TW202239697A - Electrically actuatable mems switch - Google Patents
Electrically actuatable mems switch Download PDFInfo
- Publication number
- TW202239697A TW202239697A TW111108219A TW111108219A TW202239697A TW 202239697 A TW202239697 A TW 202239697A TW 111108219 A TW111108219 A TW 111108219A TW 111108219 A TW111108219 A TW 111108219A TW 202239697 A TW202239697 A TW 202239697A
- Authority
- TW
- Taiwan
- Prior art keywords
- layer
- electrically actuatable
- insulating layer
- switching element
- mems switch
- Prior art date
Links
- 239000010410 layer Substances 0.000 claims abstract description 141
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 44
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 44
- 239000010703 silicon Substances 0.000 claims abstract description 44
- 239000002184 metal Substances 0.000 claims abstract description 36
- 229910052751 metal Inorganic materials 0.000 claims abstract description 36
- 239000000758 substrate Substances 0.000 claims abstract description 24
- 238000004519 manufacturing process Methods 0.000 claims abstract description 10
- 239000002346 layers by function Substances 0.000 claims abstract description 7
- 238000005530 etching Methods 0.000 claims description 11
- 238000000151 deposition Methods 0.000 claims description 4
- 229910052732 germanium Inorganic materials 0.000 claims description 4
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 claims description 4
- 238000009413 insulation Methods 0.000 abstract description 5
- 238000000034 method Methods 0.000 description 24
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 6
- 229920005591 polysilicon Polymers 0.000 description 6
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 5
- 239000010931 gold Substances 0.000 description 5
- 229910052737 gold Inorganic materials 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 238000005192 partition Methods 0.000 description 4
- 239000001257 hydrogen Substances 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- 238000002955 isolation Methods 0.000 description 3
- 229910044991 metal oxide Inorganic materials 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 230000002349 favourable effect Effects 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- 229910016347 CuSn Inorganic materials 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000005496 eutectics Effects 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- -1 metal oxide compounds Chemical class 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 238000002161 passivation Methods 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H59/00—Electrostatic relays; Electro-adhesion relays
- H01H59/0009—Electrostatic relays; Electro-adhesion relays making use of micromechanics
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H1/00—Contacts
- H01H1/0036—Switches making use of microelectromechanical systems [MEMS]
- H01H2001/0078—Switches making use of microelectromechanical systems [MEMS] with parallel movement of the movable contact relative to the substrate
Landscapes
- Micromachines (AREA)
Abstract
Description
本發明係有關於電可致動的微機電系統開關。The present invention relates to electrically actuatable MEMS switches.
極廣泛多種之不同種類的電可致動開關係已知的。大部分繼電器經電磁驅動且需要電磁線圈來操作。雖然此允許產生很大的力,但由於需要捲繞線圈,此類繼電器無法小型化。其亦不可在有利的晶圓製程中生產。此外,其電流消耗極高。另一已知開關為來自類比裝置公司(Analog Devices)(圖1)之ADGM1304微機電系統開關,其在晶圓製程中生產。此繼電器經電容驅動。在此配置中,從中生產槓桿元件之材料不僅必須具有良好的機械屬性,而且具有良好的電導率。所使用的金為合適的少數材料中之一種。然而,金對於製程而言係昂貴且複雜的。另外,用於槓桿元件之材料必須能夠選擇性加工至下方犧牲層。使用HF進行蝕刻之氧化層上方的金為迄今為止有可能的少數系統中之一者。在待產生高的力之情況下,為了例如實現低接觸電阻,電極之面積之大小及對應槓桿元件之面積之大小必須增加。然而,此亦增加組件之大小且因此增加組件之成本。槓桿元件之電位亦同時為切換線之連接。因此,在此配置中,在切換線與致動線之間不存在電流隔離。A very wide variety of different kinds of electrically actuatable switches are known. Most relays are electromagnetically actuated and require electromagnetic coils to operate. While this allows very high forces to be generated, such relays cannot be miniaturized due to the need for wound coils. It also cannot be produced in a favorable wafer process. In addition, its current consumption is extremely high. Another known switch is the ADGM1304 MEMS switch from Analog Devices (FIG. 1), which is produced in a wafer process. This relay is capacitor driven. In this configuration, the material from which the lever element is produced must not only have good mechanical properties, but also good electrical conductivity. The gold used is one of the few suitable materials. However, gold is expensive and complex to process. In addition, the material used for the lever element must be able to be selectively processed to the underlying sacrificial layer. Gold over oxide etched using HF is one of the few systems so far possible. In the case of high forces to be generated, for example to achieve a low contact resistance, the size of the area of the electrodes and the size of the area of the corresponding lever element must be increased. However, this also increases the size and thus the cost of the component. The potential of the lever element is also the connection of the switching line at the same time. Therefore, in this configuration there is no galvanic isolation between the switching and actuating wires.
本發明之目標Object of the invention
目的係用於一種允許基於晶圓製程建構電可致動的微機電系統開關之方法及配置,該電可致動的微機電系統開關在無昂貴的金槓桿結構之情況下操作且藉由該電可致動的微機電系統開關,可產生高接觸力,尤其在電容性驅動之情況下。 本發明之優點 The object is for a method and arrangement allowing the construction of an electrically actuatable MEMS switch on a wafer basis, which operates without expensive gold lever structures and by means of the Electrically actuatable MEMS switches that generate high contact forces, especially when actuated capacitively. Advantages of the invention
本發明係關於一種電可致動的微機電系統開關,其具有一基板,在該基板上一個接一個地配置有一第一絕緣層、一矽層、一第二絕緣層及一金屬層,其中該矽層、該第二絕緣層及該金屬層形成一微機械功能層,在該微機械功能層中組態有一固定部件及一電可致動的偏轉切換元件,其中該切換元件經組態以在該開關之一操作狀態下靠在該固定部件上且因此在該切換元件與該固定部件之間形成一機械及電接點。The invention relates to an electrically actuatable MEMS switch having a substrate on which a first insulating layer, a silicon layer, a second insulating layer and a metal layer are arranged one after the other, wherein The silicon layer, the second insulating layer and the metal layer form a micromechanical functional layer in which a fixing element and an electrically actuatable deflection switching element are configured, wherein the switching element is configured to bear against the stationary part in an operating state of the switch and thus form a mechanical and electrical contact between the switching element and the stationary part.
本發明之有利具體實例自附屬申請專利範圍顯而易見。Advantageous embodiments of the invention are apparent from the appended claims.
本發明之核心概念為在微機電系統元件中之功能分離的實施。作為相對不良導體之矽層具有極好的機械屬性且極佳能夠形成電容驅動。此層亦可被製得相對較厚,且因此其影響繼電器之機械屬性。此層由金屬層補充,該金屬層在豎直方向上施加於絕緣層上且具有極好的導電性,此金屬層之目的為產生良好的電接點。The core concept of the invention is the implementation of functional separation in MEMS components. Silicon layers, which are relatively poor conductors, have excellent mechanical properties and are excellent for capacitive drive. This layer can also be made relatively thick, and thus it affects the mechanical properties of the relay. This layer is supplemented by a metal layer, which is applied vertically on the insulating layer and has excellent electrical conductivity, the purpose of which is to create a good electrical contact.
由於兩個功能與金屬層之特定懸垂部分之分離,另外有可能藉助於平面內移動來產生電接點。可由電容結構產生之靜電力可經由矽層之高度且在某種程度上亦經由縱橫比(溝槽寬度與溝槽深度)來建立,藉由該縱橫比,可在矽層中產生溝槽。Due to the separation of the two functions and specific overhangs of the metal layers, it is additionally possible to create electrical contacts by means of in-plane shifts. The electrostatic forces that can be generated by capacitive structures can be established via the height of the silicon layer and to some extent also via the aspect ratio (trench width and trench depth) with which trenches can be created in the silicon layer.
本發明之另一優點為,由於兩個功能之分離,亦有可能在切換線與致動線之間具有完整電流隔離的情況下實現電容性切換之微機電系統開關。Another advantage of the invention is that, due to the separation of the two functions, it is also possible to implement a capacitively switched MEMS switch with complete galvanic isolation between the switching line and the actuating line.
本發明亦係關於一種用於生產一電可致動的微機電系統開關之方法。該方法實現微機電系統繼電器之有成本效益的生產。其允許生產具有低電阻之繼電器。此外,其允許生產具有低致動電壓且亦在切換線(一方面)與致動線(另一方面)之間具有電流隔離的極緊湊的繼電器。The invention also relates to a method for producing an electrically actuatable MEMS switch. The method enables cost-effective production of MEMS relays. It allows the production of relays with low resistance. Furthermore, it allows the production of extremely compact relays with low actuation voltages and also with galvanic isolation between the switching line (on the one hand) and the actuation line (on the other hand).
圖1以圖解方式展示現有技術之電可致動的微機電系統開關。在基板1上存在第一電極2及第一接觸區域3。在分離一定距離的該兩個結構上方配置有槓桿結構4。當將電壓施加於槓桿與第一電極之間時,發生基板平面之外的移動。槓桿垂直於基板偏轉,且在槓桿與接觸區域之間產生接觸。此配置可藉由以下操作產生:首先將犧牲層5施加至電極及接觸區域,接著施加及結構化金層,且接著移除犧牲層。FIG. 1 schematically shows a prior art electrically actuatable MEMS switch. A
圖2a至2h展示用於生產電可致動的微機電系統開關之本發明之方法。Figures 2a to 2h show the method of the invention for producing an electrically actuatable MEMS switch.
在該方法之第一變化例中,首先設置SOI基板13(圖2a)。SOI基板由基板1、第一絕緣層100及矽層110組成。In a first variant of the method, an
將第二絕緣層14沈積及結構化於SOI基板13之矽層110上(圖2b)。較佳地,沈積富矽氮化物層。A second
視情況,此後,沈積另一矽層或鍺層15且將該另一矽層或鍺層拋光回至第二絕緣層之水平(圖2c)。此在利用相對較厚絕緣層(>300 nm)時特別有利。Optionally, thereafter, a further silicon or
此後,沈積及結構化金屬層16(圖2d)。在第一接觸區1210及第二接觸區1220中,亦即在隨後經由切換元件之移動產生電接點的區域中,此處金屬層覆蓋絕緣層中之開口。在每一狀況下之覆蓋範圍較佳大於20 nm且小於矽層之厚度的20%。更特定言之,所使用之金屬層可為例如經歷自鈍化之金屬層,諸如Al或W。Thereafter, a
視情況,有可能沈積及結構化另一絕緣層或者金屬層或者輔助接合層17(圖3a、3b)。Optionally, it is possible to deposit and structure a further insulating or metallic layer or an auxiliary bonding layer 17 ( FIGS. 3 a , 3 b ).
執行溝槽製程,其中溝槽穿過矽層110直至絕緣層100。特別執行溝槽製程使得金屬層與矽層之間的連接在分區中,尤其是在接觸區中中斷,且金屬邊緣在水平方向上完全懸於矽邊緣上。在運用等向性SF6蝕刻18進行第一製程步驟(圖2e)之後,有利的是利用產生金屬層16之至少50 nm之水平側蝕的溝槽製程(圖2f)。A trench process is performed, wherein the trench passes through the
在最後製程步驟中,藉由蝕刻製程20局部移除第一絕緣層100,在此狀況下為SOI晶圓之氧化層(圖2g)。較佳利用使用氣態HF之蝕刻製程。In a final process step, the
視情況,在另一步驟中,可發生熱處理。更特定言之,此為在氫氣中或在含氫環境中在高於850℃之溫度下進行之熱處理。運用此處理,已形成於金屬16之表面上且可導致不良接觸之金屬氧化物21減少。矽溝槽亦藉由此處理而平滑。作為溝槽製程之結果,矽溝槽具有略微粗糙表面,該表面具有所謂的蝕刻凹槽22。憑藉高溫及氫之還原作用,表面能夠重新結構化且使自身平滑(圖2h)。Optionally, in a further step, heat treatment can take place. More specifically, this is a heat treatment at a temperature above 850° C. in hydrogen or in a hydrogen-containing atmosphere. With this treatment, the
金屬層之表面可視情況藉助於蝕刻步驟啟動。特定言之,經由背濺鍍法,可移除在金屬層之表面上,特別在接觸區中進行氧化物蝕刻期間優先形成的金屬氧化物化合物。可視情況在分區(26)中移除絕緣層(圖3a)。移動繼電器結構可視情況受經由接合製程(24)施加之蓋晶圓(23)保護(圖3a)。有可能較佳利用諸如AlGe或CuSn之共晶接合製程或玻璃粉接合製程。The surface of the metal layer can optionally be activated by means of an etching step. In particular, metal oxide compounds that are preferentially formed during oxide etching on the surface of the metal layer, especially in the contact regions, can be removed via backsputter plating. The insulating layer can optionally be removed in the partition ( 26 ) ( FIG. 3 a ). The mobile relay structure is optionally protected by a cover wafer ( 23 ) applied via a bonding process ( 24 ) ( FIG. 3 a ). It may be preferable to use a eutectic bonding process such as AlGe or CuSn or a glass frit bonding process.
在該方法之第二變化例中,氧化層27首先沈積於矽基板1上。氧化層可視情況經結構化以便界定使得在後續操作過程中有可能將基板置放處於所界定電位之接觸區。In a second variant of the method, an
視情況,可接著沈積及結構化多晶矽層28及另一氧化物層。此允許產生埋入式導體軌道,其使得所定義電位能夠提供至產生於多晶矽功能層中之獨立電極。另外,多晶矽層亦可用作用於移動繼電器結構或用於靜止驅動電極之極小但電絕緣的懸浮部分(參見圖3a及圖3b)。最後,矽層110經沈積,更尤其呈磊晶多晶矽之形式。結果同樣為SOI基板13,且其他操作過程同樣與方法之第一變化例一樣。Optionally, a
藉由上文所描述之生產方法,有可能實現用於繼電器之有利設計參數且在廣譜中使其最佳化。對於所產生的電可致動的微機電系統開關,將矽層製得比金屬層厚至少三倍係有利的。因此,機械屬性實質上受到矽層影響。移除移動結構之分區中的金屬層亦係有利的。移除移動結構上之金屬層之至少一半區域係有利的。By means of the production method described above, it is possible to achieve favorable design parameters for relays and to optimize them in a broad spectrum. For the resulting electrically actuatable MEMS switch, it is advantageous to make the silicon layer at least three times thicker than the metal layer. Therefore, the mechanical properties are substantially affected by the silicon layer. It is also advantageous to remove the metal layer in the subsections of the mobile structure. It is advantageous to remove at least half of the area of the metal layer on the mobile structure.
取決於絕緣層,尤其在矽上產生高本質應力的絕緣層之狀況下,移除移動結構之分區中的絕緣層亦可係有利的。移除移動結構上之絕緣層之至少一半區域係有利的。Depending on the insulating layer, it may also be advantageous to remove the insulating layer in the subsections of the mobile structure, especially in the case of insulating layers that generate high intrinsic stress on silicon. It is advantageous to remove at least half of the area of the insulating layer on the mobile structure.
使用厚矽層且在分區中將極窄溝槽蝕刻至矽層中以便獲得高電容係有利的。更特定言之,在比矽厚度之15%窄的分區中產生溝槽係有利的。It is advantageous to use a thick silicon layer and to etch very narrow trenches into the silicon layer in the partitions in order to obtain high capacitance. More specifically, it is advantageous to create trenches in regions narrower than 15% of the silicon thickness.
圖3a展示本發明之電可致動的微機電系統開關,其具有基板1,在該基板上一個接一個地配置有第一絕緣層100、矽層110、第二絕緣層14及金屬層16。矽層、第二絕緣層及金屬層一起形成微機械功能層120,在該微機械功能層中組態有固定部件121及電可致動的可偏轉切換元件122。FIG. 3 a shows an electrically actuatable MEMS switch according to the invention, which has a substrate 1 on which a first insulating
在固定部件121之金屬層16中組態有第一接觸區1210,且第二接觸區1220組態於切換元件122之金屬層16中。切換元件可在平行於基板之主延伸平面的至少一個第一方向7上偏轉。以此方式,有可能使第一接觸區及第二接觸區彼此機械接觸且因此進行電接觸。第一接觸區及第二接觸區亦在第一方向7上突出,其中相對於下方矽層110具有突起部12。A
圖3b展示在切換式操作狀態下之本發明之電可致動的微機電系統開關。在靜止電極10與切換元件122之相對電極之間,存在產生電容力之電壓。移動切換元件122在第一方向7上朝向固定部件121偏轉,使得第二接觸區1220靠在第一接觸區1210上。因此進行接觸。Figure 3b shows the electrically actuatable MEMS switch of the present invention in a toggled operating state. Between the
圖4以圖解方式展示用於生產電可致動的微機電系統開關之本發明之方法。Figure 4 shows diagrammatically the method of the invention for producing an electrically actuatable MEMS switch.
該方法包含以下關鍵步驟: 步驟A-設置具有基板晶圓(1)、第一絕緣層(100)及矽層(110)之SOI基板(13); 步驟B-在矽層(110)上沈積及結構化第二絕緣層(14); 步驟C-在第二絕緣層(14)上方沈積及結構化金屬層(16); 步驟D-藉由非等向性蝕刻直至第一絕緣層(100)來結構化矽層(110),從而在矽層(110)、第二絕緣層(14)及金屬層(16)中組態固定部件(121)及切換元件(122); 步驟E-蝕刻第一絕緣層(100),從而至少部分地釋放及移動切換元件(122)。 The method includes the following key steps: Step A - providing an SOI substrate (13) with a substrate wafer (1), a first insulating layer (100) and a silicon layer (110); Step B - depositing and structuring a second insulating layer (14) on the silicon layer (110); Step C - depositing and structuring a metal layer (16) over the second insulating layer (14); Step D - Structuring the silicon layer (110) by anisotropic etching down to the first insulating layer (100), thus forming in the silicon layer (110), the second insulating layer (14) and the metal layer (16) State fixed part (121) and switching element (122); Step E—Etching the first insulating layer (100) to at least partially release and move the switching element (122).
1:基板 2:第一電極 3:第一接觸區域 4:槓桿結構 5:犧牲層 7:平行於基板之主延伸平面之第一方向 10:靜止電極 12:金屬層之突起部 13:SOI晶圓 14:第二絕緣層 15:另一矽或鍺層 16:金屬層 17:輔助接合層 18:等向性SF6蝕刻 20:局部蝕刻(HF、氣相) 21:金屬氧化物 22:蝕刻凹槽 23:蓋晶圓 24:接合材料 26:移除之絕緣層分區 27:氧化層 28:多晶矽層 100:第一絕緣層 110:矽層 120:微機械功能層 121:固定部件 122:電可致動的可偏轉切換元件 1210:第一接觸區 1220:第二接觸區 1: Substrate 2: The first electrode 3: First contact area 4: Leverage structure 5: sacrificial layer 7: The first direction parallel to the main extension plane of the substrate 10: static electrode 12: Protruding part of the metal layer 13:SOI wafer 14: Second insulating layer 15: Another silicon or germanium layer 16: metal layer 17: Auxiliary bonding layer 18: Isotropic SF6 etching 20: Partial etching (HF, gas phase) 21: metal oxide 22: Etched groove 23: Cover wafer 24: Joining material 26:Removed insulation layer partition 27: oxide layer 28: Polysilicon layer 100: first insulating layer 110: silicon layer 120: Micromechanical functional layer 121: fixed parts 122: Electrically actuatable deflectable switching element 1210: first contact zone 1220: second contact zone
[圖1]以圖解方式展示現有技術之電可致動的微機電系統開關。 [圖2a至2h]展示用於在裝置之個別階段中生產電可致動的微機電系統開關的本發明之方法。 [圖3a]展示本發明之電可致動的微機電系統開關。 [圖3b]展示在切換式操作狀態下之本發明之電可致動的微機電系統開關。 [圖4]以圖解方式展示用於生產電可致動的微機電系統開關之本發明之方法。 [ FIG. 1 ] Diagrammatically shows a prior art electrically actuatable MEMS switch. [ FIGS. 2 a to 2 h ] shows the method of the invention for producing electrically actuatable MEMS switches in individual stages of the device. [FIG. 3a] shows the electrically actuatable MEMS switch of the present invention. [FIG. 3b] Shows the electrically actuatable MEMS switch of the present invention in a toggled operating state. [ FIG. 4 ] Diagrammatically showing the method of the present invention for producing an electrically actuatable MEMS switch.
1:基板 1: Substrate
7:平行於基板之主延伸平面之第一方向 7: The first direction parallel to the main extension plane of the substrate
12:金屬層之突起部 12: Protruding part of the metal layer
13:SOI晶圓 13:SOI wafer
14:第二絕緣層 14: Second insulating layer
16:金屬層 16: metal layer
17:輔助接合層 17: Auxiliary bonding layer
23:蓋晶圓 23: Cover wafer
24:接合材料 24: Joining material
26:移除之絕緣層分區 26:Removed insulation layer partition
27:氧化層 27: oxide layer
28:多晶矽層 28: Polysilicon layer
100:第一絕緣層 100: first insulating layer
110:矽層 110: silicon layer
120:微機械功能層 120: Micromechanical functional layer
121:固定部件 121: fixed parts
122:電可致動的可偏轉切換元件 122: Electrically actuatable deflectable switching element
1210:第一接觸區 1210: first contact zone
1220:第二接觸區 1220: second contact zone
Claims (8)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102021202238.3A DE102021202238A1 (en) | 2021-03-09 | 2021-03-09 | Electrically operable MEMS switch |
DE102021202238.3 | 2021-03-09 |
Publications (1)
Publication Number | Publication Date |
---|---|
TW202239697A true TW202239697A (en) | 2022-10-16 |
Family
ID=80685166
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW111108219A TW202239697A (en) | 2021-03-09 | 2022-03-07 | Electrically actuatable mems switch |
Country Status (4)
Country | Link |
---|---|
DE (1) | DE102021202238A1 (en) |
FR (1) | FR3120622A1 (en) |
TW (1) | TW202239697A (en) |
WO (1) | WO2022189056A1 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102021202409A1 (en) | 2021-03-12 | 2022-09-15 | Robert Bosch Gesellschaft mit beschränkter Haftung | Capacitively actuated MEMS switch |
DE102021203574A1 (en) | 2021-04-12 | 2022-10-13 | Robert Bosch Gesellschaft mit beschränkter Haftung | MEMS switch with cap contact |
DE102021203566A1 (en) | 2021-04-12 | 2022-10-13 | Robert Bosch Gesellschaft mit beschränkter Haftung | MEMS switch with embedded metal contact |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030018420A1 (en) | 2001-06-19 | 2003-01-23 | Christopher Apanius | Double acting crash sensor |
US7190245B2 (en) | 2003-04-29 | 2007-03-13 | Medtronic, Inc. | Multi-stable micro electromechanical switches and methods of fabricating same |
DE102007035633B4 (en) * | 2007-07-28 | 2012-10-04 | Protron Mikrotechnik Gmbh | Process for producing micromechanical structures and micromechanical structure |
JP5257383B2 (en) * | 2010-03-10 | 2013-08-07 | オムロン株式会社 | Switch, manufacturing method thereof, and relay |
KR101272359B1 (en) | 2010-03-01 | 2013-06-07 | 오므론 가부시키가이샤 | Switch and method of manufacture thereof and relay |
JP5131298B2 (en) * | 2010-03-10 | 2013-01-30 | オムロン株式会社 | Switch, manufacturing method thereof, and electrostatic relay |
JP5263203B2 (en) * | 2010-03-12 | 2013-08-14 | オムロン株式会社 | Electrostatic relay |
JP5720485B2 (en) * | 2011-08-12 | 2015-05-20 | オムロン株式会社 | Electronic components |
-
2021
- 2021-03-09 DE DE102021202238.3A patent/DE102021202238A1/en active Pending
-
2022
- 2022-01-25 WO PCT/EP2022/051537 patent/WO2022189056A1/en active Application Filing
- 2022-03-07 TW TW111108219A patent/TW202239697A/en unknown
- 2022-03-07 FR FR2201935A patent/FR3120622A1/en active Pending
Also Published As
Publication number | Publication date |
---|---|
DE102021202238A1 (en) | 2022-09-15 |
WO2022189056A1 (en) | 2022-09-15 |
FR3120622A1 (en) | 2022-09-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TW202239697A (en) | Electrically actuatable mems switch | |
CN101917175B (en) | Micro-electro-mechanical-system (mems) resonator and manufacturing method thereof | |
TW590983B (en) | Method of fabricating micro-electromechanical switches on CMOS compatible substrates | |
US10294097B2 (en) | Aluminum nitride (AlN) devices with infrared absorption structural layer | |
KR101800914B1 (en) | Planar cavity mems and related structures, methods of manufacture and design structures | |
CN102398888B (en) | Wafer level packaging | |
US10549987B2 (en) | Micro-electro-mechanical system (MEMS) structures and design structures | |
US8742595B1 (en) | MEMS devices and methods of forming same | |
CN101018734A (en) | A method for making MEMS switch, and MEM device and its making method | |
JP2009226499A (en) | Micromechanical apparatus and manufacturing method of micromechanical apparatus | |
JP5579118B2 (en) | Mechanical switch with curved bilayer | |
US10290721B2 (en) | Method of fabricating an electromechanical structure including at least one mechanical reinforcing pillar | |
JP4544140B2 (en) | MEMS element | |
US12230457B2 (en) | Method for manufacturing a MEMS switch having an embedded metal contact | |
CN115196580A (en) | MEMS switch with cover contact | |
Lee et al. | Titanium nitride sidewall stringer process for lateral nanoelectromechanical relays | |
WO2010147156A1 (en) | Resonator and method of producing same | |
JP2009226498A (en) | Micromechanical apparatus and manufacturing method of micromechanical apparatus | |
JP2007111832A (en) | Method for manufacturing MEMS element and MEMS element | |
Fleming et al. | Novel micromolded structures | |
JP2009178816A (en) | Micromachine apparatus and method for manufacturing the same |