TW202338369A - Audio signal processing method and audio signal processing device - Google Patents
Audio signal processing method and audio signal processing device Download PDFInfo
- Publication number
- TW202338369A TW202338369A TW111110387A TW111110387A TW202338369A TW 202338369 A TW202338369 A TW 202338369A TW 111110387 A TW111110387 A TW 111110387A TW 111110387 A TW111110387 A TW 111110387A TW 202338369 A TW202338369 A TW 202338369A
- Authority
- TW
- Taiwan
- Prior art keywords
- frequency
- sound
- sound pressure
- pressure value
- difference
- Prior art date
Links
Images
Landscapes
- Circuit For Audible Band Transducer (AREA)
- Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
Abstract
Description
本發明關於聲音處理技術領域,特別是一種判斷聲音波形中異常峰值頻率的聲音處理方法及聲音處理裝置。The present invention relates to the technical field of sound processing, in particular to a sound processing method and sound processing device for determining abnormal peak frequencies in sound waveforms.
近來,電子產品的效能逐漸提高,電子產品所產生的熱能也相應地提高,需風扇在電子產品產生熱能時進行散熱,因此風扇的優良與否決定電子產品的運作流暢度。然而,風扇在高速運轉時會產生噪音而造成使用者不舒服,操作人員(例如工程師)在電子產品(例如筆記型電腦、一體機電腦等)出貨前需對風扇進行噪音測試來確認風扇的噪音狀況。Recently, the performance of electronic products has gradually improved, and the heat energy generated by electronic products has also increased accordingly. Fans are required to dissipate heat when electronic products generate heat. Therefore, the quality of the fans determines the smooth operation of electronic products. However, the fan will produce noise when running at high speed, causing discomfort to the user. Operators (such as engineers) need to conduct noise tests on the fans to confirm the performance of the fans before shipping electronic products (such as notebook computers, all-in-one computers, etc.) Noise conditions.
目前來說,風扇噪音測試包括風扇噪音客觀聆聽測試及風扇噪音主觀聆聽測試。風扇噪音客觀聆聽測試與分析皆在無響室內,而風扇噪音的主觀聆聽測試和分析為在會議室或其他地點,造成風扇噪音客觀聆聽的分析結果和風扇噪音主觀聆聽的分析結果相異。舉例來說,風扇噪音客觀聆聽的分析結果為並無噪音,風扇噪音主觀聆聽的分析結果為有令人不舒服的噪音。Currently, fan noise testing includes objective fan noise listening tests and subjective fan noise listening tests. The objective listening test and analysis of fan noise are all done in a soundless room, while the subjective listening test and analysis of fan noise are done in a conference room or other places, resulting in different analysis results of objective listening of fan noise and subjective listening analysis of fan noise. For example, the analysis result of objective listening of fan noise is that there is no noise, and the analysis result of subjective listening of fan noise is that there is uncomfortable noise.
根據前述,本發明提供一種聲音處理方法及聲音處理裝置,分析聲音波形的聲音頻譜來找出及濾除噪音,可以協助操作人員釐清噪音問題。According to the foregoing, the present invention provides a sound processing method and a sound processing device that analyze the sound spectrum of the sound waveform to find and filter out noise, which can assist operators to clarify noise problems.
依據本發明的一實施例的一種聲音處理方法,包括:取得聲音波形的聲音頻譜;判斷聲音頻譜中對應於高於聲壓臨界值的目標聲壓值的目標頻率;取得對應於目標頻率的頻率範圍,頻率範圍包括上限頻率及下限頻率;判斷目標頻率和上限頻率所對應的第一聲壓值差及目標頻率和下限頻率所對應的第二聲壓值差是否大於聲壓差臨界值;當判斷第一聲壓值和第二聲壓值皆大於聲壓差臨界值時,記錄目標頻率為異常峰值頻率;根據異常峰值頻率及預設頻寬,對聲音波形進行濾波。A sound processing method according to an embodiment of the present invention includes: obtaining a sound spectrum of a sound waveform; determining a target frequency in the sound spectrum corresponding to a target sound pressure value higher than a sound pressure critical value; obtaining a frequency corresponding to the target frequency Range, the frequency range includes the upper limit frequency and the lower limit frequency; determine whether the first sound pressure value difference corresponding to the target frequency and the upper limit frequency and the second sound pressure value difference corresponding to the target frequency and the lower limit frequency are greater than the sound pressure difference critical value; when When it is determined that both the first sound pressure value and the second sound pressure value are greater than the sound pressure difference critical value, the target frequency is recorded as the abnormal peak frequency; the sound waveform is filtered according to the abnormal peak frequency and the preset bandwidth.
依據本發明一實施例的一種聲音處理裝置,包括錄音器及處理器。錄音器錄製聲音波形。處理器連接錄音器,並根據聲音波形產生聲音頻譜,處理器執行以下步驟:判斷聲音頻譜中對應於高於聲壓臨界值的目標聲壓值的目標頻率;取得對應於目標頻率的頻率範圍,頻率範圍包括上限頻率及下限頻率;判斷目標頻率和上限頻率所對應的第一聲壓值差及目標頻率和下限頻率所對應的第二聲壓值差是否大於聲壓差臨界值;當判斷第一聲壓值和第二聲壓值皆大於聲壓差臨界值時,記錄目標頻率為異常峰值頻率;根據異常峰值頻率及預設頻寬,對聲音波形進行濾波。A sound processing device according to an embodiment of the present invention includes a recorder and a processor. The recorder records sound waveforms. The processor is connected to the recorder and generates a sound spectrum according to the sound waveform. The processor performs the following steps: determine the target frequency in the sound spectrum that corresponds to the target sound pressure value higher than the sound pressure critical value; obtain the frequency range corresponding to the target frequency, The frequency range includes the upper limit frequency and the lower limit frequency; determine whether the first sound pressure value difference corresponding to the target frequency and the upper limit frequency and the second sound pressure value difference corresponding to the target frequency and the lower limit frequency are greater than the sound pressure difference critical value; when judging whether the first sound pressure value difference corresponding to the target frequency and the lower limit frequency is greater than the sound pressure difference critical value; When the sound pressure value and the second sound pressure value are both greater than the sound pressure difference critical value, the target frequency is recorded as the abnormal peak frequency; the sound waveform is filtered according to the abnormal peak frequency and the preset bandwidth.
綜上所述,本發明之聲音處理方法及聲音處理裝置,利用聲壓臨界值和聲壓差臨界值,判斷異常峰值頻率並根據異常峰值頻率及預設頻寬對聲音波形進行濾波,可以藉此提高異常峰值頻率判斷的準確度,進而提升濾波的效果,且可以協助操作人員釐清噪音問題。再者,本發明之聲音處理裝置藉由錄音器將主觀聆聽的聲音紀錄,並藉由處理器對所錄製之聲音進行異常峰值頻率的分析,可以達成即時錄音並分析聲音品質之效果。To sum up, the sound processing method and sound processing device of the present invention use the sound pressure critical value and the sound pressure difference critical value to determine the abnormal peak frequency and filter the sound waveform according to the abnormal peak frequency and the preset bandwidth. This improves the accuracy of abnormal peak frequency judgment, thereby improving the filtering effect and helping operators clarify noise problems. Furthermore, the sound processing device of the present invention uses a recorder to record the subjective listening sound, and uses the processor to analyze the abnormal peak frequency of the recorded sound, thereby achieving the effect of real-time recording and analysis of sound quality.
以下在實施方式中詳細敘述本發明之詳細特徵以及優點,其內容足以使任何熟習相關技藝者了解本發明之技術內容並據以實施,且根據本說明書所揭露之內容、申請專利範圍及圖式,任何熟習相關技藝者可輕易地理解本發明相關之目的及優點。以下之實施例係進一步詳細說明本發明之觀點,但非以任何觀點限制本發明之範疇。The detailed features and advantages of the present invention are described in detail below in the implementation mode. The content is sufficient to enable anyone skilled in the relevant art to understand the technical content of the present invention and implement it according to the content disclosed in this specification, the patent scope and the drawings. , anyone familiar with the relevant art can easily understand the relevant objectives and advantages of the present invention. The following examples further illustrate the aspects of the present invention in detail, but do not limit the scope of the present invention in any way.
應當理解的是,儘管術語「第一」、「第二」等在本發明中可用於描述各種元件、部件、區域、層及/或部分,但是這些元件、部件、區域、層及/或部分不應受這些術語的限制。這些術語僅用於將一個元件、部件、區域、層及/或部分與另一個元件、部件、區域、層及/或部分區分開。It will be understood that, although the terms "first," "second," etc. may be used herein to describe various elements, components, regions, layers and/or sections, these elements, components, regions, layers and/or sections These terms should not be limited. These terms are only used to distinguish one element, component, region, layer and/or section from another element, component, region, layer and/or section.
另外,術語「包括」及/或「包含」指所述特徵、區域、整體、步驟、操作、元件及/或部件的存在,但不排除一個或多個其他特徵、區域、整體、步驟、操作、元件、部件及/或其組合的存在或添加。Additionally, the terms "comprises" and/or "comprises" refer to the presence of stated features, regions, integers, steps, operations, elements and/or parts, but do not exclude the presence of one or more other features, regions, integers, steps, operations , elements, parts and/or combinations thereof.
請參閱圖1,其為依據本發明一實施例所繪示的聲音處理裝置的功能方塊圖。如圖1所示,聲音處理裝置1包括錄音器10及處理器20。錄音器10錄製聲音波形,聲音波形可為對待測裝置(例如為筆記電腦、一體機電腦等具風扇的電子裝置)錄製的聲音波形。處理器20可以透過有線或無線的方式連接錄音器10,並根據聲音波形產生聲音頻譜,且分析聲音頻譜以找尋和濾除噪音,詳細的找尋和濾除噪音的作動機制將於後文描述。處理器20可為中央處理器、圖形處理器或其他類型處理器,前述僅為列舉,而非侷限於本發明所列舉的範圍。進一步而言,處理器20可以提供帶阻濾波的功能。另外,聲音處理裝置1可以更包含顯示器。顯示器透過有線或無線的方式連接於處理器20,且用於顯示量測介面及聲音濾波回放程式介面,其中介面的格式將於後舉例說明。Please refer to FIG. 1 , which is a functional block diagram of a sound processing device according to an embodiment of the present invention. As shown in FIG. 1 , the sound processing device 1 includes a
請參閱圖1及圖2,圖2為依據本發明一實施例所繪示的聲音處理方法的流程圖。如圖2所示,聲音處理方法包括步驟S11~步驟S17。圖2所示的聲音處理方法可適用於圖1所示的聲音處理裝置1,但不以此為限。以下示例性地以圖1所示聲音處理裝置1之運作來說明步驟S11~步驟S17。Please refer to FIG. 1 and FIG. 2 . FIG. 2 is a flow chart of a sound processing method according to an embodiment of the present invention. As shown in Figure 2, the sound processing method includes steps S11 to S17. The sound processing method shown in Fig. 2 can be applied to the sound processing device 1 shown in Fig. 1, but is not limited thereto. Steps S11 to S17 will be described below by taking the operation of the sound processing device 1 shown in FIG. 1 as an example.
步驟S11:取得聲音波形的聲音頻譜。具體而言,處理器20從錄音器10取得聲音波形,並根據聲音波形產生聲音頻譜。Step S11: Obtain the sound spectrum of the sound waveform. Specifically, the
步驟S12:判斷聲音頻譜中對應於高於聲壓臨界值的目標聲壓值的目標頻率。具體而言,聲音頻譜包含多個頻率與聲壓值的對應關係(特別係一對一的關係),例如在100至20000赫茲(Hz)的範圍內的多個頻率所分別對應的多個聲壓值,聲音頻譜可以為傅立葉轉換頻譜或突出率(Prominence ratio)頻譜。聲壓臨界值預存於處理器20的記憶體。處理器20比較每一個聲壓值和聲壓臨界值。若聲壓值大於聲壓臨界值時,處理器20判斷此聲壓值為目標聲壓值而將其所對應的頻率作為目標頻率;若聲壓值不大於聲壓臨界值時,處理器20不作動或記錄此聲壓值所對應的頻率非目標頻率。特別來說,突出率頻譜所含括的頻率點和傅立葉頻譜所含括的頻率點彼此相異,突出率頻譜所設定的聲壓臨界值和傅立葉頻譜所設定的聲壓臨界值也彼此相異。舉例來說,適用突出率頻譜的聲壓臨界值可設定為6dB,適用傅立葉頻譜所的聲壓臨界值可設定為50 dB,但本發明不以上述為限。Step S12: Determine the target frequency in the sound spectrum corresponding to the target sound pressure value higher than the sound pressure threshold value. Specifically, the sound spectrum includes multiple correspondences between frequencies and sound pressure values (especially a one-to-one relationship), for example, multiple sounds corresponding to multiple frequencies in the range of 100 to 20,000 Hertz (Hz). Pressure value, the sound spectrum can be a Fourier transform spectrum or a prominence ratio spectrum. The sound pressure threshold value is pre-stored in the memory of the
步驟S13:取得對應於目標頻率的頻率範圍,頻率範圍包括上限頻率及下限頻率。具體而言,處理器20根據目標頻率設定上限頻率及下限頻率,並根據上限頻率、目標頻率以及下限頻率設定頻率範圍。於聲音頻譜為傅立葉轉換頻譜的實施態樣中,頻率範圍包括目標頻率。進一步而言,處理器20可以目標頻率為中心頻率,取中心頻率正負N Hz的頻率作為上下限頻率,其中N例如介於10至20。Step S13: Obtain the frequency range corresponding to the target frequency. The frequency range includes an upper limit frequency and a lower limit frequency. Specifically, the
於聲音頻譜為突出率頻譜的實施態樣中,處理器20先對目標頻率進行轉換以取得轉換頻率,再根據轉換頻率取得頻率範圍。請進一步參考圖3,圖3為依據本發明一實施例所繪示的聲音處理方法中的取得頻率範圍步驟的流程圖。如圖3所示,取得頻率範圍步驟可以包含步驟S131及S132。以下示例性地以圖1所示聲音處理裝置1之運作來說明步驟S131及步驟S132。In an implementation where the sound spectrum is a prominence spectrum, the
步驟S131:換算目標頻率在聲音波形的傅立葉頻譜中所對應的轉換頻率。具體而言,處理器20將在突出率頻譜中之目標頻率轉換為在傅立葉頻譜中的頻率以作為轉換頻率。心理聲學突出率是基於12分之1倍頻程(octave band)作為頻寬分析,因此可在頻寬內從突出率頻譜中的頻率反推傅立葉頻譜中的對應頻率,並自動抓出聲壓值。Step S131: Convert the conversion frequency corresponding to the target frequency in the Fourier spectrum of the sound waveform. Specifically, the
步驟S132:根據轉換頻率取得頻率範圍。具體而言,處理器20根據轉換頻率設定上限頻率及下限頻率,轉換頻率位於上限頻率和下限頻率之間,處理器20根據上限頻率、轉換頻率以及下限頻率設定頻率範圍。進一步而言,處理器20可以轉換頻率為中心頻率,取中心頻率正負N Hz的頻率作為上下限頻率,其中N例如介於10至20。Step S132: Obtain the frequency range according to the conversion frequency. Specifically, the
特別來說,有些噪音的聲壓位準不高,在傅立葉轉換頻譜上不會呈現超出聲壓臨界值的波峰,但卻會帶給使用者不舒服的感受,這是因為這些噪音裡包含了許多突出的純音成份,而突出率便是用評價這些程分是否突出的參數。因此,藉由上述從突出率頻譜搜尋目標頻率的實施態樣,可以提升後續噪音排除的效果。於又一實施態樣中,處理器20可以同時從傅立葉轉換頻譜及突出率聲音頻譜搜尋目標頻率,並對各目標頻率值行後續步驟。In particular, the sound pressure level of some noises is not high, and the Fourier transform spectrum will not show a peak exceeding the sound pressure critical value, but it will give users an uncomfortable feeling. This is because these noises contain There are many prominent pure tone components, and the prominence rate is a parameter used to evaluate whether these components are prominent. Therefore, through the above-mentioned implementation of searching the target frequency from the prominence spectrum, the effect of subsequent noise elimination can be improved. In yet another implementation aspect, the
步驟S14:判斷目標頻率和上限頻率所對應的第一聲壓值差及目標頻率和下限頻率所對應的第二聲壓值差是否大於聲壓差臨界值。具體而言,於聲音頻譜為傅立葉轉換頻譜的實施態樣中,處理器20計算目標頻率所對應的目標聲壓值和上限頻率所對應的聲壓值之間的差值作為第一聲壓值差,並計算目標頻率所對應的目標聲壓值和下限頻率所對應的聲壓值之間的差值作為第二聲壓值差,接著判斷第一聲壓值差和第二聲壓值差是否皆大於聲壓差臨界值。上述各頻率所對應的聲壓值皆係各頻率在傅立葉轉換頻譜所對應的聲壓值。Step S14: Determine whether the first sound pressure value difference corresponding to the target frequency and the upper limit frequency and the second sound pressure value difference corresponding to the target frequency and the lower limit frequency are greater than the sound pressure difference critical value. Specifically, in an implementation where the sound spectrum is a Fourier transform spectrum, the
於聲音頻譜為突出率頻譜的實施態樣中,處理器20計算換算自目標頻率之轉換頻率所對應的聲壓值和上限頻率所對應的聲壓值之間的差值作為第一聲壓值差,並計算轉換頻率所對應的聲壓值和下限頻率所對應的聲壓值之間的差值作為第二聲壓值差,接著判斷第一聲壓值差和第二聲壓值差是否皆大於聲壓差臨界值。上述各頻率所對應的聲壓值皆係各頻率在傅立葉轉換頻譜所對應的聲壓值。In an implementation where the sound spectrum is a prominence spectrum, the
當處理器20判斷第一聲壓值差和第二聲壓值差皆大於聲壓差臨界值時,接續步驟S15;當處理器20判斷第一聲壓值差或第二聲壓值差不大於聲壓差臨界值時,接續步驟S17。When the
步驟S15:記錄目標頻率為異常峰值頻率。具體而言,當處理器20判斷第一聲壓值差和第二聲壓值差皆大於聲壓差臨界值時,處理器20判斷此目標頻率對應於異常波峰,並記錄此目標頻率為異常峰值頻率。Step S15: Record the target frequency as the abnormal peak frequency. Specifically, when the
步驟S16:根據異常峰值頻率及預設頻寬,對聲音波形進行濾波。具體而言,處理器20於取得異常峰值頻率後根據預設頻寬設定濾波的上邊界頻率及下邊界頻率,並以上邊界頻率及下邊界頻率組成的頻率範圍作為濾波範圍來對聲音波形進行濾波。其中,處理器20對聲音波形所進行的濾波可為帶阻濾波、高通濾波或低通濾波,特別是帶阻濾波。預設頻寬可以預存於處理器20,且可以設定為異常峰值頻率的正負N Hz,其中N例如介於10至20。於一實施態樣中,處理器20取得濾波範圍後便自動對聲音波形進行濾波。於另一實施態樣中,處理器20將濾波範圍透過顯示器呈現給操作人員,Step S16: Filter the sound waveform according to the abnormal peak frequency and preset bandwidth. Specifically, after obtaining the abnormal peak frequency, the
步驟S17:不作動或記錄目標頻率為正常峰值頻率。具體而言,當處理器20判斷第一聲壓值差或第二聲壓值差不大於聲壓差臨界值時,處理器20判斷此目標頻率為正常頻率,而可不作動或記錄此目標頻率為正常頻率。Step S17: No action or record the target frequency as the normal peak frequency. Specifically, when the
另外,除了上述步驟,聲音處理方法可進一步包括:當判斷目標頻率為風扇的轉動頻率的倍頻數時,判斷風扇係異音源。此步驟可執行在步驟S15後。具體而言,處理器20計算且判斷異常峰值頻率是否為風扇的轉動頻率的倍數,當判斷異常峰值頻率為風扇的轉動頻率的倍數時,處理器20判斷異常峰值頻率與風扇的轉動頻率有關而判斷風扇為異音源;當判斷異常峰值頻率非為風扇的轉動頻率的倍數時,處理器20判斷異常峰值頻率與風扇的轉動頻率無關而異常峰值頻率可能由其他異音源所造成(例如馬達振動)。藉此步驟,可以協助操作人員(例如工程師)釐清異音源。In addition, in addition to the above steps, the sound processing method may further include: when it is determined that the target frequency is a multiple of the rotation frequency of the fan, determining that the fan is the source of the abnormal sound. This step can be performed after step S15. Specifically, the
於另一實施例中,聲音處理方法除了前述實施例所述之步驟外,可更包括界定聲壓差臨界值的步驟。請參閱圖1及圖4,圖4為依據本發明另一實施例所繪示的聲音處理方法中的界定聲壓差臨界值的流程圖。如圖4所示,界定聲壓差臨界值的步驟可以包括步驟S21~步驟S23,步驟S21~步驟S23可執行在如圖2所示的步驟S14之前的任何時間點,且步驟S21及步驟S22兩步驟的執行順序可以與圖4所示相反或同時執行。圖4所示的界定聲壓差臨界值的步驟可適用於圖1所示的聲音處理裝置,但不以此為限。以下示例性地以圖1所示聲音處理裝置1之運作來說明步驟S21~步驟S23。In another embodiment, in addition to the steps described in the foregoing embodiments, the sound processing method may further include the step of defining a sound pressure difference critical value. Please refer to FIG. 1 and FIG. 4 . FIG. 4 is a flow chart for defining a sound pressure difference critical value in a sound processing method according to another embodiment of the present invention. As shown in Figure 4, the step of defining the sound pressure difference critical value may include steps S21 to S23. Steps S21 to S23 can be performed at any time point before step S14 as shown in Figure 2, and steps S21 and S22 The execution order of the two steps can be reversed as shown in Figure 4 or executed simultaneously. The step of defining the sound pressure difference critical value shown in FIG. 4 can be applied to the sound processing device shown in FIG. 1 , but is not limited thereto. Steps S21 to S23 are described below by taking the operation of the sound processing device 1 shown in FIG. 1 as an example.
步驟S21:取得大於上限頻率的多個第一頻率點所對應的多個第一聲壓值。具體而言,處理器20根據上限頻率和頻率解析度計算預估上限頻率,接著取得上限頻率和預估上限頻率之間的多個第一頻率點及其對應的多個第一聲壓值。舉例來說,上限頻率為538Hz,頻率解析度為3.125Hz,第一頻率點的數目設定為10,預估上限頻率為600.5Hz,處理器20取得538Hz到600.5Hz之間的10個第一頻率點所對應的10個第一聲壓值。Step S21: Obtain a plurality of first sound pressure values corresponding to a plurality of first frequency points greater than the upper limit frequency. Specifically, the
步驟S22:取得小於下限頻率的多個第二頻率點所對應的多個第二聲壓值。具體而言,處理器20以下限頻率為基準和頻率解析度計算預估下限頻率,接著取得下限頻率和預估下限頻率之間的多個第二頻率點及其對應的多個第二聲壓值。舉例來說,下限頻率為518Hz,頻率解析度為3.125Hz,第二頻率點的數目設定為10,預估下限頻率為455.5Hz,處理器20取得455.5Hz到518Hz之間的10個第二頻率點所對應的10個第二聲壓值。Step S22: Obtain a plurality of second sound pressure values corresponding to a plurality of second frequency points less than the lower limit frequency. Specifically, the
步驟S23:以上述第一聲壓值及上述第二聲壓值的平均值作為聲壓差臨界值。具體而言,處理器20平均上述第一聲壓值及上述第二聲壓值來取得平均值,並以此平均值作為聲壓差臨界值。舉例來說,處理器20平均10個第一聲壓值和10個第二聲壓值來取得平均值作為聲壓差臨界值。Step S23: Use the average value of the above-mentioned first sound pressure value and the above-mentioned second sound pressure value as the sound pressure difference critical value. Specifically, the
如前所述,於一實施例中,聲音處理裝置可以提供量測介面及聲音濾波回放程式介面。請參閱圖5~7,其中圖5為依據本發明一實施例所繪示的聲音處理裝置的量測介面,而圖6及圖7分別為依據本發明一實施例所繪示的執行濾波前及濾波後的聲音濾波回放程式介面。As mentioned above, in one embodiment, the sound processing device can provide a measurement interface and a sound filter playback program interface. Please refer to FIGS. 5 to 7 . FIG. 5 is a measurement interface of a sound processing device according to an embodiment of the present invention, and FIG. 6 and FIG. 7 are respectively illustrating the measurement interface before performing filtering according to an embodiment of the present invention. and filtered sound filter playback program interface.
如圖5所示,量測介面包含多個聲音相關參數設定欄位、儲存路徑(file path)設定欄位、錄音秒數(record time)欄位、開始錄音鍵及停止錄音鍵。操作人員可以先設定好各聲音相關參數,接著輸入儲存路徑以及錄音秒數後,按下開始錄音鍵後開始錄音,並藉由停止錄音鍵隨時停止錄音。As shown in Figure 5, the measurement interface includes multiple sound-related parameter setting fields, a storage path (file path) setting field, a recording time field, a start recording button, and a stop recording button. The operator can first set various sound-related parameters, then enter the storage path and recording seconds, press the start recording button to start recording, and stop recording at any time by pressing the stop recording button.
圖6及圖7示例性地呈現以前列實施例所述之聲音處理方法處理前及後的頻譜圖。圖6所示,傅立葉轉換頻譜顯示聲壓值高於聲壓臨界值50dB的波峰P1及P2,分別對應於目標頻率528Hz及1056Hz,突出率頻譜顯示聲壓值高於聲壓臨界值6dB的波峰P3及P4,分別對應於目標頻率485.766Hz及1029Hz。其中,傅立葉轉換頻譜的528Hz對應於突出率頻譜的485.766Hz,且傅立葉轉換頻譜的1056Hz對應於突出率頻譜的1029Hz。藉由前述以傅立葉轉換頻譜為聲音頻譜的聲音處理方法,聲音處理裝置可以判斷目標頻率528Hz及1056Hz各自的前後聲壓差皆大於聲壓差臨界值,而判斷其為異常峰值頻率。藉由前述以突出率頻譜為聲音頻譜的聲音處理方法,聲音處理裝置可以將目標頻率485.766Hz及1029Hz分別換算為528Hz及1056Hz,再判斷其為異常峰值頻率。Figures 6 and 7 exemplarily present spectrograms before and after processing by the sound processing method described in the previous embodiments. As shown in Figure 6, the Fourier transform spectrum shows the wave peaks P1 and P2 with sound pressure values 50dB higher than the sound pressure critical value, corresponding to the target frequencies of 528Hz and 1056Hz respectively. The prominence rate spectrum shows the wave peaks with the sound pressure value 6dB higher than the sound pressure critical value. P3 and P4 correspond to the target frequencies of 485.766Hz and 1029Hz respectively. Among them, 528Hz of the Fourier transform spectrum corresponds to 485.766Hz of the protrusion rate spectrum, and 1056Hz of the Fourier transform spectrum corresponds to 1029Hz of the protrusion rate spectrum. Through the aforementioned sound processing method that uses the Fourier transform spectrum as the sound spectrum, the sound processing device can determine that the sound pressure differences before and after the target frequencies of 528 Hz and 1056 Hz are greater than the sound pressure difference critical value, and determine that it is an abnormal peak frequency. Through the aforementioned sound processing method that uses the prominence frequency spectrum as the sound spectrum, the sound processing device can convert the target frequencies 485.766Hz and 1029Hz into 528Hz and 1056Hz respectively, and then determine them as abnormal peak frequencies.
如圖7所示,聲音處理裝置可以自動在濾波器的下邊界頻率(Low Freq.)及上邊界頻率(Up Freq.)填入異常峰值頻率正負10Hz的頻率來作為濾波頻寬,濾波器設定為帶阻。由圖7的傅立葉轉換頻譜圖可看到528Hz及1056Hz的峰波已消失,突出率頻譜圖上的485.766Hz及1029Hz所對應的聲壓值也下降至接近零的數值,表示令人不舒服的聲音已消失。As shown in Figure 7, the sound processing device can automatically fill in the abnormal peak frequency plus or minus 10Hz in the lower boundary frequency (Low Freq.) and upper boundary frequency (Up Freq.) of the filter as the filter bandwidth. Filter settings For band resistance. From the Fourier transform spectrogram in Figure 7, we can see that the peak waves at 528Hz and 1056Hz have disappeared, and the sound pressure values corresponding to 485.766Hz and 1029Hz on the prominence rate spectrogram have also dropped to values close to zero, indicating that they are uncomfortable. The sound has disappeared.
綜上所述,本發明之聲音處理方法及聲音處理裝置,利用聲壓臨界值和聲壓差臨界值,判斷異常峰值頻率並根據異常峰值頻率及預設頻寬對聲音波形進行濾波,可以藉此提高異常峰值頻率判斷的準確度,進而提升濾波的效果,且可以協助操作人員釐清噪音問題。再者,本發明之聲音處理裝置藉由錄音器將主觀聆聽的聲音紀錄,並藉由處理器對所錄製之聲音進行異常峰值頻率的分析,可以達成即時錄音並分析聲音品質之效果。To sum up, the sound processing method and sound processing device of the present invention use the sound pressure critical value and the sound pressure difference critical value to determine the abnormal peak frequency and filter the sound waveform according to the abnormal peak frequency and the preset bandwidth. This improves the accuracy of abnormal peak frequency judgment, thereby improving the filtering effect and helping operators clarify noise problems. Furthermore, the sound processing device of the present invention uses a recorder to record the subjective listening sound, and uses the processor to analyze the abnormal peak frequency of the recorded sound, thereby achieving the effect of real-time recording and analysis of sound quality.
雖然本發明以前述實施例揭露如上,然其並非用以限定本發明。在不脫離本發明之精神和範圍內,所為之更動與潤飾,均屬本發明之專利保護範圍。關於本發明所界定之保護範圍請參考所附之申請專利範圍。Although the present invention is disclosed in the foregoing embodiments, they are not intended to limit the present invention. All changes and modifications made without departing from the spirit and scope of the present invention shall fall within the scope of patent protection of the present invention. Regarding the protection scope defined by the present invention, please refer to the attached patent application scope.
1:聲音處理裝置 10:錄音器 20:處理器 P1~P4:峰點 S11~S17, S131~S132, S21~S23:步驟 1: Sound processing device 10:recorder 20: Processor P1~P4: peak point S11~S17, S131~S132, S21~S23: steps
圖1為依據本發明一實施例所繪示的聲音處理裝置的功能方塊圖。 圖2為依據本發明一實施例所繪示的聲音處理方法的流程圖。 圖3為依據本發明一實施例所繪示的聲音處理方法中的取得頻率範圍步驟的流程圖。 圖4為依據本發明另一實施例所繪示的聲音處理方法中的界定聲壓差臨界值的流程圖。 圖5為依據本發明一實施例所繪示的聲音處理裝置的量測介面。 圖6為依據本發明一實施例所繪示的執行濾波前的聲音濾波回放程式介面。 圖7為依據本發明一實施例所繪示的執行濾波後的聲音濾波回放程式介面。 FIG. 1 is a functional block diagram of a sound processing device according to an embodiment of the present invention. FIG. 2 is a flow chart of a sound processing method according to an embodiment of the present invention. FIG. 3 is a flow chart of the steps of obtaining a frequency range in a sound processing method according to an embodiment of the present invention. FIG. 4 is a flow chart for defining a sound pressure difference critical value in a sound processing method according to another embodiment of the present invention. FIG. 5 is a measurement interface of a sound processing device according to an embodiment of the present invention. FIG. 6 illustrates a sound filter playback program interface before performing filtering according to an embodiment of the present invention. FIG. 7 illustrates a sound filter playback program interface after filtering according to an embodiment of the present invention.
S11~S17:步驟 S11~S17: Steps
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW111110387A TWI794059B (en) | 2022-03-21 | 2022-03-21 | Audio signal processing method and audio signal processing device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW111110387A TWI794059B (en) | 2022-03-21 | 2022-03-21 | Audio signal processing method and audio signal processing device |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI794059B TWI794059B (en) | 2023-02-21 |
TW202338369A true TW202338369A (en) | 2023-10-01 |
Family
ID=86689352
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW111110387A TWI794059B (en) | 2022-03-21 | 2022-03-21 | Audio signal processing method and audio signal processing device |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI794059B (en) |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI330355B (en) * | 2005-12-05 | 2010-09-11 | Qualcomm Inc | Systems, methods, and apparatus for detection of tonal components |
CN110493691A (en) * | 2019-08-23 | 2019-11-22 | Oppo广东移动通信有限公司 | Abnormal sound detection method, device and electronic equipment |
CN111640445A (en) * | 2020-05-13 | 2020-09-08 | 广州国音智能科技有限公司 | Audio difference detection method, device, equipment and readable storage medium |
CN113271386B (en) * | 2021-05-14 | 2023-03-31 | 杭州网易智企科技有限公司 | Howling detection method and device, storage medium and electronic equipment |
CN113539285B (en) * | 2021-06-04 | 2023-10-31 | 浙江华创视讯科技有限公司 | Audio signal noise reduction method, electronic device and storage medium |
-
2022
- 2022-03-21 TW TW111110387A patent/TWI794059B/en active
Also Published As
Publication number | Publication date |
---|---|
TWI794059B (en) | 2023-02-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5448771B2 (en) | Sound processing apparatus and method | |
JP2010019902A (en) | Volume adjusting device, volume adjusting method and volume adjusting program | |
JP2015050685A (en) | Audio signal processor and method and program | |
Moore et al. | Measuring and predicting the perceived quality of music and speech subjected to combined linear and nonlinear distortion | |
CN107645696B (en) | One kind is uttered long and high-pitched sounds detection method and device | |
CN113068100A (en) | Closed-loop automatic detection vibration reduction method, system, terminal and storage medium | |
De Man et al. | A semantic approach to autonomous mixing | |
JP2022089160A (en) | System and methods of reshaping fan noise in electronic devices | |
JP2010021627A (en) | Device, method, and program for volume control | |
CN112562714B (en) | Noise evaluation method and device | |
Becker et al. | Progress in tonality calculation | |
US8223990B1 (en) | Audio noise attenuation | |
TWI794059B (en) | Audio signal processing method and audio signal processing device | |
WO2019050689A1 (en) | Speaker distorion reduction | |
Fenton et al. | Objective profiling of perceived punch and clarity in produced music | |
Sottek et al. | Tonal annoyance vs. tonal loudness and tonality | |
EP3579582B1 (en) | Automatic characterization of perceived transducer distortion | |
CN116805493A (en) | Sound processing method and sound processing device | |
Sottek et al. | Sound quality evaluation of fan noise based on advanced hearing-related parameters | |
CN115066912B (en) | Method, device, and non-transitory computer-readable medium for performing audio rendering by a device | |
Sung et al. | Descriptors of sound from HVAC&R equipment | |
JP2014209077A (en) | Chattering noise evaluation method | |
TW201926037A (en) | Control method for a fan and examination system for a fan | |
Sottek et al. | Sound quality evaluation of fan noise based on hearing-related parameters | |
Fenton et al. | Objective measurement of music quality using inter-band relationship analysis |