TW202247484A - Single photon avalanche diode - Google Patents
Single photon avalanche diode Download PDFInfo
- Publication number
- TW202247484A TW202247484A TW111101787A TW111101787A TW202247484A TW 202247484 A TW202247484 A TW 202247484A TW 111101787 A TW111101787 A TW 111101787A TW 111101787 A TW111101787 A TW 111101787A TW 202247484 A TW202247484 A TW 202247484A
- Authority
- TW
- Taiwan
- Prior art keywords
- type
- well layer
- semiconductor well
- type semiconductor
- layer
- Prior art date
Links
- 239000004065 semiconductor Substances 0.000 claims abstract description 109
- 230000015556 catabolic process Effects 0.000 claims description 11
- 238000001514 detection method Methods 0.000 description 16
- 239000012535 impurity Substances 0.000 description 7
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 229910052710 silicon Inorganic materials 0.000 description 6
- 239000010703 silicon Substances 0.000 description 6
- 230000004888 barrier function Effects 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 238000009826 distribution Methods 0.000 description 5
- 238000005468 ion implantation Methods 0.000 description 5
- 230000005684 electric field Effects 0.000 description 4
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 3
- 229910052796 boron Inorganic materials 0.000 description 3
- 229910052738 indium Inorganic materials 0.000 description 3
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 2
- 229910052785 arsenic Inorganic materials 0.000 description 2
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 239000011574 phosphorus Substances 0.000 description 2
- 238000000137 annealing Methods 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F30/00—Individual radiation-sensitive semiconductor devices in which radiation controls the flow of current through the devices, e.g. photodetectors
- H10F30/20—Individual radiation-sensitive semiconductor devices in which radiation controls the flow of current through the devices, e.g. photodetectors the devices having potential barriers, e.g. phototransistors
- H10F30/21—Individual radiation-sensitive semiconductor devices in which radiation controls the flow of current through the devices, e.g. photodetectors the devices having potential barriers, e.g. phototransistors the devices being sensitive to infrared, visible or ultraviolet radiation
- H10F30/22—Individual radiation-sensitive semiconductor devices in which radiation controls the flow of current through the devices, e.g. photodetectors the devices having potential barriers, e.g. phototransistors the devices being sensitive to infrared, visible or ultraviolet radiation the devices having only one potential barrier, e.g. photodiodes
- H10F30/225—Individual radiation-sensitive semiconductor devices in which radiation controls the flow of current through the devices, e.g. photodetectors the devices having potential barriers, e.g. phototransistors the devices being sensitive to infrared, visible or ultraviolet radiation the devices having only one potential barrier, e.g. photodiodes the potential barrier working in avalanche mode, e.g. avalanche photodiodes
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F77/00—Constructional details of devices covered by this subclass
- H10F77/10—Semiconductor bodies
- H10F77/12—Active materials
- H10F77/122—Active materials comprising only Group IV materials
- H10F77/1223—Active materials comprising only Group IV materials characterised by the dopants
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Light Receiving Elements (AREA)
Abstract
Description
本發明是有關於一種光二極體(photodiode),且特別是有關於一種單光子崩潰二極體(single photon avalanche diode,SPAD)。The present invention relates to a photodiode, and in particular to a single photon avalanche diode (SPAD).
在半導體元件的製程中,會在半導體中摻入雜質原子,以形成P型或N型半導體區域。其中,離子植入法(ion implantation)是以電場加速離子化的雜質原子,將雜質原子打入半導體基板中,使雜質原子擴散進入半導體基板內部。During the manufacturing process of semiconductor devices, impurity atoms are doped into the semiconductor to form P-type or N-type semiconductor regions. Among them, the ion implantation method (ion implantation) accelerates the ionized impurity atoms by an electric field, injects the impurity atoms into the semiconductor substrate, and diffuses the impurity atoms into the interior of the semiconductor substrate.
當光子照射在單光子崩潰二極體上,與電洞分離的電子進入PN接面(p-n junction)處之空乏區(depletion region)時,電子被空乏區內的電場大幅地加速而撞擊其他原子,使其他原子游離出更多的電子,而形成崩潰電流(avalanche current)。崩潰電流的電流值遠大於原始的光電流,進而能夠有效提升感應靈敏度。When a photon is irradiated on a single-photon collapse diode, the electrons separated from the hole enter the depletion region at the p-n junction, and the electrons are greatly accelerated by the electric field in the depletion region and hit other atoms , so that other atoms free more electrons to form a collapse current (avalanche current). The current value of the breakdown current is much larger than the original photocurrent, which can effectively improve the sensing sensitivity.
在單光子崩潰二極體的元件製造過程中,為了製作出深的PN接面來吸收更多的光子,通常會進行多道離子植入。離子植入後的退火(annealing)程序,則是藉由加熱矽基板,修補離子植入過程中產生的晶格缺陷,並且可以讓植入的雜質原子擴散。如果加熱時間不夠長,植入的雜質原子就不會完全均勻擴散,而形成一些載子濃度較高的區域。在P型半導體區域中,這些載子濃度較高的區域會對電子形成能障,使得在表層產生的光電子易從側向流走,而不會到達崩潰區(即空乏區)產生崩潰訊號,造成光子偵測率(photon detection probability,PDP)的損失。In the manufacturing process of single-photon collapse diodes, in order to create deep PN junctions to absorb more photons, multi-pass ion implantation is usually performed. The annealing process after ion implantation repairs the lattice defects generated during the ion implantation process by heating the silicon substrate, and allows the implanted impurity atoms to diffuse. If the heating time is not long enough, the implanted impurity atoms will not diffuse completely and evenly, and some regions with higher carrier concentration will be formed. In the P-type semiconductor region, these regions with higher carrier concentration will form an energy barrier for electrons, so that the photoelectrons generated on the surface can easily flow away from the side, and will not reach the collapse region (that is, the depletion region) to generate a collapse signal. This results in loss of photon detection probability (PDP).
本發明提供一種單光子崩潰二極體,其可以提升光子偵測率。The invention provides a single photon collapse diode, which can improve the photon detection rate.
在本發明的一實施例中,單光子崩潰二極體包括N型半導體井層、P型半導體井層以及P型側摻雜層。P型半導體井層配置於N型半導體井層上。P型側摻雜層配置於N型半導體井層與至少一部分的P型半導體井層之間。P型側摻雜層的深度小於P型半導體井層的深度。P型側摻雜層的P型摻雜濃度大於P型半導體井層的P型摻雜濃度。In an embodiment of the present invention, the single photon breakdown diode includes an N-type semiconductor well layer, a P-type semiconductor well layer, and a P-type side doped layer. The P-type semiconductor well layer is configured on the N-type semiconductor well layer. The P-type side doped layer is disposed between the N-type semiconductor well layer and at least a part of the P-type semiconductor well layer. The depth of the P-type side doped layer is smaller than the depth of the P-type semiconductor well layer. The P-type doping concentration of the P-type side doping layer is greater than the P-type doping concentration of the P-type semiconductor well layer.
基於上述,在本發明的實施例的單光子崩潰二極體中,由於P型側摻雜層配置於N型半導體井層與至少一部分的P型半導體井層之間,而且P型側摻雜層的P型摻雜濃度大於P型半導體井層的P型摻雜濃度,因此可以阻擋P型半導體井層中形成的光電子經由側邊進入N型半導體井層,使光電子有效地進入PN接面形成的崩潰區(即強電場區)而被加速,引發崩潰電流,提升光子偵測率。Based on the above, in the single photon collapse diode of the embodiment of the present invention, since the P-type side doped layer is arranged between the N-type semiconductor well layer and at least a part of the P-type semiconductor well layer, and the P-type side doped layer The P-type doping concentration of the layer is greater than the P-type doping concentration of the P-type semiconductor well layer, so it can prevent the photoelectrons formed in the P-type semiconductor well layer from entering the N-type semiconductor well layer through the side, so that the photoelectrons can effectively enter the PN junction The formed collapse region (that is, the strong electric field region) is accelerated, causing a collapse current and improving the photon detection rate.
圖1A是依照本發明一實施例的單光子崩潰二極體的剖面示意圖,圖1B是圖1A的單光子崩潰二極體的摻雜濃度分佈圖。請參照圖1A及圖1B。圖中的x是平行單光子崩潰二極體的表面的位置,y是垂直單光子崩潰二極體的表面的深度位置。圖1B左上角的數值是標示載子濃度,單位為cm
-3,其中負值是代表P型摻雜,正值則是代表N型摻雜。單光子崩潰二極體100包括N型半導體井層110、P型半導體井層120以及P型側摻雜層130。P型半導體井層120配置於N型半導體井層110上。P型側摻雜層130配置於P型半導體井層的內部120內部,且靠近N型半導體井層110。P型側摻雜層130的深度d1小於P型半導體井層120的深度d2。在圖1A與圖1B的實施例中,P型側摻雜層130的深度d1約為2.5微米,P型半導體井層120的深度d2約為3微米。此外,P型側摻雜層130的P型摻雜濃度大於P型半導體井層120的P型摻雜濃度。
1A is a schematic cross-sectional view of a single-photon breakdown diode according to an embodiment of the present invention, and FIG. 1B is a doping concentration distribution diagram of the single-photon breakdown diode of FIG. 1A . Please refer to FIG. 1A and FIG. 1B . In the figure, x is the position of the surface of the parallel single photon collapsing diode, and y is the depth position of the surface of the vertical single photon collapsing diode. The value in the upper left corner of FIG. 1B indicates the carrier concentration, and the unit is cm −3 , where negative values represent P-type doping, and positive values represent N-type doping. The single
在本實施例中,P型半導體井層120與N型半導體井層110之間形成一PN接面J,且PN接面J形成一崩潰區R。P型側摻雜層130配置於PN接面J上方靠近N型半導體井層110的一側。詳細而言,在本實施例中,N型半導體井層110包括底部112以及側壁114,P型半導體井層120配置於底部112上,側壁114環繞P型半導體井層120,P型側摻雜層130配置於PN接面J上方靠近側壁114處,且順著側壁114的形狀延伸。In this embodiment, a PN junction J is formed between the P-type
在本實施例中,P型半導體井層120具有至少一高濃度區域122,P型半導體井層120在至少一高濃度區域122的P型摻雜濃度大於P型半導體井層120在至少一高濃度區域122附近的P型摻雜濃度,至少一高濃度區域122的延伸方向不同於P型側摻雜層130的延伸方向。當P型半導體井層120中形成的光電子在P型半導體井層120中移動,高濃度區域122會對電子形成橫向的能障,使電子朝側向移動的機率變高。在本實施例中,因為將P型側摻雜層130配置於PN接面J上方靠近N型半導體井層110的側壁114的一側,可以對電子形成縱向的能障,降低電子經由側邊進入N型半導體井層110的機率,使電子有效地進入PN接面J形成的崩潰區R,崩潰區R具有較強的電場,而使電子被加速,撞擊其他的原子,進而導致更多的電子游離,引發崩潰電流,提升光子偵測率。In this embodiment, the P-type
在本實施例中,P型半導體井層120的底部與P型側摻雜層130的底部位於不同水平面。在本實施例中,P型半導體井層120的底部與P型側摻雜層130的底部之間的間距h是落在0.5微米至2微米的範圍內。舉例而言,圖1A的P型半導體井層120的底部與P型側摻雜層130的底部之間的間距h大約是0.5微米。因為P型側摻雜層130沒有接觸PN接面J,因此可以避免光電子在P型側摻雜層130與PN接面J接觸的地方觸發崩潰。In this embodiment, the bottom of the P-type
在本實施例中,P型半導體井層120的P型摻雜濃度是落在10
17cm
-3至5×10
18cm
-3的範圍內,且P型側摻雜層130的P型摻雜濃度是落在10
17cm
-3至5×10
18cm
-3的範圍內。舉例而言,在圖1A的實施例中,P型半導體井層120的P型摻雜濃度大約是2×10
17cm
-3,P型側摻雜層130的P型摻雜濃度大約是6×10
17cm
-3。在本實施例中,因為P型側摻雜層130的P型摻雜濃度大於P型半導體井層120的P型摻雜濃度,所以P型側摻雜層130會對P型半導體井層120中的光電子形成較高的能障,阻擋光電子經由P型側摻雜層130分部的區域進入N型半導體井層110。
In this embodiment, the P-type doping concentration of the P-type
在圖1A與圖1B的實施例中,單光子崩潰二極體100還包括P型重摻雜層140以及N型重摻雜層150。P型重摻雜層140配置於P型半導體井層120上。N型重摻雜層150配置於N型半導體井層110上。在本實施例中,P型側摻雜層130配置於P型重摻雜層140與N型重摻雜層150之間。在本實施例中,P型重摻雜層140的P型摻雜濃度大於P型側摻雜層130的P型摻雜濃度,且N型重摻雜層150的N型摻雜濃度大於N型半導體井層110的N型摻雜濃度。詳細而言,在本實施例中,N型半導體井層110包括底部112以及側壁114,P型半導體井層120配置於底部112上,側壁114環繞P型半導體井層120,N型重摻雜層150配置於側壁114的頂部。In the embodiment shown in FIG. 1A and FIG. 1B , the single
圖2是圖1A的單光子崩潰二極體在同一剖面上的電流密度分佈圖。請參照圖2。相同地,圖中的x是平行單光子崩潰二極體的表面的位置,y是垂直單光子崩潰二極體的表面的深度位置。圖中左上角的數值是標示電流密度,單位為A‧cm
-2。由圖中可看出,在P型半導體井層120中,靠近P型半導體井層120與N型半導體井層110的側壁114的界面處的區域,電流密度較低;靠近P型半導體井層120與N型半導體井層110的底部112的界面處的區域,也就是靠近PN接面J所形成的崩潰區R的區域,電流密度較高。此一現象代表光電子朝側邊移動的機率較小,朝下方崩潰區R移動的機率較大。因此,本實施例的單光子崩潰二極體100可使光電子有效地朝崩潰區R移動,提升光子偵測率。
FIG. 2 is a diagram of the current density distribution of the single-photon collapse diode of FIG. 1A on the same section. Please refer to Figure 2. Likewise, x in the figure is the position parallel to the surface of the single photon collapsed diode, and y is the depth position perpendicular to the surface of the single photon collapsed diode. The value in the upper left corner of the figure is the indicated current density, and the unit is A‧cm -2 . As can be seen from the figure, in the P-type
圖3是一比較例的單光子崩潰二極體的剖面示意圖。在圖3的單光子崩潰二極體100’中,沒有配置P型側摻雜層130。圖4是圖3的單光子崩潰二極體在同一剖面上的電流密度分佈圖。由圖4中可看出,在P型半導體井層120’中,高濃度區域122’之間,靠近P型半導體井層120’與N型半導體井層110’的側壁114的界面處的區域,有電流密度較高的渠道,形成側向電子流I;在高濃度區域122’內,從P型重摻雜層140’往PN接面J’所形成的崩潰區R’的路徑上,有電流密度較低的區域。此一現象是P型半導體井層120’中橫向分佈的高濃度區域122’,對P型半導體井層120’中移動的光電子形成能障,導致光電子朝側邊移動的機率增加,朝側邊移動的光電子便無法進入到崩潰區R’,進而引發崩潰電流,因此降低了光子偵測率。在圖1A的單光子崩潰二極體中,元件的光子偵測率提升至2.1%,而在圖3的單光子崩潰二極體中,元件的光子偵測率是1.4%。FIG. 3 is a schematic cross-sectional view of a single-photon collapse diode of a comparative example. In the single photon breakdown diode 100' in Fig. 3, the P-type side doped
圖5繪示圖1A的單光子崩潰二極體與圖3的單光子崩潰二極體的光子偵測率與施加電壓的關係圖。圖5中的數據點反映出,在單光子崩潰二極體100元件中設置P型側摻雜層130,對於元件的光子偵測率PDP之影響。從圖5中可以看出,隨著施加電壓V
ex的調變,圖1A的單光子崩潰二極體100的光子偵測率PDP(在圖5中標示為正方型數據點)總是大於圖3的單光子崩潰二極體100’的光子偵測率PDP(在圖5中標示為三角型數據點)。由此可知,依照本發明的實施例,在單光子崩潰二極體100元件中設置P型側摻雜層130,能夠有效地提升元件的光子偵測率。
FIG. 5 is a graph showing the relationship between the photon detection rate and the applied voltage of the single photon collapse diode of FIG. 1A and the single photon collapse diode of FIG. 3 . The data points in FIG. 5 reflect the effect of disposing the P-type side doped
在本實施例中,N型半導體井層110的材料例如為摻雜有磷、砷、銻或其組合的矽。P型半導體井層120的材料例如為摻雜有硼、銦或其組合的矽。P型側摻雜層130的材料例如為摻雜有硼、銦或其組合的矽。P型重摻雜層140的材料例如為摻雜有硼、銦或其組合的矽。N型重摻雜層150的材料例如為摻雜有磷、砷或其組合的矽。然而,本發明並不以上述材料為限。In this embodiment, the material of the N-type
綜上所述,在本發明的實施例的單光子崩潰二極體中,由於P型側摻雜層配置於PN接面上方靠近N型半導體井層的一側,而且P型側摻雜層的P型摻雜濃度大於P型半導體井層的P型摻雜濃度,因此可以阻擋P型半導體井層中形成的光電子經由側邊進入N型半導體井層,使光電子有效地進入PN接面形成的崩潰區而被加速,引發崩潰電流,提升光子偵測率。To sum up, in the single photon breakdown diode of the embodiment of the present invention, since the P-type side doped layer is arranged on the side near the N-type semiconductor well layer above the PN junction, and the P-type side doped layer The P-type doping concentration of the P-type semiconductor well layer is greater than the P-type doping concentration of the P-type semiconductor well layer, so it can prevent the photoelectrons formed in the P-type semiconductor well layer from entering the N-type semiconductor well layer through the side, so that the photoelectrons can effectively enter the PN junction to form The collapse area of the photon is accelerated, causing a collapse current and increasing the photon detection rate.
100、100’:單光子崩潰二極體
110、110’:N型半導體井層
112:底部
114、114’:側壁
120、120’:P型半導體井層
122、122’:高濃度區域
130:P型側摻雜層
140、140’:P型重摻雜層
150:N型重摻雜層
d1、d2:深度
h:間距
I:側向電子流
J、J’:PN接面
R、R’:崩潰區
V
ex:施加電壓
PDP:光子偵測率
x:位置
y:位置
100, 100': single
圖1A是依照本發明一實施例的單光子崩潰二極體的剖面示意圖。 圖1B是圖1A的單光子崩潰二極體的摻雜濃度分佈圖。 圖2是圖1A的單光子崩潰二極體在同一剖面上的電流密度分佈圖。 圖3是一比較例的單光子崩潰二極體的剖面示意圖。 圖4是圖3的單光子崩潰二極體在同一剖面上的電流密度分佈圖。 圖5繪示圖1A的單光子崩潰二極體與圖3的單光子崩潰二極體的光子偵測率與施加電壓的關係圖。 FIG. 1A is a schematic cross-sectional view of a single-photon collapse diode according to an embodiment of the invention. FIG. 1B is a graph of the doping concentration profile of the single photon collapse diode of FIG. 1A . FIG. 2 is a diagram of the current density distribution of the single-photon collapse diode of FIG. 1A on the same section. FIG. 3 is a schematic cross-sectional view of a single-photon collapse diode of a comparative example. FIG. 4 is a diagram of the current density distribution of the single-photon collapse diode in FIG. 3 on the same section. FIG. 5 is a graph showing the relationship between the photon detection rate and the applied voltage of the single photon collapse diode of FIG. 1A and the single photon collapse diode of FIG. 3 .
100:單光子崩潰二極體 100: Single Photon Collapses Diodes
110:N型半導體井層 110: N-type semiconductor well layer
112:底部 112: bottom
114:側壁 114: side wall
120:P型半導體井層 120: P-type semiconductor well layer
122:高濃度區域 122: high concentration area
130:P型側摻雜層 130: P-type side doped layer
140:P型重摻雜層 140: P-type heavily doped layer
150:N型重摻雜層 150: N-type heavily doped layer
d1、d2:深度 d1, d2: depth
h:間距 h: spacing
J:PN接面 J:PN junction
R:崩潰區 R: crash zone
Claims (11)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US202163190747P | 2021-05-19 | 2021-05-19 | |
US63/190,747 | 2021-05-19 |
Publications (1)
Publication Number | Publication Date |
---|---|
TW202247484A true TW202247484A (en) | 2022-12-01 |
Family
ID=81230527
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW111101787A TW202247484A (en) | 2021-05-19 | 2022-01-17 | Single photon avalanche diode |
TW111200584U TWM625342U (en) | 2021-05-19 | 2022-01-17 | Single photon avalanche diode |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW111200584U TWM625342U (en) | 2021-05-19 | 2022-01-17 | Single photon avalanche diode |
Country Status (3)
Country | Link |
---|---|
CN (2) | CN216749923U (en) |
TW (2) | TW202247484A (en) |
WO (1) | WO2022242209A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022242209A1 (en) * | 2021-05-19 | 2022-11-24 | 神盾股份有限公司 | Single-photon avalanche diode |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
IT1393781B1 (en) * | 2009-04-23 | 2012-05-08 | St Microelectronics Rousset | OPERATING PHOTODIODO IN GEIGER MODE WITH INTEGRATED AND CONTROLLABLE JFET EFFECT SUPPRESSION RESISTOR, PHOTODIUM RING AND ITS PROCESS OF PROCESSING |
EP3206234B1 (en) * | 2016-02-09 | 2023-08-09 | ams AG | Semiconductor element with a single photon avalanche diode and method for manufacturing such semiconductor element |
EP3435422B1 (en) * | 2017-07-26 | 2020-05-06 | ams AG | Spad device for excess bias monitoring |
EP3477710B1 (en) * | 2017-10-26 | 2023-03-29 | STMicroelectronics (Research & Development) Limited | Avalanche photodiode and method of manufacturing the avalanche photodiode |
CN108039390A (en) * | 2017-11-22 | 2018-05-15 | 天津大学 | Contactless protection ring single-photon avalanche diode and preparation method |
CN109300992B (en) * | 2018-08-16 | 2020-01-21 | 杭州电子科技大学 | Single photon avalanche diode with high detection efficiency and manufacturing method thereof |
WO2022242209A1 (en) * | 2021-05-19 | 2022-11-24 | 神盾股份有限公司 | Single-photon avalanche diode |
-
2022
- 2022-01-17 WO PCT/CN2022/072216 patent/WO2022242209A1/en active Application Filing
- 2022-01-17 TW TW111101787A patent/TW202247484A/en unknown
- 2022-01-17 CN CN202220146398.XU patent/CN216749923U/en active Active
- 2022-01-17 TW TW111200584U patent/TWM625342U/en unknown
- 2022-01-17 CN CN202210051051.1A patent/CN114400269A/en active Pending
Also Published As
Publication number | Publication date |
---|---|
TWM625342U (en) | 2022-04-01 |
WO2022242209A1 (en) | 2022-11-24 |
CN216749923U (en) | 2022-06-14 |
CN114400269A (en) | 2022-04-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11329185B2 (en) | Avalanche diode along with vertical PN junction and method for manufacturing the same field | |
US9893211B2 (en) | Semiconductor device manufacturing method | |
US8476730B2 (en) | Geiger-mode photodiode with integrated and JFET-effect-adjustable quenching resistor, photodiode array, and corresponding manufacturing method | |
JP5811861B2 (en) | Manufacturing method of semiconductor device | |
JP7343555B2 (en) | light detection device | |
US11316064B2 (en) | Photodiode and/or PIN diode structures | |
US20200185560A1 (en) | Spad-type photodiode | |
CN107895743B (en) | Apparatus and method for single-photon avalanche photodiode detectors | |
US11335825B2 (en) | Single-photon avalanche diode and a sensor array | |
TWI837834B (en) | Semiconductor device including germanium region disposed in semiconductor substrate and method for forming the same | |
TW202247484A (en) | Single photon avalanche diode | |
CN114242826B (en) | Single photon avalanche diode and forming method thereof | |
CN115621352B (en) | Semiconductor device and method for manufacturing the same | |
JP2012174783A (en) | Photodiode and photodiode array | |
TWI792720B (en) | Single photon avalanche diode | |
RU2427942C1 (en) | Integral cell for radiation detector based on bipolar transistor with cellular base | |
US20240162365A1 (en) | Avalanche photodetectors with a combined lateral and vertical arrangement | |
CN117393571A (en) | Single Photon Avalanche Diode | |
CN117393634A (en) | Avalanche diode and preparation method thereof |