TW202405385A - Structure of load gauge and method for measuring load eccentricity thereof capable of measuring the load eccentricity without being affected by the end point effect for engineering and industrial purposes - Google Patents
Structure of load gauge and method for measuring load eccentricity thereof capable of measuring the load eccentricity without being affected by the end point effect for engineering and industrial purposes Download PDFInfo
- Publication number
- TW202405385A TW202405385A TW111128545A TW111128545A TW202405385A TW 202405385 A TW202405385 A TW 202405385A TW 111128545 A TW111128545 A TW 111128545A TW 111128545 A TW111128545 A TW 111128545A TW 202405385 A TW202405385 A TW 202405385A
- Authority
- TW
- Taiwan
- Prior art keywords
- load
- module
- protective shell
- gauge
- body unit
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 66
- 230000000694 effects Effects 0.000 title abstract description 20
- 230000001681 protective effect Effects 0.000 claims abstract description 143
- 238000004891 communication Methods 0.000 claims abstract description 11
- 238000004422 calculation algorithm Methods 0.000 claims abstract description 5
- 229910000831 Steel Inorganic materials 0.000 claims description 13
- 239000010959 steel Substances 0.000 claims description 13
- 239000000463 material Substances 0.000 claims description 10
- 238000012360 testing method Methods 0.000 claims description 10
- 230000006835 compression Effects 0.000 claims description 8
- 238000007906 compression Methods 0.000 claims description 8
- 238000006243 chemical reaction Methods 0.000 claims description 6
- 238000007726 management method Methods 0.000 claims description 6
- 238000010223 real-time analysis Methods 0.000 claims description 5
- 238000004364 calculation method Methods 0.000 claims description 3
- 241000233855 Orchidaceae Species 0.000 claims 1
- 230000008569 process Effects 0.000 abstract description 9
- 238000013473 artificial intelligence Methods 0.000 abstract description 3
- 238000010586 diagram Methods 0.000 description 17
- 238000004458 analytical method Methods 0.000 description 15
- 230000036316 preload Effects 0.000 description 8
- 238000009434 installation Methods 0.000 description 7
- 238000012937 correction Methods 0.000 description 6
- 238000012544 monitoring process Methods 0.000 description 4
- 230000009471 action Effects 0.000 description 3
- 238000012669 compression test Methods 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 238000003466 welding Methods 0.000 description 2
- 229910000954 Medium-carbon steel Inorganic materials 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000013100 final test Methods 0.000 description 1
- 239000003292 glue Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 229910000679 solder Inorganic materials 0.000 description 1
- 238000010971 suitability test Methods 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
Images
Landscapes
- Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
- Testing Of Balance (AREA)
Abstract
Description
本發明係有關於一種荷重計之結構及其荷重偏心之測法,可測荷重偏心和不受端點效應影響之工程與工業用荷重計,此種荷重計自帶有Aiot模組,可監測荷重過程的荷重偏心量,也可藉此偏心量來精準裝置荷重計。The invention relates to the structure of a load meter and a method for measuring load eccentricity. It is an engineering and industrial load meter that can measure load eccentricity and is not affected by end point effects. This load meter has its own Aiot module and can monitor The load eccentricity during the loading process can also be used to accurately install the load gauge.
在台灣,地錨施加預力的過程中,常見到電子荷重計讀數低於千斤頂讀數 20~30%以上,使工程界於地錨試驗時,是應該採用千斤頂荷重值,或是電子式荷重計值而困擾且無解。In Taiwan, during the process of applying prestress to ground anchors, it is common to see that the reading of the electronic load gauge is 20 to 30% lower than the reading of the jack. This makes the engineering community use the jack load value or the electronic load gauge when testing ground anchors. Worthy, troubled and unsolvable.
如第1圖所示,係我國地錨研究知名學者廖洪鈞教授等的研究成果,其證明無論電阻式或振弦式荷重計都少於千斤頂荷重值,平均分別約7%和25%,並認為振弦式大於電阻式值的原因可能是振弦式荷重計的內部僅安裝三組感測元件,以致受到偏心載重的影響較大;此外,也提出千斤頂之面積約等於荷重計面積,則兩者相差較少,此結果與參考資料Dunnicliff, J. (1988). Geotechnical Instrumentation for Monitoring Field Performance, John Wiley & Sons, New York之國外學者研究指出,中空型荷重計容易受偏心載重以及端部效應(end effects) 影響相一致。As shown in Figure 1, it is the research result of Professor Liao Hongjun, a well-known scholar in my country's ground anchor research, who proves that both resistive and vibrating wire load meters are less than the jack load value, with an average of about 7% and 25% respectively. It is believed that the reason why the value of the vibrating wire type is greater than that of the resistive type may be that there are only three sets of sensing elements installed inside the vibrating wire load meter, which is greatly affected by the eccentric load. In addition, it is also proposed that the area of the jack is approximately equal to the area of the load meter, then There is little difference between the two. This result is consistent with the research by foreign scholars in Dunnicliff, J. (1988). Geotechnical Instrumentation for Monitoring Field Performance, John Wiley & Sons, New York, which pointed out that the hollow load gauge is susceptible to eccentric load and end loads. End effects are consistent.
然而,產生上述偏差並非單由荷重計偏心和端部效應所造成,其係因習知中空型荷重計的設計者可能誤認中空型荷重計的結構單元之力學行為是一種「元素」行為,亦既說中空圓柱上任一點的應力或應變處處均相同,因此將電阻式或振弦式應變計等感測元件貼裝在中空圓柱的外壁面或外側處,也依此進行荷重計校正,使用者亦據此出廠校正值進行應用;倘若使用者的應用條件與出產時校正條件不同,例如端板法蘭尺度、材質與施力位置等,但使用者還是使用出廠校正值去計算其荷重值就會衍生偏差,而此偏差既是學者們所謂之端部效應。However, the above-mentioned deviation is not solely caused by the eccentricity and end effect of the load gauge. It is because the designers of the conventional hollow load gauge may misunderstand that the mechanical behavior of the structural unit of the hollow load gauge is an "element" behavior. It is said that the stress or strain at any point on the hollow cylinder is the same everywhere, so sensing elements such as resistive or vibrating wire strain gauges are mounted on the outer wall or outside of the hollow cylinder, and the load gauge is calibrated accordingly. The user can also Apply according to the factory calibration value; if the user's application conditions are different from the production calibration conditions, such as end plate flange size, material and force application position, etc., but the user still uses the factory calibration value to calculate the load value, it will Derived deviation, and this deviation is what scholars call the end effect.
本發明之主要目的,係在提供一種可測荷重偏心和不受端點效應影響之工程與工業用荷重計,此種荷重計自帶有Aiot(人工智慧物聯網)模組,可監測荷重過程的荷重偏心量,也可藉此偏心量來精準裝置荷重計。The main purpose of the present invention is to provide an engineering and industrial load meter that can measure load eccentricity and is not affected by end-point effects. This load meter is equipped with an Aiot (Artificial Intelligence Internet of Things) module and can monitor the load process. The load eccentricity can also be used to accurately install the load gauge.
本發明荷重計之結構,主要係設有一本體單元、數個感測元件、一保護殼組、一Aiot模塊及一模塊保護盒所組成;該本體單元為一中空圓柱形,該本體單元之內壁面的上下部位各設有一內凸環,該本體單元之外壁面的上下部位各設有一外凸環,該本體單元之壁面上設有數個通孔,該本體單元之頂面及底面上各設有數個螺孔;數個該感測元件係內外成對固設於該本體單元內、外側之壁面上;該保護殼組係由一內保護殼體與一外保護殼體所組成,該內保護殼體係設於該本體單元之內側,該外保護殼體係設於該本體單元之外側,該外保護殼體之壁面上設有導線通孔;該Aiot模塊係設於該外保護殼體之外壁面上,該Aiot模塊包括有感測元件串口、ADC/FV轉換模組、Aiot模組、通訊串口、數據紀錄模組、電源管理模組和顯示屏幕等,該Aiot模組內嵌入軟件可提供荷重偏心的即時分析與預警功能;該模塊保護盒係設於該外保護殼體之外壁面上,該模塊保護盒並罩設該Aiot模塊上,該模塊保護盒上設有無線天線及電源訊號線,該模塊保護盒上蓋設有一保護蓋。The structure of the load gauge of the present invention is mainly composed of a body unit, several sensing elements, a protective shell group, an Aiot module and a module protection box; the body unit is a hollow cylindrical shape. The upper and lower parts of the wall are each provided with an inner convex ring. The upper and lower parts of the outer wall of the body unit are each provided with an outer convex ring. The wall of the body unit is provided with several through holes. The top and bottom surfaces of the body unit are each provided with an outer convex ring. There are several screw holes; several sensing elements are fixed on the inner and outer walls of the body unit in pairs; the protective shell set is composed of an inner protective shell and an outer protective shell. The protective shell system is located inside the body unit, and the outer protective shell system is located outside the body unit. The wall of the outer protective shell is provided with wire through holes; the Aiot module is located on the outer protective shell. On the outer wall, the Aiot module includes a sensing component serial port, ADC/FV conversion module, Aiot module, communication serial port, data recording module, power management module and display screen. The software embedded in the Aiot module can Provides real-time analysis and early warning function of load eccentricity; the module protection box is located on the outer wall of the outer protective shell, and covers the Aiot module. The module protection box is equipped with a wireless antenna and a power supply signal line, the module protection box is provided with a protective cover on the upper cover.
本發明荷重計之結構,其中,該本體單元上部之該內凸環與外凸環上各設有數個扣接孔,該內保護殼體與該外保護殼體之上部對應於該本體單元之各扣接孔位置分別設有扣接穿孔,藉由扣接件將該內保護殼體與該外保護殼體分別固設於該本體單元之內、外壁面上。In the structure of the load gauge of the present invention, the inner convex ring and the outer convex ring on the upper part of the main body unit are each provided with a plurality of buckling holes, and the upper parts of the inner protective shell and the outer protective shell correspond to the holes of the main body unit. Each buckle hole position is provided with a buckle through hole, and the inner protective shell and the outer protective shell are respectively fixed on the inner and outer walls of the body unit through fasteners.
本發明荷重計之結構,其中,該本體單元之壁面上設有不少於三條之條槽,或於該本體單元之壁面上設有不少於三處之透孔,供該感測元件設置。In the structure of the load gauge of the present invention, the wall surface of the main body unit is provided with no less than three grooves, or the wall surface of the main body unit is provided with no less than three through holes for the placement of the sensing element. .
本發明荷重計之結構,其中,該感測元件係為電阻式應變計,該電阻應變計係設有基底,於基底上設有數條電阻絲及接線點,該接線點上設有導線,而該電阻式應變計可設為全橋式電阻應變計、半橋式電阻應變計、四分之一橋式電阻應變計或玫瑰花式電阻應變計,全橋式和半橋式之電阻應變計自帶有溫度補償功能,而四分之一橋式和玫瑰花式之電阻應變計則需輔以溫度感測元件來修正溫差所引起之熱應變。In the structure of the load gauge of the present invention, the sensing element is a resistance strain gauge. The resistance strain gauge is provided with a base. Several resistance wires and connection points are provided on the base. The connection points are provided with wires, and The resistance strain gauge can be set as a full-bridge resistance strain gauge, a half-bridge resistance strain gauge, a quarter-bridge resistance strain gauge or a rosette resistance strain gauge. Full-bridge resistance strain gauge and half-bridge resistance strain gauge It has its own temperature compensation function, while quarter-bridge and rosette resistance strain gauges need to be supplemented by temperature sensing elements to correct thermal strains caused by temperature differences.
本發明荷重計之結構,其中,該感測元件係為振弦式應變計,該振弦式應變計係設有鋼弦,該鋼弦上設有電磁線圈組件來激勵該該鋼弦,該電磁線圈組件上設有導線,該振弦式應變計需輔以溫度感測元件來修正溫差所引起之熱應變。In the structure of the load gauge of the present invention, the sensing element is a vibrating wire strain gauge. The vibrating wire strain gauge is provided with a steel string, and an electromagnetic coil assembly is provided on the steel string to excite the steel string. There are wires on the electromagnetic coil assembly, and the vibrating wire strain gauge needs to be supplemented by a temperature sensing element to correct the thermal strain caused by the temperature difference.
本發明荷重計之結構,其中,該保護殼組係設為全套筒扣件式或全套筒式或半套筒扣件式,該半套筒扣件式之保護殼組係將其對切取其半圓組成的殼體。In the structure of the load gauge of the present invention, the protective shell group is a full sleeve fastener type or a full sleeve fastener type or a half sleeve fastener type, and the half sleeve fastener type protective shell group is Cut out its shell consisting of a semicircle.
本發明荷重計之結構,其中,該外保護殼體之導線通孔周圍設有固定孔及扣接孔,該內保護殼體與該外保護殼體之上部分別設有數個扣接穿孔,該Aiot模塊上對應於該外保護殼體上之固定孔位置設有扣接穿孔,藉由扣接件將該Aiot模塊固設於該外保護殼體上,而該模塊保護盒上對應於該外保護殼體之扣接孔位置設有扣接穿孔,該模塊保護盒上另設有數個扣接孔,該保護蓋上對應於該模塊保護盒上之扣接孔位置設有扣接穿孔,藉由扣接件將該模塊保護盒固設於該外保護殼體上,或將模塊保護盒直接焊接或黏合於外保護殼體之外壁面上,以及將該保護蓋固設於該模塊保護盒上。In the structure of the load gauge of the present invention, the wire through-hole of the outer protective shell is provided with fixing holes and buckle holes, and the inner protective shell and the upper part of the outer protective shell are respectively provided with several buckle through holes. The Aiot module is provided with a snap-on hole corresponding to the fixing hole on the outer protective shell. The Aiot module is fixed on the outer protective shell through the snap-on component, and the module protection box is provided with a snap-on hole corresponding to the fixing hole on the outer protective shell. The outer protective shell is provided with a buckle hole at the position of the buckle hole. The module protection box is also provided with several buckle holes. The protective cover is provided with a buckle hole corresponding to the position of the buckle hole on the module protection box. The module protection box is fixed on the outer protective casing through fasteners, or the module protection box is directly welded or bonded to the outer wall of the outer protective casing, and the protective cover is fixed on the module protection casing. on the box.
本發明荷重計之結構,其中,依荷重計使用需求而配置有端板法蘭組,該端板法蘭組係設於該本體單元之頂面或底面,該端板法蘭組設有軸壓式頂端板法蘭、軸壓式底端板法蘭、錨索式端板法蘭及全力式端板法蘭,該軸壓式頂端板法蘭與該軸壓式底端板法蘭係用於材料抗壓試驗之荷重計,該軸壓式頂端板法蘭上對應該本體單元頂面之螺孔位置設有螺件穿孔,該軸壓式頂端板法蘭之頂面中間位置設有一球型凹槽,該軸壓式頂端板法蘭之底面設有荷重計嵌入槽,該軸壓式底端板法蘭之頂面設有荷重計嵌入槽,該軸壓式底端板法蘭上對應該本體單元底面之螺孔位置設有螺件穿孔,而該錨索式端板法蘭係用於錨索荷重計,該錨索式端板法蘭之頂面設有一錨頭嵌入槽,該錨頭嵌入槽內對應於該本體單元之各螺孔位置各設有一螺件穿孔,該錨頭嵌入槽內另設有至少三個定位孔,該錨索式端板法蘭之底面設有一荷重計嵌入槽,而該全力式端板法蘭係用於量測壓力、拉力和扭力等之荷重計,該全力式端板法蘭上設有數個螺件穿孔及數個連接孔,該全力式端板法蘭之螺件穿孔係對應於該本體單元之各螺孔位置,該全力式端板法蘭之連接孔係可供外部構件連接,該全力式端板法蘭之底面設有荷重計嵌入槽。In the structure of the load gauge of the present invention, an end plate flange group is configured according to the use requirements of the load gauge. The end plate flange group is located on the top or bottom surface of the body unit. The end plate flange group is provided with a shaft. Compression type top plate flange, axial pressure type bottom end plate flange, anchor type end plate flange and full force type end plate flange. The axial pressure type top plate flange is connected with the axial pressure type bottom end plate flange. A load gauge used for material compression testing. The axial pressure top plate flange is provided with screw holes corresponding to the screw holes on the top surface of the body unit. The axial pressure top plate flange is provided with a screw hole in the middle of the top surface. Ball groove, the bottom surface of the axial pressure top plate flange is provided with a load gauge embedding groove, the top surface of the axial pressure type bottom end plate flange is provided with a load gauge embedding groove, the axial pressure type bottom end plate flange is provided with a load gauge embedding groove There are screw holes corresponding to the screw holes on the bottom surface of the body unit, and the anchor cable-type end plate flange is used for the anchor cable load meter. The top surface of the anchor cable-type end plate flange is provided with an anchor head embedding groove. , the anchor head embedding groove is provided with a screw through hole corresponding to each screw hole position of the body unit, the anchor head embedding groove is also provided with at least three positioning holes, and the bottom surface of the anchor cable end plate flange is provided with There is a load gauge embedded in the slot, and the full-force end plate flange is a load gauge used to measure pressure, tension, torque, etc. The full-force end plate flange is provided with several screw through holes and several connecting holes. The screw holes of the full-force end plate flange correspond to the positions of the screw holes of the body unit. The connecting holes of the full-force end plate flange can be used for connecting external components. The bottom surface of the full-force end plate flange is provided with The load gauge is embedded in the groove.
本發明荷重計之結構,主要係設有一本體法蘭、數個感測元件、一保護殼組、一Aiot模塊及一模塊保護盒所組成;該本體法蘭係設有本體部及法蘭部,該本體部係設為中空圓柱形,該本體部之內壁面與外壁面的上下部位分別設有內凸環與外凸環,該本體部上部位之內凸環與該外凸環上設有數個扣接孔,該本體部之壁面上設有數個通孔或條槽或透孔,該本體部之上部與下部均設有該法蘭部,該法蘭部上設有數個連接孔;該感測元件係固設於該本體法蘭之本體部的內、外側壁面或透孔壁面上;該保護殼組係由一內保護殼體與一外保護殼體所組成,該內保護殼體係設於該本體法蘭之本體部的內側,該外保護殼體係設於該本體法蘭之本體部的外側,該外保護殼體之壁面上設有導線通孔;該Aiot模塊係設於該外保護殼體之外壁面上,該Aiot模塊包括有感測元件串口、ADC/FV轉換模組、Aiot模組、通訊串口、數據紀錄模組、電源管理模組和顯示屏幕等,該Aiot模組內嵌入軟件可提供荷重偏心的即時分析與預警功能;該模塊保護盒係設於該外保護殼體之外壁面上,該模塊保護盒並罩設該Aiot模塊上,該模塊保護盒上設有無線天線及電源訊號線,該模塊保護盒上並蓋設有一保護蓋。The structure of the load gauge of the present invention is mainly composed of a body flange, several sensing elements, a protective shell group, an Aiot module and a module protection box; the body flange is provided with a body part and a flange part , the body part is set as a hollow cylindrical shape, the inner wall surface and the outer wall surface of the body part are respectively provided with inner convex rings and outer convex rings at the upper and lower parts, and the inner convex ring and the outer convex ring are provided at the upper part of the body part. There are several fastening holes, and the wall surface of the body part is provided with several through holes, slots or through holes. The upper and lower parts of the body part are provided with the flange part, and the flange part is provided with several connecting holes; The sensing element is fixed on the inner and outer walls or the through-hole wall of the body part of the body flange; the protective shell set is composed of an inner protective shell and an outer protective shell. The inner protective shell The system is located inside the body part of the body flange, the outer protective shell system is located outside the body part of the body flange, and the wall surface of the outer protective shell is provided with wire through holes; the Aiot module is located on On the outer wall of the outer protective shell, the Aiot module includes a sensing component serial port, an ADC/FV conversion module, an Aiot module, a communication serial port, a data recording module, a power management module and a display screen. The Aiot module The embedded software in the module can provide real-time analysis and early warning functions of load eccentricity; the module protection box is located on the outer wall of the outer protective shell, and the module protection box is also placed on the Aiot module. On the module protection box It is equipped with a wireless antenna and a power signal line. The module protection box is also covered with a protective cover.
本發明荷重偏心之測法,係在荷重計上安裝有Aiot模塊,依荷重偏心算法之計算式 、 ,將求算出之荷重 以及其荷重偏心 、 方程式寫入該Aiot模塊之Aiot模組中,並經由通訊串口傳送至顯示屏幕或經wifi傳至雲端資料庫和個人行動裝置,當偏心超過容許值即可發出警示閃光或聲響,以提示使用者。 The measuring method of load eccentricity in the present invention is to install the Aiot module on the load meter and calculate it according to the calculation formula of the load eccentricity algorithm. , , the calculated load will be found and its load eccentricity , The equation is written into the Aiot module of the Aiot module and transmitted to the display screen via the communication serial port or to the cloud database and personal mobile device via wifi. When the eccentricity exceeds the allowable value, a warning flash or sound will be emitted to alert the user. .
本發明荷重計之結構及其荷重偏心之測法,其優點係在:可測荷重偏心和不受端點效應影響之工程與工業用,可監測荷重過程的荷重偏心量,也可藉此偏心量來精準裝置該荷重計,且在該荷重計之保護殼組上安裝有Aiot模塊,可將荷重以及其荷重偏心方程式寫入其Aiot模組,並經由通訊串口傳送至顯示屏幕或經Wifi傳至雲端資料庫和個人行動裝置,當偏心超過容許值既可發出警示閃光或聲響,以提示使用者。The structure of the load gauge and the method for measuring the load eccentricity of the present invention have the following advantages: it can measure the load eccentricity and is not affected by the end point effect for engineering and industrial purposes. It can monitor the load eccentricity amount in the loading process and also use this eccentricity. The load gauge is accurately installed by Lianglai, and an Aiot module is installed on the protective shell of the load gauge. The load and the load eccentricity equation can be written into its Aiot module and transmitted to the display screen through the communication serial port or via Wifi. To the cloud database and personal mobile devices, when the eccentricity exceeds the allowable value, a warning flash or sound can be emitted to remind the user.
有關本發明為達上述之使用目的與功效,所採用之技術手段,茲舉出較佳可行之實施例,並配合圖式所示,詳述如下:Regarding the technical means adopted by the present invention to achieve the above-mentioned purposes and effects, the best and feasible embodiments are listed below and are shown in the drawings. The details are as follows:
本發明之荷重計結構,請參閱第2A圖~第7D圖所示,主要係設有一本體單元1、數個感測元件2、一保護殼組3、一Aiot(人工智慧物聯網)模塊4及一模塊保護盒5與端板法蘭組6所組成,該本體單元1之結構要能容易貼裝該感測元件2,並且可直接或間接感測到其不受端部效應影響之應變或應力值,該本體單元1可為一中空圓柱形(如第2A圖所示),該本體單元1之內壁面的上下部位各設有一內凸環11,該本體單元1之外壁面的上下部位各設有一外凸環12,該本體單元1上部之該內凸環11與該外凸環12上均設有數個扣接孔13(可為螺孔),該本體單元1之壁面上設有數個通孔14,該本體單元1之頂面及底面上各設有數個螺孔15,數個該感測元件2係內外成對設於該本體單元1之內、外側之壁面上,另可於該本體單元1之壁面上設有不少於三條之條槽16(如第2B圖所示)、或於該本體單元1之壁面上設有不少於三處之矩形透孔17(如第2C圖所示,包含正矩形孔)、或於該本體單元1之壁面上設有不少於三處之圓形透孔18(如第2D圖所示,包含橢圓形孔)等供該感測元件2設置,而該感測元件2的裝貼需具有能感測壓力、拉力和扭力之多樣性與其可組合性,並能直接或間接感測到不受端部效應影響之應變或應力值,該感測元件2可為電阻式應變計21或振弦式應變計22,該電阻式應變計21係設有基底211,於該基底211上設有數條電阻絲212及接線點213,該接線點213上設有導線214,而該電阻式應變計21可設為全橋式之電阻式應變計(如第3A圖所示,係由四片單片之電阻式應變計21依橋式電路串接而成)、半橋式之電阻式應變計(如第3B圖所示,係為全橋式之一半)、四分之一橋式之電阻式應變計(如第3C圖所示,即為單片式之電阻應變計21)或玫瑰花式之電阻式應變計(如第3D圖所示,即為三片式之電阻應變計21),該全橋式和半橋式之電阻應變計21自帶有溫度補償功能,而單片式(即四分之一橋式、玫瑰花式)之電阻應變計21則需輔以溫度感測元件來修正溫差所引起之熱應變,而該振弦式應變計22係設有鋼弦221,該鋼弦221上設有電磁線圈組件222來激勵該該鋼弦221,該電磁線圈組件222上設有導線223,該鋼弦221之兩端係固定於該本體單元1內外側之內凸環11、外凸環12之間或條槽16或矩形孔17或圓形孔18中,該振弦式應變計22也需輔以溫度感測元件來修正溫差所引起之熱應變,該保護殼組3係由一內保護殼體31與一外保護殼體32所組成,是一種薄殼式圓管套筒,用於保護該本體單元1上的該感測元件2,該內保護殼體31係設於該本體單元1之內側,該外保護殼體32係設於該本體單元1之外側,該外保護殼體32之壁面上設有導線通孔320、固定孔321及扣接孔322,該保護殼組3係設為全套筒扣件式(如第4A圖所示)、全套筒式(如第4B圖所示)或半套筒扣件式(如第4C圖所示),該全套筒扣件式及該半套筒扣件式之內保護殼體31與外保護殼體32的上部分別設有數個扣接穿孔310、323,而該半套筒扣件式之保護殼組3係將其對切取其半圓組成的殼體,該Aiot模塊4係設於該外保護殼體32之外壁面上,該Aiot模塊4上對應於該外保護殼體32上之固定孔321位置設有扣接穿孔40(如第6圖所示),該Aiot模塊4包括有感測元件串口41、ADC/FV轉換模組42、Aiot模組43、通訊串口44、數據紀錄模組45、電源管理模組46和顯示屏幕47等(如第5圖所示),Aiot模組43內嵌入AI軟件可提供荷重偏心的即時分析與預警等功能,該模塊保護盒5(如第6圖所示)係設於該外保護殼體32之外壁面上,該模塊保護盒5並罩設該Aiot模塊4上,該模塊保護盒5上設有設數個扣接穿孔50及扣接孔51,該模塊保護盒5上設有一無線天線52及一電源訊號線53,該模塊保護盒5上蓋設有一保護蓋54,該保護蓋54上設有扣接穿孔55,該端板法蘭組6係依據荷重計使用需求而做適當配置,該端板法蘭組6係設於該本體單元1之頂面或底面,該端板法蘭組6設有軸壓式頂端板法蘭61(如第7A圖所示)、軸壓式底端板法蘭62(如第7B圖所示)、錨索式端板法蘭63(如第7C圖所示)及全力式端板法蘭64(如第7D圖所示)等,該軸壓式頂端板法蘭61與該軸壓式底端板法蘭62通常用於材料抗壓試驗之荷重計,該軸壓式頂端板法蘭61上對應該本體單元1頂面之螺孔15位置設有螺件穿孔610,該軸壓式頂端板法蘭61之頂面中間位置設有一球型凹槽611,該軸壓式頂端板法蘭61之底面設有荷重計嵌入槽612,該軸壓式底端板法蘭62之頂面設有荷重計嵌入槽620,該軸壓式底端板法蘭62上對應該本體單元1底面之螺孔15位置設有螺件穿孔621,而該錨索式端板法蘭63主要係用於錨索荷重計,該錨索式端板法蘭63之頂面設有一錨頭嵌入槽630,該錨頭嵌入槽630內對應於該本體單元1之各螺孔15位置各設有一螺件穿孔631,該錨頭嵌入槽630內另設有至少三個定位孔632,該錨索式端板法蘭63之底面設有一荷重計嵌入槽633,而該全力式端板法蘭64係用於量測壓力、拉力和扭力等之荷重計,該全力式端板法蘭64上設有數個螺件穿孔640及數個連接孔641,該螺件穿孔640係對應於該本體單元1之各螺孔15位置,該連接孔641係可供外部構件連接,該全力式端板法蘭64之底面設有荷重計嵌入槽642,如此,即為一荷重計結構。The structure of the load gauge of the present invention is shown in Figures 2A to 7D. It mainly includes a
依據荷重計擬要量測荷重力的條件,選用最適當的感測元件2,並將電阻式應變計21黏貼或將正弦式應變計22裝置於本體單元1上,而為利於荷重偏心之測算,其貼裝數量不少於三處,貼裝位置與方式請參閱第8A圖~第8H圖所示,說明如下:
(1) 貼裝位置:
電阻式應變計21,可黏貼在本體單元1的內、外壁面之相對位置上(如第8A圖所示),以便求其平均值來代表本體單元1之圓柱壁中間處的應變值;對設有矩形透孔17或圓形透孔18之本體單元1,也可將該電阻式應變計21黏貼於該等透孔的壁面上(如第8B圖所示),以直接獲取本體單元1圓柱壁中間處之應變值;對黏貼四分之一橋式之電阻式應變計21(如第3C圖所示)或玫瑰花式之電阻式應變計21(如第3D圖所示)者,至少要裝一個溫度感測元件來修正溫差所引起之熱應變。
振弦式應變計22,可裝置於本體單元1的內、外壁面相對上下位置之內凸環11與外凸環12上(如第8C圖所示),俾利求其平均值來代表本體單元1之圓柱壁中間處之應變值;對設有矩形透孔17或圓形透孔18之本體單元1,也可將該振弦式應變計22裝設於該等透孔的中間部位上(如第8D圖所示),以直接獲取本體單元1 之圓柱壁中間處之應變值,並至少裝一個溫度感測元件來修正溫差所引起之熱應變。
(2)貼裝方式:
電阻式應變計21的黏貼法:全橋式、半橋式與四分之一橋式之電阻式應變計21與受力方向一致的黏貼方式謂為正貼法(如第8A圖、第8B圖所示),可用於量測軸向壓力和拉力的荷重量測,若將之成一個角度θ值(一般使用θ=45˚) 則可用於量測扭力的荷重計謂為斜貼法(如第8E圖、第8F圖所示),兩者合用則可量測壓力、拉力和扭力(如第8G圖所示);而黏貼玫瑰花式之電阻式應變計21(如第3D圖所示)亦可用在量測壓力、拉力和扭力的荷重計。
振弦式應變計22的設置法:與電阻式應變計21相同,即其與受力方向一致的裝置方式,可用於量測軸向壓力和拉力的荷重,稱為正裝法(如第8C圖、第8D圖所示),若成一個角度θ值(一般使用θ=45˚)則可用於量測扭力的荷重計,謂為斜裝法(如第8H圖所示),兩者合用則可量測壓力、拉力和扭力的荷重計。
此外,電阻式應變計21的黏貼法與振弦式應變計22的裝置法也可組合貼裝。
According to the conditions under which the load gauge is to measure the load force, select the most
感測元件2之佈線:將電源與訊號之導線214焊接或連接至感測元件2之接線點213上,設於本體單元1之內側面的感測元件2的導線214或223係穿經本體單元1之通孔14或其所設之矩形透孔17或圓形透孔18至本體單元1之外側面,再與外側面之感測元件2的導線214或223統整後,穿過外保護殼體32的導線通孔320,以連接至Aiot模塊4的感測元件串口41,並進行感測元件2之測試,以確保感測元件2係屬正常且在誤差容許值內。Wiring of the sensing element 2: Weld or connect the power and
保護殼組3、Aiot模塊4和模塊保護盒5之組裝:將測試完備之感測元件2的導線214或223連接到Aiot模塊4的感測元件串口41上,再測試無誤後,將Aiot模塊4藉由扣接件70穿設於扣接穿孔40並鎖扣至外保護殼體32的固定孔321上相互組接,並在模塊保護盒5上組接無線天線52和電源訊號線53,且進行系統測試無誤後,再藉由扣接件70穿設於模塊保護盒5之扣接穿孔50,將模塊保護盒5鎖扣於外保護殼體32之扣接孔322上,或將模塊保護盒5直接焊接或黏合於外保護殼體32之外壁面上,另以扣接件70穿設於保護蓋54之扣接穿孔55並鎖扣於模塊保護盒5之扣接孔51上,將保護蓋54固設於模塊保護盒5上。Assembling the protective shell set 3,
保護殼組3可依荷重計使用目的選用荷重計之內保護殼體31和外保護殼體32之樣式,如第4A圖~第4C圖所示,或第4A圖~第4C圖之內保護殼體31和外保護殼體32之相互混用。The
荷重計在工業或工程上使用廣泛,而為了不同用途與量測不同荷重力,係可依據本發明所揭示之荷重計的各結構加以組合,茲將其各實施例組裝說明如下:Load gauges are widely used in industry or engineering. For different purposes and to measure different load forces, the load gauges disclosed in the present invention can be combined according to the various structures. The assembly description of each embodiment is as follows:
本發明之第一實施例,請參閱第9A圖及第9B圖所示,係為一種無端板法蘭之電阻式荷重計,其功能係用以量測軸壓力和軸拉力,主要係設有一本體單元1、不少於三對之感測元件2、一保護殼組3(包括一內保護殼體31與一外保護殼體32)、一Aiot模塊4及一模塊保護盒5所組成,該本體單元1為中空圓柱形(如第2A圖所示),該感測元件2為全橋式之電阻式應變計21(如第3A圖所示),該保護殼組3為全套筒扣件式(如第4A圖所示),其組裝方法,係將不少於三對之全橋式之電阻式應變計21以正貼法黏貼於本體單元1之內、外壁面的相對位置上,用其平均值來代表圓柱壁中間處之應變值,將設於本體單元1之內側面的電阻式應變計21的導線214穿經本體單元1之通孔14至本體單元1之外側面,再與外側面之電阻式應變計21的導線214統整後,穿過外保護殼體32的導線通孔320,以連接至Aiot模塊4的感測元件串口41,再將全套筒扣件式之內保護殼體31組設於本體單元1之內側,並藉由扣接件70通過內保護殼體31的扣接穿孔310與本體單元1內側之內凸環11上的扣接孔13固接;其次,將扣接或焊接有模塊保護盒5的外保護殼體32套設至本體單元1的外側,再使用扣接件70通過外保護殼體32的扣接穿孔323與本體單元1外側之外凸環12上的扣接孔13固接,完成荷重計之組裝,該全套筒扣件式之保護殼組3是用於保護感測元件2,且該第一實施例為了讓本體單元1的螺孔15能供使用者運用,該荷重計無端板法蘭組6之設置。The first embodiment of the present invention, please refer to Figures 9A and 9B, is a resistance load meter without end plate flange. Its function is to measure shaft pressure and shaft tension. It is mainly equipped with a It consists of a
本發明之第二實施例,請參閱第10圖所示,係為一種無端板法蘭之電阻式荷重計,其功能與主要結構係相同於第一實施例所示,其不同處係該本體單元1上設有數個矩形透孔17(如第2C圖所示),該保護殼組3為全套筒式(如第4B圖所示),其組裝方法,係將不少於三對之全橋式電阻應變計21以正貼法黏貼於本體單元1之矩形透孔17壁面的中心位置上,以直接量取不受端部效應影響的應變值外,各電阻式應變計21之導線214連接至Aiot模塊4的感測元件串口41,再將全套筒式之內保護殼體31以擠壓迫緊方式組設於本體單元1之內側,其次,將扣接或焊接有模塊保護盒5的外保護殼體32套設迫緊於本體單元1的外側,將全套筒式保護殼組3固定於本體單元1之內、外側,完成組裝。The second embodiment of the present invention, please refer to Figure 10, is a resistance load meter without end plate flange. Its function and main structure are the same as those shown in the first embodiment. The difference is the main body. The
本發明之第三實施例,請參閱第11圖所示,係為一種無端板法蘭之振弦式荷重計,其功能與主要結構係相同於第一實施例所示,其不同處係該感測元件2改為振弦式應變計22(如第3E圖所示),其組裝方法,係將不少於三對之振弦式應變計22以正裝法安裝於本體單元1之內、外壁面的相對位置上,藉由取其平均值來代表本體單元1圓柱壁中間處之應變值,另外設置至少一溫度感測元件來修正溫差所引起之熱應變,該振弦式應變計22的佈線方式與上述電阻式應變計21之佈線方法相同,其餘之結構與組裝方式均與第一實施例相同,故不再贅述。The third embodiment of the present invention, please refer to Figure 11, is a vibrating wire loadmeter without end plate flange. Its function and main structure are the same as those shown in the first embodiment. The difference is that The
本發明之第四實施例,請參閱第12圖所示,係為一種無端板法蘭之振弦式荷重計,其功能與主要結構係相同於第一實施例所示,其不同處係該本體單元1上設有數個矩形透孔17(如第2C圖所示),該感測元件2為振弦式應變計22(如第3E圖所示),該保護殼組3為全套筒式(如第4B圖所示),其組裝方法,係將不少於三對之振弦式應變計22以正裝法安裝於本體單元1之矩形透孔17壁面的中心位置上,藉以直接量取不受端部效應影響的應變值,另外設置至少一溫度感測元件來修正溫差所引起之熱應變,而該全套筒式之保護殼組3組裝於本體單元1上之方式係相同於第二實施例所示,而該振弦式應變計22的佈線方式亦與上述電阻式應變計21之佈線方法相同,其餘之結構與組裝方式均與第一實施例相同,故不再贅述。The fourth embodiment of the present invention, please refer to Figure 12, is a vibrating wire load gauge without end plate flange. Its function and main structure are the same as those shown in the first embodiment. The difference is that The
本發明之第五實施例,請參閱第13A圖、第13B圖所示,係為一種電阻式軸壓荷重計,其功能係用以量測軸壓荷重力,通常用於材料抗壓實驗,主要結構係相同於第一實施例所示,其不同處係於本體單元1上增加端板法蘭組6,該端板法蘭組6係包括有一軸壓式頂端板法蘭61及一軸壓式底端板法蘭62(如第7A圖及第7B圖所示),其組裝方法係與第一實施例相同,再將該軸壓式頂端板法蘭61組設於本體單元1之上方,使本體單元1之頂部嵌入軸壓式頂端板法蘭61底面之荷重計嵌入槽612內,使軸壓式頂端板法蘭61之螺件穿孔610對正於本體單元1頂面之螺孔15,再以螺件71穿設於該螺件穿孔610並螺鎖於本體單元1頂面之螺孔15內,將軸壓式頂端板法蘭61固定於本體單元1之上方,另將該軸壓式底端板法蘭62設於本體單元1之下方,使本體單元1之底部嵌入軸壓式底端板法蘭62頂面之荷重計嵌入槽620內,使軸壓式底端板法蘭62之螺件穿孔621則對正於本體單元1底面之螺孔15,再以螺件71穿設於該螺件穿孔621並螺鎖於本體單元1底面之螺孔15內,將軸壓式底端板法蘭62固定於本體單元1之下方,如此,即為電阻式軸壓荷重計之組裝。The fifth embodiment of the present invention, please refer to Figures 13A and 13B, is a resistive axial pressure load meter. Its function is to measure the axial pressure load and is usually used in material compression tests. The main structure is the same as that shown in the first embodiment. The difference is that an end plate flange set 6 is added to the
本發明之第六實施例,請參閱第14圖所示,係為一種振弦式軸壓荷重計,其功能相同於第五實施例所示,而主要結構係相同於第三實施例所示,其不同處係於本體單元1上增加端板法蘭組6,該端板法蘭組6係包括有一軸壓式頂端板法蘭61及一軸壓式底端板法蘭62(如第7A圖及第7B圖所示),其組裝方法係與第三實施例及第五實施例相同,將該軸壓式頂端板法蘭61與軸壓式底端板法蘭62分別組設於本體單元1之上方與下方。The sixth embodiment of the present invention, please refer to Figure 14, is a vibrating wire axial pressure loadmeter. Its function is the same as that shown in the fifth embodiment, and its main structure is the same as that shown in the third embodiment. , the difference is that the end
本發明之第七實施例,請參閱第15A圖、第15B圖所示,係為一種電阻式錨索荷重計,其功能係用以量測軸壓荷重力,通常用於錨索荷重力之監測,而主要結構係相同於第一實施例所示,其不同處係於本體單元1上增加一錨索式端板法蘭63(如第7C圖所示),其組裝方法係與第一實施例相同,再將該錨索式端板法蘭63組設於本體單元1之上方。The seventh embodiment of the present invention, please refer to Figures 15A and 15B, is a resistance-type anchor cable load meter. Its function is to measure the axial pressure load. It is usually used to measure the anchor cable load. Monitoring, the main structure is the same as that in the first embodiment, the difference is that an anchor cable type
本發明之第八實施例,請參閱第16圖所示,係為一種振弦式錨索荷重計,其功能相同於第七實施例所示,而主要結構係相同於第三實施例所示,其不同處係於本體單元1上增加一錨索式端板法蘭63(如第7C圖所示),其組裝方法係與第三實施例相同,再將該錨索式端板法蘭63組設於本體單元1之上方。The eighth embodiment of the present invention, please refer to Figure 16, is a vibrating wire anchor cable load meter. Its function is the same as that shown in the seventh embodiment, and its main structure is the same as that shown in the third embodiment. , the difference is that an anchor cable-type
本發明之第九實施例,請參閱第17A圖、第17B圖所示,係為一種電阻式扭力荷重計,其功能係用以量測扭力的荷重計,一般用於扭力或剪力之量測,而主要結構係相同於第一實施例所示,其不同處係於本體單元1之上、下方各增加一全力式端板法蘭64(如第7D圖所示),其組裝方法係與第一實施例相似,其不同處係將不少於三對之電阻式應變計21以斜貼法黏貼於本體單元1之內外壁面之相對位置上,再將二全力式端板法蘭64分別組設於本體單元1之上方及下方。The ninth embodiment of the present invention, please refer to Figure 17A and Figure 17B, is a resistance type torsion load meter. Its function is a load meter used to measure torsion. It is generally used to measure torsion or shear force. Measured, the main structure is the same as that shown in the first embodiment, the difference is that a full-force
本發明之第十實施例,請參閱第18圖所示,係為一種振弦式扭力荷重計,其功能相同於第九實施例所示,而主要結構係相似於第四實施例所示,其不同處係將保護殼體組3設為全套筒扣件式(如第4A圖所示),於其內保護殼體31與外保護殼體32之上部分別設有數個扣接穿孔310、323,並藉由扣接件70將之分別固定於本體單元1之內、外側上,另於本體單元1之上、下方各增加一全力式端板法蘭64(如第7D圖所示),其組裝方法係與第四實施例相似,其不同處係將不少於三對之振弦式應變計22以斜裝法安裝於本體單元1之矩形透孔17壁面的中心位置上(如第8H圖所示),藉以直接量取不受端部效應影響的應變值,另外設置至少一溫度感測元件來修正溫差所引起之熱應變,再將二全力式端板法蘭64以螺件71分別組設於本體單元1之上方及下方。The tenth embodiment of the present invention, please refer to Figure 18, is a vibrating wire torsion load meter. Its function is the same as that shown in the ninth embodiment, and its main structure is similar to that shown in the fourth embodiment. The difference is that the protective shell set 3 is made of a full sleeve fastener type (as shown in Figure 4A), and several fastening holes are provided on the upper parts of the inner
本發明另可將本體單元1與端板法蘭6以熔接或焊接結合為一體形成為本體法蘭8,請參閱第19A圖~第19D所示,主要係用來量測拉力與扭力的荷重計,該本體法蘭8係設有本體部81及法蘭部82,該本體部81係設為中空圓柱形(如第19A圖),該本體部81之內壁面與外壁面的上下部位分別設有內凸環811與外凸環812,該本體部81上部位之內凸環811與該外凸環812上設有數個扣接孔813,該本體部81之壁面上設有數個通孔814,該本體部81之上部與下部均設有該法蘭部82,該法蘭部82上設有數個連接孔820,另可於該本體部81之壁面上設有不少於三條之條槽815(如第19B圖所示)或於該本體部81之壁面上設有不少於三處之矩形透孔816(如第19C圖所示,包含正矩形孔)或於該本體部81之壁面上設有不少於三處之圓形透孔817(如第19D圖所示,包含橢圓形孔)等供該感測元件2設置。The present invention can also integrate the
本發明之第十一實施例,請參閱第20A圖、第20B圖所示,係為一種電阻式扭力荷重計,其功能相同於第九實施例所示,而主要結構係設有一本體法蘭8、數個感測元件2、一保護殼組3(如第4C圖所示)、一Aiot模塊4及一模塊保護盒5所組成,該本體法蘭8上設有矩形透孔816(如第19C圖所示),該感測元件2為電阻式應變計21,該保護殼組3為半套筒扣件式(如第4C圖所示,設有內保護殼體31與外保護殼體32),其餘結構與第一實施例相同,而其組裝方法係將不少於三對之電阻式應變計21以斜裝法黏貼於本體法蘭8之本體部81的矩形透孔816壁面的中心位置上,以直接量取不受端部效應影響的應變值,而半套筒扣件式之保護殼組3之內保護殼體31係設於本體法蘭8之本體部81的內側、外保護殼體32係設於本體法蘭8之本體部81的外側,用以保護設於本體部81上之感測元件2,而其他結構之組裝方式係與第一實施例相同。The eleventh embodiment of the present invention, please refer to Figures 20A and 20B, is a resistance type torsion load meter. Its function is the same as that shown in the ninth embodiment, and the main structure is provided with a body flange. 8. It is composed of
本發明之第十二實施例,請參閱第21圖所示,係為一種電阻式全力型荷重計,其功能係具有量測軸壓力、軸拉力與扭力等功用,主要結構係設有一本體法蘭8、數個感測元件2、一保護殼組3(如第4C圖所示)、一Aiot模塊4及一模塊保護盒5所組成,該本體法蘭8上設有條槽815(如第19B圖所示),該感測元件2為電阻式應變計21,該保護殼組3為半套筒扣件式(如第4C圖所示,設有內保護殼體31與外保護殼體32),其餘結構與第一實施例相同,而其組裝方法係將不少於三對之電阻式應變計21以正貼法與斜貼法黏貼於本體法蘭8之本體部81的內、外壁面之相對位置上,用其平均值來代表本體部81圓柱壁中間處之應變值,而其他結構之組裝方式係與第十一實施例相同。The twelfth embodiment of the present invention, please refer to Figure 21, is a resistive full-force load gauge. Its function is to measure shaft pressure, shaft tension and torsion. The main structure is provided with an integral method. The
荷重偏心的原因眾多,諸如材料抗壓試驗時,機台定位未精確;荷重軸心未能與荷重計軸心對準一致;又如錨索荷重計與錨頭中心軸有偏差等等。There are many reasons for load eccentricity. For example, during the material compression test, the positioning of the machine is not accurate; the load axis is not aligned with the load gauge axis; and the anchor cable load gauge is deviated from the anchor head central axis, etc.
荷重偏心算法係可依據求算平面合力作用位置之方式為之,以下以第七實施例之電阻式錨索荷重計(如第15A圖所示)為例,而其模擬預力地錨預力施作過程的FEM(有限元素法,Finite Element Method)分析應變結果如表1所示。
表1 有限元素法(FEM)分析應變成果
本荷重計未加錨索式端板法蘭63,其結構如同第一實施例所示之無端板法蘭之電阻式荷重計(如第9A圖),設有六對共十二組電阻式應變計21(全橋式)被等分黏貼於內徑96mm、外徑124.3mm的本體單元1內、外側壁面上,故而可獲得六個位處於本體單元1壁厚中央的應變值(ε
i ),如第22圖的P
1 ~P
6 表示。
This load gauge does not have an anchor cable type
依據上述表一之FEM分析,中空式荷重計之本體單元1的壁體厚中央處(即R=(48+62.15)/2=55.075mm)的應變是不受端部效應之影響,因此可用(式1)表之:
=
+
)/2 (式1)
又由材料力學知,貼應變計處的受力大小,如(式2)所示:
=
(式2)
因為以n等分黏貼應變計,故
=
=
n (式3)
所以
/n =
/n (式4)
因此,荷重計所受總荷重,P
(式5)
將(式4)帶入(式5),得(式6)
/n =
(式6)
According to the FEM analysis in Table 1 above, the strain at the center of the wall thickness of
將本荷重計的六等分上六個力(P 1 ~P 6 ),取P 1 P 4 連線當Y軸,與之垂直做X軸;故各分力P i 的作用點的極座標為𝑃 1 (𝑅,θ 1 =90°), 𝑃 2 (𝑅,θ 2 =30°), 𝑃 3 (𝑅,θ 3 =−30°), 𝑃 4 (𝑅,θ 4 =-90°) , 𝑃 5 (𝑅,θ 5 =-150°), 𝑃 6 (𝑅,θ 6 =150°) ;而轉換成 XY座標,既𝑃 1(X 1 =0,Y 1 =55.08 ) , 𝑃 2 (X 2 =47.70, Y 2 =27.54), 𝑃 3 (X 3 =47.70, Y 3 =-27.54), 𝑃 4 (X 4 =0, Y 4 =−55.08) , 𝑃 5 (X 5 =-47.70, Y 5 =−27.54), 𝑃 6 (X 6 =-47.70, Y 6 =27.54)。 故其荷重的偏心(𝑋 𝑐 , 𝑌 𝑐 )可由下兩式求得, (式7) (式8) 以上公式符號說明如下: :第 i 對應變計之應變中值 、 :第 i 對應變計的內、外壁應變值 :平均應變 𝑃 𝑖 :第 i 對應變計處所分擔的荷重力 𝑋 𝑖 、𝑌 𝑖 : 𝑃 𝑖 的作用點座標 :荷重計承受總力 𝐴 𝑖 :第 i 對應變計處所分配的受力面積 𝐴 0 :荷重計本體單元的截斷面積 :荷重計本體單元的材料楊氏係數 :第 i 對應變計的校正係數(既力—應變的斜率值) 𝐾 0 =𝐴 0 𝐸 0 :荷重計校正值 :應變計對數或應變中值數( ) Divide the load gauge into six equal parts into six forces (P 1 ~ P 6 ), take the line connecting P 1 P 4 as the Y axis, and make the X axis perpendicular to it; therefore, the polar coordinates of the action point of each component force Pi are 𝑃 1 (𝑅,θ 1 =90°), 𝑃 2 (𝑅,θ 2 =30°), 𝑃 3 (𝑅,θ 3 =−30°), 𝑃 4 (𝑅,θ 4 =-90°), 𝑃 5 (𝑅,θ 5 =-150°), 𝑃 6 (𝑅,θ 6 =150°); and converted into XY coordinates, that is, 𝑃 1 (X 1 =0,Y 1 =55.08), 𝑃 2 (X 2 =47.70, Y 2 =27.54), 𝑃 3 (X 3 =47.70, Y 3 =-27.54), 𝑃 4 (X 4 =0, Y 4 =−55.08), 𝑃 5 (X 5 =-47.70, Y 5 =−27.54), 𝑃 6 (X 6 =-47.70, Y 6 =27.54). Therefore, the eccentricity of its load (𝑋 𝑐 , 𝑌 𝑐 ) can be obtained from the following two formulas, (Formula 7) (Formula 8) The symbols of the above formula are explained as follows: : The median strain value of the i-th corresponding strain gauge , : The strain values of the inner and outer walls of the i-th corresponding strain gauge :average strain 𝑃 ν :the load shared by the i-th corresponding strain gauge 𝑋 ν , 𝑌 ν :coordinates of the action point of 𝑃 ν :The total force 𝐴 of the load gauge is borne by 𝐴 𝐴 :The stress area allocated to the i-th corresponding strain gauge 𝐴 0 :The cross-sectional area of the load gauge body unit :Material Young's coefficient of load gauge body unit :Correction coefficient of the i-th corresponding strain gauge (i.e. force-strain slope value) 𝐾 0 =𝐴 0 𝐸 0 :Calibration value of load gauge : Strain gauge logarithm or strain median number ( )
本發明在荷重計之外保護殼體32上安裝有Aiot模塊4,故可將上述求算荷重P以及其荷重偏心(𝑋
𝑐 , 𝑌
𝑐 )方程式寫入Aiot模組43中,並經由通訊串口44傳送至顯示屏幕47或經wifi傳至雲端資料庫和個人行動裝置,當偏心超過容許值即可發出警示閃光或聲響,以提示使用者。
In the present invention, the
習知對中空型荷重計的量測偏差認為係由荷重偏心和端點效應引起;但深思之,其主要係可能誤認中空型荷重計的本體單元1結構具有屬於「元素」的力學行為所引起的一連串誤解所致,但綜觀目前荷重計的本體單元1構件應皆是「結構」的力學行為表現;也就是說,在此本體單元1結構上任一點的應力或應變處處均有可能不會相同,因此尋求不同端板法蘭組6的尺度、材質與荷重條件下,其本體單元1結構上的應力或應變會保持不變處貼裝感測元件2,如此,方是解決之道。It is customary to think that the measurement deviation of hollow load gauges is caused by load eccentricity and end point effect; however, upon further reflection, it may be caused by the misunderstanding that the structure of
茲為驗證上述推論,特取本發明荷重計之第七實施例(如第15A圖):電阻式錨索荷重計,進行有限元素法(Finite Element Method, FEM)分析,分析條件主要係根據模擬地錨施作預力的過程,茲說明如下:
例一:模擬出廠荷重計校正情況;分析條件係在中空型荷重計本體單元1(如第2A圖)的上下端施加100噸的荷重。
例二:模擬荷重計在施加地錨預力的情況;分析條件是在中空型荷重計本體單元1的下方加一承壓板與混凝土基座,在上方加一塊比荷重計大的錨索式端板法蘭63(如第7C圖)作為油壓千斤頂承壓板,並在其上加一個模擬千斤頂的外環,且在環上施加總力為100噸的環狀荷重。
例三:模擬荷重計受預力後力量轉移至錨頭的情況;分析條件與例二相同,唯將承壓板上的環狀千斤頂換成錨頭,並在錨頭相對鋼索錨定處平均施加總力為100噸的荷重。
分析所使用材料性質如下:荷重計、上承壓板與千金頂外環均為中碳鋼,降伏強度fy=350Mpa,下端承壓板與錨頭使用一般鋼材,其降伏強度fy=250Mpa;混凝土強度f’c=28Mpa;鋼材的楊氏係數E=200,000Gpa,蒲松係氏比ν=0.29。
此三例FEM分析的應變結果,如上述表1所示,在荷重計內、外壁面相對位置各取五點的應變值,從表1可獲得下列結果:
(1)對例一而言,內、外側壁的應變值相差很小,總平均應變值為1002.3με,其表現出與「元素」的力學行為相吻合。
(2)從例二、例三的成果可知,內側壁的應變值比外側壁的應變值大,若將內側壁的應變值與例一的總平均值相比,例二的平均值比η=1.2,而例三η=1.34;對外側比而言,則其比值分別為η=0.8與η=0.63,而此結果與台灣的地錨施加預力之過程中,電子荷重計讀數低於千斤頂讀數 20~30%以上相吻合,而此亦間接證明:習知中空型荷重計的應變計係黏貼在外側壁面之推論。
(3)將例二、例三的內、外壁面應變值平均,並與例一的內、外壁面應變值平均相比,三者相差甚小,其平均值比分別為例二的η=1.0和例三η=0.99,顯示中空型荷重計可將感測元件裝貼於其內、外壁面處並取其平均值,或將其裝貼於內、外壁的中央環面上,即可量測到不受端點效應影響的應變值,而此也是本發明的原理、結構以及組裝之理論根據。
In order to verify the above inference, the seventh embodiment of the load gauge of the present invention (as shown in Figure 15A): the resistive anchor cable load gauge is selected for finite element method (Finite Element Method, FEM) analysis. The analysis conditions are mainly based on simulation. The process of applying prestress to ground anchors is explained as follows:
Example 1: Simulate the calibration situation of the factory load gauge; the analysis condition is to apply a load of 100 tons on the upper and lower ends of the hollow load gauge body unit 1 (as shown in Figure 2A).
Example 2: Simulate the load gauge applying ground anchor prestress; the analysis condition is to add a pressure-bearing plate and a concrete base below the hollow load
應用實務案例驗證,茲為驗證本發明的原理、結構、組裝以及偏心算法的可行性與正確性,乃依據第七實施例製作二只電阻式錨索荷重計,並將其安裝在某工地用以進行遠端錨索預力監測,以進行坡地安全監測。Application practice case verification. In order to verify the feasibility and correctness of the principle, structure, assembly and eccentricity algorithm of the present invention, two resistive anchor cable load gauges were made according to the seventh embodiment and installed at a construction site. To carry out remote anchor cable pre-tension monitoring for slope safety monitoring.
本試驗荷重計係依據第七實施例來製作電阻式錨索荷重計,其本體單元1結構係一個內徑96mm ×外徑124.3mm的中空圓柱體;錨索式端板法蘭63的內徑90mm×外徑180mm;另外,其錨頭直徑125mm,並設有六個錨索固定孔;根據第七實施例的組裝方法組裝,其六對供十二組全橋式之電阻式應變計21被等分黏貼於本體單元1的內、外側壁面上,俾以獲得六個位處中空圓柱體壁厚中央的應變值(ε
i ),如第22圖的P
1 ~P
6 所示;根據模擬預力地錨施作預力過程進行FEM分析,獲得的應變結果如表1所示;依據FEM分析雖然可獲得本荷重計的校正值之平均約為K
0 =100.43 kg/με,詳見表1;然而此校正值是理想狀況下的理論值,畢竟應變計黏貼垂直度、膠水的厚薄和焊錫、防水防護等等都會影響應變計的應變值,因此需在試驗室進行校正值校正;將荷重計安裝到抗壓機上,調整抗壓機荷重軸與荷重計中心軸盡可能一致,再進行軸壓壓力至約15Tons,並由Aiot模塊4所記錄各應變計的應變計值,如表2所示。
表2 錨索式荷重計校正成果
從表2可知,L1荷重達15.06噸與L2荷重到15.09噸的荷重時,L1和L2的校正值分別為K
0 =97.76和92.82 kg/με,其偏心分別為L1(0.90,-1.38)與L2(-0.71,-1.44)mm,將其偏心修正後,其校正係數K
0 =98.09與95.11 kg/με,其略小於FEM分析結果。
This test loadmeter is based on the seventh embodiment to produce a resistance-type anchor cable loadmeter. The
將校正完成的電阻式錨索荷重計安裝於現地以進行遠端錨索預力監測,俾以確保坡地安全,以下就其試驗與成果說明如下: 試驗程序:將錨索荷重計的應變計黏貼點P 1 與P 4 分別對應第一條與第四條錨索,並將其連線當為Y軸,與之垂直線作為X軸,各分力Pi的作用點的座標如前所述,之後將錨頭套入錨索,架上油壓千斤頂並套上錨索固定器,進行預力施作直至設計預力值止,再鎖定錨頭上錨索固定器,讓預力從千斤頂轉至地錨錨頭上,而完成地錨預力施加,最終試驗成果如表3。 表3 錨索荷重計現地試驗成果 結果分析: (1)L1在施加預力階段,施加的預力達54.49Tons,鎖定預力後尚有53.86Tons,損失0.63Tons;反觀L2則施加的預力達53.37Tons,鎖定預力後尚有50.88Tons,損失2.43Tons,而造成這種差異可能因為L1在安裝本錨索荷重計前已先作地錨適用性試驗,也就是說其已有先施預力之緣故。 (2)有關荷重偏心,在施加預力階段L1(-0.78,-3.35)mm,鎖定預力後L1(-0.29,-3.10)mm兩者相差不大,其偏心偏向P 5 處;相同L2施預力與鎖定後分別為(1.58,-2.12)和(1.71,-2.14)mm,其偏心偏向P 3 側,此或許與施預力時,工人曾由正X向負X向敲打來試圖調整錨頭位置相關。 (3)由表3亦可知,無論預力施加或鎖定階段,內側受力均大於外側,此與FEM分析結果相同,倘若僅將感測元件貼裝在外側,則其測到預力將僅約為0.87~0.92倍施加預力值,如表3所示。 (4)將施預力的油壓千斤頂之施力與本荷重計量測到荷重比較,荷重計讀數僅低於千斤頂小於2.5%(如第23圖所示),而此誤差值推估主要係由油壓千斤頂的誤差所致。 (5)基於現地試驗結果,顯示本發明能有效的解決中空型荷重計端部效應與偏心等諸問題。 The calibrated resistive cable load gauge is installed on site to monitor the remote anchor cable prestress to ensure the safety of the slope. The test and results are described below: Test procedure: Paste the strain gauge of the anchor cable load gauge. Points P 1 and P 4 correspond to the first and fourth anchor cables respectively, and the line connecting them is regarded as the Y axis, and the perpendicular line to it is regarded as the X axis. The coordinates of the action points of each component Pi are as mentioned above. Then put the anchor head into the anchor cable, set up the hydraulic jack and put on the anchor cable holder, apply pre-stress until the designed pre-force value is reached, then lock the anchor cable holder on the anchor head, and let the pre-force transfer from the jack to the ground. The anchor head is installed, and the prestressing of the ground anchor is completed. The final test results are shown in Table 3. Table 3 On-site test results of anchor cable load gauge Result analysis: (1) In the preload applying stage, L1 applied a preload of 54.49Tons, and after locking the preload, there was still 53.86Tons, a loss of 0.63Tons; on the other hand, L2 applied a preload of 53.37Tons, and after locking the preload, there was still 53.37Tons. There are 50.88Tons, and the loss is 2.43Tons. This difference may be caused by the fact that L1 has conducted a ground anchor suitability test before installing this anchor cable load gauge, which means that it has been pre-stressed. (2) Regarding the load eccentricity, L1 (-0.78, -3.35) mm during the preloading stage and L1 (-0.29, -3.10) mm after locking the preload are not much different, and the eccentricity is toward P 5 ; the same L2 After applying the pre-force and locking, the values are (1.58,-2.12) and (1.71,-2.14) mm respectively. The eccentricity is toward the P 3 side. This may be because when the pre-force was applied, the workers tried to knock from the positive X to the negative X direction. Related to adjusting the anchor head position. (3) It can also be seen from Table 3 that regardless of the pre-force application or locking stage, the force on the inner side is greater than that on the outer side. This is the same as the FEM analysis result. If the sensing element is only mounted on the outer side, the measured pre-force will only be The preload value is approximately 0.87~0.92 times, as shown in Table 3. (4) Comparing the applied force of the pre-stressed hydraulic jack with the load measured by this load meter, the load meter reading is only less than 2.5% lower than that of the jack (as shown in Figure 23), and this error value is estimated to be mainly It is caused by the error of the hydraulic jack. (5) Based on the field test results, it is shown that the present invention can effectively solve the problems of end effect and eccentricity of the hollow load gauge.
綜上所述,本發明確實已達到所預期之使用目的與功效,且更較習知者為之理想、實用,惟,上述實施例僅係針對本發明之較佳實施例進行具體說明而已,該實施例並非用以限定本發明之申請專利範圍,舉凡其它未脫離本發明所揭示之技術手段下所完成之均等變化與修飾,均應包含於本發明所涵蓋之申請專利範圍中。To sum up, the present invention has indeed achieved the expected purpose and effect, and is more ideal and practical than the conventional ones. However, the above embodiments are only specific descriptions of the preferred embodiments of the present invention. This embodiment is not intended to limit the patentable scope of the present invention. All other equivalent changes and modifications made without departing from the technical means disclosed in the present invention should be included in the patentable scope of the present invention.
1:本體單元 11:內凸環 12:外凸環 13:扣接孔 14:通孔 15:螺孔 16:條槽 17:矩形透孔 18:圓形透孔 2:感測元件 21:電阻式應變計 211:基底 212:電阻絲 213:接線點 214:導線 22:振弦式應變計 221:鋼弦 222:電磁線圈組件 223:導線 3:保護殼組 31:內保護殼體 310:扣接穿孔 32:外保護殼體 320:導線通孔 321:固定孔 322:扣接孔 323:扣接穿孔 4:Aiot模塊 40:扣接穿孔 41:感測元件串口 42:ADC/FV轉換模組 43:Aiot模組 44:通訊串口 45:數據紀錄模組 46:電源管理模組 47:顯示屏幕 5:模塊保護盒 50:扣接穿孔 51:扣接孔 52:無線天線 53:電源訊號線 54:保護蓋 55:扣接穿孔 6:端板法蘭組 61:軸壓式頂端板法蘭 610:螺件穿孔 611:球型凹槽 612:荷重計嵌入槽 62:軸壓式底端板法蘭 620:荷重計嵌入槽 621:螺件穿孔 63:錨索式端板法蘭 630:錨頭嵌入槽 631:螺件穿孔 632:定位孔 633:荷重計嵌入槽 64:全力式端板法蘭 640:螺件穿孔 641:連接孔 642:荷重計嵌入槽 70:扣接件 71:螺件 8:本體法蘭 81:本體部 811:內凸環 812:外凸環 813:扣接孔 814:通孔 815:條槽 816:矩形透孔 817:圓形透孔 82:法蘭部 820:連接孔 1: Ontology unit 11:Inner convex ring 12:Outer convex ring 13:Buckle hole 14:Through hole 15:Screw hole 16:Slot 17: Rectangular through hole 18: round hole 2: Sensing element 21: Resistive strain gauge 211:Base 212: Resistance wire 213: Wiring point 214:Wire 22: Vibrating wire strain gauge 221:Steel string 222:Solenoid coil assembly 223:Wire 3:Protective shell set 31: Inner protective shell 310: Button perforation 32:Outer protective shell 320: Wire through hole 321:Fixing hole 322:Buckle hole 323: Button perforation 4:Aiot module 40: Button perforation 41: Sensing component serial port 42:ADC/FV conversion module 43:Aiot module 44: Communication serial port 45:Data recording module 46:Power management module 47:Display screen 5:Module protection box 50: Button perforation 51:Buckle hole 52:Wireless antenna 53:Power signal cable 54:Protective cover 55:Button perforation 6: End plate flange group 61: Axial pressure top plate flange 610: Screw holes 611: Ball groove 612: Load gauge embedded slot 62: Axial pressure bottom end plate flange 620: Load gauge embedded slot 621: Screw holes 63: Anchor type end plate flange 630: Anchor head embedded slot 631: Screw holes 632: Positioning hole 633: Load gauge embedded slot 64: Full-force end plate flange 640: Screw holes 641:Connection hole 642: Load gauge embedded slot 70: Fasteners 71:Screws 8: Body flange 81: Ontology part 811:Inner convex ring 812:Outer convex ring 813: Buckle hole 814:Through hole 815:Slot 816: Rectangular through hole 817: round hole 82:Flange part 820:Connection hole
第1圖所示係為習知地錨荷重計的比較偏差圖。 第2A圖所示係為本發明本體單元之立體圖。 第2B圖所示係為本發明本體單元之壁面上設有條槽之立體圖。 第2C圖所示係為本發明本體單元之壁面上設有矩形孔之立體圖。 第2D圖所示係為本發明本體單元之壁面上設有圓形孔之立體圖。 第3A圖所示係為本發明全橋式之電阻式應變計之示意圖。 第3B圖所示係為本發明半橋式之電阻式應變計之示意圖。 第3C圖所示係為本發明四分之一橋式之電阻式應變計之示意圖。 第3D圖所示係為本發明玫瑰花式之電阻式應變計之示意圖。 第3E圖所示係為本發明振弦式應變計之示意圖。 第4A圖所示係為本發明之保護殼組為全套筒扣件式之立體圖。 第4B圖所示係為本發明之保護殼組為全套筒式之立體圖。 第4C圖所示係為本發明之保護殼組為半套筒扣件式之立體圖。 第5圖所示係為本發明之Aiot模塊之功能方塊圖。 第6圖所示係為本發明之Aiot模塊與模塊保護盒之立體分解圖。 第7A圖所示係為本發明軸壓式頂端板法蘭之立體圖。 第7B圖所示係為本發明軸壓式底端板法蘭之立體圖。 第7C圖所示係為本發明錨索式端板法蘭之立體圖。 第7D圖所示係為本發明全力式端板法蘭之立體圖。 第8A圖所示係為本發明之電阻式應變計於本體單元上內外成對之正貼法示意圖。 第8B圖所示係為本發明之電阻式應變計於本體單元之矩形孔內之正貼法示意圖。 第8C圖所示係為本發明之振弦式應變計於本體單元上內外成對之正裝法示意圖。 第8D圖所示係為本發明之振弦式應變計於本體單元之矩形孔內之正裝法示意圖。 第8E圖所示係為本發明之電阻式應變計於本體單元上內外成對之斜貼法示意圖。 第8F圖所示係為本發明之電阻式應變計於本體單元之矩形孔內之斜貼法示意圖。 第8G圖所示係為本發明之電阻式應變計於本體法蘭上內外成對之正貼與斜貼法示意圖。 第8H圖所示係為本發明之振弦式應變計於本體單元之矩形孔內之斜裝法示意圖。 第9A圖所示係為本發明第一實施例之電阻式荷重計之立體分解圖。 第9B圖所示係為第8A圖之立體組合圖。 第10圖所示係為本發明第二實施例本體單元設有矩形孔之電阻式荷重計之立體分解圖。 第11圖所示係為本發明第三實施例之振弦式荷重計之立體分解圖。 第12圖所示係為本發明第四實施例本體單元設有矩形孔之振弦式荷重計之立體分解圖。 第13A圖所示係為本發明第五實施例設有軸壓式端板法蘭之電阻式軸壓荷重計之立體分解圖。 第13B圖所示係為第13A圖之立體組合圖。 第14圖所示係為本發明第六實施例設有軸壓式端板法蘭之振弦式軸壓荷重計之立體分解圖。 第15A圖所示係為本發明第七實施例設有錨索式端板法蘭之電阻式錨索荷重計之立體分解圖。 第15B圖所示係為第15A圖之立體組合圖。 第16圖所示係為本發明第八實施例設有錨索式端板法蘭之振弦式錨索荷重計之立體分解圖。 第17A圖所示係為本發明第九實施例設有全力式端板法蘭之電阻式扭力荷重計之立體分解圖。 第17B圖所示係為第17A圖之立體組合圖。 第18圖所示係為本發明第十實施例設有全力式端板法蘭之振弦式扭力荷重計之立體分解圖。 第19A圖所示係為本發明本體法蘭之立體圖。 第19B圖所示係為本發明本體法蘭之壁面上設有條槽之立體圖。 第19C圖所示係為本發明本體法蘭之壁面上設有矩形孔之立體圖。 第19D圖所示係為本發明本體法蘭之壁面上設有圓形孔之立體圖。 第20A圖所示係為本發明第十一實施例本體法蘭之電阻式扭力荷重計之立體分解圖。 第20B圖所示係為第20A圖之立體組合圖。 第21圖所示係為本發明第十二實施例本體法蘭之電阻式全力型荷重計之立體分解圖。 第22圖所示係為本發明實施例應變計黏貼位置示意圖。 第23圖所示係為本發明實施例電阻式錨索荷重計試驗的比較偏差圖。 Figure 1 shows a comparative deviation diagram of conventional ground anchor load gauges. Figure 2A shows a perspective view of the main body unit of the present invention. Figure 2B shows a three-dimensional view of the body unit of the present invention with grooves on its wall. Figure 2C shows a perspective view of a rectangular hole provided on the wall of the main body unit of the present invention. Figure 2D shows a three-dimensional view of the body unit of the present invention with circular holes on the wall. Figure 3A shows a schematic diagram of a full-bridge resistive strain gauge of the present invention. Figure 3B shows a schematic diagram of the half-bridge resistive strain gauge of the present invention. Figure 3C shows a schematic diagram of a quarter-bridge resistive strain gauge of the present invention. Figure 3D shows a schematic diagram of the rosette type resistance strain gauge of the present invention. Figure 3E shows a schematic diagram of the vibrating wire strain gauge of the present invention. Figure 4A shows a three-dimensional view of the protective case set of the present invention, which is a full sleeve fastener type. Figure 4B shows a three-dimensional view of the full-sleeve type protective case set of the present invention. Figure 4C shows a perspective view of the half-sleeve fastener type protective case set of the present invention. Figure 5 shows a functional block diagram of the Aiot module of the present invention. Figure 6 is a three-dimensional exploded view of the Aiot module and module protection box of the present invention. Figure 7A shows a perspective view of the axial pressure top plate flange of the present invention. Figure 7B shows a perspective view of the axial pressure bottom end plate flange of the present invention. Figure 7C shows a perspective view of the anchor cable end plate flange of the present invention. Figure 7D shows a perspective view of the full-force end plate flange of the present invention. Figure 8A shows a schematic diagram of the method of front-facing the resistive strain gauge of the present invention on the body unit in pairs, inside and outside. Figure 8B shows a schematic diagram of the positive attachment method of the resistive strain gauge of the present invention in the rectangular hole of the body unit. Figure 8C shows a schematic diagram of the formal installation method of the vibrating wire strain gauge of the present invention on the body unit in pairs, inside and outside. Figure 8D shows a schematic diagram of the formal installation method of the vibrating wire strain gauge of the present invention in the rectangular hole of the body unit. Figure 8E shows a schematic diagram of the method of diagonally attaching the resistive strain gauge of the present invention to the body unit in pairs inside and outside. Figure 8F shows a schematic diagram of the oblique attachment method of the resistive strain gauge of the present invention in the rectangular hole of the body unit. Figure 8G shows a schematic diagram of the front and diagonal pasting methods of the resistance strain gauge of the present invention on the body flange in pairs inside and outside. Figure 8H shows a schematic diagram of the oblique installation method of the vibrating wire strain gauge of the present invention in the rectangular hole of the body unit. Figure 9A shows an exploded perspective view of the resistance load gauge according to the first embodiment of the present invention. Figure 9B shows a three-dimensional combination of Figure 8A. Figure 10 shows a three-dimensional exploded view of a resistance load gauge with a rectangular hole in the body unit according to the second embodiment of the present invention. Figure 11 is an exploded perspective view of a vibrating wire load gauge according to the third embodiment of the present invention. Figure 12 is a perspective exploded view of a vibrating wire load gauge with a rectangular hole in the body unit according to the fourth embodiment of the present invention. Figure 13A shows an exploded perspective view of a resistance type axial pressure load gauge with an axial pressure end plate flange according to the fifth embodiment of the present invention. Figure 13B shows a three-dimensional combination of Figure 13A. Figure 14 is a perspective exploded view of a vibrating wire axial pressure loadmeter equipped with an axial pressure end plate flange according to the sixth embodiment of the present invention. Figure 15A shows a perspective exploded view of a resistance-type anchor cable load meter equipped with an anchor-type end plate flange according to the seventh embodiment of the present invention. Figure 15B shows a three-dimensional combination of Figure 15A. Figure 16 is a three-dimensional exploded view of a vibrating wire anchor cable load gauge equipped with an anchor cable end plate flange according to the eighth embodiment of the present invention. Figure 17A is a perspective exploded view of a resistive torque load meter equipped with a full force end plate flange according to the ninth embodiment of the present invention. Figure 17B shows a three-dimensional combination of Figure 17A. Figure 18 is a perspective exploded view of a vibrating wire torsion loadmeter equipped with a full force end plate flange according to the tenth embodiment of the present invention. Figure 19A shows a perspective view of the body flange of the present invention. Figure 19B shows a three-dimensional view of the grooves provided on the wall of the body flange of the present invention. Figure 19C shows a perspective view of a rectangular hole provided on the wall of the body flange of the present invention. Figure 19D shows a perspective view of a circular hole provided on the wall of the body flange of the present invention. Figure 20A shows a three-dimensional exploded view of a resistive torque load meter with a body flange according to the eleventh embodiment of the present invention. Figure 20B shows a three-dimensional combination of Figure 20A. Figure 21 is a three-dimensional exploded view of a resistive full force load gauge with body flange according to the twelfth embodiment of the present invention. Figure 22 shows a schematic diagram of the attachment position of the strain gauge according to the embodiment of the present invention. Figure 23 shows a comparative deviation diagram of the resistive anchor cable load meter test according to the embodiment of the present invention.
1:本體單元 1: Ontology unit
11:內凸環 11:Inner convex ring
12:外凸環 12:Outer convex ring
13:扣接孔 13:Buckle hole
14:通孔 14:Through hole
15:螺孔 15:Screw hole
21:電阻式應變計 21: Resistive strain gauge
31:內保護殼體 31: Inner protective shell
310:扣接穿孔 310: Button perforation
32:外保護殼體 32:Outer protective shell
320:導線通孔 320: Wire through hole
321:固定孔 321:Fixing hole
322:扣接孔 322:Buckle hole
323:扣接穿孔 323: Button perforation
4:Aiot模塊 4:Aiot module
40:扣接穿孔 40: Button perforation
5:模塊保護盒 5:Module protection box
50:扣接穿孔 50: Button perforation
51:扣接孔 51:Buckle hole
52:無線天線 52:Wireless antenna
53:電源訊號線 53:Power signal cable
54:保護蓋 54:Protective cover
55:扣接穿孔 55:Button perforation
70:扣接件 70: Fasteners
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW111128545A TWI807944B (en) | 2022-07-29 | 2022-07-29 | The Structure of Load Meter and the Measurement Method of Load Eccentricity |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW111128545A TWI807944B (en) | 2022-07-29 | 2022-07-29 | The Structure of Load Meter and the Measurement Method of Load Eccentricity |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI807944B TWI807944B (en) | 2023-07-01 |
TW202405385A true TW202405385A (en) | 2024-02-01 |
Family
ID=88149374
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW111128545A TWI807944B (en) | 2022-07-29 | 2022-07-29 | The Structure of Load Meter and the Measurement Method of Load Eccentricity |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI807944B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115452252A (en) * | 2022-09-30 | 2022-12-09 | 许琦 | Structure of load meter and method for measuring load eccentricity |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102006031950B3 (en) * | 2006-07-11 | 2007-11-22 | Sartorius Ag | Top-pan balance for weighing goods, has scale pan fastenable on top side of edge load sensor, where edge load sensor is connected with stationary correction electronic system e.g. personal computer, by wireless connection |
CN100580391C (en) * | 2008-10-07 | 2010-01-13 | 浙江大学 | Weighing Calibration Method of Electromagnetic Flowmeter |
CN112212795B (en) * | 2020-09-01 | 2021-12-28 | 宁波柯力传感科技股份有限公司 | Position detection and calibration device for automobile weighing platform |
-
2022
- 2022-07-29 TW TW111128545A patent/TWI807944B/en active
Also Published As
Publication number | Publication date |
---|---|
TWI807944B (en) | 2023-07-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103551922B (en) | Strain gauge integrated three-dimensional turning force sensor | |
JP7550994B2 (en) | FBG heat-resistant strain sensor and its calibration method | |
CN213936233U (en) | A piezoelectric fiber smart gasket for bolt loosening monitoring | |
CN110514345B (en) | Measuring and monitoring device for capacitive bolt pretightening force | |
CN103017950A (en) | High-sensitivity fiber bragg grating earth pressure gauge | |
TW202405385A (en) | Structure of load gauge and method for measuring load eccentricity thereof capable of measuring the load eccentricity without being affected by the end point effect for engineering and industrial purposes | |
CN102720220B (en) | Device and method for measuring counterforce of pile end of concrete pipe pile | |
CN105547586B (en) | Moment of flexure sensor calibration apparatus | |
CN110186490A (en) | A kind of spoke type fiber grating fatigue sensor with temperature self-compensation function | |
CN204924542U (en) | A wave force testing arrangement for wave wall | |
CN113218753B (en) | Force and torque composite sensor | |
CN108801523A (en) | A kind of proving ring and device for measuring force of thrust bearing | |
CN106248267A (en) | Miniature three-dimensional earth pressure cell and its testing method | |
CN204902780U (en) | Optic fibre bragg grating array strain sensor of high sensitivity high resolution high accuracy | |
CN205384108U (en) | Measure axial tension's resistance strain force sensor | |
CN105157591B (en) | A kind of Fiber Bragg Grating FBG array strain transducer of high sensitivity High Resolution | |
CN208206356U (en) | A kind of high sensitivity dynamometry ring sensor | |
JP3233210U (en) | Load cell | |
CN114447206B (en) | A piezoelectric fiber intelligent gasket for bolt loosening monitoring and its manufacturing and application method | |
CN108267255B (en) | All-weather cable force measuring device and method | |
CN108507714A (en) | Primary structure member, fiber-optic grating sensor and smart stay cable and production method | |
CN115452252A (en) | Structure of load meter and method for measuring load eccentricity | |
CN208443332U (en) | Measure the resistance-strain type bilateral displacement sensor of reinforced concrete member deformation | |
CN115753044B (en) | Online monitoring device and method for loosening of strain clamp bolt | |
CN217211068U (en) | Weighing force-measuring sensor adopting star-shaped bridge |