TW202249534A - LED driving system with high light conversion efficiency with a control unit to proceed a dimming operation according to a dimming command current to make the average current of the pooled current of LED load be equal to the dimming command current - Google Patents
LED driving system with high light conversion efficiency with a control unit to proceed a dimming operation according to a dimming command current to make the average current of the pooled current of LED load be equal to the dimming command current Download PDFInfo
- Publication number
- TW202249534A TW202249534A TW110120446A TW110120446A TW202249534A TW 202249534 A TW202249534 A TW 202249534A TW 110120446 A TW110120446 A TW 110120446A TW 110120446 A TW110120446 A TW 110120446A TW 202249534 A TW202249534 A TW 202249534A
- Authority
- TW
- Taiwan
- Prior art keywords
- current
- signal
- voltage
- switch
- dimming
- Prior art date
Links
- 238000006243 chemical reaction Methods 0.000 title claims abstract description 27
- 239000003990 capacitor Substances 0.000 claims abstract description 10
- 238000004364 calculation method Methods 0.000 claims description 11
- 230000008878 coupling Effects 0.000 claims description 10
- 238000010168 coupling process Methods 0.000 claims description 10
- 238000005859 coupling reaction Methods 0.000 claims description 10
- 238000001914 filtration Methods 0.000 claims description 7
- 230000000087 stabilizing effect Effects 0.000 claims description 6
- 230000003287 optical effect Effects 0.000 claims description 5
- 230000036982 action potential Effects 0.000 claims description 4
- 238000000034 method Methods 0.000 description 28
- 230000010363 phase shift Effects 0.000 description 17
- 230000006872 improvement Effects 0.000 description 12
- 238000005286 illumination Methods 0.000 description 10
- 238000010586 diagram Methods 0.000 description 9
- 230000000694 effects Effects 0.000 description 7
- 238000001514 detection method Methods 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 6
- 238000005259 measurement Methods 0.000 description 6
- 238000004804 winding Methods 0.000 description 6
- 238000013461 design Methods 0.000 description 5
- 230000008859 change Effects 0.000 description 4
- 230000005669 field effect Effects 0.000 description 4
- 101150086656 dim1 gene Proteins 0.000 description 3
- 238000005070 sampling Methods 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 101100063424 Neurospora crassa (strain ATCC 24698 / 74-OR23-1A / CBS 708.71 / DSM 1257 / FGSC 987) dim-5 gene Proteins 0.000 description 2
- 230000003044 adaptive effect Effects 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 238000012937 correction Methods 0.000 description 2
- 238000009795 derivation Methods 0.000 description 2
- 238000012053 enzymatic serum creatinine assay Methods 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 238000009877 rendering Methods 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 238000012552 review Methods 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 241001168730 Simo Species 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000002390 adhesive tape Substances 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000004568 cement Substances 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 238000011217 control strategy Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 238000007667 floating Methods 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 238000004020 luminiscence type Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 229910001507 metal halide Inorganic materials 0.000 description 1
- 150000005309 metal halides Chemical class 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003071 parasitic effect Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
Images
Landscapes
- Dc-Dc Converters (AREA)
- Led Devices (AREA)
- Optical Communication System (AREA)
Abstract
Description
本發明係有關於LED驅動系統,特別是關於一種高光轉換效率之LED驅動系統。The invention relates to an LED drive system, in particular to an LED drive system with high light conversion efficiency.
在過去的一百年中,照明光源經過不斷的改良發展,從早期的碳絲燈到鎢絲燈再到螢光燈。固態照明(Solid-State Lighting, SSL)的出現為這世界帶來了新的光源概念,相比於過去的光源,LED擁有節省能源、壽命長、演色性高、啟動快等優點。隨著科技的發展,現今LED的發光效率逐漸提升,成本也變得更加親民,所以應用於路燈、螢幕顯示器、室內照明等光源也逐漸從傳統光源轉換成LED光源。根據美國能源部於2019年底更新的「固態照明於一般照明應用的能源節省預測」(Energy Savings Forecast of Solid-State Lighting in General Illumination Applications)報告中指出,在2017年美國建築外觀的照明設備,LED佔31%,而金屬鹵化物(Metal Halide)和高壓鈉燈合計佔了25%,線性螢光燈佔了27%、而其餘的鹵素燈和白熾燈等等佔了15%,預測在2025年,LED將達到92%的安裝率,而在2035年LED照明設備將達到98%的安裝率。In the past 100 years, lighting sources have been continuously improved and developed, from early carbon filament lamps to tungsten filament lamps to fluorescent lamps. The emergence of Solid-State Lighting (SSL) has brought a new concept of light source to the world. Compared with the light source in the past, LED has the advantages of energy saving, long life, high color rendering, and fast start-up. With the development of science and technology, the luminous efficiency of LEDs is gradually improving, and the cost has become more affordable. Therefore, the light sources used in street lights, screen displays, and indoor lighting are gradually converting from traditional light sources to LED light sources. According to the report "Energy Savings Forecast of Solid-State Lighting in General Illumination Applications" (Energy Savings Forecast of Solid-State Lighting in General Illumination Applications) updated by the U.S. Department of Energy at the end of 2019, LED Accounted for 31%, while metal halide (Metal Halide) and high-pressure sodium lamps accounted for 25% in total, linear fluorescent lamps accounted for 27%, and the rest of halogen lamps and incandescent lamps accounted for 15%. It is predicted that in 2025, LED will reach 92% installation rate, and LED lighting equipment will reach 98% installation rate in 2035.
大多數LED的照度-電流曲線並非線性,以CREE CXA2540為例,其照度-電流曲線如圖1所示。由圖1可看出,當順向導通電流越小時,照度對電流的比值會越大,且隨著電流上升而逐漸減小,由於數位調光利用電流導通時間的長短來改變平均電流大小,從而進行調光,通過LED的電流大小會在零與額定值之間轉換,並非是改變其順向電流的最大值,因此發光效率並非最佳。以25 oC的特性曲線為例,在電流為2100 mA時,其對應之相對照度(Relative Luminous Flux)約為162%,但若使用數位PWM調光將平均電流控制至1080 mA時,會得到83.3%之相對照度,而非原特性約110%之相對照度。 The illuminance-current curve of most LEDs is not linear. Taking CREE CXA2540 as an example, its illuminance-current curve is shown in Figure 1. It can be seen from Figure 1 that when the forward conduction current is smaller, the ratio of illuminance to current will be greater, and it will gradually decrease as the current rises. Since digital dimming uses the length of current conduction time to change the average current, Therefore, for dimming, the current through the LED will switch between zero and the rated value, instead of changing the maximum value of its forward current, so the luminous efficiency is not optimal. Taking the characteristic curve at 25 o C as an example, when the current is 2100 mA, the corresponding relative illuminance (Relative Luminous Flux) is about 162%. 83.3% relative illuminance, instead of about 110% relative illuminance of the original feature.
有關LED驅動器的技術,先前已經有許多的研究:有文獻提出在每一組的LED接上線性穩流電路(Linear Current Regulator),並加入了前饋穩壓,利用前饋穩壓回授的方式讓電路的效率提高,但是效率改善效果不彰,該技術的效率受同串LED間特性的一致性影響甚大;亦有文獻提出了偵測各串LED的順向導通電壓值,將輸出電壓控制在最高順向導通電壓值,使其中一組LED的電壓差趨近於零以降低損耗,並採用相移脈波寬度調變(Phase Shift Pulse Width Modulation, PSPWM)使輸出電流的變化限制在其中一組LED電流與最大電流之間,以減小一般脈波寬度調變控制所造成高脈動電流的電磁干擾;亦有文獻將數位PWM調光、雙脈波寬度調光、臨界電壓調光等調光技術實現後進行比較,而比較後也可得知臨界電壓調光具有較好的效率,但是因其響應速度較慢而造成調光曲線線性度較差;亦有文獻提出了運用類比電路的方式偵測閘-汲極之間的電壓,實現輸出電壓自適應調整,進而提升效率;亦有文獻提出改變線性穩流電路的電流檢測電阻與參考電壓值且設定七段LED的順向電流,並利用數位PWM調光將LED操作在七段不同的順向電流值,低照度調光時操作在低順向電流,高照度調光時操作在高順向電流,藉此提高LED的發光效率;亦有文獻提出多階脈波寬度調變(Multilevel Pulse Width Modulation, MPWM)調光法以改善數位PWM調光低發光效率的問題;亦有文獻使用單電感多浮動輸出電路(Single Inductor Multiple Floating Output, SIMFO) 改善單電感多輸出電路 (Single Inductor Multiple Output, SIMO) 低調光頻率問題,並提出平均電流校正(Average Current Correction, ACC)改善多串LED順向導通電壓不同所造成的電流偏差;亦有文獻使用半橋非諧振轉換器作為LED驅動電路,使電路開關達到軟切以提高電路效率。也有文獻使用同步積分法達到輸出電壓自適應以提升效率,並提出變動調光頻率來解決電路低照度調光曲線線性特性差的問題;更有文獻使用自適應電流控制,將多串LED順向電流控制在最大順向電流以降低開關的導通損耗。There have been a lot of researches on the technology of LED drivers before: Some literatures propose to connect a linear current regulator to each group of LEDs, and add a feed-forward voltage regulator, using the feed-forward voltage regulator feedback This method improves the efficiency of the circuit, but the effect of improving the efficiency is not obvious. The efficiency of this technology is greatly affected by the consistency of the characteristics of the LEDs in the same string; Control at the highest forward conduction voltage value, make the voltage difference of one group of LEDs close to zero to reduce loss, and use phase shift pulse width modulation (Phase Shift Pulse Width Modulation, PSPWM) to limit the change of output current to One group of LED currents is between the maximum current to reduce the electromagnetic interference caused by high pulsating currents caused by general pulse width modulation control; there are also literatures that digital PWM dimming, dual pulse width dimming, and critical voltage dimming After the dimming technology is realized, we can compare it. After the comparison, we can also know that the threshold voltage dimming has good efficiency, but the linearity of the dimming curve is poor due to its slow response speed; there are also literatures that propose the use of analog circuits The method detects the voltage between the gate and the drain, realizes the adaptive adjustment of the output voltage, and then improves the efficiency; there are also literatures that change the current detection resistor and the reference voltage value of the linear constant current circuit and set the forward current of the seven-segment LED , and use digital PWM dimming to operate the LED at seven different forward current values, operate at low forward current during low-illuminance dimming, and operate at high forward current during high-illuminance dimming, thereby improving LED luminescence efficiency; there are also literatures that propose a multilevel pulse width modulation (Multilevel Pulse Width Modulation, MPWM) dimming method to improve the low luminous efficiency of digital PWM dimming; Floating Output, SIMFO) to improve the single inductor multiple output circuit (Single Inductor Multiple Output, SIMO) low dimming frequency problem, and propose the average current correction (Average Current Correction, ACC) to improve the current deviation caused by the different forward conduction voltage of multiple LED strings ; There are also literatures that use half-bridge non-resonant converters as LED drive circuits, so that the circuit switches can be soft-cut to improve circuit efficiency. There are also literatures that use the synchronous integration method to achieve output voltage self-adaptation to improve efficiency, and propose changing the dimming frequency to solve the problem of poor linearity of the circuit's low-illuminance dimming curve; there are even literatures that use adaptive current control to switch multiple strings of LEDs forward The current is controlled at the maximum forward current to reduce the conduction loss of the switch.
然而,現有技術方案的光轉換效率仍有不足之處,因此,本領域亟需一新穎的LED驅動系統。However, the light conversion efficiency of the existing technical solutions is still insufficient. Therefore, a novel LED driving system is urgently needed in the art.
本發明之主要目的在於揭露一種高光轉換效率之LED驅動系統,其可藉由一多段式PWM電流調變方案提高LED模組的發光效率。The main purpose of the present invention is to disclose an LED drive system with high light conversion efficiency, which can improve the luminous efficiency of LED modules through a multi-stage PWM current modulation scheme.
為達前述目的,一種高光轉換效率之LED驅動系統乃被提出,其具有:In order to achieve the aforementioned purpose, a LED driving system with high light conversion efficiency is proposed, which has:
一全橋式開關電路,具有:二輸入端以與一輸入電壓之正、負端耦接,四控制端以分別與一第一開關控制信號、一第二開關控制信號、一第三開關控制信號及一第四開關控制信號耦接;一第一輸出端在該第一開關呈現一作用電位時與該正端耦接及該第二開關呈現一作用電位時與該負端耦接;以及一第二輸出端在該第三開關呈現一作用電位時與該正端耦接及該第四開關呈現一作用電位時與該負端耦接;A full-bridge switching circuit has: two input terminals for coupling with the positive and negative terminals of an input voltage, and four control terminals for respectively connecting with a first switch control signal, a second switch control signal, and a third switch control signal signal and a fourth switch control signal are coupled; a first output terminal is coupled to the positive terminal when the first switch exhibits an active potential and is coupled to the negative terminal when the second switch exhibits an active potential; and A second output terminal is coupled to the positive terminal when the third switch exhibits an active potential and is coupled to the negative end when the fourth switch exhibits an active potential;
一電容-電感串聯電路,其一端係與該全橋開關電路之所述第一輸出端耦接;a capacitor-inductor series circuit, one end of which is coupled to the first output end of the full-bridge switch circuit;
一變壓器,具有一主線圈及一次級線圈,該主線圈係與一磁化電感並聯且其一端係與該電容-電感串聯電路之另一端耦接,而其另一端則係與該全橋開關電路之所述第二輸出端耦接,該次級線圈具有一第一輸出端及一第二輸出端;A transformer having a primary winding and a secondary winding, the primary winding is connected in parallel with a magnetizing inductance and one end thereof is coupled to the other end of the capacitance-inductance series circuit, and the other end thereof is connected to the full bridge switching circuit The second output end of the secondary coil is coupled, and the secondary coil has a first output end and a second output end;
一第一二極體,具有一第一陽極及一第一陰極,該第一陽極係與一電壓參考端耦接,該第一陰極係與該次級線圈之該第一輸出端耦接;a first diode having a first anode and a first cathode, the first anode is coupled to a voltage reference terminal, the first cathode is coupled to the first output terminal of the secondary coil;
一第二二極體,具有一第二陽極及一第二陰極,該第二陽極係與該電壓參考端耦接,該第二陰極係與該次級線圈之該第二輸出端耦接;a second diode having a second anode and a second cathode, the second anode is coupled to the voltage reference terminal, the second cathode is coupled to the second output terminal of the secondary coil;
一第一電感,耦接於該次級線圈之該第一輸出端與一電壓輸出端之間;a first inductor coupled between the first output terminal of the secondary coil and a voltage output terminal;
一第二電感,耦接於該次級線圈之該第二輸出端與該電壓輸出端之間;a second inductor coupled between the second output terminal of the secondary coil and the voltage output terminal;
一輸出電容,耦接於該電壓輸出端與該電壓參考端之間;an output capacitor coupled between the voltage output terminal and the voltage reference terminal;
一LED負載,耦接於該電壓輸出端與該電壓參考端之間,係由一LED模組、一穩壓電路、一組電流源及一電流感測器串聯而成,其中,該穩壓電路係用以產生一固定電壓以偏壓該組電流源,該組電流源具有五個由小至大的可閘控定電流源I 1、I 2、I 3、I 4及I 5,所述五個可閘控定電流源係依五個閘控信號控制其電流輸出,且該組電流源的匯集電流流經該電流感測器以產生一電流回授信號; An LED load, coupled between the voltage output terminal and the voltage reference terminal, is composed of an LED module, a voltage stabilizing circuit, a set of current sources and a current sensor in series, wherein the voltage stabilizing The circuit is used to generate a fixed voltage to bias the set of current sources. The set of current sources has five gating-controlled constant current sources I 1 , I 2 , I 3 , I 4 and I 5 . The five gating-controllable constant current sources control their current output according to five gating signals, and the collected current of the group of current sources flows through the current sensor to generate a current feedback signal;
一電壓回授電路,用以依該輸出電容之一跨壓產生一電壓回授信號;a voltage feedback circuit for generating a voltage feedback signal according to a voltage across the output capacitor;
一控制單元,用以執行一韌體程式以依一調光命令電流進行一調光操作使該匯集電流之一平均電流等於該調光命令電流,該調光操作包括:依該電壓回授信號與一參考電壓之差值進行一第一負回授控制計算程序以產生一第一開關信號、一第二開關信號、一第三開關信號及一第四開關信號;以及在五段電流區間(0,I 1]、(I 1,I 2]、(I 2,I 3]、(I 3,I 4] 及(I 4,I 5]中找出該調光命令電流之一所屬區間,以致能五個PWM信號組合(PWM1)、(PWM1,PWM2)、(PWM2,PWM3)、(PWM3,PWM4)、(PWM4,PWM5)中之一選定PWM信號組合,及依所述電流回授信號和該調光命令電流之差值進行一第二負回授控制計算程序以產生一責任週期D以決定該選定PWM信號組合內之各PWM信號之脈衝寬度,D為一不大於1之非負實數;以及 A control unit, used to execute a firmware program to perform a dimming operation according to a dimming command current to make an average current of the sink current equal to the dimming command current, the dimming operation includes: feedback signal according to the voltage Performing a first negative feedback control calculation program on the difference with a reference voltage to generate a first switch signal, a second switch signal, a third switch signal and a fourth switch signal; and in five current intervals ( 0,I 1 ], (I 1 ,I 2 ], (I 2 ,I 3 ], (I 3 ,I 4 ] and (I 4 ,I 5 ] to find out the interval to which one of the dimming command currents belongs, To enable one of the five PWM signal combinations (PWM1), (PWM1, PWM2), (PWM2, PWM3), (PWM3, PWM4), (PWM4, PWM5) to select one of the PWM signal combinations, and according to the current feedback signal Perform a second negative feedback control calculation program on the difference with the dimming command current to generate a duty cycle D to determine the pulse width of each PWM signal in the selected PWM signal combination, D is a non-negative real number not greater than 1 ;as well as
一閘極驅動器,用以依該第一開關信號、該第二開關信號、該第三開關信號及該第四開關信號產生該第一開關控制信號、該第二開關控制信號、該第三開關控制信號及該第四開關控制信號,及依五個所述PWM信號產生五個所述閘控信號。a gate driver, used to generate the first switch control signal, the second switch control signal, the third switch signal according to the first switch signal, the second switch signal, the third switch signal and the fourth switch signal The control signal and the fourth switch control signal generate five gate control signals according to the five PWM signals.
在一實施例中,該電壓回授電路包含一分壓電路及一光耦合電路。In one embodiment, the voltage feedback circuit includes a voltage dividing circuit and an optical coupling circuit.
在一實施例中,該控制單元包含一類比至數位轉換器以對該電壓回授信號及該電流回授信號進行類比至數位轉換運算以對應產生一第一輸入數位信號及一第二輸入數位信號。In one embodiment, the control unit includes an analog-to-digital converter for performing an analog-to-digital conversion operation on the voltage feedback signal and the current feedback signal to generate a first input digital signal and a second input digital correspondingly Signal.
在一實施例中,該控制單元包含一濾波運算功能模組以對該第一輸入數位信號及該第二輸入數位信號進行濾波運算以對應產生一第三輸入數位信號及一第四輸入數位信號。In one embodiment, the control unit includes a filtering operation module to perform filtering operation on the first input digital signal and the second input digital signal to generate a third input digital signal and a fourth input digital signal correspondingly .
在一實施例中,該控制單元包含一比例-積分-微分運算功能模組以對該第三輸入數位信號執行該第一負回授控制計算程序,及對該第四輸入數位信號執行該第二負回授控制計算程序。In one embodiment, the control unit includes a proportional-integral-derivative operation module to execute the first negative feedback control calculation program on the third input digital signal, and execute the first negative feedback control calculation program on the fourth input digital signal Two negative feedback control calculation programs.
在一實施例中,該控制單元包含一脈波寬度調變模組以產生該第一開關信號、該第二開關信號、該第三開關信號、該第四開關信號及五個所述PWM信號。In one embodiment, the control unit includes a pulse width modulation module to generate the first switching signal, the second switching signal, the third switching signal, the fourth switching signal and five of the PWM signals .
為使 貴審查委員能進一步瞭解本發明之結構、特徵及其目的,茲附以圖式及較佳具體實施例之詳細說明如後。In order to enable your review committee members to further understand the structure, features and purpose of the present invention, drawings and detailed descriptions of preferred specific embodiments are hereby attached.
請參照圖2,其繪示本發明之高光轉換效率之LED驅動系統之一實施例的方塊圖。Please refer to FIG. 2 , which shows a block diagram of an embodiment of the high light conversion efficiency LED driving system of the present invention.
如圖2所示,本案之高光轉換效率之LED驅動系統具有一全橋開關電路100、一電容-電感串聯電路110、一變壓器120、一第一二極體130、一第二二極體140、一第一電感150、一第二電感160、一輸出電容170、一LED負載180、一電壓回授電路190、一控制單元200以及一閘極驅動器210。As shown in Figure 2, the LED driving system with high light conversion efficiency in this case has a full
該全橋開關電路100具有二輸入端A、B以與一輸入電壓V
in之正、負端耦接,四控制端以分別與一第一開關控制信號S
1、一第二開關控制信號S
2、一第三開關控制信號S
3及一第四開關控制信號S
4耦接、一第一輸出端C在該第一開關S
1呈現一作用電位時與該正端耦接及該第二開關S
2呈現一作用電位時與該負端耦接,以及一第二輸出端D在該第三開關S
3呈現一作用電位時與該正端耦接及該第四開關S
4呈現一作用電位時與該負端耦接。
The full-
其中,全橋相移轉換器比半橋相移轉換器多了兩個主功率開關S 3及S 4,因而能提高輸出功率之能力。 Among them, the full-bridge phase-shift converter has two more main power switches S 3 and S 4 than the half-bridge phase-shift converter, so the output power capability can be improved.
一電容-電感串聯電路110其一端係與該全橋開關電路100之所述第一輸出端C耦接。One terminal of a capacitor-
一變壓器120具有一主線圈及一次級線圈,該主線圈係與一磁化電感並聯且其一端係與該電容-電感串聯電路110之另一端耦接,而其另一端則係與該全橋開關電路100之所述第二輸出端耦接D,該次級線圈具有一第一輸出端E及一第二輸出端F。A
一第一二極體130具有一第一陽極及一第一陰極,該第一陽極係與一電壓參考端耦接,該第一陰極係與該第一輸出端E耦接。A
一第二二極體140具有一第二陽極及一第二陰極,該第二陽極係與該電壓參考端耦接,該第二陰極係與該第二輸出端F耦接。A
一第一電感150耦接於該第一輸出端E與一電壓輸出端O之間。A
一第二電感160耦接於該第二輸出端F與該電壓輸出端O之間。A
一輸出電容170耦接於該電壓輸出端O與該電壓參考端之間。An
一LED負載180耦接於該電壓輸出端O與該電壓參考端之間,係由一LED模組181、一穩壓電路(係由放大器182和NMOS電晶體183組成之一負回授電路)、一組電流源184及一電流感測器185串聯而成,其中,該穩壓電路係用以產生一固定電壓V
r以偏壓該組電流源184,該組電流源184具有五個由小至大的可閘控定電流源I
1(由NMOS電晶體184a1和電阻184a2串聯而成)、I
2(由NMOS電晶體184b1和電阻184b2串聯而成)、I
3(由NMOS電晶體184c1和電阻184c2串聯而成)、I
4(由NMOS電晶體184d1和電阻184d2串聯而成)及I
5(由NMOS電晶體184e1和電阻184e2串聯而成),所述五個可閘控定電流源係依五個閘控信號VG
1-VG
5控制其電流輸出,且該組電流源的匯集電流i
out流經該電流感測器185以產生一電流回授信號I
FB。
An
一電壓回授電路190包含一分壓電路191及一光耦合電路192,用以依該輸出電容170之一跨壓V
out產生一電壓回授信號V
FB。
A
一控制單元200儲存有一韌體程式,用以執行該韌體程式以依一調光命令電流C
DIM進行一調光操作使該匯集電流i
out之一平均電流等於該調光命令電流C
DIM,該調光操作包括:依該電壓回授信號V
FB與一參考電壓(未示於圖中)之差值進行一第一負回授控制計算程序以產生一第一開關信號、一第二開關信號、一第三開關信號及一第四開關信號;以及在五段電流區間(0,I
1]、(I
1,I
2]、(I
2,I
3]、(I
3,I
4] 及(I
4,I
5]中找出該調光命令電流C
DIM之一所屬區間,以致能五個PWM信號組合(PWM1)、(PWM1,PWM2)、(PWM2,PWM3)、(PWM3,PWM4)、(PWM4,PWM5)中之一選定PWM信號組合,及依所述電流回授信號I
FB和該調光命令電流C
DIM之差值進行一第二負回授控制計算程序以產生一責任週期D以決定該選定PWM信號組合內之各PWM信號之脈衝寬度,D為一不大於1之非負實數。
A
該控制單元200包含一類比至數位轉換器201、一濾波運算功能模組202、一比例-積分-微分運算功能模組203以及一脈波寬度調變模組204,其中,該類比至數位轉換器201係用以對該電壓回授信號V
FB及該電流回授信號I
FB進行類比至數位轉換運算以對應產生一第一輸入數位信號及一第二輸入數位信號;該濾波運算功能模組202係用以對該第一輸入數位信號及該第二輸入數位信號進行濾波運算以對應產生一第三輸入數位信號及一第四輸入數位信號;該比例-積分-微分運算功能模組203係用以對該第三輸入數位信號執行該第一負回授控制計算程序,及對該第四輸入數位信號執行該第二負回授控制計算程序;以及該脈波寬度調變模組204係用以產生該第一開關信號、該第二開關信號、該第三開關信號、該第四開關信號及五個所述PWM信號。
The
該閘極驅動器210用以依該第一開關信號、該第二開關信號、該第三開關信號及該第四開關信號產生該第一開關控制信號S
1、該第二開關控制信號S
2、該第三開關控制信號S
3及該第四開關控制信號S
4,及依五個所述PWM信號產生五個所述閘控信號VG
1-VG
5。
The
以下將針對本發明的原理進行說明:The principle of the present invention will be described below:
一、LED驅動器系統架構1. LED Driver System Architecture
在此實施例中,LED模組181係由10組LED燈並聯而成,控制單元200係以Texas Instruments公司所推出的TMS320F280049C數位訊號處理器實現。In this embodiment, the
LED驅動器的功率級電路拓蹼採用具有軟切換特性的相移全橋轉換器(Phase Shift Full Bridge Converter),如圖3所示,初級側主要元件為功率開關S
1、S
2、S
3、S
4及諧振電感L
r和用以阻隔直流避免變壓器鐵心磁通不平衡的阻隔電容C
b,次級側為輸出二極體D
1,D
2與輸出電感L
1,L
2所組成的倍流輸出架構及輸出電容C
o。圖4為相移全橋轉換器四個功率開關的控制信號及相對應的初級側電流i
p和變壓器初級側電壓V
AB的理論波型,由圖4可看出同一臂的上下橋開關信號間明顯地存在一段盲時(Dead time)區間,而這段盲時區間可以使功率開關寄生電容及諧振電感完成諧振以達到零電壓切換。從對應的電流波形可以看出,在S
1及S
4零電壓切換之前存在著兩個非線性的諧振區間t
1~ t
2與t
3~ t
4。表1為本發明所使用之相移全橋轉換器電路設計規格,輸出電壓是根據所選用的CREE CXA2540 LED之電壓與電流關係,在溫度為25
oC以及電流為1100 mA時,其跨壓約為37 V,加上線性穩流電路的電阻和功率開關汲-源極之壓降,因此將輸出電壓定為40 V,輸入電壓則定為200 V,本案將十個CXA2540 LED模組並聯,最大輸出電流為11 A。
表1. 相移全橋轉換器設計規格
二、調光原理與照度量測環境設置2. Dimming principle and illumination measurement environment setting
2.1數位PWM調光2.1 digital PWM dimming
傳統數位PWM調光透過變化單位時間內的電流導通時間以改變其平均值,達成調光的效果。工作頻率若是過低,人眼會感覺到閃爍,根據先前文獻研究,一般會將工作頻率設定在100至400赫茲之間,本案以200赫茲作為PWM調光頻率。在驅動LED時,會以定電流的方式驅動,不僅能讓LED的導通電流穩定,同時可以改善定電壓驅動時,LED的特性因負溫度係數造成內阻改變,進而導致順向導通電壓改變的情形。線性穩流架構由運算放大器與場效應電晶體所組成,如圖5所示,將場效應電晶體操作於線性區,V r為可變振幅之調光信號,當運算放大器的非反向輸入端電壓為高電位時,場效應電晶體導通,等效為一個可變電阻,並藉由電流檢測電阻R s將輸出電流回授到運算放大器進行比較;當非反向輸入端電壓為低電壓時,場效應電晶體截止,以此機制來控制流過LED之平均電流大小,以達成調光功能。 Traditional digital PWM dimming achieves dimming effect by changing the current conduction time per unit time to change its average value. If the operating frequency is too low, human eyes will feel flickering. According to previous literature research, the operating frequency is generally set between 100 and 400 Hz. In this case, 200 Hz is used as the PWM dimming frequency. When driving the LED, it will be driven with a constant current, which can not only stabilize the conduction current of the LED, but also improve the characteristics of the LED when the constant voltage is driven. situation. The linear steady current structure is composed of operational amplifier and field effect transistor. As shown in Figure 5, the field effect transistor is operated in the linear region, and V r is a dimming signal with variable amplitude. When the non-reverse input of the operational amplifier When the terminal voltage is high potential, the field effect transistor is turned on, which is equivalent to a variable resistor, and the output current is fed back to the operational amplifier through the current detection resistor R s for comparison; when the non-inverting input terminal voltage is low voltage At this time, the field effect transistor is cut off, and this mechanism is used to control the average current flowing through the LED to achieve the dimming function.
2.2所提出的多段式電流調光法2.2 The proposed multi-stage current dimming method
傳統數位PWM調光之LED順向電流會在額定順向電流與零之間作切換,並藉由改變其PWM責任週期得到不同之平均電流值進行調光,如圖6所示,其中D dim越大照度越高。所提出的多段式電流調光法之調光則會分成多段進行,以二段式調光為例,第一段( )時,如同數位PWM調光,LED順向電流會在I 1與零之間作切換,並藉由改變其責任週期進行調光,如圖7a所示,D 1越大照度越高;第二段( )時,LED順向電流會在I 2與I 1之間作切換,利用改變I 2與I 1之間的責任週期比例進行調光,如圖7b所示,其中D dim1= 1 – D dim2,D dim2越大照度越高。數位PWM調光與二段式電流調光之照度-電流曲線如圖8所示,由圖8可知二段式電流調光之發光效率較佳。 2.2.1 多段式調光之各段電流值推導 The LED forward current of the traditional digital PWM dimming will be switched between the rated forward current and zero, and the dimming can be obtained by changing the PWM duty cycle to obtain different average current values, as shown in Figure 6, where D dim The larger the value, the higher the illuminance. The dimming of the proposed multi-stage current dimming method will be divided into multiple stages. Taking the two-stage dimming as an example, the first stage ( ), like digital PWM dimming, LED forward current will switch between I 1 and zero, and dimming is performed by changing its duty cycle, as shown in Figure 7a, the larger D 1 is, the higher the illuminance; Second paragraph ( ), LED forward current will switch between I 2 and I 1 , dimming by changing the duty cycle ratio between I 2 and I 1 , as shown in Figure 7b, where D dim1 = 1 – D dim2 , the bigger D dim2 is, the higher the illuminance. The illuminance-current curves of digital PWM dimming and two-stage current dimming are shown in Figure 8. From Figure 8, it can be seen that the luminous efficiency of two-stage current dimming is better. 2.2.1 Derivation of the current value of each stage of multi-stage dimming
如圖9所示,本發明實際使用五段式電流調光,並將LED順向電流由小至大定義為I 1至I 5,而在決定LED順向電流之前先假設LED照度曲線為一條過零點之二次曲線並定義照度L n為 (1) As shown in Figure 9, the present invention actually uses five-stage current dimming, and defines the LED forward current from small to large as I 1 to I 5 , and assumes that the LED illuminance curve is a line before determining the LED forward current. The quadratic curve of the zero-crossing point and define the illuminance L n as (1)
若將五個順向電流圍出的面積定義為A,由圖9可得知A可以分成一個三角形與四個梯形,則面積A算出可表示為 (2) If the area surrounded by five forward currents is defined as A, it can be seen from Figure 9 that A can be divided into a triangle and four trapezoids, and the area A can be calculated as (2)
並且將L 1至L 5根據式(1)算出並代入式(2)可得面積A為 (3) And L 1 to L 5 are calculated according to formula (1) and substituted into formula (2) to obtain the area A as (3)
接著將式(3)分別對I 1至I 5作偏微分,並令偏微分的結果等於零就可以找出使面積A最大之各分段電流大小值,而將其做整理就可得出各個LED順向電流間之關係為 (4) Then, make partial differentials for I 1 to I 5 in formula (3), and make the result of the partial differential equal to zero, then you can find out the value of the segmental current that maximizes the area A, and sort them out to get each The relationship between LED forward current is (4)
又如圖10所示,本案之線性穩流電路架構為10個CXA2540 LED模組共用5個電流檢測電阻,表2所示為CXA2540之電氣規格,一般操作於典型順向電流值1100 mA,而10顆CXA2540的總電流值為11 A,因此本案將最大電流值I
5設定為11 A,並且代入式(4),就可得所需之五段電流I
1至I
5分別為2.2 A、4.4 A、6.6 A、8.8 A及11 A。
表2. CXA2540的電氣規格
2.2.2 電流檢測電阻設計2.2.2 Current Sense Resistor Design
圖10中原先設定參考電壓V r為3.3 V,由上一小節所推導得到的所需五段電流I 1至I 5分別為2.2 A、4.4 A、6.6 A、8.8 A及11 A,則可求得R 5= 0.3 Ω、R 4= 0.375 Ω、R 3= 0.5 Ω、R 2= 0.75 Ω、R 1= 1.5 Ω,因為以上幾個電阻流過的電流都很大,所以本案之電流檢測電阻是使用誤差範圍較大的水泥電阻串並聯來實現,而這也造成本案實際之五段順向電流值有所偏差,實際使用RLC測量儀測量過後得到實際值R 5= 0.383 Ω、R 4= 0.422 Ω、R 3= 0.523 Ω、R 2= 0.78 Ω、R 1= 1.41 Ω,為了使最大順向電流值I 5調整到接近11 A,因此將V r調整至4 V,而實際測量到的各修正後的順向電流值I 1至I 5分別為2.9 A、5.3 A、7.5 A、9.3 A、10.5 A。 2.2.3 電流段數選擇 In Figure 10, the reference voltage V r is originally set to 3.3 V, and the required five-segment currents I 1 to I 5 derived from the previous section are 2.2 A, 4.4 A, 6.6 A, 8.8 A, and 11 A, respectively. Calculate R 5 = 0.3 Ω, R 4 = 0.375 Ω, R 3 = 0.5 Ω, R 2 = 0.75 Ω, R 1 = 1.5 Ω, because the current flowing through the above resistors is very large, so the current detection in this case The resistance is realized by using cement resistance with a large error range in series and parallel connection, and this also causes the actual value of the five-stage forward current in this case to deviate. The actual value R 5 = 0.383 Ω, R 4 is obtained after the actual RLC measuring instrument is used to measure = 0.422 Ω, R 3 = 0.523 Ω, R 2 = 0.78 Ω, R 1 = 1.41 Ω, in order to make the maximum forward current value I 5 adjusted to close to 11 A, so adjust V r to 4 V, and actually measured to The corrected forward current values I 1 to I 5 are 2.9 A, 5.3 A, 7.5 A, 9.3 A, and 10.5 A, respectively. 2.2.3 Selection of the number of current segments
本案定義發光效率提升百分比[ (%)]為 (5) This case defines the percentage increase of luminous efficiency [ (%)]for (5)
其中A n為多段式電流調光法之照度-電流曲線所圍成的面積,A PWM為數位PWM調光法之照度-電流曲線所圍成的面積,A LED則為LED照度-電流曲線所圍成的面積,而將圖1中25 oC照度-電流曲線之實際數值代入(1)式,並解聯立方程式便可得25 oC照度-電流曲線方程式為 (6) Among them, A n is the area enclosed by the illuminance-current curve of the multi-stage current dimming method, A PWM is the area enclosed by the illuminance-current curve of the digital PWM dimming method, and A LED is the area enclosed by the LED illuminance-current curve The enclosed area, and substituting the actual value of the 25 o C illuminance-current curve in Figure 1 into (1), and solving the simultaneous equations, the 25 o C illuminance-current curve equation can be obtained as (6)
接著將式(6)做積分計算由0積分到最大電流1100 mA便可得A LED為66.7,而數位PWM調光法之照度-電流曲線所圍成的三角形面積A PWM經過計算後可得其為61.33,接著根據前述所提之分段電流推導法,分別推導出二段式至六段式電流調光法之各分段電流值,並代入第(3)式便可得到其各分段電流所對應之照度值,接著算出二段式至六段式電流調光法之照度-電流曲線所圍成的面積A 2至A 6分別為65.36、66.1、66.36、66.49、66.55,最後將A n、A PWM及A LED代入式(5),便可得二段式至六段式電流調光法之發光效率提升百分比 至 分別為6%、7.15%、7.54%、7.74%、7.83%,由這些數據可得知,段數越高發光效率提升百分比會越高,但是隨著段數變高其提升效果會變得越不明顯,而從第五段至第六段時發光效率提升百分比已不到0.1%,因此本案選用五段式電流調光法。 Then do the integral calculation of formula (6) from 0 integration to the maximum current of 1100 mA to get A LED is 66.7, and the triangle area A PWM surrounded by the illuminance-current curve of the digital PWM dimming method can be obtained after calculation. is 61.33, and then according to the above-mentioned segmental current derivation method, the segmental current values of the two-stage to six-stage current dimming methods are respectively derived, and substituted into the formula (3) to obtain the segmental current values The illuminance value corresponding to the current, and then calculate the area A 2 to A 6 surrounded by the illuminance-current curve of the two-stage to six-stage current dimming method is 65.36, 66.1, 66.36, 66.49, 66.55, and finally A n . Substituting A PWM and A LED into formula (5), you can get the luminous efficiency improvement percentage of two-stage to six-stage current dimming method to They are 6%, 7.15%, 7.54%, 7.74%, and 7.83%, respectively. From these data, it can be known that the higher the number of segments, the higher the percentage of luminous efficiency improvement, but as the number of segments increases, the improvement effect will become more It is not obvious, and the luminous efficiency improvement percentage from the fifth stage to the sixth stage is less than 0.1%, so the five-stage current dimming method is used in this case.
2.3照度量測環境設置2.3 Illuminance measurement environment settings
在量測照度時,為了避免受到其他環境光源之影響,因此選用一個長55公分、寬35公分、高30公分的木箱作為測試空間,側面有一個4公分的方孔以便接線,並於量測時以膠布將空隙封上,使其不透光。由於10顆CXA2540的最大亮度超過50830流明,因此將照度計設置在箱子側邊(本發明所使用之照度計為TES-1339R)以防止照度值超過此照度計所能量測範圍。When measuring the illuminance, in order to avoid the influence of other ambient light sources, a wooden box with a length of 55 cm, a width of 35 cm, and a height of 30 cm was selected as the test space. There is a 4 cm square hole on the side for wiring, and it is used for measuring When measuring, seal the gap with adhesive tape to make it opaque. Since the maximum brightness of 10 CXA2540 exceeds 50830 lumens, the illuminance meter is installed on the side of the box (the illuminance meter used in this invention is TES-1339R) to prevent the illuminance value from exceeding the measurable range of the illuminance meter.
三、控制器韌體設計3. Controller firmware design
本案選用Texas Instruments公司所推出的TMS320F280049C數位訊號處理器作為LED驅動器與五段式電流調光控制之數位控制器,系統架構圖如圖2所示。利用取樣電路取樣輸出電壓及電流,將訊號透過類比/數位轉換後再送入數位濾波器進行濾波,接著將濾波結果透過PID補償計算,最後由PWM模組將PWM訊號輸出至功率開關,控制相移全橋轉換器及線性穩流電路,即可達成數位化控制。整體韌體程式流程如圖12所示,程式可分為主程式、類比轉數位轉換器中斷兩部分。程式開始時,首先針對程式所需的變數進行宣告,並將系統CLK等核心模組初始化,設定ADC、GPIO模組,接著對PWM模組進行設定與致能,之後進入無窮迴圈執行調光副程式及等待ADC中斷發生。In this case, the TMS320F280049C digital signal processor launched by Texas Instruments was selected as the digital controller for the LED driver and five-segment current dimming control. The system architecture diagram is shown in Figure 2. The sampling circuit is used to sample the output voltage and current, and the signal is sent to the digital filter for filtering through analog/digital conversion, and then the filtering result is calculated through PID compensation, and finally the PWM module outputs the PWM signal to the power switch to control the phase shift Full-bridge converter and linear constant current circuit can achieve digital control. The overall firmware program flow is shown in Figure 12. The program can be divided into two parts: the main program and the analog-to-digital converter interrupt. When the program starts, first declare the variables required by the program, initialize the core modules such as the system CLK, set the ADC and GPIO modules, then set and enable the PWM module, and then enter an infinite loop to perform dimming Subroutine and wait for ADC interrupt to occur.
ADC中斷副程式流程:ADC中斷程式流程如圖13所示,進入ADC中斷後,首先透過類比轉數位轉換器對V out進行取樣,並將取樣後的訊號送入數位濾波器進行處理,以防止高頻雜訊影響,進入相移模式後,將誤差量輸入至PID控制器計算PWM相移量,接著對PID控制計算出之相移量進行上下限的限制,使相移量不會超出設定的範圍,進而更新PWM模組之相移量,並清除ADC中斷旗標返回主程式進入無窮迴圈,等待下一個ADC中斷發生,反覆上述之動作,即可達成相移全橋轉換器的穩壓控制。 ADC interrupt subroutine flow: The ADC interrupt program flow is shown in Figure 13. After entering the ADC interrupt, first sample V out through the analog-to-digital converter, and send the sampled signal to the digital filter for processing to prevent Influenced by high-frequency noise, after entering the phase shift mode, input the error amount to the PID controller to calculate the PWM phase shift amount, and then limit the upper and lower limits of the phase shift amount calculated by the PID control, so that the phase shift amount will not exceed the setting Then update the phase shift amount of the PWM module, clear the ADC interrupt flag and return to the main program to enter an infinite loop, wait for the next ADC interrupt to occur, and repeat the above actions to achieve the stability of the phase-shifted full-bridge converter. pressure control.
五段式電流調光程式流程:使用PWM模組產生五個頻率為200 Hz的脈衝訊號,而用來控制I 4和I 2之脈波訊號必須與控制I 1、I 3和I 5之脈波訊號互補,參考電壓V r則是使用電源供應器提供。五個電流檢測電阻所組成的五段控制電流,由小到大分別定義為I 1至I 5,並將其對應之責任週期分別定義為D dim1至D dim5,接著透過電流感測器回傳至ADC模組的讀值來判斷電流大小,以此決定D dim1至D dim5該如何調整,調光程式控制流程圖如圖14所示。 Five-stage current dimming program flow: use the PWM module to generate five pulse signals with a frequency of 200 Hz, and the pulse signals used to control I 4 and I 2 must be consistent with the pulses that control I 1 , I 3 and I 5 Wave signals are complementary, and the reference voltage V r is provided by a power supply. The five-stage control current composed of five current detection resistors is defined as I 1 to I 5 from small to large, and the corresponding duty cycle is defined as D dim1 to D dim5 , and then passed back through the current sensor The reading value of the ADC module is used to judge the current magnitude, so as to determine how to adjust D dim1 to D dim5 . The control flow chart of the dimming program is shown in Figure 14.
增量型PID控制器:增量型PID控制律可表示為: (7) Incremental PID controller: Incremental PID control law can be expressed as: (7)
其中K P為比例增益、積分增益T i= K P/K I,微分增益K D= K P. T d,T d為取樣週期,e(n)為系統目前誤差量,e(n - 1)為系統前一次誤差量,n為取樣訊號點。控制增量 可表示為 (8) 由第(7)式,可得 (9) Among them, K P is the proportional gain, integral gain T i = K P /K I , differential gain K D = K P . T d , T d is the sampling period, e(n) is the current error amount of the system, e(n - 1 ) is the previous error amount of the system, and n is the sampling signal point. control increment can be expressed as (8) From formula (7), we can get (9)
令 , , ,則式(9)可改寫為 (10) make , , , then formula (9) can be rewritten as (10)
增量型PID程式流程如圖15所示,將輸出命令值與取樣回來的值相減得到一誤差量e(n),再與前一次誤差量e(n-1)及前兩次誤差量e(n-2)一起代入式(9)做運算,可得A、B及C,接著依序乘上K P、K I及K D後相加,可得到輸出變動量 ,PID輸出結果PID out等於相移量減 ,再與相移量上下限作比較,若輸出結果小於下限相移量或大於上限相移量,則輸出結果分別等於下限或上限值,最後將其結果輸出至PWM產生器。 The incremental PID program flow is shown in Figure 15. The output command value is subtracted from the sampled value to obtain an error amount e(n), and then compared with the previous error amount e(n-1) and the previous two error amounts Substituting e(n-2) into formula (9) for calculation, A, B , and C can be obtained, and then multiplied by K P , KI, and K D in sequence, and then added to obtain the output variation , the PID output result PID out is equal to the phase shift minus , and then compared with the upper and lower limits of the phase shift amount, if the output result is less than the lower limit phase shift amount or greater than the upper limit phase shift amount, the output result is equal to the lower limit or upper limit value respectively, and finally the result is output to the PWM generator.
四、實驗結果與分析4. Experimental results and analysis
4.1 PWM調光量測4.1 PWM dimming measurement
本案比較之對照組採用數位PWM控制模式驅動LED,以每10%責任週期為間隔測試輸入功率及照度值,圖16a-16c為數位PWM調光責任週期分別為10%、50%及100%之波形圖,上方為調光命令之電壓波形,下方為流過LED之電流;表3各調光命令之實驗數據,後續五段式調光法之量測將以表3之照度為基準,以作公平比較。
表3. 數位PWM調光各照度之實驗數據
4.2 五段式電流調光量測4.2 Five-stage current dimming measurement
圖17a-17c為五段式電流調光法於不同等效調光照度之波形圖,上方為調光命令之電壓波形,下方為LED順向電流之波形。表4為各等效照度的實驗數據,以數位PWM調光法之每10%調光命令的等效照度為間隔測試轉換器輸出功率。表5為各等效輸出功率的實驗數據,以數位PWM調光法之每10%調光命令的輸出功率為間隔測試照度值。
表4. 五段式電流調光照度相同於PWM調光之實驗數據
4.3光電轉換效率比較4.3 Photoelectric conversion efficiency comparison
本節根據表3、表4、表5之結果繪製數位PWM調光與五段式電流調光之照度曲線圖與光電轉換效率比較圖。圖18為數位PWM調光與五段式電流調光之光電轉換效率比較圖。圖19為照度-電流曲線圖與改善效果計算方式示意圖,在相同照度時,A點與B點之功率差除以B點功率值即為LED驅動電路輸出功率減少(改善)之百分比;在相同LED驅動電路輸出功率時,C點與D點之照度差除以D點照度值即為照度提升(改善)百分比。表6為五階段電流調光法於全控制段之改善效果。
表6. 五段式電流調光法於全控制段之改善效果
五、結論V. Conclusion
本案提出具有高發光效率之多段式電流調光法,並成功將其實現於數位訊號處理器中,使LED驅動電路在不增加輸出功率的情況下,透過控制策略讓照度變高,再依據實作來驗證其正確性及可行性。此多段式調光法利用變換線性穩流電路之電流檢測電阻以設置多段順向導通電流值,並利用控制上下兩電流之調光命令責任週期比例調整LED順向導通電流之平均值以達到照度的控制,而多段式電流調光法能夠使LED照度-電流曲線接近其原本燈源特性,因此其發光效率會高於使LED照度-電流曲線趨於線性之數位PWM調光法。This case proposes a multi-stage current dimming method with high luminous efficiency, and successfully implements it in the digital signal processor, so that the LED drive circuit can increase the illuminance through the control strategy without increasing the output power, and then according to the actual To verify its correctness and feasibility. This multi-stage dimming method uses changing the current detection resistor of the linear constant current circuit to set the multi-stage forward conduction current value, and uses the duty cycle ratio of the dimming command to control the upper and lower currents to adjust the average value of the LED forward conduction current to achieve the illuminance. The multi-stage current dimming method can make the LED illuminance-current curve close to its original light source characteristics, so its luminous efficiency will be higher than the digital PWM dimming method that makes the LED illuminance-current curve tend to be linear.
藉由前述所揭露的設計,本發明乃具有以下的優點:With the design disclosed above, the present invention has the following advantages:
1.本發明的高光轉換效率之LED驅動系統可藉由一多段式PWM電流調變方案提高LED模組的發光效率。1. The LED driving system with high light conversion efficiency of the present invention can improve the luminous efficiency of the LED module through a multi-stage PWM current modulation scheme.
2.本發明的高光轉換效率之LED驅動系統在480 W的實作中,與一般的數位PWM調光法相較:在照度相同的情況下,驅動電路的輸出功率平均減少了8.2%;在驅動電路的輸出功率相同的情況下,照度平均提升了8.9%。2. In the implementation of the LED drive system with high light conversion efficiency of the present invention at 480 W, compared with the general digital PWM dimming method: under the same illuminance, the output power of the drive circuit is reduced by 8.2% on average; When the output power of the circuit is the same, the illuminance is increased by 8.9% on average.
本案所揭示者,乃較佳實施例,舉凡局部之變更或修飾而源於本案之技術思想而為熟習該項技藝之人所易於推知者,俱不脫本案之專利權範疇。What is disclosed in this case is a preferred embodiment. For example, any partial changes or modifications derived from the technical ideas of this case and easily deduced by those who are familiar with the technology are within the scope of the patent right of this case.
綜上所陳,本案無論目的、手段與功效,皆顯示其迥異於習知技術,且其首先發明合於實用,確實符合發明之專利要件,懇請 貴審查委員明察,並早日賜予專利俾嘉惠社會,是為至禱。To sum up, regardless of the purpose, means and efficacy of this case, it shows that it is very different from the conventional technology, and its first invention is practical, and it does meet the patent requirements of the invention. I implore your review committee to understand it clearly and grant a patent as soon as possible. Society is for the Most Prayer.
100:全橋開關電路 110:電容-電感串聯電路 120:變壓器 130:第一二極體 140:第二二極體 150:第一電感 160:第二電感 170:輸出電容 180:LED負載 181:LED模組 182:放大器 183:NMOS電晶體 184:電流源 184a1:NMOS電晶體 184a2:電阻 184b1:NMOS電晶體 184b2:電阻 184c1:NMOS電晶體 184c2:電阻 184d1:NMOS電晶體 184d2:電阻 184e1:NMOS電晶體 184e2:電阻 185:電流感測器 190:電壓回授電路 191:分壓電路 192:光耦合電路 200:控制單元 201:類比至數位轉換器 202:濾波運算功能模組 203:比例-積分-微分運算功能模組 204:脈波寬度調變模組 210:閘極驅動器 100: full bridge switch circuit 110: Capacitor-inductor series circuit 120: Transformer 130: the first diode 140: second diode 150: the first inductance 160: Second inductance 170: output capacitance 180: LED load 181: LED module 182: Amplifier 183: NMOS transistor 184: Current source 184a1: NMOS transistor 184a2: resistance 184b1: NMOS transistor 184b2: resistance 184c1: NMOS transistor 184c2: resistance 184d1: NMOS transistor 184d2: resistance 184e1: NMOS transistor 184e2: resistance 185: Current sensor 190: Voltage feedback circuit 191: Voltage divider circuit 192: Optical coupling circuit 200: control unit 201: Analog to Digital Converter 202: Filter operation function module 203:Proportional-integral-differential calculation function module 204: Pulse Width Modulation Module 210: Gate driver
圖1繪示一現有LED之相對照度、電流與溫度之曲線。 圖2繪示本發明之高光轉換效率之LED驅動系統之一實施例的方塊圖。 圖3繪示一相移全橋功率級電路之拓蹼。 圖4繪示圖3之相移全橋功率級電路之主要操作點波形。 圖5繪示本發明採用之一線性穩流架構。 圖6繪示一現有數位PWM調光之LED順向電流。 圖7a-7b分別繪示本發明採用之多段式電流調光LED順向電流之第一段調光和第二段調光。 圖8繪示一現有數位PWM調光與二段式電流調光之照度-電流曲線比較圖。 圖9繪示本發明之五段式電流調光法之一調光曲線。 圖10繪示本發明之五段式電流調光法採用之一線性穩流電路架構。 圖11繪示驗證本發明效能之一照度量測環境示意圖。 圖12繪示本發明之系統韌體之一實施例之流程圖。 圖13繪示圖12之系統韌體之一ADC中斷副程式之流程圖。 圖14繪示圖12之系統韌體之五段式電流調光之流程圖。 圖15繪示圖13之ADC中斷副程式之增量型PID控制流程圖。 圖16a-16c繪示一現有數位PWM調光方案在不同責任週期(10%、50%、100%)下之不同輸出電流波形。 圖17a-17c繪示本發明之高光轉換效率之LED驅動系統在不同責任週期(10%、50%、100%)下之不同輸出電流波形。 圖18繪示該現有數位PWM調光方案與本發明之五段式電流調光方案之光電轉換效率比較圖。 圖19繪示該現有數位PWM調光方案與本發明之五段式電流調光方案之照度-電流曲線圖與改善效果計算方式之示意圖。 FIG. 1 shows the curves of relative illuminance, current and temperature of a conventional LED. FIG. 2 is a block diagram of an embodiment of an LED driving system with high light conversion efficiency according to the present invention. FIG. 3 shows the topology of a phase-shifted full-bridge power stage circuit. FIG. 4 shows waveforms of main operating points of the phase-shifted full-bridge power stage circuit shown in FIG. 3 . FIG. 5 shows a linear steady flow structure adopted by the present invention. Figure 6 shows an LED forward current for conventional digital PWM dimming. 7a-7b respectively illustrate the first-stage dimming and the second-stage dimming of the multi-stage current dimming LED forward current used in the present invention. FIG. 8 shows a comparison diagram of illuminance-current curves between conventional digital PWM dimming and two-stage current dimming. FIG. 9 shows a dimming curve of the five-stage current dimming method of the present invention. FIG. 10 shows a linear current stabilizing circuit structure adopted in the five-stage current dimming method of the present invention. FIG. 11 is a schematic diagram of an illumination measurement environment for verifying the effectiveness of the present invention. FIG. 12 shows a flowchart of an embodiment of the system firmware of the present invention. FIG. 13 shows a flowchart of an ADC interrupt subroutine of the system firmware in FIG. 12 . FIG. 14 is a flow chart of the five-stage current dimming of the system firmware in FIG. 12 . FIG. 15 shows the incremental PID control flow chart of the ADC interrupt subroutine in FIG. 13 . 16a-16c show different output current waveforms under different duty cycles (10%, 50%, 100%) of an existing digital PWM dimming scheme. 17a-17c show the different output current waveforms of the high light conversion efficiency LED driving system of the present invention under different duty cycles (10%, 50%, 100%). FIG. 18 shows the photoelectric conversion efficiency comparison between the existing digital PWM dimming scheme and the five-stage current dimming scheme of the present invention. FIG. 19 is a schematic diagram of the illuminance-current curve and the calculation method of the improvement effect of the conventional digital PWM dimming scheme and the five-stage current dimming scheme of the present invention.
100:全橋開關電路 100: full bridge switch circuit
110:電容-電感串聯電路 110: Capacitor-inductor series circuit
120:變壓器 120: Transformer
130:第一二極體 130: the first diode
140:第二二極體 140: second diode
150:第一電感 150: the first inductance
160:第二電感 160: Second inductance
170:輸出電容 170: output capacitance
180:LED負載 180: LED load
181:LED模組 181: LED module
182:放大器 182: Amplifier
183:NMOS電晶體 183: NMOS transistor
184:電流源 184: Current source
184a1:NMOS電晶體 184a1: NMOS transistor
184a2:電阻 184a2: resistance
184b1:NMOS電晶體 184b1: NMOS transistor
184b2:電阻 184b2: resistance
184c1:NMOS電晶體 184c1: NMOS transistor
184c2:電阻 184c2: resistance
184d1:NMOS電晶體 184d1: NMOS transistor
184d2:電阻 184d2: resistance
184e1:NMOS電晶體 184e1: NMOS transistor
184e2:電阻 184e2: resistance
185:電流感測器 185: Current sensor
190:電壓回授電路 190: Voltage feedback circuit
191:分壓電路 191: Voltage divider circuit
192:光耦合電路 192: Optical coupling circuit
200:控制單元 200: control unit
201:類比至數位轉換器 201: Analog to Digital Converter
202:濾波運算功能模組 202: Filter operation function module
203:比例-積分-微分運算功能模組 203:Proportional-integral-differential calculation function module
204:脈波寬度調變模組 204: Pulse Width Modulation Module
210:閘極驅動器 210: Gate driver
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW110120446A TWI771039B (en) | 2021-06-04 | 2021-06-04 | LED drive system with high light conversion efficiency |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW110120446A TWI771039B (en) | 2021-06-04 | 2021-06-04 | LED drive system with high light conversion efficiency |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI771039B TWI771039B (en) | 2022-07-11 |
TW202249534A true TW202249534A (en) | 2022-12-16 |
Family
ID=83439381
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW110120446A TWI771039B (en) | 2021-06-04 | 2021-06-04 | LED drive system with high light conversion efficiency |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI771039B (en) |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4370901B2 (en) * | 2003-10-15 | 2009-11-25 | パナソニック電工株式会社 | LED lighting device |
US7973496B2 (en) * | 2006-09-07 | 2011-07-05 | Koninklijke Philips Electronics N.V. | Resonant driver with low-voltage secondary side control for high power LED lighting |
CN101394699B (en) * | 2007-09-18 | 2012-07-11 | 通嘉科技股份有限公司 | LED driver |
TWI400989B (en) * | 2008-05-30 | 2013-07-01 | Green Solution Technology Inc | Light emitting diode driving circuit and controller thereof |
-
2021
- 2021-06-04 TW TW110120446A patent/TWI771039B/en active
Also Published As
Publication number | Publication date |
---|---|
TWI771039B (en) | 2022-07-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2676528B1 (en) | A dimmable led driver and a method for controlling the same | |
EP3286987B1 (en) | Ac-dc single-inductor multiple-output led drivers | |
KR101016074B1 (en) | LED bulb having dimming function which can be adjusted by AC signal, light emitting device control method and light emitting device controller circuit | |
TWI508613B (en) | High efficiency LED driver circuit and its driving method | |
CN102769981B (en) | Intelligent constant-current driver realized by embedded chip and control method of intelligent constant-current driver | |
CN102548101B (en) | LED dimming system | |
Ye et al. | Single-stage offline SEPIC converter with power factor correction to drive high brightness LEDs | |
CN103582258B (en) | LED drive device and method | |
WO2015010580A1 (en) | Led lighting drive circuit | |
CN103648202A (en) | Active power factor correction control circuit, chip and LED (Light Emitting Diode) drive circuit | |
Hwu et al. | Controllable and dimmable AC LED driver based on FPGA to achieve high PF and low THD | |
CN102469647A (en) | Feedback control circuit and LED drive circuit | |
CN107071985B (en) | A kind of control circuit and lamps and lanterns | |
CN201813599U (en) | LED (Light-Emitting Diode) dimmer power | |
CN201690655U (en) | Flyback road lamp illuminating LED constant-current driving power supply with intelligent dimming function | |
CN107347222A (en) | Dimming driving circuit and its control method | |
CN104684219B (en) | LED lighting device and drive circuit | |
CN210093619U (en) | A four-channel AC LED driver chip circuit with fine dimming | |
CN112654108B (en) | Dimming control circuit, control chip, power conversion device and dimming method | |
CN111585448B (en) | Constant current output control circuit, switching power supply controller and switching power supply system | |
TWI771039B (en) | LED drive system with high light conversion efficiency | |
CN203590567U (en) | AC power supply-based LED drive circuit with function of automatic illumination intensity adjusting | |
CN102802304A (en) | Novel low-cost multi-group constant current output circuit of LED (Light Emitting Diode) lighting power supply | |
TW202231122A (en) | LED driver with multitask current balance control function executing a proportional-integral control program according to a voltage feedback signal and a current feedback signal to generate a first PWM signal and a second PWM signal | |
Galkin et al. | The study of microcontroller based embedded system for smart lighting applications |