TW202225486A - Electrolyser for electrochlorination processes and a self-cleaning electrochlorination system - Google Patents
Electrolyser for electrochlorination processes and a self-cleaning electrochlorination system Download PDFInfo
- Publication number
- TW202225486A TW202225486A TW110147811A TW110147811A TW202225486A TW 202225486 A TW202225486 A TW 202225486A TW 110147811 A TW110147811 A TW 110147811A TW 110147811 A TW110147811 A TW 110147811A TW 202225486 A TW202225486 A TW 202225486A
- Authority
- TW
- Taiwan
- Prior art keywords
- electrolytic cell
- chlorination
- pair
- bipolar electrodes
- ruthenium
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 17
- 238000004140 cleaning Methods 0.000 title claims abstract description 10
- 238000000576 coating method Methods 0.000 claims abstract description 34
- 239000011248 coating agent Substances 0.000 claims abstract description 31
- WQYVRQLZKVEZGA-UHFFFAOYSA-N hypochlorite Chemical compound Cl[O-] WQYVRQLZKVEZGA-UHFFFAOYSA-N 0.000 claims abstract description 28
- 238000005660 chlorination reaction Methods 0.000 claims abstract description 27
- 239000000758 substrate Substances 0.000 claims abstract description 27
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 claims abstract description 26
- 229910052707 ruthenium Inorganic materials 0.000 claims abstract description 26
- 239000000203 mixture Substances 0.000 claims abstract description 25
- 239000010936 titanium Substances 0.000 claims abstract description 20
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims abstract description 19
- 229910052719 titanium Inorganic materials 0.000 claims abstract description 19
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 19
- 230000003197 catalytic effect Effects 0.000 claims abstract description 18
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims abstract description 14
- 229910052718 tin Inorganic materials 0.000 claims abstract description 14
- 229910052751 metal Inorganic materials 0.000 claims abstract description 13
- 239000002184 metal Substances 0.000 claims abstract description 13
- 239000010955 niobium Substances 0.000 claims abstract description 13
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 claims abstract description 13
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 claims abstract description 12
- 229910052715 tantalum Inorganic materials 0.000 claims abstract description 12
- 229910052758 niobium Inorganic materials 0.000 claims abstract description 11
- 238000004659 sterilization and disinfection Methods 0.000 claims abstract description 11
- 230000001404 mediated effect Effects 0.000 claims abstract description 9
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 claims description 51
- 239000011780 sodium chloride Substances 0.000 claims description 22
- 238000011068 loading method Methods 0.000 claims description 17
- 239000003792 electrolyte Substances 0.000 claims description 10
- 239000002243 precursor Substances 0.000 claims description 8
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 5
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 claims description 4
- 239000000463 material Substances 0.000 claims description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 claims description 3
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 claims description 3
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 claims description 3
- 229910001887 tin oxide Inorganic materials 0.000 claims description 3
- CPELXLSAUQHCOX-UHFFFAOYSA-M Bromide Chemical compound [Br-] CPELXLSAUQHCOX-UHFFFAOYSA-M 0.000 claims description 2
- FIPWRIJSWJWJAI-UHFFFAOYSA-N Butyl carbitol 6-propylpiperonyl ether Chemical compound C1=C(CCC)C(COCCOCCOCCCC)=CC2=C1OCO2 FIPWRIJSWJWJAI-UHFFFAOYSA-N 0.000 claims description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 2
- 229910002651 NO3 Inorganic materials 0.000 claims description 2
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 claims description 2
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 claims description 2
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 claims description 2
- 229910052782 aluminium Inorganic materials 0.000 claims description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 2
- 229910052797 bismuth Inorganic materials 0.000 claims description 2
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 claims description 2
- 150000001875 compounds Chemical class 0.000 claims description 2
- 229910052802 copper Inorganic materials 0.000 claims description 2
- 239000010949 copper Substances 0.000 claims description 2
- 229910052735 hafnium Inorganic materials 0.000 claims description 2
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 claims description 2
- 238000010438 heat treatment Methods 0.000 claims description 2
- XMBWDFGMSWQBCA-UHFFFAOYSA-N hydrogen iodide Chemical compound I XMBWDFGMSWQBCA-UHFFFAOYSA-N 0.000 claims description 2
- 229910052741 iridium Inorganic materials 0.000 claims description 2
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 claims description 2
- 229910052763 palladium Inorganic materials 0.000 claims description 2
- 229960005235 piperonyl butoxide Drugs 0.000 claims description 2
- 229910052697 platinum Inorganic materials 0.000 claims description 2
- 229910052703 rhodium Inorganic materials 0.000 claims description 2
- 239000010948 rhodium Substances 0.000 claims description 2
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 claims description 2
- 150000003839 salts Chemical class 0.000 claims description 2
- 229910052706 scandium Inorganic materials 0.000 claims description 2
- SIXSYDAISGFNSX-UHFFFAOYSA-N scandium atom Chemical compound [Sc] SIXSYDAISGFNSX-UHFFFAOYSA-N 0.000 claims description 2
- 229910052712 strontium Inorganic materials 0.000 claims description 2
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 claims description 2
- 229910052726 zirconium Inorganic materials 0.000 claims description 2
- 150000004704 methoxides Chemical class 0.000 claims 1
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical class CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 claims 1
- 238000004519 manufacturing process Methods 0.000 abstract description 12
- 239000012267 brine Substances 0.000 abstract description 5
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical compound O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 abstract description 5
- 239000000243 solution Substances 0.000 description 13
- 239000010410 layer Substances 0.000 description 12
- 239000000460 chlorine Substances 0.000 description 7
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 6
- 229910052801 chlorine Inorganic materials 0.000 description 6
- 238000002360 preparation method Methods 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 3
- 239000005708 Sodium hypochlorite Substances 0.000 description 3
- 239000008199 coating composition Substances 0.000 description 3
- 229910000510 noble metal Inorganic materials 0.000 description 3
- SUKJFIGYRHOWBL-UHFFFAOYSA-N sodium hypochlorite Chemical compound [Na+].Cl[O-] SUKJFIGYRHOWBL-UHFFFAOYSA-N 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 230000032798 delamination Effects 0.000 description 2
- 238000004090 dissolution Methods 0.000 description 2
- 239000002019 doping agent Substances 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000013535 sea water Substances 0.000 description 2
- 239000006104 solid solution Substances 0.000 description 2
- 229910001936 tantalum oxide Inorganic materials 0.000 description 2
- 238000010998 test method Methods 0.000 description 2
- 229910052723 transition metal Inorganic materials 0.000 description 2
- 150000003624 transition metals Chemical class 0.000 description 2
- 241000894006 Bacteria Species 0.000 description 1
- KZBUYRJDOAKODT-UHFFFAOYSA-N Chlorine Chemical compound ClCl KZBUYRJDOAKODT-UHFFFAOYSA-N 0.000 description 1
- 241000233866 Fungi Species 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 1
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- 241000700605 Viruses Species 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000010866 blackwater Substances 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 150000003841 chloride salts Chemical class 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 239000003651 drinking water Substances 0.000 description 1
- 235000020188 drinking water Nutrition 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000003487 electrochemical reaction Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- HHFAWKCIHAUFRX-UHFFFAOYSA-N ethoxide Chemical compound CC[O-] HHFAWKCIHAUFRX-UHFFFAOYSA-N 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000010797 grey water Substances 0.000 description 1
- IXCSERBJSXMMFS-UHFFFAOYSA-N hydrogen chloride Substances Cl.Cl IXCSERBJSXMMFS-UHFFFAOYSA-N 0.000 description 1
- 229910000041 hydrogen chloride Inorganic materials 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- NBTOZLQBSIZIKS-UHFFFAOYSA-N methoxide Chemical compound [O-]C NBTOZLQBSIZIKS-UHFFFAOYSA-N 0.000 description 1
- 230000000813 microbial effect Effects 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 230000000877 morphologic effect Effects 0.000 description 1
- 229910000484 niobium oxide Inorganic materials 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- BPUBBGLMJRNUCC-UHFFFAOYSA-N oxygen(2-);tantalum(5+) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ta+5].[Ta+5] BPUBBGLMJRNUCC-UHFFFAOYSA-N 0.000 description 1
- IKNCGYCHMGNBCP-UHFFFAOYSA-N propan-1-olate Chemical compound CCC[O-] IKNCGYCHMGNBCP-UHFFFAOYSA-N 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 229910001925 ruthenium oxide Inorganic materials 0.000 description 1
- WOCIAKWEIIZHES-UHFFFAOYSA-N ruthenium(iv) oxide Chemical compound O=[Ru]=O WOCIAKWEIIZHES-UHFFFAOYSA-N 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910052938 sodium sulfate Inorganic materials 0.000 description 1
- 235000011152 sodium sulphate Nutrition 0.000 description 1
- 238000012358 sourcing Methods 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 230000009182 swimming Effects 0.000 description 1
- OEIMLTQPLAGXMX-UHFFFAOYSA-I tantalum(v) chloride Chemical compound Cl[Ta](Cl)(Cl)(Cl)Cl OEIMLTQPLAGXMX-UHFFFAOYSA-I 0.000 description 1
- 238000012956 testing procedure Methods 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- 239000002351 wastewater Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/46—Treatment of water, waste water, or sewage by electrochemical methods
- C02F1/461—Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
- C02F1/467—Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction
- C02F1/4672—Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction by electrooxydation
- C02F1/4674—Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction by electrooxydation with halogen or compound of halogens, e.g. chlorine, bromine
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B1/00—Electrolytic production of inorganic compounds or non-metals
- C25B1/01—Products
- C25B1/24—Halogens or compounds thereof
- C25B1/26—Chlorine; Compounds thereof
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B11/00—Electrodes; Manufacture thereof not otherwise provided for
- C25B11/04—Electrodes; Manufacture thereof not otherwise provided for characterised by the material
- C25B11/051—Electrodes formed of electrocatalysts on a substrate or carrier
- C25B11/052—Electrodes comprising one or more electrocatalytic coatings on a substrate
- C25B11/053—Electrodes comprising one or more electrocatalytic coatings on a substrate characterised by multilayer electrocatalytic coatings
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B11/00—Electrodes; Manufacture thereof not otherwise provided for
- C25B11/04—Electrodes; Manufacture thereof not otherwise provided for characterised by the material
- C25B11/051—Electrodes formed of electrocatalysts on a substrate or carrier
- C25B11/055—Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material
- C25B11/057—Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material consisting of a single element or compound
- C25B11/061—Metal or alloy
- C25B11/063—Valve metal, e.g. titanium
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B11/00—Electrodes; Manufacture thereof not otherwise provided for
- C25B11/04—Electrodes; Manufacture thereof not otherwise provided for characterised by the material
- C25B11/051—Electrodes formed of electrocatalysts on a substrate or carrier
- C25B11/073—Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
- C25B11/091—Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
- C25B11/093—Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds at least one noble metal or noble metal oxide and at least one non-noble metal oxide
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B15/00—Operating or servicing cells
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/46—Treatment of water, waste water, or sewage by electrochemical methods
- C02F1/461—Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
- C02F1/46104—Devices therefor; Their operating or servicing
- C02F1/46109—Electrodes
- C02F2001/46119—Cleaning the electrodes
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/46—Treatment of water, waste water, or sewage by electrochemical methods
- C02F1/461—Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
- C02F1/46104—Devices therefor; Their operating or servicing
- C02F1/46109—Electrodes
- C02F2001/46128—Bipolar electrodes
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/46—Treatment of water, waste water, or sewage by electrochemical methods
- C02F1/461—Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
- C02F1/46104—Devices therefor; Their operating or servicing
- C02F1/46109—Electrodes
- C02F2001/46133—Electrodes characterised by the material
- C02F2001/46138—Electrodes comprising a substrate and a coating
- C02F2001/46142—Catalytic coating
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2103/00—Nature of the water, waste water, sewage or sludge to be treated
- C02F2103/42—Nature of the water, waste water, sewage or sludge to be treated from bathing facilities, e.g. swimming pools
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2201/00—Apparatus for treatment of water, waste water or sewage
- C02F2201/46—Apparatus for electrochemical processes
- C02F2201/461—Electrolysis apparatus
- C02F2201/46105—Details relating to the electrolytic devices
- C02F2201/4612—Controlling or monitoring
- C02F2201/46125—Electrical variables
- C02F2201/4613—Inversing polarity
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Metallurgy (AREA)
- Materials Engineering (AREA)
- General Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Hydrology & Water Resources (AREA)
- Environmental & Geological Engineering (AREA)
- Water Supply & Treatment (AREA)
- Inorganic Chemistry (AREA)
- Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
- Electrodes For Compound Or Non-Metal Manufacture (AREA)
- Cleaning Or Drying Semiconductors (AREA)
- Detergent Compositions (AREA)
- Manufacturing Of Printed Wiring (AREA)
- Water Treatment By Electricity Or Magnetism (AREA)
- Cleaning By Liquid Or Steam (AREA)
- Paints Or Removers (AREA)
Abstract
Description
本發明相關一種在極性反轉條件下的氯化電解槽操作、該氯化電解槽的製造方法,及一種自潔電氯化系統。。 The present invention relates to a chlorination electrolytic cell operation under the condition of polarity reversal, a manufacturing method of the chlorination electrolytic cell, and a self-cleaning electrochlorination system. .
電氯化方法在於經由電解反應在鹽水中製造次氯酸鹽。可將結果產生的次氯酸鈉運用在與水消毒及氧化有關的各種應用中,例如飲用水的水處理、游泳池或冷卻塔中的微生物控制。 Electrochlorination methods consist in the production of hypochlorite in brine via an electrolytic reaction. The resulting sodium hypochlorite can be used in various applications related to water disinfection and oxidation, such as water treatment for drinking water, microbial control in swimming pools or cooling towers.
次氯酸鈉能有效對抗細菌、病毒及真菌,並具有微生物不能對其效用產生抗性的優點。 Sodium hypochlorite is effective against bacteria, viruses and fungi and has the advantage that microorganisms cannot develop resistance to its effects.
與為達成類似結果可添加到水中的氯氣或氯片劑相反,在電氯化方法中,活性化學品是在現場生產的,藉此避免運輸、環境及/或儲存問題。該方法是藉由將合適電流施加到一電解槽來進行,該電解槽包括有至少二電極及含鹽水的電解質,鹽水即鹽與水的混合物,取決於應用而有不同濃度。電化學反應的結果是產生次氯酸鈉及氫氣。 In contrast to chlorine gas or chlorine tablets, which can be added to water to achieve similar results, in electrochlorination methods, the active chemicals are produced on-site, thereby avoiding transportation, environmental and/or storage problems. The method is carried out by applying a suitable current to an electrolytic cell comprising at least two electrodes and an electrolyte containing brine, ie a mixture of salt and water, of varying concentrations depending on the application. As a result of the electrochemical reaction, sodium hypochlorite and hydrogen gas are produced.
具有活性塗層組合物(含閥金屬及貴金屬的混合物,特別是來自鉑族的稀有過渡金屬)的鈦電極,在過去已成功地作為這些類型電池中的陽極使用。然而,隨著時間過去,電極在其活性表面上形成水垢,其對該電解槽的次氯酸鹽製造效率產生負面影響。 Titanium electrodes with active coating compositions containing mixtures of valve and noble metals, especially rare transition metals from the platinum group, have been used successfully in the past as anodes in these types of batteries. However, over time, the electrodes form scale on their active surfaces, which negatively affects the hypochlorite production efficiency of the electrolytic cell.
為要防止/減少水垢的形成,可對電極進行週期性極性反轉,以促進其自潔。反轉極性亦可減少電極之間的離子橋接,並可防止不均勻的電極磨損。 To prevent/reduce scale formation, the electrodes can be periodically reversed in polarity to facilitate their self-cleaning. Reversing the polarity also reduces ionic bridging between electrodes and prevents uneven electrode wear.
在極性反轉條件下,其中每個電極交替地作為陰極及陽極工作,活性塗層組合物中偶爾使用的一些元素在幾次反轉循環後即變得不穩定並溶解在電解質中,因此導致電極壽命不足。 Under polarity reversal conditions, where each electrode operates alternately as cathode and anode, some elements occasionally used in the active coating composition become unstable and dissolve in the electrolyte after a few reversal cycles, resulting in Electrode life is insufficient.
通常,極性反轉用於電極的活性塗層是有害的操作,會迅 速因剝層而導致其失活。 In general, polarity reversal for active coatings of electrodes is a detrimental operation that can quickly It is rapidly deactivated due to delamination.
為要減少這些問題,需要為在極性反轉條件下使用的雙極電極提供比每個電極僅作為陽極或陰極工作時更高的塗層負載。通常,電極耐久性取決於極性反轉頻率及塗層負載。 To reduce these problems, it is necessary to provide higher coating loadings for bipolar electrodes used under polarity reversal conditions than when each electrode operates only as an anode or cathode. In general, electrode durability depends on polarity reversal frequency and coating loading.
增加塗層負載會對電極的成本產生負面影響,在材料數量及較長生產過程方面皆是如此。此外,由於許多活性塗層組合物依賴可取得性短缺的稀有過渡金屬,因此增加的負載亦加劇任何相關的採購問題。 Increasing the coating loading has a negative impact on the cost of the electrode, both in terms of material quantity and longer production process. Furthermore, since many active coating compositions rely on rare transition metals that are in short supply, the increased loading also exacerbates any associated sourcing issues.
期望具有自潔電極以用於電氯化系統,在涵蓋廣闊的可能應用及操作條件下展現提高的壽命及效率,並可能維持降低的生產成本。此外,亦希望在正常鹽度及低鹽度池中使用這類電氯化系統,即在鹽度等於或低於6公克/公升的池中(通常,在低鹽度應用中氯化鈉(NaCl)為0.5至2.5公克/公升,及在正常鹽度應用中氯化鈉(NaCl)為2.5至4公克/公升)。 It would be desirable to have self-cleaning electrodes for use in electrochlorination systems, exhibiting improved lifetime and efficiency over a broad range of possible applications and operating conditions, and possibly maintaining reduced production costs. In addition, it is also desirable to use this type of electrochlorination system in normal salinity and low salinity pools, i.e. in pools with salinity at or below 6 g/L (usually, in low salinity applications sodium chloride ( NaCl) is 0.5 to 2.5 g/L, and sodium chloride (NaCl) is 2.5 to 4 g/L in normal salinity applications).
世界專利申請號WO2019/215944A1揭露一種用以產生臭氧的電解槽,其配備有具有厚介電表面層的電極,為要在中間層的局部貴金屬位點增加用以產生氧的氧過電壓。這些電極既不適合生產氯氣,亦不適合在極性反轉條件下操作。 World Patent Application No. WO2019/215944A1 discloses an electrolytic cell for ozone generation, which is equipped with electrodes with a thick dielectric surface layer, in order to increase the oxygen overvoltage for generating oxygen at local noble metal sites in the intermediate layer. These electrodes are neither suitable for chlorine production nor for operation under polarity reversal conditions.
本發明涉及一種本發明涉及一種氯化電解槽,包括外殼,具有適用於鹽水循環的入口及出口,及至少一對雙極電極,彼此面對並定位在該外殼內。每個雙極電極包括:(i)閥金屬基材;(ii)活性塗層,包括有至少一層催化組合物設置在該基材之上,該催化組合物包括有釕及鈦;及(iii)頂塗層,包括有至少一層組合物,包括有鉭、鈮、錫或其組合的氧化物並定位在活性塗層之上。 The present invention relates to a chlorination electrolytic cell comprising a housing with an inlet and an outlet suitable for brine circulation, and at least one pair of bipolar electrodes facing each other and positioned within the housing. Each bipolar electrode includes: (i) a valve metal substrate; (ii) an active coating comprising at least one layer of a catalytic composition disposed on the substrate, the catalytic composition including ruthenium and titanium; and (iii) ) topcoat comprising at least one layer of a composition comprising oxides of tantalum, niobium, tin or combinations thereof and positioned over the active coating.
在另一方面,本發明涉及一種自潔電氯化系統,包括:(i)上述氯化電解槽;(ii)包括有1至30公克/公升氯化鈉(NaCl)鹽水溶液的電解質在該電解槽內循環;及(iii)電子系統,用以週期性地反轉以電與其連接的雙極電極對的極性,並且定位在電解槽外殼的外面。 In another aspect, the present invention relates to a self-cleaning electrochlorination system, comprising: (i) the above-mentioned chlorination electrolytic cell; (ii) an electrolyte comprising 1 to 30 g/L of sodium chloride (NaCl) saline solution in the Circulation within the cell; and (iii) an electronic system to periodically reverse the polarity of the bipolar electrode pair to which it is electrically connected and positioned outside the cell housing.
在另一方面,本發明涉及根據本發明的氯化電解槽的製 造方法。 In another aspect, the present invention relates to the production of a chlorination electrolytic cell according to the present invention method of making.
在另一方面,本發明涉及上述氯化電解槽在正常鹽度及低鹽度池中的用途以用於次氯酸鹽介導的水消毒。 In another aspect, the present invention relates to the use of the above-described chlorinated electrolytic cells in normal salinity and low salinity pools for hypochlorite mediated water disinfection.
在另一方面,本發明涉及在極性反轉條件下使用上述氯化電解槽進行次氯酸鹽介導的水消毒的方法。 In another aspect, the present invention relates to a method of hypochlorite-mediated water disinfection using the above-described chlorinated electrolytic cell under polarity reversal conditions.
在一方面,本發明涉及一種氯化電解槽,包括外殼,具有適用於鹽水循環的入口及出口;及至少一對雙極電極,彼此面對並定位在該外殼內,其中該對雙極電極的每個雙極電極包括:(i)閥金屬基材;(ii)活性塗層,包括有至少一層催化組合物設置在該基材之上,該催化組物包括有釕及鈦;及(iii)頂塗層,包括有至少一層組合物設置在該活性塗層之上,該組合物包括有鉭、鈮、錫或其組合的氧化物。 In one aspect, the invention relates to a chlorination electrolytic cell comprising a housing having an inlet and an outlet suitable for brine circulation; and at least one pair of bipolar electrodes facing each other and positioned within the housing, wherein the pair of bipolar electrodes Each of the bipolar electrodes includes: (i) a valve metal substrate; (ii) an active coating comprising at least one layer of catalytic composition disposed on the substrate, the catalytic composition including ruthenium and titanium; and ( iii) a top coat comprising at least one layer of a composition comprising oxides of tantalum, niobium, tin or a combination thereof disposed over the active coating.
包括有釕及鈦的至少一層催化組合物就其電特性而言基本上是均質層。該至少一層催化組合物在其形態特性方面亦為均相,並且基本上構成包括有釕及鈦的固溶體,較佳是均相固溶體,其中金屬主要是氧化物,即氧化釕及氧化鈦。 The at least one layer of the catalytic composition comprising ruthenium and titanium is a substantially homogeneous layer in terms of its electrical properties. The at least one layer of the catalytic composition is also homogeneous in terms of its morphological properties, and essentially constitutes a solid solution comprising ruthenium and titanium, preferably a homogeneous solid solution, wherein the metals are mainly oxides, namely ruthenium oxide and Titanium oxide.
根據本發明的氯化電解槽可在各種應用中用於次氯酸鹽介導的水消毒,如水池、廢水消毒(例如市政水處理、黑水及灰水處理、海水氯化,...)。 The chlorination cell according to the present invention can be used for hypochlorite-mediated water disinfection in various applications, such as pools, wastewater disinfection (eg municipal water treatment, black and grey water treatment, seawater chlorination, ... ).
氯化電解槽可有利地在極性反轉條件下操作,因此確保電極的自清潔並避免形成水垢。 Chlorinating cells can advantageously be operated under polarity reversal conditions, thus ensuring self-cleaning of the electrodes and avoiding scale formation.
可將該對電極的每個電極在一側或兩側上塗覆。按照慣例,應將兩個相對的電極設置成使塗覆側彼此面對。 Each electrode of the pair of electrodes can be coated on one or both sides. Conventionally, two opposing electrodes should be positioned with the coated sides facing each other.
氯化電解槽可包括複數個雙極電極對,形成具塗層電極設置成大體上彼此平行的堆疊。 The chlorination cell may include a plurality of bipolar electrode pairs forming a stack with coated electrodes arranged generally parallel to each other.
應將外殼設計為允許將雙極電極以電連接到外部發電機。發電機可有利地配備有以預設頻率反轉電極極性的系統,通常在30分鐘至10小時的範圍內,如本領域眾所周知,係取決於應用及操作條件如水污染物及水硬度。 The enclosure should be designed to allow the bipolar electrodes to be electrically connected to an external generator. The generator may advantageously be equipped with a system to reverse electrode polarity at a preset frequency, typically in the range of 30 minutes to 10 hours, as is well known in the art, depending on application and operating conditions such as water contamination and water hardness.
閥金屬基材可為本領域中通常使用的任何幾何形狀如(但不限於)平板、沖孔板、篩網、百葉窗。由於鈦的耐用性、成本及表面製備容易,因此基材較佳是由鈦製成。 The valve metal substrate can be any geometric shape commonly used in the art such as, but not limited to, flat plates, perforated plates, screens, louvers. The substrate is preferably made of titanium due to its durability, cost, and ease of surface preparation.
在施加活性塗層之前,最好應將基材進行清潔、噴砂及蝕刻以確保適當的附著力。 The substrate should preferably be cleaned, sandblasted and etched to ensure proper adhesion prior to applying the reactive coating.
可使用輥塗機、刷塗及噴塗技術將活性塗層直接設置在閥金屬基材之上。或者,本發明允許在基材與活性塗層之間插入中間塗層,例如用以提高活性塗層的附著力。在這種情況下,後者仍應視為設置在基材之上,儘管是間接的。 The active coating can be applied directly on the valve metal substrate using roll coater, brush and spray techniques. Alternatively, the present invention allows an intermediate coating to be inserted between the substrate and the active coating, eg, to improve the adhesion of the active coating. In this case, the latter should still be considered to be disposed on the substrate, albeit indirectly.
在一實施例中,根據本發明的氯化電解槽的催化組合物以元素的重量百分比表示,包括25%至45%的釕及55%至75%的鈦。 In one embodiment, the catalytic composition of the chlorinated electrolyzer according to the present invention, expressed in weight percent of elements, includes 25% to 45% of ruthenium and 55% to 75% of titanium.
在另一實施例中,催化組合物視情況可包括2%至5%的摻雜元素,係選自由鈧、鍶、鉿、鉍、鋯、鋁、銅、銠、銥、鉑、鈀及其相互組合組成的群。這些摻雜物可有利地有助於提高氯化電解槽的壽命及游離可用氯效率。 In another embodiment, the catalytic composition may optionally include 2% to 5% of a doping element selected from scandium, strontium, hafnium, bismuth, zirconium, aluminum, copper, rhodium, iridium, platinum, palladium, and the like. A group formed by combining with each other. These dopants can advantageously help increase the life of the chlorination cell and the efficiency of free available chlorine.
在根據上述任一實施例的活性塗層上塗覆由鉭、鈮或錫氧化物(組合或單獨)形成的絕緣頂塗層,允許釕(Ru)的負載降低至38%以用於電極的給定壽命目標,而不會影響效率。 Applying an insulating top coat of tantalum, niobium or tin oxide (combined or alone) over the active coating according to any of the above embodiments allows the loading of ruthenium (Ru) to be reduced to 38% for electrode supply Set life goals without compromising efficiency.
由於釕的稀缺性以及隨之而來的採購及成本問題,尤其是與本發明的頂塗層組合物中使用的金屬氧化物相比,釕(Ru)負載的降低提供顯著的優勢。 Due to the scarcity of ruthenium and the attendant procurement and cost issues, the reduction in ruthenium (Ru) loading provides significant advantages, especially compared to the metal oxides used in the topcoat compositions of the present invention.
本發明人已發現在本發明的實施中氧化錫的頂塗層特別有效,因為錫(Sn)似乎形成氧化物,與鉭(Ta)或鈮(Nb)相比,該氧化物允許氯離子Cl-較佳地擴散到活性層。錫(Sn)頂塗層亦形成裂紋較少的表面,因為其形成脫格的傾向較低,脫格例如會造成可在氧化鉭表面上觀察到的典型裂紋。裂紋較少的表面可防止電解質溶解活性層的不穩定部分。 The inventors have found that a top coat of tin oxide is particularly effective in the practice of the present invention because tin (Sn) appears to form an oxide that allows chloride ions, Cl, compared to tantalum (Ta) or niobium (Nb) - preferably diffusion to the active layer. The tin (Sn) topcoat also forms a less cracked surface, as it has a lower tendency to form dislocations, such as those typical of cracks that can be observed on tantalum oxide surfaces. A less cracked surface prevents the electrolyte from dissolving unstable parts of the active layer.
在另一實施例中,頂塗層較佳是足夠薄(在0.5至7微米之間),因為其可有助於維持活性層的游離可用氯(FAC)效率。 In another embodiment, the topcoat is preferably thin enough (between 0.5 to 7 microns) as it can help maintain the free available chlorine (FAC) efficiency of the active layer.
在上述任一實施例中,活性塗層可具有1至30公克/平方公尺的釕負載,這用於鹽度高於6公克/公升(但較佳低於30公克/公升)的 應用如海水氯化器的應用,以及用於鹽度低於6公克/公升如水池中發現的0.5至4公克/公升的應用均可起作用。 In any of the above embodiments, the active coating may have a ruthenium loading of 1 to 30 g/m2, which is useful for salinities higher than 6 g/L (but preferably lower than 30 g/L) Applications such as seawater chlorinator applications, as well as applications with salinity below 6 g/L such as 0.5 to 4 g/L found in pools, may work.
在水池應用中,頂塗層的總負載量較佳為2至6公克/平方公尺。 In pool applications, the total loading of the topcoat is preferably 2 to 6 grams per square meter.
在不將本發明限制於特定理論的情況下,根據本發明的頂塗層形成網狀物而非屏障:其減少活性塗層表面因氣泡摩擦引起的機械磨損並保持極性反轉發生時部分溶解的材料,藉此防止塗層的剝層以及釕及其他可選摻雜物在電解質中的溶解。同時,頂塗層的孔隙率及薄度允許電解質到達活性塗層的催化中心。 Without limiting the invention to a particular theory, the topcoat according to the invention forms a network rather than a barrier: it reduces mechanical wear of the active coating surface due to bubble friction and maintains partial dissolution when polarity reversal occurs material, thereby preventing delamination of the coating and dissolution of ruthenium and other optional dopants in the electrolyte. At the same time, the porosity and thinness of the top coat allows the electrolyte to reach the catalytic center of the active coating.
在另一方面,本發明涉及一種自潔電氯化系統,包括:(i)上述氯化電解槽;(ii)包括有1至30公克/公升氯化鈉(NaCl)鹽水溶液的電解質在該電解槽內循環;及(iii)電子系統,用以週期性地反轉電解槽的雙極電極的極性,該電子系統較佳定位在電解槽的外殼外面並以電連接到雙極電極。 In another aspect, the present invention relates to a self-cleaning electrochlorination system, comprising: (i) the above-mentioned chlorination electrolytic cell; (ii) an electrolyte comprising 1 to 30 g/L of sodium chloride (NaCl) saline solution in the Circulation within the cell; and (iii) an electronic system for periodically reversing the polarity of the bipolar electrodes of the cell, preferably positioned outside the housing of the cell and electrically connected to the bipolar electrodes.
用以週期性地反轉雙極電極極性的電子系統配備有一內部時鐘,允許以預設的時間間隔(在30分鐘至10小時的範圍內)反轉雙極電極的極性。 The electronic system used to periodically reverse the polarity of the bipolar electrodes is equipped with an internal clock that allows the polarity of the bipolar electrodes to be reversed at preset time intervals (in the range of 30 minutes to 10 hours).
在水池應用中,本發明人觀察到,根據本發明的自潔電氯化系統在電子系統以1至4小時的預設間隔反轉雙極電極對的極性時表現特別好。 In pool applications, the inventors observed that the self-cleaning electrochlorination system according to the present invention performs particularly well when the electronic system reverses the polarity of the bipolar electrode pair at preset intervals of 1 to 4 hours.
已發現包括有5至15個並聯的雙極電極對的堆疊有利於本發明的實施。 A stack comprising 5 to 15 bipolar electrode pairs in parallel has been found to be beneficial for the practice of the present invention.
根據本發明的電子系統可有利地在大約200至600安培/平方公尺(較佳200至400安培/平方公尺)的電流密度下操作。 Electronic systems according to the present invention can advantageously operate at current densities of about 200 to 600 amperes/square meter (preferably 200 to 400 amperes/square meter).
在另一方面,本發明涉及一種用以製造上述氯化電解槽的方法,包括根據以下順序步驟以製造該至少一對雙極電極中的每個電極的步驟: In another aspect, the present invention relates to a method for manufacturing the above-described chlorination electrolytic cell, comprising the steps of manufacturing each electrode of the at least one pair of bipolar electrodes according to the following sequential steps:
a)將包括有釕及鈦兩者的前驅物質的活性塗層溶液施加到閥金屬基材上,藉此得到具塗層的基材; a) applying an active coating solution comprising precursors of both ruthenium and titanium to the valve metal substrate, thereby obtaining a coated substrate;
b)將具塗層的基材在450至550℃的溫度下烘烤2至10分鐘; b) baking the coated substrate at a temperature of 450 to 550° C. for 2 to 10 minutes;
c)重複步驟a)及b)直到達成想要的釕負載; c) repeating steps a) and b) until the desired ruthenium loading is achieved;
d)將包括有鉭、鈮、錫或其組合的前驅物質的頂塗層溶液施加到具塗層的基材上; d) applying a topcoat solution comprising a precursor species of tantalum, niobium, tin or a combination thereof to the coated substrate;
e)將具塗層的基材在450至550℃的溫度下烘烤2至10分鐘; e) baking the coated substrate at a temperature of 450 to 550° C. for 2 to 10 minutes;
f)重複步驟d)及e),直到達成想要的鉭、鈮、錫或其組合的負載;及 f) repeating steps d) and e) until the desired loading of tantalum, niobium, tin or a combination thereof is achieved; and
g)在450至550℃的溫度範圍內進行最終熱處理。 g) Final heat treatment in a temperature range of 450 to 550°C.
釕及鈦的前驅物質以及鉭、鈮或錫的前驅物質為化合物,是選自由該等金屬的甲醇鹽、乙醇鹽、丙醇鹽、丁醇鹽、氯化物、硝酸鹽、碘化物、溴化物、硫酸鹽或醋酸鹽及其混合物組成的群。 The precursors of ruthenium and titanium and the precursors of tantalum, niobium or tin are compounds selected from methoxide, ethoxide, propoxide, butoxide, chloride, nitrate, iodide, bromide of these metals , sulfate or acetate, and mixtures thereof.
視情況可在步驟a)之後及/或在步驟d)之後,將具塗層的基材在20至80℃的溫度下風乾2至10分鐘。 Optionally, after step a) and/or after step d), the coated substrate is air-dried at a temperature of 20 to 80° C. for 2 to 10 minutes.
通常,可將根據本發明的氯化電解槽(特別是關於雙極電極架構)成功地運用在經受極性反轉的所有用於次氯酸鹽生產的應用中,以減少活性塗層的貴金屬負載或者若應用相同負載則展現延長的壽命,而不會影響游離可用氯(FAC)效率。 In general, the chlorination cell according to the present invention, especially with regard to bipolar electrode architectures, can be successfully used in all applications for hypochlorite production subject to polarity reversal to reduce noble metal loading of active coatings Or exhibit extended lifetime if the same load is applied without affecting free available chlorine (FAC) efficiency.
本發明人已發現氯化電解槽在水池應用中(在0.5至4公克/公升的鹽度下操作)運作特別好。 The inventors have found that chlorinated electrolyzers work particularly well in pool applications (operating at salinities of 0.5 to 4 grams per liter).
在又一方面,本發明的目標是根據本發明的氯化電解槽在正常鹽度及低鹽度水池中用於次氯酸鹽介導的水消毒的用途,即為使用在鹽度等於或低於6公克/公升下操作的水池中(在低鹽度應用中通常氯化鈉(NaCl)為0.5至2.5公克/公升,在正常鹽度應用中通常氯化鈉(NaCl)為2.5至4公克/公升)。 In yet another aspect, the object of the present invention is the use of a chlorinated electrolytic cell according to the present invention for hypochlorite-mediated water disinfection in normal and low salinity pools, i.e. for use at salinity equal to or In pools operating below 6 g/L (typically 0.5 to 2.5 g/L of sodium chloride (NaCl) in low salinity applications and 2.5 to 4 g/L in normal salinity applications grams/liter).
包括以下實施例以舉例說明本發明付諸實行的特定方式,其實用性已在所要求保護的值範圍內得到很大程度的驗證。 The following examples are included to illustrate specific ways in which the invention may be put into practice, the utility of which has been largely demonstrated within the range of claimed values.
本發明亦涉及一種用於次氯酸鹽介導的水消毒的方法,包括以下步驟: The present invention also relates to a method for hypochlorite-mediated water disinfection, comprising the steps of:
a)將包括有1至30公克/公升氯化鈉(NaCl)鹽水溶液的電解質在如上定義的至少一氯化電解槽內循環,該氯化電解槽包括有一或多對雙極電極; a) circulating an electrolyte comprising 1 to 30 g/l of sodium chloride (NaCl) saline solution in at least one chlorination cell as defined above, the chlorination cell comprising one or more pairs of bipolar electrodes;
b)將電流施加到該雙極電極對上,用以在該氯化鈉(NaCl)鹽水溶液中產生次氯酸鹽;及 b) applying an electric current to the bipolar electrode pair to generate hypochlorite in the sodium chloride (NaCl) saline solution; and
c)在施加該電流期間週期性地反轉至少一對雙極電極的極性。 c) periodically reversing the polarity of at least one pair of bipolar electrodes during application of the current.
根據本發明的實施例,該至少一對雙極電極的極性係以一時間間隔進行反轉,該時間間隔係由1分鐘至20小時的範圍內選出,較佳在30分鐘至10小時的範圍內,更佳在1至4小時的範圍內。 According to an embodiment of the present invention, the polarities of the at least one pair of bipolar electrodes are reversed at a time interval selected from a range of 1 minute to 20 hours, preferably 30 minutes to 10 hours , more preferably in the range of 1 to 4 hours.
在本發明的較佳實施例中,在選自200至600安培/平方公尺的範圍內的電流密度下(較佳在200至400安培/平方公尺的範圍內),將電流施加到該至少一對雙極電極上。 In a preferred embodiment of the present invention, current is applied to the at least one pair of bipolar electrodes.
熟諳此藝者應當理解,以下揭示的設備、組合物及技術代表本發明人所發現在本發明的實踐中發揮良好作用的設備、組合物及技術;然而,熟諳此藝者鑑於本揭示內容應當理解,不脫離本發明的範圍,可對所揭示的具體實施例作出許多改變但仍然獲得相同或相似的結果。 It should be understood by those skilled in the art that the apparatus, compositions and techniques disclosed below represent apparatus, compositions and techniques that the inventors have found to function well in the practice of the invention; It is to be understood that many changes can be made in the specific embodiments disclosed and still obtain a like or similar result without departing from the scope of the invention.
實驗製備 Experimental preparation
在以下實施例及比較例中使用的所有電極樣品中,從尺寸為100毫米×100毫米×1毫米的1級鈦板開始製造一對雙極電極的閥金屬基材,在超音波浴中用丙酮脫脂,然後進行噴砂並以22%濃度的全沸騰氯化氫(HCl)進行蝕刻。 In all electrode samples used in the following examples and comparative examples, valve metal substrates for a pair of bipolar electrodes were fabricated starting from grade 1 titanium plates with dimensions of 100 mm x 100 mm x 1 mm, used in an ultrasonic bath. Acetone degreased, then sandblasted and etched with 22% full boiling hydrogen chloride (HCl).
藉由將釕及鈦的氯化物鹽溶解在10%的氯化氫(HCl)水溶液中以得到製備電極樣品E1、E2a、E2b及樣品C1至C3所用的催化溶液,按元素的重量百分比表示,釕:鈦(Ru:Ti)的比等於28:72,每種催化溶液中釕的最終濃度等於45公克/公升。 By dissolving the chloride salts of ruthenium and titanium in a 10% aqueous hydrogen chloride (HCl) solution to obtain the catalytic solutions used for the preparation of electrode samples E1, E2a, E2b and samples C1 to C3, expressed by weight percent of elements, ruthenium: The ratio of titanium (Ru:Ti) was equal to 28:72 and the final concentration of ruthenium in each catalytic solution was equal to 45 grams per liter.
將藉此製備的溶液攪拌30分鐘。 The solution thus prepared was stirred for 30 minutes.
在所有電極樣品E1、E2a、E2b、C1至C3中,使用刷塗法,釕的增益率為0.8公克/平方公尺,將鈦基材塗覆上述催化溶液。 In all electrode samples E1, E2a, E2b, C1 to C3, the titanium substrate was coated with the above catalytic solution using a brush coating method with a gain of 0.8 g/m2 of ruthenium.
每次刷塗一層後,將樣品在500至550℃的溫度下烘烤10分鐘。 After each brush coat, the samples were baked at a temperature of 500 to 550°C for 10 minutes.
用於每個樣品E1、E2a、E2b、C1至C3,重複上述塗覆程序,直到達到根據以下表一的釕總負載: The above coating procedure was repeated for each sample E1, E2a, E2b, C1 to C3 until the total ruthenium loading according to Table 1 below was reached:
實施例1 Example 1
將試驗製備所形成的樣品E1進一步用由乙酸稀釋的錫(Sn)乙酸鹽溶液得到的頂塗層溶液進行塗覆,直至達到40公克/公升的最終濃度。將頂塗層溶液用刷子塗4層,錫的總負載為4.5公克/平方公尺。在塗刷每層後,隨後將樣品在500至550℃的溫度下烘烤10分鐘。 Sample E1 formed from the test preparation was further coated with a topcoat solution derived from a tin (Sn) acetate solution diluted with acetic acid until a final concentration of 40 grams/liter was reached. The topcoat solution was applied by brush in 4 coats with a total tin loading of 4.5 g/m². After each coat was applied, the samples were then baked at a temperature of 500 to 550°C for 10 minutes.
在塗刷最後一層後,將樣品在500至550℃的溫度下進行3小時的後烘烤處理。 After the final coat was applied, the samples were post-baked at a temperature of 500 to 550°C for 3 hours.
根據以下加速測試程序進行樣品電極E1的測試:在25℃下,將一對相同的電極樣品放置在具有入口及出口的外殼中,極間間隙為3毫米,並且含有4公克/公升氯化鈉(NaCl)及70公克/公升硫酸鈉(Na2SO4)的1公升水溶液。 Testing of sample electrode E1 was performed according to the following accelerated testing procedure: A pair of identical electrode samples were placed in a housing with inlet and outlet at 25°C, with a gap of 3 mm between the electrodes, and containing 4 g/L NaCl (NaCl) and 70 g/L sodium sulfate (Na 2 SO 4 ) in 1 liter of water.
該電極對係在1000安培/平方公尺的電流密度下運行,並在測試期間每1分鐘進行一次極性反轉。將該電極對保持在測試條件下,直到電池電壓超過8.5伏特(“加速壽命”,係以小時為單位測量以用於催化組合物中每公克/平方公尺的釕)。 The electrode pair was run at a current density of 1000 amps/square meter with polarity reversal every 1 minute during the test. The electrode pair was maintained under test conditions until the cell voltage exceeded 8.5 volts ("accelerated life", measured in hours for ruthenium per gram/square meter in the catalytic composition).
結果記錄在表二中。 The results are recorded in Table II.
選擇E1壽命性能(按小時計,對應到145在線小時(HOL))作為雙極電極的目標性能,如表二所列出。 The E1 lifetime performance (in hours, corresponding to 145 hours on line (HOL)) was chosen as the target performance for the bipolar electrode, as listed in Table II.
在25℃溫度下,以300安培/平方公尺,在水中氯化鈉(NaCl)為3公克/公升,測量該樣品的游離可用氯(FAC)。 The sample was measured for free available chlorine (FAC) at a temperature of 25°C at 300 amperes/square meter and sodium chloride (NaCl) at 3 g/liter in water.
實施例2 Example 2
由實驗製備所得到的樣品E2(即E2a及E2b)皆進一步用一頂塗層溶液進行塗覆,該頂塗層溶液係藉由將80公克氯化鉭(TaCl5)溶解在1公升的20%濃度氯化氫(HCl)中並將該溶液在室溫下攪拌30分鐘所獲得。用於每個E2樣品,將頂塗層溶液藉由刷子塗覆1層,總鉭(Ta)負載為 1公克/平方公尺。首先將樣品在300至350℃的溫度下烘烤10分鐘,然後在500至550℃的溫度下烘烤10分鐘。 The experimentally prepared samples E2 (ie E2a and E2b) were further coated with a topcoat solution prepared by dissolving 80 grams of tantalum chloride (TaCl5) in 1 liter of 20. % strength hydrogen chloride (HCl) and the solution was stirred at room temperature for 30 minutes. For each E2 sample, the topcoat solution was applied by brush in 1 layer with a total tantalum (Ta) loading of 1 gram/square meter. The samples were first baked at a temperature of 300 to 350°C for 10 minutes, and then at a temperature of 500 to 550°C for 10 minutes.
根據實施例1中描述的相同試驗程序對樣品E2進行試驗。 Sample E2 was tested according to the same test procedure described in Example 1 .
分析樣品E2的結果,唯一滿足E1目標性能的樣品是E2b;其性能的特徵如表二所示。 Analyzing the results of sample E2, the only sample that meets the target performance of E1 is E2b; its performance characteristics are shown in Table 2.
比較例1 Comparative Example 1
將由實驗製備所得到的樣品C(即C1至C3)在500至550℃的溫度下進行3小時的後烘烤處理,並根據實施例1描述的試驗程序進行試驗。 Samples C (ie C1 to C3 ) prepared from the experiments were post-baked at temperatures of 500 to 550° C. for 3 hours and tested according to the test procedure described in Example 1 .
分析樣品C的結果,唯一滿足E1目標性能的樣本是C3;在表二中列出其性能的特徵。 Analyzing the results of sample C, the only sample meeting the target performance of E1 was C3; the characteristics of its performance are listed in Table II.
前面的說明不應作為限制本發明,不脫離本發明的範圍,可根據不同實施例而使用本發明,並且本發明的範圍僅由所附申請專利範圍加以限定。 The foregoing description should not be taken to limit the present invention, which may be used according to different embodiments without departing from the scope of the present invention, and the scope of the present invention is limited only by the scope of the appended claims.
在本申請案的整個說明書及申請專利範圍中,“包括”一詞及其變化如“包括有”及“包含”並不希望用以排除其他元件、組件或附加程序步驟的存在。 Throughout the specification and scope of this application, the word "comprising" and variations such as "comprising" and "comprising" are not intended to exclude the presence of other elements, components or additional procedural steps.
將專利文獻、法案、材料、裝置、物品等的討論包括在本說明書中,僅為提供本發明上下文的目的。在本申請案的每一申請專利範圍的優先權日之前,不建議或表示這些事項中的任一者或全部構成先前技術基礎的一部分或與本發明相關領域中的一般常識。 Discussions of patent documents, acts, materials, devices, articles, etc. are included in this specification for the sole purpose of providing the context of the present invention. It is not suggested or indicated that any or all of these matters formed part of the prior art base or common general knowledge in the field relevant to the present invention prior to the priority date of each claimant of this application.
Claims (14)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
IT102020000031802A IT202000031802A1 (en) | 2020-12-22 | 2020-12-22 | ELECTROLYSER FOR ELECTROCHLORINATION PROCESSES AND A SELF-CLEANING ELECTROCHLORINATION SYSTEM |
ITIT102020000031802 | 2020-12-22 |
Publications (1)
Publication Number | Publication Date |
---|---|
TW202225486A true TW202225486A (en) | 2022-07-01 |
Family
ID=74858669
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW110147811A TW202225486A (en) | 2020-12-22 | 2021-12-21 | Electrolyser for electrochlorination processes and a self-cleaning electrochlorination system |
Country Status (10)
Country | Link |
---|---|
EP (1) | EP4267521A1 (en) |
JP (1) | JP2024502947A (en) |
KR (1) | KR20230125009A (en) |
CN (1) | CN116601336A (en) |
AU (1) | AU2021405486A1 (en) |
IL (1) | IL303788A (en) |
IT (1) | IT202000031802A1 (en) |
TW (1) | TW202225486A (en) |
WO (1) | WO2022136455A1 (en) |
ZA (1) | ZA202304419B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP4382493A1 (en) * | 2022-12-06 | 2024-06-12 | Grant Prideco, Inc. | Device, system and method for preventing scale |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3917518A (en) * | 1973-04-19 | 1975-11-04 | Diamond Shamrock Corp | Hypochlorite production |
US4118307A (en) * | 1977-02-14 | 1978-10-03 | Diamond Shamrock Corporation | Batch sodium hypochlorite generator |
US6007693A (en) * | 1995-03-30 | 1999-12-28 | Bioquest | Spa halogen generator and method of operating |
JP2006097122A (en) * | 2004-08-31 | 2006-04-13 | Sanyo Electric Co Ltd | Electrode for electrolysis and method of manufacturing electrode for electrolysis |
WO2019215944A1 (en) * | 2018-05-07 | 2019-11-14 | パナソニックIpマネジメント株式会社 | Electrode for electrolysis use, and electric device and ozone generating device each provided with same |
-
2020
- 2020-12-22 IT IT102020000031802A patent/IT202000031802A1/en unknown
-
2021
- 2021-12-21 IL IL303788A patent/IL303788A/en unknown
- 2021-12-21 JP JP2023538786A patent/JP2024502947A/en active Pending
- 2021-12-21 AU AU2021405486A patent/AU2021405486A1/en active Pending
- 2021-12-21 EP EP21839231.4A patent/EP4267521A1/en active Pending
- 2021-12-21 CN CN202180080235.4A patent/CN116601336A/en active Pending
- 2021-12-21 KR KR1020237025057A patent/KR20230125009A/en active Pending
- 2021-12-21 TW TW110147811A patent/TW202225486A/en unknown
- 2021-12-21 WO PCT/EP2021/087127 patent/WO2022136455A1/en active Application Filing
-
2023
- 2023-04-14 ZA ZA2023/04419A patent/ZA202304419B/en unknown
Also Published As
Publication number | Publication date |
---|---|
IL303788A (en) | 2023-08-01 |
CN116601336A (en) | 2023-08-15 |
AU2021405486A1 (en) | 2023-07-20 |
EP4267521A1 (en) | 2023-11-01 |
IT202000031802A1 (en) | 2022-06-22 |
JP2024502947A (en) | 2024-01-24 |
KR20230125009A (en) | 2023-08-28 |
ZA202304419B (en) | 2024-08-28 |
WO2022136455A1 (en) | 2022-06-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Chen et al. | Corrosion resistance mechanism of a novel porous Ti/Sn-Sb-RuOx/β-PbO2 anode for zinc electrowinning | |
US8580091B2 (en) | Multi-layer mixed metal oxide electrode and method for making same | |
JP4972991B2 (en) | Oxygen generating electrode | |
CN111670268B (en) | Electrodes for electrolytic chlorination processes | |
TW202225486A (en) | Electrolyser for electrochlorination processes and a self-cleaning electrochlorination system | |
JP5105406B2 (en) | Electrode for reverse electrolysis | |
US20220195612A1 (en) | Electrolyser for electrochlorination processes and a self-cleaning electrochlorination system | |
JP2836840B2 (en) | Electrode for chlorine generation and method for producing the same | |
JP3724096B2 (en) | Oxygen generating electrode and manufacturing method thereof | |
JPS62260086A (en) | Electrode for electrolysis and its production | |
JP3236653B2 (en) | Electrode for electrolysis | |
JP5359133B2 (en) | Oxygen generating electrode | |
CN118159498A (en) | Electrodes for hypochlorite precipitation | |
CN119162613A (en) | Catalytic anode and method for electrolytic production of chlorine | |
JP2024072226A (en) | Electrode for electrolysis | |
CN115466985A (en) | Preparation method of metal oxide electrode containing amorphous rhodium oxide interlayer | |
JPH0860390A (en) | Electrolytic electrode and its production | |
JP2006233302A (en) | Oxygen generating electrode and manufacturing method thereof |