may include a master controller, a floor controller (e.g., including a network controller), or a local controller. A local controller may be a target controller. For example, a local controller may be a window controller (e.g., controlling a tintable window), an enclosure controller, or a component controller. The controller may be part of a hierarchical control system. The hierarchical control system may include a master controller that commands one or more controllers (e.g., a floor controller, a local controller (e.g., a window controller), an enclosure controller, and/or a component controller). A target may include a device or a medium. A device may include an electrochromic window, a sensor, an emitter, an antenna, a receiver, a transceiver, or an actuator.

在一些實例中,受控設備係可著色窗(例如,電致變色窗)。在一些實施例中,藉由更改至用於提供著色或染色之電致變色裝置(ECD)的電壓信號來控制電致變色窗之動態狀態。電致變色窗可經製造、組態或以其他方式提供為隔熱玻璃單元(IGU)。IGU在提供用於安裝在建築物中時可充當用於固持電致變色窗格(亦稱作「窗片」)之基本構造。IGU窗片或窗格可係單個基材或多基板構造,諸如兩個基材之層壓體。In some examples, the controlled device is a tinted window (eg, an electrochromic window). In some embodiments, the dynamic state of the electrochromic window is controlled by changing the voltage signal to the electrochromic device (ECD) used to provide coloration or staining. Electrochromic windows may be manufactured, configured, or otherwise provided as insulated glass units (IGUs). The IGU, when provided for installation in a building, can serve as the basic structure for holding electrochromic windows (also known as "windows"). The IGU window or pane can be a single substrate or a multi-substrate construction, such as a laminate of two substrates.

控制器可實施在採各種數位電腦之形式的電子裝置中,諸如膝上型電腦,桌上型電腦、工作站、個人數位助理、伺服器、刀片伺服器、大型電腦、及其他適當電腦。電子裝置亦可表示各種形式的行動設備,諸如個人數位助理、蜂巢式電話、智慧型手機、可穿戴裝置、及其他類似的計算設備。本文所示的部件、其等的連接及關係、及其等的功能僅係實例,且未意圖限制如本文所描述及/或主張之本揭露的實施方案。The controller may be implemented in an electronic device in the form of various digital computers, such as laptops, desktop computers, workstations, personal digital assistants, servers, blade servers, mainframe computers, and other appropriate computers. The electronic device may also represent various forms of mobile devices, such as personal digital assistants, cellular phones, smartphones, wearable devices, and other similar computing devices. The components shown herein, their connections and relationships, and their functions are merely examples and are not intended to limit the embodiments of the present disclosure as described and/or claimed herein.

在一些實施方案中,控制器耦接至記憶體,諸如非暫時性電腦可讀取或機器可讀取媒體。記憶體儲存用於控制器的指令,以使用本文揭示的方法操作ECD。在一些實施方案中,控制器包含處理器。作為非暫時性電腦可讀取儲存媒體的記憶體可用以儲存非暫時性軟體程式、非暫時性電腦可執行程式、及模組,諸如對應於在本揭露的實施例中用於控制ECD之方法的程式指令/模組。處理器執行儲存於記憶體中的非暫時性軟體程式、指令、及模組以執行各種功能應用程式及資料處理。In some embodiments, the controller is coupled to a memory, such as a non-transitory computer-readable or machine-readable medium. The memory stores instructions for the controller to operate the ECD using the methods disclosed herein. In some embodiments, the controller includes a processor. The memory, which is a non-transitory computer-readable storage medium, can be used to store non-transitory software programs, non-transitory computer-executable programs, and modules, such as program instructions/modules corresponding to the methods used to control the ECD in the embodiments disclosed herein. The processor executes the non-transitory software programs, instructions, and modules stored in the memory to execute various functional applications and data processing.

記憶體可包括儲存程式區及儲存資料區,其中儲存程式區可儲存作業系統及至少一個所需功能的應用程式;且儲存資料區可儲存根據經揭示方法藉由使用電子裝置建立的資料。額外地,記憶體可包括高速隨機存取記憶體,且亦可包括非暫時性記憶體,諸如至少一個磁碟儲存裝置、快閃記憶體裝置、或其他非暫時性固態儲存裝置。在一些實施例中,記憶體可可選地包括相關於處理器遠端地提供的記憶體,且此等遠端記憶體可連接至用於控制器ECD之方法的電子裝置。上述網路的實例包括但不限於網際網路、內部網路、區域網路、行動通訊網路、及其組合。The memory may include a program storage area and a data storage area, wherein the program storage area may store an operating system and at least one application program of a required function; and the data storage area may store data created by using an electronic device according to the disclosed method. Additionally, the memory may include a high-speed random access memory, and may also include a non-temporary memory, such as at least one disk storage device, a flash memory device, or other non-temporary solid-state storage device. In some embodiments, the memory may optionally include a memory provided remotely relative to the processor, and such remote memories may be connected to the electronic device used in the method of the controller ECD. Examples of the above-mentioned network include but are not limited to the Internet, an intranet, a local area network, a mobile communication network, and combinations thereof.

可著色窗、窗控制器、其等的使用方法、及其等特徵的實例呈現在於2016年10月26日申請之發明名稱為「CONTROLLERS FOR OPTICALLY-SWITCHABLE DEVICES」之美國專利申請案序號第15/334,832號及於2018年9月6日申請之發明名稱為「METHOD OF COMMISSIONING ELECTROCHROMIC WINDOWS」之美國專利申請案序號第16/082,793號中,其等各者以全文引用方式併入本文中。Examples of tintable windows, window controls, methods of using the same, and features thereof are provided in U.S. Patent Application No. 15/, entitled "CONTROLLERS FOR OPTICALLY-SWITCHABLE DEVICES" filed on October 26, 2016. No. 334,832 and U.S. Patent Application Serial No. 16/082,793 filed on September 6, 2018 titled "METHOD OF COMMISSIONING ELECTROCHROMIC WINDOWS", each of which is incorporated herein by reference in its entirety.

5係用於控制及驅動建築物 504的複數個可著色窗 502的控制系統 500的示意繪示。其可用以控制與諸如窗天線之可著色窗相關聯之一或多個裝置之操作。系統 500可經調適以與包含商業辦公室建築物或住宅建築物的設施(例如,建築物 504)一起使用。在此實例中,系統 500經設計以結合現代加熱、通風、及空調(HVAC)系統 506、內部照明系統 507、保全系統 508、及電力系統 509而運作為整個建築物 504或建築物 504之園區的單一全面且有效率的能量控制系統。系統 500亦包括建築物管理系統(BMS) 510。BMS 510係可安裝在建築物中以監控及控制建築物之機械及電氣裝備(諸如HVAC系統、照明系統、電力系統、電梯、防火系統、及保全系統)的以電腦為基的控制系統。BMS 510可包括用於根據由佔用者或由建築物管理者或其他管理員設定的偏好維持建築物 504中之條件的硬體及關聯韌體或軟體。軟體可基於例如網際網路協定或開放標準。 Figure 5 is a schematic illustration of a control system 500 for controlling and driving a plurality of tintable windows 502 of a building 504 . It may be used to control the operation of one or more devices associated with a tintable window, such as a window antenna. System 500 may be adapted for use with facilities (eg, building 504 ) including commercial office buildings or residential buildings. In this example, system 500 is designed to operate for an entire building 504 or a campus of buildings 504 in conjunction with modern heating, ventilation, and air conditioning (HVAC) systems 506 , interior lighting systems 507 , security systems 508 , and electrical systems 509 A single comprehensive and efficient energy control system. System 500 also includes a building management system (BMS) 510 . BMS 510 is a computer-based control system that can be installed in a building to monitor and control the building's mechanical and electrical equipment (such as HVAC systems, lighting systems, electrical systems, elevators, fire protection systems, and security systems). BMS 510 may include hardware and associated firmware or software for maintaining conditions in building 504 according to preferences set by occupants or by building managers or other administrators. The software may be based on Internet protocols or open standards, for example.

BMS可用於較大建築物中,在該等建築物中,該BMS用以控制建築物內之環境。例如,BMS 510可控制建築物 504內的照明、溫度、二氧化碳濃度、及/或濕度。可存在由BMS 510控制的數個(例如,眾多)機械及/或電裝置,包括,例如,爐或其他加熱器、空氣調節器、吹風機、及/或通風口。為控制建築物環境,BMS 510可,例如,根據規則及/或回應於條件而導通及斷開此等各種裝置。此類規則及/或條件可由使用者(例如,建築物管理者及/或管理員)選擇及/或指定。BMS 510的一個功能可係,例如,在使加熱及冷卻能量損失及成本最小化的同時為建築物 504的佔用者維持舒適環境。在一些實施例中,BMS 510經組態以不(例如,僅)監控及控制,且亦將各種系統之間的協同作用最佳化,例如,以節約能量並降低建築物營運成本。所繪示的實例亦描繪雲 503A BMS may be used in larger buildings where the BMS is used to control the environment within the building. For example, the BMS 510 may control lighting, temperature, carbon dioxide concentration, and/or humidity within the building 504. There may be several (e.g., numerous) mechanical and/or electrical devices controlled by the BMS 510 , including, for example, a furnace or other heater, an air conditioner, a blower, and/or a vent. To control the building environment, the BMS 510 may, for example, turn these various devices on and off according to rules and/or in response to conditions. Such rules and/or conditions may be selected and/or specified by a user (e.g., a building manager and/or administrator). One function of BMS 510 may be, for example, to maintain a comfortable environment for occupants of building 504 while minimizing heating and cooling energy losses and costs. In some embodiments, BMS 510 is configured to not only (e.g., only) monitor and control, but also optimize the synergy between various systems, e.g., to save energy and reduce building operating costs. The illustrated example also depicts cloud 503 .

一些實施例經設計以回應性地或反應性地基於回饋起作用。回饋控制方案可包含經由例如熱感測器、光學感測器或其他感測器感測到之量測結果。回饋控制方案可包含來自HVAC、內部照明系統之輸入及/或來自使用者控制之輸入。控制系統、其使用方法、及其相關軟體的實例可見於2014年4月22日發布之美國專利第8,705,162號中,其全文以引用方式併入本文中。一些實施例用於現有結構中,包括例如具有傳統或習知HVAC及/或內部照明系統之商業及/或住宅結構。一些實施例經修整以供在大齡設施(例如,住宅家庭)中使用。Some embodiments are designed to function responsively or reactively based on feedback. The feedback control scheme may include measurements sensed by, for example, thermal sensors, optical sensors, or other sensors. The feedback control scheme may include inputs from HVAC, interior lighting systems, and/or inputs from user controls. Examples of control systems, methods of use thereof, and associated software thereof may be found in U.S. Patent No. 8,705,162, issued April 22, 2014, which is incorporated herein by reference in its entirety. Some embodiments are used in existing structures, including, for example, commercial and/or residential structures with conventional or known HVAC and/or interior lighting systems. Some embodiments are modified for use in older facilities (e.g., residential homes).

系統 500包括經組態以控制複數個窗控制器 514的網路控制器(NC) 512。例如,一個網路控制器 512可控制至少數十、數百、或數千個窗控制器 514。各窗控制器 514可繼而控制及驅動一或多個電致變色窗 502。在一些實施例中,網路控制器 512可發布高階指令,諸如可著色窗的最終色調狀態。窗控制器可接收此等命令且例如藉由施加電刺激而直接控制其相關聯窗以適當地驅動色調狀態轉變及/或維持色調狀態。各窗控制器 514可驅動之可著色(例如,電致變色)窗 502的數目及尺寸通常可受控制各別電致變色窗 502之窗控制器 514上的負載的電壓及/或電流特性限制。在一些實施例中,窗控制器 514可驅動的最大窗尺寸受電壓、電流、及/或功率要求限制,以在所請求時間框內在電致變色窗 502中導致所請求的光學轉變。此類要求又為窗之表面積的函數。在一些實施例中,此關係為非線性的。例如,電壓、電流、及/或功率要求可隨電致變色窗 502的表面積非線性地增加。在不希望受理論束縛之情況下,在一些情況下,關係為非線性的,此至少部分地係由於第一及第二導電層之薄片電阻隨第一或第二導電層之長度及寬度上的距離非線性地增大。在一些實施例中,驅動具有相等尺寸及形狀的多個電致變色窗 502所需的電壓、電流、及/或功率要求之間的關係與所驅動的電致變色窗 502的數目成正比。 The system 500 includes a network controller (NC) 512 configured to control a plurality of window controllers 514. For example, one network controller 512 may control at least tens, hundreds, or thousands of window controllers 514. Each window controller 514 may in turn control and drive one or more electrochromic windows 502. In some embodiments, the network controller 512 may issue high-level instructions, such as a final tint state of a tintable window. The window controller may receive such commands and directly control its associated window, such as by applying electrical stimulation, to appropriately drive the tint state transition and/or maintain the tint state. The number and size of tintable (e.g., electrochromic) windows 502 that each window controller 514 can drive can generally be limited by the voltage and/or current characteristics of the load on the window controller 514 that controls the respective electrochromic window 502. In some embodiments, the maximum window size that the window controller 514 can drive is limited by the voltage, current, and/or power requirements to cause the requested optical transition in the electrochromic window 502 within the requested time frame. Such requirements are in turn a function of the surface area of the window. In some embodiments, this relationship is nonlinear. For example, the voltage, current, and/or power requirements can increase nonlinearly with the surface area of the electrochromic window 502 . Without wishing to be bound by theory, in some cases, the relationship is nonlinear, at least in part because the sheet resistance of the first and second conductive layers increases nonlinearly with distance over the length and width of the first or second conductive layer. In some embodiments, the relationship between the voltage, current, and/or power requirements required to drive multiple electrochromic windows 502 of equal size and shape is proportional to the number of electrochromic windows 502 driven.

5顯示主控制器(MC) 511的實例。主控制器 511結合多個網路控制器 512通訊及運作,該等網路控制器 512之各者能夠定址複數個窗控制器 514。在一些實施例中,主控制器 511向網路控制器 512發布高階指令(諸如可著色窗的最終色調狀態),且網路控制器 512接著將指令傳達至對應的窗控制器 514 5顯示包含主控制器、網路控制器、及窗控制器之階層式控制系統的實例。 Figure 5 shows an example of a master controller (MC) 511 . The main controller 511 communicates and operates in conjunction with multiple network controllers 512 , each of which can address a plurality of window controllers 514 . In some embodiments, the main controller 511 issues high-level instructions (such as the final tint state of a tintable window) to the network controller 512 , and the network controller 512 then communicates the instructions to the corresponding window controller 514 . Figure 5 shows an example of a hierarchical control system including a main controller, a network controller, and a window controller.

在一些實施方案中,將設施(例如,包含建築物或其他結構)之各種電致變色窗 502、天線、及/或其他目標裝置(例如,有利地)分組成區或區的群組(例如,其中區或區的群組之各者包括電致變色窗 502的子集)。例如,各區可對應於在設施之特定位置或區中之至少部分地基於其等位置而應著色(或以其他方式轉變)成相同或類似光學狀態的一組電致變色窗 502。作為另一實例,考慮具有四個面或側的建築物:北面、南面、東面、及西面。考慮該建築物具有十個樓層。在此一實例中,各區可對應於在特定樓層上且在四個面的特定一者上的該組電致變色窗 502。在一些此類實施例中,各網路控制器 512可定址一或多個區或區的群組。例如,主控制器 511可將特定區或區之群組的最終色調狀態命令發布給網路控制器 512之各別一或多者。舉例而言,最終色調狀態命令可包括目標區中之各者之抽象識別。接收最終色調狀態命令的經指定網路控制器 512可接著將(多個)區的抽象識別映射至控制待施加至(多個)區中之電致變色窗 502的電壓或電流曲線之各別窗控制器 514的特定網路位址。 In some embodiments, various electrochromic windows 502 , antennas, and/or other target devices of a facility (e.g., including a building or other structure) are (e.g., advantageously) grouped into zones or groups of zones (e.g., , wherein each of the zones or groups of zones includes a subset of the electrochromic window 502 ). For example, each zone may correspond to a set of electrochromic windows 502 in a particular location or zone of a facility that should be tinted (or otherwise transformed) to the same or similar optical state based at least in part on their location. As another example, consider a building with four faces or sides: north, south, east, and west. Consider the building to have ten floors. In this example, each zone may correspond to the set of electrochromic windows 502 on a specific floor and on a specific one of the four sides. In some such embodiments, each network controller 512 may address one or more zones or groups of zones. For example, the master controller 511 may issue a final tone state command for a particular zone or group of zones to respective one or more of the network controllers 512 . For example, the final tone state command may include an abstract identification of each of the target regions. The designated network controller 512 receiving the final tint state command may then map the abstract identification of the zone(s) to respective control voltage or current curves to be applied to the electrochromic windows 502 in the zone(s). The specific network address of window controller 514 .

在一些實施例中,使用控制器的分散式網路控制一或多個可著色窗。舉例而言,根據一些實施,網路系統可操作以控制複數個IGU。網路系統的一個主要功能可為控制IGU內的電致變色裝置(或其他光學可切換裝置)之光學狀態。In some embodiments, a distributed network of controllers is used to control one or more tintable windows. For example, according to some embodiments, the network system can be operated to control a plurality of IGUs. One primary function of the network system can be to control the optical state of an electrochromic device (or other optically switchable device) within an IGU.

在一些實施例中,網路系統的另一功能係從IGU獲取狀態資訊(例如,資料)。例如,給定IGU的狀態資訊可包括IGU內的(多個)可著色裝置的目前色調狀態的識別或與該目前色調狀態有關的資訊。網路系統可操作以自各種感測器獲取資料,該等感測器諸如溫度感測器、光感測器(photosensor)(在本文中稱為光感測器(light sensor) )、濕度感測器、空氣流量感測器或佔用感測器、天線,無論整合於IGU上或內抑或位於建築物中、上或周圍之各種其他方位處皆如此。至少一個感測器可經組態(例如,經設計)以量測一或多個環境特性,例如溫度、濕度、環境雜訊、二氧化碳、VOC、微粒物質、氧氣及/或環境之任何其他態樣(例如,其氛圍)。感測器可包含電磁感測器。In some embodiments, another function of the network system is to obtain status information (e.g., data) from the IGU. For example, the status information of a given IGU may include identification of or information related to the current tint state of (multiple) colorable devices within the IGU. The network system may be operable to obtain data from various sensors, such as temperature sensors, photosensors (referred to herein as light sensors), humidity sensors, air flow sensors or occupancy sensors, antennas, whether integrated on or in the IGU or located in various other locations in, on, or around the building. At least one sensor may be configured (e.g., designed) to measure one or more environmental characteristics, such as temperature, humidity, ambient noise, carbon dioxide, VOCs, particulate matter, oxygen, and/or any other aspect of the environment (e.g., its atmosphere). The sensor may include an electromagnetic sensor.

電磁感測器可經組態以感測紫外輻射、可見輻射、紅外輻射及/或無線電波輻射。紅外輻射可為被動紅外輻射(例如,黑體輻射)。電磁感測器可感測無線電波。無線電波可包含寬頻或超寬頻無線電信號。無線電波可包含脈衝無線電波。無線電波可包含用於通訊中之無線電波。無線電波可處於至少約300千赫(KHz)、500 KHz、800 KHz、1000 KHz、1500 KHz、2000 KHz或2500 KHz之中頻。無線電波可處於至多約500 KHz、800 KHz、1000 KHz、1500 KHz、2000 KHz、2500 KHz或3000 KHz之中頻。無線電波可係在上文提及之頻率範圍(例如,從約300KHz至約3000 KHz)之間的任何頻率。無線電波可處於至少約3百萬赫(MHz)、5 MHz、8 MHz、10 MHz、15 MHz、20 MHz或25 MHz之高頻。無線電波可處於至多約5 MHz、8 MHz、10 MHz、15 MHz、20 MHz、25 MHz或30 MHz之高頻。無線電波可係在上文提及之頻率範圍(例如,從約3 MHz至約30 MHz)之間的任何頻率。無線電波可處於至少約30百萬赫(MHz)、50 MHz、80 MHz、100 MHz、150 MHz、200 MHz或250 MHz之極高頻。無線電波可處於至多約50 MHz、80 MHz、100 MHz、150 MHz、200 MHz、250 MHz或300 MHz之極高頻。無線電波可係在上文提及之頻率範圍(例如,從約30 MHz至約300 MHz)之間的任何頻率。無線電波可處於至少約300千赫(MHz)、500 MHz、800 MHz、1000 MHz、1500 MHz、2000 MHz或2500 MHz之超高頻。無線電波可處於至多約500 MHz、800 MHz、1000 MHz、1500 MHz、2000 MHz、2500 MHz或3000 MHz之超高頻。無線電波可在前述頻率範圍之間的任何頻率(例如,從約300 MHz至約3000 MHz)。無線電波可在至少約3十億赫(GHz)、5 GHz、8 GHz、10 GHz、15 GHz、20 GHz或25 GHz之超高頻。無線電波可處於至多約5 GHz、8 GHz、10 GHz、15 GHz、20 GHz、25 GHz或30 GHz之超高頻。無線電波可係在上文提及之頻率範圍(例如,從約3GHz至約30 GHz)之間的任何頻率。The electromagnetic sensor may be configured to sense ultraviolet radiation, visible radiation, infrared radiation, and/or radio wave radiation. The infrared radiation may be passive infrared radiation (e.g., black body radiation). The electromagnetic sensor may sense radio waves. The radio waves may include wideband or ultra-wideband radio signals. The radio waves may include pulsed radio waves. The radio waves may include radio waves used in communications. The radio waves may be in a medium frequency of at least about 300 kilohertz (KHz), 500 KHz, 800 KHz, 1000 KHz, 1500 KHz, 2000 KHz, or 2500 KHz. The radio waves may be at a medium frequency of up to about 500 KHz, 800 KHz, 1000 KHz, 1500 KHz, 2000 KHz, 2500 KHz, or 3000 KHz. The radio waves may be any frequency between the frequency ranges mentioned above (e.g., from about 300 KHz to about 3000 KHz). The radio waves may be at a high frequency of at least about 3 million Hertz (MHz), 5 MHz, 8 MHz, 10 MHz, 15 MHz, 20 MHz, or 25 MHz. The radio waves may be at a high frequency of up to about 5 MHz, 8 MHz, 10 MHz, 15 MHz, 20 MHz, 25 MHz, or 30 MHz. The radio waves may be any frequency between the frequency ranges mentioned above (e.g., from about 3 MHz to about 30 MHz). The radio waves may be at very high frequencies of at least about 30 megahertz (MHz), 50 MHz, 80 MHz, 100 MHz, 150 MHz, 200 MHz, or 250 MHz. The radio waves may be at very high frequencies of up to about 50 MHz, 80 MHz, 100 MHz, 150 MHz, 200 MHz, 250 MHz, or 300 MHz. The radio waves may be any frequency between the frequency ranges mentioned above (e.g., from about 30 MHz to about 300 MHz). The radio waves may be at very high frequencies of at least about 300 kilohertz (MHz), 500 MHz, 800 MHz, 1000 MHz, 1500 MHz, 2000 MHz, or 2500 MHz. The radio waves may be at ultra-high frequencies of up to about 500 MHz, 800 MHz, 1000 MHz, 1500 MHz, 2000 MHz, 2500 MHz, or 3000 MHz. The radio waves may be at any frequency between the aforementioned frequency ranges (e.g., from about 300 MHz to about 3000 MHz). The radio waves may be at ultra-high frequencies of at least about 3 gigahertz (GHz), 5 GHz, 8 GHz, 10 GHz, 15 GHz, 20 GHz, or 25 GHz. The radio waves may be at ultra-high frequencies of up to about 5 GHz, 8 GHz, 10 GHz, 15 GHz, 20 GHz, 25 GHz, or 30 GHz. The radio waves may be at any frequency between the frequency ranges mentioned above (e.g., from about 3 GHz to about 30 GHz).

網路系統可包括具有各種能力或功能的任何合適數目個分散式控制器。在一些實施例中,各種控制器之功能及配置經階層式定義。The network system may include any suitable number of distributed controllers with various capabilities or functions. In some embodiments, the functions and configurations of the various controllers are defined hierarchically.

6顯示包括複數個分散式本地窗控制器(WC) 604、複數個網路控制器(NC) 606、及主控制器(MC) 608之網路系統 600的實例。在一些實施例中,MC 608可使用網路控制器 606與至少二個、十個、數十個、一百個、或數百個樓層通訊並控制該等樓層。樓層控制器可經組態以控制樓層或樓層之一部分。在各種實施例中,主控制器MC 608透過一或多個有線及/或無線通信鏈路對NC 606發布高階指令。該等指令可包括,例如,用於在由各別NC 606控制之IGU的光學狀態上導致轉變的著色命令。各NC 606可繼而透過一或多個有線及/或無線鏈路與若干個窗控制器 604通訊並控制該等窗控制器。通信鏈路可為雙向通信鏈路。主控制器 608亦與資料庫 620及建築物管理系統 624通訊。資料庫 620及BMS 624與外部源 610通訊。在一個實施方案中,外部源 610包括一或多個感測器(例如,複數個光感測器)及/或雲端網路。 Figure 6 shows an example of a network system 600 including a plurality of distributed local window controllers (WC) 604 , a plurality of network controllers (NC) 606 , and a master controller (MC) 608 . In some embodiments, MC 608 may use network controller 606 to communicate with and control at least two, ten, tens, one hundred, or hundreds of floors. A floor controller can be configured to control a floor or a portion of a floor. In various embodiments, master controller MC 608 issues high-level instructions to NC 606 via one or more wired and/or wireless communication links. Such instructions may include, for example, shading commands for causing transitions in the optical state of the IGU controlled by the respective NC 606 . Each NC 606 may in turn communicate with and control a number of window controllers 604 via one or more wired and/or wireless links. The communication link may be a bidirectional communication link. The main controller 608 also communicates with the database 620 and the building management system 624 . Database 620 and BMS 624 communicate with external sources 610 . In one embodiment, the external source 610 includes one or more sensors (eg, a plurality of light sensors) and/or a cloud network.

MC 608可發布包括著色命令、狀態請求命令、資料(例如,感測器資料)請求命令、或其他指令的通訊。在一些實施例中,MC 608週期性地、在一天的某些預定義時間(其可基於週或年中的某日改變),或至少部分地基於偵測到特定事件、條件、或事件或條件的組合(例如,如藉由經獲取感測器資料、或至少部分地基於接收到由使用者及/或由應用程式起始的請求、或此類感測器資料與此一請求的組合判定的)而發布此類通訊。在一些實施例中,當MC 608判定在一組一或多個IGU中導致色調狀態改變(例如,更改)時,MC 608產生或選擇對應於所請求色調狀態的色調值。在一些實施中,IGU集合與第一協定識別符(ID) (例如,建築物自動化及控制(BAC)網路識別(BACnet ID))相關聯。MC 608可接著經由第一通訊協定(例如,BACnet相容協定)透過鏈路產生及傳輸包括色調值及第一協定ID的通訊—本文中稱為「主要著色命令」。在一些實施例中,MC 608可將主要著色命令定址至控制特定一或多個WC 604的特定NC 606,該等WC繼而控制待轉變的該組IGU。NC 606可接收包括色調值及第一協定ID的主要著色命令,且將第一協定ID映射至一或多個第二協定ID。在一些實施例中,第二協定ID之各者識別WC 604的對應一者。NC 606隨後可經由第二通訊協定透過鏈路將包括色調值的次要著色命令傳輸至經識別WC 604之各者。在一些實施例中,接收次要著色命令的WC 604之各者接著基於色調值從內部記憶體選擇電壓及/或電流曲線,以將其分別連接的IGU驅動至與色調值一致的色調狀態。WC 304之各者可接著產生電壓及/或電流信號並透過鏈路將該等信號提供至其分別連接的IGU以施加電壓或電流曲線。 MC 608 may issue communications including coloring commands, status request commands, data (eg, sensor data) request commands, or other instructions. In some embodiments, MC 608 periodically, at certain predefined times of day (which may vary based on day of the week or year), or based at least in part on detection of a particular event, condition, or event or A combination of conditions (e.g., by obtaining sensor data, or based at least in part on receipt of a request initiated by a user and/or by an application, or a combination of such sensor data and such a request determined) to publish such communications. In some embodiments, when the MC 608 determines that a hue state change (eg, a modification) results in a set of one or more IGUs, the MC 608 generates or selects a hue value corresponding to the requested hue state. In some implementations, a set of IGUs is associated with a first protocol identifier (ID) (eg, Building Automation and Control (BAC) Network Identification (BACnet ID)). MC 608 may then generate and transmit communications including hue values and first protocol IDs—referred to herein as "primary shading commands"—over the link via the first communications protocol (eg, a BACnet compliant protocol). In some embodiments, MC 608 may address primary shading commands to a specific NC 606 that controls a specific WC or WCs 604 , which in turn controls the set of IGUs to be converted. NC 606 may receive a primary shading command including a hue value and a first protocol ID, and map the first protocol ID to one or more second protocol IDs. In some embodiments, each of the second protocol IDs identifies a corresponding one of the WC 604 . NC 606 may then transmit secondary shading commands including hue values to each of the identified WCs 604 over the link via the second communication protocol. In some embodiments, each WC 604 receiving the secondary shading command then selects a voltage and/or current curve from internal memory based on the hue value to drive its respectively connected IGU to a hue state consistent with the hue value. Each of the WCs 304 may then generate voltage and/or current signals and provide these signals through links to their respective connected IGUs to apply voltage or current curves.

以與控制器之功能及/或配置可如何階層式配置類似的方式,可著色窗可配置於階層式結構中。階層式結構可藉由允許將規則或使用者控制應用於可著色窗或IGU之各種分組來幫助促進對特定地點處之可著色窗的控制。此外,出於美觀性,房間及/或其他地點位置中之多個相連窗有時可能需要使其光學狀態以相同速率對應及/或著色。將相連窗之群組視為區可促進此等目標。Tintable windows may be configured in a hierarchical structure in a manner similar to how the functionality and/or configuration of a controller may be hierarchically configured. The hierarchical structure can help facilitate control of tintable windows at specific locations by allowing rules or user controls to be applied to various groupings of tintable windows or IGUs. Additionally, multiple connected windows in a room and/or other location locations may sometimes need to have their optical states mapped and/or tinted at the same rate for aesthetic reasons. Treating groups of connected windows as zones facilitates these goals.

在一些實施例中,將IGU分組至可著色窗的區中,該等區之各者包括至少一個窗控制器及其各別IGU。IGU各區可藉由一或多個各別NC及一或多個由此等NC控制之各別WC控制。舉例而言,各區可由單一NC及由單一NC控制之兩個或更多個WC控制。In some embodiments, the IGUs are grouped into zones of tintable windows, each of which includes at least one window controller and its respective IGU. Each zone of IGUs can be controlled by one or more respective NCs and one or more respective WCs controlled by the NCs. For example, each zone can be controlled by a single NC and two or more WCs controlled by the single NC.

在一些實施例中,至少一個裝置與至少一個另一裝置協調操作,該等裝置耦接至網路。至少一個裝置之控制可經由乙太網路。舉例而言,可同時調整可著色窗之色調位準。當裝置在使用中時,裝置區可具有至少一個相同的特性。舉例而言,當可著色窗在一區中時,可著色窗之區可使其色調位準(自動)更改(例如,變暗或變亮)至相同位準。例如,當聲音感測器在區中時,其等可在相同頻率及/或在同一時間窗取樣聲音。裝置之區可包含(例如,相同類型之)複數個裝置。區可包含(i)面向封閉體(例如,設施)之特定方向的裝置(例如,可著色窗)、(ii)安置於封閉體之特定面(例如,立面)上的複數個裝置、(iii)在設施之特定樓層上的裝置、(iv)在特定類型之房間及/或活動(例如,開放空間、辦公室、會議室、報告廳、走廊、接待大廳或自助餐廳)中的裝置、(v)安置於同一固定物(例如,內壁或外壁)上之裝置及/或(vi)使用者定義之裝置(例如,作為可著色窗之較大群組之子集的在房間中或在立面上之可著色窗之群組)。裝置之(自動)調整可自動地及/或由使用者完成。區中之裝置性質及/或狀態之自動改變可由使用者(例如,藉由手動地調整色調位準)越控。使用者可使用行動電路系統(例如,遠端控制器、虛擬實境控制器、蜂巢式電話、電子記事本、膝上型電腦、及/或藉由類似行動裝置)覆寫區中之裝置的自動調整。In some embodiments, at least one device operates in coordination with at least one other device, which are coupled to a network. Control of at least one device may be via Ethernet. For example, the tint level of tintable windows may be adjusted simultaneously. When the devices are in use, zones of devices may have at least one identical characteristic. For example, when a tintable window is in a zone, a zone of tintable windows may have its tint level (automatically) changed (e.g., darkened or lightened) to the same level. For example, when sound sensors are in a zone, they may sample sound at the same frequency and/or in the same time window. A zone of devices may include multiple devices (e.g., of the same type). Zones may include (i) devices (e.g., tintable windows) facing a particular direction of an enclosure (e.g., a facility), (ii) multiple devices placed on a particular face of an enclosure (e.g., a facade), (iii) devices on a particular floor of a facility, (iv) devices in a particular type of room and/or activity (e.g., an open space, office, conference room, lecture hall, corridor, reception hall, or cafeteria), (v) devices placed on the same fixture (e.g., an interior or exterior wall), and/or (vi) user-defined devices (e.g., a group of tintable windows in a room or on a facade that is a subset of a larger group of tintable windows). (Automatic) adjustment of devices may be done automatically and/or by the user. Automatic changes to the properties and/or states of devices in a zone may be overridden by a user (e.g., by manually adjusting tonal levels). A user may override automatic adjustments of devices in a zone using a mobile circuit system (e.g., a remote controller, a virtual reality controller, a cellular phone, an electronic notepad, a laptop, and/or via a similar mobile device).

在一些實施例中,當與裝置之控制有關的指令(例如,用於窗控制器或可著色窗的指令)通過網路系統傳遞時,其等伴隨有其等所發送至之裝置的唯一網路ID。網路ID可有助於確保指令到達且在預期裝置上進行。例如,控制一個以上之IGU之色調狀態的窗控制器可基於連同著色命令傳遞的網路ID(諸如控制器區域網路(CAN) ID(網路ID的形式))判定控制哪個IGU(可著色窗)。在窗網路(諸如本文中所描述之窗網路)中,術語網路ID包括(但不限於) CAN ID及BACnet ID。此類網路ID可應用於窗網路節點,諸如窗控制器、網路控制器及主控制器。用於裝置的網路ID可包括在階層式結構中控制其的每個裝置的網路ID。舉例而言,除其自身CAN ID之外,IGU之網路ID亦可包括窗控制器ID、網路控制器ID及主控制器ID。In some embodiments, when instructions related to the control of a device (e.g., instructions for a window controller or a tintable window) are passed over a network system, they are accompanied by a unique network ID of the device to which they are sent. The network ID can help ensure that the instructions arrive and are performed on the intended device. For example, a window controller that controls the tint state of one or more IGUs can determine which IGU (tintable window) to control based on the network ID (such as a controller area network (CAN) ID (in the form of a network ID)) passed along with the tinting command. In a window network (such as the window network described herein), the term network ID includes (but is not limited to) CAN IDs and BACnet IDs. Such network IDs can be applied to window network nodes, such as window controllers, network controllers, and master controllers. The network ID for a device may include the network ID of each device that controls it in a hierarchical structure. For example, in addition to its own CAN ID, the network ID of an IGU may also include the window controller ID, the network controller ID, and the master controller ID.

7顯示經分組成可著色窗的區 703之各種可著色窗(稱為「IGU」) 722。各區 703包括至少一個窗控制器 724及一或多個各別可著色窗 722。在一些實施例中,可著色窗 722之各區係由一或多個各別NC及由此等NC控制的一或多個各別WC 724控制。各區 703可由單一NC及由該單一NC控制的二或更多個WC 724控制。因此,區 703可表示可著色窗 722的邏輯分組。例如,各區 703可對應於建築物的特定位置或區中之基於其等位置或定向而一起驅動的一組一或多個可著色窗 722。作為一更具體實例,考慮係具有十個樓層及四個面或側之建築物的地點 701:北面、南面、東面、及西面。在此一實例中,各區 703可對應於在特定樓層上及在四個面的特定一者上的該組一或多個可著色窗 722。作為另一實例,各區 703可對應於共用一或多個實體特性(例如,諸如尺寸或使用年限的裝置參數)的一組一或多個可著色窗 722。在一些實施例中,可著色窗 722的區 703至少部分地基於包含保全指定或業務階層的一或多個非實體特性分組(例如,定界管理者之辦公室的可著色窗 722可分組在一或多個區中,而定界非管理者之辦公室的可著色窗722可分組在一或多個不同區中)。 FIG. 7 shows various tintable windows (referred to as "IGUs") 722 grouped into zones 703 of tintable windows. Each zone 703 includes at least one window controller 724 and one or more individual tintable windows 722. In some embodiments, each zone of tintable windows 722 is controlled by one or more individual NCs and one or more individual WCs 724 controlled by such NCs. Each zone 703 may be controlled by a single NC and two or more WCs 724 controlled by the single NC. Thus, the zones 703 may represent a logical grouping of tintable windows 722. For example, each zone 703 may correspond to a group of one or more tintable windows 722 that are driven together based on their position or orientation in a particular location or zone of a building. As a more specific example, consider a site 701 of a building having ten floors and four faces or sides: north, south, east, and west. In this example, each zone 703 may correspond to the set of one or more tintable windows 722 on a particular floor and on a particular one of the four faces. As another example, each zone 703 may correspond to a set of one or more tintable windows 722 that share one or more physical characteristics (e.g., device parameters such as size or age). In some embodiments, the zones 703 of tintable windows 722 are grouped at least in part based on one or more non-physical characteristics including security designations or business hierarchies (e.g., tintable windows 722 demarcating an administrator's office may be grouped in one or more zones, while tintable windows 722 demarcating non-administrators' offices may be grouped in one or more different zones).

在一些此類實施方案中,各NC可定址在一或多個各別區 703之各者中的所有可著色窗 722。例如,MC可將主要著色命令發布給控制目標區 703的NC。主要著色命令可包括目標區之抽象識別(在下文中稱為「區ID」)。在一些此類實施中,區ID可為諸如剛剛描述於以上實例中之第一協定ID。NC可接收包括色調值及區ID的主要著色命令,且可將區ID映射至與區內的WC 724相關聯的d協定ID。在一些實施例中,區ID可為比第一協定ID更高層級抽象。在此類情況下,NC可首先將區ID映射至一或多個第一協定ID,且隨後將第一協定ID映射至第二協定ID。 In some such implementations, each NC may address all colorable windows 722 in each of one or more respective zones 703. For example, the MC may issue a primary coloring command to the NC that controls the target zone 703. The primary coloring command may include an abstract identification of the target zone (hereinafter referred to as the "zone ID"). In some such implementations, the zone ID may be a first protocol ID as just described in the above example. The NC may receive a primary coloring command including a hue value and a zone ID, and may map the zone ID to a protocol ID associated with the WC 724 within the zone. In some embodiments, the zone ID may be a higher level of abstraction than the first protocol ID. In such cases, the NC may first map the zone ID to one or more first protocol IDs, and then map the first protocol ID to a second protocol ID.

為使著色控制起作用(例如,以允許窗控制系統改變一或多個特定可著色窗的色調狀態),主控制器、網路控制器、及/或負責著色決定的另一控制器可利用連接至該特定窗或該組窗的(多個)窗控制器的網路位址。為此目的,調測之功能可用於向特定窗及窗控制器提供窗控制器位址及/或另一識別資訊之正確指派,以及建築物中之窗及/或窗控制器的實體位置。在一些實施例中,調測的目標係校正在將窗安裝在錯誤位置上或將電纜連接至錯誤的窗控制器時所造成的錯誤及/或其他問題。在一些實施例中,調測的目標係提供半自動或全自動安裝。換言之,允許在對安裝者具有極少或無位置導引的情況下安裝。To enable tinting control (e.g., to allow the window control system to change the tint state of one or more specific tintable windows), the main controller, the network controller, and/or another controller responsible for tinting decisions may utilize The network address of the window controller(s) connected to this specific window or group of windows. To this end, the commissioning function may be used to provide specific windows and window controllers with the correct assignment of the window controller address and/or another identifying information, as well as the physical location of the window and/or window controller in the building. In some embodiments, the goal of commissioning is to correct errors and/or other problems caused when windows are installed in the wrong location or cables are connected to the wrong window controller. In some embodiments, the goal of commissioning is to provide semi-automatic or fully-automatic installation. In other words, installation is allowed with little or no positional guidance for the installer.

在一些實施例中,用於特定可著色窗的調測程序可涉及將裝置(例如,可著色窗及/或窗有關組件)的ID與其對應的本地控制器關聯。調測程序可將建築物位置、相對位置、及/或絕對位置(例如,緯度、經度、及高度)指派給裝置(例如,窗或另一組件)。與調測及/或組態可著色窗之網路有關的實例可見於2014年10月7日申請之發明名稱為「APPLICATIONS FOR CONTROLLING OPTICALLY SWITCHABLE DEVICES」之美國專利申請案序號第14/391,122號、於2015年11月24日申請之發明名稱為「SELF-CONTAINED EC IGU」之美國專利申請案序號第14/951,410號、於2016年3月9日申請之發明名稱為「METHOD OF COMMISSIONING ELECTROCHROMIC WINDOWS」之美國臨時專利申請案序號第62/305,892號、及於2016年8月2日申請之發明名稱為「METHOD OF COMMISSIONING ELECTROCHROMIC WINDOWS」之美國臨時專利申請案序號第62/370,174號中,其等各者以全文引用方式併入本文中。In some embodiments, debugging for a particular tintable window may involve associating the ID of a device (eg, tintable window and/or window-related component) with its corresponding local controller. The commissioning process may assign a building location, a relative location, and/or an absolute location (eg, latitude, longitude, and altitude) to a device (eg, a window or another component). Examples related to commissioning and/or configuring a network with tinted windows can be found in U.S. Patent Application No. 14/391,122 titled "APPLICATIONS FOR CONTROLLING OPTICALLY SWITCHABLE DEVICES" filed on October 7, 2014. U.S. Patent Application No. 14/951,410, filed on November 24, 2015, titled "SELF-CONTAINED EC IGU", and filed on March 9, 2016, titled "METHOD OF COMMISSIONING ELECTROCHROMIC WINDOWS" In the U.S. Provisional Patent Application No. 62/305,892 and the U.S. Provisional Patent Application No. 62/370,174 filed on August 2, 2016 with the invention title "METHOD OF COMMISSIONING ELECTROCHROMIC WINDOWS", each of them The authors are incorporated herein by reference in their entirety.

在實體地安裝裝置(例如,一或多個可著色窗)的網路之後,可調測網路以校正窗控制器至錯誤的可著色窗(有時稱為「IGU」)或建築物位置的任何不正確指派。在一些實施例中,調測映射使個別裝置(例如,可著色窗)及其等位置與關聯控制器配對或鏈接。 II. 額外介紹 After physically installing a network of devices (e.g., one or more tintable windows), the network may be tuned to correct any incorrect assignment of window controllers to erroneous tintable windows (sometimes referred to as "IGUs") or building locations. In some embodiments, the tuning map pairs or links individual devices (e.g., tintable windows) and their locations with associated controllers. II. Additional Introduction

一些可著色窗可為電子控制的。此類控制可允許控制穿過可著色窗的光量,並藉由調整在設施之外殼上的可著色窗的透射率及/或控制其他系統(例如,建築物系統,諸如HVAC系統)及其等的關聯控制器的設定而提供可著色窗控制設施(例如,建築物)之空間中的自然光量、進入設施的熱負載、及設施的其他內部條件的機會。Some tintable windows may be electronically controlled. Such control may allow control over the amount of light that passes through the tintable windows and provide the opportunity for the tintable windows to control the amount of natural light in a space of a facility (e.g., a building), the heat load entering the facility, and other internal conditions of the facility by adjusting the transmittance of the tintable windows on the facility's exterior housing and/or controlling the settings of other systems (e.g., building systems, such as HVAC systems) and their associated controllers.

如本文中使用的,「空間(space)」係指設施內之可服務特定目的的容積。空間可係設施之虛擬表示(諸如虛擬模型(例如,數位孿生))中的虛擬空間或設施的實體空間。設施中的空間可具有與空間之目的相關聯的識別符。空間之識別符的實例係「會議室A」、「會議室B」、或「行銷開放辦公室」。「空間類型(space type)」係指指示空間之功能的空間屬性。辦公室建築物中的空間類型的一些實例包括通道、私人辦公室、開放辦公室、廚房、會議室、休息室、餐廳、健身中心、及大廳。機場建築物中的空間類型的一些實例包括通道、登機門、餐廳、自動售貨機、辦公室、等候室、及服務區。多家庭房屋建築物中的空間類型的一些實例包括起居室、廚房、臥房、浴室、走廊、大廳、休息室、體能/健身室、及辦公室。As used herein, "space" means the volume within a facility that serves a specific purpose. The space may be a virtual space in a virtual representation of the facility, such as a virtual model (eg, a digital twin), or a physical space of the facility. Spaces in a facility may have identifiers associated with the purpose of the space. Examples of space identifiers are "Conference Room A", "Conference Room B", or "Marketing Open Office". "Space type" refers to the space attributes that indicate the function of the space. Some examples of space types in office buildings include walkways, private offices, open offices, kitchens, conference rooms, break rooms, restaurants, fitness centers, and lobbies. Some examples of space types in airport buildings include aisles, gates, restaurants, vending machines, offices, waiting rooms, and service areas. Some examples of space types in multifamily buildings include living rooms, kitchens, bedrooms, bathrooms, hallways, halls, lounges, fitness/fitness rooms, and offices.

設施(諸如建築物)的一或多個條件的即時控制或接近(近似)即時控制可為設施的客戶(例如,設施的租戶、其他佔用者、及/或客戶支援人員)所期望。例如,花費時間在建築物的特定三維空間中的佔用者可能期望光位準(例如,自然光及/或人工光的位準)、光的顏色、熱負載(取得)、及/或其等空間的其他條件的即時控制。額外地或替代地,可能期望識別故障的可著色窗、感測器、或其他裝置、控制器、及/或控制器至用於維護、升級、及/或置換之特定裝置的連接。Real-time or near (approximate) real-time control of one or more conditions of a facility (such as a building) may be desired by customers of the facility (e.g., tenants of the facility, other occupants, and/or customer support personnel). For example, an occupant who spends time in a particular three-dimensional space of a building may desire real-time control of light levels (e.g., levels of natural light and/or artificial light), color of light, heat load (harvest), and/or other conditions of such space. Additionally or alternatively, it may be desirable to identify a malfunctioning tinted window, sensor, or other device, controller, and/or connection of the controller to a particular device for maintenance, upgrade, and/or replacement.

本文描述的某些實施例藉由基於其基於設施外側的經測量照度而衰減的晴空照度值調整設施之可著色窗的透射率而控制設施之空間中的自然光量。為在設施的空間中建立期望或目標自然光位準,基於經衰減晴空照度值給定設施外側的光位準,設施之可著色窗的透射率可作為經調整以調節從設施外側穿過此類窗至該空間中之光量的獨立變數。藉由調整透射率,可實現目標勒克斯位準、或接近此目標的近似。設施之可著色窗的透射率作為可調整變數(或可調整「旋鈕」)以用於調諧從設施外側、穿過窗、及至空間中的自然光量。Certain embodiments described herein control the amount of natural light in a space of a facility by adjusting the transmittance of the facility's tintable windows based on their attenuated clear-sky illuminance values based on measured illuminance outside the facility. To establish a desired or target level of natural light in the space of a facility, the transmittance of a facility's tintable windows can be adjusted to accommodate light levels outside the facility based on attenuated clear-sky illuminance values through such windows. window to the independent variable of the amount of light in that space. By adjusting the transmittance, the target lux level, or a close approximation of this target, can be achieved. The transmittance of a facility's tintable windows serves as an adjustable variable (or adjustable "knob") for tuning the amount of natural light from outside the facility, through the window, and into the space.

此等實施例的一些至少部分地基於其基於來自定位在設施外側的一或多個感測器(例如,光感測器)的感測器資料而衰減或調整的經預測光條件(例如,晴空值)使用設施外側的照度位準。經斷定晴空資料使用基於經測量感測器資料的比例因子衰減;在一些情況下,可將此視為使用經衰減晴空資料的即時外部光。Some of these embodiments are based at least in part on predicted light conditions (eg, light sensors) that are attenuated or adjusted based on sensor data from one or more sensors (eg, light sensors) positioned outside the facility. Clear sky value) uses the illuminance level outside the facility. The determined clear sky data is attenuated using a scale factor based on the measured sensor data; in some cases this can be considered as instantaneous external light using attenuated clear sky data.

例如,晴空資料可表示在設施之位置的晴空條件下的外部照度,且可調整此經預測照度以計及藉由在設施之地點(諸如在設施的屋頂上)的感測器提供之在設施周圍的即時測量光條件。經測量照度可用以判定施加至經斷定晴空資料的比例因子,且藉由使用經測量即時測量衰減藉由衰減經預測外側光條件,準確的光條件可用以控制及調整設施之空間中的自然光。在另一實例中,經預測照度可指示在特定時間在設施之發源自或源自羅盤南方(例如,太陽在設施的南方)的照度且沒有來自羅盤北方的照度。經測量光資料在由複數個感測器(諸如光感測器)產生時可指示來自羅盤北方的經測量照度;此經測量照度可由從羅盤北方將光反射在設施的雲或建築物所導致。當此等經預測光值基於經測量光資料衰減或縮放時,設施周圍的所得光條件可指示光從南及北的二方向上輻射至建築物上。給定外側光條件,此等經縮放光條件可接著用以使設施的可著色窗透射率最佳化,以導致設施中的(多個)空間具有其等的期望自然光位準。藉由使用設施外側的已知經測量光條件,可將設施之可著色窗的透射率最佳化以控制設施之空間中的所得自然光。For example, clear-sky data may represent external illumination under clear-sky conditions at the facility's location, and this predicted illumination may be adjusted to account for in-facility illumination provided by sensors at the facility's location, such as on the facility's roof. Instantly measure surrounding light conditions. The measured illuminance can be used to determine the scaling factor to be applied to the determined clear-sky data, and by attenuating the predicted outside light conditions using the measured attenuation, accurate light conditions can be used to control and adjust natural light in the facility's space. In another example, predicted illuminance may indicate illuminance originating from or originating from compass south of the facility (eg, the sun is south of the facility) and no illuminance from compass north at a particular time. Measured light data, when generated by multiple sensors, such as light sensors, may indicate measured illuminance from compass north; this measured illuminance may be caused by clouds or buildings reflecting light from compass north on the facility . When these predicted light values are attenuated or scaled based on measured light data, the resulting light conditions around the facility may indicate that light is radiating onto the building from both the south and north directions. Given outside light conditions, these scaled light conditions can then be used to optimize the tintable window transmittance of the facility, resulting in the space(s) in the facility having their desired natural light levels. By using known measured light conditions outside the facility, the transmittance of the facility's tintable windows can be optimized to control the resulting natural light in the facility's space.

在一些實施方案中,藉由在設施上方之虛擬天空圓頂的光斑模擬設施外側的經預測及經測量照度。光斑表示基於經預測晴空資料及來自複數個感測器的經測量照度的亮度分布。將設施上方的天空離散成構成天空圓頂的複數個光斑,且各光斑具有表示照度之來源或貢獻的關聯勒克斯位準。各光斑可基於藉由從接收自複數個感測器的經測量勒克斯資料判定的比例因子衰減的經預測值。如本文提供的,為衰減天空圓頂模型中的晴空資料,使用來自一或多個感測器之經測量光資料的感測器讀數判定施加至天空圓頂之光斑(發亮斑點)之晴空資料的亮度值的比例因子;此可使用經衰減晴空資料產生即時天空圓頂。一些實施例將感測器讀數及關聯經衰減比例因子映射至天空圓頂的光斑。例如,如下文更詳細地討論的,經測量光讀數可來自徑向地配置在中心軸周圍且垂直於中心軸向外定向的12個光感測器。本文提供之實施例的一些可將由此等12個感測器產生的資料映射至天空圓頂中的光斑。In some implementations, the predicted and measured illuminance outside the facility is simulated by a spot of light in a virtual sky dome above the facility. The spot represents the brightness distribution based on predicted clear sky data and measured illuminance from multiple sensors. Discretize the sky above the facility into a plurality of spots that make up the sky dome, with each spot having an associated lux level that represents the source or contribution of illumination. Each spot may be based on a predicted value attenuated by a scaling factor determined from measured lux data received from a plurality of sensors. As provided herein, to attenuate clear sky data in a sky dome model, sensor readings of measured light data from one or more sensors are used to determine the clear sky of light patches (bright spots) applied to the sky dome. A scaling factor for the brightness values of the data; this can be used to produce a real-time sky dome using attenuated clear-sky data. Some embodiments map sensor readings and associated attenuated scaling factors to spots in a sky dome. For example, as discussed in greater detail below, the measured light readings may come from 12 light sensors arranged radially around a central axis and oriented outwardly perpendicular to the central axis. Some of the embodiments provided herein map the data generated by these 12 sensors to spots in the sky dome.

在替代或額外實施例中,給定設施外側的光條件(例如,藉由經測量光資料調整的經預測光),設施之可著色窗的透射率可用以調整設施之空間中的熱取得以產生空間中的目標熱取得,或接近目標熱取得的近似。 III. 虛擬建築物模型(例如,數位孿生) In alternative or additional embodiments, given light conditions outside the facility (e.g., by predicted light adjusted by measured light data), the transmittance of the facility's tintable windows can be used to adjust heat gain in the space of the facility to Generates a target thermal acquisition in space, or an approximation close to the target thermal acquisition. III. Virtual building model (e.g., digital twin)

為解決相關於建築物內之條件的控制及/或設施之裝置的其他設定及狀態的客戶滿意度,數位模型及(多個)相關聯檔案可與設施及裝置相關聯。在某些實施方案中,數位模型及其之(多個)關聯檔案稱為設施的「虛擬建築物模型」。虛擬建築物模型的一實例係建築物資訊模型或「BIM」。用於BIM模型之BIM檔案的一些實例包括Revit檔案、Microdesk(諸如ModelStream檔案)、IMAGINiT檔案、ATG USA檔案、或類似的設施相關數位檔案。虛擬建築物模型可具有整合設施的所有資產的關聯集中式檔案,其可輔助佔用者及負責設施及/或設施內的一或多個裝置之控制的客戶支援人員。例如,可由佔用者及客戶支援人員存取及/或更新的虛擬建築物模型可儲存於雲端網路中。To address customer satisfaction regarding the controls of conditions within a building and/or other settings and states of the equipment at a facility, a digital model and associated file(s) may be associated with the facility and equipment. In some embodiments, the digital model and its associated file(s) are referred to as a "virtual building model" of the facility. An example of a virtual building model is a building information model or "BIM." Some examples of BIM files used for BIM models include Revit files, Microdesk (such as ModelStream files), IMAGINiT files, ATG USA files, or similar facility-related digital files. The virtual building model may have an associated centralized file that integrates all assets of the facility, which may assist occupiers and customer support personnel responsible for control of the facility and/or one or more devices within the facility. For example, the virtual building model that can be accessed and/or updated by occupiers and customer support personnel may be stored in a cloud network.

在一個態樣中,虛擬建築物模型可包括建築物中之裝置的位置及識別符及建築物中之裝置的目前設定及狀態。虛擬建築物模型亦可包括使用者偏好,諸如,例如,一或多個環境條件的較佳設定(例如,空間中的自然光量)及一或裝置的較佳設定(例如,可著色窗的透射率)。在某些實施方案中,可更新設施的虛擬建築物模型以即時地或實質即時地反映設施之裝置的狀態及設定,其可輔助設施之裝置及環境條件的部署、維護、及控制。虛擬建築物模型亦可作為客戶的互動工具,以即時地或實質即時地控制在其等空間中的環境條件(例如,自然光量或熱負載),且在建築物的三維模型上看見其等對環境條件之改變的視覺效果及/或在建築物的三維模型上看見其等的改變將如何導致建築物中之裝置的設定調整的視覺效果。例如,客戶可調整其等之空間的光量,且在3D模型上具有將如何調整該空間的二個相鄰立面上的可著色窗的透射率以適應其等之調整的視覺效果。In one aspect, the virtual building model may include the location and identifiers of devices in the building and the current settings and status of the devices in the building. The virtual building model may also include user preferences, such as, for example, preferred settings for one or more environmental conditions (e.g., the amount of natural light in a space) and preferred settings for one or more devices (e.g., the transmittance of a tintable window). In some implementations, the virtual building model of a facility may be updated to reflect the status and settings of the devices of the facility in real time or substantially real time, which may assist in the deployment, maintenance, and control of the devices and environmental conditions of the facility. The virtual building model can also serve as an interactive tool for customers to control environmental conditions in their spaces (e.g., the amount of natural light or heat load) in real time or substantially in real time and see a visual effect of their changes to the environmental conditions on the 3D model of the building and/or see a visual effect of how their changes will result in setting adjustments for devices in the building. For example, customers can adjust the amount of light in their space and have a visual effect on the 3D model of how the transmittance of tinted windows on two adjacent facades of the space will be adjusted to accommodate their adjustment.

虛擬建築物模型可在各種層面促進裝置之控制的管理。在某些態樣中,虛擬建築物模型可係諸如通過應用程式(軟體應用程式)補充有裝置相關資訊的BIM。例如,可使用虛擬建築物模式將來自客戶的輸入(例如,通過應用程式)饋送至設施的控制中。虛擬建築物模型可在調測之前或在調測之後出於維護的目的提供視覺校對工具。虛擬建築物模型亦可向軟體應用程式的使用者提供設施(包括其資產,諸如裝置)的虛擬實境體驗。Virtual building models facilitate the management of plant controls at various levels. In some aspects, the virtual building model may be a BIM supplemented with device-related information, such as through an application (software application). For example, a virtual building model can be used to feed input from customers (e.g., via an app) into the facility's controls. Virtual building models can provide visual proofreading tools before commissioning or after commissioning for maintenance purposes. Virtual building models can also provide users of software applications with a virtual reality experience of a facility (including its assets, such as equipment).

在一些情形中,三維(3D)架構模型可用以初始化虛擬建築物模型的檔案(例如,BIM檔案),以合併設施的架構元件。基準真相驗證(例如,來自現場服務工程師)可用以驗證虛擬建築物模型之檔案中的裝置資料。虛擬建築物模型可在調測設施之裝置之前初始化。在一些情形中,經初始化BIM檔案(諸如,Autodesk Revit檔案)合併設施的架構元件,但不合併安裝在設施中的裝置。BIM檔案可在調測期間更新及/或由佔用者或客戶支援人員更新。In some cases, a three-dimensional (3D) architectural model may be used to initialize a virtual building model file (eg, a BIM file) to incorporate the facility's architectural elements. Ground truth verification (e.g., from a field service engineer) can be used to verify device data in the virtual building model's files. The virtual building model can be initialized before commissioning the installation of the facility. In some cases, an initialized BIM file (such as an Autodesk Revit file) incorporates the architectural elements of the facility but not the devices installed in the facility. BIM files can be updated during commissioning and/or by occupiers or customer support staff.

在設施之裝置的調測期間,裝置可由安裝者安裝並,例如,藉由查看具有經刻寫序號、條碼、快速回應(QR)碼、射頻識別(RF ID)、及/或其他經列印資訊的外部標記而彼此區分。在一些情形中,在調測程序期間及/或之後定位及記錄裝置的程序可藉由自動化及/或手動程序輸入至虛擬建築物模型中。在一些情形中,可執行調測以提供或校正窗控制器位址及/或其他識別資訊至特定窗及窗控制器的指派,以及提供或校正建築物中的窗及/或窗控制器的實體位置。例如,調測可用以校正在將可著色窗安裝在錯誤位置中或將纜線連接至錯誤的窗控制器時所造成的問題。特定可著色窗的調測程序涉及將窗的識別(ID)或其他窗相關組件與其之對應窗控制器的網路位址關聯。該程序可(例如,亦)將建築物位置及/或絕對位置(例如,緯度、經度、及/或高度)指派至窗或其他組件。During commissioning of a device at a facility, the device may be installed by the installer and, for example, by viewing it with an inscribed serial number, bar code, quick response (QR) code, radio frequency identification (RF ID), and/or other printed information. external markings to distinguish them from each other. In some cases, procedures for locating and recording devices during and/or after the commissioning process may be input into the virtual building model through automated and/or manual processes. In some cases, commissioning may be performed to provide or correct the assignment of window controller addresses and/or other identifying information to specific windows and window controllers, as well as to provide or correct the assignment of windows and/or window controllers in a building. Entity location. For example, commissioning can be used to correct problems caused when tintable windows are installed in the wrong location or cables are connected to the wrong window controller. The commissioning process for a particular tinted window involves associating the window's identification (ID) or other window-related component with the network address of its corresponding window controller. The program may (eg, also) assign building positions and/or absolute positions (eg, latitude, longitude, and/or altitude) to windows or other components.

可著色窗(例如,包含電致變色裝置)、電子集體(例如,含有各種感測器、致動器及/或通信介面)及/或相關聯控制器(例如,主控制器、網路控制器及/或例如負責著色決策之其他控制器)可例如出於協調控制(例如,監控)之目的在階層式網路中互連。舉例而言,一或多個控制器可能需要利用連接至特定窗或窗集合之窗控制器之網路位址。為此目的,調測的功能可係提供窗控制器位址及/或其他識別資訊至特定窗及窗控制器的正確指派,以及提供建築物中的窗及/或窗控制器的實體位置。調測的另一功能可係安裝在錯誤位置之窗或連接至錯誤窗控制器之纜線的校正。針對特定窗(例如,絕緣玻璃單元(IGU) )之調測程序可涉及使窗或其他窗相關組件之識別(ID)與其對應窗控制器之網路位址相關聯。該程序可(例如,亦)將建築物位置及/或絕對位置(例如,緯度、經度及/或高度)指派至窗或其他組件。數位孿生的一些實例描述於2021年11月2日申請且發明名稱為「VIRTUALLY VIEWING DEVICES IN A FACILITY」之PCT申請案第PCT/US2021/057678號中,其特此以全文引用方式併入本文中。Tintable windows (e.g., containing electrochromic devices), electronic collectives (e.g., containing various sensors, actuators, and/or communication interfaces), and/or associated controllers (e.g., host controllers, network controls controllers and/or other controllers, such as those responsible for shading decisions) may be interconnected in a hierarchical network, for example, for the purpose of coordinated control (eg, monitoring). For example, one or more controllers may need to utilize the network address of the window controller connected to a specific window or set of windows. To this end, the function of commissioning may be to provide correct assignment of window controller addresses and/or other identifying information to specific windows and window controllers, as well as to provide the physical location of windows and/or window controllers in the building. Another function of commissioning can be the correction of the window installed in the fault location or the cables connected to the fault window controller. Commissioning procedures for a specific window (eg, an insulating glass unit (IGU)) may involve associating the identification (ID) of the window or other window-related component with the network address of its corresponding window controller. The program may (eg, also) assign building positions and/or absolute positions (eg, latitude, longitude, and/or altitude) to windows or other components. Some examples of digital twins are described in PCT Application No. PCT/US2021/057678, filed on November 2, 2021 and entitled "VIRTUALLY VIEWING DEVICES IN A FACILITY", which is hereby incorporated by reference in its entirety.

在某些態樣中,控制系統及/或控制介面包含設施(諸如建築物)的「虛擬建築物模型」或與該虛擬建築物模型通訊。例如,虛擬建築物模型可包含含有結構元件(例如,牆及門)、建築物固定物/陳設、及一或多個互動目標裝置(例如,可著色窗、感測器、發射器、及/或媒體顯示器)的代表性模型(例如,二維或三維虛擬描繪)。虛擬建築物模型可駐存在可經由圖形使用者介面存取或可使用虛擬實境(VR)使用者介面存取的伺服器上。VR介面可包括擴增實境(AR)態樣。虛擬建築物模型可與建築物基礎設施的監測及服務有關地及/或與控制任何互動目標裝置有關地使用,且在提供來自客戶的互動輸入(例如,一或多個環境設定的偏好)及將回授提供給客戶時使用。In some aspects, the control system and/or control interface includes or communicates with a "virtual building model" of a facility (e.g., a building). For example, the virtual building model may include a representative model (e.g., a two-dimensional or three-dimensional virtual depiction) containing structural elements (e.g., walls and doors), building fixtures/furnishings, and one or more interactive target devices (e.g., colorable windows, sensors, transmitters, and/or media displays). The virtual building model may reside on a server that can be accessed via a graphical user interface or can be accessed using a virtual reality (VR) user interface. The VR interface may include an augmented reality (AR) aspect. The virtual building model may be used in connection with monitoring and servicing of building infrastructure and/or in connection with controlling any interactive target devices, and in providing interactive input from a customer (e.g., preferences for one or more environmental settings) and providing feedback to the customer.

當新裝置安裝在設施中(例如,其房間或空間中)且操作地耦接至網路時,新裝置可被偵測到(例如,且被包括在虛擬建築物模型中)。新裝置的偵測及/或將新裝置包括至虛擬建築物模型中可自動地及/或手動地完成。例如,新裝置的偵測及/或將新裝置包括至虛擬建築物模型中可不需要(例如,任何)手動干預。不論是否存在於封閉體的初始設計計劃中或於稍後加入,關於(例如,各)裝置的完整細節(包括任何唯一識別碼)可儲存在虛擬建築物模型、網路組態檔案、互連圖式、及/或建築圖式(例如,諸如Revit檔案的BIM檔案)中以促進監控、服務、及/或控制功能。When a new device is installed in a facility (e.g., in a room or space thereof) and operatively coupled to a network, the new device may be detected (e.g., and included in the virtual building model). Detection of new devices and/or inclusion of new devices in the virtual building model may be done automatically and/or manually. For example, detection of new devices and/or inclusion of new devices in the virtual building model may not require (e.g., any) manual intervention. Whether present in the initial design plans for an enclosure or added later, complete details regarding (e.g., each) device (including any unique identifiers) may be stored in a virtual building model, network configuration files, interconnection diagrams, and/or building schematics (e.g., BIM files such as Revit files) to facilitate monitoring, servicing, and/or control functions.

在一些實施例中,虛擬建築物模型包含設施的虛擬三維(3D)模型。設施可包括靜態及/或動態元素。舉例而言,靜態元素可包括設施(例如,固定物)之結構特徵之表示,且動態元素可包括具有可控制特徵之交互式裝置的表示。3D模型可包括可視元素。可視元素可表示設施固定物。固定物可包含壁、地板、壁、門、擱架、結構(例如,步入式)壁櫥、固定燈、電氣面板、電梯升降道或窗。固定物可附連至結構。可視元素可表示非固定物。非固定物可包含人、椅、可移動燈、桌、沙發、可移動壁櫥或媒體投影。非固定物可包含行動元件。可視元素可表示包含地板、壁、門、窗、傢俱、器具、人及/或交互式裝置之設施特徵。表示真實設施之環境的虛擬建築物模型可類似於使用在電腦遊戲及模擬中的虛擬世界。3D模型之建立可包括分析建築物資訊模型(BIM)模型(例如,Autodesk Revit檔案),例如以導出諸如門、窗、及電梯之(例如,基本)固定結構及可移動物品的表示。在一些實施例中,虛擬建築物模型至少部分地藉由使用一或多個感測器(例如,(多個)光學、聲學、壓力、氣體速度、及/或距離測量感測器)定義,以判定真實設施的布局。可(例如,排他性地)使用感測器資料之使用以模型化封閉體之環境。感測器資料之使用可結合設施之3D模型(例如,BIM模型)使用以模型化及/或控制封閉體之環境。可在已建構設施之前、期間(例如,即時)及/或之後獲得設施之BIM模型。設施之BIM模型可在設施之操作及/或調測期間(例如,即時地)經更新(例如,手動地及/或使用感測器資料)。In some embodiments, the virtual building model includes a virtual three-dimensional (3D) model of the facility. Facilities may include static and/or dynamic elements. For example, static elements may include representations of structural features of facilities (eg, fixtures), and dynamic elements may include representations of interactive devices with controllable features. 3D models may include visual elements. Visual elements represent facility fixtures. Fixtures may include walls, floors, walls, doors, shelves, structures (e.g., walk-in) closets, fixed lights, electrical panels, elevator shafts, or windows. Fixtures can be attached to the structure. Visual elements can represent non-fixed objects. Non-fixed objects can include people, chairs, movable lamps, tables, sofas, movable closets or media projections. Non-fixed objects may contain mobile components. Visual elements may represent facility features including floors, walls, doors, windows, furniture, appliances, people, and/or interactive devices. Virtual building models that represent the environment of a real facility may be similar to the virtual worlds used in computer games and simulations. Creation of the 3D model may include analyzing a Building Information Modeling (BIM) model (eg, Autodesk Revit file), eg, to derive representations of (eg, basic) fixed structures and movable items such as doors, windows, and elevators. In some embodiments, a virtual building model is defined at least in part through the use of one or more sensors (e.g., optical, acoustic, pressure, gas velocity, and/or distance measurement sensor(s)), to determine the layout of real facilities. The use of sensor data may (eg, exclusively) be used to model the environment of the enclosure. The use of sensor data may be used in conjunction with a 3D model of the facility (eg, a BIM model) to model and/or control the environment of the enclosure. A BIM model of a facility may be obtained before, during (eg, real-time), and/or after the facility has been constructed. The BIM model of the facility may be updated (eg, manually and/or using sensor data) during operation and/or commissioning of the facility (eg, in real time).

在一些實施例中,虛擬建築物模型中的動態元素包括裝置設定。裝置設定可包含(例如,現有及/或預定):色調值、溫度設定、及/或光切換設定。裝置設定可包含媒體顯示器中之可用動作。可用動作可包含所顯示內容中之選單項目或熱點。虛擬建築物模型可包括裝置及/或可移動物件(例如,椅子或門)及/或佔用者(來自攝影機的實際影像或來自經儲存虛擬使用者)的虛擬表示。在一些實施例中,動態元素可為新接入至網路中及/或自網路消失(例如,由於故障或重定位)之裝置。虛擬建築物模型可駐存於操作地耦接至網路的任何電路系統(例如,處理器)中。其中駐存有數位電路系統之電路系統可在設施中、設施外部及/或雲端中。在一些實施例中,在虛擬建築物模型與真實電路系統之間維持雙向(two-way)(例如,雙向(bidirectional))鏈路。真實電路系統可為控制系統之部分。真實電路系統可包括於主控制器、網路控制器、樓層控制器、本地控制器中,或處理系統中(例如,設施中或設施外部)之任何另一節點中。例如,雙向鏈路可由真實電路系統使用以將動態及/或靜態元件上的變化通知虛擬建築物模型,使得封閉體的3D表示可,例如,即時地或在稍後(例如,經指定)時間更新。雙向鏈路可由虛擬建築物模型使用以將由使用者在行動電路系統上輸入的操縱(例如,控制)動作通知真實電路系統。行動電路系統可為遠端控制器(例如,包含手持型指針、手動輸入按鈕或觸控螢幕)。In some embodiments, dynamic elements in a virtual building model include device settings. Device settings may include (e.g., existing and/or predetermined): color tone values, temperature settings, and/or light switching settings. Device settings may include available actions in a media display. Available actions may include menu items or hot spots in displayed content. The virtual building model may include virtual representations of devices and/or movable objects (e.g., chairs or doors) and/or occupants (either actual images from a camera or from stored virtual users). In some embodiments, dynamic elements may be devices that are newly connected to the network and/or disappear from the network (e.g., due to failure or relocation). The virtual building model may reside in any circuit system (e.g., a processor) that is operatively coupled to the network. The circuit system in which the digital circuit system resides may be in the facility, outside the facility, and/or in the cloud. In some embodiments, a two-way (e.g., bidirectional) link is maintained between the virtual building model and the real circuit system. The real circuit system may be part of the control system. The real circuit system may be included in a master controller, a network controller, a floor controller, a local controller, or in any other node in the processing system (e.g., in the facility or outside the facility). For example, the bidirectional link may be used by the real circuit system to notify the virtual building model of changes in dynamic and/or static elements so that the 3D representation of the enclosure may be updated, for example, in real time or at a later (e.g., specified) time. The bidirectional link may be used by the virtual building model to notify the real circuit system of manipulation (e.g., control) actions input by a user on a mobile circuit system. The mobile circuit system may be a remote controller (e.g., including a handheld pointer, manual input buttons, or a touch screen).

8描繪至少部分地基於BIM(例如,Revit)檔案 801之虛擬建築物模型 800的視覺表示。在一些實施例中,虛擬建築物模型 800包括可使用介面裝置虛擬地導航以檢視目標裝置且與目標裝置互動的3D虛擬構造。介面可為諸如智慧型電話或平板電腦之行動裝置。在一些實施例中,封閉體的虛擬表示包含顯示在行動裝置上的虛擬建築物模型的虛擬擴增實境表示,其中該虛擬擴增實境表示包括真實目標裝置的至少一些的虛擬表示。在虛擬建築物模型內使用行動裝置的導航可與行動裝置的實際位置無關,或可與行動裝置在由虛擬建築物模型表示之真實封閉體內的移動一致。行動裝置可可操作地(例如,通訊地)耦接至網路。行動裝置可,例如,使用任何地理位置技術使用虛擬建築物模型中之各別位置記錄其在真實設施中的當前位置。舉例而言,地理位置錨耦接至網路。 Figure 8 depicts a visual representation of a virtual building model 800 based at least in part on a BIM (eg, Revit) archive 801 . In some embodiments, virtual building model 800 includes a 3D virtual construct that can be virtually navigated using an interface device to view and interact with a target device. The interface may be a mobile device such as a smartphone or tablet. In some embodiments, the virtual representation of the enclosure includes a virtual augmented reality representation of a virtual building model displayed on the mobile device, wherein the virtual augmented reality representation includes a virtual representation of at least some of the real target device. Navigation using a mobile device within a virtual building model may be independent of the actual location of the mobile device, or may be consistent with movement of the mobile device within a real enclosure represented by the virtual building model. The mobile device may be operably (eg, communicatively) coupled to the network. The mobile device may, for example, use any geolocation technology to record its current location in the real facility using respective locations in the virtual building model. For example, geolocation anchors are coupled to the network.

在一些實施例中,使用行動裝置(例如,智慧型電話、平板電腦、或手持型控制器)偵測各別目標裝置的調測資料並將調測資料傳輸至虛擬建築物模型及/或BIM系統。行動裝置可包括地理追蹤能力(例如,GPS、UWB、藍牙、及/或航位推算),使得行動裝置的位置座標可使用由使用者建立在行動裝置與虛擬建築物模型之間的任何合適網路連接傳輸至虛擬建築物模型。舉例而言,網路連接可至少部分地包括由設施內之階層式控制器網路使用的輸送鏈路。網路連接可與設施之控制器網路(例如,使用諸如蜂巢式網路之無線網路)分離。目標裝置可配備有光學可辨識ID標籤(例如,具有條碼或快速回應(QR)碼之貼紙)。行動裝置與目標裝置的互動可用以使用唯一識別碼及/或與ID碼(例如,包含在ID標籤中)相關聯的目標裝置有關的其他資訊填充虛擬建築物模型中之目標裝置的虛擬表示。In some embodiments, a mobile device (eg, a smartphone, a tablet, or a handheld controller) is used to detect debugging data of each target device and transmit the debugging data to the virtual building model and/or BIM system. The mobile device may include geo-tracking capabilities (e.g., GPS, UWB, Bluetooth, and/or dead reckoning) such that the location coordinates of the mobile device may be determined using any suitable network established by the user between the mobile device and the virtual building model. Road connections are transferred to the virtual building model. For example, network connections may include, at least in part, transport links used by a hierarchical network of controllers within a facility. The network connection may be separate from the facility's controller network (eg, using a wireless network such as a cellular network). The target device can be equipped with an optically identifiable ID tag (eg, a sticker with a barcode or quick response (QR) code). Interaction of the mobile device with the target device may be used to populate a virtual representation of the target device in the virtual building model with a unique identification code and/or other information about the target device associated with the ID code (eg, contained in an ID tag).

9顯示控制系統 900的實例實施例,其中實際實體建築物 910包括用於管理及控制互動網路裝置(例如,一或多個可著色窗)的控制器網路 920。控制器網路 920包括一或多個控制器,諸如,例如,包含處理器的主控制器、網路控制器、及本地控制器中之一或多者。建築物 910的結構及內容作為經執行以管理建築物 910的計算資產及/或控制建築物 910的一或多個環境條件的模型化及/或模擬系統的部分表示在3-D模型虛擬建築物模型 930中。計算資產可與建築物 910及/或控制器網路 920共置或遠離其。 FIG9 shows an example embodiment of a control system 900 in which an actual physical building 910 includes a controller network 920 for managing and controlling interactive network devices (e.g., one or more colorable windows). The controller network 920 includes one or more controllers, such as, for example, one or more of a master controller including a processor, a network controller, and a local controller. The structure and content of the building 910 are represented in a 3-D model virtual building model 930 as part of a modeling and/or simulation system executed to manage computing assets of the building 910 and/or control one or more environmental conditions of the building 910. The computing assets may be co-located with or remote from the building 910 and/or the controller network 920 .

在所繪示實例中,網路鏈路 940連接控制器網路 920與互動目標裝置 912(例如,可著色窗,諸如電致變色窗)。將互動目標裝置 912表示為虛擬建築物模型 930內的虛擬物件 932。建築物 910中的網路鏈路 940連接控制器網路 920與包括一或多個網路互動目標計算裝置的複數個網路節點。在所繪示實例中,網路鏈路 940連接控制器網路 920與互動目標裝置 912。將互動目標裝置 912表示為虛擬建築物模型 930內的虛擬物件 932。網路鏈路 950連接控制器網路 920與虛擬建築物模型 930。在所繪示實例中,將客戶 914顯示成位於建築物 900中且與行動裝置(例如,手持型控制單元) 916通訊。建築物 900包括與客戶 914相關聯的實體空間 918。建築物 910中的實體空間 918藉由虛擬建築物模型 930中的虛擬空間 938表示。在某些實施方案中,實體空間 918中的實體可著色窗係藉由虛擬建築物模型 930中的虛擬可著色窗表示。行動裝置 916可包括經整合掃描能力(例如,用於擷取條碼或QR碼之影像的攝影機),及/或可包括識別擷取裝置(例如,經由藍牙鏈路與行動裝置 916連接的,例如,手持型條碼掃描器)或與該識別擷取裝置通訊。ID標籤可包含,例如,RFID、UWB、放射性、反射性、或吸收性材料以促成各種掃描工具(例如,識別擷取裝置)的使用。ID標籤上之碼或所列印事項可包含裝置類型、目標裝置之電子及/或材料性質、序號、類型、組件部分之識別符、製造商、製造日期及/或任何其他相關資訊。 In the illustrated example, a network link 940 connects the controller network 920 and an interactive target device 912 (e.g., a tintable window, such as an electrochromic window). The interactive target device 912 is represented as a virtual object 932 within the virtual building model 930. The network link 940 in the building 910 connects the controller network 920 and a plurality of network nodes including one or more network interactive target computing devices. In the illustrated example, the network link 940 connects the controller network 920 and the interactive target device 912. The interactive target device 912 is represented as a virtual object 932 within the virtual building model 930 . A network link 950 connects the controller network 920 and the virtual building model 930. In the illustrated example, a customer 914 is shown as being located in the building 900 and communicating with a mobile device (e.g., a handheld control unit) 916. The building 900 includes a physical space 918 associated with the customer 914. The physical space 918 in the building 910 is represented by a virtual space 938 in the virtual building model 930. In some embodiments, a physical colorable window in the physical space 918 is represented by a virtual colorable window in the virtual building model 930 . Mobile device 916 may include integrated scanning capabilities (e.g., a camera for capturing images of barcodes or QR codes), and/or may include or communicate with an identification capture device (e.g., a handheld barcode scanner connected to mobile device 916 via a Bluetooth link). The ID tag may include, for example, RFID, UWB, radioactive, reflective, or absorptive materials to facilitate the use of various scanning tools (e.g., identification capture devices). The code or printed items on the ID tag may include the device type, electronic and/or material properties of the target device, serial number, type, component part identifiers, manufacturer, manufacturing date, and/or any other relevant information.

在某些實施方案中,儲存在伺服器(例如,雲端網路上及/或設施內的伺服器)上的設施的虛擬建築物模型可即時地或大約即時地更新,以包括一或多個客戶偏好,諸如設施之內部空間的條件。在一些情形中,更新虛擬建築物模型以即時地或大約即時地顯示對設施中的一或多個裝置(例如, 9中的互動目標裝置 912)的調整。例如,虛擬建築物模型可即時地或大約即時地更新以模型化設施的未來行為。例如,客戶可互動地選擇虛擬建築物模型中的內部空間以調整該空間中的較佳光量。將較佳光量的客戶偏好傳達至伺服器並即時地或大約即時地儲存在虛擬建築物模型中。將符合較佳條件之虛擬窗的未來經調整色調位準,及/或經更新虛擬建築物模型中之內部空間的未來照度位準的視覺表示可即時地或大約即時地提供給使用者以顯示設施的未來行為。經更新虛擬建築物模型之虛擬空間中的未來照度位準的視覺表示的實例顯示於 13B中。 In some embodiments, a virtual building model of a facility stored on a server (e.g., a server on a cloud network and/or within a facility) can be updated on or near real-time to include one or more customers Preferences, such as the conditions of the interior space of a facility. In some cases, the virtual building model is updated to display adjustments to one or more devices in the facility (eg, interaction target device 912 in FIG. 9 ) on the fly or approximately immediately. For example, a virtual building model can be updated on-the-fly or near-instantly to model the future behavior of the facility. For example, customers can interactively select an interior space in a virtual building model to adjust the optimal amount of light in that space. Customer preferences for better light amounts are communicated to the server and stored in the virtual building model real-time or approximately real-time. A visual representation of the future adjusted tint level of the virtual window that meets the better conditions and/or the future illumination level of the interior space in the updated virtual building model can be provided to the user immediately or approximately immediately. Future behavior of the facility. An example of a visual representation of future illumination levels in the virtual space of an updated virtual building model is shown in Figure 13B .

數位孿生、使用者介面、調測、網路、智慧型物件、建築物及空間的3D表示、可著色窗的區及可著色窗的其他分組、及控制可著色窗的一些實例描述於2021年8月12日申請之發明名稱為「AUTOMATED COMMISSIONING OF CONTROLLERS IN A WINDOW NETWORK」之美國專利申請案序號第17,400,596號中,其特此以全文引用方式併入本文中。 III. 最佳化程序的介紹 Some examples of digital twins, user interfaces, debugging, networks, smart objects, 3D representations of buildings and spaces, regions of tintable windows and other groupings of tintable windows, and controlling tintable windows are described in U.S. Patent Application Serial No. 17,400,596, filed on August 12, 2021, entitled "AUTOMATED COMMISSIONING OF CONTROLLERS IN A WINDOW NETWORK," which is hereby incorporated by reference in its entirety. III. Introduction of Optimization Procedures

在高層級,本文描述的某些著色方法包括迭代程序(有時稱為「最佳化程序」),其經設計以在建築物的一或多個內部空間中建立自然光的目標照度位準或勒克斯位準及/或其他內部條件(例如,色彩或光、熱取得等)。此最佳化程序迭代地調整(例如,通過一或多個迭代)虛擬建築物模型中的一或多個可著色窗的(多個)透射率位準,直到內部空間中的自然光的照度位準到達或大約到達目標位準。給定建築物上之來自天空的外部光,虛擬建築物模型中的一或多個可著色窗之經調整以在一或多個空間中產生自然光的目標位準,或光的大約目標位準的(多個)透射率位準的作用如同可調整旋鈕(獨立變數)。作為判定在空間中產生期望目標勒克斯所需之透射率的部分,計算從建築物外側的天空傳輸通過可著色窗至(多個)內部空間的光。傳輸至建築物中的此外部光係基於使用感測器讀數衰減的經預測晴空資料計算。內部空間中的照度位準係根據下文描述的三相模型基於從天空、通過可著色窗、並至建築物內的內部空間中的外部光的通量轉移計算。來自天空的外部光係藉由建築物上方的虛擬天空圓頂模擬。天空圓頂係基於經預測晴空資料及來自一或多個感測器的經測量光,諸如來自在建築物之屋頂上的多感測器裝置中的複數個光感測器。如下文更詳細地描述的,經預測晴空資料的一或多個態樣係基於經測量光資料調整,以提供來自天空之外部光的準確的真實世界近似。接著使用來自最佳化程序的(多個)透射率位準判定建築物中的一或多個可著色窗的最終色調狀態。 三相模型 At a high level, certain tinting methods described herein include an iterative process (sometimes referred to as an "optimization process") designed to establish a target illumination level or lux level of natural light and/or other interior conditions (e.g., color or light, thermal gain, etc.) in one or more interior spaces of a building. This optimization process iteratively adjusts (e.g., through one or more iterations) the transmittance level(s) of one or more tintable windows in the virtual building model until the illumination level of natural light in the interior space reaches or approximately reaches the target level. Given external light from the sky on the building, the transmittance level(s) of the one or more tintable windows in the virtual building model that are adjusted to produce a target level of natural light, or approximately a target level of light, in the one or more spaces acts like an adjustable knob (independent variable). As part of determining the transmittance required to produce a desired target lux in the space, light transmitted from the sky outside the building through the tintable windows to the interior space(s) is calculated. This exterior light transmitted into the building is calculated based on predicted clear sky data using sensor reading attenuation. The illuminance level in the interior space is calculated based on the flux transfer of exterior light from the sky, through the tintable windows, and into the interior space within the building according to the three-phase model described below. The exterior light from the sky is simulated by a virtual sky dome above the building. The sky dome is based on predicted clear sky data and measured light from one or more sensors, such as from a plurality of photosensors in a multi-sensor device on the roof of the building. As described in more detail below, one or more aspects of the predicted clear sky data are adjusted based on the measured light data to provide an accurate real-world approximation of external light from the sky. The transmittance level(s) from the optimization procedure are then used to determine the final tint state of one or more tintable windows in the building. Three-Phase Model

從天空、通過可著色窗、且至建築物內部之光通量轉移的三相模型可用以將光至建築物之內部空間的傳輸模型化。三相模型可包括在建築物的3D模型或建築物的虛擬建築物模型(例如,數位孿生)中。三相模型可用以判定在建築物內部中的一或多個網格點(具有x、y、z座標)的照度或勒克斯位準。用語「網格點(grid point)」或「點(point)」通常係指以三維座標(x, y, z)及方向座標(x方向、y方向、z方向)表示的虛擬位置。三相模型將從天空至網格點的通量轉移路徑分解成與三個獨立通量轉移矩陣相關聯的三個區段:(i)檢視「V」矩陣–建築物中的可著色窗與網格點之間的通量轉移、(ii)傳輸「T」矩陣–通過可著色窗的通量轉移、及(iii)日光「D矩陣」–天空與可著色窗的外部之間的通量轉移。三相模型的一實例可見於Subramaniam, Sarith, “Daylight Simulations with Radiance using Matrix-based Methods,” (October 2017),其以全文引用方式併入本文中。天空與建築物內的網格點的向量之間的總通量轉移係藉由矩陣乘積VTD表示。A three-phase model of light flux transfer from the sky, through tintable windows, and into the interior of a building can be used to model the transmission of light into the interior spaces of a building. The three-phase model may be included in a 3D model of the building or a virtual building model (eg, a digital twin) of the building. The three-phase model can be used to determine the illuminance or lux level at one or more grid points (with x, y, z coordinates) within a building interior. The term "grid point" or "point" usually refers to a virtual position represented by three-dimensional coordinates (x, y, z) and directional coordinates (x direction, y direction, z direction). The three-phase model decomposes the flux transfer path from the sky to the grid points into three segments associated with three independent flux transfer matrices: (i) View “V” matrix – tintable windows in buildings and Flux transfer between grid points, (ii) transport ‘T’ matrix – flux transfer through tintable windows, and (iii) daylight ‘D matrix’ – flux between sky and exterior of tintable windows transfer. An example of a three-phase model can be found in Subramaniam, Sarith, “Daylight Simulations with Radiance using Matrix-based Methods,” (October 2017), which is incorporated by reference in its entirety. The total flux transfer between the vectors of the sky and grid points within the building is represented by the matrix product VTD.

給定對應於在建築物之地理位置的天空條件之亮度值的「S」矩陣,矩陣方程式E = VTDS可用以獲得表示在各網格點的照度或勒克斯位準的照度矩陣「E」。在一個態樣中,晴空「S」矩陣的係數可基於來自建築物上方之天空中的光分布的虛擬天空圓頂模型模擬(年度或時間上的單一點)的資料輸出。在某些態樣中,「S」矩陣的係數對應於在特定地理位置(諸如設施的地理位置)在多個時間點(例如,一年內)的晴空條件的亮度位準。在某些態樣中,「S」向量代表對應於在特定地理位置在單一時間點的天空條件之亮度位準的向量。「S」矩陣可藉由加入不同時間點的多個「S」向量計算。國際照明委員會(CIE)及美國供暖、製冷、及空調工程師學會(ASHRAE)提供使用歷史天氣資料的天空模型化方法的實例,其可用以在各種時間點之各種天氣條件下判定用於輸入至「S」矩陣中的亮度值。此等模型可提供藉由方位角及天頂角參數化的直接及漫射亮度值。「S」矩陣係數係藉由離散化基本天空圓頂模型而獲得。可使用的離散方案的一些實例包括Tregenza方案及Reinhart方案。在一個態樣中,晴空「S」矩陣的係數可基於來自建築物上方之天空中的光分布的虛擬天空圓頂模型模擬(年度或時間上的點)的資料輸出。Given an "S" matrix of brightness values corresponding to sky conditions at a building's geographic location, the matrix equation E = VTDS may be used to obtain an illuminance matrix "E" representing the illuminance or lux levels at each grid point. In one aspect, the coefficients of the clear sky "S" matrix may be based on data output from a virtual sky dome model simulation (annual or single point in time) of the light distribution in the sky above the building. In certain aspects, the coefficients of the "S" matrix correspond to brightness levels for clear sky conditions at a particular geographic location (e.g., the facility's geographic location) at multiple points in time (e.g., within a year). In certain aspects, an "S" vector represents a vector corresponding to brightness levels for sky conditions at a particular geographic location at a single point in time. The "S" matrix may be calculated by adding multiple "S" vectors at different points in time. The International Commission on Illumination (CIE) and the American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE) provide examples of sky modeling methods using historical weather data that can be used to determine luminance values for input into the "S" matrix under various weather conditions at various points in time. These models can provide direct and diffuse luminance values parameterized by azimuth and zenith angle. The "S" matrix coefficients are obtained by discretizing a basic sky dome model. Some examples of discrete schemes that can be used include the Tregenza scheme and the Reinhart scheme. In one aspect, the coefficients for the clear sky "S" matrix can be based on data output from a virtual sky dome model simulation (annual or point in time) of the light distribution in the sky above a building.

在一個態樣中,天空「S」矩陣包括基於對應於晴空條件的經預測值及基於感測器讀數的經測量光資料的係數。在一個實例中,經測量光資料係用以衰減或調整經斷定值。在一些情形中,基於感測器讀數將比例因子施加至經斷定值。例如,若對應於來自感測器之讀數的照度值高於感測器映射至其之光斑的照度值,照度值可以0.10的比例因子增加。In one aspect, the sky "S" matrix includes coefficients based on predicted values corresponding to clear sky conditions and measured light data based on sensor readings. In one example, the measured light data is used to attenuate or adjust the determined values. In some cases, a scaling factor is applied to the determined values based on the sensor readings. For example, if the illuminance value corresponding to the reading from the sensor is higher than the illuminance value of the light spot to which the sensor maps, the illuminance value can be increased by a scaling factor of 0.10.

10係根據一實施方案之藉由三相模擬模型模擬之從天空 1001至建築物之內部空間(例如,房間) 1020中之網格點 1005的通量轉移路徑的示意繪示。如圖所示,三相模型將從天空「S」 1001至網格點 1005的通量轉移路徑 1007分段在三個相位中:(i)自天空 1001至可著色窗 1012的外部的第一通量轉移,表示為「D」日光相位、(ii)通過可著色窗 1012的第二通量轉移,表示為「T」透射率相位、及(i)從可著色窗 1012至內部空間 1020中的網格點 1005的第三通量轉移,表示為「V」檢視相位。 10 is a schematic representation of a flux transfer path from the sky 1001 to a grid point 1005 in an interior space (e.g., a room) 1020 of a building simulated by a three-phase simulation model according to one embodiment. As shown, the three-phase model segments the flux transfer path 1007 from the sky "S" 1001 to the grid point 1005 into three phases: (i) a first flux transfer from the sky 1001 to the exterior of the tintable window 1012 , denoted as the "D" daylight phase, (ii) a second flux transfer through the tintable window 1012 , denoted as the "T" transmittance phase, and (i) a third flux transfer from the tintable window 1012 to the grid point 1005 in the interior space 1020 , denoted as the "V" viewing phase.

可使用各種軟體(諸如開放原始碼軟體RADIANCE)產生V、T、D、及S矩陣的係數。採用RADIANCE可能首先需要將虛擬建築物模型(例如,BIM檔案)轉換成RADIANCE所預期的檔案格式。HONEYBEE係經設計以將BIM檔案轉換成用於至RADIANCE中之輸入的適當格式的開放原始碼軟體的實例。V,T、及D矩陣係使用衍生自,例如,虛擬建築物模型(BIM檔案)的地點幾何(例如,建築物的位置)開發。在一個態樣中,三相模型可藉由至少三個操作產生,包括(1)藉由計算通量轉移矩陣V、T、及D而追蹤從室內空間中的點至天空的光路徑、(2)藉由從,例如,虛擬天空圓頂模擬計算「S」天空向量而評估天空的亮度、及(3)使天空的亮度(照度)與空間內側的亮度有關。在一個態樣中,「S」天空向量可包括在虛擬天空圓頂的時間模擬點在建築物上方之天空的不同位置的照度位準。在一個實例中,照度值可包括基於來自複數個感測器的經測量亮度位準而衰減的經預測亮度值(對應於晴空條件)。在一些情形中,對於經預測亮度值之藉由來自複數個感測器之各感測器的讀數所得的衰減貢獻進行縮放。The coefficients of the V, T, D, and S matrices may be generated using various software, such as the open source software RADIANCE. Employing RADIANCE may first require converting a virtual building model (e.g., a BIM file) into a file format expected by RADIANCE. HONEYBEE is an example of open source software designed to convert BIM files into a suitable format for input into RADIANCE. The V, T, and D matrices are developed using site geometry (e.g., the location of a building) derived from, for example, a virtual building model (BIM file). In one aspect, a three-phase model may be generated by at least three operations, including (1) tracing a light path from a point in an indoor space to the sky by computing flux transfer matrices V, T, and D, (2) evaluating the brightness of the sky by computing an "S" sky vector from, for example, a virtual sky dome simulation, and (3) relating the brightness of the sky (illuminance) to the brightness inside the space. In one aspect, the "S" sky vector may include illuminance levels at different locations in the sky above a building at a point in time simulation of the virtual sky dome. In one example, the illuminance values may include predicted brightness values (corresponding to clear sky conditions) attenuated based on measured brightness levels from a plurality of sensors. In some cases, the predicted brightness value is scaled by the attenuated contribution of the readings from each of the plurality of sensors.

在一個態樣中,表示單一可著色窗的「V」檢視矩陣可具有分析網格點的數目乘以進入入射角度的數目(如藉由離散化判定)的尺寸、表示單一可著色窗的「T」透射率矩陣可具有射出入射角度的數目乘以進入入射角度的數目的尺寸、且表示單一可著色窗的「D」日光矩陣可具有射出入射角的數目乘以進入入射角度的數目的尺寸。在各個態樣中,「S」天空向量通常具有虛擬天空圓頂中之經離散化天空光斑之數目的尺寸。入射角度可指光在特定通量轉移平面以其行進「進入」或「離開」的角度。可在三相方法照度模型化中使用之離散方案的實例係Reinhart離散化方案及Tregenza離散化方案。In one aspect, a "V" view matrix representing a single colorable window may have a size of the number of analytical grid points times the number of incoming incident angles (as determined by discretization), a "T" transmittance matrix representing a single colorable window may have a size of the number of outgoing incident angles times the number of incoming incident angles, and a "D" daylight matrix representing a single colorable window may have a size of the number of outgoing incident angles times the number of incoming incident angles. In various aspects, the "S" sky vector typically has a size of the number of discretized sky spots in a virtual sky dome. The angle of incidence may refer to the angle at which light "enters" or "leaves" a particular flux transfer plane with which it travels. Examples of discretization schemes that may be used in three-phase method illumination modeling are the Reinhart discretization scheme and the Tregenza discretization scheme.

藉由乘出VTDS、可判定從各可著色窗及/或建築物的立面至各網格點的照度(勒克斯)貢獻。對於單一立面或可著色窗,「V」檢視矩陣指定(藉由入射角度)從立面或可著色窗進行的光至一組網格點之各成員之間的光通量轉移。再者,對於單一立面或可著色窗,「D」日光矩陣指定以不同入射角度從天空的經離散化光斑(例如,藉由光圓頂的對應光斑模擬)至立面或可著色窗的通量轉移。額外地,對於單一時間點,「S」天空向量指定在光圓頂中之天空之各光斑的強度(亮度)。在一個實例中,「D」日光矩陣可基於建築物中的可著色窗的孔隙(例如,尺寸及定向)及如包括在數位孿生中之內部及外部幾何二者計算。By multiplying out VTDS, the illuminance (lux) contribution from each tintable window and/or building facade to each grid point can be determined. For a single facade or tintable window, the "V" view matrix specifies the light flux transfer (by angle of incidence) from the facade or tintable window to each member of a set of grid points. Furthermore, for a single facade or tintable window, the "D" daylight matrix specifies the flux transfer from a discretized light spot of the sky (e.g., simulated by the corresponding light spot of a light dome) to the facade or tintable window at different angles of incidence. Additionally, for a single point in time, the "S" sky vector specifies the intensity (brightness) of each light spot of the sky in the light dome. In one example, the "D" daylight matrix can be calculated based on the aperture (e.g., size and orientation) of the tintable windows in the building and both the interior and exterior geometry as included in the digital twin.

11係根據一態樣之在x座標通過可著色窗的孔隙 1113將照度(L α)提供至房間 1120中及至網格點 1105之虛擬天空圓頂的天空光斑 1102(ΔS α)的示意繪示。天空光斑 1102(S α)具有角尺寸、照度(L α)、及方向。從天空光斑 1102(S α)至網格點 1105(座標X(x,y,z))的通量轉移E(x) α係基於該通量轉移的三相模型判定。在座標X的照度位準係基於來自虛擬天空圓頂之光斑的照度位準使用E(x) α= VTDS判定。 天空圓頂 FIG. 11 is a schematic illustration of a sky spot 1102 (ΔS α ) providing illuminance (L α ) to a virtual sky dome in a room 1120 and to a grid point 1105 at an x coordinate through an aperture 1113 of a tintable window according to one aspect. The sky spot 1102 (S α ) has an angular size, illuminance (L α ), and direction. The flux transfer E(x) α from the sky spot 1102 (S α ) to the grid point 1105 (coordinates X(x,y,z)) is determined based on a three-phase model of the flux transfer. The illuminance level at coordinate X is determined based on the illuminance level of the spot from the virtual sky dome using E(x) α = VTDS. Sky Dome

「天空圓頂(sky dome)」係指表示來自,例如,表示在設施(諸如建築物)上方之天空的天體半球(替代地,其他形狀)之亮度分布的模型。亮度分布表示在天空的不同區或光斑的光強度。亮度分布可表示經測量亮度值(例如,來自感測器讀數)及/或經模擬亮度值。在某些態樣中,天空圓頂將照度分布判定為建築物的地理位置(例如,經度、緯度、子午線)、時間、及來自,例如,在建築物之地點的一或多個感測器的物理測量輻射資料的函數。在一個態樣中,天空圓頂模擬亦計及歷史天氣資料。來自天空圓頂的經模擬資料可用以產生年度及/或單一時間點的照度分布。此等照度分布可用以產生用於光通量之三相模型的「S」天空向量及/或「S」矩陣。"Sky dome" refers to a model that represents the distribution of brightness from, for example, a celestial hemisphere (alternatively, other shapes) representing the sky above a facility (such as a building). The brightness distribution represents the intensity of light in different regions or spots of the sky. The brightness distribution can represent measured brightness values (e.g., from sensor readings) and/or simulated brightness values. In some aspects, the sky dome determines the illuminance distribution as a function of the geographic location of the building (e.g., longitude, latitude, meridian), time, and physically measured radiation data from one or more sensors, for example, at the location of the building. In one aspect, the sky dome simulation also takes into account historical weather data. The simulated data from the sky dome can be used to generate annual and/or single point in time illuminance distributions. These illuminance distributions can be used to generate the "S" sky vector and/or "S" matrix for a three-phase model of luminous flux.

天空圓頂經離散化成複數個光斑(例如,彎曲的三維區段)。各補光片在方位及高度方向上覆蓋立體角度。 12A係具有複數個145個光斑 1120的天空圓頂 1210的繪示。在本說明中,天空圓頂 1210具有半球形狀且光斑係半球的立體角度區段,各區段在方位及高度方向上覆蓋立體角度。在此實例中,光斑 1220覆蓋0度至6度、6度至18度、18度至30度、30度至42度、42度至54度、54度至66度、66度至78度、及78度至90度的方位/高度立體角度。在其他實例中,其他立體角度可由光斑覆蓋。額外地或替代地,可使用其他的光斑形狀、光斑的數目、及/或天空圓頂的形狀。例如,可使用半球的立體角度矩形區段。 12B 12A中之天空圓頂 1210之2D投影的繪示。2D投影包括各光斑的光斑id數(1至145)以及其在各光斑之中心或形心的方位角度及高度角。 The sky dome is discretized into a plurality of spots (e.g., curved three-dimensional segments). Each fill light covers a stereo angle in azimuth and altitude. FIG. 12A is a depiction of a sky dome 1210 having a plurality of 145 spots 1120. In the present description, the sky dome 1210 has a hemispherical shape and the spots are stereo angle segments of a hemisphere, each segment covering a stereo angle in azimuth and altitude. In this example, the spots 1220 cover azimuth/altitude stereo angles of 0 to 6 degrees, 6 to 18 degrees, 18 to 30 degrees, 30 to 42 degrees, 42 to 54 degrees, 54 to 66 degrees, 66 to 78 degrees, and 78 to 90 degrees. In other examples, other stereo angles may be covered by the spots. Additionally or alternatively, other spot shapes, numbers of spots, and/or shapes of the sky dome may be used. For example, a three-dimensional rectangular segment of a hemisphere may be used. FIG. 12B is a depiction of a 2D projection of the sky dome 1210 in FIG . 12A . The 2D projection includes the spot id number (1 to 145) of each spot and its azimuth and altitude angle at the center or centroid of each spot.

在某些態樣中,「S」天空向量及/或「S」天空矩陣可包括基於由天空圓頂之光斑提供之資料的係數。在一些情形中,在一年時間區內以間隔(例如,2分鐘時間間隔、3分鐘時間間隔、五分鐘時間間隔、或十(10)分鐘時間間隔)對各光斑判定照度以判定「S」天空矩陣的係數。在一個實例中,用以判定係數的照度值係基於(1)歷史天氣條件統計,包括直接及漫射水平照度值及露點、(2)晴空照度值、及/或(3)感測器讀數判定。在一個實例中,各光斑的照度值係藉由橫跨光斑均勻地取樣照度值而計算。In certain aspects, the "S" sky vector and/or the "S" sky matrix may include coefficients based on data provided by the light spots of the sky dome. In some cases, the illuminance is determined for each light spot at intervals (e.g., 2 minute intervals, 3 minute intervals, 5 minute intervals, or 10 minute intervals) over a one year time period to determine the coefficients for the "S" sky matrix. In one example, the illuminance values used to determine the coefficients are determined based on (1) historical weather condition statistics, including direct and diffuse horizontal illuminance values and dew point, (2) clear sky illuminance values, and/or (3) sensor readings. In one example, the illuminance value for each light spot is calculated by sampling the illuminance values uniformly across the light spot.

天空圓頂基於由感測器讀數衰減的晴空資料產生照度分布以反映天空中的動態改變(障礙及反射)。各種軟體(諸如開放原始碼RADIANCE)可用以產生晴空資料以初始化天空圓頂之光斑的照度值。晴空資料係基於建築物的地理位置(例如,經度、緯度、子午線)及時間計算。來自一或多個感測器的感測器資料接著可用以衰減天空圓頂模型中的晴空資料以基於經衰減晴空資料以使用即時(或大約即時)值產生即時天空圓頂模型。The sky dome generates an illuminance distribution based on clear sky data attenuated by sensor readings to reflect dynamic changes in the sky (obstructions and reflections). Various software (such as the open source RADIANCE) can be used to generate clear sky data to initialize the illuminance values of the sky dome's light spots. The clear sky data is calculated based on the building's geographic location (e.g., longitude, latitude, meridian) and time. Sensor data from one or more sensors can then be used to attenuate the clear sky data in the sky dome model to generate a real-time sky dome model based on the attenuated clear sky data using real-time (or approximately real-time) values.

在某些態樣中,為衰減天空圓頂模型中的晴空資料,使用來自一或多個感測器之經測量光資料的感測器讀數判定施加至天空圓頂之光斑之晴空資料的照度值的衰減比例因子。例如,在特定時間區間,光斑的晴空貢獻可係500,000勒克斯。然而,根據多感測器裝置的一或多個光感測器,在天空之藉由光斑表示的部分中存在雨雲,其導致照度位準從晴空值降低大約70%。基於此等即時感測器讀數,可判定0.70或更高的衰減比例因子,且將該比例因子施加至光斑的照度值。在一些情形中,將比例因子定界在諸如,例如,[0.2, 1]、[0.5, 1]的範圍內。將衰減比例因子定界至一範圍施加至傳統衰減因子。例如,若感測器故障且讀取0照度位準,若衰減比例因子定界在[0.2, 1]之間,施加0.20而非0的衰減比例因子。In certain aspects, to attenuate clear sky data in a sky dome model, sensor readings of measured light data from one or more sensors are used to determine an attenuation scaling factor for the illuminance value of the clear sky data applied to a light spot of the sky dome. For example, during a particular time period, the clear sky contribution of the light spot may be 500,000 lux. However, according to one or more light sensors of the multi-sensor device, rain clouds are present in the portion of the sky represented by the light spot, which causes the illuminance level to be reduced by approximately 70% from the clear sky value. Based on these real-time sensor readings, an attenuation scaling factor of 0.70 or higher may be determined and applied to the illuminance value of the light spot. In some cases, the scaling factor is bounded within a range such as, for example, [0.2, 1], [0.5, 1]. Bounds the attenuation scale factor to a range to be applied to the traditional attenuation factor. For example, if the sensor fails and reads a 0 illuminance level, if the attenuation scale factor is bounded between [0.2, 1], an attenuation scale factor of 0.20 is applied instead of 0.

在某些實施方案中,使用具有經衰減晴空資料的即時天空圓頂及具有一或多個可著色窗的建築物(例如,BIM檔案或數位孿生)的三維模型預測在建築物內的一或多個網格點的光(例如,自然光)量。使用經衰減晴空資料的即時天空圓頂判定建築物上方的外部光的照度分布及其光斑的個別貢獻。使用三相位模型及建築物的三維虛擬模型以基於即時天空圓頂模型中之模擬至建築物之外部光的光斑的照度貢獻而判定在建築物內部的一或多個網格點的照度位準。In certain embodiments, a real-time sky dome with attenuated clear sky data and a three-dimensional model of a building with one or more tintable windows (e.g., a BIM file or digital twin) is used to predict the amount of light (e.g., natural light) at one or more grid points within the building. The real-time sky dome with attenuated clear sky data is used to determine the illuminance distribution of external light above the building and the individual contributions of its light spots. The three-phase model and the three-dimensional virtual model of the building are used to determine the illuminance level of one or more grid points inside the building based on the illuminance contribution of the light spots of external light simulated to the building in the real-time sky dome model.

在一個態樣中,使用經衰減晴空資料的即時天空圓頂係基於對未來時間判定的晴空資料。例如,晴空資料可將可著色窗的轉變時間列入考量以用於未來時間。晴空資料可針對未來時間判定,使得電壓曲線可提前該未來時間至少轉變時間施加至可著色窗,以允許可著色窗在該未來時間之前轉變至新色調狀態。In one aspect, a real-time sky dome using attenuated clear sky data is based on clear sky data determined for a future time. For example, the clear sky data can take into account a transition time of a tintable window for use at the future time. The clear sky data can be determined for the future time such that a voltage curve can be applied to the tintable window at least the transition time in advance of the future time to allow the tintable window to transition to a new tint state before the future time.

13A係描繪光斑之基於經衰減晴空資料之照度值之 12A所示之天空圓頂 1201的2D投影的繪示。在此繪示中,頂部係北方、底部係南方、右側係東方、且左側係西方。在中心的光斑垂直地指向上。天空圓頂包括經衰減晴空資料(例如,藉由將經測量光資料使用為施加至經預測晴空資料的比例因子而以經即時測量光資料衰減的經預測晴空資料)。光斑的照度值藉由陰影繪示。在此繪示中,一組四個光斑 1311經顯示成具有正照度值且其他光斑具有零照度值。 Figure 13A is an illustration of a 2D projection of the sky dome 1201 shown in Figure 12A depicting light spots based on illuminance values of attenuated clear sky data. In this illustration, the top is north, the bottom is south, the right is east, and the left is west. The light spot in the center points vertically upward. The sky dome includes attenuated clear sky data (eg, predicted clear sky data that is attenuated by real-time measured light data by using the measured light data as a scaling factor applied to the predicted clear sky data). The illumination value of the light spot is represented by shading. In this illustration, a set of four spots 1311 is shown with positive illuminance values and the other spots with zero illuminance values.

13B係與 13A所示之天空圓頂 1310結合使用之虛擬建築物模型的2D俯視圖的繪示。繪示顯示藉由來自天空之藉由 13A所示之該組四個光斑 1311中的正照度位準提供的經衰減外部光在建築物內部中導致的照度位準。例如,來自建築物外側的照度經顯示成在2D或x-y平面上延伸至建築物中。鑒於照度係基於半球的南方部分,見到該光在一般北南方向上輻射至建築物中,且具有以北方為基的向量。此圖13B亦例示經衰減晴空資料可如何定位在建築物的虛擬模型上。使用建築物的3D模型及其實體特性(例如,窗形狀、尺寸、及位置,加上突出物及外部建築物特徵),經衰減晴空資料可用以將光投影至建築物內部空間中。 Figure 13B is an illustration of a 2D top view of a virtual building model used in conjunction with the sky dome 1310 shown in Figure 13A . The illustration shows the illumination levels caused in the interior of a building by attenuated external light from the sky provided by positive illumination levels in the set of four spots 1311 shown in Figure 13A . For example, illumination from the outside of a building is shown extending into the building in a 2D or xy plane. Since illumination is based on the southern part of the hemisphere, the light is seen to radiate into the building in a general north-south direction, with a north-based vector. This Figure 13B also illustrates how attenuated clear sky data can be positioned on a virtual model of a building. Using the 3D model of the building and its physical properties (e.g., window shape, size, and location, plus protrusions and exterior building features), the attenuated clear-sky data can be used to project light into the interior space of the building.

13C係虛擬建築物模型中之可著色窗之各者的透射率位準的長條圖。此組透射率與圖 13A中的天空亮度值組合產生如 13B中所見之在該空間中的不同點的水平平面照度。 Figure 13C is a bar graph of transmittance levels for each of the tintable windows in the virtual building model. This set of transmittances combined with the sky brightness values in Figure 13A produces the horizontal plane illuminance at different points in the space as seen in Figure 13B .

即時天空圓頂可用以產生年度及/或時間點的日光模擬以判定在建築物之上的天空的不同位置(例如,光斑位置)的照度值。天空圓頂的年度模擬可用一年時間週期內的照度值來填充天空「S」矩陣。天空圓頂之時間模擬中的點可用在單一時間在建築物之上的天空的不同位置的照度值來填充天空「S」向量。例如,使用來自光斑的照度值產生「S」天空向量的分量。 用以衰減晴空資料的感測器資料 The real-time sky dome can be used to generate annual and/or point-in-time daylight simulations to determine illuminance values at different locations (e.g., light spot locations) in the sky above a building. The sky dome's annual simulation can populate the sky "S" matrix with illuminance values over a one-year time period. Points in the sky dome's temporal simulation can populate the sky "S" vector with illuminance values at different locations in the sky above a building at a single time. For example, components of the "S" sky vector are generated using illuminance values from light spots. Sensor data to attenuate clear sky data

在某些態樣中,天空圓頂模型的晴空資料係使用來自一或多個感測器(例如,一或多個光感測器)所取得之讀數的感測器資料衰減。在一個態樣中,感測器資料係基於來自複數個光感測器的讀數。感測器資料可基於來自多感測器設備(諸如位於建築物之屋頂上的多感測器設備(有時稱為「天空感測器」))之光感測器的讀數。在一個態樣中,多感測器設備包括水平地定向且沿著圓形外殼的圓周在方位上相等地分布的複數個(例如,8、10、12個等)光感測器。在一個實例中,此等感測器可視為在中心軸周圍徑向地配置且相等地間隔開。在一個實施方案中,多感測器設備具有指向地平線並沿著圓形外殼的圓周在方位上相等地分布的十二(12)個光感測器、垂直地指向上的一(1)個光感測器、及垂直地指向上的二(2)個紅外線感測器。多感測器設備的一些實例可見於,例如,於2016年10月6日申請之發明名稱為「Multi-sensor」之PCT申請案第PCT/US2016/055709號中,其以全文引用方式併入本文中。In some aspects, the clear sky data of the sky dome model is attenuated using sensor data from readings taken by one or more sensors (eg, one or more light sensors). In one aspect, the sensor data is based on readings from a plurality of light sensors. The sensor data may be based on readings from light sensors from a multi-sensor device, such as a multi-sensor device located on the roof of a building (sometimes called a "sky sensor"). In one aspect, a multi-sensor device includes a plurality (eg, 8, 10, 12, etc.) of light sensors oriented horizontally and equally distributed azimuthally along the circumference of a circular housing. In one example, the sensors may be considered to be radially arranged and equally spaced about a central axis. In one embodiment, the multi-sensor device has twelve (12) light sensors pointing toward the horizon and equally distributed azimuthally along the circumference of the circular housing, one (1) light sensor pointing vertically upward light sensor, and two (2) infrared sensors pointing vertically upward. Some examples of multi-sensor devices can be found, for example, in PCT Application No. PCT/US2016/055709 entitled “Multi-sensor” filed on October 6, 2016, which is incorporated by reference in its entirety. in this article.

14A係根據一實施方案之具有沿著圓周相等地分布的十二(12)個光感測器、垂直地指向上的1個光感測器、及垂直地指向上的二個紅外線感測器的多感測器裝置的一部分的等角視圖的圖。多感測器裝置 1400通常包括殼體 1402、至少一個光漫射元件(或「漫射器」) 1404、及覆蓋殼體(或「蓋體」或「蓋」) 1406。如圖所示,在一些實施方案中,殼體 1402、漫射器 1404、及蓋體 1406繞著穿過多感測器裝置 1400之中心的虛軸 1410旋轉地對稱。多感測器裝置 1400亦包括多個光感測器 1412。在一些實施方案中,光感測器 1412沿著環(例如,該環可具有與軸 1410一致的中心且可定義與軸 1410正交的平面)環形地定位。在此類實施方案中,光感測器 1412可更具體地沿著環的圓周等距地定位。在一些實施方案中,多感測器裝置 1400進一步包括具有與軸 1410平行之定向軸且在一些實例中沿著該軸且與該軸同心地指向的至少一個光感測器 1414 Figure 14A shows an embodiment with twelve (12) photo sensors equally distributed along the circumference, one photo sensor pointing vertically upward, and two infrared sensors pointing vertically upward. Isometric view of part of a multi-sensor device. Multi-sensor device 1400 generally includes a housing 1402 , at least one light diffusing element (or "diffuser") 1404 , and a covering housing (or "lid" or "lid") 1406 . As shown, in some embodiments, housing 1402 , diffuser 1404 , and cover 1406 are rotationally symmetrical about an imaginary axis 1410 that passes through the center of multi-sensor device 1400 . The multi-sensor device 1400 also includes a plurality of light sensors 1412 . In some embodiments, the light sensor 1412 is positioned annularly along a ring (eg, the ring may have a center coincident with the axis 1410 and may define a plane orthogonal to the axis 1410 ). In such implementations, the light sensors 1412 may more specifically be positioned equidistantly along the circumference of the ring. In some embodiments, multi-sensor device 1400 further includes at least one light sensor 1414 having an orientation axis parallel to axis 1410 and, in some examples, directed along and concentrically with the axis.

14A所示的經繪示實例中,多感測器裝置 1400進一步包括位於多感測器裝置 1400之定位在漫射器 1404後方的上部分上的第一紅外線感測器 1415A及第二紅外線感測器 1415B。第一紅外線感測器 1415A及第二紅外線感測器 1415B可或不可從多感測器裝置 1400的外側為人眼可見。紅外線感測器 1415A1415B之各者具有與軸 1410平行的定向軸並從多感測器裝置 1400的頂部部分面向外以基於從多感測器裝置 1400上方擷取的IR輻射測量溫度讀數。第一紅外線感測器 1415A與第二紅外線感測器 1415B分開至少約一英吋。在某些實施方案中,多感測器裝置 1400安裝在建築物外側或其他結構上,使得第一紅外線感測器 1415A及第二紅外線感測器 1415B二者皆在大約垂直方向(例如,重力向量方向)上朝向天空定向。當垂直朝向天空定向時,第一紅外線感測器 1415A及第二紅外線感測器 1415B可輸出天空溫度讀數。在一個實施方案中,可將由多感測器裝置 1400之感測器取得的讀數供應至建築物管理系統及/或通常在附近的其他建築物。根據一特定實施方案,通訊可藉由亦可包括在多感測器 1400中的蜂巢式通訊電路建立。 14A , the multi-sensor device 1400 further includes a first infrared sensor 1415A and a second infrared sensor 1415B located on an upper portion of the multi-sensor device 1400 positioned behind the diffuser 1404. The first infrared sensor 1415A and the second infrared sensor 1415B may or may not be visible to the human eye from an exterior side of the multi-sensor device 1400. Each of the infrared sensors 1415A , 1415B has an orientation axis parallel to the axis 1410 and faces outward from a top portion of the multi-sensor device 1400 to measure temperature readings based on IR radiation captured from above the multi-sensor device 1400 . The first infrared sensor 1415A is separated from the second infrared sensor 1415B by at least about one inch. In some embodiments, the multi-sensor device 1400 is mounted on the exterior of a building or other structure so that both the first infrared sensor 1415A and the second infrared sensor 1415B are oriented toward the sky in an approximately vertical direction (e.g., the direction of the gravity vector). When oriented vertically toward the sky, the first infrared sensor 1415A and the second infrared sensor 1415B can output a sky temperature reading. In one embodiment, the readings obtained by the sensors of the multi-sensor device 1400 can be supplied to a building management system and/or other buildings that are typically nearby. According to a particular embodiment, communication can be established via cellular communication circuitry that can also be included in the multi-sensor 1400 .

14A所示之經繪示實例的一個實施方案中,多感測器裝置 1400以其軸 1410垂直向上定向的方式安裝在建築物或其他結構外側。在此情形中,第一紅外線感測器 1415A及第二紅外線感測器 1415B之各者垂直地向上定向,且經安裝多感測器裝置 1400的方位定向係零且不影響來自紅外線感測器 1415A1415B之反映建築物/結構上方之天空溫度的溫度讀數。多感測器裝置 1400的方位定向係指形成在從經安裝多感測器 1400指向正北的線與沿著軸 1410的線之間的角度。 In one implementation of the illustrated example shown in Figure 14A , multi-sensor device 1400 is mounted outside a building or other structure with its axis 1410 oriented vertically upward. In this case, each of the first infrared sensor 1415A and the second infrared sensor 1415B is oriented vertically upward, and the azimuth orientation of the installed multi-sensor device 1400 is zero and does not affect the input from the infrared sensor. 1415A , 1415B are temperature readings reflecting the temperature of the sky above the building/structure. The azimuthal orientation of multi-sensor device 1400 refers to the angle formed between a line pointing true north from installed multi-sensor 1400 and a line along axis 1410 .

14A中亦顯示複數個輻射狀延伸的箭號 1416。箭號 1416之各者表示光感測器 1412之對應一者的定向軸。光感測器 1412之各者以指示光感測器 1412本身在所有的實施方案中可或不可從多感測器裝置 1400的外部為人類肉眼可見(如下文更詳細地描述的,光感測器 1412定位在漫射器 1404後方)的虛線描繪。光感測器 1412之各者沿著從環的中心輻射地向外(沿著箭號 1416之對應一者的方向)延伸之各別定向軸定向。在一些實施方案中,各光感測器 1412的偵測角度繞著光感測器之定義對稱「視錐」的定向軸對稱。在一些實施方案中,各光感測器 1412的偵測角度係大約180度(意指大約半球形的偵測角度)。在一些實施方案中,光感測器 1412之各者具有與二個各別緊鄰鄰接的光感測器 1412之各者的視角重疊的視角(不同於偵測角度)。多感測器裝置 1400中之光感測器的視角係定義視錐的角度,在該視錐內,關注波長上的功率譜密度的一半由該光感測器擷取。一般而言,視角係從定向軸至視錐之外表面的角度的二倍。在一些實施方案中,光感測器 1412之各者與光感測器 1412的其他者相同,且因此,光感測器 1412之各者的視角通常相同。在一些實施方案中,軸向指向的光感測器 1414與光感測器 1412係相同類型的。在一些其他實施方案中,軸向指向的光感測器 1414的視角可窄於、相同於、或寬於光感測器 1412之各者的視角。 Also shown in FIG . 14A are a plurality of arrows 1416 extending radially. Each of the arrows 1416 represents an orientation axis for a corresponding one of the photo sensors 1412. Each of the photo sensors 1412 is depicted with a dashed line indicating that the photo sensor 1412 itself may or may not be visible to the human eye from outside the multi-sensor device 1400 in all embodiments (as described in more detail below, the photo sensors 1412 are positioned behind the diffuser 1404 ). Each of the photo sensors 1412 is oriented along a respective orientation axis extending radially outward from the center of the ring (in the direction of a corresponding one of the arrows 1416 ). In some embodiments, the detection angle of each photo sensor 1412 is symmetrical about the orientation axis that defines a symmetrical "cone" for the photo sensor. In some embodiments, the detection angle of each photo sensor 1412 is approximately 180 degrees (meaning an approximately hemispherical detection angle). In some embodiments, each of the photo sensors 1412 has a viewing angle (different from the detection angle) that overlaps with the viewing angle of each of two respective immediately adjacent photo sensors 1412. The viewing angle of a photo sensor in the multi-sensor device 1400 is the angle that defines the cone within which half of the power spectrum density at the wavelength of interest is captured by the photo sensor. Generally speaking, the viewing angle is twice the angle from the orientation axis to the outer surface of the cone. In some embodiments, each of the photo sensors 1412 is the same as the other photo sensors 1412 , and therefore, the viewing angles of each of the photo sensors 1412 are generally the same. In some implementations, the axially directed light sensor 1414 is of the same type as the light sensor 1412. In some other implementations, the viewing angle of the axially directed light sensor 1414 may be narrower than, the same as, or wider than the viewing angle of each of the light sensors 1412 .

在某些實施方案中,多感測器設備可具有以各種方位角及高度角配置的複數個光感測器。在一個實施方案中,例如,多感測器設備可具有複數個光感測器環,各環具有以一特定高度角定向且沿著圓周以不同方位角相等地分布的複數個光感測器。在一個情況下,例如,多感測器設備包括具有複數個(例如,8、10、12個等)水平定向的第一光感測器的第一環、具有在,例如,15度至45度之範圍中之高度角的複數個第二光感測器的第二環、及具有在,例如,45度至75度之範圍中之高度角的複數個第三光感測器的第三環。在此實例中,各環中的光感測器沿著環圓周相等地分布。具有以各種方位角及高度角配置之複數個光感測器的多感測器裝置的一些實例可見於2015年9月29日申請之發明名稱為「SUNLIGHT INTENSITY OR CLOUD DETECTION WITH VARIABLE DISTANCE SENSING」之PCT申請案第PCT/US2015/053041號中,其特此以全文引用方式併入本文中。In certain implementations, a multi-sensor device may have a plurality of light sensors configured at various azimuth and elevation angles. In one embodiment, for example, a multi-sensor device may have a plurality of rings of light sensors, each ring having a plurality of light sensors oriented at a specific elevation angle and equally distributed at different azimuth angles along the circumference. . In one case, for example, a multi-sensor device includes a first ring having a plurality (eg, 8, 10, 12, etc.) of first photosensors oriented horizontally, with angles between, for example, 15 degrees to 45 degrees. a second ring of second photosensors having an altitude angle in the range of, for example, 45 degrees to 75 degrees; ring. In this example, the light sensors in each ring are equally distributed around the circumference of the ring. Some examples of multi-sensor devices with multiple light sensors configured at various azimuth and altitude angles can be found in the invention titled "SUNLIGHT INTENSITY OR CLOUD DETECTION WITH VARIABLE DISTANCE SENSING" filed on September 29, 2015. PCT Application No. PCT/US2015/053041, which is hereby incorporated by reference in its entirety.

14B係根據一實施方案之具有光感測器 1462的第一環 1460、光感測器 1472的第二環 1470、及沿著中心軸 1490垂直地向上定向的光感測器 1482之多感測器裝置 1450的一部分的截面的示意圖。在一個實例中,第二環 1470具有比第一環 1460之數目(例如,8、10、12個等)更小之數目(例如,4、6、8個等)的光感測器。光感測器 14621472沿著高度角θ定向。第二環 1470的光感測器 1472沿著在0度與約90度之間的高度角θ定向。第一環 1460的光感測器 1462沿著約0度的高度角θ定向。光感測器 1482沿著約90度的高度角θ定向。各環 14601470的光感測器 14621472可沿著圓周以不同方位角相等地分布。在其他實施方案中,可包括額外的光感測器環。 14B is a multi-sensor diagram having a first ring 1460 of light sensors 1462 , a second ring 1470 of light sensors 1472 , and a light sensor 1482 oriented vertically upward along a central axis 1490 , according to one embodiment. A schematic diagram of a cross-section of a portion of the detector device 1450 . In one example, the second ring 1470 has a smaller number (eg, 4, 6, 8, etc.) of light sensors than the number of the first ring 1460 (eg, 8, 10, 12, etc.). Light sensors 1462 , 1472 are oriented along an altitude angle θ. The light sensors 1472 of the second ring 1470 are oriented along an altitude angle θ between 0 degrees and approximately 90 degrees. The light sensors 1462 of the first ring 1460 are oriented along an altitude angle θ of approximately 0 degrees. Photosensor 1482 is oriented along an elevation angle θ of approximately 90 degrees. The light sensors 1462 , 1472 of each ring 1460 , 1470 may be equally distributed along the circumference at different azimuth angles. In other embodiments, additional light sensor rings may be included.

15係根據一實施方案之具有指向天空之各種方位角及高度角的光感測器的多感測器裝置 1500的實例的等角視圖。根據一實施例,多感測器裝置 1500包括在半球形封閉體內的感測器模組 1520的圓形蜂巢組態陣列 1501。各感測器模組 1520包括管 1522及一或多個感測器(為簡單起見,各管內的組件未顯示)。圓形蜂巢組態陣列 1501經分段成24個模組的圓周尺寸及4個模組的徑向尺寸,但可使用其他尺寸。在此經繪示實例中,蜂巢陣列 1501中之管 1522之各者瞄準天空的不同區域。在管 1522之一或多者中可有多於一種類型的感測器。在一種情形中,多感測器裝置 1500的感測器係光感測器(例如,CMOS/CCD感測器)。多感測器裝置 1500包括提供在多感測器裝置 1500之經繪示成指向上)之整體表面上方的屏蔽 1530(例如,玻璃或其他透明材料覆蓋件)。屏蔽 1530可保護感測器免於碎片及/或濕氣侵入。所繪示實例顯示屏蔽 1530的剖視部分以顯示感測器模組 1520內側。 FIG . 15 is an isometric view of an example of a multi-sensor device 1500 having light sensors pointing at various azimuth and elevation angles toward the sky, according to one embodiment. According to one embodiment, the multi-sensor device 1500 includes a circular honeycomb configuration array 1501 of sensor modules 1520 within a hemispherical enclosure. Each sensor module 1520 includes a tube 1522 and one or more sensors (for simplicity, the components within each tube are not shown). The circular honeycomb configuration array 1501 is segmented into a circumferential dimension of 24 modules and a radial dimension of 4 modules, but other dimensions may be used. In this illustrated example, each of the tubes 1522 in the honeycomb array 1501 is aimed at a different area of the sky. There may be more than one type of sensor in one or more of the tubes 1522 . In one case, the sensors of the multi-sensor device 1500 are light sensors (e.g., CMOS/CCD sensors). The multi-sensor device 1500 includes a shield 1530 (e.g., a glass or other transparent material cover) provided over the entire surface of the multi-sensor device 1500 (illustrated as pointing upward). The shield 1530 can protect the sensors from the intrusion of debris and/or moisture. The illustrated example shows a cutaway portion of the shield 1530 to show the inside of the sensor module 1520 .

16A係2022年2月16日在Milpitas California的晴空日來自 14A所示之多感測器裝置 1400的第十三個(13)個光感測器的光感測器讀數的曲線圖。 16B係2022年4月11日在Milpitas California的晴天早晨及晴朗下午來自 14A所示之多感測器裝置 1400的第十三個(13)個光感測器的光感測器讀數的曲線圖。 將感測器映射至光斑 FIG16A is a graph of light sensor readings from the thirteenth (13th) light sensor of the multi-sensor device 1400 shown in FIG14A on a clear day on February 16, 2022 in Milpitas California. FIG16B is a graph of light sensor readings from the thirteenth (13th) light sensor of the multi-sensor device 1400 shown in FIG14A on a clear morning and clear afternoon on April 11, 2022 in Milpitas California. Mapping Sensors to Light Spots

在一個態樣中,一種方法包括用於將一或多個感測器從,例如,多感測器裝置映射至主要(方位)方向的操作。額外地或替代地,方法包括將一或多個感測器映射至虛擬天空圓頂的光斑。例如,各感測器的位置、內在視場(FOV)、及方位及高度定向可用以判定從各天空圓頂光斑至各感測器的通量轉移係數。一旦一或多個感測器的方向性已建立,來自一或多個感測器的讀數可使用,例如,離散化方案(例如,Tregenza方案)映射至天空圓頂的光斑,諸如 12A 12B所示。在此映射之後,將函數(例如,S形(sigmoid)函數)施加在感測器讀數及晴空照度的經縮放值(例如,0.5至1.0)上。 In one aspect, a method includes operations for mapping one or more sensors from, for example, a multi-sensor device to a primary (azimuthal) direction. Additionally or alternatively, the method includes mapping one or more sensors to spots of the virtual sky dome. For example, each sensor's position, intrinsic field of view (FOV), and azimuth and altitude orientation can be used to determine the flux transfer coefficient from each sky dome spot to each sensor. Once the directivity of one or more sensors has been established, the readings from the one or more sensors can be mapped to spots in the sky dome using, for example, a discretization scheme (eg, the Tregenza scheme), such as in Figures 12A and As shown in Figure 12B . After this mapping, a function (eg, a sigmoid function) is applied to the sensor readings and the scaled values of clear sky illumination (eg, 0.5 to 1.0).

在一個態樣中,一種方法包括用於使用m x n維的資料框將複數個感測器映射至主要(方位)方向的操作,其中m係日光分鐘的數目,且n係使用光感測器輸入的天數。由於不同緯度在不同季節期間對應於不同太陽軌跡,因此在當日及/或季節的不同時間,不同感測器(例如,指向不同方向)可為重要的。合併此等差可涉及執行資料降低技術(例如,主成分分析)以將來自x數目個感測器的時間序列資訊壓縮成一維向量,該一維向量擷取從各主要方向接收的y個最強輻射信號。用於將感測器映射至主要方向之操作的實例可見於2019年8月14日申請之發明名稱為「CONTROL METHODS AND SYSTEMS USING EXTERNAL 3D MODELING AND NEURAL NETWORKS」之PCT申請案第PCT/US19/46525號中,其特此以全文引用方式併入本文中。 可著色窗的分區管理 In one aspect, a method includes operations for mapping a plurality of sensors to cardinal (azimuthal) directions using a data frame of mxn dimensions, where m is the number of daylight minutes and n is the input using the light sensor number of days. Since different latitudes correspond to different solar trajectories during different seasons, different sensors (eg, pointing in different directions) may be important at different times of the day and/or season. Combining these differences can involve performing data reduction techniques (e.g., principal component analysis) to compress the time series information from x number of sensors into a one-dimensional vector that captures the y strongest signals received from each principal direction. radiation signal. An example of operations for mapping sensors to cardinal directions can be found in PCT Application No. PCT/US19/46525 titled "CONTROL METHODS AND SYSTEMS USING EXTERNAL 3D MODELING AND NEURAL NETWORKS" filed on August 14, 2019. No., which is hereby incorporated by reference in its entirety. Partition management of tinted windows

在一些情形中,三維(3D)架構模型可用以初始化虛擬建築物模型(諸如數位孿生)的檔案(例如,BIM檔案),以合併設施的架構元件。基準真相驗證(例如,來自現場服務工程師)可用以驗證虛擬建築物模型之檔案中的裝置資料。虛擬建築物模型可在調測設施之裝置之前初始化。在一些情形中,經初始化BIM檔案(諸如,Autodesk Revit檔案)合併設施的架構元件,但不合併安裝在設施中的裝置(例如,可著色窗的電致變色裝置)。BIM檔案可在調測期間更新及/或在由客戶(諸如佔用者)或客戶支援人員調測後更新。在一個實例中,BIM檔案以即時或大約(約)即時方式在最佳化期間由客戶更新。In some cases, a three-dimensional (3D) architectural model may be used to initialize an archive (eg, BIM archive) of a virtual building model (such as a digital twin) to incorporate the architectural elements of the facility. Ground truth verification (e.g., from a field service engineer) can be used to verify device data in the virtual building model's files. The virtual building model can be initialized before commissioning the installation of the facility. In some cases, an initialized BIM file (such as an Autodesk Revit file) incorporates the architectural elements of the facility but not the devices installed in the facility (eg, electrochromic devices that tint windows). BIM files may be updated during commissioning and/or after commissioning by the client (such as the occupier) or customer support staff. In one instance, the BIM archive is updated by the client during optimization on or about (approximately) real-time.

在一個態樣中,虛擬建築物模型的一或多個虛擬空間係以空間類型分類(例如,私人辦公室、開放辦公室、廚房、會議室、休息室、及大廳)及/或將虛擬可著色窗一起分組在區中,例如,與空間相關聯及/或與其等的定向相關聯。例如,可將在允許光傳輸至空間中之位置及定向上的一或多個可著色窗一起分組在一區中。著色方法可在最佳化程序期間調整可著色窗的一或多個區,其中各區包括一或多個可著色窗。In one aspect, one or more virtual spaces of the virtual building model are classified by space type (e.g., private offices, open offices, kitchens, conference rooms, lounges, and lobbies) and/or include virtual tintable windows. Grouped together in zones, for example, associated with space and/or orientation thereof, etc. For example, one or more tintable windows may be grouped together in a zone at a location and orientation that allows light to be transmitted into the space. The shading method may adjust one or more regions of the shading window during the optimization procedure, where each region includes one or more shading windows.

17係描繪產生可著色窗的一或多個區及可著色窗的關聯定向之方法的操作的圖。在操作1,識別在設施的3D模型(諸如BIM檔案或數位孿生)中具有可著色窗的所有封閉體(例如房間)。在一些實施方案中,例如,此操作可在調測程序期間完成;此操作亦可與調測程序無關地完成。此操作可包括存取3D模型內之指示各房間是否與一或多個可著色窗相關聯的資訊。在操作2,判定封閉體的名稱或給定封閉體的識別名稱。在所繪示實例中,四個封閉體經給定私人辦公室南方、私人辦公室西南方、開放辦公室1、及會議室的名稱。在操作3,空間之可著色窗之各者的定向係從數位檔案之檔案中的建築物資訊判定。 Figure 17 is a diagram depicting the operations of a method for generating one or more regions of tintable windows and the associated orientation of the tintable windows. In operation 1, all enclosures (e.g., rooms) having tintable windows in a 3D model of the facility (such as a BIM file or a digital twin) are identified. In some embodiments, for example, this operation may be completed during a commissioning process; this operation may also be completed independently of the commissioning process. This operation may include accessing information within the 3D model indicating whether each room is associated with one or more tintable windows. In operation 2, the name of the enclosure is determined or an identification name is given to the enclosure. In the illustrated example, the four enclosures are given the names of Private Office South, Private Office Southwest, Open Office 1, and Conference Room. In operation 3, the orientation of each of the spatially colorable windows is determined from the building information in the file of the digital file.

在操作4,將與封閉體相關聯的可著色窗分組成區及與該空間相關聯的該區。在所繪示實例中,將經識別為開放辦公室1之空間的面向南可著色窗及面向東的可著色窗一起分組在命名為「開放辦公室1」的區中。在一些情況下,可產生額外或替代的區或分組,諸如分組具有相同定向之各可著色窗。例如,面向南可著色窗可分組在一起,而面向東可著色窗可分組在與面向南群組分開或不同的群組中。例如,此分組可促成控制定界單一空間之可著色窗的不同區(zone/area)。使用本文提供的技術,定界空間的至少一部分的可著色窗之各區可使其之可著色窗的透射率受控制以在空間中產生期望的自然光位準。此類分區及控制可計及空間外側之由在不同羅盤定向上的外部可著色窗定義的不同光位準。例如,對於具有定義其南側及東側的至少部分之可著色窗的空間(諸如圖17中的開放辦公室),技術可能能夠調整面向南可著色窗之區的透射率以估計光條件及通過或影響該等可著色窗的光,同時亦獨立地調整面向東可著色窗之區的透射率以估計光條件及通過或影響該等可著色窗的光,且一起在該空間中產生所期望的自然勒克斯。In operation 4, the tintable windows associated with the enclosure are grouped into zones and the zones associated with the space. In the illustrated example, the south-facing tintable windows and the east-facing tintable windows of the space identified as Open Office 1 are grouped together in a zone named "Open Office 1." In some cases, additional or alternative zones or groupings may be produced, such as grouping tintable windows having the same orientation. For example, south-facing tintable windows may be grouped together, while east-facing tintable windows may be grouped in a group separate from or different from the south-facing group. For example, such grouping may facilitate control of different zones (zones/areas) of tintable windows that bound a single space. Using the techniques provided herein, zones of tintable windows that bound at least a portion of a space may have their tintable windows controlled in transmittance to produce a desired level of natural light in the space. Such zoning and control can account for different light levels outside the space defined by exterior tintable windows at different compass orientations. For example, for a space with tintable windows defining at least a portion of its south and east sides (such as the open office in FIG. 17 ), the technology may be able to adjust the transmittance of the zone of tintable windows facing south to estimate light conditions and light passing through or affecting those tintable windows, while also independently adjusting the transmittance of the zone of tintable windows facing east to estimate light conditions and light passing through or affecting those tintable windows, and together produce a desired natural lux in the space.

分區管理的一些實例可見於發明名稱為「CONTROL METHODS AND SYSTEMS USING EXTERNAL 3D MODELING AND NEURAL NETWORKS」且於2019年8月14日申請之國際PCT申請案第PCT/US19/46524號及發明名稱為「CONTROL METHODS AN SYSTEMS USING EXTERNAL 3D MODELING AND SCHEDULE-BASED COMPUTING」且於2019年3月20日申請之國際PCT申請案第PCT/US19/23268號中,其等特此以全文引用方式併入本文中。 - 最佳化操作 Some examples of partition management can be found in International PCT Application No. PCT/US19/46524, filed on August 14, 2019, entitled “CONTROL METHODS AND SYSTEMS USING EXTERNAL 3D MODELING AND NEURAL NETWORKS” and International PCT Application No. PCT/US19/23268, filed on March 20, 2019, entitled “CONTROL METHODS AN SYSTEMS USING EXTERNAL 3D MODELING AND SCHEDULE-BASED COMPUTING”, which are hereby incorporated by reference in their entirety. - Optimized Operations

在一個態樣中,最佳化程序包括藉由迭代地調整虛擬建築物模型(例如,數位孿生)中的一或多個(虛擬)可著色窗的(多個)透射率位準而將虛擬建築物模型的一或多個空間中的(多個)期望照度位準與(多個)經計算照度位準之間的距離(例如,平方差)最小化,直到(A)不再有對(多個)透射率位準的進一步改變在距離上產生低於特定值(例如,-.001)的負變化(更接近期望最小值)或(B)不再有對(多個)透射率位準的進一步改變產生落在某個臨限值之下的距離為止的一序列操作。In one aspect, the optimization process includes a sequence of operations to minimize the distance (e.g., squared difference) between (multiple) desired illumination levels and (multiple) calculated illumination levels in one or more spaces of the virtual building model (e.g., digital twin) by iteratively adjusting the transmittance level(s) of one or more (virtual) tintable windows in the virtual building model (e.g., digital twin) until (A) no further changes to the transmittance level(s) produce a negative change in the distance (closer to the desired minimum) below a specified value (e.g., -.001) or (B) no further changes to the transmittance level(s) produce a distance that falls below a certain threshold.

在一個實施方案中,可調整可著色窗的一或多個區的(多個)透射率位準,使得虛擬建築物模型的一或多個空間中的(多個)期望照度位準與(多個)經計算照度位準之間的距離低於某個值。各區包括一或多個虛擬可著色窗。In one embodiment, the transmittance level(s) of one or more zones of the tintable window may be adjusted such that the desired illuminance level(s) in one or more spaces of the virtual building model is consistent with ( Multiple) distances between calculated illumination levels are below a certain value. Each zone includes one or more virtual tintable windows.

雖然最佳化程序的實例相關於虛擬建築物模型中的較佳照度位準(或勒克斯位準)描述,其他客戶偏好可包括在其他實施方案中。額外地或替代地,來自多個客戶的偏好亦可包括在最佳化程序中。在一個態樣中,可將一或多個加權因子施加至偏好。Although the example of the optimization process is described with respect to the preferred illumination level (or lux level) in the virtual building model, other customer preferences may be included in other embodiments. Additionally or alternatively, preferences from multiple customers may also be included in the optimization process. In one aspect, one or more weighting factors may be applied to the preferences.

在一個態樣中,可將可著色窗視為瞬間著色。在另一態樣中,最佳化程序可將(多個)可著色窗的轉變時間或著色延遲考慮在內。In one aspect, the tintable windows can be treated as instantaneously tinted. In another aspect, the optimizer can take into account the transition time or tinting delay of the tintable window(s).

在將可著色窗視為瞬間著色之最佳化程序的一個實例中,將一或多個可著色窗的第 i個期望照度位準 p i 與係透射率 T的函數的經計算照度位準 f i(T) 之間的差最小化的最佳化函數係: 最佳化函數: argmin Td ( f i(T) , p i ) (方程式 1 其中: i係1, 2, ..., k,其中 k係期望光位準的總數目 In one example of an optimization procedure that treats the tintable windows as instantaneously tinted, the optimization function that minimizes the difference between the i -th desired illuminance level pi of one or more tintable windows and the calculated illuminance level fi (T) as a function of the transmittance T is: Optimization function: argmin Td ( fi (T) , pi ) (Equation 1 ) where: i is 1, 2, ..., k , where k is the total number of desired light levels.

在一個實例中,可將最佳化函數寫為 最佳化函數: argmin T ( f i(T) - p i )^2 (方程式 2 其中: i係1, 2, ..., k,其中 k係期望光位準的總數目 In one example, the optimization function can be written as: argmin T ( fi (T) - p i )^2 (Equation 2 ) where: i is 1, 2, ..., k , where k is the total number of desired light levels

在另一實例中,將可著色窗視為在基於其等的色調轉變速率及關聯電壓斜坡的時間週期內著色。在此實例中,最佳化程序可考慮建築物之所有區之受色調轉變速率及關聯電壓斜坡限制的照度位準及一或多個可著色窗的目前透射率,及次一著色機會之前的時間(例如,最佳化程序的次一時間間隔)。 IV. 使用最佳化製程的著色方法 In another example, a tintable window is considered to be tinted for a time period based on its hue transition rate and associated voltage ramp. In this example, the optimization process may consider the illuminance levels of all zones of the building, limited by the hue transition rate and associated voltage ramp, and the current transmittance of one or more tintable windows, as well as the current transmittance before the next tinting opportunity. Time (for example, the next time interval of the optimization procedure). IV. Coloring method using optimized process

在某些態樣中,用於實施著色方法的控制邏輯包括經設計以基於來自由虛擬天空圓頂模擬之天空的外部光並基於根據三相模型從天空至一或多個空間的光通量而在建築物之虛擬表示的一或多個空間中建立目標或期望照度位準的程序,諸如迭代程序(例如,最佳化程序)。由虛擬天空圓頂模擬的外部光係基於其基於由在建築物的感測器產生的經測量讀數而衰減或縮放的經預測照度。In certain aspects, control logic for implementing the shading method includes a procedure, such as an iterative procedure (e.g., an optimization procedure), designed to establish target or desired illumination levels in one or more spaces of a virtual representation of a building based on exterior light from the sky simulated by a virtual sky dome and based on the luminous flux from the sky to the one or more spaces according to a three-phase model. Exterior light simulated by the virtual sky dome is based on predicted illumination that is attenuated or scaled based on measured readings produced by sensors at the building.

在迭代程序期間,在保持其他參數(例如,日光「D」矩陣及/或檢視「V」矩陣)恆定的同時,迭代地調整一或多個可著色窗的透射率(經最佳化變數)(例如,用於乘以「T」矩陣之具有0與1之間的值的向量),直到使得建築物中的一或多個內部虛擬空間中的照度位準達到或大約達到(多個)目標照度位準為止。在各迭代,在一或多個內部虛擬空間中的網格點的照度位準係使用光通量之三相模型的「V」「T」「D」及「S」矩陣判定。光通量的三相模型表示來自經衰減晴空資料之在一或多個可著色窗的目前色調狀態中通過其等,且至建築物中的(多個)內部空間中的外部光。虛擬天空圓頂將來自建築物上方之天空的光斑的照度分布判定為建築物的地理位置(例如,經度、緯度、子午線)、時間、及來自,例如,在建築物之地點的一或多個感測器的經實體測量輻射資料的函數。來自天空圓頂的經模擬資料可用以產生年度及/或單一時間點的照度分布。來自天空圓頂之光斑的照度值可用以判定「S」矩陣或「S」向量的係數。天空圓頂的經衰減晴空資料係從藉由來自一或多個感測器(例如,來自在建築物之屋頂上的多感測器裝置的光感測器)之經測量資料的讀數衰減的經預測晴空資料計算。將各感測器映射至天空圓頂的一或多個光斑以判定來自各感測器之經測量外部光對光斑的貢獻。During the iterative process, iteratively adjust the transmittance of one or more tintable windows (with optimized variables) while holding other parameters (e.g., daylight "D" matrix and/or view "V" matrix) constant. (e.g., for multiplying a vector of the "T" matrix with values between 0 and 1) until the illumination level in one or more interior virtual spaces in the building is at or approximately until the target illumination level is reached. At each iteration, the illumination levels of grid points in one or more internal virtual spaces are determined using the "V", "T", "D" and "S" matrices of the three-phase model of luminous flux. The three-phase model of luminous flux represents the external light from one or more attenuated clear-sky data passing through it in its current tint state of one or more tintable windows, and into the interior space(s) in the building. The virtual sky dome determines the illumination distribution of light spots from the sky above the building as the building's geographical location (e.g., longitude, latitude, meridian), time, and one or more values from, e.g., the location of the building. A function of the sensor's physically measured radiation data. Modeled data from the sky dome can be used to generate annual and/or single-point-in-time illuminance distributions. The illumination value from the light spot in the sky dome can be used to determine the coefficients of the "S" matrix or "S" vector. The sky dome's attenuated clear-sky data is attenuated from readings from measured data from one or more sensors (e.g., light sensors from a multi-sensor installation on the roof of a building) Calculated based on forecast clear sky data. Each sensor is mapped to one or more spots of light in the sky dome to determine the contribution of measured external light from each sensor to the spot.

在最佳化程序期間,「T」矩陣可乘以具有在0與1之間的值的向量,該等值表示對建築物中的一或多個可著色窗的透射率的調整。在最佳化程序期間,可將向量使用為經迭代地調整直到網格點的照度位準係處於或大約處於目標照度位準為止的一獨立變數。例如,「T」矩陣可乘以表示對在建築物之側面或立面上之可著色窗的透射率的調整的向量。During the optimization procedure, the "T" matrix may be multiplied by a vector with values between 0 and 1 that represent adjustments to the transmittance of one or more tintable windows in the building. During the optimization procedure, the vector can be used as an independent variable that is iteratively adjusted until the illumination level of the grid point is at or approximately at the target illumination level. For example, the "T" matrix may be multiplied by a vector representing adjustments to the transmittance of tintable windows on the side or facade of a building.

在一個實施方案中,虛擬建築物模型可用以促進接收與空間或建築物之偏好(諸如來自客戶(例如,佔用者(諸如建築物的租戶)或客戶服務管理者(CSM))之空間中的期望光量)相關聯的資訊。光量對應於照度或勒克斯位準。例如,(多個)客戶可基於從,例如,0至100 1至100或其他類似範圍的標度調整空間中的期望光量。標度的低端可對應於空間中之由與空間相關聯的一或多個可著色窗係在其等的最低透射率位準(例如,約0.5%、約1%、或約2%)所導致的光位準、且標度的高端可對應於空間中之由該一或多個可著色窗係在其等的最高透射率位準(例如,約52%或約75%)所導致的光位準。在一個實例中,標度的低端大約對應於200勒克斯且標度的高端對應於1400勒克斯。在一個情況下,1至100的標度係指0.5%至52%的透射率。一旦客戶輸入其等對於空間的較佳光量,虛擬建築物模型的檔案(例如,BIM檔案)可通過,例如,應用程式(軟體應用程式)以對應的照度位準即時地,或大約即時地更新。儲存在,例如,雲端網路上及/或建築物內之伺服器上的虛擬建築物模型可即時地或大約即時地更新,以包括光量的客戶偏好,且可使用最佳化程序調整一或多個可著色窗的(多個)色調狀態以符合期望的自然光量。建築物及/或空間之顯示在應用程式中或電子裝置(諸如平板電腦或電腦)上的虛擬表示(諸如虛擬建築物模型)可提供所導致的客戶偏好及對可著色窗的(多個)色調狀態的調整的視覺模擬及校對。例如,電子裝置(諸如電腦)上的建築物及/或空間顯示的虛擬表示可顯示建築物的(多個)內部空間中之基於來自虛擬天空圓頂之目前在建築物上的經模擬外部光(例如,如 13A所示)之來自最佳化程序的所得照度位準(與光量的客戶偏好相關聯)(例如,如 13B所示)。 In one embodiment, a virtual building model may be used to facilitate receiving information about the space or building preferences, such as from customers (e.g., occupiers (such as tenants of the building) or customer service managers (CSM)). Expected amount of light) related information. The amount of light corresponds to the illuminance or lux level. For example, the customer(s) may adjust the desired amount of light in the space based on a scale from, for example, 0 to 100 to 1 to 100 or other similar ranges. The low end of the scale may correspond to the lowest transmittance level in the space at which one or more tintable windows associated with the space are (e.g., about 0.5%, about 1%, or about 2%) The resulting light level, and the high end of the scale, may correspond to that in space resulting from the tintable window or windows at their highest transmission level (e.g., about 52% or about 75%) light level. In one example, the low end of the scale corresponds to approximately 200 lux and the high end of the scale corresponds to 1400 lux. In one case, a scale of 1 to 100 refers to a transmission of 0.5% to 52%. Once the client inputs their preferred amount of light for the space, the virtual building model's file (e.g., a BIM file) can be updated with the corresponding illuminance level instantly, or approximately instantly, via, for example, an application (software application) . A virtual building model stored, for example, on a cloud network and/or on a server within a building may be updated on or near real-time to include customer preferences for light amounts, and optimization procedures may be used to adjust one or more Tint state(s) of tintable windows to match the desired amount of natural light. A virtual representation (such as a virtual building model) of a building and/or space displayed in an application or on an electronic device (such as a tablet or computer) may provide resulting customer preferences and preferences for tinted window(s) Visual simulation and proofreading of tonal state adjustments. For example, a virtual representation of a building and/or space display on an electronic device, such as a computer, may display the interior space(s) of the building based on simulated external light currently on the building from a virtual sky dome. The resulting illumination levels (associated with customer preferences for light amounts) from the optimization procedure (e.g., as shown in Figure 13A ) (e.g., as shown in Figure 13B ).

18係可使用虛擬建築物模型 1830以基於虛擬建築物模型 1830之檔案(例如,BIM檔案)中的建築物資訊將建築物中之空間的2D或3D虛擬模型呈現給客戶之系統 1800之實例的繪示。系統 1800可用以接收與建築物中之空間的目標光量相關聯的資訊,且以該空間的對應期望照度位準更新儲存在伺服器 1840(例如,雲端網路上的伺服器)上之虛擬建築物模型 1830之檔案中的偏好。系統 1800包括具有顯示器 1820及至少一個應用程式 1827的行動裝置 1816。2D或3D虛擬模型可結合行動裝置 1816的顯示器 1820交動地導航。至少一個應用程式 1827經組態以與虛擬建築物模型 1830協同地執行演現、導航、更新、及識別功能。更新虛擬建築物模型的檔案可使用虛擬建築物模型可駐存於其中(例如,在記憶體中)的至少一個資料庫完成。資料庫可在建築物、在另一設施、或在雲端中。在所繪示實例中,顯示器 1820包括建築物中之空間的2D虛擬模型 1822。在此實例中,客戶已選擇經識別為具有「開放辦公室」 1824之空間類型的「工程區」 1823的虛擬空間 1822。客戶接著可使用滑動桿 1825調整空間 1822中的光量。滑動桿 1825允許客戶以1至100的標度調整空間 1822中的光量。在此實例中,將光量設定為20,其大約對應於200勒克斯。光量對應於照度或勒克斯位準。虛擬建築物模型的檔案可以對應於由客戶選擇之光量的較佳照度位準,例如,即時地更新。 FIG. 18 is a diagram of an example of a system 1800 that can use a virtual building model 1830 to present a 2D or 3D virtual model of a space in a building to a client based on building information in a file (e.g., a BIM file) of the virtual building model 1830. The system 1800 can be used to receive information associated with a target amount of light for a space in a building and update preferences stored in a file of the virtual building model 1830 on a server 1840 (e.g., a server on a cloud network) with a corresponding desired illumination level for the space. The system 1800 includes a mobile device 1816 having a display 1820 and at least one application 1827 . The 2D or 3D virtual model can be interactively navigated in conjunction with a display 1820 of a mobile device 1816. At least one application 1827 is configured to perform rendering, navigation, updating, and identification functions in conjunction with the virtual building model 1830. Updating the files of the virtual building model can be accomplished using at least one database in which the virtual building model can reside (e.g., in memory). The database can be in the building, in another facility, or in the cloud. In the illustrated example, the display 1820 includes a 2D virtual model 1822 of a space in the building. In this example, the customer has selected virtual space 1822 identified as a "project area" 1823 with a space type of "open office" 1824. The customer may then adjust the amount of light in space 1822 using slider 1825. Slider 1825 allows the customer to adjust the amount of light in space 1822 on a scale of 1 to 100. In this example, the amount of light is set to 20, which corresponds to approximately 200 lux. The amount of light corresponds to an illuminance or lux level. The file of the virtual building model may correspond to a preferred illuminance level for the amount of light selected by the customer, for example, updated in real time.

本文描述的技術(諸如最佳化程序)可接著判定建築物中的一或多個可著色窗之提供與該空間中之客戶的較佳光量相關聯的照度位準或大約照度位準的(多個)透射率。在一些情形中,最佳化程序花費小於1分鐘、小於2分鐘、小於3分鐘等。顯示器 1820接著可更新以顯示空間的期望照度位準及/或一或多個可著色窗的著色版本。接著可將指令發送至一或多個窗控制器以根據(多個)經判定透射率施加調色一或多個可著色窗的電壓曲線。 The techniques described herein (e.g., optimization procedures) may then determine the transmittance(s) of one or more tintable windows in a building that provide an illumination level or an approximate illumination level that is associated with an optimal amount of light for a customer in the space. In some cases, the optimization procedure takes less than 1 minute, less than 2 minutes, less than 3 minutes, etc. The display 1820 may then be updated to show the desired illumination level for the space and/or a tinted version of the one or more tintable windows. Instructions may then be sent to one or more window controllers to apply a voltage curve that tints the one or more tintable windows based on the determined transmittance(s).

19係根據一實施方案之用於控制一或多個可著色窗之色調的系統 1900的示意圖。系統 1900包括雲端網路 1910及經組態以接收來自一或多個客戶之輸入的使用者介面 1920。雲端網路 1910與使用者介面 1920電子通訊以接收來自一或多個客戶的資料輸入、更新資料、及提供經更新資料至使用者介面。例如,來自一或多個客戶的輸入可即時地或大約即時地儲存在雲端網路 1910中,可即時地或大約即時地將經更新的虛擬建築物模型的檔案及在設施的未來行為的視覺效果提供在使用者介面 1920上的3D模型上。輸入的實例包括相關於將可著色窗分組成一或多個區的資訊。輸入的另一實例包括設施中的一或多個內部空間的條件的客戶偏好,諸如目標值(例如,一或多個內部空間的目標勒克斯值)。雲端網路 1920可具有經組態以儲存各設施之資訊(諸如虛擬建築物模型)的伺服器。系統 1900亦包括服務 1930,該服務包括經組態以執行一或多個操作的智慧服務 1932及經組態以管理接收自智慧服務 1932的色調狀態指令及將最終著色指令轉發至一或多個窗控制器的色調狀態管理器 1934。例如,色調狀態管理器 1934可判定覆寫是否係原地的,且若覆寫係原地的,施加覆寫色調狀態。智慧服務 1932與雲端網路 1910電子通訊以傳達資料,例如,虛擬建築物模型之檔案中的資訊及/或天空矩陣或天空向量係數。智慧服務 1932經組態以判定感測器讀數,例如,藉由接收儲存在雲端網路 1910上的感測器讀數。替代地,智慧服務 1932可經由雲端網路 1910或經由通訊網路與一或多個感測器通訊以接收來自一或多個感測器的感測器讀數。系統 1900亦包括地點設計系統 1940及與地點設計系統 1940通訊的調測服務 1950。地點設計系統 1940可傳達與設施有關的資訊,諸如設施的緯度及經度。作為調測程序的至少部分、調測服務 1950經組態以判定晴空矩陣及用於設施之各可著色窗的V、T、D、S矩陣係數並輸出至雲端網路 1910 FIG. 19 is a schematic diagram of a system 1900 for controlling the tint of one or more tintable windows according to one embodiment. The system 1900 includes a cloud network 1910 and a user interface 1920 configured to receive input from one or more clients. The cloud network 1910 communicates electronically with the user interface 1920 to receive data input from one or more clients, update the data, and provide updated data to the user interface. For example, input from one or more clients may be stored in the cloud network 1910 in real time or approximately real time, and updated files of virtual building models and visual effects of future behavior of the facility may be provided in real time or approximately real time on a 3D model on the user interface 1920 . An example of input includes information about grouping tintable windows into one or more zones. Another example of input includes customer preferences for conditions of one or more interior spaces in a facility, such as target values (e.g., target lux values for one or more interior spaces). The cloud network 1920 may have servers configured to store information about each facility, such as a virtual building model. The system 1900 also includes a service 1930 that includes a smart service 1932 configured to perform one or more operations and a tint state manager 1934 configured to manage tint state instructions received from the smart service 1932 and forward final tint instructions to one or more window controllers. For example, the tint state manager 1934 may determine whether the override is local, and if the override is local, apply the override tint state. The smart service 1932 electronically communicates with the cloud network 1910 to communicate data, such as information in a file of a virtual building model and/or sky matrix or sky vector coefficients. The smart service 1932 is configured to determine sensor readings, for example, by receiving sensor readings stored on the cloud network 1910. Alternatively, the smart service 1932 may communicate with one or more sensors via the cloud network 1910 or via a communication network to receive sensor readings from the one or more sensors. The system 1900 also includes a site design system 1940 and a commissioning service 1950 that communicates with the site design system 1940 . The site design system 1940 may communicate information about the facility, such as the latitude and longitude of the facility. As at least part of the commissioning process, the commissioning service 1950 is configured to determine the clear sky matrix and the V, T, D, S matrix coefficients for each colorable window of the facility and output them to the cloud network 1910 .

在一個實施例中,除了照度可用以判定可著色窗的透射率外,本文描述的技術(諸如迭代程序)可合併矩陣的較佳值。例如,可將輻射至空間中之熱量的偏好併入最佳化程序中。在另一實例中,最佳化程序可將用於降低能量消耗的偏好考慮在內。In one embodiment, in addition to illumination being used to determine the transmittance of a tintable window, techniques described herein, such as an iterative procedure, can incorporate optimal values of the matrix. For example, preferences for heat radiated into the space can be incorporated into the optimization procedure. In another example, the optimization program may take into account preferences for reducing energy consumption.

在一些實施例中,可著色窗可具有離散的最後色調狀態,諸如2、4、6、8、10、12、或更多個色調狀態。在一些此類實施方案中,著色方法的控制邏輯判定各可著色窗之與藉由最佳化程序判定之透射率相關聯的最後色調狀態,且窗控制器可將可著色窗轉變至與藉由最佳化程序判定之透射率相關聯的最後色調狀態。例如,控制邏輯可藉由首先將藉由最佳化程序判定的透射率捨進(或捨去)至對應於可著色窗之色調狀態的最接近透射率而判定與可著色窗之色調狀態的一者相關聯的最後色調狀態。例如,在態樣中上,可著色窗經組態以轉變至複數個4個色調狀態(T1至T4),其中色調1 (T1)係清透狀態且色調4 (T4)係最暗狀態。在一個態樣中,T1對應於約50% (+/- 10%)之通過可著色窗的透射率、T2對應於在約25%至約30% (+/- 10%)之範圍中通過可著色窗的透射率、T3對應於約7% (+/- 10%)之通過可著色窗的透射率、且T4(最暗色調狀態)對應於約1% (+/- 10%)之通過可著色窗的透射率。In some embodiments, the tintable window may have discrete final tint states, such as 2, 4, 6, 8, 10, 12, or more tint states. In some such embodiments, the control logic of the tinting method determines the final tint state associated with the transmittance determined by the optimization procedure for each tintable window, and the window controller may transition the tintable window to the final tint state associated with the transmittance determined by the optimization procedure. For example, the control logic may determine the final tint state associated with one of the tint states of the tintable window by first rounding (or discarding) the transmittance determined by the optimization procedure to the closest transmittance corresponding to the tint state of the tintable window. For example, in an aspect, the tintable window is configured to transition to a plurality of 4 tint states (T1 to T4), where tint 1 (T1) is a clear state and tint 4 (T4) is a darkest state. In one aspect, T1 corresponds to a transmittance through the tintable window of about 50% (+/- 10%), T2 corresponds to a transmittance through the tintable window in a range of about 25% to about 30% (+/- 10%), T3 corresponds to a transmittance through the tintable window of about 7% (+/- 10%), and T4 (the darkest tint state) corresponds to a transmittance through the tintable window of about 1% (+/- 10%).

在此實例中,控制邏輯可將藉由最佳化程序判定的透射率捨進(替代地捨去)至與4個色調狀態的一者相關聯的最接近透射率。在一個實例中,例如,若第一可著色窗的透射率由最佳化程序判定為22%,控制邏輯可捨進至與色調狀態T2相關聯的25%的透射率。窗控制器接著可發送著色指令及/或施加電壓曲線以將可著色窗轉變至T2。In this example, the control logic may round (or alternatively round off) the transmittance determined by the optimization process to the closest transmittance associated with one of the four tint states. In one example, for example, if the transmittance of the first tintable window is determined by the optimization process to be 22%, the control logic may round off to a transmittance of 25% associated with tint state T2. The window controller may then send tinting commands and/or apply a voltage profile to transition the tintable window to T2.

雖然本文呈現之實例的一些將可著色窗描述為經組態具有四個離散色調狀態,本揭露係不受限制的。例如,所揭示實例亦施用於具有2、3、4、5、6、7、8、9、10、或甚至更多個色調位準的可著色窗。作為另一實例,一或多個可著色窗可經組態以保持具有透射率位準範圍的任何透射率,且被視為具有「無限」數目的色調狀態。在此實例中,控制邏輯可將電壓曲線施加至與經判定以在內部空間中導致目標照度位準的透射率位準相關聯之各可著色窗,而非將透射率捨入至與離散色調狀態對應的位準。Although some of the examples presented herein describe tintable windows as being configured with four discrete tint states, the present disclosure is not limited. For example, the disclosed examples also apply to tintable windows having 2, 3, 4, 5, 6, 7, 8, 9, 10, or even more tint levels. As another example, one or more tintable windows may be configured to maintain any transmittance with a range of transmittance levels and be considered to have an "infinite" number of tint states. In this example, the control logic may apply a voltage curve to each tintable window associated with a transmittance level determined to result in a target illumination level in the interior space, rather than rounding the transmittance to a level corresponding to a discrete tint state.

20係描繪根據各種實施方案之控制設施(諸如建築物)中的一或多個可著色窗之方法的操作的流程圖 2000。在一些情形中,操作之一或多者可藉由操作地耦接至一或多個可著色窗的至少一個窗控制器(例如,主窗控制器、網路窗控制器、或本地窗控制器)實施。至少一個窗控制器亦與建築物的虛擬表示(例如,數位孿生)駐存於其上的伺服器(例如,雲端中的伺服器)電子通訊。伺服器及/或至少一個窗控制器可,例如,經由建築物管理系統與一或多個感測器通訊。在其他情形中,操作之一或多者可藉由與一或多個窗控制器操作通訊的BMS實施,該一或多個窗控制器操作地耦接至一或多個可著色窗且與建築物的虛擬表示駐存於其上的伺服器電子通訊。在又其他情形中,操作之一或多者可由雲端中之建築物的虛擬表示駐存於其上的伺服器實施。 20 is a flow diagram 2000 depicting the operations of a method of controlling one or more tintable windows in a facility, such as a building, in accordance with various embodiments. In some cases, one or more of the operations may be performed by at least one window controller operatively coupled to one or more tintable windows (e.g., a main window controller, a network window controller, or a local window control device) implementation. At least one window controller is also in electronic communication with a server (eg, a server in the cloud) on which a virtual representation of the building (eg, a digital twin) resides. The server and/or at least one window controller may communicate with one or more sensors, for example, via a building management system. In other cases, one or more of the operations may be performed by a BMS in operative communication with one or more window controllers operatively coupled to one or more tintable windows and with The server on which the virtual representation of the building resides electronically communicates. In yet other cases, one or more of the operations may be performed by a server in the cloud on which a virtual representation of the building resides.

在操作 2020,虛擬建築物模型(諸如3D模型(例如,建築物的數位孿生))係基於可由建築物的一或多個客戶(諸如,例如,建築物的佔用者、建築物管理者、或客戶服務人員)提供之經提供或可提供為預設或初始輸入的一或多個偏好或輸入而更新。此輸入可如本文描述地接收,諸如儲存在記憶體上或通過應用程式或其他程式輸入。偏好包括建築物中的一或多個內部空間的目標光量(諸如自然光量)。目標照度位準係從期望光量判定,且更新儲存在伺服器(例如,雲端中或建築物中的伺服器)上之虛擬表示之檔案中的目標照度位準。 At operation 2020 , a virtual building model, such as a 3D model (e.g., a digital twin of the building), is based on a model that can be used by one or more customers of the building, such as, for example, an occupant of the building, a building manager, or Updated by one or more preferences or inputs provided or made available by customer service personnel as default or initial input. This input may be received as described herein, such as stored in memory or entered through an application or other program. The preference includes a target amount of light (such as the amount of natural light) for one or more interior spaces in the building. The target illumination level is determined from the desired light amount, and the target illumination level is updated in a file of the virtual representation stored on a server (eg, a server in the cloud or in a building).

例如,系統(例如, 18所示的系統 1800)可使用來自虛擬表示的檔案(例如,BIM檔案)將建築物中的2D或3D虛擬空間繪示給客戶。客戶可接著互動地瀏覽虛擬建築物的2D或3D虛擬空間以選擇輸入偏好(諸如空間中的光量)的空間。例如,如相關於 18描述的,客戶可在1至100的標度上調整光量。標度的低端可對應於與一或多個內部空間相關聯之可著色窗的最高透射率位準,且標度的高端可對應於該一或多個可著色窗的最低透射率。控制邏輯可判定對應於期望光量的照度位準。在某些態樣中,客戶可在行動裝置上使用經組態以與虛擬表示協同地執行演現、導航、更新、及/或識別功能的應用程式輸入其等的偏好。包括對應照度位準的偏好經傳輸至建築物之虛擬模型的檔案駐存於其上的伺服器。更新虛擬表示的檔案可使用虛擬建築物模型可駐存於其中(例如,在記憶體中)的至少一個資料庫完成。資料庫可在建築物、在另一設施、或在雲端中。在一個態樣中,基於客戶的輸入,虛擬建築物模型的檔案可以對應於由客戶選擇之光量及/或一或多個其他偏好的較佳照度位準即時地,或大約即時地更新。 For example, a system (e.g., system 1800 shown in FIG. 18 ) can use a file from a virtual representation (e.g., a BIM file) to render a 2D or 3D virtual space in a building to a customer. The customer can then interactively navigate the 2D or 3D virtual space of the virtual building to select a space to input preferences (e.g., the amount of light in the space). For example, as described with respect to FIG. 18 , the customer can adjust the amount of light on a scale of 1 to 100. The low end of the scale can correspond to the highest transmittance level of the tintable windows associated with one or more interior spaces, and the high end of the scale can correspond to the lowest transmittance of the one or more tintable windows. The control logic can determine the illumination level corresponding to the desired amount of light. In some aspects, a customer may input their preferences on a mobile device using an application configured to perform rendering, navigation, updating, and/or identification functions in conjunction with the virtual representation. The preferences, including corresponding illumination levels, are transmitted to a server on which a file of the virtual model of the building resides. Updating the file of the virtual representation may be accomplished using at least one database in which the virtual building model may reside (e.g., in memory). The database may be at the building, at another facility, or in the cloud. In one aspect, based on the customer's input, the file of the virtual building model may be updated in real time, or approximately in real time, with a preferred illumination level corresponding to the amount of light selected by the customer and/or one or more other preferences.

在一個態樣中,多個客戶提供建築物中的一或多個空間的期望光量的輸入。若期望光量用於相同空間,可計算光量的平均值(average)、加權平均值、或平均值(mean),且在虛擬表示的檔案中更新該空間的對應照度位準。在一個態樣中,可排定客戶的優先順序並基於該優先順序加權施加至其等輸入的因子。In one aspect, multiple clients provide input of the desired amount of light for one or more spaces in a building. If the amount of light is expected to be used in the same space, the average, weighted average, or mean of the light amounts can be calculated and the corresponding illumination level of the space is updated in the virtual representation file. In one aspect, customers may be prioritized and factors applied to their inputs may be weighted based on that priority.

在操作 2030,控制邏輯判定來自虛擬天空圓頂之光斑的亮度分布。 12A繪示具有一百四十五(145)個光斑 1210的半球形天空圓頂 1201的實例。各光斑在方位方向上覆蓋第一立體角且在高度方向上覆蓋第二立體角。亮度分布表示在建築物上方之天空的光斑的光強度。天空圓頂將照度分布判定為建築物的地理位置(例如,經度、緯度、子午線)、時間、及來自,例如,在建築物之地點的一或多個感測器的物理測量輻射資料的函數。來自天空圓頂的經模擬資料可用以產生年度及/或單一時間點的照度分布。此等照度分布可用以產生用於光通量之三相模型的「S」天空向量及/或「S」矩陣。 At operation 2030 , the control logic determines a brightness distribution of the light spots from the virtual sky dome. FIG. 12A illustrates an example of a hemispherical sky dome 1201 having one hundred and forty-five (145) light spots 1210. Each light spot covers a first solid angle in the azimuth direction and a second solid angle in the altitude direction. The brightness distribution represents the light intensity of the light spots in the sky above the building. The sky dome determines the illuminance distribution as a function of the geographic location of the building (e.g., longitude, latitude, meridian), time, and physically measured radiation data from, for example, one or more sensors at the location of the building. The simulated data from the sky dome can be used to generate annual and/or single point in time illuminance distributions. These illuminance distributions can be used to generate the "S" sky vector and/or "S" matrix for a three-phase model of luminous flux.

控制邏輯使用天空圓頂模型以基於由感測器讀數衰減的晴空資料模擬照度分布以反映天空中的動態改變。各種軟體(諸如開放原始碼RADIANCE)可用以產生晴空資料以初始化天空圓頂之光斑的照度值。晴空資料係基於建築物的地理位置(例如,經度、緯度、子午線)及時間計算。The control logic uses a sky dome model to simulate illumination distribution based on clear sky data attenuated by sensor readings to reflect dynamic changes in the sky. Various software (such as the open source RADIANCE) can be used to generate clear sky data to initialize the illumination values of the sky dome spot. Clear sky data are calculated based on the building's geographic location (e.g., longitude, latitude, meridian) and time.

來自一或多個感測器的感測器資料接著可用以衰減天空圓頂模型中的經初始化晴空資料以基於經衰減晴空資料使用反應動態改變的即時或大約即時值產生即時天空圓頂模型。用以衰減晴空資料的讀數可來自在建築物之地點的一或多個感測器。例如,讀數可接收自 14A中的多感測器裝置 1400 15所示的多感測器裝置 1500中的一或多個光感測器。在一個態樣中,多感測器裝置位於建築物的屋頂上。 Sensor data from one or more sensors may then be used to attenuate the initialized clear sky data in the sky dome model to generate a real-time sky dome model based on the attenuated clear sky data using real-time or approximately real-time values that reflect dynamic changes. The readings used to attenuate the clear sky data may come from one or more sensors at a location of a building. For example, the readings may be received from one or more light sensors in the multi-sensor device 1400 in FIG . 14A or the multi-sensor device 1500 shown in FIG . 15. In one aspect, the multi-sensor device is located on a roof of a building.

在某些態樣中,為衰減天空圓頂模型中的晴空資料,使用來自一或多個感測器之經測量光資料的感測器讀數判定施加至天空圓頂之光斑之晴空資料的照度值的衰減比例因子。例如,在特定時間區間,光斑的晴空貢獻可係500,000勒克斯。然而,根據多感測器裝置的一或多個光感測器,在天空之藉由光斑表示的部分中存在雨雲,其導致照度位準從晴空值降低大約70%。基於此等即時感測器讀數,可判定0.70或更高的衰減比例因子,且將該比例因子施加至光斑的照度值。在一些情形中,將比例因子定界在諸如,例如,[0.2, 1]、[0.5, 1]的範圍內。將衰減比例因子定界至一範圍施加至傳統衰減因子。例如,若感測器故障且讀取0照度位準,若衰減比例因子定界在[0.2, 1]之間,施加0.20而非0的衰減比例因子。In some aspects, to attenuate the clear sky data in the sky dome model, sensor readings of measured light data from one or more sensors are used to determine the illuminance of the clear sky data applied to the light spot of the sky dome. The decay scaling factor for the value. For example, during a specific time interval, the clear sky contribution of the light spot may be 500,000 lux. However, according to one or more light sensors of the multi-sensor device, there are rain clouds in the part of the sky represented by the light spots, which causes the illumination level to decrease by about 70% from the clear sky value. Based on these real-time sensor readings, an attenuation scaling factor of 0.70 or higher can be determined and applied to the spot's illumination value. In some cases, the scale factor is bounded in a range such as, for example, [0.2, 1], [0.5, 1]. Delimits the attenuation scale factor to a range applied to the traditional attenuation factor. For example, if the sensor fails and reads 0 illumination level, if the attenuation scale factor is bounded between [0.2, 1], apply an attenuation scale factor of 0.20 instead of 0.

在一個態樣中,一種方法包括用於將一或多個感測器從,例如,多感測器裝置映射至主要(方位)方向的操作。額外地或替代地,方法包括將一或多個感測器映射至虛擬天空圓頂的光斑。例如,各感測器的位置、內在視場(FOV)、及方位及高度定向可用以判定從各天空圓頂光斑至各感測器的通量轉移係數。一旦一或多個感測器的方向性已建立,來自一或多個感測器的讀數可使用,例如,離散化方案(例如,Tregenza方案)映射至天空圓頂的光斑,諸如 12A 12B所示。在此映射之後,將函數(例如,S形(sigmoid)函數)施加在感測器讀數及晴空照度的經縮放值(例如,0.5至1.0)上。 In one aspect, a method includes operations for mapping one or more sensors from, for example, a multi-sensor device to a primary (azimuth) direction. Additionally or alternatively, the method includes mapping the one or more sensors to a spot of a virtual sky dome. For example, the location, intrinsic field of view (FOV), and azimuth and altitude orientation of each sensor may be used to determine a flux transfer coefficient from each sky dome spot to each sensor. Once the directionality of the one or more sensors has been established, readings from the one or more sensors may be mapped to the spot of the sky dome using, for example, a discretization scheme (e.g., a Tregenza scheme), as shown in FIGS. 12A and 12B . Following this mapping, a function (e.g., a sigmoid function) is applied to the sensor readings and a scaled value (e.g., 0.5 to 1.0) of clear sky illumination.

在一些情形中,來自天空圓頂的照度分布亦可計及歷史天氣資料。例如,用以初始化虛擬天空圓頂的晴空資料(例如,照度)可計及在建築物之地點的歷史天氣資料的趨勢。In some cases, the illumination distribution from the sky dome can also take into account historical weather data. For example, the clear sky data (eg, illuminance) used to initialize the virtual sky dome may account for trends in historical weather data at the location of the building.

在一個態樣中,虛擬天空圓頂的檔案可儲存在伺服器(例如,雲端網路上的伺服器上。例如,以最佳化程序的間隔及/或在其起始時將感測器讀數傳達至伺服器並更新虛擬天空圓頂模型的檔案。In one aspect, the file of the virtual sky dome may be stored on a server (e.g., a server on a cloud network). For example, at intervals of the optimization process and/or at the start thereof, the sensor readings are transmitted to the server and the file of the virtual sky dome model is updated.

控制邏輯使用來自天空圓頂的照度分布以產生使用在光通量之三相模型中之「S」天空矩陣或「S」天空向量的係數。「S」天空向量及/或「S」天空矩陣可包括基於由天空圓頂之光斑提供之資料的係數。在一些情形中,在一年時間區內以間隔(例如,2分鐘時間間隔、3分鐘時間間隔、五分鐘時間間隔、或十(10)分鐘時間間隔)對各光斑判定照度以判定「S」天空矩陣的係數。在一個實例中,用以判定係數的照度值係基於(1)歷史天氣條件統計,包括直接及漫射水平照度值及露點、(2)晴空照度值、及/或(3)感測器讀數判定。在一個實例中,各光斑的照度值係藉由橫跨光斑均勻地取樣照度值而計算。The control logic uses the illuminance distribution from the sky dome to generate coefficients for an "S" sky matrix or "S" sky vector used in a three-phase model of luminous flux. The "S" sky vector and/or the "S" sky matrix may include coefficients based on data provided by light spots of the sky dome. In some cases, the illuminance is determined for each light spot at intervals (e.g., 2 minute time intervals, 3 minute time intervals, 5 minute time intervals, or ten (10) minute time intervals) over a one-year time period to determine the coefficients for the "S" sky matrix. In one example, the illuminance values used to determine the coefficients are based on (1) historical weather condition statistics, including direct and diffuse horizontal illuminance values and dew point, (2) clear sky illuminance values, and/or (3) sensor readings. In one example, the illumination value for each spot is calculated by sampling the illumination value uniformly across the spot.

在操作 2040,控制邏輯使用本文描述的程序以基於來自虛擬天空圓頂之外部光的經模擬分布及光通量轉移的三相模型來判定在虛擬表示的一或多個空間(或該等空間中的網格點)提供目標照度位準或大約目標照度位準的建築物的一或多個可著色窗的一或多個透射率位準。在一些情況下,空間中的此等網格點可包括在空間之地板上的點。 At operation 2040 , the control logic uses the procedures described herein to determine one or more spaces in the virtual representation (or in such spaces) based on a three-phase model of the simulated distribution and luminous flux transfer of external light from the virtual sky dome. Grid points) provide one or more transmittance levels of one or more tintable windows of a building at or approximately the target illuminance level. In some cases, such grid points in space may include points on the floor of space.

在一個態樣中,「T」矩陣可乘以具有在0與1之間的值的向量,該等值表示對建築物中的一或多個可著色窗的透射率的調整。在操作2040的程序期間,可將向量使用為經迭代地調整直到網格點的照度位準係處於或大約處於目標照度位準為止的一獨立變數。例如,「T」矩陣可乘以表示對在建築物之側面或立面上之可著色窗的透射率的調整的向量。在程序期間,在其他矩陣(例如,日光「D」矩陣、檢視「V」矩陣、及/或「S」矩陣)的參數保持恆定的同時,一或多個可著色窗的透射率(經最佳化變數)使用具有在0與1之間的值的向量迭代地調整,直到在建築物中的一或多個內部虛擬空間(網格點)的照度位準達到或大約達到(多個)目標照度位準為止。如本文中使用的,大約達到照度位準可指以在約1%內、在約2%內、在約3%內、在約4%內、及在約5%內的一者到達照度位準。在各迭代,在一或多個內部虛擬空間的照度位準係使用光通量之三相模型的「V」「T」「D」及「S」矩陣判定。In one aspect, the "T" matrix may be multiplied by a vector having values between 0 and 1 that represent adjustments to the transmittance of one or more tintable windows in a building. During the process of operation 2040, the vector may be used as an independent variable that is iteratively adjusted until the illumination level of the grid points is at or approximately at the target illumination level. For example, the "T" matrix may be multiplied by a vector representing adjustments to the transmittance of a tintable window on the side or facade of a building. During the process, while parameters of other matrices (e.g., daylight "D" matrix, view "V" matrix, and/or "S" matrix) are held constant, the transmittance (optimized variable) of one or more tintable windows is iteratively adjusted using a vector having a value between 0 and 1 until the illumination level of one or more interior virtual spaces (grid points) in the building reaches or approximately reaches the target illumination level(s). As used herein, approximately reaching the illumination level may refer to reaching the illumination level to one of within about 1%, within about 2%, within about 3%, within about 4%, and within about 5%. At each iteration, the illumination level at the one or more interior virtual spaces is determined using the "V", "T", "D", and "S" matrices of the three-phase model of luminous flux.

在一個實施方案中,最佳化程序包括施加至矩陣方程式E = VTDS的一組多目標最佳化操作。多目標最佳化操作將在虛擬建築物模型的一或多個空間的網格點的(多個)期望照度位準與經計算照度位準之間的距離函數(平方差)最小化。在一個態樣中,若經計算距離函數落至某個臨限之下,控制邏輯可判定最佳化函數係在最小值。額外地或替代地,若距離函數的梯度(相關於窗透射率)落至某個臨限之下,控制邏輯可判定最佳化函數係在最小值。In one embodiment, the optimization procedure includes a set of multi-objective optimization operations applied to the matrix equation E = VTDS. A multi-objective optimization operation minimizes the distance function (squared difference) between the desired illuminance level(s) and the calculated illuminance level at a grid point in one or more spaces of the virtual building model. In one aspect, if the calculated distance function falls below a certain threshold, the control logic may determine that the optimization function is at a minimum. Additionally or alternatively, the control logic may determine that the optimization function is at a minimum if the gradient of the distance function (relative to the window transmittance) falls below a certain threshold.

在一個態樣中,最佳化程序可使用最佳化函數將差最小化,諸如上文之 方程式 1方程式 2中的最佳化函數的一者。在一或多個可著色窗被視為瞬間著色的一實例中,將該一或多個可著色窗的第 i個期望照度位準 p i 與係透射率 T的函數的經計算照度位準 f i(T) 之間的差最小化的最佳化函數係 方程式 1或由 方程式 2提供之簡化版本的其中一者。作為一或多個可著色窗基於其等的色調轉變速率及關聯電壓斜坡而被視為在一時間週期內著色的一實例,最佳化程序可考慮建築物之所有區之受色調轉變速率及關聯電壓斜坡限制的照度位準及一或多個可著色窗的目前透射率,及次一著色機會之前的時間(例如,最佳化程序的次一時間間隔)。在一些情形中,最佳化程序花費小於1分鐘、小於2分鐘、小於3分鐘等。在一個態樣中,一旦最佳化程序完成,更新虛擬建築物模型的互動顯示以顯示空間的期望照度位準及/或與藉由最佳化程序判定之透射率相關聯的一或多個可著色窗的著色版本。 In one aspect, the optimizer may minimize the difference using an optimization function, such as one of the optimization functions in Equation 1 and Equation 2 above. In an example where one or more tintable windows are considered to be instantaneously tinted, the i -th desired illuminance level p The optimization function that minimizes the difference between fi (T) is one of Equation 1 or the simplified version provided by Equation 2 . As an example of one or more tintable windows being considered tinted over a time period based on their tint transition rates and associated voltage ramps, the optimization process may consider the tint transition rates of all areas of the building and The associated voltage ramp limits the illumination level and the current transmittance of one or more tintable windows, and the time before the next tinting opportunity (e.g., the next time interval of the optimization procedure). In some cases, the optimization procedure takes less than 1 minute, less than 2 minutes, less than 3 minutes, etc. In one aspect, once the optimization process is completed, the interactive display of the virtual building model is updated to show the desired illumination level of the space and/or one or more parameters associated with the transmittance determined by the optimization process. Tinted version of tintable windows.

21包括描繪根據實施方案之最佳化程序之操作的一實例的流程圖。根據一實施方案,繪示於 21中的操作可係,例如,描繪於 20中所示之流程圖 2000中之方法的操作 2040的子操作。 Figure 21 includes a flowchart depicting an example of the operation of an optimization process in accordance with an embodiment. According to one embodiment, the operations illustrated in FIG. 21 may be, for example, a sub-operation of operation 2040 of the method depicted in flowchart 2000 illustrated in FIG . 20 .

在操作 2042,控制邏輯計算在建築物之虛擬表示的一或多個內部空間之各三維空間中的(多個)網格點的照度位準(例如, f i(T) )。給定對應於在建築物之地理位置的天空條件之亮度值的「S」矩陣,矩陣方程式E = VTDS可用以獲得表示在各網格點的照度或勒克斯位準的照度矩陣「E」。在一個態樣中,晴空「S」矩陣的係數可基於來自建築物上方之天空中的光分布的虛擬天空圓頂模型模擬(年度或時間上的單一點)的資料輸出。在某些態樣中,「S」矩陣的係數對應於在特定地理位置(諸如設施的地理位置)在多個時間點(例如,一年內)的晴空條件的亮度位準。在某些態樣中,「S」向量代表對應於在特定地理位置在單一時間點的天空條件之亮度位準的向量。「S」矩陣可藉由加入不同時間點的多個「S」向量計算。「V」檢視矩陣指定(藉由角度)從一或多個可著色窗行進至空間中的網格點的光之間的光通量轉移。「D」日光矩陣指定從天空至一或多個可著色窗的(多個)孔隙的通量轉移,且可基於可著色窗的尺寸及定向計算。「T」矩陣指定一或多個可著色窗的目前透射率。在最佳化程序期間,在一或多個虛擬空間之各者的網格點的照度位準係基於可著色窗的目前透射率位準判定。 At operation 2042 , control logic calculates illumination levels (eg, fi (T) ) at grid point(s) in each three-dimensional space of one or more interior spaces of the virtual representation of the building. Given an "S" matrix of luminance values corresponding to sky conditions at the building's geographical location, the matrix equation E = VTDS can be used to obtain an illuminance matrix "E" representing the illuminance or lux level at each grid point. In one aspect, the coefficients of the clear-sky "S" matrix may be based on data output from a virtual sky dome model simulation (either yearly or at a single point in time) of light distribution in the sky above a building. In some aspects, the coefficients of the "S" matrix correspond to brightness levels of clear-sky conditions at a particular geographic location (such as the geographic location of a facility) at multiple points in time (eg, over a year). In some aspects, the "S" vector represents a vector corresponding to a brightness level corresponding to sky conditions at a particular geographical location at a single point in time. The "S" matrix can be calculated by adding multiple "S" vectors at different points in time. The "V" view matrix specifies (by angle) the flux transfer between light traveling from one or more tintable windows to grid points in space. The "D" daylight matrix specifies the flux transfer from the sky to the aperture(s) of one or more tintable windows, and can be calculated based on the size and orientation of the tintable windows. The "T" matrix specifies the current transmittance of one or more tintable windows. During the optimization process, the illumination level of a grid point in each of one or more virtual spaces is determined based on the current transmittance level of the tintable window.

在一個實施方案中,子操作可包括施加至矩陣方程式E = VTDS的一組多目標最佳化操作。多目標最佳化操作將在虛擬建築物模型的一或多個空間的網格點的(多個)期望照度位準與經計算照度位準之間的距離函數(平方差)最小化。最佳化程序可使用最佳化函數將差最小化,諸如方程式1及方程式2中之最佳化函數的一者。In one embodiment, the sub-operations may include a set of multi-objective optimization operations applied to the matrix equation E = VTDS. A multi-objective optimization operation minimizes the distance function (squared difference) between the desired illuminance level(s) and the calculated illuminance level at a grid point in one or more spaces of the virtual building model. The optimization program may minimize the difference using an optimization function, such as one of the optimization functions in Equation 1 and Equation 2.

在操作 2043,控制邏輯計算在虛擬建築物模型的一或多個空間的網格點的(多個)期望照度位準與經計算照度位準之間的距離函數(平方差)。 At operation 2043 , the control logic calculates a distance function (squared difference) between the desired illuminance level(s) and the calculated illuminance level at a grid point of one or more spaces of the virtual building model.

在操作 2044,控制邏輯判定最佳化函數是否在最小值。在一個態樣中,若經計算距離函數落至某個臨限之下,控制邏輯可判定最佳化函數係在最小值。額外地或替代地,若距離函數的梯度(相關於窗透射率)落至某個臨限之下,控制邏輯可判定最佳化函數係在最小值。例如,控制邏輯可迭代地調整虛擬建築物模型中的一或多個(虛擬)可著色窗的(多個)透射率位準,直到不再有對(多個)透射率位準的進一步改變在距離函數上產生低於某個值(例如,-.001)的負變化(更接近期望最小值)為止。 At operation 2044 , the control logic determines whether the optimization function is at a minimum. In one aspect, the control logic may determine that the optimization function is at a minimum if the calculated distance function falls below a certain threshold. Additionally or alternatively, the control logic may determine that the optimization function is at a minimum if the gradient of the distance function (relative to the window transmittance) falls below a certain threshold. For example, the control logic may iteratively adjust the transmittance level(s) of one or more (virtual) tintable windows in the virtual building model until no further changes to the transmittance level(s) produce a negative change in the distance function below a certain value (e.g., -.001) (closer to the desired minimum).

若在操作 2044,最佳化經判定成不在最小值,則控制邏輯調整一或多個虛擬可著色窗的一或多個目前流透射率位準(操作 2046)。在一個情形中,若差係負的,增加透射率,且若差係正的,減少透射率。在一個態樣中,(多個)透射率位準可藉由大約1%、大約2%、大約3%、大約4%、及大約5%的一者調整。 If the optimization is determined not to be at a minimum at operation 2044 , the control logic adjusts one or more current flow transmittance levels of one or more virtual tintable windows (operation 2046 ). In one case, if the difference is negative, the transmittance is increased, and if the difference is positive, the transmittance is decreased. In one aspect, the transmittance level(s) may be adjusted by one of approximately 1%, approximately 2%, approximately 3%, approximately 4%, and approximately 5%.

在一個實施方案中,控制邏輯在操作 2046調整虛擬可著色窗的一或多個區的一或多個目前透射率位準。例如,可調整與一或多個空間相關聯的一或多個區可著色窗的透射率。例如,可調整 17中一起分組在名為「開放辦公室1」之區中的面向南可著色窗及面向東可著色窗的透射率以符合開放辦公室1空間中的期望照度位準。 In one embodiment, control logic adjusts one or more current transmittance levels of one or more regions of the virtual tintable window at operation 2046 . For example, the transmittance of one or more zone tintable windows associated with one or more spaces may be adjusted. For example, the transmittances of the south-facing tinted windows and the east-facing tinted windows in Figure 17 that are grouped together in the zone named "Open Office 1" can be adjusted to match the desired illumination levels in the Open Office 1 space.

若在操作 2044,最佳化經判定在最小值,則控制邏輯前進至操作 2050。在操作 2050,控制邏輯判定一或多個可著色窗之各可著色窗之與由最佳化程序判定的透射率相關聯的色調狀態。例如,可著色窗可經組態以著色成複數個色調狀態,各色調狀態與透射率位準相關聯。控制邏輯可判定複數個色調狀態的何者與藉由將由最佳化程序判定的透射率捨進(替代地捨去)至對應於複數個色調狀態中之一色調狀態的最接近位準透射率而藉由最佳化程序判定的透射率相關聯。例如,在態樣中上,一或多個可著色窗可經組態以轉變至4個色調狀態(T1至T4),其中色調1 (T1)係清透狀態且色調4 (T4)係最暗狀態。T1對應於約50% (+/- 10%)之通過可著色窗的透射率、T2對應於在約25%至約30% (+/- 10%)之範圍中通過可著色窗的透射率、T3對應於約7% (+/- 10%)之通過可著色窗的透射率、且T4(最暗色調狀態)對應於約1% (+/- 10%)之通過可著色窗的透射率。在此實例中,控制邏輯可將藉由最佳化程序判定的透射率捨進(替代地捨去)至與4個色調狀態的一者相關聯的次一透射率位準。例如,若第一可著色窗的透射率藉由最佳化程序判定為22%,控制邏輯可捨進至25%透射率,該透射率與色調狀態T2相關聯,且判定由最佳化程序判定的22%透射率與T2的色調狀態相關聯。雖然本文呈現之實例的一些將可著色窗描述為具有四個色調狀態,本揭露不限於此類窗。例如,所揭示實例亦施用於具有2、3、4、5、6、7、8、9、10、或甚至更多個色調位準的可著色窗。 If at operation 2044 , the optimization is determined to be at a minimum value, then control logic proceeds to operation 2050 . At operation 2050 , control logic determines a tint state for each of the one or more tintable windows associated with the transmittance determined by the optimization procedure. For example, a tintable window may be configured to be tinted into a plurality of hue states, each hue state being associated with a transmittance level. The control logic may determine which of the plurality of hue states is relevant by rounding (alternatively rounding) the transmittance determined by the optimization procedure to the closest level transmittance corresponding to one of the plurality of hue states. Correlated to the transmittance determined by the optimization procedure. For example, in the above aspect, one or more tintable windows can be configured to transition to 4 tint states (T1 through T4), with tint 1 (T1) being the clear state and tint 4 (T4) being the clearest state. dark state. T1 corresponds to a transmission through the tintable window of about 50% (+/- 10%), T2 corresponds to a transmission through the tintable window in the range of about 25% to about 30% (+/- 10%) , T3 corresponds to approximately 7% (+/- 10%) transmission through the tintable window, and T4 (darkest tint state) corresponds to approximately 1% (+/- 10%) transmission through the tintable window Rate. In this example, the control logic may round (alternatively round) the transmittance determined by the optimization procedure to the next transmittance level associated with one of the four hue states. For example, if the transmittance of the first tintable window is determined to be 22% by the optimization process, the control logic may round to the 25% transmittance associated with tint state T2 and determined by the optimization process. The determined transmittance of 22% correlates with the hue state of T2. Although some of the examples presented herein describe tintable windows as having four tint states, the present disclosure is not limited to such windows. For example, the disclosed examples also apply to tintable windows having 2, 3, 4, 5, 6, 7, 8, 9, 10, or even more tint levels.

在一個態樣中,一或多個可著色窗可經組態以保持具有透射率位準範圍的任何透射率,且被視為具有「無限」數目的色調狀態。在此實例中,控制邏輯不執行操作 2050。在操作 2070,控制邏輯可施加電壓曲線以將一或多個可著色窗之各者保持在於操作 2040判定的透射率位準。 In one aspect, one or more tintable windows may be configured to maintain any transmittance with a range of transmittance levels and be considered to have an "infinite" number of tint states. In this example, the control logic does not perform operation 2050. At operation 2070 , the control logic may apply a voltage curve to maintain each of the one or more tintable windows at the transmittance level determined at operation 2040 .

可選地,控制邏輯包括操作 2060(由虛線表示)。在操作 2060,若覆寫係原地的,則控制邏輯施加一或多個覆寫。在一些情形中,控制邏輯可判定一或多個覆寫是否係原地的。若有原地的覆寫,則控制邏輯在操作 2070將最終色調狀態設定為覆寫值。在不包括可選操作 2060的實施方案中,控制邏輯將最終色調狀態設定成在操作 2050判定的色調位準。 Optionally, the control logic includes operation 2060 (indicated by dashed lines). At operation 2060 , if the override is in-place, the control logic applies one or more overrides. In some cases, the control logic may determine whether the one or more overrides are in-place. If there is an in-place override, the control logic sets the final hue state to the override value at operation 2070. In an embodiment that does not include optional operation 2060 , the control logic sets the final hue state to the hue level determined at operation 2050 .

在一些情形中,(多個)覆寫可來自一或多個佔用者。例如,覆寫可由空間之想要覆寫控制系統並設定色調位準的目前佔用者(例如,租戶)輸入。在其他情形中,(多個)覆寫可來自公用設施公司、客戶支援人員、建築物管理人員等。例如,覆寫可係高需求(或峰負載)覆寫,其與公用設施之降低建築物中的能量消耗的要求相關聯。舉例而言,在大都會地區中之特定熱天,可能有必要減少整個市區之能量消耗,以免對市區之能量產生及遞送系統造成過大的負擔。在此類情形中,建築物管理可覆寫來自控制邏輯的色調位準以確保所有可著色窗具有高色調位準。在此實例中,此覆寫可覆寫使用者的手動覆寫。覆寫值中可存在優先等級。覆寫可從,例如,遠端控制器、虛擬實境控制器、蜂巢式電話、電子記事本、膝上型電腦、或及/或藉由類似行動裝置)輸入。In some cases, the overwrite(s) may come from one or more occupants. For example, an override may be entered by a current occupant of the space (eg, a tenant) who wants to override the control system and set color levels. In other cases, the overwrite(s) may come from utility companies, customer support personnel, building managers, etc. For example, the override may be a high demand (or peak load) override associated with the utility's requirement to reduce energy consumption in the building. For example, during certain hot days in a metropolitan area, it may be necessary to reduce energy consumption throughout the urban area to avoid placing an undue burden on the urban energy generation and delivery system. In such cases, building management can override the tint levels from the control logic to ensure that all tintable windows have high tint levels. In this example, this override overrides the user's manual override. Priority levels can exist in override values. Overwrites may be entered from, for example, a remote controller, a virtual reality controller, a cellular phone, a notepad, a laptop, or and/or via a similar mobile device.

在一個態樣中,控制邏輯可經組態以基於過去資料(在本文中亦稱為「歷史資料」)提供地點特定覆寫值的有統計根據的預知。例如,可利用過去使用在建築物的覆寫值。地點特定值可在記憶體中儲存為時間序列資料。使用在期望對其作出預測之特定位置獲得的過去資料的能力使預測可能能更準確。在一個實例中,判定經預測覆寫涉及過去資料的統計評估,諸如藉由取得一或多個過去覆寫值的平均值(mean)、平均值(average)、或加權平均值。在一個實例中,判定經預測覆寫涉及使用機器學習分類演算法,該機器學習分類演算法適用於將時間序列資訊叢集化至其等的縱向感測器值展現類似形狀及模式的群組中。根據所需精細度位準(對於一天中的給定小時,一年中的一天,一週,一個月或一季),已識別的聚類質心將顯示所述時間範圍內所有記錄的平均值的軌跡,其自身當中之相似性可以與其他類似記錄組進行定量區分。群組之間的此區別允許相關於期望在目前時間框期間在給定位置監測的「典型」條件之以統計方式發現的推斷。In one aspect, the control logic may be configured to provide statistically based predictions of site-specific override values based on past data (also referred to herein as "historical data"). For example, you can take advantage of override values that have been used on buildings in the past. Site-specific values can be stored in memory as time series data. The ability to use past data obtained at the specific location for which predictions are desired makes predictions potentially more accurate. In one example, determining a predicted overwrite involves a statistical evaluation of past data, such as by taking a mean, average, or weighted average of one or more past overwrite values. In one example, determining predicted overwrites involves using a machine learning classification algorithm adapted to cluster time series information into groups whose longitudinal sensor values exhibit similar shapes and patterns. . Depending on the desired level of granularity (for a given hour of the day, day of the year, week, month, or quarter), the identified cluster centroids will display the average of all records within the stated time range. Trajectories whose similarities within themselves allow quantitative distinction from other similar groups of records. This distinction between groups allows inferences to be made statistically about "typical" conditions expected to be monitored at a given location during the current time frame.

在操作 2080,若(多個)可著色窗目前在不同的色調狀態,控制邏輯將(或將指令發送至一或多個控制器以將)一或多個可著色窗轉變成最終色調狀態。替代地,若可著色窗目前在最終色調狀態中,控制邏輯將(或將指令發送至一或多個控制器以將)一或多個可著色窗保持在最終色調狀態中。 At operation 2080 , if the tintable window(s) are currently in different tint states, the control logic will (or sends instructions to one or more controllers to transition) the tintable window(s) to the final tint state. Alternatively, if the tintable window is currently in the final tint state, the control logic will (or sends instructions to one or more controllers to maintain) one or more tintable windows in the final tint state.

在某些實施方案中,控制邏輯基於可著色窗的分區轉變或保持可著色窗。例如,可判定可著色窗之區的透射率及最終色調狀態,且控制邏輯可根據為該區判定的該透射率轉變或保持可著色窗的該區。In some embodiments, control logic transitions or maintains tintable windows based on partitioning of tintable windows. For example, the transmittance and final tint state of a region of the tintable window may be determined, and control logic may transition or maintain the region of the tintable window based on the transmittance determined for the region.

在一些情形中,花時間在建築物之空間中的客戶可能期望即時控制空間中的自然光位準及/或人工光位準。此可係客戶比來自,例如,白熾、發光二極體(LED)、或螢光照明之人工照明更喜歡陽光的情形。再者,已發現某些可著色窗在其等的較暗色調狀態中可能給予房間太多藍色。此藍色藉由允許未濾波日光的一部分進入房間而補償。與建築物有關的客戶動機包括通過降低加熱、空調、及照明而使能量使用降低。例如,客戶可能希望調色窗以使某個量的日光傳輸通過窗,使得較少的能量需要用於人工照明及/或加熱。客戶亦可能希望採集日光以收集太陽能並補償加熱需求。在此等情形中,控制邏輯可調整一或多個人工照明位準以及虛擬建築物模型中的一或多個可著色窗的透射率,其在空間中導致期望的自然光位準及/或人工光位準。替代地,控制邏輯可調整一或多個人工照明位準以及虛擬建築物模型中的一或多個可著色窗的透射率,其在空間中導致期望的顏色位準及/或光強度。調整人工照明以擴增顏色之控制邏輯的一些實例可見於發明名稱為「METHODS OF CONTROLLING MULTI-ZONE TINTABLE WINDOWS」且於2018年3月21日申請之美國專利申請案第15/762,077號中,其特此以全文引用方式併入本文中。In some cases, a customer who spends time in a space in a building may desire to control the natural light level and/or artificial light level in the space in real time. This may be the case where the customer prefers sunlight to artificial lighting from, for example, incandescent, light emitting diode (LED), or fluorescent lighting. Furthermore, it has been found that some tintable windows may give a room too much blue tint in their darker tint states. This blue tint is compensated by allowing a portion of unfiltered daylight to enter the room. Customer motivations related to buildings include reducing energy use by reducing heating, air conditioning, and lighting. For example, a customer may want to tint windows so that a certain amount of daylight is transmitted through the window so that less energy is required for artificial lighting and/or heating. A customer may also want to harvest daylight to collect solar energy and compensate for heating needs. In such cases, the control logic may adjust one or more artificial lighting levels and the transmittance of one or more tintable windows in the virtual building model, which results in a desired natural light level and/or artificial light level in the space. Alternatively, the control logic may adjust one or more artificial lighting levels and the transmittance of one or more tintable windows in the virtual building model, which results in a desired color level and/or light intensity in the space. Some examples of control logic for adjusting artificial lighting to augment color can be found in U.S. Patent Application No. 15/762,077, entitled “METHODS OF CONTROLLING MULTI-ZONE TINTABLE WINDOWS” and filed on March 21, 2018, which is hereby incorporated by reference in its entirety.

諸如「一(a/an)」及「該(the)」之用語並不意欲僅指單一實體,而是包括特定實例可用於說明之一般類別。本文中之術語用以描述(多個)發明之特定實施例,但其使用並不限定(多個)發明。Terms such as "a", "an", and "the" are not intended to refer to only a single entity, but include a general class of which a specific example may be used for illustration. The terms herein are used to describe specific embodiments of the invention(s), but their use does not limit the invention(s).

除非另外指定,否則當提及範圍時,範圍意欲為包括性的。舉例而言,介於值1與值2之間的範圍意欲為包括性的且包括值1及值2。包括性範圍將橫跨自約值1至約值2之任何值。如本文中所使用的用語「鄰近(adjacent)」或「鄰近於(adjacent to)」包括「緊鄰(next to)」、「鄰接(adjoining)」、「接觸(in contact with)」及「接近(in proximity to)」。Unless otherwise specified, when referring to a range, the range is intended to be inclusive. For example, a range between value 1 and value 2 is intended to be inclusive and include value 1 and value 2. An inclusive range will span any value from about value 1 to about value 2. As used herein, the terms "adjacent" or "adjacent to" include "next to," "adjoining," "in contact with," and "in proximity to."

如本文中所使用的,包括申請專利範圍中,在諸如「包括X、Y、及/或Z」之片語中的連接辭「及/或(and/or)」係指包括複數個X、Y、及Z或X、Y、及Z的任何組合。例如,此類片語意謂著包括X。例如,此類片語意謂著包括Y。例如,此類片語意謂著包括Z。例如,此類片語意謂著包括X及Y。例如,此類片語意謂著包括X及Z。例如,此類片語意謂著包括Y及Z。例如,此類片語意謂著包括複數個X。例如,此類片語意謂著包括複數個Y。例如,此類片語意謂著包括複數個Z。例如,此類片語意謂著包括複數個X及複數個Y。例如,此類片語意謂著包括複數個X及複數個Z。例如,此類片語意謂著包括複數個Y及複數個Z。例如,此類片語意謂著包括複數個X及Y。例如,此類片語意謂著包括複數個X及Z。例如,此類片語意謂著包括複數個Y及Z。例如,此類片語意謂著包括X及複數個Y。例如,此類片語意謂著包括X及複數個Z。例如,此類片語意謂著包括Y及複數個Z。連接詞「及/或(and/or)」意指具有如片語「X、Y、Z、或其任何組合或其複數」的相同效果。連接詞「及/或(and/or)」意指具有如片語「一或多個X、Y、Z、或其任何組合」的相同效果。As used herein, including in the claims, the conjunction “and/or” in phrases such as “comprising X, Y, and/or Z” means including a plurality of X, Y, and Z or any combination of X, Y, and Z. For example, such phrases mean including X. For example, such phrases mean including Y. For example, such phrases mean including Z. For example, such phrases mean including X and Y. For example, such phrases mean including X and Z. For example, such phrases mean including Y and Z. For example, such phrases mean including a plurality of X. For example, such phrases mean including a plurality of Y. For example, such phrases mean including a plurality of Z. For example, such phrases mean including a plurality of X and a plurality of Y. For example, such phrases are meant to include plural Xs and plural Zs. For example, such phrases are meant to include plural Ys and plural Zs. For example, such phrases are meant to include plural Xs and Ys. For example, such phrases are meant to include plural Xs and Zs. For example, such phrases are meant to include plural Ys and Zs. For example, such phrases are meant to include Xs and plural Ys. For example, such phrases are meant to include Xs and plural Zs. For example, such phrases are meant to include Ys and plural Zs. The conjunction “and/or” is meant to have the same effect as the phrase “X, Y, Z, or any combination or plural thereof.” The conjunction “and/or” is meant to have the same effect as the phrase “one or more X, Y, Z, or any combination thereof.”

用語「操作地耦接(operatively coupled)」或「操作地連接(operatively connected)」係指耦接(例如連接)至第二元件以允許第二元件及/或第一元件之預期操作的第一元件(例如機構)。耦接可包含實體或非實體耦接(例如通訊耦接)。非實體耦接可包含信號誘發之耦接(例如,無線耦接)。耦接可包括實體耦接(例如實體連接)或非實體耦接(例如經由無線通訊)。操作地耦接可包含通訊地耦接。The term "operatively coupled" or "operatively connected" refers to a first element (e.g., a mechanism) that is coupled (e.g., connected) to a second element to allow for intended operation of the second element and/or the first element. Coupling may include physical or non-physical coupling (e.g., communicative coupling). Non-physical coupling may include signal-induced coupling (e.g., wireless coupling). Coupling may include physical coupling (e.g., physical connection) or non-physical coupling (e.g., via wireless communication). Operationally coupled may include communicatively coupled.

「經組態以」執行功能的元件(例如,機構)包括使元件執行此功能的結構特徵。結構特徵可包括電氣特徵,諸如電路系統或電路元件。結構特徵可包括致動器。結構特徵可包括電路系統(例如,包含電氣或光學電路系統)。電氣電路系統可包含一或多根電線。電氣電路系統可經組態以耦接至電源(例如,至電網格)。例如,電氣電路系統可包含插口。光學電路系統可包含至少一個光學元件(例如,光束分光器、鏡面、透鏡及/或光纖)。結構特徵可包括機械特徵。機械特徵可包含閂鎖、彈簧、閉合件、鉸鏈、底盤、支撐件、固定件或懸臂支架等。執行功能可包含利用邏輯特徵。邏輯特徵可包括程式化指令。程式化指令可由至少一個處理器執行。程式化指令可儲存或編碼於可由一或多個處理器存取之媒體上。另外,在以下描述中,片語「可操作以」、「經調適以」、「經組態以」、「經設計以」、「經程式化以」或「能夠」可在適當時互換地使用。An element (e.g., a mechanism) that is "configured to" perform a function includes structural features that enable the element to perform this function. Structural features may include electrical features, such as circuit systems or circuit elements. Structural features may include actuators. Structural features may include circuit systems (e.g., including electrical or optical circuit systems). The electrical circuit system may include one or more wires. The electrical circuit system may be configured to couple to a power source (e.g., to an electrical grid). For example, the electrical circuit system may include a socket. The optical circuit system may include at least one optical element (e.g., a beam splitter, a mirror, a lens, and/or an optical fiber). Structural features may include mechanical features. Mechanical features may include latches, springs, closures, hinges, chassis, supports, fixtures, or cantilever brackets, etc. Performing a function may include utilizing logic features. The logic features may include programmed instructions. The programmed instructions may be executed by at least one processor. The programmed instructions may be stored or encoded on a medium accessible by one or more processors. In addition, in the following description, the phrases "operable to," "adapted to," "configured to," "designed to," "programmed to," or "capable of" may be used interchangeably as appropriate.

可對上文描述之實施方案的任一者進行修改、添加、或省略而不脫離本揭露內容之範疇。上文描述之實施方案的任一者可包括更多、更少、或其他特徵而不脫離本揭露之範疇。額外地,所描述特徵的步驟可以任何合適順序執行而不脫離本揭露之範疇。再者,可將來自任何實施方案的一或多個特徵與任何其他實施方案的一或多個特徵組合而不脫離本揭露之範疇。任一實施方案的組件可根據特定需求整合或分開而不脫離本揭露之範疇。Any of the embodiments described above may be modified, added, or omitted without departing from the scope of the present disclosure. Any of the embodiments described above may include more, fewer, or other features without departing from the scope of the present disclosure. Additionally, the steps of the described features may be performed in any suitable order without departing from the scope of the present disclosure. Furthermore, one or more features from any embodiment may be combined with one or more features of any other embodiment without departing from the scope of the present disclosure. The components of any embodiment may be integrated or separated according to specific needs without departing from the scope of the present disclosure.

應瞭解上文描述的某些態樣可以使用採模組化或整合方式之電腦軟體的邏輯形式實施。基於本揭露內容及本文所提供之教示,一般熟習此項技術者將知曉及瞭解使用硬體及硬體與軟體之組合來實施本發明的其他方式及/或方法。It should be understood that some aspects described above can be implemented using the logic of computer software in a modular or integrated manner. Based on the disclosure and the teachings provided herein, a person skilled in the art will know and understand other ways and/or methods of implementing the present invention using hardware and a combination of hardware and software.

描述於本申請案中的軟體組件或函數的任何者可使用任何合適的電腦語言及/或計算軟體(諸如,例如,Java、C、C#、C++、或Python、LabVIEW、Mathematica)或其他合適的語言/計算軟體(包括低階碼,包括為現場可程式化閘陣列編寫的碼,例如,以VHDL)實施為軟體碼。碼可包括用於函數(像是資料獲取及控制、動作控制、影像獲取及顯示等)的軟體庫。碼的一些或全部可在個人電腦、單板電腦、嵌入式控制器、微控制器、數位信號處理器、現場可程式化閘陣列、及/或任何其組合,或任何類似計算裝置及/或(多個)邏輯裝置上運行。軟體碼可在CRM(諸如隨機存取記憶體(RAM)、唯讀記憶體(ROM)、磁媒體(諸如硬碟機或軟碟機)、或光學媒體(諸如CD-ROM)、或固態儲存器(諸如固態硬碟或可移除式快閃記憶體裝置))或任何合適的儲存裝置上儲存為一系列指令或命令。任何此類CRM可駐留在單一計算設備上或內,且可存在於系統或網路內的不同計算設備上或內。儘管已相當詳細地描述上文揭示的實施方案以促進理解,所描述的實施例將被視為係說明性而非限制性的。一般熟習此項技術者將顯而易見,可在所附申請專利範圍之範疇內實踐某些改變及修改。Any of the software components or functions described in this application may use any suitable computer language and/or computing software (such as, for example, Java, C, C#, C++, or Python, LabVIEW, Mathematica) or other suitable Language/computing software (including low-level code, including code written for field programmable gate arrays, e.g., in VHDL) is implemented as software code. Code may include software libraries for functions such as data acquisition and control, motion control, image acquisition and display, etc. Some or all of the code may be implemented on a personal computer, single board computer, embedded controller, microcontroller, digital signal processor, field programmable gate array, and/or any combination thereof, or any similar computing device and/or Run on (multiple) logical devices. The software code may be stored in a CRM (such as random access memory (RAM), read only memory (ROM), magnetic media (such as a hard drive or floppy disk drive), or optical media (such as a CD-ROM), or solid state storage stored as a series of instructions or commands on a device (such as a solid state drive or removable flash memory device) or any suitable storage device. Any such CRM may reside on or within a single computing device, and may exist on or within different computing devices within a system or network. Although the embodiments disclosed above have been described in considerable detail to facilitate understanding, the described embodiments are to be considered illustrative and not restrictive. It will be apparent to those skilled in the art that certain changes and modifications may be practiced within the scope of the appended claims.

用語「包含(comprise)」、「具有(have)」、及「包括(include)」係開放式連接動詞。此等動詞之一或多者的任何形式或時態(諸如「包含(comprises)」、「包含(comprising)」、「具有(has)」、「具有(having)」、「包括(includes)」、及「包括(including)」亦係開放式的。例如,「包含」、「具有」、或「包括」一或多個步驟的任何方法不限於僅具有該等一或多個步驟且亦可涵蓋其他未列舉步驟。類似地,「包含」、「具有」、或「包括」一或多個特徵的任何組成或裝置不限於僅具有該等一或多個特徵且亦可涵蓋其他未列舉特徵。The terms "comprise," "have," and "include" are open linking verbs. any form or tense of one or more of these verbs (such as "comprises", "comprising", "has", "having", "includes" , and "including" are also open-ended. For example, "comprising", "having", or "comprising" any method of one or more steps is not limited to having only those one or more steps and can also Covers other unlisted steps. Similarly, any composition or device that "comprises", "has", or "includes" one or more features is not limited to having only those one or more features and may also cover other unlisted features .

除非本文中另外指示或另外為上下文所明確地否定,本文描述的所有方法皆可以任何合適順序執行。相關於本文中的某些實施方案提供的任何及所有實例、或例示性語言(例如,「諸如」)的使用僅意圖更佳地闡明本揭露,且不對另外主張之本揭露的範疇造成限制。不應將本說明書中的語言解釋為指示任何未主張要件對本揭露的實踐係必要的。All methods described herein can be performed in any suitable order unless otherwise indicated herein or otherwise clearly contradicted by context. The use of any and all examples, or exemplary language (eg, "such as") provided with respect to certain embodiments herein is intended merely to better illuminate the disclosure and does not pose a limitation on the scope of the disclosure otherwise claimed. No language in the specification should be construed as indicating that any non-claimed element is necessary to practice the disclosure.

本文揭示之本揭露的替代元件的分組或實施方案不應解讀為限制。各群組成員可個別地或與群組的其他成員或見於本文中的其他元件組合地指稱或主張。群組中的一或多個成員可為了方便或可專利性的原因而包括在群組中或從群組刪除。當任何這樣的包括或刪除發生時,本文中將說明書視為含有經修改的群組,從而滿足在所附申請專利範圍中使用的所有馬庫西群組之書面描述。The groupings or implementations of alternative elements of the disclosure disclosed herein should not be construed as limitations. Each group member may be referred to or claimed individually or in combination with other members of the group or other elements found herein. One or more members of a group may be included in or removed from the group for convenience or patentability reasons. When any such inclusion or deletion occurs, the specification is herein deemed to contain the group as modified so as to satisfy the written description of all Markusi groups used in the appended claims.

100:電致變色窗片 105:玻璃片材;玻璃窗片 110:擴散障壁 115:第一透明導電氧化物層(TCO);TCO;第一TCO;TCO層 120:隔離溝;溝 125:電致變色堆疊 130:第二TCO 135:部分 140:區 145:部分 150:雷射劃線溝;溝 155:雷射劃線溝;溝 160:雷射劃線溝;溝 165:雷射劃線溝;溝 170:部分 175:部分 200:IGU;IGU裝置 201:窗片;玻璃 205:間隔物 210:第二窗片;窗片;第二玻璃窗片 215:主要密封材料 220:次要密封件 225:內部容積 230:強化窗格 235:樹脂 300:電致變色裝置 302:基板 304:第一導電層(CL);層;導電層 306:電致變色層(EC);層;電致變色材料 308:離子導電層(IC);層;離子導電層 310:相對電極層(CE);層;相對電極 314:第二導電層(CL);層;導電層 316:電壓源 320:電致變色堆疊 400:電致變色裝置 402:基板 404:導電層(CL);導電層 406:氧化鎢電致變色層(EC);氧化鎢電致變色層;層 408:離子導電層(IC);離子導電層 410:氧化鎳鎢相對電極層(CE);氧化鎳鎢相對電極層;氧化鎳鎢相對電極;層 414:導電層(CL);導電層 416:電源;電壓源 420:電致變色堆疊 450:窗控制器 455:微處理器 460:脈衝寬度調變器;PWM 465:輸入 470:電腦可讀取媒體 475:組態檔案 480:網路 500:控制系統;系統 502:電致變色窗;可著色窗 503:雲 504:建築物 506:現代加熱、通風、及空調(HVAC)系統 507:內部照明系統 508:保全系統 509:電力系統 510:外部感測器;建築物管理系統(BMS);BMS 511:主控制器(MC);主控制器 512:網路控制器(NC);網路控制器 514:窗控制器 600:網路系統 604:本地窗控制器(WC);窗控制器;WC 606:網路控制器(NC);NC;網路控制器 608:主控制器(MC);MC;主控制器 610:外部源 620:資料庫 624:建築物管理系統;BMS 701:地點 703:區 722:可著色窗;IGU 724:窗控制器;WC 800:虛擬建築物模型 801:BIM檔案 900:控制系統 910:建築物 912:互動目標裝置 914:客戶 916:行動裝置 918:實體空間 920:控制器網路 930:3-D模型虛擬建築物模型;虛擬建築物模型 932:虛擬物件 938:虛擬空間 940:網路鏈路 950:網路鏈路 1001:天空;天空「S」 1005:網格點 1007:通量轉移路徑 1012:可著色窗 1020:內部空間 1102:天空光斑 1105:網格點 1113:孔隙 1120:房間 1201:天空圓頂;半球形天空圓頂 1210:光斑 1310:天空圓頂 1311:光斑 1400:多感測器裝置;多感測器 1402:殼體 1404:光漫射元件;漫射器 1406:覆蓋殼體;蓋體 1410:虛軸;軸 1412:光感測器 1414:光感測器 1415A:第一紅外線感測器;紅外線感測器 1415B:第二紅外線感測器;紅外線感測器 1416:箭號 1450:多感測器裝置 1460:第一環;環 1462:光感測器 1470:第二環;環 1472:光感測器 1482:光感測器 1490:中心軸 1500:多感測器裝置 1501:圓形蜂巢組態陣列;蜂巢陣列 1520:感測器模組 1522:管 1530:屏蔽 1800:系統 1816:行動裝置 1820:顯示器 1822:2D虛擬模型;虛擬空間;空間 1823:工程區 1824:開放辦公室 1825:滑動桿 1827:應用程式 1830:虛擬建築物模型 1840:伺服器 1900:系統 1910:雲端網路 1920:使用者介面 1930:服務 1932:智慧服務 1934:色調狀態管理器 1940:地點設計系統 1950:調測服務 2000:流程圖 2020:操作 2030:操作 2040:操作 2042:操作 2043:操作 2044:操作 2046:操作 2050:操作 2060:操作 2070:操作 2080:操作 X’-X’:截面切線 Y-Y’:檢視視角 100:Electrochromic window 105: Glass sheets; glass windows 110:Diffusion barrier 115: first transparent conductive oxide layer (TCO); TCO; first TCO; TCO layer 120: Isolation ditch; ditch 125: Electrochromic stack 130:Second TCO 135:Part 140:District 145:Part 150: Laser marking groove; groove 155: Laser marking groove; groove 160: Laser marking groove; groove 165: Laser marking groove; groove 170:Part 175:Part 200:IGU; IGU device 201: window; glass 205: Spacer 210: Second window; window; second glass window 215: Main sealing materials 220: Secondary seal 225:Internal volume 230: Enhance pane 235:Resin 300:Electrochromic device 302:Substrate 304: First conductive layer (CL); layer; conductive layer 306: Electrochromic layer (EC); layer; electrochromic material 308: Ion conductive layer (IC); layer; ion conductive layer 310: Counter electrode layer (CE); layer; counter electrode 314: Second conductive layer (CL); layer; conductive layer 316:Voltage source 320: Electrochromic stack 400:Electrochromic device 402:Substrate 404: Conductive layer (CL); conductive layer 406: Tungsten oxide electrochromic layer (EC); tungsten oxide electrochromic layer; layer 408: Ion conductive layer (IC); ion conductive layer 410: Nickel tungsten oxide counter electrode layer (CE); Nickel tungsten oxide counter electrode layer; Nickel tungsten oxide counter electrode; layer 414: Conductive layer (CL); conductive layer 416: power supply; voltage source 420: Electrochromic stack 450:Window controller 455:Microprocessor 460: Pulse width modulator; PWM 465:Input 470: Computer readable media 475:Configuration file 480:Internet 500: control system; system 502: Electrochromic windows; tintable windows 503:Cloud 504:Buildings 506: Modern Heating, Ventilation, and Air Conditioning (HVAC) Systems 507:Interior lighting system 508: Security system 509:Power system 510:External Sensors; Building Management System (BMS); BMS 511: Main controller (MC); main controller 512: Network controller (NC); network controller 514:Window controller 600:Network system 604: Local window controller (WC); window controller; WC 606: Network controller (NC); NC; network controller 608: Main controller (MC); MC; main controller 610:External source 620:Database 624: Building management system; BMS 701: Location 703:District 722: Tintable windows; IGU 724: Window controller; WC 800:Virtual building model 801:BIM file 900:Control system 910:Buildings 912:Interactive Target Device 914:Customer 916:Mobile device 918:Physical space 920:Controller network 930: 3-D model virtual building model; virtual building model 932:Virtual objects 938:Virtual space 940:Network link 950:Network link 1001: sky; sky "S" 1005:Grid points 1007:Flux transfer path 1012: Tintable windows 1020:Internal space 1102:Sky spot 1105:Grid points 1113:pore 1120:Room 1201:Sky Dome; Hemispherical Sky Dome 1210:light spot 1310:Sky Dome 1311:light spot 1400: Multi-sensor device; multi-sensor 1402: Shell 1404: Light diffusion element; diffuser 1406: covering shell; cover 1410: virtual axis; axis 1412:Light sensor 1414:Light sensor 1415A: First infrared sensor; infrared sensor 1415B: Second infrared sensor; infrared sensor 1416:Arrow 1450:Multi-sensor device 1460: first ring; ring 1462:Light sensor 1470:Second ring; ring 1472:Light sensor 1482:Light sensor 1490:Central axis 1500:Multi-sensor device 1501: Circular honeycomb configuration array; honeycomb array 1520: Sensor module 1522:Tube 1530:Block 1800:System 1816:Mobile device 1820:Display 1822: 2D virtual model; virtual space; space 1823: Engineering area 1824:Open office 1825:Sliding rod 1827:Application 1830:Virtual building model 1840:Server 1900:System 1910:Cloud Network 1920:User interface 1930:Service 1932:Smart service 1934: Hue State Manager 1940: Place Design System 1950: Commissioning services 2000:Flowchart 2020:Operation 2030: Operation 2040:Operation 2042:Operation 2043:Operation 2044:Operation 2046:Operation 2050:Operation 2060:Operation 2070:Operation 2080:Operation X’-X’: Section tangent Y-Y’: viewing angle

圖及其中之組件可能未按比例繪製。 〔圖 1A 係根據實施方案之電致變色窗片之橫截面的示意圖。 〔圖 1B 1A中之電致變色窗片之橫截面的示意圖。 〔圖 1C 1A中之電致變色窗片之俯視圖的示意圖。 〔圖 2A 係根據實施方案之具有相關於 1A 至圖 1C描述之電致變色窗片的IGU的橫截面的示意圖。 〔圖 2B 係根據實施方案之相關於 1A 至圖 1C描述的電致變色裝置及層壓於其上的強化窗格的橫截面的示意圖。 〔圖 3A 係根據實施方案之電致變色裝置之橫截面的示意圖。 〔圖 3B 係根據實施方案之在脫色狀態中之電致變色裝置之橫截面的示意圖。 〔圖 3C 係根據實施方案之在有色狀態中之電致變色裝置之橫截面的示意圖。 〔圖 4 係根據實施方案之描繪窗控制器的組件及窗控制器系統的組件的簡化方塊圖。 〔圖 5 係根據實施方案之用於控制建築物中的複數個可著色窗之色調的控制系統的示意圖。 〔圖 6 係根據實施方案之具有建築物管理系統(BMS)、複數個分散式本地窗控制器(WC)、複數個網路控制器(NC)、及主控制器(MC)的網路系統的示意圖。 〔圖 7 係根據實施方案之分組成區的複數個可著色窗的示意圖。 〔圖 8 係描繪根據實施方案之虛擬建築物模型及(多個)關聯BIM檔案的示意圖。 〔圖 9 顯示根據實施方案之控制系統的實例實施例,其中實際實體建築物包括用於管理及控制互動網路裝置(諸如一或多個可著色窗)的控制器網路。 〔圖 10 係根據一實施方案之藉由三相模擬模型模擬之從天空至建築物之內部空間(諸如房間)中之網格點的通量轉移路徑的示意繪示。 〔圖 11 係根據一態樣之通過建築物之房間中之可著色窗之孔隙提供照度(L α)以在該房間內側的網格點(x)提供照度位準的天空區段/光斑(S α)的示意繪示。 〔圖 12A 係根據實施方案之具有複數個145個光斑的天空圓頂的三維繪示。 〔圖 12B 12A所示之天空圓頂的2D投影。 〔圖 13A 係在一實施方案中描繪光斑之基於經衰減晴空資料之照度值之 12A所示之天空圓頂的2D投影的繪示。 〔圖 13B 係在一實施方案中與天空圓頂結合使用以繪示建築物內部之照度位準之虛擬建築物模型的2D俯視圖的繪示。 〔圖 13C 係在一實施方案中在虛擬建築物模型之各種空間中的照度位準的長條圖。 〔圖 14A 係根據一實施方案之具有沿著圓周相等地分布的複數個光感測器、垂直地指向上的一光感測器、及垂直地指向上的二個紅外線感測器的多感測器裝置的一部分的等角視圖的圖。 〔圖 14B 係根據一實施方案之具有二個光感測器環及垂直地指向上的一光感測器的多感測器裝置的一部分的截面圖的示意圖。 〔圖 15 係根據一實施方案之具有指向天空之各種方位角及高度角的光感測器的多感測器裝置的實例的等角視圖。 〔圖 16A 係2022年2月16日在Milpitas California的晴空日來自 14A所示之多感測器裝置的第十三個(13)個光感測器的光感測器讀數的曲線圖。 〔圖 16B 係2022年4月11日在Milpitas California的晴天早晨及晴朗下午來自 14A所示之多感測器裝置的第十三個(13)個光感測器的光感測器讀數的曲線圖。 〔圖 17 係根據一實施方案之描繪產生可著色窗的一或多個區及可著色窗的關聯定向之方法的操作的圖。 〔圖 18 係根據一實施方案之使用虛擬建築物模型以基於虛擬建築物模型之檔案(例如,BIM檔案)中的建築物資訊將建築物中之虛擬空間的2D或3D模型呈現給客戶之系統的實例的繪示。 〔圖 19 係根據一實施方案之用於控制一或多個可著色窗之色調的系統的示意圖。 〔圖 20 係描繪根據各種態樣之控制設施(諸如建築物)中的一或多個可著色窗之方法的操作的流程圖。 〔圖 21 係描繪根據各種態樣之最佳化程序的操作的流程圖。 Figures and components therein may not be drawn to scale. [FIG. 1A ] is a schematic diagram of a cross-section of an electrochromic window according to an embodiment. [Figure 1B ] is a schematic diagram of the cross-section of the electrochromic window in Figure 1A . [Figure 1C ] is a schematic diagram of a top view of the electrochromic window in Figure 1A . [FIG. 2A ] is a schematic diagram of a cross-section of an IGU having the electrochromic window described with respect to FIGS. 1A - 1C , according to an embodiment. [FIG. 2B ] is a schematic diagram of a cross-section of an electrochromic device described with respect to FIGS. 1A - 1C and a reinforced pane laminated thereon , according to an embodiment. [Fig. 3A ] is a schematic diagram of a cross-section of an electrochromic device according to an embodiment. [Fig. 3B ] is a schematic diagram of a cross-section of an electrochromic device in a decolorized state according to an embodiment. [Fig. 3C ] is a schematic diagram of a cross-section of an electrochromic device in a colored state according to an embodiment. [FIG. 4 ] is a simplified block diagram depicting components of a window controller and components of a window controller system, according to an embodiment. [Fig. 5 ] is a schematic diagram of a control system for controlling the tint of a plurality of tintable windows in a building according to an embodiment. [Figure 6 ] is a network with a building management system (BMS), a plurality of distributed local window controllers (WC), a plurality of network controllers (NC), and a master controller (MC) according to an embodiment Schematic diagram of the system. [FIG. 7 ] is a schematic diagram of a plurality of tintable windows grouped into zones according to an embodiment. [Figure 8 ] is a schematic diagram depicting a virtual building model and associated BIM file(s) according to an implementation. [FIG. 9 ] shows an example embodiment of a control system in accordance with an embodiment, wherein an actual physical building includes a network of controllers for managing and controlling interactive network devices, such as one or more tintable windows. [Figure 10 ] is a schematic illustration of a flux transfer path from the sky to a grid point in an interior space of a building, such as a room, simulated by a three-phase simulation model, according to one embodiment. [Figure 11 ] A sky segment/spot that provides illumination (L α ) through an aperture of a tinted window in a room of a building to provide an illumination level at a grid point (x) inside the room according to one aspect Schematic representation of (S α ). [FIG. 12A ] is a three-dimensional representation of a sky dome having a plurality of 145 spots, according to an embodiment. [Figure 12B ] is a 2D projection of the sky dome shown in Figure 12A . [FIG. 13A ] is an illustration of a 2D projection of the sky dome shown in FIG . 12A depicting illumination values of light spots based on attenuated clear sky data, in one embodiment. [FIG. 13B ] is an illustration of a 2D top view of a virtual building model used in conjunction with a sky dome to depict illumination levels inside a building in one embodiment. [Figure 13C ] is a bar graph of illumination levels in various spaces of a virtual building model in one embodiment. [Fig. 14A ] is a multi-purpose device with a plurality of photo sensors equally distributed along a circumference, one photo sensor pointing vertically upward, and two infrared sensors pointing vertically upward, according to an embodiment. Illustration of an isometric view of part of a sensor device. [FIG. 14B ] is a schematic diagram of a cross-sectional view of a portion of a multi-sensor device having two photo-sensor rings and one photo-sensor pointing vertically upward, according to an embodiment. [FIG. 15 ] is an isometric view of an example of a multi-sensor device with light sensors pointing at various azimuth and altitude angles toward the sky, according to one embodiment. [Figure 16A ] A graph of light sensor readings from the thirteenth (13) light sensor of the multi-sensor device shown in Figure 14A on a clear sky day in Milpitas California on February 16, 2022 . [Figure 16B ] Photo sensor readings from the thirteenth (13) light sensor of the multi-sensor device shown in Figure 14A on a sunny morning and a clear afternoon on April 11, 2022 in Milpitas California curve graph. [FIG. 17 ] is a diagram depicting operations of a method of generating one or more regions of a tintable window and an associated orientation of the tintable window, according to one embodiment. [Fig. 18 ] According to one embodiment, a virtual building model is used to present a 2D or 3D model of a virtual space in a building to a customer based on building information in a file (eg, a BIM file) of the virtual building model. An illustration of an instance of the system. [FIG. 19 ] is a schematic diagram of a system for controlling the tint of one or more tintable windows, according to one embodiment. [FIG. 20 ] is a flowchart depicting operations according to various aspects of a method of controlling one or more tintable windows in a facility, such as a building. [Fig. 21 ] is a flowchart describing the operation of the optimization program according to various aspects.

100:電致變色窗片 100:Electrochromic window

105:玻璃片材;玻璃窗片 105: Glass sheets; glass windows

110:擴散障壁 110:Diffusion barrier

115:第一透明導電氧化物層(TCO);TCO;第一TCO;TCO層 115: first transparent conductive oxide layer (TCO); TCO; first TCO; TCO layer

120:隔離溝;溝 120: Isolation ditch; ditch

125:電致變色堆疊 125:Electrochromic stack

130:第二TCO 130:Second TCO

135:部分 135:Part

140:區 140: District

145:部分 145:Part

150:雷射劃線溝;溝 150: Laser marking groove; groove

155:雷射劃線溝;溝 155: Laser marking groove; groove

Claims (34)

一種控制一建築物中的一或多個可著色窗的方法,該方法包含: 判定該一或多個可著色窗的一或多個透射率,其中該一或多個透射率經判定以在該建築物的一虛擬表示的一內部空間中的一或多個網格點產生一目標照度位準或大約該目標照度位準,該一或多個透射率係至少部分地基於經衰減晴空資料而判定,該經衰減晴空資料係至少部分地基於一經預測晴空照度及來自複數個感測器的讀數;及 將該一或多個可著色窗保持或轉變成與該一或多個經判定透射率相關聯的一最後色調狀態。 A method of controlling one or more tintable windows in a building, the method comprising: Determining one or more transmittances of the one or more tintable windows, wherein the one or more transmittances are determined to produce one or more grid points in an interior space of a virtual representation of the building A target illumination level or approximately the target illumination level, the one or more transmittances are determined based at least in part on attenuated clear sky data based at least in part on a predicted clear sky illumination and data from a plurality of sensor readings; and The one or more tintable windows are maintained or converted to a final tint state associated with the one or more determined transmittances. 如請求項1之方法,其中若一覆寫係原地的,則以一覆寫色調值來覆寫該最後色調狀態。The method of claim 1, wherein if an override is in-place, the final hue state is overwritten with an overridden hue value. 如請求項2之方法,其進一步包含基於過去色調覆寫的一統計評估來預測該覆寫色調值。The method of claim 2, further comprising predicting the overwritten tone value based on a statistical evaluation of past tone overrides. 如請求項‎1之方法,其中該複數個感測器包含複數個光感測器。A method as claimed in claim 1, wherein the plurality of sensors comprises a plurality of light sensors. 如請求項1之方法,其中該複數個感測器係在該建築物的一屋頂上的一多感測器裝置中。A method as claimed in claim 1, wherein the plurality of sensors are in a multi-sensor device on a roof of the building. 如請求項1之方法,其中該複數個感測器係在該建築物的一屋頂上的一多感測器裝置中。A method as claimed in claim 1, wherein the plurality of sensors are in a multi-sensor device on a roof of the building. 如請求項1之方法,其中: 該複數個感測器包括一第一組感測器及一第二組感測器; 該第一組感測器及該第二組感測器係以一中心軸為中心;且 該第二組感測器之各感測器係以相關於該中心軸的一銳角來定向。 The method of claim 1, wherein: the plurality of sensors include a first set of sensors and a second set of sensors; the first set of sensors and the second set of sensors are centered about a central axis; and each sensor of the second set of sensors is oriented at an acute angle relative to the central axis. 如請求項1之方法,其中該經衰減晴空資料包括藉由施加基於來自該複數個感測器之該等讀數的一衰減比例因子而衰減的經預測晴空照度。The method of claim 1, wherein the attenuated clear sky data includes predicted clear sky illumination attenuated by applying an attenuation scaling factor based on the readings from the plurality of sensors. 如請求項‎1之方法,其進一步包含接收來自該複數個感測器的讀數。The method of claim 1, further comprising receiving readings from the plurality of sensors. 如請求項1或9之方法,其進一步包含至少部分地基於一經預測晴空照度及來自該複數個感測器的讀數來衰減晴空資料。The method of claim 1 or 9, further comprising attenuating the clear sky data based at least in part on a predicted clear sky illuminance and readings from the plurality of sensors. 如請求項1之方法,其中該經預測晴空照度係預測為在一未來時間發生。The method of claim 1, wherein the predicted clear sky illumination is predicted to occur at a future time. 如請求項1之方法,其中該經預測晴空照度係至少部分地基於歷史天氣資料。The method of claim 1, wherein the predicted clear sky illumination is based at least in part on historical weather data. 如請求項1之方法,其進一步包含: 使用至少部分地基於該經衰減晴空資料之一虛擬天空圓頂來模擬照射該建築物的該虛擬表示的外部天空輻射;及 使用該外部天空輻射來判定該一或多個透射率是否在該建築物的該虛擬表示的該內部空間中的該一或多個網格點產生該目標照度位準或大約該目標照度位準。 The method of claim 1, further comprising: using a virtual sky dome based at least in part on the attenuated clear sky data to simulate external sky radiation illuminating the virtual representation of the building; and using the external sky radiation to determine whether the one or more transmittances produce the target illumination level or approximately the target illumination level at the one or more grid points in the interior space of the virtual representation of the building. 如請求項13之方法,其中: 該虛擬天空圓頂包括複數個光斑;且 該經衰減晴空資料係基於一經預測晴空照度,該經預測晴空照度係基於來自映射至該複數個光斑的一或多個感測器的讀數而衰減。 Such as the method of request item 13, wherein: The virtual sky dome includes a plurality of light spots; and The attenuated clear sky data is based on a predicted clear sky illumination that is attenuated based on readings from one or more sensors mapped to the plurality of light spots. 如請求項1之方法,其進一步包含迭代地調整該建築物的該虛擬表示中的虛擬可著色窗的透射率,直到該內部空間中的一目前照度位準係處於或大約處於該目標照度位準為止。The method of claim 1, further comprising iteratively adjusting the transmittance of virtual tintable windows in the virtual representation of the building until a current illumination level in the interior space is at or approximately at the target illumination level Until accurate. 如請求項15之方法,其進一步包含在各迭代基於該經衰減晴空資料及該等虛擬可著色窗的一或多個目前透射率而判定該內部空間中的該目前照度位準。The method of claim 15, further comprising determining, at each iteration, the current illumination level in the interior space based on the attenuated clear sky data and one or more current transmittances of the virtual tintable windows. 如請求項16之方法,其進一步包含(i)使用該經衰減晴空資料判定該照射該等虛擬可著色窗的外部光及(ii)計算在該一或多個目前透射率下之通過該等虛擬可著色窗至該內部空間中的光而判定該內部空間中的該目前照度位準。The method of claim 16, further comprising (i) using the attenuated clear sky data to determine the external light striking the virtual tintable windows and (ii) calculating the light passing through the virtual tintable windows at the one or more current transmittances. The virtual can tint light into the interior space to determine the current illumination level in the interior space. 如請求項1之方法,其進一步包含調整該建築物的該虛擬表示中的虛擬可著色窗的透射率,直到該內部空間中的一目前照度位準係處於或大約處於該目標照度位準為止。The method of claim 1, further comprising adjusting the transmittance of virtual tintable windows in the virtual representation of the building until a current illuminance level in the interior space is at or approximately the target illuminance level . 如請求項18之方法,其進一步包含在複數個時間基於該經衰減晴空資料及該等虛擬可著色窗的一或多個目前透射率而判定該內部空間中的該目前照度位準。The method of claim 18, further comprising determining the current illumination level in the interior space based on the attenuated clear sky data and one or more current transmittances of the virtual tintable windows at multiple times. 如請求項19之方法,其進一步包含(i)使用該經衰減晴空資料判定該照射該等虛擬可著色窗的外部光及(ii)計算在該一或多個目前透射率下之通過該等虛擬可著色窗至該內部空間中的光而判定該內部空間中的該目前照度位準。The method of claim 19, further comprising (i) using the attenuated clear sky data to determine the external light illuminating the virtual tintable windows and (ii) calculating the light passing through the virtual tintable windows into the interior space at the one or more current transmittances to determine the current illumination level in the interior space. 如請求項1之方法,其進一步包含將該一或多個透射率捨進或捨去至與該一或多個可著色窗的複數個色調狀態中之一色調狀態相關聯的位準。The method of claim 1, further comprising rounding or rounding the one or more transmittances to a level associated with one of a plurality of hue states of the one or more tintable windows. 如請求項1之方法,其中該一或多個可著色窗經分組成可著色窗的一或多個區。The method of claim 1, wherein the one or more tintable windows are grouped into one or more regions of tintable windows. 如請求項22之方法,其中: 該一或多個可著色窗經分組成可著色窗的二或更多個區, 可著色窗的一第一區與一空間的一第一區段相關聯, 可著色窗的一第二區與該空間的一第二區段相關聯,且可著色窗的該第一區面向與可著色窗的該第二區不同的一羅盤方向。 The method of claim 22, wherein: the one or more tintable windows are grouped into two or more zones of tintable windows, a first zone of the tintable window is associated with a first segment of a space, a second zone of the tintable window is associated with a second segment of the space, and the first zone of the tintable window faces a different compass direction than the second zone of the tintable window. 如請求項1之方法,其中該建築物的該虛擬表示係該建築物的一數位孿生。The method of claim 1, wherein the virtual representation of the building is a digital twin of the building. 如請求項1之方法,其進一步包含接收與該內部空間的該目標照度位準相關聯的資訊。The method of claim 1, further comprising receiving information associated with the target illumination level of the interior space. 如請求項25之方法,其中該資訊係使用該建築物的一數位表示及/或在一行動裝置上的一應用程式來接收。The method of claim 25, wherein the information is received using a digital representation of the building and/or an application on a mobile device. 一種控制一建築物中的一或多個可著色窗的方法,該方法包含: 判定該建築物中的一或多個可著色窗的一或多個透射率,其中該一或多個透射率係基於經衰減晴空資料而判定,以在該建築物的一虛擬表示的一內部空間中產生一目標照度位準或大約該目標照度位準;及 基於過去覆寫值的一統計評估預測一覆寫色調值;及 將該一或多個可著色窗保持或轉變成與經判定的該一或多個透射率相關聯的一或多個最後色調狀態,或者若一覆寫係原地的,則保持或轉變成該覆寫色調值。 A method of controlling one or more tintable windows in a building, the method comprising: determining one or more transmittances of the one or more tintable windows in the building, wherein the one or more transmittances are determined based on attenuated clear sky data to produce a target illumination level or approximately the target illumination level in an interior space of a virtual representation of the building; and predicting an override tint value based on a statistical evaluation of past override values; and maintaining or transitioning the one or more tintable windows to one or more last tint states associated with the determined one or more transmittances, or if an override is in place, maintaining or transitioning to the override tint value. 一種控制一建築物中的一或多個內部條件的方法,該方法包含: 使用該建築物的一虛擬表示接收該建築物的一內部條件的一目標位準,其中該目標位準包含該建築物的一內部空間中的一照度位準、至該建築物的該內部空間中的一熱取得、或該建築物的該內部空間中的光的一顏色中之一或多者; 判定該建築物中的一或多個可著色窗的一或多個透射率,其中該一或多個透射率經判定以產生該建築物中的該目標位準或大約該目標位準;及 將該一或多個可著色窗保持或轉變成與經判定的該一或多個透射率相關聯的一最後色調狀態。 A method of controlling one or more internal conditions in a building, which method includes: A target level of an interior condition of the building is received using a virtual representation of the building, wherein the target level includes an illuminance level in an interior space of the building, to the interior space of the building one or more of a heat gain in, or a color of light in, the interior space of the building; determining one or more transmittances of one or more tintable windows in the building, wherein the one or more transmittances are determined to produce the target level or approximately the target level in the building; and The one or more tintable windows are maintained or converted to a final tint state associated with the determined one or more transmittances. 如請求項28之方法,其中該一或多個透射率係至少部分地基於經衰減晴空資料而判定。The method of claim 28, wherein the one or more transmittances are determined based at least in part on attenuated clear sky data. 如請求項29之方法,其進一步包含: 使用至少部分地基於該經衰減晴空資料之一虛擬天空圓頂來模擬照射該建築物的該虛擬表示的外部天空輻射;及 使用該外部天空輻射來判定該一或多個透射率是否在該建築物的該虛擬表示的該內部空間導致該目標位準或大約該目標位準。 For example, the method of claim 29 further includes: Simulate external sky radiation illuminating the virtual representation of the building using a virtual sky dome based at least in part on the attenuated clear sky data; and The external sky radiation is used to determine whether the one or more transmittances result in the target level or approximately the target level in the interior space of the virtual representation of the building. 如請求項30之方法,其中: 該虛擬天空圓頂包括複數個光斑;且 該經衰減晴空資料係基於一經預測晴空照度,該經預測晴空照度係基於來自映射至該複數個光斑的一或多個感測器的讀數而衰減。 The method of claim 30, wherein: the virtual sky dome includes a plurality of light spots; and the attenuated clear sky data is based on a predicted clear sky illuminance, the predicted clear sky illuminance being attenuated based on readings from one or more sensors mapped to the plurality of light spots. 一種用於控制一建築物中的一或多個可著色窗的色調的設備,該設備包含經組態以操作地耦接至該一或多個可著色窗的至少一個控制器,該至少一個控制器進一步經組態以執行如請求項1至31之方法的任一者或指揮該任一方法的執行。An apparatus for controlling tint of one or more tintable windows in a building, the apparatus comprising at least one controller configured to be operatively coupled to the one or more tintable windows, the at least one The controller is further configured to perform or direct the performance of any of the methods of claims 1 to 31. 一種儲存電腦可執行指令的非暫時性電腦可讀取媒體,該等電腦可執行指令用於控制一建築物中之可著色窗的一或多個區的色調,當由一或多個處理器讀取時,導致該一或多個處理器執行如請求項1至31之方法的任一者的操作。A non-transitory computer-readable medium storing computer-executable instructions for controlling the tint of one or more areas of tintable windows in a building, which, when read by one or more processors, cause the one or more processors to perform any of the methods of claims 1 to 31. 一種用於控制一建築物中之可著色窗的一或多個區的色調的系統,該系統包含經組態以操作地耦接至該一或多個可著色窗且經組態以執行如請求項1至31之方法的任一者的一網路。A system for controlling tint in one or more zones of tintable windows in a building, the system comprising a system configured to be operatively coupled to the one or more tintable windows and configured to perform: A network according to any one of the methods of claims 1 to 31.
TW112117858A 2022-05-13 2023-05-15 Intelligence TW202409402A (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US202263364698P 2022-05-13 2022-05-13
US63/364,698 2022-05-13
US202318034328A 2023-04-27 2023-04-27
US18/034,328 2023-04-27

Publications (1)

Publication Number Publication Date
TW202409402A true TW202409402A (en) 2024-03-01

Family

ID=88731016

Family Applications (1)

Application Number Title Priority Date Filing Date
TW112117858A TW202409402A (en) 2022-05-13 2023-05-15 Intelligence

Country Status (2)

Country Link
TW (1) TW202409402A (en)
WO (1) WO2023220438A1 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2719582T3 (en) * 2005-09-08 2019-07-11 Global Glass Tech Smart SPD control device with scalable connection capabilities for window and multimedia applications
US11137659B2 (en) * 2009-12-22 2021-10-05 View, Inc. Automated commissioning of controllers in a window network
US11950340B2 (en) * 2012-03-13 2024-04-02 View, Inc. Adjusting interior lighting based on dynamic glass tinting
TWI823168B (en) * 2015-07-07 2023-11-21 美商唯景公司 Viewcontrol methods for tintable windows
DE102017114962B4 (en) * 2017-07-05 2019-08-29 Dallmeier Electronic Gmbh & Co. Kg Multi-sensor camera

Also Published As

Publication number Publication date
WO2023220438A1 (en) 2023-11-16

Similar Documents

Publication Publication Date Title
JP7260222B2 (en) Control methods and systems using external 3D modeling and schedule-based computing
US12147142B2 (en) Remote management of a facility
JP2021008813A (en) Multiple interacting systems at site
JP2022163157A (en) Control method for hue-adjustable window
US11960190B2 (en) Control methods and systems using external 3D modeling and schedule-based computing
US11719990B2 (en) Control method for tintable windows
US9078299B2 (en) Predictive daylight harvesting system
US11966142B2 (en) Control methods and systems using outside temperature as a driver for changing window tint states
CN113574832A (en) Remote management of facilities
AU2017376447A1 (en) Control method for tintable windows
KR20170016336A (en) Control method for tintable windows
US20230194115A1 (en) Environmental adjustment using artificial intelligence
CA3169929A1 (en) Environmental adjustment using artificial intelligence
US20240210781A1 (en) Control methods and systems using external 3d modeling and schedule-based computing
US20240369893A1 (en) Control methods and systems using outside temperature as a driver for changing window tint states
TW202409402A (en) Intelligence
CN114631053A (en) Control method and system using outdoor temperature as driving factor for changing window tone state
US20250102876A1 (en) Remote management of a facility