[go: up one dir, main page]

TW202406146A - 高電子遷移率電晶體及其製作方法 - Google Patents

高電子遷移率電晶體及其製作方法 Download PDF

Info

Publication number
TW202406146A
TW202406146A TW111128095A TW111128095A TW202406146A TW 202406146 A TW202406146 A TW 202406146A TW 111128095 A TW111128095 A TW 111128095A TW 111128095 A TW111128095 A TW 111128095A TW 202406146 A TW202406146 A TW 202406146A
Authority
TW
Taiwan
Prior art keywords
carbon concentration
electron mobility
high electron
mobility transistor
patent application
Prior art date
Application number
TW111128095A
Other languages
English (en)
Inventor
郭俊良
陳彥興
陳彥綸
沈睿紘
楊宗穆
王俞仁
Original Assignee
聯華電子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 聯華電子股份有限公司 filed Critical 聯華電子股份有限公司
Priority to TW111128095A priority Critical patent/TW202406146A/zh
Priority to CN202210979121.XA priority patent/CN117525112A/zh
Priority to US17/896,096 priority patent/US12369371B2/en
Priority to EP22198983.3A priority patent/EP4312277A1/en
Publication of TW202406146A publication Critical patent/TW202406146A/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D62/00Semiconductor bodies, or regions thereof, of devices having potential barriers
    • H10D62/10Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
    • H10D62/17Semiconductor regions connected to electrodes not carrying current to be rectified, amplified or switched, e.g. channel regions
    • H10D62/213Channel regions of field-effect devices
    • H10D62/221Channel regions of field-effect devices of FETs
    • H10D62/235Channel regions of field-effect devices of FETs of IGFETs
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/01Manufacture or treatment
    • H10D30/015Manufacture or treatment of FETs having heterojunction interface channels or heterojunction gate electrodes, e.g. HEMT
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/40FETs having zero-dimensional [0D], one-dimensional [1D] or two-dimensional [2D] charge carrier gas channels
    • H10D30/47FETs having zero-dimensional [0D], one-dimensional [1D] or two-dimensional [2D] charge carrier gas channels having 2D charge carrier gas channels, e.g. nanoribbon FETs or high electron mobility transistors [HEMT]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/40FETs having zero-dimensional [0D], one-dimensional [1D] or two-dimensional [2D] charge carrier gas channels
    • H10D30/47FETs having zero-dimensional [0D], one-dimensional [1D] or two-dimensional [2D] charge carrier gas channels having 2D charge carrier gas channels, e.g. nanoribbon FETs or high electron mobility transistors [HEMT]
    • H10D30/471High electron mobility transistors [HEMT] or high hole mobility transistors [HHMT]
    • H10D30/475High electron mobility transistors [HEMT] or high hole mobility transistors [HHMT] having wider bandgap layer formed on top of lower bandgap active layer, e.g. undoped barrier HEMTs such as i-AlGaN/GaN HEMTs
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D62/00Semiconductor bodies, or regions thereof, of devices having potential barriers
    • H10D62/10Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D62/00Semiconductor bodies, or regions thereof, of devices having potential barriers
    • H10D62/10Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
    • H10D62/102Constructional design considerations for preventing surface leakage or controlling electric field concentration
    • H10D62/112Constructional design considerations for preventing surface leakage or controlling electric field concentration for preventing surface leakage due to surface inversion layers, e.g. by using channel stoppers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D62/00Semiconductor bodies, or regions thereof, of devices having potential barriers
    • H10D62/10Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
    • H10D62/124Shapes, relative sizes or dispositions of the regions of semiconductor bodies or of junctions between the regions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D62/00Semiconductor bodies, or regions thereof, of devices having potential barriers
    • H10D62/10Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
    • H10D62/17Semiconductor regions connected to electrodes not carrying current to be rectified, amplified or switched, e.g. channel regions
    • H10D62/213Channel regions of field-effect devices
    • H10D62/221Channel regions of field-effect devices of FETs
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D62/00Semiconductor bodies, or regions thereof, of devices having potential barriers
    • H10D62/60Impurity distributions or concentrations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D62/00Semiconductor bodies, or regions thereof, of devices having potential barriers
    • H10D62/80Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials
    • H10D62/85Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials being Group III-V materials, e.g. GaAs
    • H10D62/854Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials being Group III-V materials, e.g. GaAs further characterised by the dopants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D62/00Semiconductor bodies, or regions thereof, of devices having potential barriers
    • H10D62/10Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
    • H10D62/17Semiconductor regions connected to electrodes not carrying current to be rectified, amplified or switched, e.g. channel regions
    • H10D62/343Gate regions of field-effect devices having PN junction gates
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D62/00Semiconductor bodies, or regions thereof, of devices having potential barriers
    • H10D62/80Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials
    • H10D62/85Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials being Group III-V materials, e.g. GaAs
    • H10D62/8503Nitride Group III-V materials, e.g. AlN or GaN

Landscapes

  • Junction Field-Effect Transistors (AREA)

Abstract

本發明揭露一種製作高電子遷移率電晶體(high electron mobility transistor, HEMT)的方法,其主要先形成一緩衝層於基底上,形成一阻障層於該緩衝層上,形成一P型半導體層於該阻障層上,形成一閘極電極於該P型半導體層上,再形成一源極電極以及一汲極電極於該閘極電極兩側。其中緩衝層又細部包含一下半部具有第一碳濃度以及一上半部包含第二碳濃度,第二碳濃度小於第一碳濃度,且下半部厚度小於該上半部厚度。

Description

高電子遷移率電晶體及其製作方法
本發明是關於一種高電子遷移率電晶體及其製作方法。
以氮化鎵基材料(GaN-based materials)為基礎的高電子遷移率電晶體具有於電子、機械以及化學等特性上之眾多優點,例如寬能隙、高崩潰電壓、高電子遷移率、大彈性模數(elastic modulus)、高壓電與壓阻係數(high piezoelectric and piezoresistive coefficients)等與化學鈍性。上述優點使氮化鎵基材料可用於如高亮度發光二極體、功率開關元件、調節器、電池保護器、面板顯示驅動器、通訊元件等應用之元件的製作。
本發明一實施例揭露一種製作高電子遷移率電晶體(high electron mobility transistor, HEMT)的方法,其主要先形成一緩衝層於基底上,形成一阻障層於該緩衝層上,形成一P型半導體層於該阻障層上,形成一閘極電極於該P型半導體層上,再形成一源極電極以及一汲極電極於該閘極電極兩側。其中緩衝層又細部包含一下半部具有第一碳濃度以及一上半部包含第二碳濃度,第二碳濃度小於第一碳濃度,且下半部厚度小於該上半部厚度。
本發明另一實施例揭露一種高電子遷移率電晶體,其主要包含一緩衝層設於基底上,一阻障層設於該緩衝層上以及一阻障層設於緩衝層上,一P型半導體層設於阻障層上,一閘極電極設於P型半導體層上以及一源極電極與一汲極電極設於閘極電極兩側。其中緩衝層又細部包含一下半部具有第一碳濃度以及一上半部包含第二碳濃度,第二碳濃度小於第一碳濃度,且下半部厚度小於該上半部厚度。
請參照第1圖至第3圖,第1圖至第3圖為本發明一實施例製作高電子遷移率電晶體之方法示意圖,其中第1圖與第3圖分別為本發明一實施例製作高電子遷移率電晶體之剖面示意圖而第2圖則為第1圖中緩衝層與相對碳含量之放大示意圖。如第1圖至第2圖所示,首先提供一基底12,例如一由矽、碳化矽或氧化鋁(或可稱藍寶石)所構成的基底,其中基底12可為單層基底、多層基底、梯度基底或上述之組合。依據本發明其他實施例基底12又可包含一矽覆絕緣(silicon-on-insulator, SOI)基底。
然後於基底12表面形成一選擇性核晶層(nucleation layer)(圖未示)、一超晶格堆疊層14以及一緩衝層16。在一實施例中,核晶層可包含氮化鋁(AlN),超晶格堆疊層14可由氮化鋁(AlN)與氮化鋁鎵(Al xGa 1-xN)交替堆疊而成的複合層,而緩衝層16則包含III-V族半導體例如氮化鎵,其厚度可藉於0.5微米至10微米之間。在一實施例中,可利用分子束磊晶製程(molecular-beam epitaxy, MBE)、有機金屬氣相沉積(metal organic chemical vapor deposition, MOCVD)製程、化學氣相沉積(chemical vapor deposition, CVD)製程、氫化物氣相磊晶(hydride vapor phase epitaxy, HVPE)製程或上述組合於基底12上形成超晶格堆疊層14與緩衝層16。
如第2圖所示,緩衝層16由下至上包含一下半部18、一上半部20以及最頂部一通道區22,其中下半部18、上半部20以及通道區22本質上均由氮化鎵所構成,但下半部18與上半部20均摻雜有較高濃度的碳原子而通道區22則可摻雜有較低濃度的碳原子或無任何摻雜(undoped),且下半部18厚度較佳略小於上半部20厚度。
需注意的是,本實施例中下半部18的碳濃度較佳不同於或更具體而言較佳大於上半部20的碳濃度,而通道區22的碳濃度則分別小於下半部18與上半部20的碳濃度。從細部來看,下半部18包含第一碳濃度,上半部20包含第二碳濃度,通道區22包含第三碳濃度,其中通道區22的第三碳濃度較佳小於上半部20的第二碳濃度以及下半部18的第一碳濃度且上半部20的第二碳濃度又較佳小於下半部18的第一碳濃度,或反過來看第一碳濃度較佳大於第二碳濃度且第一碳濃度與第二碳濃度又分別大於第三碳濃度。依據本發明一實施例,第一碳濃度較佳介於5.0x10 18原子/立方公分至1.0x10 19原子/立方公分,第二碳濃度較佳介於1.0x10 18原子/立方公分至4.0x10 18原子/立方公分,第三碳濃度則較佳介於1.0x10 16原子/立方公分至1.0x10 17原子/立方公分。
隨後如第3圖所示,形成一阻障層24於緩衝層16表面。在本實施例中阻障層24較佳包含III-V族半導體例如N型氮化鋁鎵(Al xGa 1-xN),其中0<x<1,阻障層24較佳包含一由磊晶成長製程所形成之磊晶層,且阻障層24可包含矽或鍺之摻質。如同上述形成緩衝層16的方式,可利用分子束磊晶製程(molecular-beam epitaxy, MBE)、有機金屬氣相沉積(metal organic chemical vapor deposition, MOCVD)製程、化學氣相沉積(chemical vapor deposition, CVD)製程、氫化物氣相磊晶(hydride vapor phase epitaxy, HVPE)製程或上述組合於緩衝層16上形成阻障層24。
然後先形成一圖案化之P型半導體層26於阻障層16上,形成一保護層28於阻障層24及P型半導體層26上,再形成一閘極電極30於P型半導體層26上以及源極電極32與汲極電極34於閘極電極30兩側,其中P型半導體層26與閘極電極30可一同構成一閘極結構。在一實施例中,P型半導體層26較佳包含P型氮化鎵,且可利用分子束磊晶製程(molecular-beam epitaxy, MBE)、有機金屬氣相沉積(metal organic chemical vapor deposition, MOCVD)製程、化學氣相沉積(chemical vapor deposition, CVD)製程、氫化物氣相磊晶(hydride vapor phase epitaxy, HVPE)製程或上述組合於阻障層24表面形成P型半導體層26,再利用微影曁蝕刻製程去除部分P型半導體層26形成圖案化之P型半導體層26。接著,可進行另一微影暨蝕刻製程去除P型半導體層26上的部分保護層28形成凹槽(圖未示),形成一閘極電極30於凹槽內,去除P型半導體層26兩側的部分保護層28甚至部分阻障層24形成二凹槽,再分別形成源極電極32與汲極電極34於閘極電極30兩側。
在本實施例中,閘極電極30、源極電極32以及汲極電極34較佳由金屬所構成,其中閘極電極30較佳由蕭特基金屬所構成而源極電極32與汲極電極34較佳由歐姆接觸金屬所構成。依據本發明一實施例,閘極電極30、源極電極32及汲極電極34可各自包含金、銀、鉑、鈦、鋁、鎢、鈀或其組合。在一些實施例中,可利用電鍍製程、濺鍍製程、電阻加熱蒸鍍製程、電子束蒸鍍製程、物理氣相沉積(physical vapor deposition, PVD)製程、化學氣相沉積製程(chemical vapor deposition, CVD)製程、或上述組合於上述凹槽內形成導電材料,然後再利用單次或多次蝕刻將電極材料圖案化以形成閘極電極30、源極電極32以及汲極電極34。至此即完成本發明一實施例之一高電子遷移率電晶體的製作。
一般而言,由於緩衝層16與阻障層24的材料能帶間隙(band gap)不同之故,緩衝層16與阻障層24的介面處數較佳形成異質接面(heterojunction)。異質接面處的能帶彎曲,導帶(conduction band)彎曲深處形成位能井(potential well),將壓電效應(piezoelectricity)所產生的電子約束於位能井中產生一通道區並形成二微電子氣(two-dimensional electron gas, 2DEG),進而形成導通電流。
然而現行緩衝層的設計中,對應前述實施例上半部20的緩衝層雖與本發明一樣是由摻雜碳原子的氮化鎵所構成但對應前述實施例下半部18的緩衝層則通常是由無摻雜(undoped)的氮化鎵所構成,其中無摻雜的氮化鎵緩衝層由於較低的位能井容易使通道區的電子注入(inject)至深層或下半部18的緩衝層內造成放電(discharge)現象,進而降低2DEG並使阻值提升。
為了解決此問題本發明主要調整緩衝層中下半部18與上半部20中的碳濃度,特別是將下半部18的碳濃度調整至高於上半部20的碳濃度,使上半部20至下半部18的碳濃度產生一階梯式的成長,如此即可抑制位能井產生,避免載子進入下層或下半部20的緩衝層中進而降低放電現象。 以上所述僅為本發明之較佳實施例,凡依本發明申請專利範圍所做之均等變化與修飾,皆應屬本發明之涵蓋範圍。
12:基底 14:超晶格堆疊層 16:緩衝層 18:下半部 20:上半部 22:通道區 24:阻障層 26:P型半導體層 28:保護層 30:閘極電極 32:源極電極 34:汲極電極
第1圖至第3圖為本發明一實施例製作高電子遷移率電晶體之方法示意圖。
12:基底
14:超晶格堆疊層
16:緩衝層
24:阻障層
26:P型半導體層
28:保護層
30:閘極電極
32:源極電極
34:汲極電極

Claims (20)

  1. 一種製作高電子遷移率電晶體(high electron mobility transistor, HEMT)的方法,其特徵在於,包含: 形成一緩衝層於一基底上,該緩衝層包含: 一下半部包含第一碳濃度; 一上半部包含第二碳濃度;以及 形成一阻障層於該緩衝層上。
  2. 如申請專利範圍第1項所述之方法,另包含: 形成一通道區於該上半部以及該阻障層之間; 形成一P型半導體層於該阻障層上; 形成一閘極電極於該P型半導體層上;以及 形成一源極電極以及一汲極電極於該閘極電極兩側。
  3. 如申請專利範圍第2項所述之方法,其中該通道區包含第三碳濃度。
  4. 如申請專利範圍第3項所述之方法,其中該第三碳濃度小於該第二碳濃度。
  5. 如申請專利範圍第3項所述之方法,其中該第三碳濃度小於該第一碳濃度。
  6. 如申請專利範圍第1項所述之方法,其中該第二碳濃度小於該第一碳濃度。
  7. 如申請專利範圍第1項所述之方法,其中該下半部厚度小於該上半部厚度。
  8. 如申請專利範圍第1項所述之方法,其中該緩衝層包含氮化鎵(GaN)。
  9. 如申請專利範圍第1項所述之方法,其中該阻障層包含氮化鋁鎵(Al xGa 1-xN)。
  10. 如申請專利範圍第2項所述之方法,其中該P型半導體層包含P型氮化鎵。
  11. 一種高電子遷移率電晶體(high electron mobility transistor, HEMT),其特徵在於,包含: 一緩衝層設於一基底上,該緩衝層包含: 一下半部包含第一碳濃度; 一上半部包含第二碳濃度;以及 一阻障層設於該緩衝層上。
  12. 如申請專利範圍第11項所述之高電子遷移率電晶體,另包含: 一通道區設於該上半部以及該阻障層之間; 一P型半導體層設於該阻障層上; 一閘極電極設於該P型半導體層上;以及 一源極電極以及一汲極電極設於該閘極電極兩側。
  13. 如申請專利範圍第12項所述之高電子遷移率電晶體,其中該通道區包含第三碳濃度。
  14. 如申請專利範圍第13項所述之高電子遷移率電晶體,其中該第三碳濃度小於該第二碳濃度。
  15. 如申請專利範圍第13項所述之高電子遷移率電晶體,其中該第三碳濃度小於該第一碳濃度。
  16. 如申請專利範圍第11項所述之高電子遷移率電晶體,其中該第二碳濃度小於該第一碳濃度。
  17. 如申請專利範圍第11項所述之高電子遷移率電晶體,其中該下半部厚度小於該上半部厚度。
  18. 如申請專利範圍第11項所述之高電子遷移率電晶體,其中該緩衝層包含氮化鎵(GaN)。
  19. 如申請專利範圍第11項所述之高電子遷移率電晶體,其中該阻障層包含氮化鋁鎵(Al xGa 1-xN)。
  20. 如申請專利範圍第12項所述之高電子遷移率電晶體,其中該P型半導體層包含P型氮化鎵。
TW111128095A 2022-07-27 2022-07-27 高電子遷移率電晶體及其製作方法 TW202406146A (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
TW111128095A TW202406146A (zh) 2022-07-27 2022-07-27 高電子遷移率電晶體及其製作方法
CN202210979121.XA CN117525112A (zh) 2022-07-27 2022-08-16 高电子迁移率晶体管及其制作方法
US17/896,096 US12369371B2 (en) 2022-07-27 2022-08-26 High electron mobility transistor and method for fabricating the same
EP22198983.3A EP4312277A1 (en) 2022-07-27 2022-09-30 High electron mobility transistor and method for fabricating the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW111128095A TW202406146A (zh) 2022-07-27 2022-07-27 高電子遷移率電晶體及其製作方法

Publications (1)

Publication Number Publication Date
TW202406146A true TW202406146A (zh) 2024-02-01

Family

ID=83508493

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111128095A TW202406146A (zh) 2022-07-27 2022-07-27 高電子遷移率電晶體及其製作方法

Country Status (4)

Country Link
US (1) US12369371B2 (zh)
EP (1) EP4312277A1 (zh)
CN (1) CN117525112A (zh)
TW (1) TW202406146A (zh)

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5064824B2 (ja) * 2006-02-20 2012-10-31 古河電気工業株式会社 半導体素子
WO2012066701A1 (ja) * 2010-11-19 2012-05-24 パナソニック株式会社 窒化物半導体装置
JP6174874B2 (ja) 2013-03-15 2017-08-02 ルネサスエレクトロニクス株式会社 半導体装置
JP2015053328A (ja) 2013-09-05 2015-03-19 富士通株式会社 半導体装置
US10109736B2 (en) * 2015-02-12 2018-10-23 Taiwan Semiconductor Manufacturing Co., Ltd. Superlattice buffer structure for gallium nitride transistors
US9768258B1 (en) * 2016-03-17 2017-09-19 Infineon Technologies Austria Ag Substrate structure, semiconductor component and method
US9608075B1 (en) * 2016-06-03 2017-03-28 Infineon Technologies Americas Corp. III-nitride semiconductor device with doped epi structures
US20200251563A1 (en) * 2016-06-14 2020-08-06 Chih-Shu Huang Epitaxial structure of ga-face group iii nitride, active device, and method for fabricating the same
JP6692334B2 (ja) 2017-09-20 2020-05-13 株式会社東芝 半導体基板及び半導体装置
TWI713221B (zh) 2018-10-26 2020-12-11 世界先進積體電路股份有限公司 高電子遷移率電晶體裝置及其製造方法
US20210057561A1 (en) * 2019-08-20 2021-02-25 Vanguard International Semiconductor Corporation High electron mobility transistor device and methods for forming the same

Also Published As

Publication number Publication date
US20240038844A1 (en) 2024-02-01
EP4312277A1 (en) 2024-01-31
US12369371B2 (en) 2025-07-22
CN117525112A (zh) 2024-02-06

Similar Documents

Publication Publication Date Title
US11699748B2 (en) Normally-off HEMT transistor with selective generation of 2DEG channel, and manufacturing method thereof
TWI464876B (zh) 用於以氮為主之電晶體的帽蓋層和或鈍化層,電晶體結構與其製造方法
TWI431770B (zh) 半導體裝置及製造其之方法
JP5891650B2 (ja) 化合物半導体装置及びその製造方法
JP5923712B2 (ja) 半導体装置及びその製造方法
US8551821B2 (en) Enhancement normally off nitride semiconductor device manufacturing the same
CN112820773B (zh) 一种高电子迁移率晶体管
TWI641133B (zh) 半導體單元
JP2010225979A (ja) GaN系電界効果トランジスタ
CN111524958B (zh) 一种高电子迁移率晶体管
CN112242441A (zh) 高电子迁移率晶体管
TW201635522A (zh) 半導體單元
CN114175267B (zh) 半导体器件及其制造方法
US12040380B2 (en) High electron mobility transistor and method for fabricating the same
TW202329461A (zh) 高電子遷移率電晶體及其製作方法
TW202406146A (zh) 高電子遷移率電晶體及其製作方法
CN116487259A (zh) 高电子迁移率晶体管及其制作方法
TWI885281B (zh) 高電子遷移率電晶體及其製作方法
JP6264485B2 (ja) 化合物半導体装置及びその製造方法
WO2024040465A1 (en) Nitride-based semiconductor device and method for manufacturing the same
US12021124B2 (en) Semiconductor structures and methods of manufacturing the same
US20240071758A1 (en) High electron mobility transistor and method for fabricating the same
JP2010219384A (ja) Iii族窒化物半導体からなる半導体装置、およびその製造方法
CN117198877A (zh) 高电子迁移率晶体管及其制作方法
JP2007088186A (ja) 半導体装置及びその製造方法