[go: up one dir, main page]

TW202247484A - Single photon avalanche diode - Google Patents

Single photon avalanche diode Download PDF

Info

Publication number
TW202247484A
TW202247484A TW111101787A TW111101787A TW202247484A TW 202247484 A TW202247484 A TW 202247484A TW 111101787 A TW111101787 A TW 111101787A TW 111101787 A TW111101787 A TW 111101787A TW 202247484 A TW202247484 A TW 202247484A
Authority
TW
Taiwan
Prior art keywords
type
well layer
semiconductor well
type semiconductor
layer
Prior art date
Application number
TW111101787A
Other languages
Chinese (zh)
Inventor
謝晉安
Original Assignee
神盾股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 神盾股份有限公司 filed Critical 神盾股份有限公司
Publication of TW202247484A publication Critical patent/TW202247484A/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F30/00Individual radiation-sensitive semiconductor devices in which radiation controls the flow of current through the devices, e.g. photodetectors
    • H10F30/20Individual radiation-sensitive semiconductor devices in which radiation controls the flow of current through the devices, e.g. photodetectors the devices having potential barriers, e.g. phototransistors
    • H10F30/21Individual radiation-sensitive semiconductor devices in which radiation controls the flow of current through the devices, e.g. photodetectors the devices having potential barriers, e.g. phototransistors the devices being sensitive to infrared, visible or ultraviolet radiation
    • H10F30/22Individual radiation-sensitive semiconductor devices in which radiation controls the flow of current through the devices, e.g. photodetectors the devices having potential barriers, e.g. phototransistors the devices being sensitive to infrared, visible or ultraviolet radiation the devices having only one potential barrier, e.g. photodiodes
    • H10F30/225Individual radiation-sensitive semiconductor devices in which radiation controls the flow of current through the devices, e.g. photodetectors the devices having potential barriers, e.g. phototransistors the devices being sensitive to infrared, visible or ultraviolet radiation the devices having only one potential barrier, e.g. photodiodes the potential barrier working in avalanche mode, e.g. avalanche photodiodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F77/00Constructional details of devices covered by this subclass
    • H10F77/10Semiconductor bodies
    • H10F77/12Active materials
    • H10F77/122Active materials comprising only Group IV materials
    • H10F77/1223Active materials comprising only Group IV materials characterised by the dopants
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Light Receiving Elements (AREA)

Abstract

A single photon avalanche diode including a n-type semiconductor well layer, a p-type semiconductor well layer, and a side p-type-doping well layer is provided. The p-type semiconductor well layer is deposed on the n-type semiconductor well layer. The side p-type-doping well layer is deposed between the n-type semiconductor well layer and the p-type semiconductor well layer. The depth of the side p-type-doping well layer is less than the depth of the p-type semiconductor well layer. The p-type doping concentration of the side p-type-doping well layer is greater than the p-type doping concentration of the p-type semiconductor well layer.

Description

單光子崩潰二極體single photon collapse diode

本發明是有關於一種光二極體(photodiode),且特別是有關於一種單光子崩潰二極體(single photon avalanche diode,SPAD)。The present invention relates to a photodiode, and in particular to a single photon avalanche diode (SPAD).

在半導體元件的製程中,會在半導體中摻入雜質原子,以形成P型或N型半導體區域。其中,離子植入法(ion implantation)是以電場加速離子化的雜質原子,將雜質原子打入半導體基板中,使雜質原子擴散進入半導體基板內部。During the manufacturing process of semiconductor devices, impurity atoms are doped into the semiconductor to form P-type or N-type semiconductor regions. Among them, the ion implantation method (ion implantation) accelerates the ionized impurity atoms by an electric field, injects the impurity atoms into the semiconductor substrate, and diffuses the impurity atoms into the interior of the semiconductor substrate.

當光子照射在單光子崩潰二極體上,與電洞分離的電子進入PN接面(p-n junction)處之空乏區(depletion region)時,電子被空乏區內的電場大幅地加速而撞擊其他原子,使其他原子游離出更多的電子,而形成崩潰電流(avalanche current)。崩潰電流的電流值遠大於原始的光電流,進而能夠有效提升感應靈敏度。When a photon is irradiated on a single-photon collapse diode, the electrons separated from the hole enter the depletion region at the p-n junction, and the electrons are greatly accelerated by the electric field in the depletion region and hit other atoms , so that other atoms free more electrons to form a collapse current (avalanche current). The current value of the breakdown current is much larger than the original photocurrent, which can effectively improve the sensing sensitivity.

在單光子崩潰二極體的元件製造過程中,為了製作出深的PN接面來吸收更多的光子,通常會進行多道離子植入。離子植入後的退火(annealing)程序,則是藉由加熱矽基板,修補離子植入過程中產生的晶格缺陷,並且可以讓植入的雜質原子擴散。如果加熱時間不夠長,植入的雜質原子就不會完全均勻擴散,而形成一些載子濃度較高的區域。在P型半導體區域中,這些載子濃度較高的區域會對電子形成能障,使得在表層產生的光電子易從側向流走,而不會到達崩潰區(即空乏區)產生崩潰訊號,造成光子偵測率(photon detection probability,PDP)的損失。In the manufacturing process of single-photon collapse diodes, in order to create deep PN junctions to absorb more photons, multi-pass ion implantation is usually performed. The annealing process after ion implantation repairs the lattice defects generated during the ion implantation process by heating the silicon substrate, and allows the implanted impurity atoms to diffuse. If the heating time is not long enough, the implanted impurity atoms will not diffuse completely and evenly, and some regions with higher carrier concentration will be formed. In the P-type semiconductor region, these regions with higher carrier concentration will form an energy barrier for electrons, so that the photoelectrons generated on the surface can easily flow away from the side, and will not reach the collapse region (that is, the depletion region) to generate a collapse signal. This results in loss of photon detection probability (PDP).

本發明提供一種單光子崩潰二極體,其可以提升光子偵測率。The invention provides a single photon collapse diode, which can improve the photon detection rate.

在本發明的一實施例中,單光子崩潰二極體包括N型半導體井層、P型半導體井層以及P型側摻雜層。P型半導體井層配置於N型半導體井層上。P型側摻雜層配置於N型半導體井層與至少一部分的P型半導體井層之間。P型側摻雜層的深度小於P型半導體井層的深度。P型側摻雜層的P型摻雜濃度大於P型半導體井層的P型摻雜濃度。In an embodiment of the present invention, the single photon breakdown diode includes an N-type semiconductor well layer, a P-type semiconductor well layer, and a P-type side doped layer. The P-type semiconductor well layer is configured on the N-type semiconductor well layer. The P-type side doped layer is disposed between the N-type semiconductor well layer and at least a part of the P-type semiconductor well layer. The depth of the P-type side doped layer is smaller than the depth of the P-type semiconductor well layer. The P-type doping concentration of the P-type side doping layer is greater than the P-type doping concentration of the P-type semiconductor well layer.

基於上述,在本發明的實施例的單光子崩潰二極體中,由於P型側摻雜層配置於N型半導體井層與至少一部分的P型半導體井層之間,而且P型側摻雜層的P型摻雜濃度大於P型半導體井層的P型摻雜濃度,因此可以阻擋P型半導體井層中形成的光電子經由側邊進入N型半導體井層,使光電子有效地進入PN接面形成的崩潰區(即強電場區)而被加速,引發崩潰電流,提升光子偵測率。Based on the above, in the single photon collapse diode of the embodiment of the present invention, since the P-type side doped layer is arranged between the N-type semiconductor well layer and at least a part of the P-type semiconductor well layer, and the P-type side doped layer The P-type doping concentration of the layer is greater than the P-type doping concentration of the P-type semiconductor well layer, so it can prevent the photoelectrons formed in the P-type semiconductor well layer from entering the N-type semiconductor well layer through the side, so that the photoelectrons can effectively enter the PN junction The formed collapse region (that is, the strong electric field region) is accelerated, causing a collapse current and improving the photon detection rate.

圖1A是依照本發明一實施例的單光子崩潰二極體的剖面示意圖,圖1B是圖1A的單光子崩潰二極體的摻雜濃度分佈圖。請參照圖1A及圖1B。圖中的x是平行單光子崩潰二極體的表面的位置,y是垂直單光子崩潰二極體的表面的深度位置。圖1B左上角的數值是標示載子濃度,單位為cm -3,其中負值是代表P型摻雜,正值則是代表N型摻雜。單光子崩潰二極體100包括N型半導體井層110、P型半導體井層120以及P型側摻雜層130。P型半導體井層120配置於N型半導體井層110上。P型側摻雜層130配置於P型半導體井層的內部120內部,且靠近N型半導體井層110。P型側摻雜層130的深度d1小於P型半導體井層120的深度d2。在圖1A與圖1B的實施例中,P型側摻雜層130的深度d1約為2.5微米,P型半導體井層120的深度d2約為3微米。此外,P型側摻雜層130的P型摻雜濃度大於P型半導體井層120的P型摻雜濃度。 1A is a schematic cross-sectional view of a single-photon breakdown diode according to an embodiment of the present invention, and FIG. 1B is a doping concentration distribution diagram of the single-photon breakdown diode of FIG. 1A . Please refer to FIG. 1A and FIG. 1B . In the figure, x is the position of the surface of the parallel single photon collapsing diode, and y is the depth position of the surface of the vertical single photon collapsing diode. The value in the upper left corner of FIG. 1B indicates the carrier concentration, and the unit is cm −3 , where negative values represent P-type doping, and positive values represent N-type doping. The single photon breakdown diode 100 includes an N-type semiconductor well layer 110 , a P-type semiconductor well layer 120 and a P-type side doped layer 130 . The P-type semiconductor well layer 120 is disposed on the N-type semiconductor well layer 110 . The P-type side doped layer 130 is disposed inside the P-type semiconductor well layer 120 and is close to the N-type semiconductor well layer 110 . The depth d1 of the P-type side doped layer 130 is smaller than the depth d2 of the P-type semiconductor well layer 120 . In the embodiment shown in FIG. 1A and FIG. 1B , the depth d1 of the P-type side doped layer 130 is about 2.5 microns, and the depth d2 of the P-type semiconductor well layer 120 is about 3 microns. In addition, the P-type doping concentration of the P-type side doped layer 130 is greater than the P-type doping concentration of the P-type semiconductor well layer 120 .

在本實施例中,P型半導體井層120與N型半導體井層110之間形成一PN接面J,且PN接面J形成一崩潰區R。P型側摻雜層130配置於PN接面J上方靠近N型半導體井層110的一側。詳細而言,在本實施例中,N型半導體井層110包括底部112以及側壁114,P型半導體井層120配置於底部112上,側壁114環繞P型半導體井層120,P型側摻雜層130配置於PN接面J上方靠近側壁114處,且順著側壁114的形狀延伸。In this embodiment, a PN junction J is formed between the P-type semiconductor well layer 120 and the N-type semiconductor well layer 110 , and the PN junction J forms a collapse region R. The P-type side doped layer 130 is disposed on a side near the N-type semiconductor well layer 110 above the PN junction J. In detail, in this embodiment, the N-type semiconductor well layer 110 includes a bottom 112 and sidewalls 114, the P-type semiconductor well layer 120 is disposed on the bottom 112, the sidewall 114 surrounds the P-type semiconductor well layer 120, and the P-type side is doped The layer 130 is disposed above the PN junction J close to the sidewall 114 and extends along the shape of the sidewall 114 .

在本實施例中,P型半導體井層120具有至少一高濃度區域122,P型半導體井層120在至少一高濃度區域122的P型摻雜濃度大於P型半導體井層120在至少一高濃度區域122附近的P型摻雜濃度,至少一高濃度區域122的延伸方向不同於P型側摻雜層130的延伸方向。當P型半導體井層120中形成的光電子在P型半導體井層120中移動,高濃度區域122會對電子形成橫向的能障,使電子朝側向移動的機率變高。在本實施例中,因為將P型側摻雜層130配置於PN接面J上方靠近N型半導體井層110的側壁114的一側,可以對電子形成縱向的能障,降低電子經由側邊進入N型半導體井層110的機率,使電子有效地進入PN接面J形成的崩潰區R,崩潰區R具有較強的電場,而使電子被加速,撞擊其他的原子,進而導致更多的電子游離,引發崩潰電流,提升光子偵測率。In this embodiment, the P-type semiconductor well layer 120 has at least one high-concentration region 122, and the P-type doping concentration of the P-type semiconductor well layer 120 in at least one high-concentration region 122 is greater than that of the P-type semiconductor well layer 120 in at least one high-concentration region. For the P-type doping concentration near the concentration region 122 , the extension direction of at least one high-concentration region 122 is different from the extension direction of the P-type side doped layer 130 . When the photoelectrons formed in the P-type semiconductor well layer 120 move in the P-type semiconductor well layer 120 , the high-concentration region 122 will form a lateral energy barrier for the electrons, making the electrons more likely to move laterally. In this embodiment, because the P-type side doped layer 130 is arranged on the side of the side wall 114 of the N-type semiconductor well layer 110 above the PN junction J, it can form a vertical energy barrier for electrons, reducing the electrons passing through the side. The probability of entering the N-type semiconductor well layer 110 enables electrons to effectively enter the collapse region R formed by the PN junction J. The collapse region R has a strong electric field, so that the electrons are accelerated and hit other atoms, resulting in more The ionization of electrons causes a collapse current and increases the photon detection rate.

在本實施例中,P型半導體井層120的底部與P型側摻雜層130的底部位於不同水平面。在本實施例中,P型半導體井層120的底部與P型側摻雜層130的底部之間的間距h是落在0.5微米至2微米的範圍內。舉例而言,圖1A的P型半導體井層120的底部與P型側摻雜層130的底部之間的間距h大約是0.5微米。因為P型側摻雜層130沒有接觸PN接面J,因此可以避免光電子在P型側摻雜層130與PN接面J接觸的地方觸發崩潰。In this embodiment, the bottom of the P-type semiconductor well layer 120 and the bottom of the P-type side doped layer 130 are located at different levels. In this embodiment, the distance h between the bottom of the P-type semiconductor well layer 120 and the bottom of the P-type side doped layer 130 falls within a range of 0.5 microns to 2 microns. For example, the distance h between the bottom of the P-type semiconductor well layer 120 and the bottom of the P-type side doped layer 130 in FIG. 1A is about 0.5 μm. Because the P-type side doped layer 130 does not contact the PN junction J, photoelectrons can be prevented from triggering collapse at the place where the P-type side doped layer 130 contacts the PN junction J.

在本實施例中,P型半導體井層120的P型摻雜濃度是落在10 17cm -3至5×10 18cm -3的範圍內,且P型側摻雜層130的P型摻雜濃度是落在10 17cm -3至5×10 18cm -3的範圍內。舉例而言,在圖1A的實施例中,P型半導體井層120的P型摻雜濃度大約是2×10 17cm -3,P型側摻雜層130的P型摻雜濃度大約是6×10 17cm -3。在本實施例中,因為P型側摻雜層130的P型摻雜濃度大於P型半導體井層120的P型摻雜濃度,所以P型側摻雜層130會對P型半導體井層120中的光電子形成較高的能障,阻擋光電子經由P型側摻雜層130分部的區域進入N型半導體井層110。 In this embodiment, the P-type doping concentration of the P-type semiconductor well layer 120 falls within the range of 10 17 cm -3 to 5×10 18 cm -3 , and the P-type doping concentration of the P-type side doping layer 130 The impurity concentration falls within the range of 10 17 cm -3 to 5×10 18 cm -3 . For example, in the embodiment of FIG. 1A , the P-type doping concentration of the P-type semiconductor well layer 120 is about 2×10 17 cm −3 , and the P-type doping concentration of the P-type side doping layer 130 is about 6 ×10 17 cm -3 . In this embodiment, because the P-type doping concentration of the P-type side doped layer 130 is greater than the P-type doping concentration of the P-type semiconductor well layer 120, the P-type side doped layer 130 will affect the P-type semiconductor well layer 120. The photoelectrons in the photoelectrons form a higher energy barrier, preventing the photoelectrons from entering the N-type semiconductor well layer 110 through the sub-region of the P-type side doped layer 130 .

在圖1A與圖1B的實施例中,單光子崩潰二極體100還包括P型重摻雜層140以及N型重摻雜層150。P型重摻雜層140配置於P型半導體井層120上。N型重摻雜層150配置於N型半導體井層110上。在本實施例中,P型側摻雜層130配置於P型重摻雜層140與N型重摻雜層150之間。在本實施例中,P型重摻雜層140的P型摻雜濃度大於P型側摻雜層130的P型摻雜濃度,且N型重摻雜層150的N型摻雜濃度大於N型半導體井層110的N型摻雜濃度。詳細而言,在本實施例中,N型半導體井層110包括底部112以及側壁114,P型半導體井層120配置於底部112上,側壁114環繞P型半導體井層120,N型重摻雜層150配置於側壁114的頂部。In the embodiment shown in FIG. 1A and FIG. 1B , the single photon breakdown diode 100 further includes a P-type heavily doped layer 140 and an N-type heavily doped layer 150 . The P-type heavily doped layer 140 is disposed on the P-type semiconductor well layer 120 . The N-type heavily doped layer 150 is disposed on the N-type semiconductor well layer 110 . In this embodiment, the P-type side doped layer 130 is disposed between the P-type heavily doped layer 140 and the N-type heavily doped layer 150 . In this embodiment, the P-type doping concentration of the P-type heavily doped layer 140 is greater than the P-type doping concentration of the P-type side doping layer 130, and the N-type doping concentration of the N-type heavily doped layer 150 is greater than N N-type doping concentration of the semiconductor well layer 110. In detail, in this embodiment, the N-type semiconductor well layer 110 includes a bottom 112 and sidewalls 114, the P-type semiconductor well layer 120 is disposed on the bottom 112, the sidewall 114 surrounds the P-type semiconductor well layer 120, and the N-type semiconductor well layer 120 is heavily doped. Layer 150 is disposed on top of sidewall 114 .

圖2是圖1A的單光子崩潰二極體在同一剖面上的電流密度分佈圖。請參照圖2。相同地,圖中的x是平行單光子崩潰二極體的表面的位置,y是垂直單光子崩潰二極體的表面的深度位置。圖中左上角的數值是標示電流密度,單位為A‧cm -2。由圖中可看出,在P型半導體井層120中,靠近P型半導體井層120與N型半導體井層110的側壁114的界面處的區域,電流密度較低;靠近P型半導體井層120與N型半導體井層110的底部112的界面處的區域,也就是靠近PN接面J所形成的崩潰區R的區域,電流密度較高。此一現象代表光電子朝側邊移動的機率較小,朝下方崩潰區R移動的機率較大。因此,本實施例的單光子崩潰二極體100可使光電子有效地朝崩潰區R移動,提升光子偵測率。 FIG. 2 is a diagram of the current density distribution of the single-photon collapse diode of FIG. 1A on the same section. Please refer to Figure 2. Likewise, x in the figure is the position parallel to the surface of the single photon collapsed diode, and y is the depth position perpendicular to the surface of the single photon collapsed diode. The value in the upper left corner of the figure is the indicated current density, and the unit is A‧cm -2 . As can be seen from the figure, in the P-type semiconductor well layer 120, the current density is low in the region near the interface of the P-type semiconductor well layer 120 and the sidewall 114 of the N-type semiconductor well layer 110; The region at the interface between 120 and the bottom 112 of the N-type semiconductor well layer 110 , that is, the region close to the collapse region R formed by the PN junction J, has a higher current density. This phenomenon means that the probability of photoelectrons moving to the side is small, and the probability of moving to the collapse region R below is relatively high. Therefore, the single-photon collapse diode 100 of this embodiment can effectively move photoelectrons to the collapse region R, thereby improving the photon detection rate.

圖3是一比較例的單光子崩潰二極體的剖面示意圖。在圖3的單光子崩潰二極體100’中,沒有配置P型側摻雜層130。圖4是圖3的單光子崩潰二極體在同一剖面上的電流密度分佈圖。由圖4中可看出,在P型半導體井層120’中,高濃度區域122’之間,靠近P型半導體井層120’與N型半導體井層110’的側壁114的界面處的區域,有電流密度較高的渠道,形成側向電子流I;在高濃度區域122’內,從P型重摻雜層140’往PN接面J’所形成的崩潰區R’的路徑上,有電流密度較低的區域。此一現象是P型半導體井層120’中橫向分佈的高濃度區域122’,對P型半導體井層120’中移動的光電子形成能障,導致光電子朝側邊移動的機率增加,朝側邊移動的光電子便無法進入到崩潰區R’,進而引發崩潰電流,因此降低了光子偵測率。在圖1A的單光子崩潰二極體中,元件的光子偵測率提升至2.1%,而在圖3的單光子崩潰二極體中,元件的光子偵測率是1.4%。FIG. 3 is a schematic cross-sectional view of a single-photon collapse diode of a comparative example. In the single photon breakdown diode 100' in Fig. 3, the P-type side doped layer 130 is not configured. FIG. 4 is a diagram of the current density distribution of the single-photon collapse diode in FIG. 3 on the same section. As can be seen from FIG. 4, in the P-type semiconductor well layer 120', between the high-concentration regions 122', the region near the interface of the P-type semiconductor well layer 120' and the side wall 114 of the N-type semiconductor well layer 110' , there is a channel with a higher current density, forming a lateral electron flow I; in the high-concentration region 122', on the path from the P-type heavily doped layer 140' to the collapse region R' formed by the PN junction J', There are regions of lower current density. This phenomenon is that the high-concentration region 122' distributed laterally in the P-type semiconductor well layer 120' forms an energy barrier to the photoelectrons moving in the P-type semiconductor well layer 120', which increases the probability of photoelectrons moving to the side. The moving photoelectrons cannot enter the collapse region R', thereby causing a collapse current, thus reducing the photon detection rate. In the single photon collapse diode of Figure 1A, the photon detection rate of the device is increased to 2.1%, while in the single photon collapse diode of Figure 3, the photon detection rate of the device is 1.4%.

圖5繪示圖1A的單光子崩潰二極體與圖3的單光子崩潰二極體的光子偵測率與施加電壓的關係圖。圖5中的數據點反映出,在單光子崩潰二極體100元件中設置P型側摻雜層130,對於元件的光子偵測率PDP之影響。從圖5中可以看出,隨著施加電壓V ex的調變,圖1A的單光子崩潰二極體100的光子偵測率PDP(在圖5中標示為正方型數據點)總是大於圖3的單光子崩潰二極體100’的光子偵測率PDP(在圖5中標示為三角型數據點)。由此可知,依照本發明的實施例,在單光子崩潰二極體100元件中設置P型側摻雜層130,能夠有效地提升元件的光子偵測率。 FIG. 5 is a graph showing the relationship between the photon detection rate and the applied voltage of the single photon collapse diode of FIG. 1A and the single photon collapse diode of FIG. 3 . The data points in FIG. 5 reflect the effect of disposing the P-type side doped layer 130 in the single photon breakdown diode 100 on the photon detection rate PDP of the device. It can be seen from FIG. 5 that with the modulation of the applied voltage V ex , the photon detection rate PDP (marked as a square data point in FIG. 5 ) of the single photon collapse diode 100 in FIG. 1A is always greater than that in FIG. The photon detection rate PDP of the single photon collapse diode 100 ′ of 3 (indicated as triangle data points in FIG. 5 ). It can be seen that, according to the embodiment of the present invention, disposing the P-type side doped layer 130 in the single photon collapse diode 100 element can effectively improve the photon detection rate of the element.

在本實施例中,N型半導體井層110的材料例如為摻雜有磷、砷、銻或其組合的矽。P型半導體井層120的材料例如為摻雜有硼、銦或其組合的矽。P型側摻雜層130的材料例如為摻雜有硼、銦或其組合的矽。P型重摻雜層140的材料例如為摻雜有硼、銦或其組合的矽。N型重摻雜層150的材料例如為摻雜有磷、砷或其組合的矽。然而,本發明並不以上述材料為限。In this embodiment, the material of the N-type semiconductor well layer 110 is, for example, silicon doped with phosphorus, arsenic, antimony or a combination thereof. The material of the P-type semiconductor well layer 120 is, for example, silicon doped with boron, indium or a combination thereof. The material of the p-type side doped layer 130 is, for example, silicon doped with boron, indium or a combination thereof. The material of the P-type heavily doped layer 140 is, for example, silicon doped with boron, indium or a combination thereof. The material of the N-type heavily doped layer 150 is, for example, silicon doped with phosphorus, arsenic or a combination thereof. However, the present invention is not limited to the above materials.

綜上所述,在本發明的實施例的單光子崩潰二極體中,由於P型側摻雜層配置於PN接面上方靠近N型半導體井層的一側,而且P型側摻雜層的P型摻雜濃度大於P型半導體井層的P型摻雜濃度,因此可以阻擋P型半導體井層中形成的光電子經由側邊進入N型半導體井層,使光電子有效地進入PN接面形成的崩潰區而被加速,引發崩潰電流,提升光子偵測率。To sum up, in the single photon breakdown diode of the embodiment of the present invention, since the P-type side doped layer is arranged on the side near the N-type semiconductor well layer above the PN junction, and the P-type side doped layer The P-type doping concentration of the P-type semiconductor well layer is greater than the P-type doping concentration of the P-type semiconductor well layer, so it can prevent the photoelectrons formed in the P-type semiconductor well layer from entering the N-type semiconductor well layer through the side, so that the photoelectrons can effectively enter the PN junction to form The collapse area of the photon is accelerated, causing a collapse current and increasing the photon detection rate.

100、100’:單光子崩潰二極體 110、110’:N型半導體井層 112:底部 114、114’:側壁 120、120’:P型半導體井層 122、122’:高濃度區域 130:P型側摻雜層 140、140’:P型重摻雜層 150:N型重摻雜層 d1、d2:深度 h:間距 I:側向電子流 J、J’:PN接面 R、R’:崩潰區 V ex:施加電壓 PDP:光子偵測率 x:位置 y:位置 100, 100': single photon collapse diode 110, 110': N-type semiconductor well layer 112: bottom 114, 114': sidewall 120, 120': P-type semiconductor well layer 122, 122': high concentration region 130: P-type side doped layer 140, 140': P-type heavily doped layer 150: N-type heavily doped layer d1, d2: depth h: spacing I: lateral electron flow J, J': PN junction R, R ': Crash zone V ex : Applied voltage PDP: Photon detection rate x: Position y: Position

圖1A是依照本發明一實施例的單光子崩潰二極體的剖面示意圖。 圖1B是圖1A的單光子崩潰二極體的摻雜濃度分佈圖。 圖2是圖1A的單光子崩潰二極體在同一剖面上的電流密度分佈圖。 圖3是一比較例的單光子崩潰二極體的剖面示意圖。 圖4是圖3的單光子崩潰二極體在同一剖面上的電流密度分佈圖。 圖5繪示圖1A的單光子崩潰二極體與圖3的單光子崩潰二極體的光子偵測率與施加電壓的關係圖。 FIG. 1A is a schematic cross-sectional view of a single-photon collapse diode according to an embodiment of the invention. FIG. 1B is a graph of the doping concentration profile of the single photon collapse diode of FIG. 1A . FIG. 2 is a diagram of the current density distribution of the single-photon collapse diode of FIG. 1A on the same section. FIG. 3 is a schematic cross-sectional view of a single-photon collapse diode of a comparative example. FIG. 4 is a diagram of the current density distribution of the single-photon collapse diode in FIG. 3 on the same section. FIG. 5 is a graph showing the relationship between the photon detection rate and the applied voltage of the single photon collapse diode of FIG. 1A and the single photon collapse diode of FIG. 3 .

100:單光子崩潰二極體 100: Single Photon Collapses Diodes

110:N型半導體井層 110: N-type semiconductor well layer

112:底部 112: bottom

114:側壁 114: side wall

120:P型半導體井層 120: P-type semiconductor well layer

122:高濃度區域 122: high concentration area

130:P型側摻雜層 130: P-type side doped layer

140:P型重摻雜層 140: P-type heavily doped layer

150:N型重摻雜層 150: N-type heavily doped layer

d1、d2:深度 d1, d2: depth

h:間距 h: spacing

J:PN接面 J:PN junction

R:崩潰區 R: crash zone

Claims (11)

一種單光子崩潰二極體,包括: 一N型半導體井層; 一P型半導體井層,配置於該N型半導體井層上;以及 一P型側摻雜層,配置於該P型半導體井層的內部,且靠近該N型半導體井層,該P型側摻雜層的深度小於該P型半導體井層的深度,該P型側摻雜層的P型摻雜濃度大於該P型半導體井層的P型摻雜濃度。 A single photon collapse diode comprising: An N-type semiconductor well layer; A P-type semiconductor well layer configured on the N-type semiconductor well layer; and A P-type side doped layer is disposed inside the P-type semiconductor well layer and close to the N-type semiconductor well layer, the depth of the P-type side doped layer is smaller than the depth of the P-type semiconductor well layer, and the P-type semiconductor well layer is The P-type doping concentration of the side doped layer is greater than the P-type doping concentration of the P-type semiconductor well layer. 如請求項1所述的單光子崩潰二極體,其中該P型半導體井層與該N型半導體井層之間形成一PN接面,且該PN接面形成一崩潰區,該P型側摻雜層配置於該PN接面上方靠近該N型半導體井層的一側。The single photon collapse diode as claimed in item 1, wherein a PN junction is formed between the P-type semiconductor well layer and the N-type semiconductor well layer, and the PN junction forms a collapse region, and the P-type side The doped layer is disposed on the side of the N-type semiconductor well layer above the PN junction. 如請求項2所述的單光子崩潰二極體,其中該N型半導體井層包括: 一底部,其中該P型半導體井層配置於該底部上;以及 一側壁,環繞該P型半導體井層,該P型側摻雜層配置於該PN接面上方靠近該側壁處,且順著該側壁的形狀延伸。 The single-photon collapse diode as claimed in item 2, wherein the N-type semiconductor well layer comprises: a bottom, wherein the P-type semiconductor well layer is disposed on the bottom; and A side wall surrounds the P-type semiconductor well layer, and the P-type side doping layer is disposed above the PN junction close to the side wall and extends along the shape of the side wall. 如請求項1所述的單光子崩潰二極體,其中該P型半導體井層的底部與該P型側摻雜層的底部位於不同水平面。The single photon collapse diode as claimed in claim 1, wherein the bottom of the P-type semiconductor well layer and the bottom of the P-type side doped layer are located at different levels. 如請求項4所述的單光子崩潰二極體,其中該P型半導體井層的底部與該P型側摻雜層的底部之間的間距是落在0.5微米至2微米的範圍內。The single photon collapse diode as claimed in claim 4, wherein the distance between the bottom of the P-type semiconductor well layer and the bottom of the P-type side doped layer is in the range of 0.5 microns to 2 microns. 如請求項1所述的單光子崩潰二極體,其中該P型半導體井層的P型摻雜濃度是落在10 17cm -3至5×10 18cm -3的範圍內,且該P型側摻雜層的P型摻雜濃度是落在10 17cm -3至5×10 18cm -3的範圍內。 The single photon collapse diode as claimed in item 1, wherein the P-type doping concentration of the P-type semiconductor well layer falls within the range of 10 17 cm -3 to 5×10 18 cm -3 , and the P The P-type doping concentration of the type side doped layer falls within the range of 10 17 cm -3 to 5×10 18 cm -3 . 如請求項1所述的單光子崩潰二極體,更包括: 一P型重摻雜層,配置於該P型半導體井層上;以及 一N型重摻雜層,配置於該N型半導體井層上。 The single-photon collapse diode as described in Claim 1 further includes: a P-type heavily doped layer disposed on the P-type semiconductor well layer; and An N-type heavily doped layer is arranged on the N-type semiconductor well layer. 如請求項7所述的單光子崩潰二極體,其中該P型側摻雜層配置於該P型重摻雜層與該N型重摻雜層之間。The single photon breakdown diode as claimed in claim 7, wherein the P-type side doped layer is disposed between the P-type heavily doped layer and the N-type heavily doped layer. 如請求項7所述的單光子崩潰二極體,其中該P型重摻雜層的P型摻雜濃度大於該P型側摻雜層的P型摻雜濃度。The single photon breakdown diode as claimed in item 7, wherein the P-type doping concentration of the P-type heavily doped layer is greater than the P-type doping concentration of the P-type side doping layer. 如請求項7所述的單光子崩潰二極體,其中該N型半導體井層包括: 一底部,其中該P型半導體井層配置於該底部上;以及 一側壁,環繞該P型半導體井層,該N型重摻雜層配置於該側壁的頂部。 The single photon collapse diode as described in claim item 7, wherein the N-type semiconductor well layer comprises: a bottom, wherein the P-type semiconductor well layer is disposed on the bottom; and A side wall surrounds the P-type semiconductor well layer, and the N-type heavily doped layer is disposed on the top of the side wall. 如請求項1所述的單光子崩潰二極體,其中該P型半導體井層具有至少一高濃度區域,該P型半導體井層在該至少一高濃度區域的P型摻雜濃度大於該P型半導體井層在該至少一高濃度區域附近的P型摻雜濃度,該至少一高濃度區域的延伸方向不同於該P型側摻雜層的延伸方向。The single photon collapse diode as claimed in item 1, wherein the P-type semiconductor well layer has at least one high-concentration region, and the P-type doping concentration of the P-type semiconductor well layer in the at least one high-concentration region is greater than the P The P-type doping concentration of the semiconductor well layer near the at least one high-concentration region, the extension direction of the at least one high-concentration region is different from the extension direction of the P-type side doped layer.
TW111101787A 2021-05-19 2022-01-17 Single photon avalanche diode TW202247484A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202163190747P 2021-05-19 2021-05-19
US63/190,747 2021-05-19

Publications (1)

Publication Number Publication Date
TW202247484A true TW202247484A (en) 2022-12-01

Family

ID=81230527

Family Applications (2)

Application Number Title Priority Date Filing Date
TW111101787A TW202247484A (en) 2021-05-19 2022-01-17 Single photon avalanche diode
TW111200584U TWM625342U (en) 2021-05-19 2022-01-17 Single photon avalanche diode

Family Applications After (1)

Application Number Title Priority Date Filing Date
TW111200584U TWM625342U (en) 2021-05-19 2022-01-17 Single photon avalanche diode

Country Status (3)

Country Link
CN (2) CN216749923U (en)
TW (2) TW202247484A (en)
WO (1) WO2022242209A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022242209A1 (en) * 2021-05-19 2022-11-24 神盾股份有限公司 Single-photon avalanche diode

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1393781B1 (en) * 2009-04-23 2012-05-08 St Microelectronics Rousset OPERATING PHOTODIODO IN GEIGER MODE WITH INTEGRATED AND CONTROLLABLE JFET EFFECT SUPPRESSION RESISTOR, PHOTODIUM RING AND ITS PROCESS OF PROCESSING
EP3206234B1 (en) * 2016-02-09 2023-08-09 ams AG Semiconductor element with a single photon avalanche diode and method for manufacturing such semiconductor element
EP3435422B1 (en) * 2017-07-26 2020-05-06 ams AG Spad device for excess bias monitoring
EP3477710B1 (en) * 2017-10-26 2023-03-29 STMicroelectronics (Research & Development) Limited Avalanche photodiode and method of manufacturing the avalanche photodiode
CN108039390A (en) * 2017-11-22 2018-05-15 天津大学 Contactless protection ring single-photon avalanche diode and preparation method
CN109300992B (en) * 2018-08-16 2020-01-21 杭州电子科技大学 Single photon avalanche diode with high detection efficiency and manufacturing method thereof
WO2022242209A1 (en) * 2021-05-19 2022-11-24 神盾股份有限公司 Single-photon avalanche diode

Also Published As

Publication number Publication date
TWM625342U (en) 2022-04-01
WO2022242209A1 (en) 2022-11-24
CN216749923U (en) 2022-06-14
CN114400269A (en) 2022-04-26

Similar Documents

Publication Publication Date Title
US11329185B2 (en) Avalanche diode along with vertical PN junction and method for manufacturing the same field
US9893211B2 (en) Semiconductor device manufacturing method
US8476730B2 (en) Geiger-mode photodiode with integrated and JFET-effect-adjustable quenching resistor, photodiode array, and corresponding manufacturing method
JP5811861B2 (en) Manufacturing method of semiconductor device
JP7343555B2 (en) light detection device
US11316064B2 (en) Photodiode and/or PIN diode structures
US20200185560A1 (en) Spad-type photodiode
CN107895743B (en) Apparatus and method for single-photon avalanche photodiode detectors
US11335825B2 (en) Single-photon avalanche diode and a sensor array
TWI837834B (en) Semiconductor device including germanium region disposed in semiconductor substrate and method for forming the same
TW202247484A (en) Single photon avalanche diode
CN114242826B (en) Single photon avalanche diode and forming method thereof
CN115621352B (en) Semiconductor device and method for manufacturing the same
JP2012174783A (en) Photodiode and photodiode array
TWI792720B (en) Single photon avalanche diode
RU2427942C1 (en) Integral cell for radiation detector based on bipolar transistor with cellular base
US20240162365A1 (en) Avalanche photodetectors with a combined lateral and vertical arrangement
CN117393571A (en) Single Photon Avalanche Diode
CN117393634A (en) Avalanche diode and preparation method thereof