[go: up one dir, main page]

TW202239697A - Electrically actuatable mems switch - Google Patents

Electrically actuatable mems switch Download PDF

Info

Publication number
TW202239697A
TW202239697A TW111108219A TW111108219A TW202239697A TW 202239697 A TW202239697 A TW 202239697A TW 111108219 A TW111108219 A TW 111108219A TW 111108219 A TW111108219 A TW 111108219A TW 202239697 A TW202239697 A TW 202239697A
Authority
TW
Taiwan
Prior art keywords
layer
electrically actuatable
insulating layer
switching element
mems switch
Prior art date
Application number
TW111108219A
Other languages
Chinese (zh)
Inventor
猶根 蘭穆斯
馬修 路易斯
Original Assignee
德商羅伯特 博世有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 德商羅伯特 博世有限公司 filed Critical 德商羅伯特 博世有限公司
Publication of TW202239697A publication Critical patent/TW202239697A/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H59/00Electrostatic relays; Electro-adhesion relays
    • H01H59/0009Electrostatic relays; Electro-adhesion relays making use of micromechanics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H1/00Contacts
    • H01H1/0036Switches making use of microelectromechanical systems [MEMS]
    • H01H2001/0078Switches making use of microelectromechanical systems [MEMS] with parallel movement of the movable contact relative to the substrate

Landscapes

  • Micromachines (AREA)

Abstract

The invention relates to an electrically actuatable MEMS switch having a substrate (1) on which there are arranged one above another a first insulation layer (100), a silicon layer (110), a second insulation layer (14) and a metal layer (16), where the silicon layer, the second insulation layer and the metal layer form a micromechanical functional layer (120) in which a fixed part (121) and an electrically actuatable, deflecting switching element (122) are configured, where the switching element is configured to bear against the fixed part in an operating state of the switch and so to form a mechanical and electrical contact between the switching element and the fixed part. The invention also relates to a method for producing an electrically actuatable MEMS switch.

Description

電可致動的微機電系統開關Electrically actuatable MEMS switches

本發明係有關於電可致動的微機電系統開關。The present invention relates to electrically actuatable MEMS switches.

極廣泛多種之不同種類的電可致動開關係已知的。大部分繼電器經電磁驅動且需要電磁線圈來操作。雖然此允許產生很大的力,但由於需要捲繞線圈,此類繼電器無法小型化。其亦不可在有利的晶圓製程中生產。此外,其電流消耗極高。另一已知開關為來自類比裝置公司(Analog Devices)(圖1)之ADGM1304微機電系統開關,其在晶圓製程中生產。此繼電器經電容驅動。在此配置中,從中生產槓桿元件之材料不僅必須具有良好的機械屬性,而且具有良好的電導率。所使用的金為合適的少數材料中之一種。然而,金對於製程而言係昂貴且複雜的。另外,用於槓桿元件之材料必須能夠選擇性加工至下方犧牲層。使用HF進行蝕刻之氧化層上方的金為迄今為止有可能的少數系統中之一者。在待產生高的力之情況下,為了例如實現低接觸電阻,電極之面積之大小及對應槓桿元件之面積之大小必須增加。然而,此亦增加組件之大小且因此增加組件之成本。槓桿元件之電位亦同時為切換線之連接。因此,在此配置中,在切換線與致動線之間不存在電流隔離。A very wide variety of different kinds of electrically actuatable switches are known. Most relays are electromagnetically actuated and require electromagnetic coils to operate. While this allows very high forces to be generated, such relays cannot be miniaturized due to the need for wound coils. It also cannot be produced in a favorable wafer process. In addition, its current consumption is extremely high. Another known switch is the ADGM1304 MEMS switch from Analog Devices (FIG. 1), which is produced in a wafer process. This relay is capacitor driven. In this configuration, the material from which the lever element is produced must not only have good mechanical properties, but also good electrical conductivity. The gold used is one of the few suitable materials. However, gold is expensive and complex to process. In addition, the material used for the lever element must be able to be selectively processed to the underlying sacrificial layer. Gold over oxide etched using HF is one of the few systems so far possible. In the case of high forces to be generated, for example to achieve a low contact resistance, the size of the area of the electrodes and the size of the area of the corresponding lever element must be increased. However, this also increases the size and thus the cost of the component. The potential of the lever element is also the connection of the switching line at the same time. Therefore, in this configuration there is no galvanic isolation between the switching and actuating wires.

本發明之目標Object of the invention

目的係用於一種允許基於晶圓製程建構電可致動的微機電系統開關之方法及配置,該電可致動的微機電系統開關在無昂貴的金槓桿結構之情況下操作且藉由該電可致動的微機電系統開關,可產生高接觸力,尤其在電容性驅動之情況下。 本發明之優點 The object is for a method and arrangement allowing the construction of an electrically actuatable MEMS switch on a wafer basis, which operates without expensive gold lever structures and by means of the Electrically actuatable MEMS switches that generate high contact forces, especially when actuated capacitively. Advantages of the invention

本發明係關於一種電可致動的微機電系統開關,其具有一基板,在該基板上一個接一個地配置有一第一絕緣層、一矽層、一第二絕緣層及一金屬層,其中該矽層、該第二絕緣層及該金屬層形成一微機械功能層,在該微機械功能層中組態有一固定部件及一電可致動的偏轉切換元件,其中該切換元件經組態以在該開關之一操作狀態下靠在該固定部件上且因此在該切換元件與該固定部件之間形成一機械及電接點。The invention relates to an electrically actuatable MEMS switch having a substrate on which a first insulating layer, a silicon layer, a second insulating layer and a metal layer are arranged one after the other, wherein The silicon layer, the second insulating layer and the metal layer form a micromechanical functional layer in which a fixing element and an electrically actuatable deflection switching element are configured, wherein the switching element is configured to bear against the stationary part in an operating state of the switch and thus form a mechanical and electrical contact between the switching element and the stationary part.

本發明之有利具體實例自附屬申請專利範圍顯而易見。Advantageous embodiments of the invention are apparent from the appended claims.

本發明之核心概念為在微機電系統元件中之功能分離的實施。作為相對不良導體之矽層具有極好的機械屬性且極佳能夠形成電容驅動。此層亦可被製得相對較厚,且因此其影響繼電器之機械屬性。此層由金屬層補充,該金屬層在豎直方向上施加於絕緣層上且具有極好的導電性,此金屬層之目的為產生良好的電接點。The core concept of the invention is the implementation of functional separation in MEMS components. Silicon layers, which are relatively poor conductors, have excellent mechanical properties and are excellent for capacitive drive. This layer can also be made relatively thick, and thus it affects the mechanical properties of the relay. This layer is supplemented by a metal layer, which is applied vertically on the insulating layer and has excellent electrical conductivity, the purpose of which is to create a good electrical contact.

由於兩個功能與金屬層之特定懸垂部分之分離,另外有可能藉助於平面內移動來產生電接點。可由電容結構產生之靜電力可經由矽層之高度且在某種程度上亦經由縱橫比(溝槽寬度與溝槽深度)來建立,藉由該縱橫比,可在矽層中產生溝槽。Due to the separation of the two functions and specific overhangs of the metal layers, it is additionally possible to create electrical contacts by means of in-plane shifts. The electrostatic forces that can be generated by capacitive structures can be established via the height of the silicon layer and to some extent also via the aspect ratio (trench width and trench depth) with which trenches can be created in the silicon layer.

本發明之另一優點為,由於兩個功能之分離,亦有可能在切換線與致動線之間具有完整電流隔離的情況下實現電容性切換之微機電系統開關。Another advantage of the invention is that, due to the separation of the two functions, it is also possible to implement a capacitively switched MEMS switch with complete galvanic isolation between the switching line and the actuating line.

本發明亦係關於一種用於生產一電可致動的微機電系統開關之方法。該方法實現微機電系統繼電器之有成本效益的生產。其允許生產具有低電阻之繼電器。此外,其允許生產具有低致動電壓且亦在切換線(一方面)與致動線(另一方面)之間具有電流隔離的極緊湊的繼電器。The invention also relates to a method for producing an electrically actuatable MEMS switch. The method enables cost-effective production of MEMS relays. It allows the production of relays with low resistance. Furthermore, it allows the production of extremely compact relays with low actuation voltages and also with galvanic isolation between the switching line (on the one hand) and the actuation line (on the other hand).

圖1以圖解方式展示現有技術之電可致動的微機電系統開關。在基板1上存在第一電極2及第一接觸區域3。在分離一定距離的該兩個結構上方配置有槓桿結構4。當將電壓施加於槓桿與第一電極之間時,發生基板平面之外的移動。槓桿垂直於基板偏轉,且在槓桿與接觸區域之間產生接觸。此配置可藉由以下操作產生:首先將犧牲層5施加至電極及接觸區域,接著施加及結構化金層,且接著移除犧牲層。FIG. 1 schematically shows a prior art electrically actuatable MEMS switch. A first electrode 2 and a first contact region 3 are present on the substrate 1 . A lever structure 4 is arranged above the two structures separated by a certain distance. Movement out of the plane of the substrate occurs when a voltage is applied between the lever and the first electrode. The lever is deflected perpendicular to the substrate and contact is created between the lever and the contact area. This configuration can be produced by first applying a sacrificial layer 5 to the electrodes and contact areas, then applying and structuring a gold layer, and then removing the sacrificial layer.

圖2a至2h展示用於生產電可致動的微機電系統開關之本發明之方法。Figures 2a to 2h show the method of the invention for producing an electrically actuatable MEMS switch.

在該方法之第一變化例中,首先設置SOI基板13(圖2a)。SOI基板由基板1、第一絕緣層100及矽層110組成。In a first variant of the method, an SOI substrate 13 is first provided ( FIG. 2 a ). The SOI substrate is composed of a substrate 1 , a first insulating layer 100 and a silicon layer 110 .

將第二絕緣層14沈積及結構化於SOI基板13之矽層110上(圖2b)。較佳地,沈積富矽氮化物層。A second insulating layer 14 is deposited and structured on the silicon layer 110 of the SOI substrate 13 ( FIG. 2 b ). Preferably, a silicon-rich nitride layer is deposited.

視情況,此後,沈積另一矽層或鍺層15且將該另一矽層或鍺層拋光回至第二絕緣層之水平(圖2c)。此在利用相對較厚絕緣層(>300 nm)時特別有利。Optionally, thereafter, a further silicon or germanium layer 15 is deposited and polished back to the level of the second insulating layer ( FIG. 2 c ). This is particularly advantageous when utilizing relatively thick insulating layers (>300 nm).

此後,沈積及結構化金屬層16(圖2d)。在第一接觸區1210及第二接觸區1220中,亦即在隨後經由切換元件之移動產生電接點的區域中,此處金屬層覆蓋絕緣層中之開口。在每一狀況下之覆蓋範圍較佳大於20 nm且小於矽層之厚度的20%。更特定言之,所使用之金屬層可為例如經歷自鈍化之金屬層,諸如Al或W。Thereafter, a metal layer 16 is deposited and structured ( FIG. 2 d ). In the first contact region 1210 and the second contact region 1220 , ie in the region where an electrical contact is subsequently created by movement of the switching element, here the metal layer covers the opening in the insulating layer. The coverage in each case is preferably greater than 20 nm and less than 20% of the thickness of the silicon layer. More particularly, the metal layer used may be, for example, a metal layer that undergoes self-passivation, such as Al or W.

視情況,有可能沈積及結構化另一絕緣層或者金屬層或者輔助接合層17(圖3a、3b)。Optionally, it is possible to deposit and structure a further insulating or metallic layer or an auxiliary bonding layer 17 ( FIGS. 3 a , 3 b ).

執行溝槽製程,其中溝槽穿過矽層110直至絕緣層100。特別執行溝槽製程使得金屬層與矽層之間的連接在分區中,尤其是在接觸區中中斷,且金屬邊緣在水平方向上完全懸於矽邊緣上。在運用等向性SF6蝕刻18進行第一製程步驟(圖2e)之後,有利的是利用產生金屬層16之至少50 nm之水平側蝕的溝槽製程(圖2f)。A trench process is performed, wherein the trench passes through the silicon layer 110 to the insulating layer 100 . The trenching process is especially performed so that the connection between the metal layer and the silicon layer is interrupted in the subregions, especially in the contact area, and the metal edge completely overhangs the silicon edge in the horizontal direction. After the first process step (FIG. 2e) using isotropic SF6 etching 18, it is advantageous to use a trench process (FIG. 2f) that produces a horizontal undercut of the metal layer 16 of at least 50 nm.

在最後製程步驟中,藉由蝕刻製程20局部移除第一絕緣層100,在此狀況下為SOI晶圓之氧化層(圖2g)。較佳利用使用氣態HF之蝕刻製程。In a final process step, the first insulating layer 100 , in this case the oxide layer of the SOI wafer, is partially removed by an etching process 20 ( FIG. 2 g ). Etching processes using gaseous HF are preferably utilized.

視情況,在另一步驟中,可發生熱處理。更特定言之,此為在氫氣中或在含氫環境中在高於850℃之溫度下進行之熱處理。運用此處理,已形成於金屬16之表面上且可導致不良接觸之金屬氧化物21減少。矽溝槽亦藉由此處理而平滑。作為溝槽製程之結果,矽溝槽具有略微粗糙表面,該表面具有所謂的蝕刻凹槽22。憑藉高溫及氫之還原作用,表面能夠重新結構化且使自身平滑(圖2h)。Optionally, in a further step, heat treatment can take place. More specifically, this is a heat treatment at a temperature above 850° C. in hydrogen or in a hydrogen-containing atmosphere. With this treatment, the metal oxide 21 that has formed on the surface of the metal 16 and can cause poor contact is reduced. Silicon trenches are also smoothed by this treatment. As a result of the trench process, the silicon trench has a slightly rough surface with so-called etched grooves 22 . With high temperature and reduction by hydrogen, the surface is able to restructure and smooth itself (Fig. 2h).

金屬層之表面可視情況藉助於蝕刻步驟啟動。特定言之,經由背濺鍍法,可移除在金屬層之表面上,特別在接觸區中進行氧化物蝕刻期間優先形成的金屬氧化物化合物。可視情況在分區(26)中移除絕緣層(圖3a)。移動繼電器結構可視情況受經由接合製程(24)施加之蓋晶圓(23)保護(圖3a)。有可能較佳利用諸如AlGe或CuSn之共晶接合製程或玻璃粉接合製程。The surface of the metal layer can optionally be activated by means of an etching step. In particular, metal oxide compounds that are preferentially formed during oxide etching on the surface of the metal layer, especially in the contact regions, can be removed via backsputter plating. The insulating layer can optionally be removed in the partition ( 26 ) ( FIG. 3 a ). The mobile relay structure is optionally protected by a cover wafer ( 23 ) applied via a bonding process ( 24 ) ( FIG. 3 a ). It may be preferable to use a eutectic bonding process such as AlGe or CuSn or a glass frit bonding process.

在該方法之第二變化例中,氧化層27首先沈積於矽基板1上。氧化層可視情況經結構化以便界定使得在後續操作過程中有可能將基板置放處於所界定電位之接觸區。In a second variant of the method, an oxide layer 27 is first deposited on the silicon substrate 1 . The oxide layer can optionally be structured in order to define contact areas that make it possible to place the substrate at a defined potential during subsequent operations.

視情況,可接著沈積及結構化多晶矽層28及另一氧化物層。此允許產生埋入式導體軌道,其使得所定義電位能夠提供至產生於多晶矽功能層中之獨立電極。另外,多晶矽層亦可用作用於移動繼電器結構或用於靜止驅動電極之極小但電絕緣的懸浮部分(參見圖3a及圖3b)。最後,矽層110經沈積,更尤其呈磊晶多晶矽之形式。結果同樣為SOI基板13,且其他操作過程同樣與方法之第一變化例一樣。Optionally, a polysilicon layer 28 and another oxide layer may then be deposited and structured. This allows the creation of buried conductor tracks which enable a defined potential to be provided to individual electrodes created in the polysilicon functional layer. In addition, the polysilicon layer can also be used as a very small but electrically insulating floating portion for moving relay structures or for stationary drive electrodes (see Figures 3a and 3b). Finally, a silicon layer 110 is deposited, more particularly in the form of epitaxial polysilicon. The result is also an SOI substrate 13, and other operations are also the same as the first variation of the method.

藉由上文所描述之生產方法,有可能實現用於繼電器之有利設計參數且在廣譜中使其最佳化。對於所產生的電可致動的微機電系統開關,將矽層製得比金屬層厚至少三倍係有利的。因此,機械屬性實質上受到矽層影響。移除移動結構之分區中的金屬層亦係有利的。移除移動結構上之金屬層之至少一半區域係有利的。By means of the production method described above, it is possible to achieve favorable design parameters for relays and to optimize them in a broad spectrum. For the resulting electrically actuatable MEMS switch, it is advantageous to make the silicon layer at least three times thicker than the metal layer. Therefore, the mechanical properties are substantially affected by the silicon layer. It is also advantageous to remove the metal layer in the subsections of the mobile structure. It is advantageous to remove at least half of the area of the metal layer on the mobile structure.

取決於絕緣層,尤其在矽上產生高本質應力的絕緣層之狀況下,移除移動結構之分區中的絕緣層亦可係有利的。移除移動結構上之絕緣層之至少一半區域係有利的。Depending on the insulating layer, it may also be advantageous to remove the insulating layer in the subsections of the mobile structure, especially in the case of insulating layers that generate high intrinsic stress on silicon. It is advantageous to remove at least half of the area of the insulating layer on the mobile structure.

使用厚矽層且在分區中將極窄溝槽蝕刻至矽層中以便獲得高電容係有利的。更特定言之,在比矽厚度之15%窄的分區中產生溝槽係有利的。It is advantageous to use a thick silicon layer and to etch very narrow trenches into the silicon layer in the partitions in order to obtain high capacitance. More specifically, it is advantageous to create trenches in regions narrower than 15% of the silicon thickness.

圖3a展示本發明之電可致動的微機電系統開關,其具有基板1,在該基板上一個接一個地配置有第一絕緣層100、矽層110、第二絕緣層14及金屬層16。矽層、第二絕緣層及金屬層一起形成微機械功能層120,在該微機械功能層中組態有固定部件121及電可致動的可偏轉切換元件122。FIG. 3 a shows an electrically actuatable MEMS switch according to the invention, which has a substrate 1 on which a first insulating layer 100 , a silicon layer 110 , a second insulating layer 14 and a metal layer 16 are arranged one after the other. . The silicon layer, the second insulating layer and the metal layer together form a micromechanical functional layer 120 in which a fastening element 121 and an electrically actuatable deflectable switching element 122 are arranged.

在固定部件121之金屬層16中組態有第一接觸區1210,且第二接觸區1220組態於切換元件122之金屬層16中。切換元件可在平行於基板之主延伸平面的至少一個第一方向7上偏轉。以此方式,有可能使第一接觸區及第二接觸區彼此機械接觸且因此進行電接觸。第一接觸區及第二接觸區亦在第一方向7上突出,其中相對於下方矽層110具有突起部12。A first contact region 1210 is configured in the metal layer 16 of the fixing component 121 , and a second contact region 1220 is configured in the metal layer 16 of the switching element 122 . The switching element is deflectable in at least one first direction 7 parallel to the main plane of extension of the substrate. In this way it is possible to bring the first contact area and the second contact area into mechanical and thus electrical contact with each other. The first contact region and the second contact region also protrude in the first direction 7 , with a protrusion 12 relative to the underlying silicon layer 110 .

圖3b展示在切換式操作狀態下之本發明之電可致動的微機電系統開關。在靜止電極10與切換元件122之相對電極之間,存在產生電容力之電壓。移動切換元件122在第一方向7上朝向固定部件121偏轉,使得第二接觸區1220靠在第一接觸區1210上。因此進行接觸。Figure 3b shows the electrically actuatable MEMS switch of the present invention in a toggled operating state. Between the stationary electrode 10 and the opposite electrode of the switching element 122, there is a voltage generating a capacitive force. The mobile switching element 122 is deflected in the first direction 7 towards the fixed part 121 such that the second contact area 1220 rests against the first contact area 1210 . So get in touch.

圖4以圖解方式展示用於生產電可致動的微機電系統開關之本發明之方法。Figure 4 shows diagrammatically the method of the invention for producing an electrically actuatable MEMS switch.

該方法包含以下關鍵步驟: 步驟A-設置具有基板晶圓(1)、第一絕緣層(100)及矽層(110)之SOI基板(13); 步驟B-在矽層(110)上沈積及結構化第二絕緣層(14); 步驟C-在第二絕緣層(14)上方沈積及結構化金屬層(16); 步驟D-藉由非等向性蝕刻直至第一絕緣層(100)來結構化矽層(110),從而在矽層(110)、第二絕緣層(14)及金屬層(16)中組態固定部件(121)及切換元件(122); 步驟E-蝕刻第一絕緣層(100),從而至少部分地釋放及移動切換元件(122)。 The method includes the following key steps: Step A - providing an SOI substrate (13) with a substrate wafer (1), a first insulating layer (100) and a silicon layer (110); Step B - depositing and structuring a second insulating layer (14) on the silicon layer (110); Step C - depositing and structuring a metal layer (16) over the second insulating layer (14); Step D - Structuring the silicon layer (110) by anisotropic etching down to the first insulating layer (100), thus forming in the silicon layer (110), the second insulating layer (14) and the metal layer (16) State fixed part (121) and switching element (122); Step E—Etching the first insulating layer (100) to at least partially release and move the switching element (122).

1:基板 2:第一電極 3:第一接觸區域 4:槓桿結構 5:犧牲層 7:平行於基板之主延伸平面之第一方向 10:靜止電極 12:金屬層之突起部 13:SOI晶圓 14:第二絕緣層 15:另一矽或鍺層 16:金屬層 17:輔助接合層 18:等向性SF6蝕刻 20:局部蝕刻(HF、氣相) 21:金屬氧化物 22:蝕刻凹槽 23:蓋晶圓 24:接合材料 26:移除之絕緣層分區 27:氧化層 28:多晶矽層 100:第一絕緣層 110:矽層 120:微機械功能層 121:固定部件 122:電可致動的可偏轉切換元件 1210:第一接觸區 1220:第二接觸區 1: Substrate 2: The first electrode 3: First contact area 4: Leverage structure 5: sacrificial layer 7: The first direction parallel to the main extension plane of the substrate 10: static electrode 12: Protruding part of the metal layer 13:SOI wafer 14: Second insulating layer 15: Another silicon or germanium layer 16: metal layer 17: Auxiliary bonding layer 18: Isotropic SF6 etching 20: Partial etching (HF, gas phase) 21: metal oxide 22: Etched groove 23: Cover wafer 24: Joining material 26:Removed insulation layer partition 27: oxide layer 28: Polysilicon layer 100: first insulating layer 110: silicon layer 120: Micromechanical functional layer 121: fixed parts 122: Electrically actuatable deflectable switching element 1210: first contact zone 1220: second contact zone

[圖1]以圖解方式展示現有技術之電可致動的微機電系統開關。 [圖2a至2h]展示用於在裝置之個別階段中生產電可致動的微機電系統開關的本發明之方法。 [圖3a]展示本發明之電可致動的微機電系統開關。 [圖3b]展示在切換式操作狀態下之本發明之電可致動的微機電系統開關。 [圖4]以圖解方式展示用於生產電可致動的微機電系統開關之本發明之方法。 [ FIG. 1 ] Diagrammatically shows a prior art electrically actuatable MEMS switch. [ FIGS. 2 a to 2 h ] shows the method of the invention for producing electrically actuatable MEMS switches in individual stages of the device. [FIG. 3a] shows the electrically actuatable MEMS switch of the present invention. [FIG. 3b] Shows the electrically actuatable MEMS switch of the present invention in a toggled operating state. [ FIG. 4 ] Diagrammatically showing the method of the present invention for producing an electrically actuatable MEMS switch.

1:基板 1: Substrate

7:平行於基板之主延伸平面之第一方向 7: The first direction parallel to the main extension plane of the substrate

12:金屬層之突起部 12: Protruding part of the metal layer

13:SOI晶圓 13:SOI wafer

14:第二絕緣層 14: Second insulating layer

16:金屬層 16: metal layer

17:輔助接合層 17: Auxiliary bonding layer

23:蓋晶圓 23: Cover wafer

24:接合材料 24: Joining material

26:移除之絕緣層分區 26:Removed insulation layer partition

27:氧化層 27: oxide layer

28:多晶矽層 28: Polysilicon layer

100:第一絕緣層 100: first insulating layer

110:矽層 110: silicon layer

120:微機械功能層 120: Micromechanical functional layer

121:固定部件 121: fixed parts

122:電可致動的可偏轉切換元件 122: Electrically actuatable deflectable switching element

1210:第一接觸區 1210: first contact zone

1220:第二接觸區 1220: second contact zone

Claims (8)

一種電可致動的微機電系統開關,其具有基板(1),在該基板上一個接一個地配置有第一絕緣層(100)、矽層(110)、第二絕緣層(14)及金屬層(16), 其中該矽層、該第二絕緣層及該金屬層形成微機械功能層(120),在該微機械功能層中組態有固定部件(121)及電可致動的偏轉切換元件(122), 其中該切換元件經組態以在該開關之操作狀態下靠在該固定部件上且因此在該切換元件與該固定部件之間形成機械及電接點。 An electrically actuatable MEMS switch, which has a substrate (1) on which a first insulating layer (100), a silicon layer (110), a second insulating layer (14) and metal layer(16), The silicon layer, the second insulating layer and the metal layer form a micromechanical functional layer (120), in which a fixed component (121) and an electrically actuatable deflection switching element (122) are configured. , Wherein the switching element is configured to bear against the stationary part in the operative state of the switch and thus form a mechanical and electrical contact between the switching element and the stationary part. 如請求項1之電可致動的微機電系統開關,其中,在該操作狀態下,該接點形成於該固定部件(121)之該金屬層(16)之第一接觸區域(1210)與該切換元件(122)之該金屬層(16)之第二接觸區域(1220)之間。The electrically actuatable microelectromechanical system switch as claimed in claim 1, wherein, in the operating state, the contact is formed between the first contact area (1210) and the metal layer (16) of the fixed part (121) Between the second contact regions (1220) of the metal layer (16) of the switching element (122). 如請求項1或2之電可致動的微機電系統開關,其中該切換元件可在平行於該基板(1)之主延伸平面的至少一個第一方向(7)上偏轉。Electrically actuatable MEMS switch according to claim 1 or 2, wherein the switching element is deflectable in at least one first direction (7) parallel to the main extension plane of the substrate (1). 如請求項2或3之電可致動的微機電系統開關,其中該第一接觸區(1210)及/或該第二接觸區(1220)在該第一方向(7)上突出,相對於該矽層(110)具有突起部(12)。The electrically actuatable MEMS switch according to claim 2 or 3, wherein the first contact area (1210) and/or the second contact area (1220) protrude in the first direction (7), relative to The silicon layer (110) has a protrusion (12). 一種用於生產電可致動的微機電系統開關之方法,其包含以下步驟: A-設置具有基板晶圓(1)、第絕緣層(100)及矽層(110)之SOI基板(13); B-在該矽層(110)上沈積及結構化第二絕緣層(14); C-在該第二絕緣層(14)上方沈積及結構化金屬層(16); D-藉由非等向性蝕刻直至該第一絕緣層(100)來結構化該矽層(110),從而在該矽層(110)、該第二絕緣層(14)及該金屬層(16)中組態固定部件(121)及切換元件(122); E-蝕刻該第一絕緣層(100),從而至少部分地釋放及移動該切換元件(122)。 A method for producing an electrically actuatable MEMS switch comprising the steps of: A- setting the SOI substrate (13) with the substrate wafer (1), the first insulating layer (100) and the silicon layer (110); B - depositing and structuring a second insulating layer (14) on the silicon layer (110); C - depositing and structuring a metal layer (16) over the second insulating layer (14); D- Structuring the silicon layer (110) by anisotropic etching up to the first insulating layer (100), whereby the silicon layer (110), the second insulating layer (14) and the metal layer ( 16) Configure fixed components (121) and switching components (122); E—Etching the first insulating layer (100), at least partially releasing and moving the switching element (122). 如請求項5之用於生產電可致動的微機電系統開關之方法,其中在步驟B之後且在步驟C之前,沈積另一矽層或鍺層(15)且將該另一矽層或鍺層拋光回至該第二絕緣層之水平。The method for producing an electrically actuatable MEMS switch according to claim 5, wherein after step B and before step C, another silicon layer or germanium layer (15) is deposited and the other silicon layer or The germanium layer is polished back to the level of the second insulating layer. 如請求項5或6之用於生產電可致動的微機電系統開關之方法,其中在步驟C之後且在步驟D之前沈積並結構化一或多個另一絕緣層及/或金屬層及/或輔助接合層(17)且以此方式產生接合框架。The method for producing an electrically actuatable microelectromechanical system switch as claimed in claim 5 or 6, wherein after step C and before step D, one or more further insulating layers and/or metal layers are deposited and structured and / or assist the bonding layer ( 17 ) and in this way create a bonding frame. 如請求項7之用於生產電可致動的微機電系統開關之方法,其中將蓋施加至該接合框架。The method for producing an electrically actuatable MEMS switch as claimed in claim 7, wherein a cover is applied to the joint frame.
TW111108219A 2021-03-09 2022-03-07 Electrically actuatable mems switch TW202239697A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102021202238.3A DE102021202238A1 (en) 2021-03-09 2021-03-09 Electrically operable MEMS switch
DE102021202238.3 2021-03-09

Publications (1)

Publication Number Publication Date
TW202239697A true TW202239697A (en) 2022-10-16

Family

ID=80685166

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111108219A TW202239697A (en) 2021-03-09 2022-03-07 Electrically actuatable mems switch

Country Status (4)

Country Link
DE (1) DE102021202238A1 (en)
FR (1) FR3120622A1 (en)
TW (1) TW202239697A (en)
WO (1) WO2022189056A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021202409A1 (en) 2021-03-12 2022-09-15 Robert Bosch Gesellschaft mit beschränkter Haftung Capacitively actuated MEMS switch
DE102021203574A1 (en) 2021-04-12 2022-10-13 Robert Bosch Gesellschaft mit beschränkter Haftung MEMS switch with cap contact
DE102021203566A1 (en) 2021-04-12 2022-10-13 Robert Bosch Gesellschaft mit beschränkter Haftung MEMS switch with embedded metal contact

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030018420A1 (en) 2001-06-19 2003-01-23 Christopher Apanius Double acting crash sensor
US7190245B2 (en) 2003-04-29 2007-03-13 Medtronic, Inc. Multi-stable micro electromechanical switches and methods of fabricating same
DE102007035633B4 (en) * 2007-07-28 2012-10-04 Protron Mikrotechnik Gmbh Process for producing micromechanical structures and micromechanical structure
JP5257383B2 (en) * 2010-03-10 2013-08-07 オムロン株式会社 Switch, manufacturing method thereof, and relay
KR101272359B1 (en) 2010-03-01 2013-06-07 오므론 가부시키가이샤 Switch and method of manufacture thereof and relay
JP5131298B2 (en) * 2010-03-10 2013-01-30 オムロン株式会社 Switch, manufacturing method thereof, and electrostatic relay
JP5263203B2 (en) * 2010-03-12 2013-08-14 オムロン株式会社 Electrostatic relay
JP5720485B2 (en) * 2011-08-12 2015-05-20 オムロン株式会社 Electronic components

Also Published As

Publication number Publication date
DE102021202238A1 (en) 2022-09-15
WO2022189056A1 (en) 2022-09-15
FR3120622A1 (en) 2022-09-16

Similar Documents

Publication Publication Date Title
TW202239697A (en) Electrically actuatable mems switch
CN101917175B (en) Micro-electro-mechanical-system (mems) resonator and manufacturing method thereof
TW590983B (en) Method of fabricating micro-electromechanical switches on CMOS compatible substrates
US10294097B2 (en) Aluminum nitride (AlN) devices with infrared absorption structural layer
KR101800914B1 (en) Planar cavity mems and related structures, methods of manufacture and design structures
CN102398888B (en) Wafer level packaging
US10549987B2 (en) Micro-electro-mechanical system (MEMS) structures and design structures
US8742595B1 (en) MEMS devices and methods of forming same
CN101018734A (en) A method for making MEMS switch, and MEM device and its making method
JP2009226499A (en) Micromechanical apparatus and manufacturing method of micromechanical apparatus
JP5579118B2 (en) Mechanical switch with curved bilayer
US10290721B2 (en) Method of fabricating an electromechanical structure including at least one mechanical reinforcing pillar
JP4544140B2 (en) MEMS element
US12230457B2 (en) Method for manufacturing a MEMS switch having an embedded metal contact
CN115196580A (en) MEMS switch with cover contact
Lee et al. Titanium nitride sidewall stringer process for lateral nanoelectromechanical relays
WO2010147156A1 (en) Resonator and method of producing same
JP2009226498A (en) Micromechanical apparatus and manufacturing method of micromechanical apparatus
JP2007111832A (en) Method for manufacturing MEMS element and MEMS element
Fleming et al. Novel micromolded structures
JP2009178816A (en) Micromachine apparatus and method for manufacturing the same