TW202204939A - Predictive modeling for tintable windows - Google Patents
Predictive modeling for tintable windows Download PDFInfo
- Publication number
- TW202204939A TW202204939A TW110105176A TW110105176A TW202204939A TW 202204939 A TW202204939 A TW 202204939A TW 110105176 A TW110105176 A TW 110105176A TW 110105176 A TW110105176 A TW 110105176A TW 202204939 A TW202204939 A TW 202204939A
- Authority
- TW
- Taiwan
- Prior art keywords
- sensor
- transitory computer
- program product
- sensor data
- readable program
- Prior art date
Links
- 238000000034 method Methods 0.000 claims abstract description 271
- 238000012360 testing method Methods 0.000 claims description 141
- 238000005096 rolling process Methods 0.000 claims description 102
- 238000013528 artificial neural network Methods 0.000 claims description 90
- 238000012549 training Methods 0.000 claims description 89
- 230000005855 radiation Effects 0.000 claims description 85
- 230000004313 glare Effects 0.000 claims description 84
- 238000010801 machine learning Methods 0.000 claims description 82
- 230000007613 environmental effect Effects 0.000 claims description 63
- 238000012545 processing Methods 0.000 claims description 34
- 238000001914 filtration Methods 0.000 claims description 29
- 238000012986 modification Methods 0.000 claims description 6
- 230000004048 modification Effects 0.000 claims description 6
- 238000002372 labelling Methods 0.000 claims description 5
- 230000008447 perception Effects 0.000 claims description 3
- 238000000275 quality assurance Methods 0.000 abstract description 17
- 238000005192 partition Methods 0.000 description 167
- 238000004891 communication Methods 0.000 description 84
- 206010052128 Glare Diseases 0.000 description 82
- 230000001276 controlling effect Effects 0.000 description 67
- 238000007726 management method Methods 0.000 description 59
- 230000006870 function Effects 0.000 description 39
- 230000007704 transition Effects 0.000 description 38
- 238000005259 measurement Methods 0.000 description 36
- 230000008569 process Effects 0.000 description 36
- 238000012935 Averaging Methods 0.000 description 32
- 230000003287 optical effect Effects 0.000 description 32
- 238000010438 heat treatment Methods 0.000 description 30
- 230000015654 memory Effects 0.000 description 30
- 239000011521 glass Substances 0.000 description 29
- 230000008859 change Effects 0.000 description 27
- 239000000463 material Substances 0.000 description 26
- 238000012706 support-vector machine Methods 0.000 description 26
- 230000000007 visual effect Effects 0.000 description 26
- 230000036541 health Effects 0.000 description 25
- 238000010586 diagram Methods 0.000 description 23
- 150000002500 ions Chemical class 0.000 description 21
- 238000013526 transfer learning Methods 0.000 description 21
- 238000004364 calculation method Methods 0.000 description 20
- 230000002354 daily effect Effects 0.000 description 19
- 238000013473 artificial intelligence Methods 0.000 description 17
- 239000013598 vector Substances 0.000 description 17
- 230000008901 benefit Effects 0.000 description 16
- 238000012544 monitoring process Methods 0.000 description 15
- 238000004088 simulation Methods 0.000 description 15
- 239000004984 smart glass Substances 0.000 description 15
- 238000013135 deep learning Methods 0.000 description 14
- 230000005484 gravity Effects 0.000 description 14
- 238000013507 mapping Methods 0.000 description 14
- 238000002834 transmittance Methods 0.000 description 14
- 238000009826 distribution Methods 0.000 description 13
- 238000005457 optimization Methods 0.000 description 13
- 238000003860 storage Methods 0.000 description 13
- 239000000758 substrate Substances 0.000 description 13
- 238000004422 calculation algorithm Methods 0.000 description 12
- 230000008878 coupling Effects 0.000 description 12
- 238000010168 coupling process Methods 0.000 description 12
- 238000005859 coupling reaction Methods 0.000 description 12
- 238000003062 neural network model Methods 0.000 description 12
- 238000013139 quantization Methods 0.000 description 12
- 238000004458 analytical method Methods 0.000 description 11
- 238000003379 elimination reaction Methods 0.000 description 11
- 230000002829 reductive effect Effects 0.000 description 11
- 230000004888 barrier function Effects 0.000 description 10
- 238000009792 diffusion process Methods 0.000 description 10
- 230000007246 mechanism Effects 0.000 description 10
- 229910052751 metal Inorganic materials 0.000 description 10
- 239000002184 metal Substances 0.000 description 10
- 238000000513 principal component analysis Methods 0.000 description 10
- 239000002131 composite material Substances 0.000 description 9
- 238000000151 deposition Methods 0.000 description 9
- 230000008021 deposition Effects 0.000 description 9
- 230000008030 elimination Effects 0.000 description 9
- 238000012552 review Methods 0.000 description 9
- 239000007787 solid Substances 0.000 description 9
- 125000006850 spacer group Chemical group 0.000 description 9
- 238000001816 cooling Methods 0.000 description 8
- 238000007405 data analysis Methods 0.000 description 8
- 230000000694 effects Effects 0.000 description 8
- 229910001416 lithium ion Inorganic materials 0.000 description 8
- USPVIMZDBBWXGM-UHFFFAOYSA-N nickel;oxotungsten Chemical compound [Ni].[W]=O USPVIMZDBBWXGM-UHFFFAOYSA-N 0.000 description 8
- 239000002245 particle Substances 0.000 description 8
- 230000000737 periodic effect Effects 0.000 description 8
- 238000011002 quantification Methods 0.000 description 8
- 230000000306 recurrent effect Effects 0.000 description 8
- 229910001930 tungsten oxide Inorganic materials 0.000 description 8
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 7
- 230000009471 action Effects 0.000 description 7
- 238000004378 air conditioning Methods 0.000 description 7
- 238000013459 approach Methods 0.000 description 7
- 230000006399 behavior Effects 0.000 description 7
- QGLKJKCYBOYXKC-UHFFFAOYSA-N nonaoxidotritungsten Chemical compound O=[W]1(=O)O[W](=O)(=O)O[W](=O)(=O)O1 QGLKJKCYBOYXKC-UHFFFAOYSA-N 0.000 description 7
- 230000000149 penetrating effect Effects 0.000 description 7
- 238000009423 ventilation Methods 0.000 description 7
- 238000004566 IR spectroscopy Methods 0.000 description 6
- 238000005265 energy consumption Methods 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 6
- 239000007789 gas Substances 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 6
- 229910044991 metal oxide Inorganic materials 0.000 description 6
- 150000004706 metal oxides Chemical class 0.000 description 6
- 238000007637 random forest analysis Methods 0.000 description 6
- 230000004044 response Effects 0.000 description 6
- 238000012546 transfer Methods 0.000 description 6
- 238000012795 verification Methods 0.000 description 6
- 238000000576 coating method Methods 0.000 description 5
- 238000011156 evaluation Methods 0.000 description 5
- 238000003064 k means clustering Methods 0.000 description 5
- 238000012805 post-processing Methods 0.000 description 5
- 238000007781 pre-processing Methods 0.000 description 5
- 239000000047 product Substances 0.000 description 5
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 4
- 238000004040 coloring Methods 0.000 description 4
- 238000013527 convolutional neural network Methods 0.000 description 4
- 238000012217 deletion Methods 0.000 description 4
- 230000037430 deletion Effects 0.000 description 4
- 230000004907 flux Effects 0.000 description 4
- AMWRITDGCCNYAT-UHFFFAOYSA-L hydroxy(oxo)manganese;manganese Chemical compound [Mn].O[Mn]=O.O[Mn]=O AMWRITDGCCNYAT-UHFFFAOYSA-L 0.000 description 4
- 239000011147 inorganic material Substances 0.000 description 4
- 230000002452 interceptive effect Effects 0.000 description 4
- 230000000670 limiting effect Effects 0.000 description 4
- 239000004973 liquid crystal related substance Substances 0.000 description 4
- 238000012423 maintenance Methods 0.000 description 4
- 230000002093 peripheral effect Effects 0.000 description 4
- 238000000611 regression analysis Methods 0.000 description 4
- 230000001932 seasonal effect Effects 0.000 description 4
- 238000010187 selection method Methods 0.000 description 4
- 238000013316 zoning Methods 0.000 description 4
- 230000001133 acceleration Effects 0.000 description 3
- 239000005328 architectural glass Substances 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 3
- 238000007621 cluster analysis Methods 0.000 description 3
- 238000011960 computer-aided design Methods 0.000 description 3
- 238000010276 construction Methods 0.000 description 3
- 238000013500 data storage Methods 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 230000018109 developmental process Effects 0.000 description 3
- 238000009434 installation Methods 0.000 description 3
- 238000002955 isolation Methods 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 230000036961 partial effect Effects 0.000 description 3
- 239000004033 plastic Substances 0.000 description 3
- 229920003023 plastic Polymers 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 230000001105 regulatory effect Effects 0.000 description 3
- 230000010076 replication Effects 0.000 description 3
- 230000002441 reversible effect Effects 0.000 description 3
- 230000006403 short-term memory Effects 0.000 description 3
- 239000011343 solid material Substances 0.000 description 3
- -1 stainless steel (eg Chemical class 0.000 description 3
- 230000000638 stimulation Effects 0.000 description 3
- 238000001429 visible spectrum Methods 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- 101150071882 US17 gene Proteins 0.000 description 2
- 238000002835 absorbance Methods 0.000 description 2
- 230000003044 adaptive effect Effects 0.000 description 2
- 230000002457 bidirectional effect Effects 0.000 description 2
- 210000004027 cell Anatomy 0.000 description 2
- 230000001413 cellular effect Effects 0.000 description 2
- 238000007635 classification algorithm Methods 0.000 description 2
- 230000000295 complement effect Effects 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- QDOXWKRWXJOMAK-UHFFFAOYSA-N dichromium trioxide Chemical compound O=[Cr]O[Cr]=O QDOXWKRWXJOMAK-UHFFFAOYSA-N 0.000 description 2
- 238000004134 energy conservation Methods 0.000 description 2
- 230000001747 exhibiting effect Effects 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 238000009432 framing Methods 0.000 description 2
- 238000005286 illumination Methods 0.000 description 2
- 230000001976 improved effect Effects 0.000 description 2
- 229910003437 indium oxide Inorganic materials 0.000 description 2
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 description 2
- 238000007689 inspection Methods 0.000 description 2
- 238000009830 intercalation Methods 0.000 description 2
- 230000002687 intercalation Effects 0.000 description 2
- 238000012417 linear regression Methods 0.000 description 2
- 238000007477 logistic regression Methods 0.000 description 2
- 230000001537 neural effect Effects 0.000 description 2
- 230000007935 neutral effect Effects 0.000 description 2
- 229910000480 nickel oxide Inorganic materials 0.000 description 2
- URLJKFSTXLNXLG-UHFFFAOYSA-N niobium(5+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Nb+5].[Nb+5] URLJKFSTXLNXLG-UHFFFAOYSA-N 0.000 description 2
- 150000004767 nitrides Chemical class 0.000 description 2
- 239000011368 organic material Substances 0.000 description 2
- 238000000059 patterning Methods 0.000 description 2
- 238000009428 plumbing Methods 0.000 description 2
- 230000001902 propagating effect Effects 0.000 description 2
- 238000002310 reflectometry Methods 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 230000004043 responsiveness Effects 0.000 description 2
- 230000000717 retained effect Effects 0.000 description 2
- 229910001925 ruthenium oxide Inorganic materials 0.000 description 2
- WOCIAKWEIIZHES-UHFFFAOYSA-N ruthenium(iv) oxide Chemical compound O=[Ru]=O WOCIAKWEIIZHES-UHFFFAOYSA-N 0.000 description 2
- 239000003566 sealing material Substances 0.000 description 2
- 230000035939 shock Effects 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 229910052814 silicon oxide Inorganic materials 0.000 description 2
- 239000000779 smoke Substances 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- 230000036962 time dependent Effects 0.000 description 2
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 2
- 229910001887 tin oxide Inorganic materials 0.000 description 2
- ZNOKGRXACCSDPY-UHFFFAOYSA-N tungsten trioxide Chemical compound O=[W](=O)=O ZNOKGRXACCSDPY-UHFFFAOYSA-N 0.000 description 2
- 238000010200 validation analysis Methods 0.000 description 2
- 239000011787 zinc oxide Substances 0.000 description 2
- QPLDLSVMHZLSFG-UHFFFAOYSA-N Copper oxide Chemical compound [Cu]=O QPLDLSVMHZLSFG-UHFFFAOYSA-N 0.000 description 1
- 208000033999 Device damage Diseases 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- XOJVVFBFDXDTEG-UHFFFAOYSA-N Norphytane Natural products CC(C)CCCC(C)CCCC(C)CCCC(C)C XOJVVFBFDXDTEG-UHFFFAOYSA-N 0.000 description 1
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 1
- 235000014328 Schoenoplectus acutus var occidentalis Nutrition 0.000 description 1
- 244000136421 Scirpus acutus Species 0.000 description 1
- 235000014326 Scirpus californicus Nutrition 0.000 description 1
- 235000017913 Scirpus lacustris Nutrition 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- 101150013568 US16 gene Proteins 0.000 description 1
- HCMXUMGRSGICHK-UHFFFAOYSA-N [Mg].[Ni]=O Chemical compound [Mg].[Ni]=O HCMXUMGRSGICHK-UHFFFAOYSA-N 0.000 description 1
- LFYMLMKKOJHYFY-UHFFFAOYSA-N [O-2].[Al+3].[Ni+2] Chemical compound [O-2].[Al+3].[Ni+2] LFYMLMKKOJHYFY-UHFFFAOYSA-N 0.000 description 1
- QLEJXAMHPYMIFG-UHFFFAOYSA-N [O-2].[Al+3].[Si+4].[Li+].[O-2].[O-2].[O-2] Chemical compound [O-2].[Al+3].[Si+4].[Li+].[O-2].[O-2].[O-2] QLEJXAMHPYMIFG-UHFFFAOYSA-N 0.000 description 1
- FLAMVRNMRAHFGQ-UHFFFAOYSA-N [O-2].[V+5].[Ni+2] Chemical compound [O-2].[V+5].[Ni+2] FLAMVRNMRAHFGQ-UHFFFAOYSA-N 0.000 description 1
- YAIQCYZCSGLAAN-UHFFFAOYSA-N [Si+4].[O-2].[Al+3] Chemical compound [Si+4].[O-2].[Al+3] YAIQCYZCSGLAAN-UHFFFAOYSA-N 0.000 description 1
- 238000007792 addition Methods 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 230000003466 anti-cipated effect Effects 0.000 description 1
- 230000003667 anti-reflective effect Effects 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 239000010425 asbestos Substances 0.000 description 1
- 230000003190 augmentative effect Effects 0.000 description 1
- 230000003542 behavioural effect Effects 0.000 description 1
- 238000009529 body temperature measurement Methods 0.000 description 1
- 150000001642 boronic acid derivatives Chemical class 0.000 description 1
- 239000011449 brick Substances 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 230000010267 cellular communication Effects 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- OLFCLHDBKGQITG-UHFFFAOYSA-N chromium(3+) nickel(2+) oxygen(2-) Chemical compound [Ni+2].[O-2].[Cr+3] OLFCLHDBKGQITG-UHFFFAOYSA-N 0.000 description 1
- 239000003818 cinder Substances 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- KAGOZRSGIYZEKW-UHFFFAOYSA-N cobalt(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Co+3].[Co+3] KAGOZRSGIYZEKW-UHFFFAOYSA-N 0.000 description 1
- 238000005094 computer simulation Methods 0.000 description 1
- 239000004567 concrete Substances 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 238000013480 data collection Methods 0.000 description 1
- 238000003066 decision tree Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000013136 deep learning model Methods 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 210000001787 dendrite Anatomy 0.000 description 1
- JAONJTDQXUSBGG-UHFFFAOYSA-N dialuminum;dizinc;oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Al+3].[Al+3].[Zn+2].[Zn+2] JAONJTDQXUSBGG-UHFFFAOYSA-N 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 230000004069 differentiation Effects 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- GNTDGMZSJNCJKK-UHFFFAOYSA-N divanadium pentaoxide Chemical compound O=[V](=O)O[V](=O)=O GNTDGMZSJNCJKK-UHFFFAOYSA-N 0.000 description 1
- 239000002019 doping agent Substances 0.000 description 1
- 238000009429 electrical wiring Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 239000008393 encapsulating agent Substances 0.000 description 1
- 230000003203 everyday effect Effects 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 239000005329 float glass Substances 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 238000009499 grossing Methods 0.000 description 1
- 230000012010 growth Effects 0.000 description 1
- 239000010440 gypsum Substances 0.000 description 1
- 229910052602 gypsum Inorganic materials 0.000 description 1
- 238000013007 heat curing Methods 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 239000010416 ion conductor Substances 0.000 description 1
- 238000005468 ion implantation Methods 0.000 description 1
- LUXYLEKXHLMESQ-UHFFFAOYSA-N iridium(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Ir+3].[Ir+3] LUXYLEKXHLMESQ-UHFFFAOYSA-N 0.000 description 1
- DCYOBGZUOMKFPA-UHFFFAOYSA-N iron(2+);iron(3+);octadecacyanide Chemical compound [Fe+2].[Fe+2].[Fe+2].[Fe+3].[Fe+3].[Fe+3].[Fe+3].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-] DCYOBGZUOMKFPA-UHFFFAOYSA-N 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 239000005340 laminated glass Substances 0.000 description 1
- 238000000608 laser ablation Methods 0.000 description 1
- 238000003698 laser cutting Methods 0.000 description 1
- 230000002045 lasting effect Effects 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 238000001459 lithography Methods 0.000 description 1
- 230000033001 locomotion Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 239000011572 manganese Substances 0.000 description 1
- BLYYANNQIHKJMU-UHFFFAOYSA-N manganese(2+) nickel(2+) oxygen(2-) Chemical compound [O--].[O--].[Mn++].[Ni++] BLYYANNQIHKJMU-UHFFFAOYSA-N 0.000 description 1
- 238000013178 mathematical model Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 230000001404 mediated effect Effects 0.000 description 1
- 229910001092 metal group alloy Inorganic materials 0.000 description 1
- 238000002620 method output Methods 0.000 description 1
- JKQOBWVOAYFWKG-UHFFFAOYSA-N molybdenum trioxide Chemical compound O=[Mo](=O)=O JKQOBWVOAYFWKG-UHFFFAOYSA-N 0.000 description 1
- 239000002070 nanowire Substances 0.000 description 1
- 210000002569 neuron Anatomy 0.000 description 1
- GNMQOUGYKPVJRR-UHFFFAOYSA-N nickel(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Ni+3].[Ni+3] GNMQOUGYKPVJRR-UHFFFAOYSA-N 0.000 description 1
- 229910000484 niobium oxide Inorganic materials 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- GNRSAWUEBMWBQH-UHFFFAOYSA-N oxonickel Chemical compound [Ni]=O GNRSAWUEBMWBQH-UHFFFAOYSA-N 0.000 description 1
- VVRQVWSVLMGPRN-UHFFFAOYSA-N oxotungsten Chemical class [W]=O VVRQVWSVLMGPRN-UHFFFAOYSA-N 0.000 description 1
- BPUBBGLMJRNUCC-UHFFFAOYSA-N oxygen(2-);tantalum(5+) Chemical class [O-2].[O-2].[O-2].[O-2].[O-2].[Ta+5].[Ta+5] BPUBBGLMJRNUCC-UHFFFAOYSA-N 0.000 description 1
- 239000000123 paper Substances 0.000 description 1
- 230000002688 persistence Effects 0.000 description 1
- 230000002085 persistent effect Effects 0.000 description 1
- 239000011505 plaster Substances 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 230000003334 potential effect Effects 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 230000002028 premature Effects 0.000 description 1
- 230000000644 propagated effect Effects 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 229960003351 prussian blue Drugs 0.000 description 1
- 239000013225 prussian blue Substances 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 230000001172 regenerating effect Effects 0.000 description 1
- 239000011150 reinforced concrete Substances 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 230000027756 respiratory electron transport chain Effects 0.000 description 1
- 230000000452 restraining effect Effects 0.000 description 1
- 229910052895 riebeckite Inorganic materials 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 239000010980 sapphire Substances 0.000 description 1
- 229910052594 sapphire Inorganic materials 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000007650 screen-printing Methods 0.000 description 1
- 230000011664 signaling Effects 0.000 description 1
- 150000004760 silicates Chemical class 0.000 description 1
- LIVNPJMFVYWSIS-UHFFFAOYSA-N silicon monoxide Chemical class [Si-]#[O+] LIVNPJMFVYWSIS-UHFFFAOYSA-N 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 239000005361 soda-lime glass Substances 0.000 description 1
- HUAUNKAZQWMVFY-UHFFFAOYSA-M sodium;oxocalcium;hydroxide Chemical compound [OH-].[Na+].[Ca]=O HUAUNKAZQWMVFY-UHFFFAOYSA-M 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 238000012144 step-by-step procedure Methods 0.000 description 1
- 239000004575 stone Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 230000000153 supplemental effect Effects 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 229910001936 tantalum oxide Inorganic materials 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000012384 transportation and delivery Methods 0.000 description 1
- 230000001960 triggered effect Effects 0.000 description 1
- 238000013024 troubleshooting Methods 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 238000012800 visualization Methods 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B13/00—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
- G05B13/02—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
- G05B13/04—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
- G05B13/048—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators using a predictor
-
- E—FIXED CONSTRUCTIONS
- E06—DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
- E06B—FIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
- E06B3/00—Window sashes, door leaves, or like elements for closing wall or like openings; Layout of fixed or moving closures, e.g. windows in wall or like openings; Features of rigidly-mounted outer frames relating to the mounting of wing frames
- E06B3/66—Units comprising two or more parallel glass or like panes permanently secured together
- E06B3/67—Units comprising two or more parallel glass or like panes permanently secured together characterised by additional arrangements or devices for heat or sound insulation or for controlled passage of light
- E06B3/6715—Units comprising two or more parallel glass or like panes permanently secured together characterised by additional arrangements or devices for heat or sound insulation or for controlled passage of light specially adapted for increased thermal insulation or for controlled passage of light
- E06B3/6722—Units comprising two or more parallel glass or like panes permanently secured together characterised by additional arrangements or devices for heat or sound insulation or for controlled passage of light specially adapted for increased thermal insulation or for controlled passage of light with adjustable passage of light
-
- E—FIXED CONSTRUCTIONS
- E06—DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
- E06B—FIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
- E06B9/00—Screening or protective devices for wall or similar openings, with or without operating or securing mechanisms; Closures of similar construction
- E06B9/24—Screens or other constructions affording protection against light, especially against sunshine; Similar screens for privacy or appearance; Slat blinds
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B15/00—Systems controlled by a computer
- G05B15/02—Systems controlled by a computer electric
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L12/00—Data switching networks
- H04L12/28—Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
- H04L12/40—Bus networks
- H04L12/407—Bus networks with decentralised control
- H04L12/413—Bus networks with decentralised control with random access, e.g. carrier-sense multiple-access with collision detection [CSMA-CD]
-
- E—FIXED CONSTRUCTIONS
- E06—DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
- E06B—FIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
- E06B9/00—Screening or protective devices for wall or similar openings, with or without operating or securing mechanisms; Closures of similar construction
- E06B9/24—Screens or other constructions affording protection against light, especially against sunshine; Similar screens for privacy or appearance; Slat blinds
- E06B2009/2464—Screens or other constructions affording protection against light, especially against sunshine; Similar screens for privacy or appearance; Slat blinds featuring transparency control by applying voltage, e.g. LCD, electrochromic panels
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/20—Filters
- G02B5/208—Filters for use with infrared or ultraviolet radiation, e.g. for separating visible light from infrared and/or ultraviolet radiation
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/15—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on an electrochromic effect
- G02F1/163—Operation of electrochromic cells, e.g. electrodeposition cells; Circuit arrangements therefor
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/044—Recurrent networks, e.g. Hopfield networks
- G06N3/0442—Recurrent networks, e.g. Hopfield networks characterised by memory or gating, e.g. long short-term memory [LSTM] or gated recurrent units [GRU]
Landscapes
- Engineering & Computer Science (AREA)
- Structural Engineering (AREA)
- Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Civil Engineering (AREA)
- General Physics & Mathematics (AREA)
- Artificial Intelligence (AREA)
- Computer Networks & Wireless Communication (AREA)
- Medical Informatics (AREA)
- Software Systems (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Health & Medical Sciences (AREA)
- Architecture (AREA)
- Evolutionary Computation (AREA)
- Signal Processing (AREA)
- General Engineering & Computer Science (AREA)
- Testing Or Calibration Of Command Recording Devices (AREA)
- Circuit Arrangement For Electric Light Sources In General (AREA)
- Radiation Pyrometers (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
Description
優先權申請案priority application
本申請案主張以下各者之權益:2021年2月3日申請之標題為「用於可著色窗之預測模型化(PREDICTIVE MODELING FOR TINTABLE WINDOWS)」的美國臨時專利申請案第63/145,333號;2020年2月12日申請之標題為「用於天氣模型化之虛擬天空感測器及感測器輻射的受監督分類(VIRTUAL SKY SENSORS AND SUPERVISED CLASSIFICATION OF SENSOR RADIATION FOR WEATHER MODELING)」的美國臨時專利申請案第62/975,677號;2020年9月08日申請之標題為「用於可著色窗之預測模型化(PREDICTIVE MODELING FOR TINTABLE WINDOWS)」的美國臨時專利申請案第63/075,569號,其為2020年10月30日申請之美國專利申請案第16/949,493號的部分接續案,為2020年6月08日申請之美國專利申請案第16/946,168號的接續案,為2019年11月25日申請之美國專利申請案第16/695,057號的接續案,為2017年3月24日申請之美國專利申請案第15/514,480號的接續案,為2015年9月29日申請之國際專利申請案第PCT/US15/52822號的國家進入階段,其主張2014年9月29日申請之美國臨時專利申請案第62/057,104號的權益;為2020年8月31日申請之美國專利申請案第17/008,342號的部分接續案,為2018年6月20日申請之美國專利申請案第16/013,770號的接續案,為2016年11月09日申請之美國專利申請案第15/347,677號的接續案,為2015年5月7日申請之標題為「用於可著色窗之控制方法(CONTROL METHOD FOR TINTABLE WINDOWS)」的國際專利申請案第PCT/US15/29675號的部分接續案,該國際專利申請案主張2014年5月9日申請且標題為「用於可著色窗之控制方法(CONTROL METHOD FOR TINTABLE WINDOWS)」之美國臨時專利申請案第61/991,375號的權益;美國專利申請案第15/347,677號亦為2013年2月21日申請且標題為「用於可著色窗之控制方法(CONTROL METHOD FOR TINTABLE WINDOWS)」之美國專利申請案第13/772,969號的部分接續案;以上各者中之每一者特此以全文引用之方式且出於所有目的而併入。This application claims the benefit of: US Provisional Patent Application No. 63/145,333, filed February 3, 2021, entitled "PREDICTIVE MODELING FOR TINTABLE WINDOWS"; U.S. Provisional Patent, entitled "VIRTUAL SKY SENSORS AND SUPERVISED CLASSIFICATION OF SENSOR RADIATION FOR WEATHER MODELING," filed on Feb. 12, 2020 Application Serial No. 62/975,677; U.S. Provisional Patent Application No. 63/075,569, filed September 08, 2020, entitled "PREDICTIVE MODELING FOR TINTABLE WINDOWS," which is A continuation-in-part of US Patent Application No. 16/949,493, filed on October 30, 2020, a continuation-in-part of US Patent Application No. 16/946,168, filed on June 08, 2020, on November 25, 2019 A continuation of US Patent Application No. 16/695,057 filed on March 24, 2017, a continuation of US Patent Application No. 15/514,480 filed on March 24, 2017, which is an international patent application filed on September 29, 2015 National Entry Phase of Case No. PCT/US15/52822, which claims the benefit of US Provisional Patent Application No. 62/057,104, filed on September 29, 2014; A continuation-in-part of 17/008,342, the No. 1 U.S. patent application filed on June 20, 2018 Continuation of US Patent Application Serial No. 15/347,677, filed on Nov. 09, 2016, and a continuation of U.S. Patent Application Serial No. 15/347,677, filed on May 7, 2015, entitled "Control Method for Tintable Windows" (CONTROL METHOD FOR TINTABLE WINDOWS)", a continuation-in-part of International Patent Application No. PCT/US15/29675, which asserts that it was filed on May 9, 2014 and is entitled "Control Method for Tintable Windows" (CONTROL METHOD FOR TINTABLE WINDOWS)" U.S. Provisional Patent Application No. 61/991,375; U.S. Patent Application No. 15/347,677 also filed on February 21, 2013 CONTROL METHOD FOR TINTABLE WINDOWS", a continuation-in-part of US Patent Application No. 13/772,969; each of the above is hereby incorporated by reference in its entirety and for all purposes.
電致變色為材料在例如由於經受電壓及/或電流改變而置於不同電子狀態下時展現光學性質之(例如,可逆)電化學介導改變的現象。光學性質可為色彩、透射率、吸收率及/或反射率。一一種電致變色材料為氧化鎢(WO3 )。氧化鎢為一種陰極電致變色材料,其中藉由電化學還原發生有色轉變(例如,對藍色透明)。Electrochromism is a phenomenon in which materials exhibit (eg, reversible) electrochemically mediated changes in optical properties when placed in different electronic states, eg, as a result of being subjected to changes in voltage and/or current. Optical properties can be color, transmittance, absorbance, and/or reflectance. One electrochromic material is tungsten oxide (WO 3 ). Tungsten oxide is a cathodic electrochromic material in which a color transition (eg, transparent to blue) occurs by electrochemical reduction.
電致變色材料可併入至例如用於家庭、商業及/或其他用途之窗中。此類窗之色彩、透射率、吸收率及/或反射率可藉由誘發電致變色材料之改變來改變。電致變色窗為可按電子方式變暗或變亮之窗。施加至窗之電致變色裝置的(例如,小)電壓將會使窗變暗;反轉該電壓會使窗變亮。此能力允許控制穿過窗之光的量,且為電致變色窗呈現舒適地用於其所安置之封閉體中且用作節能裝置的機會。Electrochromic materials can be incorporated into windows, for example, for domestic, commercial, and/or other uses. The color, transmittance, absorbance and/or reflectivity of such windows can be altered by inducing changes in the electrochromic material. Electrochromic windows are windows that can be electronically darkened or brightened. A (eg, small) voltage applied to the electrochromic device of the window will darken the window; reversing the voltage will brighten the window. This capability allows control of the amount of light passing through the window, and presents an opportunity for electrochromic windows to be used comfortably in the enclosure in which they are placed and as an energy saving device.
雖然在20世紀60年代已發現電致變色,但儘管在電致變色技術、設備、電腦可讀媒體及製造及/或使用此類電致變色裝置之相關方法上取得了許多最新進展,電致變色裝置且特別係電致變色窗仍未開始實現其全部商業潛能。Although electrochromism was discovered in the 1960s, despite many recent advances in electrochromic technology, equipment, computer-readable media, and related methods of making and/or using such electrochromic devices, electrochromic Color-changing devices and particularly electrochromic windows have not yet begun to realize their full commercial potential.
本文中所揭示之各種態樣緩解上文所提及之缺點的至少部分。Aspects disclosed herein alleviate at least some of the above-mentioned disadvantages.
在一個實施例中,本發明包含一種控制系統,其包含:可著色窗;窗控制器,其耦接至至可著色窗;及一或多個預報模組,其耦接至窗控制器,其中一或多個預報模組包含控制邏輯,該控制邏輯經組態以處理來自至少一個感測器之信號且提供指示未來時間之環境條件之預報及/或可著色窗在未來時間之期望窗色調的一或多個輸出,且其中窗控制器包含經組態以至少部分地基於一或多個輸出而控制可著色窗之控制邏輯。在一個實施例中,一或多個預報模組包含神經網路。在一個實施例中,神經網路包含LSTM網路。在一個實施例中,神經網路包含DNN網路。在一個實施例中,環境條件之預報包含短期環境條件及相對較長期環境條件。在一個實施例中,一或多個預報模組經組態以實施機器學習。在一個實施例中,至少一個感測器包含光感測器及/或紅外線感測器。在一個實施例中,環境條件包含天氣條件。在一個實施例中,環境條件包含太陽之位置。在一個實施例中,一或多個輸出係至少部分地基於最大光感測器值之滾動均值及/或最小紅外線感測器值之滾動中值。在一個實施例中,一或多個預報模組經組態以自讀數之時間數列計算重心平均值。In one embodiment, the present invention includes a control system comprising: a tintable window; a window controller coupled to the tintable window; and one or more forecast modules coupled to the window controller, One or more of the forecast modules include control logic configured to process signals from at least one sensor and provide forecasts indicative of environmental conditions at future times and/or expected windows at future times of the tintable window one or more outputs of the tint, and wherein the window controller includes control logic configured to control the tintable window based at least in part on the one or more outputs. In one embodiment, the one or more forecasting modules comprise a neural network. In one embodiment, the neural network comprises an LSTM network. In one embodiment, the neural network comprises a DNN network. In one embodiment, the forecast of environmental conditions includes short-term environmental conditions and relatively longer-term environmental conditions. In one embodiment, one or more forecasting modules are configured to implement machine learning. In one embodiment, the at least one sensor includes a light sensor and/or an infrared sensor. In one embodiment, the environmental conditions include weather conditions. In one embodiment, the environmental conditions include the position of the sun. In one embodiment, the one or more outputs are based, at least in part, on a rolling mean of maximum light sensor values and/or a rolling median of minimum infrared sensor values. In one embodiment, the one or more forecasting modules are configured to calculate a center of gravity average from a time series of readings.
在一個實施例中,本發明包含一種控制系統,其包含:複數個可著色窗;一或多個窗控制器,其耦接至複數個可著色窗;至少一個感測器,其經組態以提供表示一或多個環境條件之第一輸出;及一或多個神經網路,其耦接至一或多個窗控制器,其中神經網路包含經組態以處理第一輸出且提供表示未來環境條件之預報之第二輸出的控制邏輯,且其中一或多個窗控制器包含經組態以至少部分地基於第二輸出而控制複數個可著色窗之色調狀態的控制邏輯。在一個實施例中,未來環境條件包含天氣條件。在一個實施例中,神經網路包含受監督神經網路。在一個實施例中,神經網路包括LSTM神經網路及/或DNN神經網路。在一些實施例中,神經網路包含密集神經網路。在一些實施例中,將人工智慧預測(例如,感測器值預測)饋入至模組C及/或D中。在一些實施例中,神經網路缺乏LSTM及/或DNN。在一些實施例中,模組(例如,使用人工智慧)預測(例如,感測器)值之序列。在一些實施例中,模組找到值序列之平均值、均值或中值且將平均值/均值/中值指明為所預測感測器值(例如,待作為輸入傳達至諸如C及/或D之模組)。在一個實施例中,至少一個感測器包含至少一個光感測器及至少一個紅外線感測器,且其中第一輸出包含最大光感測器讀數之滾動均值及最小紅外線感測器讀數之滾動中值。在一個實施例中,第二輸出係至少部分地基於LSTM神經網路與DNN神經網路之間的多數協議。In one embodiment, the present invention includes a control system comprising: a plurality of tintable windows; one or more window controllers coupled to the plurality of tintable windows; at least one sensor configured to provide a first output representing one or more environmental conditions; and one or more neural networks coupled to the one or more window controllers, wherein the neural network includes being configured to process the first output and provide Control logic for a second output representing a forecast of future environmental conditions, and wherein the one or more window controllers include control logic configured to control hue states of the plurality of tintable windows based at least in part on the second output. In one embodiment, the future environmental conditions include weather conditions. In one embodiment, the neural network comprises a supervised neural network. In one embodiment, the neural network includes an LSTM neural network and/or a DNN neural network. In some embodiments, the neural network comprises a dense neural network. In some embodiments, artificial intelligence predictions (eg, sensor value predictions) are fed into modules C and/or D. In some embodiments, the neural network lacks LSTMs and/or DNNs. In some embodiments, a module (eg, using artificial intelligence) predicts (eg, a sensor) a sequence of values. In some embodiments, the module finds the mean, mean, or median of the sequence of values and designates the mean/mean/median as the predicted sensor value (eg, to be communicated as input to devices such as C and/or D module). In one embodiment, the at least one sensor includes at least one light sensor and at least one infrared sensor, and wherein the first output includes a rolling mean of maximum light sensor readings and a rolling minimum infrared sensor reading median. In one embodiment, the second output is based at least in part on a majority agreement between the LSTM neural network and the DNN neural network.
在一個實施例中,本發明包含一種控制至少一個可著色窗之方法,其包含以下步驟:使用一或多個感測器來提供表示最近環境條件之輸出;將輸出耦接至控制邏輯;使用控制邏輯來預報未來環境條件;及使用控制邏輯至少部分地基於未來環境條件之預報而控制至少一種可著色窗之色調。在一個實施例中,一或多個感測器包含一或多個光感測器及一或多個紅外線感測器。在一個實施例中,控制邏輯包含LSTM及DNN神經網路中之至少一者。在一個實施例中,輸出包含最大光感測器讀數之滾動均值及最小紅外線感測器讀數之滾動中值。In one embodiment, the present invention includes a method of controlling at least one tintable window comprising the steps of: using one or more sensors to provide an output indicative of recent environmental conditions; coupling the output to control logic; using control logic to predict future environmental conditions; and control a tint of at least one tintable window based at least in part on the forecast of future environmental conditions using the control logic. In one embodiment, the one or more sensors include one or more light sensors and one or more infrared sensors. In one embodiment, the control logic includes at least one of an LSTM and a DNN neural network. In one embodiment, the output includes a rolling mean of maximum light sensor readings and a rolling median of minimum infrared sensor readings.
在一個實施例中,本發明包含一種使用地點特定且季節性區分之天氣資料來控制可著色窗的方法,其包含:在該地點處,在N日時段內自至少一個感測器獲得環境讀數;將讀數儲存於電腦可讀取媒體上;在N日中最近一日或在N日中最近一日的第二日,藉由控制邏輯處理讀數,該控制邏輯經組態以提供表示來自至少一個感測器之環境讀數的可能未來範圍之分佈的第一輸出;及至少部分地基於第一輸出而控制可著色窗之色調。在一個實施例中,控制邏輯包含無監督分類器。在一個實施例中,本發明進一步包含:使用控制邏輯來預報該地點在N日中最近一日或N日中最近一日的第二日的環境條件。在一個實施例中,控制邏輯包含神經網路。在一個實施例中,控制邏輯包含一或多個預報模組,該一或多個預報模組經組態以處理來自至少一個感測器之信號且提供指示可著色窗在未來時間之期望窗色調的第二輸出,且其中該方法進一步包含至少部分地基於第二輸出而控制可著色窗之色調。在一個實施例中,一或多個預報模組包含神經網路。在一個實施例中,神經網路包含LSTM網路。在一個實施例中,神經網路包含DNN網路。在一個實施例中,第二輸出係至少部分地基於LSTM神經網路與DNN神經網路之間的多數協議。In one embodiment, the present invention includes a method of controlling a tintable window using site-specific and seasonally differentiated weather data, comprising: obtaining, at the site, environmental readings from at least one sensor over an N day period ; store the readings on a computer-readable medium; on the most recent day of the N days or on the second day of the most recent day of the N days, process the readings by control logic configured to provide indications from at least a first output of a distribution of possible future ranges of ambient readings from a sensor; and controlling a tint of the tintable window based at least in part on the first output. In one embodiment, the control logic includes an unsupervised classifier. In one embodiment, the present invention further comprises: using control logic to forecast environmental conditions for the location on the most recent day of the N days or the second day of the most recent day of the N days. In one embodiment, the control logic includes a neural network. In one embodiment, the control logic includes one or more forecast modules configured to process signals from at least one sensor and provide a desired window indicative of a tintable window in future time a second output of the tint, and wherein the method further includes controlling the tint of the tintable window based at least in part on the second output. In one embodiment, the one or more forecasting modules comprise a neural network. In one embodiment, the neural network comprises an LSTM network. In one embodiment, the neural network comprises a DNN network. In one embodiment, the second output is based at least in part on a majority agreement between the LSTM neural network and the DNN neural network.
在一個實施例中,本發明包含一種建築物控制系統,其包含:至少一個感測器,其經組態以獲取環境讀數:儲存器,其用於儲存環境讀數;及控制邏輯,其經組態以處理環境讀數且提供表示來自至少一個感測器之環境讀數之可能未來範圍的第一輸出,其中第一輸出至少部分地用以控制建築物之系統。在一個實施例中,系統包含至少一個可著色窗及至少一個可著色窗控制器。在一個實施例中,控制邏輯包含一或多個神經網路,該一或多個神經網路經組態以處理最近環境讀數且提供表示未來時間之未來環境條件之預報的第二輸出。在一個實施例中,至少一個窗控制器經組態以至少部分地基於第一或第二輸出而控制至少一個可著色窗之色調狀態。在一個實施例中,至少一個感測器位於建築物之屋頂或壁上。在一個實施例中,所儲存環境讀數包含在多日內獲取之讀數,且其中最近環境讀數包含在同一日獲取之讀數。在一個實施例中,在同一日獲取之讀數包含在大約數分鐘之時間窗內獲取的讀數。在一個實施例中,時間窗為5分鐘。在一個實施例中,第二輸出包括指示至少一個可著色窗在未來時間之期望窗色調的至少一個規則,且使用至少一個可著色窗控制器來控制至少一個可著色窗在未來時間達成期望窗色調。在一個實施例中,第二輸出係至少部分地基於LSTM神經網路與DNN神經網路之間的多數協議。在一個實施例中,控制邏輯包含無監督分類器。In one embodiment, the present invention includes a building control system comprising: at least one sensor configured to obtain environmental readings: a memory for storing environmental readings; and control logic configured to state to process environmental readings and provide a first output representing a possible future range of environmental readings from at least one sensor, wherein the first output is used at least in part to control a system of the building. In one embodiment, the system includes at least one tintable window and at least one tintable window controller. In one embodiment, the control logic includes one or more neural networks configured to process recent environmental readings and provide a second output representing a forecast of future environmental conditions at a future time. In one embodiment, the at least one window controller is configured to control the tint state of the at least one tintable window based at least in part on the first or second output. In one embodiment, at least one sensor is located on a roof or wall of a building. In one embodiment, the stored environmental readings include readings taken over multiple days, and wherein the most recent environmental readings include readings taken on the same day. In one embodiment, readings taken on the same day include readings taken within a time window of approximately several minutes. In one embodiment, the time window is 5 minutes. In one embodiment, the second output includes at least one rule indicating a desired window tint for the at least one tintable window at a future time, and the at least one tintable window controller is used to control the at least one tintable window to achieve the desired window at a future time tone. In one embodiment, the second output is based at least in part on a majority agreement between the LSTM neural network and the DNN neural network. In one embodiment, the control logic includes an unsupervised classifier.
另一態樣係關於一種控制系統,其包含:可著色窗;窗控制器,其與可著色窗通信;及另一控制器或伺服器,其與窗控制器通信且包含一或多個預報模組,其中一或多個預報模組包含經組態以使用來自至少一個感測器之讀數來判定一或多個輸出的控制邏輯,該一或多個輸出包括在未來時間之環境條件的預報及/或可著色窗在未來時間之色調位準,且其中窗控制器經組態以至少部分地基於一或多個輸出而轉變可著色窗。在一個實例中,一或多個預報模組包含神經網路(例如,密集神經網路或沿著短期記憶體(LSTM)網路)。Another aspect relates to a control system comprising: a tintable window; a window controller in communication with the tintable window; and another controller or server in communication with the window controller and including one or more forecasts A module, wherein the one or more forecast modules include control logic configured to use readings from at least one sensor to determine one or more outputs, the one or more outputs including an indication of environmental conditions at a future time The tint level of the tintable window at a future time is predicted and/or, and wherein the window controller is configured to transition the tintable window based at least in part on the one or more outputs. In one example, the one or more forecasting modules include neural networks (eg, dense neural networks or along short-term memory (LSTM) networks).
另一態樣係關於一種控制系統:複數個可著色窗;一或多個窗控制器,其經組態以控制複數個可著色窗;至少一個感測器,其經組態以提供第一輸出;及一或多個處理器,其包括至少一個神經網路且與一或多個窗控制器通信,其中至少一個神經網路經組態以處理第一輸出且提供包括未來環境條件之預報的第二輸出,且其中一或多個窗控制器經組態以至少部分地基於第二輸出而控制複數個可著色窗之色調狀態。Another aspect relates to a control system: a plurality of tintable windows; one or more window controllers configured to control the plurality of tintable windows; at least one sensor configured to provide a first an output; and one or more processors including at least one neural network and in communication with one or more window controllers, wherein the at least one neural network is configured to process the first output and provide a forecast including future environmental conditions and wherein the one or more window controllers are configured to control hue states of the plurality of tintable windows based at least in part on the second output.
另一態樣係關於一種控制至少一個可著色窗之方法。該方法包含以下步驟:自一或多個感測器接收輸出;使用控制邏輯來預報未來環境條件;及至少部分地基於未來環境條件之預報而判定至少一個可著色窗之色調。Another aspect relates to a method of controlling at least one tintable window. The method includes the steps of: receiving output from one or more sensors; predicting future environmental conditions using control logic; and determining a hue of at least one tintable window based at least in part on the forecast of future environmental conditions.
另一態樣係關於一種使用地點特定且季節性區分之天氣資料來控制可著色窗的方法,該方法包含:在N日時段內自地點處之至少一個感測器接收環境讀數;在N日中最近一日或在N日中最近一日的第二日將讀數儲存於電腦可讀取媒體上;藉由控制邏輯處理讀數以判定表示來自至少一個感測器之環境讀數的可能未來範圍之分佈的第一輸出;及發送色調指令以將可著色窗轉變至至少部分地基於第一輸出而判定的色調位準。Another aspect relates to a method of controlling a tintable window using site-specific and seasonally differentiated weather data, the method comprising: receiving environmental readings from at least one sensor at the site during N days; The readings are stored on a computer-readable medium on the most recent day in or on the second day after the most recent day in N; the readings are processed by control logic to determine a range representing a possible future range of environmental readings from at least one sensor. a first output of the distribution; and sending a hue instruction to transition the tintable window to a hue level determined based at least in part on the first output.
另一態樣係關於一種建築物控制系統,其包含:至少一個感測器,其經組態以獲取環境讀數:記憶體,其用於儲存環境讀數;及控制邏輯,其儲存於記憶體上且經組態以處理環境讀數,從而判定表示來自至少一個感測器之環境讀數之可能未來範圍的第一輸出,其中第一輸出至少部分地用以控制建築物之系統。Another aspect relates to a building control system comprising: at least one sensor configured to obtain environmental readings: memory for storing environmental readings; and control logic stored on the memory and is configured to process environmental readings to determine a first output representing a possible future range of environmental readings from at least one sensor, wherein the first output is used at least in part to control a system of the building.
另一態樣係關於一種用於控制建築物處之可著色窗的控制系統。該控制系統包含一或多個窗控制器及伺服器或另一控制器,其經組態以接收與當前或過去天氣條件相關聯之歷史感測器讀數,該伺服器或另一控制器具有帶至少一個神經網路之控制邏輯,該控制邏輯經組態以至少部分地基於歷史感測器讀數而預報未來天氣條件且至少部分地基於未來環境條件而判定色調排程指令。一或多個窗控制器經組態以至少部分地基於自伺服器或另一控制器接收到之色調排程指令及自幾何模型及晴空模型接收到之色調排程指令中的一者而控制建築物之一或多個可著色窗的色調位準。Another aspect relates to a control system for controlling tintable windows at a building. The control system includes one or more window controllers and a server or another controller configured to receive historical sensor readings associated with current or past weather conditions, the server or another controller having Control logic with at least one neural network configured to forecast future weather conditions based at least in part on historical sensor readings and to determine tone scheduling instructions based at least in part on future environmental conditions. The one or more window controllers are configured to control based at least in part on one of hue scheduling commands received from the server or another controller and hue scheduling commands received from the geometric model and the clear sky model The tint level of one or more tintable windows in a building.
另一態樣係關於一種判定一或多個可著色窗之色調狀態的方法。該方法包含:(a)判定影響一或多個可著色窗之色調狀態之選擇的當前或未來外部條件;(b)自模型套件中選擇第一模型,該第一模型經判定為在當前或未來外部條件下比來自該模型套件之其他模型更佳地執行,其中該模型套件中之模型為經訓練以判定一或多個可著色窗在多個外部條件集合下之色調狀態或用以判定該等色調狀態之資訊的機器學習模型;及(c)執行第一模型且使用第一模型之輸出來判定一或多個可著色窗之當前或未來色調狀態。Another aspect relates to a method of determining the tint state of one or more tintable windows. The method includes: (a) determining current or future external conditions affecting selection of hue states of one or more tintable windows; (b) selecting a first model from a suite of models, the first model determined to be currently or performs better than other models from the model suite under future external conditions, wherein the models in the model suite are trained to determine the hue state of one or more tintable windows under multiple sets of external conditions or to determine a machine learning model of the information of the hue states; and (c) executing the first model and using the output of the first model to determine the current or future hue state of the one or more tintable windows.
另一態樣係關於一種經組態以判定一或多個可著色窗之色調狀態的方法。該系統包含處理器及記憶體,其經組態以:(a)判定影響一或多個可著色窗之色調狀態之選擇的當前或未來外部條件;(b)自模型套件中選擇第一模型,該第一模型經判定為在當前或未來外部條件下比來自該模型套件之其他模型更佳地執行,其中該模型套件中之模型為經訓練以判定一或多個可著色窗在多個外部條件集合下之色調狀態或用以判定該等色調狀態之資訊的機器學習模型;及(c)執行第一模型且使用第一模型之輸出來判定一或多個可著色窗之當前或未來色調狀態。Another aspect relates to a method configured to determine the hue state of one or more tintable windows. The system includes a processor and memory configured to: (a) determine current or future external conditions affecting selection of hue states for one or more tintable windows; (b) select a first model from a suite of models , the first model is determined to perform better under current or future external conditions than other models from the model suite, wherein the models in the model suite are trained to determine that one or more shading windows are a machine learning model of hue states under a set of external conditions or information used to determine those hue states; and (c) executing a first model and using the output of the first model to determine the current or future of one or more tintable windows Hue status.
另一態樣係關於一種產生用於判定一或多個可著色窗之色調狀態之運算系統的方法。包含:(a)至少部分地基於歷史輻射剖面或型樣而將不同類型之外部條件叢集化或分類;及(b)針對不同類型之外部條件中之每一者而訓練機器學習模型,其中機器學習模型經訓練以判定一或多個可著色窗在多個外部條件集合下之色調狀態,或用以判定該等色調狀態之資訊。Another aspect relates to a method of generating a computing system for determining the hue state of one or more tintable windows. comprising: (a) clustering or classifying different types of external conditions based at least in part on historical radiation profiles or patterns; and (b) training a machine learning model for each of the different types of external conditions, wherein the machine The learning model is trained to determine the hue states of the one or more shadeable windows under a plurality of sets of external conditions, or information used to determine the hue states.
另一態樣係關於一種識別用於機器學習模型之特徵輸入子集的方法,該機器學習模型經組態以判定一或多個可著色窗在多個外部條件集合下之色調狀態,或用以判定該等色調狀態之資訊。該方法包含:(a)對用於機器學習模型之可用特徵輸入集合執行特徵消除處理程序,以藉此移除可用特徵輸入中之一或多者且產生特徵輸入子集;及(b)利用特徵輸入子集初始化機器學習模型。Another aspect relates to a method of identifying a subset of feature inputs for a machine learning model configured to determine the hue state of one or more tintable windows under a plurality of sets of external conditions, or using information to determine the state of these hues. The method includes: (a) performing a feature elimination process on the set of available feature inputs for the machine learning model, thereby removing one or more of the available feature inputs and generating a subset of the feature inputs; and (b) utilizing A subset of feature inputs initializes the machine learning model.
另一態樣係關於一種經組態以識別用於機器學習模型之特徵輸入子集的方法,該機器學習模型經組態以判定一或多個可著色窗在多個外部條件集合下之色調狀態,或用以判定該等色調狀態之資訊。該系統包含處理器及記憶體,其經組態以:(a)對用於機器學習模型之可用特徵輸入集合執行特徵消除處理程序,以藉此移除可用特徵輸入中之一或多者且產生特徵輸入子集;及(b)利用特徵輸入子集初始化機器學習模型。在另一態樣中,本揭示案提供實施本文中所揭示之任一種方法的系統、設備(例如,控制器)及/或非暫時性電腦可讀媒體(例如,軟體)。Another aspect relates to a method configured to identify a subset of feature inputs for a machine learning model configured to determine the hue of one or more tintable windows under a plurality of sets of external conditions state, or information used to determine the state of those hues. The system includes a processor and memory configured to: (a) perform a feature removal process on a set of available feature inputs for a machine learning model, thereby removing one or more of the available feature inputs and generating a subset of feature inputs; and (b) initializing a machine learning model using the subset of feature inputs. In another aspect, the present disclosure provides a system, apparatus (eg, controller) and/or non-transitory computer-readable medium (eg, software) implementing any of the methods disclosed herein.
在另一態樣中,一種用於控制地點處之一或多個裝置之至少一個設定(例如,位準)的設備包含:一或多個控制器,其具有電路系統,該一或多個控制器經組態以:(a)操作性地耦接至感測器資料庫,該資料庫經組態以儲存自虛擬感測器及自一或多個資料源傳達之感測器資料;及(b)使用自感測器資料庫擷取之感測器資料控制或指導控制地點處之複數個裝置的設定。In another aspect, an apparatus for controlling at least one setting (eg, level) of one or more devices at a site includes: one or more controllers having circuitry, the one or more The controller is configured to: (a) be operatively coupled to a sensor database configured to store sensor data communicated from the virtual sensors and from one or more data sources; and (b) using the sensor data retrieved from the sensor database to control or direct the settings of a plurality of devices at the control site.
在一些實施例中,虛擬感測器經組態以預測未來感測器資料。在一些實施例中,未來感測器資料係至少部分地基於來自一或多個實體感測器之讀數。在一些實施例中,未來感測器資料係至少部分地基於機器學習模組。在一些實施例中,設定包含色調位準,其中一或多個控制器經組態以:使用自感測器資料庫擷取之感測器資料來判定或指導判定複數個可著色窗之色調位準;及將複數個可著色窗轉變或指導將複數個可著色窗轉變至所判定之色調位準。在一些實施例中,感測器資料庫經組態以儲存自虛擬感測器傳達之感測器資料。在一些實施例中,自虛擬感測器傳達之感測器資料包括測試資料。在一些實施例中,設備進一步包含深度神經網路(DNN)。在一些實施例中,自虛擬感測器傳達至感測器資料庫之感測器資料由深度神經網路(DNN)預報。在一些實施例中,感測器資料庫經組態以儲存自虛擬感測器及自一或多個資料源傳達之感測器資料。在一些實施例中,一或多個控制器包含經組態以轉變一或多個可著色窗之階層式控制系統。In some embodiments, virtual sensors are configured to predict future sensor data. In some embodiments, future sensor data is based at least in part on readings from one or more physical sensors. In some embodiments, future sensor data is based at least in part on machine learning modules. In some embodiments, the setting includes a hue level, wherein the one or more controllers are configured to: use sensor data retrieved from a sensor database to determine or direct determination of the hue of the plurality of tintable windows level; and transitioning or directing transition of the plurality of tintable windows to the determined hue level. In some embodiments, the sensor database is configured to store sensor data communicated from virtual sensors. In some embodiments, the sensor data communicated from the virtual sensor includes test data. In some embodiments, the apparatus further includes a deep neural network (DNN). In some embodiments, the sensor data communicated from the virtual sensor to the sensor database is predicted by a deep neural network (DNN). In some embodiments, the sensor database is configured to store sensor data from virtual sensors and communicated from one or more data sources. In some embodiments, the one or more controllers include a hierarchical control system configured to transition one or more tintable windows.
在另一態樣中,一種用於控制地點處之一或多個裝置之至少一個設定的非暫時性電腦可讀程式產品,該非暫時性電腦可讀程式產品在由一或多個處理器讀取時使一或多個處理器執行上文所敍述之一或多個控制器的操作。In another aspect, a non-transitory computer-readable program product for controlling at least one setting of one or more devices at a location, the non-transitory computer-readable program product being read by one or more processors Take the time to cause one or more processors to perform the operations of one or more of the controllers described above.
在一些實施例中,一或多個處理器操作性地耦接至感測器資料庫,該感測器資料庫經組態以儲存自虛擬感測器及/或自一或多個資料源傳達之感測器資料。在一些實施例中,操作中之至少兩者由一或多個處理器中之同一處理器執行。在一些實施例中,操作中之至少兩者由一或多個處理器中之不同處理器執行。在一些實施例中,非暫時性電腦可讀程式產品包含非暫時性電腦可讀媒體。在一些實施例中,非暫時性電腦可讀程式產品包含非暫時性電腦可讀媒體。In some embodiments, one or more processors are operatively coupled to a sensor database configured to store from virtual sensors and/or from one or more data sources Transmitted sensor data. In some embodiments, at least two of the operations are performed by the same one of the one or more processors. In some embodiments, at least two of the operations are performed by different ones of the one or more processors. In some embodiments, the non-transitory computer-readable program product comprises a non-transitory computer-readable medium. In some embodiments, the non-transitory computer-readable program product comprises a non-transitory computer-readable medium.
在另一態樣中,一種用於控制地點處之一或多個裝置之至少一個設定的方法,其執行上文所敍述之一或多個控制器的操作。In another aspect, a method for controlling at least one setting of one or more devices at a location that performs the operations of one or more of the controllers described above.
在另一態樣中,一種用於控制地點處之一或多個裝置之至少一個設定的非暫時性電腦可讀程式產品,該非暫時性電腦可讀程式產品在由一或多個處理器讀取時使一或多個處理器執行包含以下各者之一或多個操作:至少部分地基於自感測器資料庫擷取之感測器資料而控制或指導控制安置於地點處之複數個裝置的設定,其中該一或多個處理器操作性地耦接至感測器資料庫,該感測器資料庫經組態以儲存自虛擬感測器及自一或多個資料源傳達之感測器資料。In another aspect, a non-transitory computer-readable program product for controlling at least one setting of one or more devices at a location, the non-transitory computer-readable program product being read by one or more processors fetching time to cause one or more processors to perform one or more operations comprising: controlling or directing control of a plurality of disposed at the location based at least in part on sensor data retrieved from the sensor database A configuration of a device in which the one or more processors are operatively coupled to a sensor database configured to store data from virtual sensors and communicate from one or more data sources Sensor data.
在一些實施例中,虛擬感測器經組態以預測未來感測器資料。在一些實施例中,未來感測器資料係至少部分地基於來自一或多個實體感測器之讀數。在一些實施例中,未來感測器資料係至少部分地基於機器學習模組。In some embodiments, virtual sensors are configured to predict future sensor data. In some embodiments, future sensor data is based at least in part on readings from one or more physical sensors. In some embodiments, future sensor data is based at least in part on machine learning modules.
在另一態樣中,一種控制地點處之一或多個裝置之至少一個設定的方法,該方法包含:至少部分地基於自感測器資料庫及自虛擬感測器擷取之感測器資料而控制或指導控制安置於地點處之複數個裝置的設定。In another aspect, a method of controlling at least one setting of one or more devices at a location, the method comprising: based at least in part on a sensor database from a sensor database and a sensor retrieved from a virtual sensor data to control or instruct to control the settings of a plurality of devices located at the location.
在一些實施例中,虛擬感測器經組態以預測未來感測器資料。在一些實施例中,未來感測器資料係至少部分地基於來自一或多個實體感測器之讀數。在一些實施例中,未來感測器資料係至少部分地基於機器學習模組。In some embodiments, virtual sensors are configured to predict future sensor data. In some embodiments, future sensor data is based at least in part on readings from one or more physical sensors. In some embodiments, future sensor data is based at least in part on machine learning modules.
在另一態樣中,一種用於控制至少一個可著色窗之色調的設備,其包含:一或多個控制器,其包含電路系統,該一或多個控制器經組態以:(a)操作性地耦接至感測器資料庫,該感測器資料庫經組態以(I)儲存自虛擬感測器傳達之感測器資料及(II)儲存自至少一個實體感測器之感測器資料;(b)使用自虛擬感測器傳達之感測器資料來判定或指導判定地點(例如,設施)處之至少一個可著色窗的第一色調狀態集合,該第一色調狀態集合包含一或多個第一色調狀態;(c)使用自至少一個實體感測器傳達之感測器資料來判定或指導判定地點處之至少可著色窗的第二色調狀態集合,該第二色調狀態集合包含一或多個第二色調狀態;及(d)至少部分地基於(i)第一色調狀態集合、(ii)第二色調狀態集合或(iii)第一色調狀態集合及第二色調狀態集合而更改或指導更改至少一個可著色窗之色調。In another aspect, an apparatus for controlling the tint of at least one tintable window, comprising: one or more controllers comprising circuitry, the one or more controllers configured to: (a ) is operatively coupled to a sensor database configured to (I) store sensor data communicated from virtual sensors and (II) store from at least one physical sensor (b) use the sensor data communicated from the virtual sensor to determine or guide the determination of a first set of hue states for at least one tintable window at a location (eg, a facility), the first hue The set of states includes one or more first hue states; (c) using sensor data communicated from the at least one physical sensor to determine or direct determination of a second set of hue states for at least the tintable window at the location, the first and (d) based at least in part on (i) the first set of hue states, (ii) the second set of hue states, or (iii) the first set of hue states and the A set of two-tone states alters or directs altering the hue of at least one tintable window.
在一些實施例中,虛擬感測器經組態以預測未來感測器資料。在一些實施例中,未來感測器資料係至少部分地基於來自一或多個實體感測器之讀數。在一些實施例中,未來感測器資料係至少部分地基於機器學習模組。在一些實施例中,自虛擬感測器傳達之感測器資料包括測試資料。在一些實施例中,測試資料包括時間及/或日期戳記及感測器值。在一些實施例中,一或多個控制器包含經組態以使用感測器資料來判定或指導判定一或多個輸出之一或多個預報模組,該一或多個輸出包括(i)在未來時間之環境條件的預報及/或(ii)至少一個可著色窗在未來時間之色調位準。在一些實施例中,一或多個預報模組包含神經網路。在一些實施例中,神經網路包含深度神經網路(DNN)。在一些實施例中,至少一個實體感測器包括光感測器及/或紅外線感測器。 在一些實施例中,環境條件包含天氣條件。在一些實施例中,一或多個輸出包含最大第一讀數之滾動值及/或最小第二感測器讀數之滾動值,其中最大第一讀數之滾動值包含最大光感測器讀數之均值、中值或平均值,且其中最小第二感測器讀數之滾動值包含最小紅外線讀數之均值、中值或平均值。在一些實施例中,一或多個輸出包含最大光感測器讀數之滾動值及/或最小紅外線感測器讀數之滾動值,其中最大光感測器讀數之滾動值包含最大光感測器讀數之均值、中值或平均值,且其中最小紅外線感測器讀數之滾動值包含最小紅外線讀數之均值、中值或平均值。在一些實施例中,一或多個預報模組經組態以自讀數之時間數列計算重心平均值。在一些實施例中,操作(b)及(c)由至少一個控制器中之同一控制器執行。在一些實施例中,操作(b)及(c)由至少一個控制器中之不同控制器執行。In some embodiments, virtual sensors are configured to predict future sensor data. In some embodiments, future sensor data is based at least in part on readings from one or more physical sensors. In some embodiments, future sensor data is based at least in part on machine learning modules. In some embodiments, the sensor data communicated from the virtual sensor includes test data. In some embodiments, the test data includes time and/or date stamps and sensor values. In some embodiments, the one or more controllers include one or more forecast modules configured to use sensor data to determine or direct determination of one or more outputs, the one or more outputs including (i ) forecasts of environmental conditions at future times and/or (ii) the hue levels of at least one tintable window at future times. In some embodiments, the one or more prediction modules comprise a neural network. In some embodiments, the neural network comprises a deep neural network (DNN). In some embodiments, the at least one physical sensor includes a light sensor and/or an infrared sensor. In some embodiments, the environmental conditions include weather conditions. In some embodiments, the one or more outputs include a rolling value of a maximum first reading and/or a rolling value of a minimum second sensor reading, wherein the rolling value of the maximum first reading includes an average of the maximum light sensor readings , median, or average, and wherein the rolling value of the minimum second sensor readings includes the mean, median, or average of the minimum infrared readings. In some embodiments, the one or more outputs include a rolling value of the maximum light sensor reading and/or a rolling value of the minimum infrared sensor reading, wherein the rolling value of the maximum light sensor reading includes the maximum light sensor reading The mean, median, or average of readings, and where the rolling value of the minimum infrared sensor readings includes the mean, median, or average of the minimum infrared readings. In some embodiments, the one or more forecasting modules are configured to calculate a center of gravity average from a time series of readings. In some embodiments, operations (b) and (c) are performed by the same controller of the at least one controller. In some embodiments, operations (b) and (c) are performed by different ones of the at least one controller.
在另一態樣中,一種用於控制至少一個可著色窗之色調的非暫時性電腦可讀程式產品,該非暫時性電腦可讀程式產品在由一或多個處理器讀取時使一或多個處理器執行上文所敍述之一或多個控制器(例如,至少一個控制器)的操作。In another aspect, a non-transitory computer-readable program product for controlling the hue of at least one tintable window, the non-transitory computer-readable program product when read by one or more processors causes one or more A plurality of processors perform the operations of one or more controllers (eg, at least one controller) described above.
在一些實施例中,一或多個處理器操作性地耦接至感測器資料庫,該感測器資料庫經組態以(i)儲存自虛擬感測器傳達之感測器資料及(ii)儲存自至少一個實體感測器傳達之感測器資料。在一些實施例中,操作中之至少兩者由一或多個處理器中之同一處理器執行。在一些實施例中,操作中之至少兩者由一或多個處理器中之不同處理器執行。在一些實施例中,非暫時性電腦可讀程式產品包含非暫時性電腦可讀媒體。在一些實施例中,非暫時性電腦可讀程式產品包含非暫時性電腦可讀媒體。In some embodiments, one or more processors are operatively coupled to a sensor database configured to (i) store sensor data communicated from virtual sensors and (ii) storing sensor data communicated from at least one physical sensor. In some embodiments, at least two of the operations are performed by the same one of the one or more processors. In some embodiments, at least two of the operations are performed by different ones of the one or more processors. In some embodiments, the non-transitory computer-readable program product comprises a non-transitory computer-readable medium. In some embodiments, the non-transitory computer-readable program product comprises a non-transitory computer-readable medium.
在另一態樣中,一種控制至少一個可著色窗之色調的方法,其執行上文所敍述之一或多個控制器中之任一者的操作。In another aspect, a method of controlling the tint of at least one tintable window that performs the operations of any one of the one or more controllers described above.
在另一態樣中,一種用於控制至少一個可著色窗之色調的非暫時性電腦可讀程式產品,該非暫時性電腦可讀程式產品在由一或多個處理器讀取時使一或多個處理器執行包含以下各者之操作:(a)使用自虛擬感測器傳達之感測器資料來判定或指導判定地點(例如,設施)處之至少一個可著色窗的第一色調狀態集合,該第一色調狀態集合包含一或多個第一色調狀態;(b)使用自至少一個實體感測器傳達之感測器資料來判定或指導判定地點處之至少可著色窗的第二色調狀態集合,該第二色調狀態集合包含一或多個第二色調狀態;及(c)至少部分地基於(i)第一色調狀態集合、(ii)第二色調狀態集合或(iii)第一色調狀態集合及第二色調狀態集合而更改至少一個可著色窗之色調。In another aspect, a non-transitory computer-readable program product for controlling the hue of at least one tintable window, the non-transitory computer-readable program product when read by one or more processors causes one or more A plurality of processors perform operations comprising: (a) using sensor data communicated from the virtual sensor to determine or direct determination of a first hue state of at least one tintable window at a location (eg, a facility) (b) using sensor data communicated from at least one physical sensor to determine or guide determination of at least a second tintable window at a location a set of hue states, the second set of hue states comprising one or more second hue states; and (c) based at least in part on (i) the first set of hue states, (ii) the second set of hue states, or (iii) the first set of hue states A set of hue states and a second set of hue states alter the hue of at least one tintable window.
在一些實施例中,虛擬感測器經組態以預測未來感測器資料。在一些實施例中,未來感測器資料係至少部分地基於來自一或多個實體感測器之讀數。在一些實施例中,未來感測器資料係至少部分地基於機器學習模組。In some embodiments, virtual sensors are configured to predict future sensor data. In some embodiments, future sensor data is based at least in part on readings from one or more physical sensors. In some embodiments, future sensor data is based at least in part on machine learning modules.
在另一態樣中,一種控制至少一個可著色窗之色調的方法,該方法包含:(a)使用自虛擬感測器傳達之感測器資料來判定或指導判定地點(例如,設施)處之至少一個可著色窗的第一色調狀態集合,該第一色調狀態集合包含一或多個第一色調狀態;(b)使用自至少一個實體感測器傳達之感測器資料來判定或指導判定地點處之至少可著色窗的第二色調狀態集合,該第二色調狀態集合包含一或多個第二色調狀態;及(c)至少部分地基於(i)第一色調狀態集合、(ii)第二色調狀態集合或(iii)第一色調狀態集合及第二色調狀態集合而更改至少一個可著色窗之色調。In another aspect, a method of controlling the hue of at least one tintable window, the method comprising: (a) using sensor data communicated from a virtual sensor to determine or direct determination of a location (eg, a facility) at a location (b) use sensor data communicated from at least one physical sensor to determine or guide determining a second set of hue states for at least the tintable window at the location, the second set of hue states comprising one or more second hue states; and (c) based at least in part on (i) the first set of hue states, (ii) ) a second set of hue states or (iii) a first set of hue states and a second set of hue states to alter the hue of at least one tintable window.
在一些實施例中,虛擬感測器經組態以預測未來感測器資料。在一些實施例中,未來感測器資料係至少部分地基於來自一或多個實體感測器之讀數。在一些實施例中,未來感測器資料係至少部分地基於機器學習模組。In some embodiments, virtual sensors are configured to predict future sensor data. In some embodiments, future sensor data is based at least in part on readings from one or more physical sensors. In some embodiments, future sensor data is based at least in part on machine learning modules.
在另一態樣中,一種用於控制至少一個裝置之狀態的設備,該設備包含一或多個控制器,該一或多個控制器包含電路系統,該一或多個控制器經組態以:(a)操作性地耦接至感測器資料庫,該感測器資料庫經組態以儲存自虛擬天空感測器傳達之感測器資料及儲存自至少一個實體感測器傳達之感測器資料,其中自虛擬天空感測器傳達之感測器資料包括測試資料;(b)使用測試資料來判定或指導判定至少一個裝置之第一控制狀態集合;(c)使用自至少一個實體感測器傳達之感測器資料來判定或指導判定至少一個裝置之第二控制狀態集合;及(d)至少部分地基於(i)第一控制狀態集合、(ii)第二控制狀態集合或(iii)第一控制狀態集合及第二色調狀態控制而更改或指導更改至少一個裝置之狀態。In another aspect, an apparatus for controlling a state of at least one device, the apparatus including one or more controllers including circuitry, the one or more controllers configured to: (a) be operatively coupled to a sensor database configured to store sensor data communicated from the virtual sky sensor and stored from at least one physical sensor The sensor data, wherein the sensor data communicated from the virtual sky sensor includes test data; (b) use the test data to determine or guide the determination of the first set of control states of the at least one device; (c) use the test data from at least one sensor data communicated by a physical sensor to determine or direct determination of a second set of control states for at least one device; and (d) based at least in part on (i) the first set of control states, (ii) the second set of control states Aggregate or (iii) a first set of control states and a second hue state control to alter or direct altering the state of at least one device.
在一些實施例中,虛擬感測器經組態以預測未來感測器資料。在一些實施例中,虛擬感測器經組態以預測未來感測器資料。在一些實施例中,未來感測器資料係至少部分地基於來自一或多個實體感測器之讀數。在一些實施例中,一或多個控制器經組態以:(I)比較第一控制狀態集合與第二控制狀態集合;及(II)至少部分地基於比較,使用或指導使用第一控制狀態集合及第二控制狀態集合中之一者來控制至少一個裝置。在一些實施例中,至少一個裝置包含至少一個可著色窗,其中第一控制狀態集合包含第一色調狀態集合,且其中第二控制狀態集合包含第二色調狀態集合。在一些實施例中,(b)及(c)由至少一個控制器中之同一控制器執行。在一些實施例中,(b)及(c)由至少一個控制器中之不同控制器執行。In some embodiments, virtual sensors are configured to predict future sensor data. In some embodiments, virtual sensors are configured to predict future sensor data. In some embodiments, future sensor data is based at least in part on readings from one or more physical sensors. In some embodiments, the one or more controllers are configured to: (I) compare the first set of control states with the second set of control states; and (II) use or direct use of the first control based at least in part on the comparison One of the set of states and the second set of control states controls the at least one device. In some embodiments, at least one device includes at least one tintable window, wherein the first set of control states includes a first set of hue states, and wherein the second set of control states includes a second set of hue states. In some embodiments, (b) and (c) are performed by the same controller of the at least one controller. In some embodiments, (b) and (c) are performed by different ones of the at least one controller.
在另一態樣中,一種用於控制至少一個裝置之狀態的非暫時性電腦可讀程式產品,該非暫時性電腦可讀程式產品在由一或多個處理器讀取時使一或多個處理器執行上文所敍述之一或多個控制器中之任一者的操作。In another aspect, a non-transitory computer-readable program product for controlling a state of at least one device, the non-transitory computer-readable program product when read by one or more processors causes one or more The processor performs the operations of any of the one or more controllers described above.
在一些實施例中,一或多個處理器操作性地耦接至感測器資料庫,該感測器資料庫經組態以(i)儲存自虛擬感測器傳達之感測器資料及(ii)儲存自至少一個實體感測器傳達之感測器資料。在一些實施例中,操作中之至少兩者由一或多個處理器中之同一處理器執行。在一些實施例中,操作中之至少兩者由一或多個處理器中之不同處理器執行。在一些實施例中,非暫時性電腦可讀程式產品包含非暫時性電腦可讀媒體。在一些實施例中,非暫時性電腦可讀程式產品包含非暫時性電腦可讀媒體。In some embodiments, one or more processors are operatively coupled to a sensor database configured to (i) store sensor data communicated from virtual sensors and (ii) storing sensor data communicated from at least one physical sensor. In some embodiments, at least two of the operations are performed by the same one of the one or more processors. In some embodiments, at least two of the operations are performed by different ones of the one or more processors. In some embodiments, the non-transitory computer-readable program product comprises a non-transitory computer-readable medium. In some embodiments, the non-transitory computer-readable program product comprises a non-transitory computer-readable medium.
在另一態樣中,一種控制至少一個裝置之狀態的方法,其執行上文所敍述之一或多個控制器中之任一者的操作。In another aspect, a method of controlling a state of at least one device that performs the operations of any one of the one or more controllers described above.
在另一態樣中,一種用於控制至少一個裝置之狀態的非暫時性電腦可讀程式產品,該非暫時性電腦可讀程式產品在由一或多個處理器讀取時使一或多個處理器執行包含以下各者之操作:(a)使用包括於自虛擬天空感測器傳達之感測器資料中的測試資料來判定或指導判定至少一個裝置之第一控制狀態集合;(b)使用自至少一個實體感測器傳達之感測器資料來判定或指導判定至少一個裝置之第二控制狀態集合;及(c)至少部分地基於(i)第一控制狀態集合、(ii)第二控制狀態集合或(iii)第一控制狀態集合及第二色調狀態控制而更改或指導更改至少一個裝置之狀態,其中一或多個處理器操作性地耦接至感測器資料庫,該感測器資料庫經組態以(I)儲存自虛擬天空感測器傳達之感測器資料及(II)儲存自至少一個實體感測器傳達之感測器資料。In another aspect, a non-transitory computer-readable program product for controlling a state of at least one device, the non-transitory computer-readable program product when read by one or more processors causes one or more The processor performs operations comprising: (a) determining or directing determination of a first set of control states for at least one device using test data included in sensor data communicated from the virtual sky sensor; (b) determining or directing determination of a second set of control states for the at least one device using sensor data communicated from the at least one physical sensor; and (c) based at least in part on (i) the first set of control states, (ii) the Two sets of control states or (iii) a first set of control states and a second hue state control to alter or direct altering the state of at least one device, wherein one or more processors are operatively coupled to a sensor database, the The sensor database is configured to (I) store sensor data communicated from the virtual sky sensor and (II) store sensor data communicated from at least one physical sensor.
在一些實施例中,虛擬感測器經組態以預測未來感測器資料。在一些實施例中,未來感測器資料係至少部分地基於來自一或多個實體感測器之讀數。在一些實施例中,未來感測器資料係至少部分地基於機器學習模組。In some embodiments, virtual sensors are configured to predict future sensor data. In some embodiments, future sensor data is based at least in part on readings from one or more physical sensors. In some embodiments, future sensor data is based at least in part on machine learning modules.
在另一態樣中,一種控制至少一個裝置之狀態的方法,該方法包含:(a)使用包括於自虛擬天空感測器傳達之感測器資料中的測試資料來判定或指導判定至少一個裝置之第一控制狀態集合;(b)使用自至少一個實體感測器傳達之感測器資料來判定或指導判定至少一個裝置之第二控制狀態集合;及(c)至少部分地基於(i)第一控制狀態集合、(ii)第二控制狀態集合或(iii)第一控制狀態集合及第二色調狀態控制而更改或指導更改至少一個裝置之狀態。In another aspect, a method of controlling a state of at least one device, the method comprising: (a) using test data included in sensor data communicated from a virtual sky sensor to determine or direct the determination of at least one a first set of control states for the device; (b) using sensor data communicated from the at least one physical sensor to determine or direct determination of a second set of control states for the at least one device; and (c) based at least in part on (i ) the first set of control states, (ii) the second set of control states, or (iii) the first set of control states and the second hue state control to alter or direct altering the state of at least one device.
在一些實施例中,虛擬感測器經組態以預測未來感測器資料。在一些實施例中,未來感測器資料係至少部分地基於來自一或多個實體感測器之讀數。在一些實施例中,未來感測器資料係至少部分地基於機器學習模組。在一些實施例中,(I)自虛擬天空感測器傳達之感測器資料及(II)自至少一個實體感測器傳達之感測器資料儲存於感測器資料庫中。In some embodiments, virtual sensors are configured to predict future sensor data. In some embodiments, future sensor data is based at least in part on readings from one or more physical sensors. In some embodiments, future sensor data is based at least in part on machine learning modules. In some embodiments, (I) sensor data communicated from the virtual sky sensor and (II) sensor data communicated from at least one physical sensor are stored in a sensor database.
在另一態樣中,一種用於控制至少一個裝置之狀態的設備,該設備包含一或多個控制器,該一或多個控制器包含電路系統,該一或多個控制器經組態以:(a)操作性地耦接至感測器資料庫,該感測器資料庫經組態以(i)儲存自虛擬感測器傳達之感測器資料及(ii)儲存自至少一個實體感測器傳達之感測器資料,其中自虛擬感測器傳達之感測器資料包括用於第一測試案例及第二測試案例之測試資料;(b)使用用於第一測試案例之測試資料來判定或指導判定至少一個裝置之第一控制狀態集合;(c)使用用於第二測試案例之測試資料來判定或指導判定至少一個裝置之第二控制狀態集合;及(d)至少部分地基於(i)第一控制狀態集合、(ii)第二控制狀態集合或(iii)第一控制狀態集合及第二色調狀態控制而更改或指導更改至少一個裝置之狀態。In another aspect, an apparatus for controlling a state of at least one device, the apparatus including one or more controllers including circuitry, the one or more controllers configured is (a) operatively coupled to a sensor database configured to (i) store sensor data communicated from the virtual sensor and (ii) store from at least one The sensor data communicated by the physical sensor, wherein the sensor data communicated from the virtual sensor includes the test data for the first test case and the second test case; (b) using the data for the first test case test data to determine or direct determination of a first set of control states for at least one device; (c) use the test data for a second test case to determine or direct determination of a second set of control states for at least one device; and (d) at least The state of the at least one device is altered or directed to be altered based in part on (i) the first set of control states, (ii) the second set of control states, or (iii) the first set of control states and the second hue state control.
在一些實施例中,虛擬感測器經組態以預測未來感測器資料。在一些實施例中,未來感測器資料係至少部分地基於來自一或多個實體感測器之讀數。在一些實施例中,未來感測器資料係至少部分地基於機器學習模組。在一些實施例中,一或多個控制器經組態以:比較(i)第一控制狀態集合與(ii)第二控制狀態集合;及至少部分地基於比較,使用或指導使用第一控制狀態集合及第二控制狀態集合中之一者來控制至少一個裝置。在一些實施例中,至少一個裝置包含至少一個可著色窗,其中第一控制狀態集合包含第一色調狀態集合,且其中第二控制狀態集合包含第二色調狀態集合。在一些實施例中,(b)及(d)由至少一個控制器中之同一控制器執行。在一些實施例中,(b)及(d)由至少一個控制器中之不同控制器執行。In some embodiments, virtual sensors are configured to predict future sensor data. In some embodiments, future sensor data is based at least in part on readings from one or more physical sensors. In some embodiments, future sensor data is based at least in part on machine learning modules. In some embodiments, the one or more controllers are configured to: compare (i) the first set of control states with (ii) the second set of control states; and use or direct use of the first control based at least in part on the comparison One of the set of states and the second set of control states controls the at least one device. In some embodiments, at least one device includes at least one tintable window, wherein the first set of control states includes a first set of hue states, and wherein the second set of control states includes a second set of hue states. In some embodiments, (b) and (d) are performed by the same controller of the at least one controller. In some embodiments, (b) and (d) are performed by different ones of the at least one controller.
在另一態樣中,一種用於控制至少一個裝置之狀態的非暫時性電腦可讀程式產品,該非暫時性電腦可讀程式產品在由一或多個處理器讀取時使一或多個處理器執行上文所敍述之一或多個控制器中之任一者的操作。In another aspect, a non-transitory computer-readable program product for controlling a state of at least one device, the non-transitory computer-readable program product when read by one or more processors causes one or more The processor performs the operations of any of the one or more controllers described above.
在一些實施例中,一或多個處理器操作性地耦接至感測器資料庫,該感測器資料庫經組態以(i)儲存自虛擬感測器傳達之感測器資料及(ii)儲存自至少一個實體感測器傳達之感測器資料,其中自虛擬感測器傳達之感測器資料包括用於第一測試案例及第二測試案例之測試資料。在一些實施例中,操作中之至少兩者由一或多個處理器中之同一處理器執行。在一些實施例中,操作中之至少兩者由一或多個處理器中之不同處理器執行。在一些實施例中,非暫時性電腦可讀程式產品包含非暫時性電腦可讀媒體。在一些實施例中,非暫時性電腦可讀程式產品包含非暫時性電腦可讀媒體。In some embodiments, one or more processors are operatively coupled to a sensor database configured to (i) store sensor data communicated from virtual sensors and (ii) storing sensor data communicated from at least one physical sensor, wherein the sensor data communicated from the virtual sensor includes test data for the first test case and the second test case. In some embodiments, at least two of the operations are performed by the same one of the one or more processors. In some embodiments, at least two of the operations are performed by different ones of the one or more processors. In some embodiments, the non-transitory computer-readable program product comprises a non-transitory computer-readable medium. In some embodiments, the non-transitory computer-readable program product comprises a non-transitory computer-readable medium.
在另一態樣中,一種控制至少一個裝置之狀態的方法,其執行上文所敍述之一或多個控制器中之任一者的操作。In another aspect, a method of controlling a state of at least one device that performs the operations of any one of the one or more controllers described above.
在另一態樣中,一種用於控制至少一個裝置之狀態的非暫時性電腦可讀程式產品,該非暫時性電腦可讀程式產品在由一或多個處理器讀取時使一或多個處理器執行包含以下各者之操作:(b)使用用於第一測試案例之測試資料來判定或指導判定至少一個裝置之第一控制狀態集合;(c)使用用於第二測試案例之測試資料來判定或指導判定至少一個裝置之第二控制狀態集合;及(d)至少部分地基於(i)第一控制狀態集合、(ii)第二控制狀態集合或(iii)第一控制狀態集合及第二色調狀態控制而更改或指導更改至少一個裝置之狀態,其中一或多個處理器操作性地耦接至感測器資料庫,該感測器資料庫經組態以(i)儲存自虛擬感測器傳達之感測器資料及(ii)儲存自至少一個實體感測器傳達之感測器資料,其中自虛擬感測器傳達之感測器資料包括用於第一測試案例及第二測試案例之測試資料。In another aspect, a non-transitory computer-readable program product for controlling a state of at least one device, the non-transitory computer-readable program product when read by one or more processors causes one or more The processor performs operations comprising: (b) using the test data for the first test case to determine or direct determination of a first set of control states for the at least one device; (c) using the tests for the second test case and (d) based at least in part on (i) the first set of control states, (ii) the second set of control states, or (iii) the first set of control states and a second hue state control to alter or direct altering the state of at least one device, wherein the one or more processors are operatively coupled to a sensor database configured to (i) store Sensor data communicated from the virtual sensor and (ii) stored sensor data communicated from at least one physical sensor, wherein the sensor data communicated from the virtual sensor includes for the first test case and The test data of the second test case.
在一些實施例中,虛擬感測器經組態以預測未來感測器資料。在一些實施例中,未來感測器資料係至少部分地基於來自一或多個實體感測器之讀數。在一些實施例中,未來感測器資料係至少部分地基於機器學習模組。In some embodiments, virtual sensors are configured to predict future sensor data. In some embodiments, future sensor data is based at least in part on readings from one or more physical sensors. In some embodiments, future sensor data is based at least in part on machine learning modules.
在另一態樣中,一種控制至少一個裝置之狀態的方法,該方法包含:(b)使用用於第一測試案例之測試資料來判定或指導判定至少一個裝置之第一控制狀態集合;(c)使用用於第二測試案例之測試資料來判定或指導判定至少一個裝置之第二控制狀態集合;及(d)至少部分地基於(i)第一控制狀態集合、(ii)第二控制狀態集合或(iii)第一控制狀態集合及第二色調狀態控制而更改或指導更改至少一個裝置之狀態。In another aspect, a method of controlling a state of at least one device, the method comprising: (b) using test data for a first test case to determine or direct determination of a first set of control states of at least one device; ( c) use the test data for the second test case to determine or guide the determination of a second set of control states for the at least one device; and (d) based at least in part on (i) the first set of control states, (ii) the second control The set of states or (iii) the first set of control states and the second hue state control to alter or direct altering the state of at least one device.
在一些實施例中,虛擬感測器經組態以預測未來感測器資料。在一些實施例中,未來感測器資料係至少部分地基於來自一或多個實體感測器之讀數。在一些實施例中,未來感測器資料係至少部分地基於機器學習模組。在一些實施例中,感測器資料庫經組態以(i)儲存自虛擬感測器傳達之感測器資料及(ii)儲存自至少一個實體感測器傳達之感測器資料。在一些實施例中,自虛擬感測器傳達之感測器資料包括用於第一測試案例及第二測試案例之測試資料。In some embodiments, virtual sensors are configured to predict future sensor data. In some embodiments, future sensor data is based at least in part on readings from one or more physical sensors. In some embodiments, future sensor data is based at least in part on machine learning modules. In some embodiments, the sensor database is configured to (i) store sensor data communicated from virtual sensors and (ii) store sensor data communicated from at least one physical sensor. In some embodiments, the sensor data communicated from the virtual sensor includes test data for the first test case and the second test case.
在另一態樣中,一種用於控制至少一個裝置之狀態的設備,其包含一或多個控制器,該一或多個控制器包含電路系統,該一或多個控制器:(a)經組態以操作性地耦接至感測器資料庫,該感測器資料庫經組態以儲存自虛擬感測器傳達之測試資料;及(b)包含一或多個預報模組,該一或多個預報模組經組態以使用自虛擬感測器傳達之測試資料來判定或促進判定(I)一或多個輸出,該一或多個輸出包括在未來時間之第一所預報環境條件及/或(II)至少一個可著色窗在未來時間之第一色調位準。In another aspect, an apparatus for controlling a state of at least one device comprising one or more controllers comprising circuitry, the one or more controllers: (a) configured to be operatively coupled to a sensor database configured to store test data communicated from the virtual sensor; and (b) comprising one or more forecast modules, The one or more forecasting modules are configured to use test data communicated from the virtual sensor to determine or facilitate determining (I) one or more outputs, the one or more outputs including the first Forecasting environmental conditions and/or (II) a first tint level for at least one tintable window at a future time.
在一些實施例中,虛擬感測器經組態以預測未來感測器資料。在一些實施例中,未來感測器資料係至少部分地基於來自一或多個實體感測器之讀數。在一些實施例中,未來感測器資料係至少部分地基於機器學習模組。在一些實施例中,一或多個預報模組經組態以使用來自藉由至少一個實體感測器獲取之讀數的感測器資料,以判定一或多個額外輸出。在一些實施例中,未來時間為第一未來時間,且其中一或多個額外輸出包括在第二未來時間之第二所預報環境條件及/或至少一個可著色窗在第二未來時間之第二色調位準。在一些實施例中,第一未來時間及第二未來時間為不同的未來時間。在一些實施例中,第一未來時間及第二未來時間為相同的未來時間。在一些實施例中,虛擬感測器為虛擬天空感測器,該虛擬天空感測器經組態以為安置有至少一個可著色窗之設施預測在未來時間在設施外部的感測器資料。在一些實施例中,一或多個預報模組包含神經網路。在一些實施例中,神經網路包含深度神經網路(DNN)。在一些實施例中,一或多個預報模組包括使用機器學習來判定輸出之邏輯。在一些實施例中,至少一個感測器包括光感測器及/或紅外線感測器。 在一些實施例中,第一所預報環境條件及/或第二環境條件包含天氣條件。在一些實施例中,一或多個輸出包含最大第一讀數之滾動值及/或最小第二感測器讀數之滾動值,其中最大第一讀數之滾動值包含最大光感測器讀數之均值、中值或平均值,且其中最小第二感測器讀數之滾動值包含最小紅外線讀數之均值、中值或平均值。在一些實施例中,一或多個輸出包含最大光感測器讀數之滾動值及/或最小紅外線感測器讀數之滾動值,其中最大光感測器讀數之滾動值包含最大光感測器讀數之均值、中值或平均值,且其中最小紅外線感測器讀數之滾動值包含最小紅外線讀數之均值、中值或平均值。在一些實施例中,一或多個預報模組經組態以自讀數之時間數列計算重心平均值。在一些實施例中,一或多個控制器經組態以控制安置有至少一個可著色窗之封閉體的環境。In some embodiments, virtual sensors are configured to predict future sensor data. In some embodiments, future sensor data is based at least in part on readings from one or more physical sensors. In some embodiments, future sensor data is based at least in part on machine learning modules. In some embodiments, one or more forecast modules are configured to use sensor data from readings obtained by at least one physical sensor to determine one or more additional outputs. In some embodiments, the future time is a first future time, and wherein the one or more additional outputs include a second predicted environmental condition at the second future time and/or the at least one tintable window at the second future time Two-tone level. In some embodiments, the first future time and the second future time are different future times. In some embodiments, the first future time and the second future time are the same future time. In some embodiments, the virtual sensor is a virtual sky sensor configured to predict sensor data outside the facility at a future time for the facility in which the at least one tintable window is located. In some embodiments, the one or more prediction modules comprise a neural network. In some embodiments, the neural network comprises a deep neural network (DNN). In some embodiments, the one or more forecasting modules include logic that uses machine learning to determine the output. In some embodiments, the at least one sensor includes a light sensor and/or an infrared sensor. In some embodiments, the first forecasted environmental conditions and/or the second environmental conditions comprise weather conditions. In some embodiments, the one or more outputs include a rolling value of a maximum first reading and/or a rolling value of a minimum second sensor reading, wherein the rolling value of the maximum first reading includes an average of the maximum light sensor readings , median, or average, and wherein the rolling value of the minimum second sensor readings includes the mean, median, or average of the minimum infrared readings. In some embodiments, the one or more outputs include a rolling value of the maximum light sensor reading and/or a rolling value of the minimum infrared sensor reading, wherein the rolling value of the maximum light sensor reading includes the maximum light sensor reading The mean, median, or average of readings, and where the rolling value of the minimum infrared sensor readings includes the mean, median, or average of the minimum infrared readings. In some embodiments, the one or more forecasting modules are configured to calculate a center of gravity average from a time series of readings. In some embodiments, the one or more controllers are configured to control the environment of the enclosure in which the at least one tintable window is disposed.
在另一態樣中,一種用於控制至少一個裝置之狀態的非暫時性電腦可讀程式產品,該非暫時性電腦可讀程式產品在由一或多個處理器讀取時使一或多個處理器執行上文所敍述之一或多個控制器中之任一者的操作。In another aspect, a non-transitory computer-readable program product for controlling a state of at least one device, the non-transitory computer-readable program product when read by one or more processors causes one or more The processor performs the operations of any of the one or more controllers described above.
在一些實施例中,一或多個處理器操作性地耦接至感測器資料庫,該感測器資料庫經組態以儲存自虛擬感測器傳達之測試資料。在一些實施例中,操作中之至少兩者由一或多個處理器中之同一處理器執行。在一些實施例中,操作中之至少兩者由一或多個處理器中之不同處理器執行。在一些實施例中,非暫時性電腦可讀程式產品包含非暫時性電腦可讀媒體。在一些實施例中,非暫時性電腦可讀程式產品包含非暫時性電腦可讀媒體。In some embodiments, the one or more processors are operatively coupled to a sensor database configured to store test data communicated from the virtual sensors. In some embodiments, at least two of the operations are performed by the same one of the one or more processors. In some embodiments, at least two of the operations are performed by different ones of the one or more processors. In some embodiments, the non-transitory computer-readable program product comprises a non-transitory computer-readable medium. In some embodiments, the non-transitory computer-readable program product comprises a non-transitory computer-readable medium.
在另一態樣中,一種控制至少一個裝置之狀態的方法,其執行上文所敍述之一或多個控制器中之任一者的操作。In another aspect, a method of controlling a state of at least one device that performs the operations of any one of the one or more controllers described above.
在另一態樣中,一種用於控制至少一個裝置之狀態的非暫時性電腦可讀程式產品,該非暫時性電腦可讀程式產品在由一或多個處理器讀取時使一或多個處理器執行一或多個操作,該一或多個處理器經組態以操作性地耦接至感測器資料庫,該感測器資料庫經組態以儲存自虛擬感測器傳達之測試資料;且該非暫時性電腦可讀程式產品包含一或多個預報模組,該一或多個預報模組經組態以使用自虛擬感測器傳達之測試資料來判定或促進判定(I)一或多個輸出,該一或多個輸出包括在未來時間之第一所預報環境條件及/或(II)至少一個可著色窗在未來時間之第一色調位準。In another aspect, a non-transitory computer-readable program product for controlling a state of at least one device, the non-transitory computer-readable program product when read by one or more processors causes one or more a processor performing one or more operations, the one or more processors configured to be operatively coupled to a sensor database configured to store data communicated from the virtual sensor test data; and the non-transitory computer-readable program product includes one or more forecast modules configured to use test data communicated from virtual sensors to determine or facilitate determination (I ) one or more outputs including a first predicted environmental condition at a future time and/or (II) a first hue level at a future time for at least one tintable window.
在一些實施例中,虛擬感測器經組態以預測未來感測器資料。在一些實施例中,未來感測器資料係至少部分地基於來自一或多個實體感測器之讀數。在一些實施例中,未來感測器資料係至少部分地基於機器學習模組。In some embodiments, virtual sensors are configured to predict future sensor data. In some embodiments, future sensor data is based at least in part on readings from one or more physical sensors. In some embodiments, future sensor data is based at least in part on machine learning modules.
在另一態樣中,一種判定一或多個可著色窗之色調狀態的方法,該方法包含:(a)藉由使用來自天氣饋入資料之外部條件標記來自輻射剖面之感測器資料來針對複數個外部條件產生訓練資料;(b)使用針對複數個外部條件產生之訓練資料來針對複數個外部條件訓練至少一個機器學習模型,其中該至少一個機器學習模型經訓練以判定一或多個可著色窗在複數個外部條件下之色調狀態或用以判定該等色調狀態之資訊;及(c)至少部分地藉由使用所判定之色調狀態來更改一或多個可著色窗之色調。In another aspect, a method of determining a hue state of one or more tintable windows, the method comprising: (a) by labeling sensor data from a radiation profile using external conditions from weather feed data generating training data for the plurality of external conditions; (b) using the training data generated for the plurality of external conditions to train at least one machine learning model for the plurality of external conditions, wherein the at least one machine learning model is trained to determine one or more the hue states of the tintable windows under a plurality of external conditions or the information used to determine the hue states; and (c) at least in part by using the determined hue states to alter the hue of the one or more tintable windows.
在一些實施例中,虛擬感測器經組態以預測未來感測器資料。在一些實施例中,未來感測器資料係至少部分地基於來自一或多個實體感測器之讀數。在一些實施例中,複數個外部條件為天氣條件。在一些實施例中,自第三方接收天氣饋入資料。在一些實施例中,根據自天氣饋入資料接收到之不同類型之複數個外部條件而將輻射剖面分段。在一些實施例中,用複數個外部條件中之一者標記每一片段中之感測器資料。在一些實施例中,複數個外部條件包括晴天條件、部分多雲條件、霧天條件、雨天條件、冰雹條件、暴風雨條件及/或煙霧條件。In some embodiments, virtual sensors are configured to predict future sensor data. In some embodiments, future sensor data is based at least in part on readings from one or more physical sensors. In some embodiments, the plurality of external conditions are weather conditions. In some embodiments, weather feeds are received from third parties. In some embodiments, the radiation profile is segmented according to a plurality of external conditions of different types received from weather feeds. In some embodiments, the sensor data in each segment is marked with one of a plurality of external conditions. In some embodiments, the plurality of external conditions include sunny conditions, partly cloudy conditions, foggy conditions, rainy conditions, hail conditions, stormy conditions, and/or smog conditions.
在另一態樣中,一種用於判定一或多個可著色窗之色調狀態的非暫時性電腦可讀程式產品,該非暫時性電腦可讀程式產品在由一或多個處理器讀取時使一或多個處理器執行上文所敍述之任一種方法的操作。In another aspect, a non-transitory computer-readable program product for determining the hue state of one or more tintable windows, the non-transitory computer-readable program product when read by one or more processors One or more processors are caused to perform the operations of any of the methods described above.
在一些實施例中,一或多個處理器操作性地耦接至一或多個可著色窗。在一些實施例中,操作中之至少兩者由一或多個處理器中之同一處理器執行。在一些實施例中,操作中之至少兩者由一或多個處理器中之不同處理器執行。在一些實施例中,非暫時性電腦可讀程式產品包含電腦可讀媒體。在一些實施例中,非暫時性電腦可讀程式產品包含非暫時性電腦可讀媒體。In some embodiments, one or more processors are operatively coupled to one or more tintable windows. In some embodiments, at least two of the operations are performed by the same one of the one or more processors. In some embodiments, at least two of the operations are performed by different ones of the one or more processors. In some embodiments, the non-transitory computer-readable program product comprises a computer-readable medium. In some embodiments, the non-transitory computer-readable program product comprises a non-transitory computer-readable medium.
在另一態樣中,一種用於判定一或多個可著色窗之色調狀態的設備,至少一個控制器包含電路系統且經組態以執行上文所敍述之任一種方法的操作。In another aspect, an apparatus for determining a hue state of one or more tintable windows, at least one controller includes circuitry and is configured to perform the operations of any of the methods described above.
在一些實施例中,操作中之至少兩者由至少一個控制器中之同一控制器執行。在一些實施例中,操作中之至少兩者由至少一個控制器中之不同控制器執行。In some embodiments, at least two of the operations are performed by the same controller of the at least one controller. In some embodiments, at least two of the operations are performed by different ones of the at least one controller.
在另一態樣中,一種用於判定一或多個可著色窗之色調狀態的非暫時性電腦可讀程式產品,該非暫時性電腦可讀程式產品在由一或多個處理器讀取時使一或多個處理器執行包含以下各者之操作:(a)藉由用來自天氣饋入資料之外部條件標記來自輻射剖面之感測器資料來針對複數個外部條件產生或指導產生訓練資料;(b)使用或指導利用針對複數個外部條件產生之訓練資料來針對複數個外部條件訓練至少一個機器學習模型,其中該至少一個機器學習模型經訓練以判定一或多個可著色窗在複數個外部條件下之色調狀態或用以判定該等色調狀態之資訊;及(c)至少部分地藉由使用所判定之色調狀態來更改或指導更改一或多個可著色窗之色調。In another aspect, a non-transitory computer-readable program product for determining the hue state of one or more tintable windows, the non-transitory computer-readable program product when read by one or more processors causing one or more processors to perform operations comprising: (a) generating or instructing the generation of training data for a plurality of external conditions by labeling sensor data from the radiation profile with the external conditions from the weather feed data (b) using or directing the use of training data generated for a plurality of extrinsic conditions to train at least one machine learning model for a plurality of extrinsic conditions, wherein the at least one machine learning model is trained to determine that one or more shadeable windows are within a plurality of extrinsic conditions; and (c) at least in part by using the determined hue state to alter or direct altering the hue of one or more tintable windows.
在一些實施例中,虛擬感測器經組態以預測未來感測器資料。在一些實施例中,未來感測器資料係至少部分地基於來自一或多個實體感測器之讀數。In some embodiments, virtual sensors are configured to predict future sensor data. In some embodiments, future sensor data is based at least in part on readings from one or more physical sensors.
在另一態樣中,一種用於判定一或多個可著色窗之色調狀態的設備,該設備包含至少一個控制器,該至少一個控制器具有電路系統,該至少一個控制器經組態以:(a)操作性地耦接至一或多個可著色窗;(b)藉由用來自天氣饋入資料之外部條件標記來自輻射剖面之感測器資料來針對複數個外部條件產生或指導產生訓練資料;(c)使用或指導利用針對複數個外部條件產生之訓練資料來針對複數個外部條件訓練至少一個機器學習模型,其中該至少一個機器學習模型經訓練以判定一或多個可著色窗在複數個外部條件下之色調狀態或用以判定該等色調狀態之資訊;及(c)至少部分地藉由使用所判定之色調狀態來更改或指導更改一或多個可著色窗之色調。In another aspect, an apparatus for determining a tint state of one or more tintable windows, the apparatus comprising at least one controller having circuitry configured to : (a) operatively coupled to one or more tintable windows; (b) generated or directed for a plurality of external conditions by tagging sensor data from the radiation profile with the external conditions from weather feed data generating training data; (c) using or instructing to utilize the training data generated for the plurality of extrinsic conditions to train at least one machine learning model for the plurality of extrinsic conditions, wherein the at least one machine learning model is trained to determine one or more colorable the hue state of a window under a plurality of external conditions or the information used to determine such hue state; and (c) at least in part by using the determined hue state to alter or direct altering the hue of one or more tintable windows .
在一些實施例中,虛擬感測器經組態以預測未來感測器資料。在一些實施例中,未來感測器資料係至少部分地基於來自一或多個實體感測器之讀數。In some embodiments, virtual sensors are configured to predict future sensor data. In some embodiments, future sensor data is based at least in part on readings from one or more physical sensors.
在另一態樣中,一種用於控制地點處之一或多個裝置之至少一個設定的設備包含:具有電路系統之一或多個控制器,該一或多個控制器經組態以:(a)操作性地耦接至虛擬感測器,該虛擬感測器在第一時間預測實體感測器在第二時間之所預測感測器資料;(b)操作性地耦接至實體感測器,該實體感測器在第二時間量測真實感測器資料;(c)比較或指導比較所預測感測器資料與真實感測器資料以產生結果;及(d)至少部分地基於結果而更改或指導更改虛擬感測器之一或多個操作以產生更改之虛擬感測器;及(e)至少部分地基於更改之虛擬感測器而控制或指導控制一或多個裝置之至少一個設定。In another aspect, an apparatus for controlling at least one setting of one or more devices at a site includes one or more controllers having circuitry configured to: (a) operatively coupled to a virtual sensor that predicts at a first time the predicted sensor data of the physical sensor at a second time; (b) operatively coupled to the physical a sensor that measures real sensor data at a second time; (c) compares or directs comparison of predicted sensor data to real sensor data to produce a result; and (d) at least partially altering or directing altering one or more operations of the virtual sensor based on the results to produce an altered virtual sensor; and (e) controlling or directing control of one or more of the virtual sensors based at least in part on the altered virtual sensor At least one setting of the device.
在一些實施例中,其中所預測感測器資料係至少部分地基於機器學習模組。在一些實施例中,一或多個控制器經組態以使用或指導使用結果來在時間窗內監測以下兩者之間的比較:(i)在第二時間之後連續地預測的連續預測感測器資料;及(ii)在第二時間之後連續地獲取的連續真實感測器資料,以產生連續結果。在一些實施例中,虛擬感測器之一或多個操作的更改係至少部分地基於時間窗之長度。在一些實施例中,一或多個控制器經組態以至少部分地基於結果而發送或指導發送通知。在一些實施例中,至少一個控制器經組態以利用或指導利用來自虛擬感測器及實體感測器之資料,其用以控制地點處之一或多個裝置的至少一個設定。在一些實施例中,一或多個控制器利用網路。在一些實施例中,一或多個裝置包含可著色窗。在一些實施例中,一或多個裝置包含建築物管理系統。在一些實施例中,一或多個控制器經組態以控制地點之環境。在一些實施例中,虛擬感測器利用機器學習來預測感測器資料。在一些實施例中,(a)至(e)中之至少兩者由至少一個控制器中之同一控制器執行。在一些實施例中,(a)至(e)中之至少兩者由至少一個控制器中之不同控制器執行。In some embodiments, wherein the predicted sensor data is based at least in part on a machine learning module. In some embodiments, the one or more controllers are configured to use or direct the use of the results to monitor, within a time window, a comparison between: (i) a continuous prediction sense that is continuously predicted after the second time and (ii) continuous ground truth sensor data acquired continuously after the second time to produce continuous results. In some embodiments, the modification of one or more operations of the virtual sensor is based at least in part on the length of the time window. In some embodiments, the one or more controllers are configured to send or direct the sending of a notification based at least in part on the results. In some embodiments, at least one controller is configured to utilize or direct the utilization of data from virtual sensors and physical sensors for controlling at least one setting of one or more devices at a location. In some embodiments, one or more controllers utilize a network. In some embodiments, one or more devices include tintable windows. In some embodiments, the one or more devices include a building management system. In some embodiments, one or more controllers are configured to control the environment of the site. In some embodiments, virtual sensors utilize machine learning to predict sensor profiles. In some embodiments, at least two of (a) to (e) are performed by the same one of the at least one controllers. In some embodiments, at least two of (a) to (e) are performed by different ones of the at least one controller.
在另一態樣中,一種用於控制地點處之一或多個裝置之至少一個設定的非暫時性電腦可讀程式產品,該非暫時性電腦可讀程式產品在由一或多個處理器讀取時使一或多個處理器執行上文所敍述之一或多個控制器中之任一者的操作。In another aspect, a non-transitory computer-readable program product for controlling at least one setting of one or more devices at a location, the non-transitory computer-readable program product being read by one or more processors The one or more processors are timed to perform the operations of any one of the one or more controllers described above.
在一些實施例中,一或多個處理器操作性地耦接至虛擬感測器,該虛擬感測器在第一時間預測實體感測器在第二時間之所預測感測器資料。在一些實施例中,操作中之至少兩者由一或多個處理器中之同一處理器執行。在一些實施例中,操作中之至少兩者由一或多個處理器中之不同處理器執行。在一些實施例中,非暫時性電腦可讀程式產品包含非暫時性電腦可讀媒體。在一些實施例中,非暫時性電腦可讀程式產品包含非暫時性電腦可讀媒體。In some embodiments, the one or more processors are operatively coupled to a virtual sensor that predicts the predicted sensor data of the physical sensor at a second time at a first time. In some embodiments, at least two of the operations are performed by the same one of the one or more processors. In some embodiments, at least two of the operations are performed by different ones of the one or more processors. In some embodiments, the non-transitory computer-readable program product comprises a non-transitory computer-readable medium. In some embodiments, the non-transitory computer-readable program product comprises a non-transitory computer-readable medium.
在另一態樣中,一種用於控制地點處之一或多個裝置之至少一個設定的非暫時性電腦可讀程式產品,該非暫時性電腦可讀程式產品在由一或多個處理器讀取時使一或多個處理器執行包含以下各者之操作:(a)比較或指導比較所預測感測器資料與真實感測器資料以產生結果,其中所預測感測器資料藉由虛擬感測器在第一時間產生,其中所預測感測器資料為實體感測器在第一時間之後的第二時間之資料,且其中真實感測器藉由實體感測器在第二時間量測;及(b)至少部分地基於結果而更改或指導更改虛擬感測器之一或多個操作以產生更改之虛擬感測器;及(c)至少部分地基於更改之虛擬感測器而控制或指導控制一或多個裝置之至少一個設定,其中一或多個處理器操作性地耦接至虛擬感測器及實體感測器。在一些實施例中,所預測感測器資料係至少部分地基於機器學習模組。In another aspect, a non-transitory computer-readable program product for controlling at least one setting of one or more devices at a location, the non-transitory computer-readable program product being read by one or more processors The timing causes one or more processors to perform operations comprising: (a) comparing or directing a comparison of predicted sensor data with real sensor data to produce a result, wherein the predicted sensor data is generated by virtual The sensor is generated at a first time, wherein the predicted sensor data is data of the physical sensor at a second time after the first time, and wherein the real sensor is produced by the physical sensor at a second amount of time and (b) altering or directing altering one or more operations of the virtual sensor to produce an altered virtual sensor based at least in part on the results; and (c) based at least in part on the altered virtual sensor Controls or directs control of at least one setting of one or more devices, wherein one or more processors are operatively coupled to the virtual sensor and the physical sensor. In some embodiments, the predicted sensor data is based at least in part on a machine learning module.
在另一態樣中,一種控制地點處之一或多個裝置之至少一個設定的方法包含:(a)藉由使用虛擬感測器在第一時間預測所預測感測器資料;(b)使用實體感測器在第二時間量測真實感測器資料;(c)比較所預測感測器資料與真實感測器資料以產生結果;(d)至少部分地基於結果而更改虛擬感測器之一或多個操作以產生更改之虛擬感測器;及(e)至少部分地基於更改之虛擬感測器而控制一或多個裝置之至少一個設定。在一些實施例中,所預測感測器資料係至少部分地基於機器學習模組。In another aspect, a method of controlling at least one setting of one or more devices at a location includes: (a) predicting predicted sensor data at a first time by using a virtual sensor; (b) measuring real sensor data at a second time using the physical sensor; (c) comparing the predicted sensor data with the real sensor data to generate a result; (d) altering the virtual sensing based at least in part on the result and (e) controlling at least one setting of one or more devices based at least in part on the modified virtual sensor. In some embodiments, the predicted sensor data is based at least in part on a machine learning module.
在另一態樣中,一種用於控制地點處之一或多個裝置之至少一個位準的非暫時性電腦可讀程式產品,該非暫時性電腦可讀程式產品在由一或多個處理器讀取時使一或多個處理器執行上文所敍述之任一種方法的操作。In another aspect, a non-transitory computer-readable program product for controlling at least one level of one or more devices at a location, the non-transitory computer-readable program product being executed by one or more processors The read causes one or more processors to perform the operations of any of the methods described above.
在一些實施例中,一或多個處理器操作性地耦接至實體感測器。在一些實施例中,操作中之至少兩者由一或多個處理器中之同一處理器執行。在一些實施例中,操作中之至少兩者由一或多個處理器中之不同處理器執行。在一些實施例中,非暫時性電腦可讀程式產品包含非暫時性電腦可讀媒體。在一些實施例中,非暫時性電腦可讀程式產品包含非暫時性電腦可讀媒體。In some embodiments, one or more processors are operatively coupled to the physical sensor. In some embodiments, at least two of the operations are performed by the same one of the one or more processors. In some embodiments, at least two of the operations are performed by different ones of the one or more processors. In some embodiments, the non-transitory computer-readable program product comprises a non-transitory computer-readable medium. In some embodiments, the non-transitory computer-readable program product comprises a non-transitory computer-readable medium.
在另一態樣中,一種判定設施中之日光及/或眩光保護之增益的方法,該方法包含:(a)使用一或多個實體感測器之所量測感測器資料以根據第一邏輯產生轉變至少一個可著色窗之色調的第一指令,該至少一個可著色窗安置於設施中;(b)使用一或多個虛擬感測器之虛擬感測器資料以使用第二邏輯產生轉變可著色窗之色調的第二指令;及(c)比較第一指令與第二指令以判定設施中之日光及/或眩光保護的任何增益。In another aspect, a method of determining the gain of sunlight and/or glare protection in a facility, the method comprising: (a) using measured sensor data of one or more physical sensors to a logic to generate a first instruction that transforms the hue of at least one tintable window disposed in the facility; (b) use the virtual sensor data of one or more virtual sensors to use the second logic generating a second instruction that shifts the hue of the tintable window; and (c) comparing the first instruction with the second instruction to determine any gain in daylight and/or glare protection in the facility.
在一些實施例中,虛擬感測器資料包含所預測之未來感測器資料。在一些實施例中,所預測之未來感測器資料係至少部分地基於來自一或多個實體感測器之資料。在一些實施例中,所預測之未來感測器資料係至少部分地基於機器學習模組。在一些實施例中,第一指令攜載第一時戳,且其中第二指令攜載第二時戳,且其中比較第一指令與第二指令包含比較第一時戳與第二時戳。在一些實施例中,一或多個實體感測器包括光感測器及/或紅外線感測器。在一些實施例中,該方法進一步包含區分將至少一個可著色窗著色至較暗色調與將至少一個可著色窗著色至較亮色調。在一些實施例中,該方法進一步包含將一或多個濾波操作應用於所量測感測器資料及/或虛擬感測器資料。在一些實施例中,一或多個濾波操作包含矩形波(boxcar)濾波。In some embodiments, the virtual sensor data includes predicted future sensor data. In some embodiments, the predicted future sensor data is based, at least in part, on data from one or more physical sensors. In some embodiments, the predicted future sensor data is based at least in part on a machine learning module. In some embodiments, the first instruction carries a first timestamp, and wherein the second instruction carries a second timestamp, and wherein comparing the first instruction to the second instruction includes comparing the first timestamp to the second timestamp. In some embodiments, the one or more physical sensors include light sensors and/or infrared sensors. In some embodiments, the method further includes distinguishing between tinting the at least one tintable window to a darker hue and tinting the at least one tintable window to a lighter hue. In some embodiments, the method further includes applying one or more filtering operations to the measured sensor data and/or virtual sensor data. In some embodiments, the one or more filtering operations include boxcar filtering.
在另一態樣中,一種用於控制地點處之一或多個裝置之至少一個位準的非暫時性電腦可讀程式產品,該非暫時性電腦可讀程式產品在由一或多個處理器讀取時使一或多個處理器執行上文所敍述之任一種方法的操作。In another aspect, a non-transitory computer-readable program product for controlling at least one level of one or more devices at a location, the non-transitory computer-readable program product being executed by one or more processors The read causes one or more processors to perform the operations of any of the methods described above.
在一些實施例中,一或多個處理器操作性地耦接至一或多個實體感測器。在一些實施例中,操作中之至少兩者由一或多個處理器中之同一處理器執行。在一些實施例中,操作中之至少兩者由一或多個處理器中之不同處理器執行。在一些實施例中,非暫時性電腦可讀程式產品包含非暫時性電腦可讀媒體。在一些實施例中,非暫時性電腦可讀程式產品包含非暫時性電腦可讀媒體。In some embodiments, one or more processors are operatively coupled to one or more physical sensors. In some embodiments, at least two of the operations are performed by the same one of the one or more processors. In some embodiments, at least two of the operations are performed by different ones of the one or more processors. In some embodiments, the non-transitory computer-readable program product comprises a non-transitory computer-readable medium. In some embodiments, the non-transitory computer-readable program product comprises a non-transitory computer-readable medium.
在另一態樣中,一種用於判定設施中之日光及/或眩光保護之增益的設備,該設備包含至少一個控制器,該至少一個控制器包含電路系統,該至少一個控制器經組態以:(a)操作性地耦接至至少一個實體感測器、至少一個可著色窗及至少一個虛擬感測器;(b)接收或指導接收至少一個實體感測器之所量測感測器資料;(c)使用或指導使用所量測感測器資料以根據第一邏輯產生轉變至少一個可著色窗之色調的第一指令,該至少一個可著色窗安置於設施中;(d)接收或指導接收至少一個虛擬感測器之虛擬感測器資料;(e)使用或指導使用虛擬感測器資料以使用第二邏輯產生轉變可著色窗之色調的第二指令;及(f)比較或指導比較第一指令與第二指令以判定設施中之日光及/或眩光保護的任何增益。In another aspect, an apparatus for determining the gain of sunlight and/or glare protection in a facility, the apparatus comprising at least one controller comprising circuitry, the at least one controller being configured to: (a) be operatively coupled to at least one physical sensor, at least one shadeable window, and at least one virtual sensor; (b) receive or direct reception of the measured sensing of the at least one physical sensor (c) using or directing the use of the measured sensor data to generate, according to first logic, a first instruction to shift the hue of at least one tintable window disposed in the facility; (d) receiving or instructing to receive virtual sensor data for at least one virtual sensor; (e) using or instructing the use of the virtual sensor data to generate second instructions using second logic to shift the hue of the tintable window; and (f) The first command and the second command are compared or directed to determine any gain in daylight and/or glare protection in the facility.
在一些實施例中,虛擬感測器資料包含所預測之未來感測器資料。在一些實施例中,所預測之未來感測器資料係至少部分地基於來自一或多個實體感測器之資料。在一些實施例中,所預測之未來感測器資料係至少部分地基於機器學習模組。在一些實施例中,第一指令攜載第一時戳,且其中第二指令攜載第二時戳,且其中至少一個控制器經組態以至少部分地藉由比較第一時戳與第二時戳來比較或指導比較第一指令與第二指令。在一些實施例中,一或多個實體感測器包括光感測器及/或紅外線感測器。在一些實施例中,至少一個控制器經組態以區分或指導區分將至少一個可著色窗著色至較暗色調與將至少一個可著色窗著色至較亮色調。在一些實施例中,至少一個控制器經組態以將一或多個濾波操作應用或指導將一或多個濾波操作應用於所量測感測器資料及/或虛擬感測器資料。在一些實施例中,一或多個濾波操作包含矩形波濾波。在一些實施例中,(a)至(f)中之至少兩者由至少一個控制器中之同一控制器執行。在一些實施例中,(a)至(f)中之至少兩者由至少一個控制器中之不同控制器執行。In some embodiments, the virtual sensor data includes predicted future sensor data. In some embodiments, the predicted future sensor data is based, at least in part, on data from one or more physical sensors. In some embodiments, the predicted future sensor data is based at least in part on a machine learning module. In some embodiments, the first instruction carries a first timestamp, and wherein the second instruction carries a second timestamp, and wherein the at least one controller is configured to perform at least in part by comparing the first timestamp with the second timestamp. Two timestamps to compare or direct the comparison of the first instruction with the second instruction. In some embodiments, the one or more physical sensors include light sensors and/or infrared sensors. In some embodiments, the at least one controller is configured to differentiate or direct a distinction between tinting the at least one tintable window to a darker hue and tinting the at least one tintable window to a lighter hue. In some embodiments, at least one controller is configured to apply or direct the application of one or more filtering operations to the measured sensor data and/or virtual sensor data. In some embodiments, the one or more filtering operations include square wave filtering. In some embodiments, at least two of (a) to (f) are performed by the same controller of the at least one controller. In some embodiments, at least two of (a) to (f) are performed by different ones of the at least one controller.
在另一態樣中,一種用於控制地點處之一或多個裝置之至少一個位準的非暫時性電腦可讀程式產品,該非暫時性電腦可讀程式產品在由一或多個處理器讀取時使一或多個處理器執行上文所敍述之至少一個控制器中之任一者的一或多個操作。In another aspect, a non-transitory computer-readable program product for controlling at least one level of one or more devices at a location, the non-transitory computer-readable program product being executed by one or more processors The read causes one or more processors to perform one or more operations of any of the at least one controller described above.
在一些實施例中,一或多個處理器操作性地耦接至一或多個實體感測器。在一些實施例中,一或多個操作中之至少兩者由一或多個處理器中之同一處理器執行。在一些實施例中,一或多個操作中之至少兩者由一或多個處理器中之不同處理器執行。在一些實施例中,非暫時性電腦可讀程式產品包含非暫時性電腦可讀媒體。在一些實施例中,非暫時性電腦可讀程式產品包含非暫時性電腦可讀媒體。In some embodiments, one or more processors are operatively coupled to one or more physical sensors. In some embodiments, at least two of the one or more operations are performed by the same one of the one or more processors. In some embodiments, at least two of the one or more operations are performed by different ones of the one or more processors. In some embodiments, the non-transitory computer-readable program product comprises a non-transitory computer-readable medium. In some embodiments, the non-transitory computer-readable program product comprises a non-transitory computer-readable medium.
在另一態樣中,一種用於控制地點處之一或多個裝置之至少一個位準的非暫時性電腦可讀程式產品,該非暫時性電腦可讀程式產品在由一或多個處理器讀取時使一或多個處理器執行包含以下各者之一或多個操作:(a)接收或指導接收至少一個實體感測器之所量測感測器資料;(b)使用或指導使用所量測感測器資料以根據第一邏輯產生轉變至少一個可著色窗之色調的第一指令,該至少一個可著色窗安置於設施中;(c)接收或指導接收至少一個虛擬感測器之虛擬感測器資料;(d)使用或指導使用虛擬感測器資料以使用第二邏輯產生轉變可著色窗之色調的第二指令;及(e)比較或指導比較第一指令與第二指令以判定設施中之日光及/或眩光保護的任何增益,其中一或多個處理器操作性地耦接至至少一個實體感測器、至少一個可著色窗及至少一個虛擬感測器。在一些實施例中,虛擬感測器資料包含所預測之未來感測器資料。在一些實施例中,所預測之未來感測器資料係至少部分地基於來自一或多個實體感測器之資料。在一些實施例中,所預測之未來感測器資料係至少部分地基於機器學習模組。In another aspect, a non-transitory computer-readable program product for controlling at least one level of one or more devices at a location, the non-transitory computer-readable program product being executed by one or more processors When read causes one or more processors to perform one or more operations comprising: (a) receiving or directing receipt of measured sensor data for at least one physical sensor; (b) using or directing using the measured sensor data to generate, according to first logic, a first instruction to shift the hue of at least one tintable window disposed in the facility; (c) receiving or directing the receipt of at least one virtual sense (d) using or directing the use of the virtual sensor data to generate a second instruction that shifts the hue of the tintable window using the second logic; and (e) comparing or directing the comparison of the first instruction with the second instruction Two instructions to determine any gain in daylight and/or glare protection in the facility, wherein one or more processors are operatively coupled to at least one physical sensor, at least one tintable window, and at least one virtual sensor. In some embodiments, the virtual sensor data includes predicted future sensor data. In some embodiments, the predicted future sensor data is based, at least in part, on data from one or more physical sensors. In some embodiments, the predicted future sensor data is based at least in part on a machine learning module.
在另一態樣中,一種控制地點處之一或多個裝置之至少一個位準的方法,該方法包含:(a)接收或指導接收至少一個實體感測器之所量測感測器資料;(b)使用或指導使用所量測感測器資料以根據第一邏輯產生轉變至少一個可著色窗之色調的第一指令,該至少一個可著色窗安置於設施中;(c)接收或指導接收至少一個虛擬感測器之虛擬感測器資料;(d)使用或指導使用虛擬感測器資料以使用第二邏輯產生轉變可著色窗之色調的第二指令;及(e)比較或指導比較第一指令與第二指令以判定設施中之日光及/或眩光保護的任何增益。在一些實施例中,虛擬感測器資料包含所預測之未來感測器資料。在一些實施例中,所預測之未來感測器資料係至少部分地基於來自一或多個實體感測器之資料。在一些實施例中,所預測之未來感測器資料係至少部分地基於機器學習模組。In another aspect, a method of controlling at least one level of one or more devices at a location, the method comprising: (a) receiving or directing receipt of measured sensor data for at least one physical sensor (b) using or directing the use of the measured sensor data to generate, according to first logic, a first instruction to shift the hue of at least one tintable window disposed in the facility; (c) receiving or instructing to receive virtual sensor data for at least one virtual sensor; (d) using or instructing the use of the virtual sensor data to generate a second instruction using second logic to shift the hue of the tintable window; and (e) comparing or The instructions compare the first command with the second command to determine any gain in daylight and/or glare protection in the facility. In some embodiments, the virtual sensor data includes predicted future sensor data. In some embodiments, the predicted future sensor data is based, at least in part, on data from one or more physical sensors. In some embodiments, the predicted future sensor data is based at least in part on a machine learning module.
在另一態樣中,本揭示案提供實施本文中所揭示之任一種方法的系統、設備(例如,控制器)及/或非暫時性電腦可讀媒體(例如,軟體)。In another aspect, the present disclosure provides a system, apparatus (eg, controller) and/or non-transitory computer-readable medium (eg, software) implementing any of the methods disclosed herein.
在另一態樣中,本揭示案提供使用本文中所揭示之系統、電腦可讀媒體及/或設備中之任一者的方法,例如出於其預期目的。In another aspect, the present disclosure provides methods of using any of the systems, computer-readable media, and/or devices disclosed herein, eg, for their intended purposes.
在另一態樣中,一種設備包含至少一個控制器,該至少一個控制器經程式化以指導用以實施(例如,實行)本文中所揭示之任一種方法的機構,該至少一個控制器經組態以操作性地耦接至該機構。在一些實施例中,(例如,方法之)至少兩個操作由同一控制器指導/執行。在一些實施例中,至少兩個操作由不同控制器指導/執行。In another aspect, an apparatus includes at least one controller programmed to direct means for implementing (eg, performing) any of the methods disclosed herein, the at least one controller being programmed to direct a mechanism for implementing (eg, performing) any of the methods disclosed herein. configured to be operatively coupled to the mechanism. In some embodiments, at least two operations (eg, of the method) are directed/performed by the same controller. In some embodiments, at least two operations are directed/performed by different controllers.
在另一態樣中,一種設備包含經組態(例如,經程式化)以實施(例如,實行)本文中所揭示之任一種方法的至少一個控制器。至少一個控制器可實施本文中所揭示之任一種方法。在一些實施例中,(例如,方法之)至少兩個操作由同一控制器指導/執行。在一些實施例中,至少兩個操作由不同控制器指導/執行。In another aspect, an apparatus includes at least one controller configured (eg, programmed) to implement (eg, perform) any of the methods disclosed herein. At least one controller can implement any of the methods disclosed herein. In some embodiments, at least two operations (eg, of the method) are directed/performed by the same controller. In some embodiments, at least two operations are directed/performed by different controllers.
在另一態樣中,一種系統包含至少一個控制器,該至少一個控制器經程式化以指導至少一個另一設備(或其組件)及該設備(或其組件)之操作,其中該至少一個控制器操作性地耦接至該設備(或其組件)。該設備(或其組件)可包括本文中所揭示之任何設備(或其組件)。至少一個控制器可組態以指導本文中所揭示之任何設備(或其組件)。至少一個控制器可組態以操作性地耦接至本文中所揭示之任何設備(或其組件)。在一些實施例中,(例如,設備之)至少兩個操作由同一控制器指導。在一些實施例中,至少兩個操作由不同控制器指導。In another aspect, a system includes at least one controller programmed to direct operation of at least one other device (or component thereof) and the device (or component thereof), wherein the at least one A controller is operatively coupled to the device (or components thereof). The apparatus (or components thereof) may include any apparatus (or components thereof) disclosed herein. At least one controller can be configured to direct any of the devices (or components thereof) disclosed herein. At least one controller can be configured to be operatively coupled to any of the devices (or components thereof) disclosed herein. In some embodiments, at least two operations (eg, among the devices) are directed by the same controller. In some embodiments, at least two operations are directed by different controllers.
在另一態樣中,一種電腦軟體產品包含儲存有程式指令之非暫時性電腦可讀媒體,該等指令在由至少一個處理器(例如,電腦)讀取時使至少一個處理器指導本文中所揭示之機構來實施(例如,實行)本文中所揭示之任一種方法,其中至少一個處理器經組態以操作性地耦接至該機構。該機構可包含本文中所揭示之任何設備(或其任何組件)。在一些實施例中,(例如,設備之)至少兩個操作由同一處理器指導/執行。在一些實施例中,至少兩個操作由不同處理器指導/執行。In another aspect, a computer software product includes a non-transitory computer-readable medium storing program instructions that, when read by at least one processor (eg, a computer), cause at least one processor to direct the instructions herein The disclosed mechanism implements (eg, performs) any of the methods disclosed herein, wherein at least one processor is configured to be operatively coupled to the mechanism. The mechanism may include any device (or any component thereof) disclosed herein. In some embodiments, at least two operations (eg, among devices) are directed/performed by the same processor. In some embodiments, at least two operations are directed/performed by different processors.
在另一態樣中,本揭示案提供一種包含機器可執行程式碼之非暫時性電腦可讀媒體,該機器可執行程式碼在由一或多個處理器執行時實施本文中所揭示之任一種方法。在一些實施例中,(例如,方法之)至少兩個操作由同一處理器指導/執行。在一些實施例中,至少兩個操作由不同處理器指導/執行。In another aspect, the present disclosure provides a non-transitory computer-readable medium comprising machine-executable code that, when executed by one or more processors, implements any of the methods disclosed herein. a way. In some embodiments, at least two operations (eg, of a method) are directed/performed by the same processor. In some embodiments, at least two operations are directed/performed by different processors.
在另一態樣中,本揭示案提供一種包含機器可執行程式碼之非暫時性電腦可讀媒體,該機器可執行程式碼在由一或多個處理器執行時實行對控制器(例如,如本文中所揭示)之指導。在一些實施例中,(例如,控制器之)至少兩個操作由同一處理器指導/執行。在一些實施例中,至少兩個操作由不同處理器指導/執行。In another aspect, the present disclosure provides a non-transitory computer-readable medium comprising machine-executable code that, when executed by one or more processors, executes control of a controller (eg, as disclosed herein). In some embodiments, at least two operations (eg, among the controllers) are directed/performed by the same processor. In some embodiments, at least two operations are directed/performed by different processors.
在另一態樣中,本揭示案提供一種電腦系統,該電腦系統包含一或多個電腦處理器及耦接至其的非暫時性電腦可讀媒體。該非暫時性電腦可讀媒體包含機器可執行程式碼,該機器可執行程式碼在由一或多個處理器執行時實施本文中所揭示之任一種方法及/或實行對本文中所揭示之控制器的指導。In another aspect, the present disclosure provides a computer system including one or more computer processors and a non-transitory computer-readable medium coupled thereto. The non-transitory computer-readable medium includes machine-executable code that, when executed by one or more processors, implements any of the methods disclosed herein and/or exercises the controls disclosed herein device guidance.
此發明內容章節之內容係作本揭示案之簡化介紹而提供,且並不意欲用以限制本文中所揭示之任何發明的範圍或隨附申請專利範圍之範圍。The contents of this Summary section are provided as a simplified introduction to the disclosure and are not intended to limit the scope of any invention disclosed herein or the scope of the appended claims.
根據以下實施方式,本發明之額外態樣及優點對於熟習此項技術者將變得顯而易見,其中僅展示及描述本揭示案之說明性實施例。如將實現的,本揭示案能夠具有其他及不同實施例,且其若干細節能夠在各種顯而易見的方面進行修改,該等修改皆不脫離本揭示案。因此,圖式及說明在本質上應視為說明性而非限制性的。Additional aspects and advantages of the present invention will become apparent to those skilled in the art from the following description, in which only illustrative embodiments of the present disclosure are shown and described. As will be realized, the present disclosure is capable of other and different embodiments, and its several details are capable of modification in various obvious respects, all without departing from the present disclosure. Accordingly, the drawings and descriptions are to be regarded as illustrative and not restrictive in nature.
此等及其他特徵以及實施例將在下文參看圖式更詳細地描述。 以引用的方式併入These and other features and embodiments are described in more detail below with reference to the drawings. incorporated by reference
本說明書中所提及之所有公開案、專利及專利申請案均以引用的方式併入本文中,其引用的程度如同每一個別公開案、專利或專利申請案經具體且個別地指示以引用的方式併入一般。All publications, patents and patent applications mentioned in this specification are incorporated herein by reference to the same extent as if each individual publication, patent or patent application was specifically and individually indicated to be by reference way incorporated into the general.
雖然本發明之各種實施例已展示且描述於本文中,但本領域中熟習此項技術者顯而易知,此等實施例僅作為實例而提供。本領域中熟習此項技術者可在不脫離本發明之情況下想到眾多變化、改變及取代。應理解,可使用本文中所描述之本發明實施例的各種替代例。While various embodiments of the invention have been shown and described herein, it will be apparent to those skilled in the art that these embodiments are provided by way of example only. Numerous changes, changes, and substitutions can occur to those skilled in the art without departing from the invention. It should be understood that various alternatives to the embodiments of the invention described herein may be used.
諸如「一(a/an)」及「該(the)」之術語並不意欲僅指單數實體,而是包括可用於說明之特定實例的一般類別。本文中之術語用以描述本發明之特定實施例,但其使用並不限定本發明。Terms such as "a/an" and "the" are not intended to refer to only the singular entity, but rather include the general class of specific instances that can be used for description. The terminology herein is used to describe specific embodiments of the invention, but their use does not delimit the invention.
諸如「包括X、Y及/或Z」之片語中的連接詞「及/或」係指包括X、Y及Z之任何組合或其中的複數者。舉例而言,此片語意欲包括X。舉例而言,此片語意欲包括Y。舉例而言,此片語意欲包括Z。舉例而言,此片語意欲包括X及Y。舉例而言,此片語意欲包括X及Z。舉例而言,此片語意欲包括Y及Z。舉例而言,此片語意欲包括複數個X。舉例而言,此片語意欲包括複數個Y。舉例而言,此片語意欲包括複數個Z。舉例而言,此片語意欲包括複數個X及複數個Y。舉例而言,此片語意欲包括複數個X及複數個Z。舉例而言,此片語意欲包括複數個Y及複數個Z。舉例而言,此片語意欲包括複數個X及Y。舉例而言,此片語意欲包括複數個X及Z。舉例而言,此片語意欲包括複數個Y及Z。舉例而言,此片語意欲包括X及複數個Y。舉例而言,此片語意欲包括X及複數個Z。舉例而言,此片語意欲包括Y及複數個Z。連接詞「及/或」意欲具有與片語「X、Y、Z或其任何組合或其中的複數者」相同的效應。連接詞「及/或」意欲具有與片語「一或多個X、Y、Z或其任何組合」相同的效應。連接詞「及/或」意欲具有與片語「至少一個X、Y、Z或其任何組合」相同的效應。The conjunction "and/or" in a phrase such as "including X, Y, and/or Z" is meant to include any combination or plural of X, Y, and Z. For example, this phrase is intended to include X. For example, this phrase is intended to include Y. For example, this phrase is intended to include Z. For example, this phrase is intended to include X and Y. For example, this phrase is intended to include X and Z. For example, this phrase is intended to include Y and Z. For example, this phrase is intended to include multiple X's. For example, this phrase is intended to include plural Ys. For example, this phrase is intended to include multiple Z's. For example, this phrase is intended to include plural X and plural Y. For example, this phrase is intended to include plural X and plural Z. For example, this phrase is intended to include Y's and Z's. For example, this phrase is intended to include a plurality of X and Y. For example, this phrase is intended to include a plurality of X and Z. For example, this phrase is intended to include a plurality of Y and Z. For example, this phrase is intended to include X and Y's. For example, this phrase is intended to include X and Z. For example, this phrase is intended to include Y and a plurality of Z. The conjunction "and/or" is intended to have the same effect as the phrase "X, Y, Z, or any combination or plural thereof." The conjunction "and/or" is intended to have the same effect as the phrase "one or more of X, Y, Z, or any combination thereof." The conjunction "and/or" is intended to have the same effect as the phrase "at least one X, Y, Z, or any combination thereof."
除非另外指定,否則當提及範圍時,範圍意欲為包括性的。舉例而言,介於值1與值2之間的範圍意欲為包括性的且包括值1及值2。包括性範圍將橫跨自約值1至約值2之任何值。如本文中所使用的術語「鄰近」或「鄰近於」包括「靠近」、「鄰接」、「接觸」及「接近」。Unless otherwise specified, when referring to a range, the range is intended to be inclusive. For example, a range between
術語「操作性地耦接」或「操作性地連接」係指第一元件(例如,機構)耦接(例如,連接)至第二元件,以允許第二及/或第一元件之預期操作。耦接可包含實體或非實體耦接(例如,通信耦接)。非實體耦接可包含信號誘發耦接(例如,無線耦接)。耦接可包括實體耦接(例如,實體連接)或非實體耦接(例如,經由無線通信)。操作性地耦接可包含通信耦接。The terms "operatively coupled" or "operatively connected" refer to the coupling (eg, connection) of a first element (eg, mechanism) to a second element to allow intended operation of the second and/or first element . Coupling may include physical or non-physical coupling (eg, communicative coupling). Non-physical coupling may include signal-induced coupling (eg, wireless coupling). Coupling may include physical coupling (eg, a physical connection) or non-physical coupling (eg, via wireless communication). Operationally coupled may include communicative coupling.
「經組態以」執行功能的元件(例如,機構)包括使元件執行此功能的結構特徵。結構特徵可包括電特徵,諸如電路系統或電路元件。結構特徵可包括電路系統(例如,包含電或光學電路系統)。電路系統可包含一或多根電線。光學電路系統可包含至少一個光學元件(例如,光束分光器、鏡面、透鏡及/或光纖)。結構特徵可包括機械特徵。機械特徵可包含閂鎖、彈簧、閉合件、鉸鏈、底盤、支撐件、緊固件或懸臂等。執行功能可包含利用邏輯特徵。邏輯特徵可包括程式化指令。程式化指令可由至少一個處理器執行。程式化指令可儲存或編碼於可由一或多個處理器存取之媒體上。另外,在以下描述中,片語「可操作以」、「經調適以」、「經組態以」、「經設計以」、「經程式化以」或「能夠」可在適當時互換地使用。An element (eg, mechanism) that is "configured to" perform a function includes structural features that cause the element to perform that function. Structural features may include electrical features, such as circuitry or circuit elements. Structural features may include circuitry (eg, including electrical or optical circuitry). The circuitry may include one or more wires. Optical circuitry may include at least one optical element (eg, a beam splitter, mirror, lens, and/or optical fiber). Structural features may include mechanical features. Mechanical features may include latches, springs, closures, hinges, chassis, supports, fasteners or cantilevers, and the like. Performing functions may include utilizing logical features. Logical features may include programmed instructions. The programmed instructions are executable by at least one processor. Programming instructions can be stored or encoded on a medium that can be accessed by one or more processors. Additionally, in the following description, the phrases "operable with," "adapted with," "configured with," "designed with," "programmed with," or "capable of" may be used interchangeably as appropriate use.
在以下描述中,闡述眾多特定細節以便提供對所呈現實施例之透徹理解。可在無此等特定細節中之一或多者的情況下實踐所揭示實施例。在其他情況下,未詳細地描述熟知之程序操作以免不必要地混淆所揭示實施例。雖然結合特定實施例描述了所揭示實施例,但應理解,並不意欲限制所揭示實施例。應理解,雖然某些所揭示實施例集中於電致變色窗,但本文中所揭示之態樣可應用於其他類型之可著色窗。舉例而言,併有液晶裝置或懸浮粒子裝置之可著色窗而非電致變色裝置可併入任一所揭示實施例中。In the following description, numerous specific details are set forth in order to provide a thorough understanding of the presented embodiments. The disclosed embodiments may be practiced without one or more of these specific details. In other instances, well-known program operations have not been described in detail so as not to unnecessarily obscure the disclosed embodiments. Although the disclosed embodiments have been described in connection with specific embodiments, it should be understood that no limitation of the disclosed embodiments is intended. It should be understood that while certain disclosed embodiments focus on electrochromic windows, the aspects disclosed herein may be applied to other types of tintable windows. For example, tintable windows incorporating liquid crystal devices or suspended particle devices rather than electrochromic devices may be incorporated into any of the disclosed embodiments.
在各種實施例中,網路基礎架構支援用於諸如可著色(例如,電致變色)窗之一或多個窗的控制系統。控制系統可包含操作性地耦接(例如,直接地或間接地)至一或多個窗之一或多個控制器。雖然所揭示實施例描述可著色窗(在本文中亦被稱作「光學可切換窗」或「智慧型窗」),諸如電致變色窗,但本文中所揭示之概念可應用於其他類型之可切換光學裝置,包含液晶裝置、電致變色裝置、懸浮粒子裝置(SPD)、NanoChromics顯示器(NCD)、有機電致發光顯示器(OELD)、懸浮粒子裝置(SPD)、NanoChromics顯示器(NCD)或有機電致發光顯示器(OELD)。顯示元件可附接至透明主體(諸如,窗)之一部分。可著色窗可安置於諸如建築物之(非暫時性)設施中,及/或安置於諸如汽車、RV、公共汽車、火車、飛機、直升機、輪船或船之暫時性載具中。In various embodiments, the network infrastructure supports a control system for one or more windows such as tintable (eg, electrochromic) windows. The control system may include one or more controllers operatively coupled (eg, directly or indirectly) to the one or more windows. Although the disclosed embodiments describe tintable windows (also referred to herein as "optically switchable windows" or "smart windows"), such as electrochromic windows, the concepts disclosed herein may be applied to other types of Switchable optical devices, including liquid crystal devices, electrochromic devices, suspended particle devices (SPD), NanoChromics displays (NCD), organic electroluminescent displays (OELD), suspended particle devices (SPD), NanoChromics displays (NCD) or have Electromechanical Electroluminescent Displays (OELDs). The display element may be attached to a portion of the transparent body, such as a window. Tintable windows may be placed in (non-transitory) installations such as buildings, and/or in temporary vehicles such as automobiles, RVs, buses, trains, airplanes, helicopters, ships, or boats.
為了使讀者適應本文中所揭示之設備、系統、電腦可讀媒體及/或方法的實施例,提供對電致變色裝置及窗控制器之簡要論述。僅為上下文提供此初始論述,且系統、窗控制器及方法之隨後所描述實施例不限於此初始論述之特定特徵及製造程序。In order to acclimate the reader to the embodiments of the apparatus, systems, computer-readable media and/or methods disclosed herein, a brief discussion of electrochromic devices and window controllers is provided. This initial discussion is provided for context only, and the subsequently described embodiments of the system, window controller, and method are not limited to the specific features and manufacturing procedures of this initial discussion.
某些所揭示實施例在封閉體(例如,諸如建築物之設施)中提供網路基礎架構。網路基礎架構可用於各種目的,諸如用於提供通信及/或電源服務。通信服務可包含高頻寬(例如,無線及/或有線)通信服務。通信服務可面向設施之佔用者及/或設施(例如,建築物)外部之使用者。網路基礎架構可與一或多個蜂巢運營商之基礎架構協同工作或作為其部分替換。網路基礎架構可設置於包括電可切換窗之設施中。網路基礎架構之組件的實例包括高速回程。網路基礎架構可包括至少一個纜線、交換器、實體天線、收發器、感測器、傳輸器、接收器、無線電、處理器及/或控制器(其可包含處理器)。網路基礎架構可操作性地耦接至及/或包括無線網路。網路基礎架構可包含佈線。作為裝設網路之部分及/或在裝設網路之後,可將一或多個感測器部署(例如,裝設)於環境中。通信服務可面向設施之佔用者及/或設施(例如,建築物)外部之使用者。網路基礎架構可與一或多個蜂巢運營商之基礎架構協同工作或作為其部分替換。網路基礎架構可設置於包括電可切換窗之設施中。網路基礎架構之組件的實例包括高速回程。網路基礎架構可包括至少一個纜線、交換器、實體天線、收發器、感測器、傳輸器、接收器、無線電、處理器及/或控制器(其可包含處理器)。網路基礎架構可操作性地耦接至及/或包括無線網路。網路基礎架構可包含佈線。作為裝設網路之部分及/或在裝設網路之後,可將一或多個感測器部署(例如,裝設)於環境中。網路可經組態以提供電力及/或通信。網路可操作性地耦接至一或多個傳輸器、收發器、數據機、路由器及/或天線。網路可包含纜線,包含雙絞線、同軸纜線或光學纜線。網路可經組態用於網際網路及/或乙太網路通信。網路可組態以支援至少第三代、第四代或第五代蜂巢式通信。網路可組態以耦接一或多個控制器。網路可組態以耦接一或多個裝置,包括:可著色窗、感測器、發射器、天線及/或媒體顯示構造。Certain disclosed embodiments provide network infrastructure in an enclosure (eg, a facility such as a building). The network infrastructure may be used for various purposes, such as for providing communication and/or power services. Communication services may include high bandwidth (eg, wireless and/or wireline) communication services. Communication services may be directed to occupants of the facility and/or users outside the facility (eg, a building). The network infrastructure may work in conjunction with or replace part of the infrastructure of one or more cellular operators. The network infrastructure may be provided in a facility that includes electrically switchable windows. Examples of components of a network infrastructure include high-speed backhaul. The network infrastructure may include at least one cable, switch, physical antenna, transceiver, sensor, transmitter, receiver, radio, processor and/or controller (which may include a processor). The network infrastructure is operably coupled to and/or includes a wireless network. Network infrastructure can include cabling. One or more sensors may be deployed (eg, installed) in the environment as part of and/or after installing the network. Communication services may be directed to occupants of the facility and/or users outside the facility (eg, a building). The network infrastructure may work in conjunction with or replace part of the infrastructure of one or more cellular operators. The network infrastructure may be provided in a facility that includes electrically switchable windows. Examples of components of a network infrastructure include high-speed backhaul. The network infrastructure may include at least one cable, switch, physical antenna, transceiver, sensor, transmitter, receiver, radio, processor and/or controller (which may include a processor). The network infrastructure is operably coupled to and/or includes a wireless network. Network infrastructure can include cabling. One or more sensors may be deployed (eg, installed) in the environment as part of and/or after installing the network. The network can be configured to provide power and/or communication. The network is operably coupled to one or more transmitters, transceivers, modems, routers and/or antennas. A network can consist of cables, including twisted pair, coaxial, or optical cables. The network may be configured for Internet and/or Ethernet communications. The network can be configured to support at least 3rd, 4th, or 5th generation cellular communications. The network can be configured to couple to one or more controllers. The network can be configured to couple to one or more devices, including: tintable windows, sensors, transmitters, antennas, and/or media display structures.
在各種實施例中,網路基礎架構支援用於諸如可著色(例如,電致變色)窗之一或多個窗的控制系統。控制系統可包含操作性地耦接(例如,直接地或間接地)至一或多個窗之一或多個控制器。雖然所揭示實施例描述可著色窗(在本文中亦被稱作「光學可切換窗」或「智慧型窗」),諸如電致變色窗,但本文中所揭示之概念可應用於其他類型之可切換光學裝置,包含液晶裝置、電致變色裝置、懸浮粒子裝置(SPD)、NanoChromics顯示器(NCD)、有機電致發光顯示器(OELD)、懸浮粒子裝置(SPD)、NanoChromics顯示器(NCD)或有機電致發光顯示器(OELD)。顯示元件可附接至透明主體(諸如,窗)之一部分。可著色窗可安置於諸如建築物之(非暫時性)設施中,及/或安置於諸如汽車、RV、公共汽車、火車、飛機、火箭艦、直升機、輪船或船之暫時性載具中。In various embodiments, the network infrastructure supports a control system for one or more windows such as tintable (eg, electrochromic) windows. The control system may include one or more controllers operatively coupled (eg, directly or indirectly) to the one or more windows. Although the disclosed embodiments describe tintable windows (also referred to herein as "optically switchable windows" or "smart windows"), such as electrochromic windows, the concepts disclosed herein may be applied to other types of Switchable optical devices, including liquid crystal devices, electrochromic devices, suspended particle devices (SPD), NanoChromics displays (NCD), organic electroluminescent displays (OELD), suspended particle devices (SPD), NanoChromics displays (NCD) or have Electromechanical Electroluminescent Displays (OELDs). The display element may be attached to a portion of the transparent body, such as a window. Tintable windows may be placed in (non-transitory) installations such as buildings, and/or in transitory vehicles such as automobiles, RVs, buses, trains, airplanes, rocket ships, helicopters, ships, or boats.
在一些實施例中,可著色窗展現窗之至少一個光學性質的(例如,可控制及/或可逆)改變,例如在施加刺激時。刺激可包括光學、電及/或磁性刺激。舉例而言,刺激可包括施加電壓。一或多個可著色窗可用以例如藉由調節傳播通過其的太陽能之傳輸來控制照明及/或眩光條件。一或多個可著色窗可用以例如藉由調節傳播通過其的太陽能之傳輸來控制建築物內的溫度。太陽能之控制可控制施加於設施(例如,建築物)之內部上的熱負荷。控制可為手動及/或自動的。控制可用於維持一或多個所請求(例如,環境)條件,例如佔用者舒適性。控制可包括減小加熱、通風、空氣調節及/或照明系統之能量消耗。加熱、通風及空氣調節中之至少兩者可藉由分開的系統誘發。加熱、通風及空氣調節中之至少兩者可藉由一個系統誘發。加熱、通風及空氣調節可藉由單個系統(本文中縮寫為「HVAC」)誘發。在一些狀況下,可著色窗可回應於(例如,且通信耦接至)一或多個環境感測器及/或使用者控制件。可著色窗可包含(例如,可為)電致變色窗。窗可位於自結構(例如,設施,例如建築物)之內部至外部的範圍中。然而,情況不必如此。可著色窗可使用液晶裝置、懸浮粒子裝置、微機電系統(MEMS)裝置(諸如,微快門)或現已知或稍後開發之經組態以控制通過窗之光透射的任何技術來操作。窗(例如,具有用於著色之MEMS裝置)描述於2015年5月15日申請之標題為「包括電致變色裝置及機電系統裝置之多窗格式窗(MULTI-PANE WINDOWS INCLUDING ELECTROCHROMIC DEVICES AND ELECTROMECHANICAL SYSTEMS DEVICES)」的美國專利申請案第14/443,353號中,該專利申請案以全文引用之方式併入本文中。在一些狀況下,一或多個可著色窗可位於建築物之內部,例如位於會議室與走廊之間。在一些狀況下,一或多個可著色窗可用於汽車、火車、飛機及其他載具中,例如代替被動及/或非著色窗。In some embodiments, a tintable window exhibits a (eg, controllable and/or reversible) change in at least one optical property of the window, eg, upon application of a stimulus. Stimulation may include optical, electrical and/or magnetic stimulation. For example, stimulation can include applying a voltage. One or more tintable windows may be used to control lighting and/or glare conditions, eg, by adjusting the transmission of solar energy propagating therethrough. One or more tintable windows can be used to control the temperature within a building, for example, by regulating the transmission of solar energy propagating therethrough. Control of solar energy can control the thermal load imposed on the interior of a facility (eg, a building). Control can be manual and/or automatic. Controls may be used to maintain one or more requested (eg, environmental) conditions, such as occupant comfort. Controls may include reducing energy consumption of heating, ventilation, air conditioning and/or lighting systems. At least two of heating, ventilation and air conditioning can be induced by separate systems. At least two of heating, ventilation and air conditioning can be induced by a system. Heating, ventilation and air conditioning can be induced by a single system (abbreviated herein as "HVAC"). In some cases, the tintable window may be responsive to (eg, and communicatively coupled to) one or more environmental sensors and/or user controls. Tintable windows can include (eg, can be) electrochromic windows. Windows may be located in a range from the interior to the exterior of a structure (eg, a facility such as a building). However, this need not be the case. Tintable windows may be operated using liquid crystal devices, suspended particle devices, microelectromechanical systems (MEMS) devices such as micro-shutters, or any technology now known or later developed that is configured to control the transmission of light through a window. Windows (eg, with MEMS devices for coloring) are described in an application entitled "MULTI-PANE WINDOWS INCLUDING ELECTROCHROMIC DEVICES AND ELECTROMECHANICAL SYSTEMS INCLUDING ELECTROCHROMIC DEVICES AND ELECTROMECHANICAL SYSTEMS DEVICES" filed on May 15, 2015. DEVICES)" in U.S. Patent Application Serial No. 14/443,353, which is incorporated herein by reference in its entirety. In some cases, one or more tintable windows may be located inside the building, such as between a conference room and a hallway. In some cases, one or more tinted windows may be used in automobiles, trains, airplanes, and other vehicles, eg, in place of passive and/or non-tinted windows.
A參看圖 1A
至圖 1C
描述電致變色片(例如,窗格)之特定實例,以便說明本文中所描述之實施例。圖 1A
為以玻璃薄片105
開始製造之電致變色片100
的橫截面表示(參見圖 1C
之截面切線X'-X')。圖 1B
展示電致變色片100
之端視圖(參見圖 1C
之檢視視角Y-Y'),且圖 1C
展示電致變色片100
之俯視圖。圖 1A
展示在玻璃薄片105
上之製造之後的電致變色片,邊緣經刪除以產生圍繞片之周邊的區域140
。已雷射刻劃電致變色片且已附接匯流條。玻璃片105
具有擴散障壁110
及在擴散障壁上之第一透明導電氧化物層(TCO)115
。在此實例中,邊緣刪除製程移除TCO115
及擴散障壁110
兩者,但在其他實施例中,僅移除TCO,使擴散障壁保持完整。TCO層115
為用以形成在玻璃薄片上製造之電致變色裝置之電極的兩個導電層中之第一者。在此實例中,玻璃薄片包括底層玻璃及擴散障壁層。因此,在此實例中,形成擴散障壁,且接著形成第一TCO、電致變色堆疊125
(例如,具有電致變色離子導體及相對電極層)以及第二TCO130
。在一個實施例中,電致變色裝置(電致變色堆疊及第二TCO)在整合沈積系統中製造,其中玻璃薄片在堆疊製造期間在任何時間皆不離開整合沈積系統。在一個實施例中,使用整合沈積系統形成第一TCO層,其中玻璃薄片在沈積電致變色堆疊及(第二)TCO層期間不離開整合沈積系統。在一個實施例中,所有層(擴散障壁、第一TCO、電致變色堆疊及第二TCO)沈積於整合沈積系統中,其中玻璃薄片在沈積期間不離開整合沈積系統。在此實例中,在沈積電致變色堆疊125
之前,穿過TCO115
及擴散障壁110
切出隔離溝槽120
。溝槽120
被製成為預期電隔離TCO115
的在製造完成之後將駐存於匯流條1下方之區域(參見圖 1A
)。進行此操作以減少(例如,避免)電致變色裝置在匯流條下方的電荷積聚及有色,此可為不期望的。A Particular examples of electrochromic sheets (eg, panes) are described with reference to FIGS. 1A - 1C in order to illustrate the embodiments described herein. FIG. 1A is a cross-sectional representation of an
在形成電致變色裝置之後,可執行邊緣刪除製程及額外雷射刻劃。圖 1A
描繪在此實例中已自雷射刻劃溝槽150
、155
、160
及165
周圍之周邊區移除裝置的區域140
。溝槽150 、 160
及165
穿過電致變色堆疊且穿過第一TCO及擴散障壁。溝槽155
穿過第二TCO130
及電致變色堆疊,但未穿過第一TCO115
。將雷射刻劃溝槽150
、155
、160
及165
製成為隔離電致變色裝置之部分135
、145
、170
及175
,該等部分在自可操作電致變色裝置進行邊緣刪除製程期間潛在地被損壞。在此實例中,雷射刻劃溝槽150 、 160
及165
穿過第一TCO以輔助隔離裝置(雷射刻劃溝槽155
未穿過第一TCO,否則其可能會切斷匯流條2與第一TCO及因此與電致變色堆疊之電通信)。用於雷射刻劃製程之一或多個雷射可為脈衝型雷射,例如二極體泵固態雷射。舉例而言,可使用來自IPG Photonics(馬薩諸塞州牛津市(Oxford, Massachusetts))或來自Ekspla(立陶宛維爾紐斯(Vilnius, Lithuania))之合適雷射來執行雷射刻劃製程。可用機械方式執行刻劃,例如藉由金剛石尖端刻劃。本領域中一般熟習此項技術者將瞭解,雷射刻劃製程可按不同深度執行及/或在單個製程中執行,由此雷射切割深度在圍繞電致變色裝置之周邊的連續路徑期間發生變化或不變化。在一個實施例中,執行邊緣刪除至第一TCO之深度。After the electrochromic device is formed, an edge deletion process and additional laser scribing may be performed. 1A depicts
在雷射刻劃完成之後,可附接配電單元(例如,匯流條)。配電單元可為穿透式的或非穿透式的。舉例而言,將非穿透式匯流條1施加至第二TCO。將非穿透式匯流條2施加至未沈積(例如,利用保護第一TCO免於裝置沈積的遮罩)裝置,接觸第一TCO或在此實例中使用邊緣刪除製程(例如,使用具有XY或XYZ電流計之設備的雷射切除)以將材料向下移除至第一TCO的區域。在此實例中,匯流條1及匯流條2兩者為非穿透式匯流條。穿透式匯流條為經壓入至電致變色堆疊中且穿過電致變色堆疊以在堆疊之底部處與TCO接觸的匯流條。非穿透式匯流條為不穿透至電致變色堆疊層中,而是在導電層(例如,TCO)之表面上進行電及實體接觸的匯流條。After the laser scribing is complete, power distribution units (eg, bus bars) can be attached. The power distribution unit may be penetrating or non-penetrating. For example,
可使用配電單元(例如,匯流條)電連接TCO層。舉例而言,用絲網及微影圖案化方法製造匯流條。在一個實施例中,經由絲網印刷(或使用另一圖案化方法)導電墨水,繼之以熱固化或燒結墨水來與裝置之透明導電層建立電通信。使用上文所描述之裝置組態的優點包括例如比使用穿透式匯流條之習知技術更簡單的製造及更少的雷射刻劃。The TCO layers may be electrically connected using power distribution units (eg, bus bars). For example, wire mesh and lithography patterning methods are used to fabricate bus bars. In one embodiment, electrical communication with the transparent conductive layer of the device is established via screen printing (or using another patterning method) of the conductive ink, followed by heat curing or sintering the ink. Advantages of using the device configuration described above include, for example, simpler fabrication and less laser scribing than conventional techniques using penetrating bus bars.
在連接匯流條之後,將裝置整合至絕緣玻璃單元(IGU)中,其包括例如對匯流條進行佈線及其類似者。在一些實施例中,匯流條中之一者或兩者在成品IGU內部,然而,在一個實施例中,一個匯流條在IGU之密封件外部且一個匯流條在IGU內部。在前一實施例中,使用區域140
與用以形成IGU之間隔物之一個面進行密封。因此,至匯流條之電線或其他連接件在間隔物與玻璃之間延行。由於許多間隔物由例如不鏽鋼之導電金屬(例如,包含元素金屬或金屬合金)製成,因此期望採取步驟來減少(例如,避免)由於匯流條及至其的連接器與金屬間隔物之間的電通信的短路。After connecting the bus bars, the device is integrated into an insulating glass unit (IGU), which includes, for example, routing the bus bars and the like. In some embodiments, one or both of the bus bars are inside the finished IGU, however, in one embodiment, one bus bar is outside the seal of the IGU and one bus bar is inside the IGU. In the previous embodiment, the
如本文中所描述,在連接配電單元(例如,匯流條)之後,可將電致變色片整合至IGU中,其包括例如用於配電單元(例如,匯流條)的佈線及其類似者。在本文中所描述之實施例中,兩個匯流條在成品IGU之主要密封件內部。As described herein, after connecting power distribution units (eg, bus bars), electrochromic sheets may be integrated into IGUs, including, for example, wiring for power distribution units (eg, bus bars) and the like. In the embodiment described herein, the two bus bars are inside the main seal of the finished IGU.
圖 2A
展示如關於圖 1A
至圖 1C
所描述之整合至IGU200
中的電致變色窗之橫截面示意圖。間隔物205
用以將電致變色片與第二片210
分開。IGU200
中之第二片210
為非電致變色片,然而,本文中所揭示之實施例不限於此。舉例而言,片210
上可具有電致變色裝置及/或一或多個塗層,諸如低E塗層及其類似者。片201
亦可為層壓玻璃,諸如圖 2B
中所描繪(片201
經由樹脂235
層壓至加強窗格230
)。主要密封材料215
處於間隔物205
與電致變色片之第一TCO層之間。此主要密封材料處於間隔物205
與第二(例如,玻璃)片210
之間。次要密封件220
圍繞間隔物205
之周邊。匯流條佈線/引線橫穿密封件以連接至控制器。次要密封件220
可遠厚於所描繪厚度。此等密封件輔助將濕氣保持在IGU之內部空間225
之外。其可用以減少(例如,防止)IGU內部中之氬氣或其他(例如,惰性)氣體逸出。 2A shows a schematic cross-sectional view of an electrochromic window integrated into
圖 3A
以橫截面示意性地描繪電致變色裝置300
。電致變色裝置300
包括基板302
、第一導電層(CL)304
、電致變色層(EC)306
、離子導電層(IC)308
、相對電極層(CE)310
及第二導電層(CL)314
。層304
、306
、308
、310
及314
統稱為電致變色堆疊320
。可操作以在電致變色堆疊320
上施加電位之電壓源316
實現使電致變色裝置自例如脫色狀態轉變至有色狀態(所描繪)。可相對於基板反轉層之次序。 Figure 3A schematically depicts an
在一些實施例中,電致變色裝置包含無機或有機材料。舉例而言,具有相異層(例如,如本文中所描述)之電致變色裝置可製造成全部為固態裝置及/或全部為無機裝置。此類裝置及其製造方法更詳細地描述於2009年12月22日申請、標題為「低缺陷度電致變色裝置之製造(Fabrication of Low-Defectivity Electrochromic Devices)」且將Mark Kozlowski等人指名為發明人的美國專利申請案第12/645,111號及2009年12月22日申請、標題為「電致變色裝置(Electrochromic Devices)」且將Zhongchun Wang等人指名為發明人的美國專利申請案第12/645,159號中,該等申請案中之每一者特此以全文引用之方式併入。應理解,堆疊中之層中的任何一或多者可含有任何(例如,一些)量之有機材料。相同的情況可適用於可例如以少量存在於一或多個層中之液體。應理解,可藉由使用液體組份之製程(諸如,使用溶膠-凝膠之某些製程或化學氣相沈積)來沈積或以其他方式形成固態材料。In some embodiments, the electrochromic device comprises inorganic or organic materials. For example, electrochromic devices with distinct layers (eg, as described herein) can be fabricated as all solid state devices and/or all inorganic devices. Such devices and methods of making them are described in more detail in an application filed on December 22, 2009, entitled "Fabrication of Low-Defectivity Electrochromic Devices" and naming Mark Kozlowski et al. Inventor's US Patent Application Serial No. 12/645,111 and US Patent Application Serial No. 12, filed on December 22, 2009, entitled "Electrochromic Devices" and naming Zhongchun Wang et al as inventor /645,159, each of these applications is hereby incorporated by reference in its entirety. It should be understood that any one or more of the layers in the stack may contain any (eg, some) amount of organic material. The same applies to liquids that may be present in one or more layers, eg in small amounts. It should be understood that solid state materials may be deposited or otherwise formed by processes using liquid components, such as certain processes using sol-gel or chemical vapor deposition.
應理解,對脫色狀態與有色狀態之間的轉變的參考為非限制性的,且僅表明可實施之電致變色轉變的許多實例中之一個實例。除非本文中(包括前述論述)另外指定,否則不論何時對脫色至有色轉變進行參考,對應裝置或程序涵蓋其他光學狀態轉變,諸如非反射至反射、透明至不透明等。另外,術語「脫色」係指光學中性狀態,例如無色、透明或半透明。除非本文中另外指定,否則電致變色轉變之「色彩」不限於任何特定波長或波長範圍。舉例而言,波長可為可見的或本文中所揭示之任何其他波長。如本領域中熟習此項技術者所理解,適當的電致變色及相對電極材料之選擇控管相關光學轉變。It should be understood that references to transitions between decolorized and colored states are non-limiting and represent only one example of many examples of electrochromic transitions that can be implemented. Unless otherwise specified herein (including the foregoing discussion), whenever a reference is made to a decolorized to colored transition, the corresponding device or procedure encompasses other optical state transitions, such as non-reflective to reflective, transparent to opaque, and the like. Additionally, the term "discolored" refers to an optically neutral state, such as colorless, transparent, or translucent. Unless otherwise specified herein, the "color" of an electrochromic transition is not limited to any particular wavelength or range of wavelengths. For example, the wavelength may be visible or any other wavelength disclosed herein. As understood by those skilled in the art, the selection of appropriate electrochromic and opposing electrode materials governs the associated optical transitions.
在本文中所描述之實施例中,電致變色裝置在脫色狀態與有色狀態之間可逆地循環。在一些狀況下,當裝置處於脫色狀態時,將電位施加至電致變色堆疊320
,使得堆疊中之可用離子主要駐存於相對電極310
中。當反轉電致變色堆疊上之電位時,跨越離子導電層308
將離子輸送至電致變色材料306
且使材料轉變至有色狀態。以類似方式,本文中所描述之實施例的電致變色裝置可在不同色調位準(例如,脫色狀態、最暗色狀態以及脫色狀態與最暗色狀態之間的中間位準)之間可逆地循環。In the embodiments described herein, the electrochromic device cycles reversibly between a decolorized state and a colored state. In some cases, when the device is in a discolored state, a potential is applied to the
再次參看圖 3A
,電壓源316
可經組態以結合輻射及其他環境感測器而操作。如本文中所描述,電壓源316
與裝置控制器(此圖中未展示)介接。另外,電壓源316
可與能量管理系統介接,該能量管理系統根據諸如當年時間、當日時間及所量測環境條件之各種準則而控制電致變色裝置。此能量管理系統結合大面積電致變色裝置(例如,電致變色窗)可顯著地降低建築物之能量消耗。Referring again to FIG. 3A ,
具有合適的光學、電、熱及機械性質之任何材料可用作基板302
。此類基板包括例如玻璃、塑膠及鏡面材料。合適的玻璃包括透明或經著色鹼石灰玻璃,包括鹼石灰漂浮玻璃。玻璃可經強化(例如,回火)或未回火。Any material with suitable optical, electrical, thermal and mechanical properties can be used as the
在許多狀況下,基板為經大小設定以用於住宅窗應用之玻璃窗格。此玻璃窗格之大小可取決於住宅之特定需要而廣泛地變化。在其他狀況下,基板為建築用玻璃。建築用玻璃可用於商業建築物中。其可用於住宅建築物中;且可將室內環境與室外環境分開。在某些實施例中,窗格(例如,建築用玻璃)為至少約20吋乘20吋。窗格可為至少約80吋乘120吋。窗格可為至少約2 mm厚,通常為約3 mm至約6 mm厚。電致變色裝置可擴展至小於或大於窗格之基板。另外,電致變色裝置可設置於任何大小及形狀之鏡面上。In many cases, the substrates are glass panes sized for residential window applications. The size of this pane of glass can vary widely depending on the particular needs of the dwelling. In other cases, the substrate is architectural glass. Architectural glass can be used in commercial buildings. It can be used in residential buildings; and can separate the indoor environment from the outdoor environment. In certain embodiments, the pane (eg, architectural glass) is at least about 20 inches by 20 inches. The pane may be at least about 80 inches by 120 inches. The panes may be at least about 2 mm thick, typically about 3 mm to about 6 mm thick. Electrochromic devices can be extended to substrates smaller or larger than the panes. In addition, electrochromic devices can be placed on mirror surfaces of any size and shape.
導電層304
在基板302
之頂部上。在某些實施例中,導電層304
及314
中之一者或兩者為無機及/或固體的。導電層304
及314
可由數種不同材料製成,包括導電氧化物、薄金屬塗層、導電金屬氮化物及複合導體。導電層304
及314
至少在電致變色層展現電致變色之波長範圍內為透明的。透明導電氧化物包括金屬氧化物及摻雜有一或多種金屬之金屬氧化物。此類金屬氧化物及經摻雜金屬氧化物之實例包括氧化銦、氧化銦錫、經摻雜氧化銦、氧化錫、經摻雜氧化錫、氧化鋅、氧化鋁鋅、經摻雜氧化鋅、氧化釕、經摻雜氧化釕及其類似者。由於氧化物可用於此等層,因此其有時被稱作「透明導電氧化物」(TCO)層。可使用(例如,實質上)透明的薄金屬塗層以及TCO與金屬塗層的組合。
在一些實施例中,導電層之功能為將由電壓源316
在電致變色堆疊320
之表面上方提供的電位散佈至堆疊之內部區,例如具有相對較小的歐姆電位降。可經由至導電層之電連接將電位轉移至導電層。在一些實施例中,匯流條(一個與導電層304
接觸且一個與導電層314
接觸)在電壓源316
與導電層304
及314
之間提供電連接。導電層304
及314
可例如藉由(例如,其他)構件連接至電壓源316
。In some embodiments, the function of the conductive layer is to spread the potential provided by the
電致變色層306
覆疊導電層304
。在一些實施例中,電致變色層306
包括無機及/或固體材料。電致變色層可含有數種不同電致變色材料中之任何一或多種,包括金屬氧化物。此類金屬氧化物包括氧化鎢(WO3
)、氧化鉬(MoO3
)、氧化鈮(Nb2
O5
)、氧化鈦(TiO2
)、氧化銅(CuO)、氧化銥(Ir2
O3
)、氧化鉻(Cr2
O3
)、氧化錳(Mn2
O3
)、氧化釩(V2
O5
)、氧化鎳(Ni2
O3
)、氧化鈷(Co2
O3
)及其類似者。在操作期間,電致變色層306
將離子轉移至相對電極層310
且自相對電極層接收離子以引起光學轉變。The
在一些實施例中,電致變色材料之有色(或例如吸收率、反射率及透射率之任何光學性質之改變)係由至材料中之可逆離子注入(例如,嵌入)及電荷平衡電子之對應注入而引起。負責光學轉變的某一分率之離子不可逆地束縛於電致變色材料中。不可逆地束縛之離子中的一些或全部可用以補償材料中之「盲電荷」。在一些電致變色材料中,合適的離子包括鋰離子(Li+)及氫離子(H+)(質子)。在一些狀況下,其他離子將為合適的。在各種實施例中,鋰離子用以產生電致變色現象。鋰離子至例如氧化鎢(WO3-y (0<y≤~0.3))中之嵌入使氧化鎢自透明(脫色狀態)改變至藍色(有色狀態)。In some embodiments, the coloring of an electrochromic material (or a change in any optical property such as absorptivity, reflectance, and transmittance) results from reversible ion implantation (eg, intercalation) into the material and the correspondence of charge-balancing electrons caused by injection. A fraction of the ions responsible for the optical transition are irreversibly bound in the electrochromic material. Some or all of the irreversibly bound ions can be used to compensate for "blind charges" in the material. In some electrochromic materials, suitable ions include lithium ions (Li+) and hydrogen ions (H+) (protons). In some cases, other ions will be suitable. In various embodiments, lithium ions are used to generate electrochromic phenomena. Intercalation of lithium ions into, for example, tungsten oxide (WO 3-y (0<y≦~0.3)) changes tungsten oxide from transparent (decolorized state) to blue (colored state).
再次參看圖 3A
,在電致變色堆疊320
中,離子導電層308
包夾於電致變色層306
與相對電極層310
之間。在一些實施例中,相對電極層310
包括無機及/或固體材料。相對電極層可包括數種不同材料中之一或多者,該等材料在電致變色裝置處於脫色狀態時充當離子儲集器。在藉由例如施加適當電位起始之電致變色轉變期間,相對電極層可將其固持的離子中之一些或全部轉移至電致變色層,從而將電致變色層改變至例如有色狀態。同時,在NiWO之狀況下,相對電極層隨著離子之損失而有色。Referring again to FIG. 3A , in
在一些實施例中,與WO3 互補之用於相對電極的合適材料包括氧化鎳(NiO)、氧化鎳鎢(NiWO)、氧化鎳釩、氧化鎳鉻、氧化鎳鋁、氧化鎳錳、氧化鎳鎂、氧化鉻(Cr2 O3 )、氧化錳(MnO2 )及/或普魯士藍(Prussian blue)。In some embodiments, suitable materials complementary to WO 3 for the opposing electrode include nickel oxide (NiO), nickel tungsten oxide (NiWO), nickel vanadium oxide, nickel chromium oxide, nickel aluminum oxide, nickel manganese oxide, nickel oxide Magnesium, chromium oxide (Cr 2 O 3 ), manganese oxide (MnO 2 ) and/or Prussian blue.
當自由氧化鎳鎢製成之相對電極310
移除電荷(將離子自相對電極310
輸送至電致變色層306
)時,相對電極層將自透明狀態轉變至有色狀態。When the
在所描繪之電致變色裝置中,離子導電層308
存在於電致變色層306
與相對電極層310
之間。離子導電層308
在電致變色裝置於例如脫色狀態與有色狀態之間轉變時充當離子輸送通過(例如,以電解質之方式)的介質。離子導電層308
對用於電致變色層及相對電極層之相關離子可高度導電,離子導電層可具有足夠低的電子電導率,使得在正常操作期間發生可忽略的電子轉移。具有高離子電導率之薄離子導電層可准許快速離子導電(例如,及對於高效能電致變色裝置,准許快速切換)。在某些實施例中,離子導電層308
包括無機及/或固體材料。In the depicted electrochromic device, an ionically conductive layer 308 exists between the
合適的離子導電層(用於具有相異IC層之電致變色裝置)之實例包括矽酸鹽、氧化矽、氧化鎢、氧化鉭、氧化鈮及/或硼酸鹽。此等材料可摻雜有不同摻雜劑,包括鋰。鋰摻雜之氧化矽包括氧化鋰矽鋁。在一些實施例中,離子導電層包括基於矽酸鹽之結構。在一些實施例中,氧化矽鋁(SiAlO)用於離子導電層308 。Examples of suitable ionically conductive layers (for electrochromic devices with distinct IC layers) include silicates, silicon oxides, tungsten oxides, tantalum oxides, niobium oxides, and/or borates. These materials can be doped with various dopants, including lithium. Lithium-doped silicon oxide includes lithium silicon aluminum oxide. In some embodiments, the ionically conductive layer includes a silicate-based structure. In some embodiments, silicon aluminum oxide (SiAlO) is used for the ion conducting layer 308 .
電致變色裝置300
可包括一或多個額外層(未圖示),諸如一或多個被動層。被動層(例如,用以改善某些光學性質)可包括於電致變色裝置300
中。用於提供耐濕性或耐刮擦性之被動層可包括於電致變色裝置300
中。舉例而言,可利用抗反射或保護(例如,氧化物及/或氮化物)層來處理導電層。其他被動層可用以氣密密封電致變色裝置300
。氣密密封可包含氣體密封。
圖 3B
為處於脫色狀態(或轉變至脫色狀態)之電致變色裝置的示意性橫截面。根據特定實施例,電致變色裝置400
包括氧化鎢電致變色層(EC)406
及氧化鎳鎢相對電極層(CE)410
。電致變色裝置400
包括基板402
、導電層(CL)404
、離子導電層(IC)408
及導電層(CL)414
。 3B is a schematic cross-section of an electrochromic device in a decolorized state (or transitioned to a decolorized state). According to certain embodiments, the
電源416
經組態以經由至導電層404
及414
之合適連接(例如,匯流條)將電位及/或電流施加至電致變色堆疊420
。在一些實施例中,電壓源經組態以施加幾伏特的電位,以便驅動裝置自一個光學狀態轉變至另一光學狀態。如圖 3B
中所展示之電位的極性使得離子(在此實例中,鋰離子)主要駐存(如由虛線箭頭所指示)於氧化鎳鎢相對電極層410
中。
圖 3C
為展示於圖 3B
中但處於有色狀態(或轉變至有色狀態)之電致變色裝置400
的示意性橫截面。在圖 3C
中,電壓源416
之極性經反轉,使得電致變色層更具負性以接受額外鋰離子,且因此轉變至有色狀態。如由虛線箭頭所指示,跨越離子導電層408
將鋰離子輸送至氧化鎢電致變色層406
。以有色狀態展示氧化鎢電致變色層406
。以有色狀態展示氧化鎳鎢相對電極410
。如本文中所解釋,氧化鎳鎢逐漸變得更不透明,此係因為其放棄(脫嵌)鋰離子。在此實例中,存在協同效應,其中層406
及410
兩者至有色狀態之轉變對於減少透射穿過堆疊及基板之光的量為相加性的。 3C is a schematic cross-section of the
如本文中所描述,電致變色裝置可包括由離子導電(IC)層分開的電致變色(EC)電極層及相對電極(CE)層,該離子導電層對離子具有高導電性(例如,且對電子具有高電阻性)。離子導電層可減少(例如,防止)電致變色層與相對電極層之間的短路。離子導電層可允許電致變色及相對電極固持電荷(例如,且維持其脫色狀態或有色狀態)。在電致變色裝置(例如,具有相異層)中,組件形成堆疊,包括包夾於電致變色電極層與相對電極層之間的離子導電層。(例如,三個)堆疊組件之間的邊界可由組合物及/或微結構之突然改變來界定。EC裝置可具有(例如,三個)相異層,該等相異層具有(例如,兩個)突變界面。As described herein, an electrochromic device may include an electrochromic (EC) electrode layer and a counter electrode (CE) layer separated by an ion-conducting (IC) layer that is highly conductive to ions (eg, and high resistance to electrons). The ionically conductive layer can reduce (eg, prevent) shorting between the electrochromic layer and the opposing electrode layer. The ionically conductive layer may allow the electrochromic and opposing electrodes to hold charge (eg, and maintain their discolored or colored state). In an electrochromic device (eg, having distinct layers), the components form a stack including an ionically conductive layer sandwiched between an electrochromic electrode layer and an opposing electrode layer. Boundaries between (eg, three) stacked components may be defined by sudden changes in composition and/or microstructure. An EC device may have (eg, three) distinct layers with (eg, two) abrupt interfaces.
根據某些實施例,相對電極及電致變色電極形成為彼此緊鄰,有時直接接觸,無需分開地沈積離子導電層。在一些實施例中,使用具有界面區而非相異IC層的電致變色裝置。此類裝置、其製造方法以及相關設備及軟體描述於2010年4月30日申請之美國專利第8,300,298號及美國專利申請案第12/772,075號以及2010年6月11日申請的美國專利申請案第12/814,277號及第12/814,279號中,三個專利申請案及專利中之每一者的標題為「電致變色裝置(Electrochromic Devices)」,其各自將Zhongchun Wang等人指名為發明人且其中之每一者以全文引用之方式併入本文中。According to certain embodiments, the opposing electrode and the electrochromic electrode are formed in close proximity to each other, sometimes in direct contact, without the need to deposit an ionically conductive layer separately. In some embodiments, electrochromic devices with interfacial regions rather than distinct IC layers are used. Such devices, methods of making the same, and related apparatus and software are described in US Patent No. 8,300,298, filed April 30, 2010, and US Patent Application No. 12/772,075, filed on June 11, 2010 In Ser. Nos. 12/814,277 and 12/814,279, each of the three patent applications and patents titled "Electrochromic Devices" each named Zhongchun Wang et al. as inventors and each of which is incorporated herein by reference in its entirety.
至少一個窗控制器用以控制電致變色窗之電致變色裝置的色調位準。在一些實施例中,窗控制器能夠使電致變色窗在以下兩個色調狀態(位準)之間轉變:脫色狀態及有色狀態。在一些實施例中,控制器可另外使電致變色窗(例如,具有單個電致變色裝置)轉變至中間色調位準。在一些實施例中,至少一個控制器包括主控制器及本端控制器。在一些實施例中,至少一個控制器為階層式控制系統。在一些實施例中,至少一個控制器包含本端控制器,諸如窗控制器。在一些所揭示實施例中,窗控制器能夠使電致變色窗轉變至兩個、三個、四個或多於四個(例如,相異)色調位準。在一些實施例中,窗控制器能夠使電致變色窗自透明連續地轉變至最暗色調位準。某些電致變色窗藉由在單個IGU中使用兩個(或多於兩個)電致變色片而允許中間色調位準,其中每一片為雙態片。在此章節中參看圖 2A 及圖 2B 描述此情形。At least one window controller is used to control the tint level of the electrochromic device of the electrochromic window. In some embodiments, the window controller is capable of transitioning the electrochromic window between two hue states (levels): a bleached state and a tinted state. In some embodiments, the controller may additionally transition the electrochromic window (eg, with a single electrochromic device) to the midtone level. In some embodiments, the at least one controller includes a master controller and a local controller. In some embodiments, the at least one controller is a hierarchical control system. In some embodiments, the at least one controller includes a local controller, such as a window controller. In some disclosed embodiments, the window controller is capable of transitioning the electrochromic window to two, three, four, or more than four (eg, distinct) hue levels. In some embodiments, the window controller is capable of continuously transitioning the electrochromic window from transparent to the darkest tint level. Certain electrochromic windows allow for midtone levels by using two (or more than two) electrochromic sheets in a single IGU, each of which is a two-state sheet. This situation is described in this section with reference to Figures 2A and 2B .
如上文關於圖 2A
及圖 2B
所提到,在一些實施例中,電致變色窗可包括IGU200
之一個片上的電致變色裝置400
及IGU200
之另一片上的另一電致變色裝置400
。IGU中之此等多個EC裝置允許色調狀態的更多組合。舉例而言,若窗控制器能夠使每一電致變色裝置在兩個(例如,相異)狀態(例如,脫色狀態及有色狀態)之間轉變,則電致變色窗可能夠達到四個不同狀態(色調位準),包括:兩個電致變色裝置均有色的有色狀態、一個電致變色裝置有色的第一中間狀態、另一電致變色裝置有色的第二中間狀態,及兩個電致變色裝置均脫色的脫色狀態。多窗格電致變色窗之實施例進一步描述於將Robin Friedman等人指名為發明人、標題為「多窗格電致變色窗(MULTI-PANE ELECTROCHROMIC WINDOWS)」的美國專利第8,270,059號中,該專利以全文引用之方式併入本文中。As mentioned above with respect to FIGS. 2A and 2B , in some embodiments, the electrochromic window may include
在一些實施例中,窗控制器能夠轉變具有電致變色裝置之電致變色窗,該電致變色裝置能夠在兩個或多於兩個色調位準之間轉變。舉例而言,窗控制器可能夠使電致變色窗轉變至脫色狀態、一或多個中間位準及有色狀態。在一些其他實施例中,窗控制器能夠使併有電致變色裝置之電致變色窗在脫色狀態與有色狀態之間的任何數目個色調位準之間轉變。用於使電致變色窗轉變至一或多個中間色調位準之方法及控制器的實施例進一步描述於將Disha Mehtani等人指名為發明人、標題為「控制光學可切換裝置中之轉變(CONTROLLING TRANSITIONS IN OPTICALLY SWITCHABLE DEVICES)」的美國專利第8,254,013號中,該專利以全文引用之方式併入本文中。In some embodiments, the window controller is capable of transitioning an electrochromic window having an electrochromic device capable of transitioning between two or more tint levels. For example, a window controller may be capable of transitioning an electrochromic window to a decolorized state, one or more intermediate levels, and a tinted state. In some other embodiments, the window controller is capable of transitioning an electrochromic window incorporating an electrochromic device between any number of hue levels between a discolored state and a tinted state. Embodiments of a method and controller for transitioning an electrochromic window to one or more midtone levels are further described in the titled "Controlling Transitions in Optically Switchable Devices (Disha Mehtani et al.) CONTROLLING TRANSITIONS IN OPTICALLY SWITCHABLE DEVICES)", US Patent No. 8,254,013, which is incorporated herein by reference in its entirety.
在一些實施例中,窗控制器可對電致變色窗中之一或多個電致變色裝置供電。藉由下文更詳細地描述之一或多個其他功能擴增窗控制器之此功能。本文中所描述之本端(例如,窗)控制器可能不限於具有出於控制目的而對與其相關聯之電致變色裝置供電之功能的彼等控制器。用於電致變色窗之電源可與窗控制器分開,其中控制器具有其自身的電源且導引電力自窗電源施加至窗。將電源包括於窗控制器中(例如,且組態控制器以直接對窗供電)可為便利的。In some embodiments, the window controller can power one or more electrochromic devices in the electrochromic window. This function of the window controller is augmented by one or more other functions described in more detail below. Local (eg, window) controllers described herein may not be limited to those controllers that have the function of powering their associated electrochromic devices for control purposes. The power supply for the electrochromic window can be separate from the window controller, where the controller has its own power supply and directs the application of power to the window from the window power supply. It may be convenient to include the power source in the window controller (eg, and configure the controller to power the window directly).
窗控制器可經組態以控制單個窗或複數個電致變色窗之功能。窗控制器可控制至少1、2、3、4、5、6、7或8個可著色窗。本端(例如,窗)控制器可能整合或可能不整合至建築物控制網路及/或建築物管理系統(BMS)中。然而,窗控制器可整合至建築物控制網路或BMS中,如本文中所描述。The window controller can be configured to control the function of a single window or a plurality of electrochromic windows. The window controller can control at least 1, 2, 3, 4, 5, 6, 7 or 8 tintable windows. Local (eg, window) controllers may or may not be integrated into the building control network and/or building management system (BMS). However, the window controller can be integrated into a building control network or BMS, as described herein.
圖 4
描繪所揭示實施例的窗控制器450
之一些組件及窗控制器系統之其他組件的示意性方塊圖。窗控制器之組件的更多細節可見於兩者均將Stephen C.Brown指名為發明人、兩者標題均為「用於光學可切換窗之控制器(CONTROLLER FOR OPTICALLY-SWITCHABLE WINDOWS)」且兩者均在2012年4月17日申請的美國專利申請案第13/449,248號及第13/449,251號中,且可見於2012年4月17日申請、標題為「控制光學可切換裝置中之轉變(CONTROLLING TRANSITIONS IN OPTICALLY SWITCHABLE DEVICES)」、將Stephen C.Brown等人指名為發明人的美國專利第13/449,235號中,且該等專利申請案及專利中之每一者以全文引用之方式併入本文中。 4 depicts a schematic block diagram of some components of a
在圖 4
中,窗控制器450
之所說明組件包括微處理器455
或其他處理器、脈寬調變器460
、一或多個輸入465
及具有組態檔案475
之電腦可讀取媒體(例如,記憶體)。窗控制器450
經由網路480
(有線或無線)與電致變色窗中之一或多個電致變色裝置400
電子通信以將指令發送至一或多個電致變色裝置400
。在一些實施例中,窗控制器450
可為經由網路(有線或無線)與主窗控制器通信的本端窗控制器。In FIG. 4 , the illustrated components of the
在一些實施例中,封閉體(例如,建築物)可具有至少一個房間,該至少一個房間具有例如安置於封閉體(例如,建築物)之外部與內部之間的電致變色窗。一或多個感測器可安置於(例如,位於)封閉體之外部或內部中(例如,建築物之外部及/或房間之內部中)。在實施例中,來自一或多個感測器之輸出用以控制封閉體中之各種裝置,例如可著色窗,包含電致變色裝置400
之此一個可著色窗。儘管所描繪實施例之感測器經展示為位於諸如建築物之封閉體的外部豎直壁上,但此係為簡單起見,且感測器亦可安置於封閉體之其他部位中,諸如房間內部、屋頂或在至外部的其他表面上。在一些狀況下,兩個或多於兩個感測器可用以量測同一輸入,此在一個感測器失敗或具有另外錯誤讀數及/或在不同部位處感測同一性質的狀況下提供冗餘。在一些狀況下,兩個或多於兩個感測器可用以量測不同輸入,例如以感測不同性質。In some embodiments, an enclosure (eg, building) may have at least one room having, for example, an electrochromic window disposed between the exterior and interior of the enclosure (eg, building). One or more sensors may be disposed (eg, located) outside or inside the enclosure (eg, outside a building and/or inside a room). In an embodiment, the output from the one or more sensors is used to control various devices in the enclosure, such as a tintable window, including the one of the
圖 5
描繪具有電致變色窗505
之封閉體(例如,房間)500
的示意圖(側視圖),該電致變色窗具有至少一個電致變色裝置。電致變色窗505
位於包括房間500
之建築物的外部與內部之間。房間500
包括窗控制器450
,該窗控制器連接至電致變色窗505
且經組態以控制電致變色窗之色調位準。外部感測器510
位於建築物之外部中的豎直表面上。在一些實施例中,內部感測器可用以量測房間500
中的周圍環境光。在另外其他實施例中,佔用者感測器可用以判定佔用者何時在房間500
中。 5 depicts a schematic diagram (side view) of an enclosure (eg, room) 500 having an
外部感測器510
為諸如光感測器之裝置,其能夠偵測自諸如太陽之光源或自表面反射至感測器之光、大氣中之粒子、雲等入射於裝置上的輻射光。外部感測器510
可產生由光電效應產生之呈電流形式的信號,且信號可取決於入射於感測器510
上的光。在一些狀況下,裝置可依據以瓦特/平方公尺(watt/m2
)或其他類似單位為單位的輻照度來偵測輻射光。在其他狀況下,裝置可偵測在以尺燭(foot candle)或類似單位為單位之可見波長範圍內的光。在許多狀況下,此等輻照度值與可見光之間存在線性關係。
在一些實施例中,外部感測器510
經組態以量測紅外光。在一些實施例中,外部光感測器經組態以量測紅外光及/或可見光。在一些實施例中,外部光感測器510
可包括用於量測溫度及/或濕度資料的感測器。在一些實施例中,智慧邏輯可使用一或多個參數(例如,可見光資料、紅外光資料、濕度資料及溫度資料)來判定遮擋雲之存在及/或量化由雲所引起之遮擋,該一或多個參數係使用外部感測器判定或自外部網路(例如,氣象站)接收。使用紅外線感測器偵測雲之各種方法描述於2017年10月6日申請、標題為「紅外線雲偵測器系統及方法(INFRARED CLOUD DETECTOR SYSTEMS AND METHODS)」且指明美國並以全文引用的方式併入本文中的國際專利申請案第PCT/US17/55631號中。In some embodiments, the
可至少部分地基於當日時間及當年時間而預測來自日光的輻照度值,此係因為日光照在地球上的角度改變。外部感測器510
可即時地偵測輻射光,其考慮因建築物所致的反射及遮擋光、天氣(例如,雲)改變等。舉例而言,在多雲日,日光將被雲阻擋且由外部感測器510
偵測到的輻射光將少於無雲日。The irradiance value from sunlight can be predicted based at least in part on the time of day and the time of the year due to the changing angle of sunlight on the Earth.
在一些實施例中,可存在與單個電致變色窗505
相關聯之一或多個外部感測器510
。可將來自一或多個外部感測器510
之輸出彼此進行比較以判定例如外部感測器510
中的一者是否被物件遮住,諸如被落在外部感測器510
上的鳥遮住。在一些狀況下,可期望使用相對較少感測器,此係因為一些感測器可能為不可靠及/或昂貴的。在某些實施方案中,單個感測器或幾個感測器可用以判定來自太陽之照射在建築物上或可能照射在建築物之一側上的當前輻射光位準。雲可能在太陽前方通過,或施工車輛可能在落日前方停放。此等情形將導致與針對正常照射於建築物上而計算之來自太陽的輻射光之量的偏差。In some embodiments, there may be one or more
外部感測器510
可為一種類型之光感測器。舉例而言,外部感測器510
可為電荷耦合裝置(CCD)、光電二極體、光電阻或光伏打電池。本領域中一般技術者將瞭解,光感測器及其他感測器技術之未來發展將適用,此係因為其量測光強度且提供表示光位準之電輸出。
在所揭示實施例中,窗控制器450
可指示PWM460
將電壓及/或電流施加至電致變色窗505
,以使電致變色窗轉變至四個或多於四個不同色調位準中之任一者。在所揭示實施例中,可使電致變色窗505
轉變至描述為以下各者的至少八個不同的色調位準:0(最亮)、5、10、15、20、25、30及35(最暗)。色調位準可線性地對應於透射穿過電致變色窗505
之光的視覺透射率值及太陽熱增益係數(SHGC)值。舉例而言,使用上述八個色調位準,最亮色調位準0可對應於SHGC值0.80,色調位準5可對應於SHGC值0.70,色調位準10可對應於SHGC值0.60,色調位準15可對應於SHGC值0.50,色調位準20可對應於SHGC值0.40,色調位準25可對應於SHGC值0.30,色調位準30可對應於SHGC值0.20,且色調位準35(最暗)可對應於SHGC值0.10。In the disclosed embodiment,
窗控制器450
或與窗控制器450
通信之主控制器可使用任何一或多個預測控制邏輯組件,以至少部分地基於來自外部感測器510
之信號及/或其他輸入而判定期望色調位準。窗控制器450
可指示PWM460
將電壓及/或電流施加至電致變色窗505
,以使其轉變至期望色調位準。
在一些實施例中,本文中所描述之窗控制器適合與建築物管理系統(BMS)整合或在建築物管理系統內/為建築物管理系統之部分。BMS可為裝設於建築物中之電腦化控制系統,其控制(例如,監測)建築物之機械及/或電裝備,諸如通風、照明、電力系統、電梯、消防系統及/或安全系統。BMS可由硬體(例如,包括至一或多個電腦之藉由通信通道的互連)及相關聯軟體組成。BMS可根據藉由諸如佔用者之使用者及/或藉由建築物管理器設定的偏好(例如,請求)而維持建築物中的條件。舉例而言,可使用諸如乙太網路之區域網路實施BMS。軟體可至少部分地基於例如網際網路協定及/或開放標準。一個實例為來自(弗吉尼亞州里奇蒙(Richmond,Virginia)之Tridium公司的軟體。供BMS使用之一個通信協定為BACnet(建築物自動化及控制網路)。BMS可經組態用於此(類)通信協定。In some embodiments, the window controllers described herein are suitable for integration with a building management system (BMS) or within/part of a building management system. A BMS may be a computerized control system installed in a building that controls (eg, monitors) the mechanical and/or electrical equipment of the building, such as ventilation, lighting, electrical systems, elevators, fire protection systems, and/or security systems. A BMS may consist of hardware (eg, including interconnection to one or more computers via communication channels) and associated software. The BMS may maintain conditions in the building according to preferences (eg, requests) set by users such as occupants and/or by the building manager. For example, BMS can be implemented using a local area network such as Ethernet. The software may be based at least in part on, for example, Internet Protocol and/or open standards. An example is software from Tridium Corporation of Richmond, Virginia. One communication protocol for use by the BMS is BACnet (Building Automation and Control Network). The BMS can be configured for this (class ) communication protocol.
BMS可常見於大型建築物中。BMS可至少起作用以控制建築物內之環境。舉例而言,BMS及/或控制系統可例如使用一或多個感測器控制建築物內之溫度、二氧化碳含量及/或濕度。可能存在由BMS控制之機械裝置,諸如加熱器、空氣調節器、鼓風機、通風口及/或其類似者。為控制建築物環境,BMS可例如在所定義條件下衰減及/或接通及斷開此等各種裝置中之任一者。在一些實施例中,BMS之核心功能可係為建築物之佔用者維持舒適環境,例如同時最小化加熱及冷卻成本/需求。因此,BMS可用以控制及/或最佳化各種系統之間的協同作用,例如以節省能量及/或降低建築物操作成本。BMS can be commonly found in large buildings. The BMS can at least function to control the environment within the building. For example, the BMS and/or control system may control temperature, carbon dioxide levels and/or humidity within the building, eg, using one or more sensors. There may be mechanical devices controlled by the BMS, such as heaters, air conditioners, blowers, vents and/or the like. To control the building environment, the BMS may attenuate and/or switch any of these various devices on and off, eg, under defined conditions. In some embodiments, a core function of a BMS may be to maintain a comfortable environment for the occupants of a building, eg, while minimizing heating and cooling costs/demands. Thus, the BMS can be used to control and/or optimize the synergy between various systems, eg, to save energy and/or reduce building operating costs.
在一些實施例中,控制系統(或其任何部分,諸如窗控制器)與BMS整合。窗控制器可組態以控制一或多個電致變色窗(例如,505 )或其他可著色窗。在一些實施例中,窗控制器併入BMS中(例如,且BMS控制可著色窗以及建築物之其他系統的功能兩者)。在一個實例中,BMS可控制包括建築物中之可著色窗之一或多個分區的所有建築物系統之功能。In some embodiments, the control system (or any portion thereof, such as a window controller) is integrated with the BMS. The window controller can be configured to control one or more electrochromic windows (eg, 505 ) or other tintable windows. In some embodiments, the window controller is incorporated into the BMS (eg, and the BMS controls both the function of tintable windows and other systems of the building). In one example, the BMS can control the functions of all building systems including one or more partitions of tintable windows in the building.
在一些實施例中,一或多個分區之至少一個(例如,每一)可著色窗包括至少一個固態及/或無機電致變色裝置。在一個實施例中,一或多個分區之可著色窗中的至少一者(例如,每一者)為具有一或多個固態及/或無機電致變色裝置的電致變色窗。在一個實施例中,一或多個可著色窗包括至少一個全固態且無機的電致變色裝置,但可包括多於一個電致變色裝置,例如其中IGU之每一片或窗格為可著色的。在一個實施例中,電致變色窗為如描述於2010年8月5日申請且標題為「多窗格電致變色窗(Multipane Electrochromic Windows)」之美國專利申請案第12/851,514號中的多態電致變色窗,該申請案以全文引用之方式併入本文中。圖 6
描繪建築物601
及BMS605
之實例的示意圖,BMS管理數個建築物系統,包括安全系統、加熱/通風/空氣調節(HVAC)、建築物的照明、電力系統、電梯、消防系統及其類似者。安全系統可包括磁卡出入、十字轉門(turnstile)、螺線管驅動式門鎖、監控攝影機、防盜警報器、金屬偵測器及/或其類似者。消防系統可包括火警及滅火系統,包括水管控制。照明系統可包括內部照明、外部照明、緊急警告燈、緊急出口標誌及/或緊急樓層出口照明。電力系統可包括主電源、備用發電機及/或不斷電電源(UPS)電網。In some embodiments, at least one (eg, each) tintable window of the one or more partitions includes at least one solid state and/or inorganic electrochromic device. In one embodiment, at least one (eg, each) of the tintable windows of the one or more partitions is an electrochromic window having one or more solid state and/or inorganic electrochromic devices. In one embodiment, the one or more tintable windows include at least one all solid state and inorganic electrochromic device, but may include more than one electrochromic device, eg, where each sheet or pane of the IGU is tintable . In one embodiment, the electrochromic window is as described in US Patent Application No. 12/851,514, filed August 5, 2010 and entitled "Multipane Electrochromic Windows" Polymorphic Electrochromic Window, which application is incorporated herein by reference in its entirety. 6 depicts a schematic diagram of an example of a
在圖6中所展示之實例中,BMS605
管理窗控制系統602
。窗控制系統602
為窗控制器之分散式網路,包括主控制器603
、樓層(例如,網路)控制器607a
及607b
,以及本端(例如,終端或分葉)控制器608
,諸如窗控制器。終端或分葉控制器608
可類似於關於圖 4
所描述之窗控制器450
。舉例而言,主控制器603
可接近BMS605
,且建築物601
之至少一個(例如,每一)樓層可具有一或多個網路控制器607a
及607b
,而建築物之至少一個(例如,每一)窗具有其自身的終端控制器608
。在此實例中,控制器608
中之每一者控制建築物601
之特定電致變色窗。窗控制系統602
與雲端網路610
通信以接收資料。舉例而言,窗控制系統602
可自在雲端網路610
上維護之晴空模型接收排程資訊。儘管主控制器603
在圖 6
中描述為與BMS605
分開,但在另一實施例中,主控制器603
為BMS605
之部分或在其內。圖6展示階層式控制系統602
之實例。In the example shown in FIG. 6,
控制器608
中之至少一者(例如,每一者)可處於與其所控制之電致變色窗分開的部位中,或整合至電致變色窗中。為簡單起見,建築物601
之僅十個電致變色窗經描繪為由主窗控制器602
控制。在設定(例如,包括建築物之設施)中,在由窗控制系統602
控制之建築物中可存在大量電致變色窗。本文中描述將如本文中所描述之電致變色窗控制器與BMS合併的優點及特徵。At least one (eg, each) of the
所揭示實施例之一個態樣為包括多用途電致變色窗控制器之BMS,例如,如本文中所描述。藉由併有來自至少一個(例如,本端)控制器之反饋,BMS可提供例如增強的:1)環境控制;2)能量節省;3)安全性;4)控制選項之靈活性;5)其他系統之改善可靠性及可使用壽命,此係由於對其的較少依賴且因此對其的較少維護;6)資訊可用性及/或診斷;7)工作人員之有效使用及來自工作人員之較高生產力;或其任何組合。在一些實施例中,BMS不存在,或BMS可能存在但可能不與控制系統(例如,與主控制器)通信,或在高層級處與控制系統(例如,與主控制器)通信。在某些實施例中,BMS上之維護將不會中斷對電致變色窗之控制。One aspect of the disclosed embodiment is a BMS that includes a multipurpose electrochromic window controller, eg, as described herein. By incorporating feedback from at least one (eg, local) controller, the BMS can provide, for example, enhanced: 1) environmental control; 2) energy savings; 3) safety; 4) flexibility of control options; 5) Improved reliability and longevity of other systems due to less reliance and therefore less maintenance on them; 6) Information availability and/or diagnostics; 7) Effective use and feedback from staff higher productivity; or any combination thereof. In some embodiments, the BMS does not exist, or the BMS may exist but may not communicate with the control system (eg, with the master controller), or communicate with the control system (eg, with the master controller) at a high level. In some embodiments, maintenance on the BMS will not interrupt control of the electrochromic window.
在一些狀況下,BMS605
或建築物網路1200
之系統可根據每日、每月、每季度或每年排程來運行。舉例而言,操作性地(例如,通信地)耦接至諸如照明控制系統、窗控制系統、HVAC及/或安全系統之BMS的裝置中之任一者可根據諸如24小時排程之排程操作(例如,考慮在工作日期間人員何時處於設施(例如,建築物)中)。在夜間,建築物可進入能量節省模式,且在白天期間,系統可按最小化設施(例如,建築物)之能量消耗同時提供佔用者舒適性的方式操作。作為另一實例,系統可在假期時段內關機或進入能量節省模式。In some cases, the system of
在一些實施例中,封閉體包含由至少一個結構界定的區域。至少一個結構可包含至少一個壁。封閉體可包含及/或封閉一或多個子封閉體。至少一個壁可包含金屬(例如,鋼)、黏土、石頭、塑膠、玻璃、灰泥(例如,石膏)、聚合物(例如,聚胺基甲酸酯、苯乙烯或乙烯基)、石棉、纖維玻璃、混凝土(例如,鋼筋混凝土)、木材、紙張或陶瓷。至少一個壁可包含電線、磚、塊(例如,煤渣塊)、瓷磚、乾壁或框架(例如,鋼架)。In some embodiments, the enclosure includes an area bounded by at least one structure. At least one structure may comprise at least one wall. An enclosure may contain and/or enclose one or more sub-enclosures. At least one wall may comprise metal (eg, steel), clay, stone, plastic, glass, plaster (eg, gypsum), polymer (eg, polyurethane, styrene, or vinyl), asbestos, fibers Glass, concrete (eg reinforced concrete), wood, paper or ceramic. At least one wall may contain wires, bricks, blocks (eg, cinder blocks), tiles, drywall, or framing (eg, steel frames).
在一些實施例中,封閉體包含一或多個開口。一或多個開口可為可逆地封閉的。一或多個開口可永久開放。一或多個開口之基本長度尺度相對於界定封閉體之壁的基本長度尺度可較小。基本長度尺度可包含定界圓之直徑、長度、寬度或高度。一或多個開口之表面相對於界定封閉體之壁的表面可較小。開口表面可為壁之總表面的百分比。舉例而言,開口表面可量測壁之約30%、20%、10%、5%或1%。壁可包含地板、頂板或側壁。可封閉開口可藉由至少一個窗或門封閉。封閉體可為設施之至少一部分。封閉體可包含建築物之至少一部分。建築物可為私人建築物及/或商業建築物。建築物可包含一或多個樓層。建築物(例如,其樓層)可包括以下中之至少一者:房間、大廳、門廳、閣樓、地下室、陽台(例如,內陽台或外陽台)、樓梯井、走廊、電梯井、立面、夾層、頂樓、車庫、門廊(例如,封閉門廊)、露台(例如,封閉露台)、自助餐廳及/或管道。在一些實施例中,封閉體可為靜止的及/或可移動的(例如,火車、飛機、輪船、車輛或火箭)。In some embodiments, the closure includes one or more openings. The one or more openings may be reversibly closed. One or more openings may be permanently open. The basic length dimension of the one or more openings may be relatively small relative to the basic length dimension of the walls defining the closure. The basic length dimension may include the diameter, length, width or height of the bounding circle. The surface of the one or more openings may be relatively small relative to the surface of the wall defining the closure. The open surface may be a percentage of the total surface of the wall. For example, the open surface may measure about 30%, 20%, 10%, 5% or 1% of the wall. Walls can include floors, ceilings, or side walls. The closable opening may be closed by at least one window or door. The enclosure may be at least a portion of the facility. The enclosure may contain at least a portion of the building. The buildings can be private buildings and/or commercial buildings. A building can contain one or more floors. A building (eg, its floors) may include at least one of the following: rooms, halls, foyers, attics, basements, balconies (eg, interior or exterior balconies), stairwells, hallways, elevator shafts, facades, mezzanine levels , attic, garage, porch (eg, enclosed porch), patio (eg, enclosed patio), cafeteria, and/or plumbing. In some embodiments, the enclosure may be stationary and/or movable (eg, a train, plane, ship, vehicle, or rocket).
在一些實施例中,複數個裝置(例如,感測器、發射器及/或可著色窗)可操作性地(例如,通信地)耦接至控制系統。控制系統可包含控制器之階層架構。裝置可包含發射器、感測器或窗(例如,IGU)。裝置可為如本文中所揭示之任何裝置。複數個裝置中之至少兩者可屬於相同類型。舉例而言,兩個或多於兩個IGU可耦接至控制系統。複數個裝置中之至少兩者可屬於不同類型。舉例而言,感測器及發射器可耦接至控制系統。複數個裝置有時可包含至少20、50、100、500、1000、2500、5000、7500、10000、50000、100000或500000個裝置。複數個裝置可具有前述數目之間的任何數目個裝置(例如,自20個裝置至500000個裝置、自20個裝置至50個裝置、自50個裝置至500個裝置、自500個裝置至2500個裝置、自1000個裝置至5000個裝置、自5000個裝置至10000個裝置、自10000個裝置至100000個裝置,或自100000個裝置至500000個裝置)。舉例而言,樓層中之窗的數目可為至少5、10、15、20、25、30、40或50。樓層中之窗的數目可為前述數目之間的任何數目(例如,自5至50、自5至25,或自25至50)。裝置有時可在多層建築物中。多層建築物之樓層的至少一部分可具有由控制系統控制之裝置(例如,多層建築物之樓層的至少一部分可由控制系統控制)。舉例而言,多層建築物可具有由控制系統控制之至少2、8、10、25、50、80、100、120、140或160個樓層。由控制系統控制之樓層(例如,其中之裝置)的數目可為前述數目之間的任何數目(例如,自2至50、自25至100,或自80至160)。樓層可具有至少約150平方公尺、250平方公尺、500平方公尺、1000平方公尺、1500平方公尺或2000平方公尺(m2 )的面積。樓層可具有前述樓層面積值中之任一者之間的面積(例如,自約150平方公尺至約2000平方公尺、自約150平方公尺至約500平方公尺、自約250平方公尺至約1000平方公尺或自約1000平方公尺至約2000平方公尺)。In some embodiments, a plurality of devices (eg, sensors, emitters, and/or tintable windows) are operably (eg, communicatively) coupled to the control system. The control system may include a hierarchy of controllers. A device may include transmitters, sensors, or windows (eg, IGUs). The device can be any device as disclosed herein. At least two of the plurality of devices may be of the same type. For example, two or more IGUs may be coupled to the control system. At least two of the plurality of devices may be of different types. For example, sensors and transmitters can be coupled to a control system. The plurality of devices may sometimes include at least 20, 50, 100, 500, 1000, 2500, 5000, 7500, 10000, 50000, 100000 or 500000 devices. The plurality of devices may have any number of devices between the foregoing numbers (eg, from 20 devices to 500,000 devices, from 20 devices to 50 devices, from 50 devices to 500 devices, from 500 devices to 2,500 devices) devices, from 1,000 devices to 5,000 devices, from 5,000 devices to 10,000 devices, from 10,000 devices to 100,000 devices, or from 100,000 devices to 500,000 devices). For example, the number of windows in a floor may be at least 5, 10, 15, 20, 25, 30, 40 or 50. The number of windows in a floor can be any number between the foregoing (eg, from 5 to 50, from 5 to 25, or from 25 to 50). Devices can sometimes be in multistory buildings. At least a portion of the floors of the multi-story building may have devices controlled by the control system (eg, at least a portion of the floors of the multi-story building may be controlled by the control system). For example, a multi-story building may have at least 2, 8, 10, 25, 50, 80, 100, 120, 140 or 160 floors controlled by the control system. The number of floors (eg, devices therein) controlled by the control system can be any number between the foregoing numbers (eg, from 2 to 50, from 25 to 100, or from 80 to 160). A floor may have an area of at least about 150 square meters, 250 square meters, 500 square meters, 1000 square meters, 1500 square meters, or 2000 square meters (m 2 ). Floors can have an area between any of the foregoing floor area values (eg, from about 150 square meters to about 2000 square meters, from about 150 square meters to about 500 square meters, from about 250 square meters feet to about 1000 square meters or from about 1000 square meters to about 2000 square meters).
BMS排程可與地理資訊組合。地理資訊可包括封閉體(例如,建築物)之緯度及經度。地理資訊可包括關於建築物之側面所面向之方向的資訊。使用此資訊,可用不同方式控制建築物之不同側上的不同封閉體(例如,房間)。舉例而言,在冬天,對於建築物之面向東的房間,窗控制器可指示窗在早晨不具有色調,使得房間由於日光照射在房間中而變暖,且因為來自日光之照明,照明控制面板可指示燈調暗。面向西之窗在早晨可由房間之佔用者控制,此係因為西側上之窗的色調可能不會影響能量節省。然而,面向東之窗及面向西之窗的操作模式可在晚間切換(例如,當太陽落下時,面向西之窗不著色以允許日光進入,以帶來熱量及照明)。BMS scheduling can be combined with geographic information. The geographic information may include the latitude and longitude of an enclosure (eg, a building). The geographic information may include information about the direction in which the sides of the building are facing. Using this information, different enclosures (eg, rooms) on different sides of the building can be controlled in different ways. For example, in winter, for an east-facing room of a building, the window controller may instruct the window to have no tint in the morning, causing the room to warm due to sunlight shining in the room, and because of the lighting from the sunlight, the lighting control panel The indicator light can be dimmed. The west-facing windows can be controlled by the room occupant in the morning because the hue of the upper windows on the west side may not affect energy savings. However, the operating modes of east-facing windows and west-facing windows can be switched at night (eg, when the sun goes down, the west-facing windows are not tinted to allow daylight in for heat and illumination).
下文描述建築物(例如,類似於圖 6 中之建築物601 )之實例,該建築物包括建築物網路或BMS、用於建築物之外部窗的可著色窗(例如,將建築物之內部與建築物之外部分開的窗)及數個不同感測器。來自建築物之外部窗的光對建築物中距窗約20呎或約30呎之內部照明具有影響。建築物中距外部窗至少約20呎或至少約30呎的空間自外部窗接收極少光。建築物中遠離外部窗之此等空間可由建築物之照明系統來照明。The following describes an example of a building (eg, similar to building 601 in FIG. 6 ) that includes a building network or BMS, tintable windows for the exterior windows of the building (eg, integrating the interior of the building). windows separated from the outside of the building) and several different sensors. Light from the exterior windows of a building has an effect on interior lighting in the building at about 20 feet or about 30 feet from the window. Spaces in buildings that are at least about 20 feet or at least about 30 feet from exterior windows receive very little light from exterior windows. Such spaces in buildings remote from external windows may be illuminated by the building's lighting system.
建築物內之溫度可受到外部光及/或外部溫度影響。舉例而言,在冷天且在建築物由加熱系統加熱之情況下,較靠近門及/或窗之房間將比建築物之內部區更快地失去熱量,且相較於內部區更冷。The temperature inside a building can be affected by outside light and/or outside temperature. For example, on a cold day and where the building is heated by a heating system, rooms closer to doors and/or windows will lose heat faster than the interior areas of the building and will be cooler than the interior areas.
對於外部感測器,建築物可包括安置於建築物之屋頂或外壁上的外部感測器。替代地,建築物可包括與至少一個(例如,每一)外部窗相關聯的外部感測器(例如,如關於圖 5
所描述,房間500
)及/或在建築物之至少一(例如,每一)側上的外部感測器。建築物之至少一(例如,每一)側上的外部感測器可隨著太陽在一整天中改變位置而追蹤建築物之一側上的輻照度。For external sensors, the building may include external sensors placed on the roof or outer walls of the building. Alternatively, the building may include an exterior sensor associated with at least one (eg, each) exterior window (eg,
在一些實施例中,所接收之輸出信號包括指示建築物內之加熱系統、冷卻系統及/或照明裝置之能量或功率消耗的信號。舉例而言,可監測建築物之加熱系統、冷卻系統及/或照明裝置的能量及/或功率消耗以提供指示能量或功率消耗的信號。裝置可操作性地耦接(例如,介接或附接)至建築物之電路及/或佈線,例如以使得能夠進行此監測。可裝設建築物中之電力系統,使得可控制(例如,監測)由個別封閉體(例如,建築物內之房間或建築物內之一組房間)之加熱系統、冷卻系統及/或照明裝置所消耗的功率。In some embodiments, the received output signals include signals indicative of energy or power consumption of heating systems, cooling systems and/or lighting fixtures within the building. For example, energy and/or power consumption of a building's heating system, cooling system, and/or lighting devices may be monitored to provide signals indicative of energy or power consumption. The device is operatively coupled (eg, interfaced or attached) to the electrical circuits and/or wiring of the building, eg, to enable such monitoring. Electrical systems in a building may be installed so that heating, cooling, and/or lighting from individual enclosures (eg, a room within a building or a group of rooms within a building) may be controlled (eg, monitored) power consumed.
可提供色調指令以將可著色窗之色調改變至所判定之色調位準。舉例而言,參看圖 6
,此可包括主控制器603
將命令發出至一或多個網路控制器607a
及607b
,該一或多個網路控制器又將命令發佈至控制建築物之至少一個(例如,每一)窗的終端(例如,本端)控制器608
。終端控制器608
可將電壓及/或電流施加至窗以依照指令驅動色調改變。終端控制器可控制本文中所揭示之任何裝置(例如,感測器、發射器、HVAC及/或可著色窗)。A tint command may be provided to change the tint of the tintable window to the determined tint level. For example, referring to Figure 6 , this may include the
在一些實施例中,包括可著色(例如,電致變色)窗及BMS之建築物可參加或參與需求回應程式(例如,藉由將電力提供至建築物的公用設施運行)。程式可為在預期到峰值負載出現時減少建築物之能量消耗的程式。公用設施可在預期峰值負載出現之前發出警告信號。舉例而言,可在預期峰值負載出現之前一日、早晨或約一小時發出警告。舉例而言,在炎熱的夏日,當冷卻系統/空氣調節器自公用設施汲取大量功率時,可預期出現峰值負載出現。警告信號可由建築物之BMS或由經組態以控制建築物中之電致變色窗的窗控制器接收。此警告信號可為覆寫(override)機制,其使窗控制器與系統脫離。BMS可接著指示窗控制器使電致變色窗505
中之適當電致變色裝置轉變至暗色調位準,在預期到峰值負載時輔助減少建築物中之冷卻系統的功率汲取。In some embodiments, a building that includes tintable (eg, electrochromic) windows and a BMS may participate or participate in a demand response program (eg, run by utilities that provide electricity to the building). The program may be a program that reduces the energy consumption of the building in anticipation of peak loads. Utilities can issue warning signals before peak loads are expected. For example, the warning can be issued a day, in the morning, or about an hour before the expected peak load occurs. For example, on a hot summer day, peak loads can be expected when the cooling system/air conditioner draws a lot of power from the utility. The warning signal may be received by the building's BMS or by a window controller configured to control electrochromic windows in the building. This warning signal may be an override mechanism that disengages the window controller from the system. The BMS can then instruct the window controller to switch the appropriate electrochromic device in the
在一些實施例中,用於建築物之外部窗(例如,將建築物之內部與建築物之外部分開的窗)的可著色窗可分組成一或多個分區,其中以類似方式指示分區中之可著色窗。舉例而言,建築物之不同樓層或建築物之不同側上的電致變色窗之群組可在不同分區中。舉例而言,在建築物之第一樓層上,所有面向東之電致變色窗可在分區1中,所有面向南之電致變色窗可在分區2中,所有面向西之電致變色窗可在分區3中,且所有面向北之電致變色窗可在分區4中。作為另一實例,建築物之第一樓層上的所有電致變色窗可在分區1中,第二樓層上之所有電致變色窗可在分區2中,且第三樓層上之所有電致變色窗可在分區3中。作為又一實例,所有面向東之電致變色窗可在分區1中,所有面向南之電致變色窗可在分區2中,所有面向西之電致變色窗可在分區3中,且所有面向北之電致變色窗可在分區4中。作為又一實例,一個樓層上之面向東的電致變色窗可劃分至不同分區中。可將建築物之同一側及/或不同側及/或不同樓層上的任何數目個可著色窗指派給一分區。在個別可著色窗具有可獨立控制分區之實施例中,可使用個別窗之分區的組合在建築物立面上形成著色分區,例如其中個別窗可使或可不使其所有分區著色。可根據以下各者指明分區:地理定向、建築物中之樓層、其所安置之封閉體的指明公用設施、其所安置之封閉體的溫度、穿過窗之輻射(例如,太陽輻射)、天氣及/或佔用率(或其所安置之封閉體的預計佔用位準)。In some embodiments, tintable windows for exterior windows of a building (eg, windows that separate the interior of the building from the exterior of the building) may be grouped into one or more zones, where in a similar manner the Tinable windows. For example, groups of electrochromic windows on different floors of a building or on different sides of a building can be in different partitions. For example, on the first floor of a building, all east-facing electrochromic windows can be in
在一些實施例中,分區中之至少兩個(例如,所有)電致變色窗可由同一窗控制器或同一組窗控制器控制。在一些其他實施例中,分區中之至少兩個(例如,所有)電致變色窗可由不同窗控制器控制。In some embodiments, at least two (eg, all) of the electrochromic windows in the partition may be controlled by the same window controller or the same group of window controllers. In some other embodiments, at least two (eg, all) of the electrochromic windows in the partitions may be controlled by different window controllers.
在一些實施例中,分區中之至少兩個可著色(例如,電致變色)窗可由自光學(例如,透射率)感測器接收輸出信號之一及/或多個窗控制器控制。在一些實施例中,透射率感測器可接近分區中之窗安裝。舉例而言,可將透射率感測器安裝於包括於分區中之框架中或上,該框架含有IGU(例如,安裝於諸如豎框或橫檔之窗框部分中或上)。在一些其他實施例中,包括建築物之單側上之窗的分區中之可著色(例如,電致變色)窗可由自光學(例如,透射率)感測器接收輸出信號之一或多個窗控制器控制。In some embodiments, at least two tintable (eg, electrochromic) windows in a partition may be controlled by one of receiving output signals from an optical (eg, transmittance) sensor and/or multiple window controllers. In some embodiments, the transmittance sensor may be mounted proximate the window in the partition. For example, the transmittance sensor may be mounted in or on a frame included in the partition containing the IGU (eg, mounted in or on a sash portion such as a mullion or rung). In some other embodiments, a tintable (eg, electrochromic) window in a partition including a window on a single side of a building may receive one or more output signals from an optical (eg, transmittance) sensor window controller control.
在一些實施例中,第二分區中之房間的使用者(例如,建築物管理器及/或佔用者)可手動地指示(使用色調命令、清透命令或來自例如BMS之使用者控制台的命令)第二分區(例如,受控分區)中之可著色(例如,電致變色)窗進入諸如有色狀態(位準)或清透狀態之色調位準。在一些實施例中,當利用此手動命令覆寫第二分區中之窗的色調位準時,第一分區(例如,主控分區)中之電致變色窗保持在自(例如,透射率)感測器接收到之輸出的控制下。第二分區可保持在手動命令模式下一段時間且接著回復至處於來自透射率感測器之輸出的控制下。舉例而言,在接收到覆寫命令後,第二分區可保持在手動模式下一小時,且接著可回復至處於來自透射率感測器之輸出的控制下。In some embodiments, users of rooms in the second partition (eg, building managers and/or occupants) may manually instruct (using a tint command, a clear command, or from a user console such as a BMS) command) the tintable (eg, electrochromic) windows in the second partition (eg, the controlled partition) to enter a tint level such as a tinted state (level) or a clear state. In some embodiments, the electrochromic windows in the first partition (eg, the master partition) remain in a self (eg, transmittance) sense when the tint level of the windows in the second partition is overridden with this manual command. under the control of the output received by the detector. The second partition may remain in the manual command mode for a period of time and then return to be under control of the output from the transmittance sensor. For example, after receiving the overwrite command, the second partition may remain in manual mode for an hour, and then may return to being under control of the output from the transmittance sensor.
在一些實施例中,建築物管理者、第一分區中之房間的佔用者或其他人員可手動地指示(使用色調命令或來自例如BMS之使用者控制台的命令)第一分區(例如,主控分區)中之窗進入諸如有色狀態或清透狀態之色調位準。在一些實施例中,當利用此手動命令覆寫第一分區中之窗的色調位準時,第二分區(例如,受控分區)中之電致變色窗保持在來自外部感測器之控制輸出下。第一分區可保持在手動命令模式下一段時間且接著回復至處於來自透射率感測器之輸出的控制下。舉例而言,在接收到覆寫命令之後,第一分區可保持在手動模式下一小時,且接著可回復至處於來自透射率感測器之輸出的控制下。在一些其他實施例中,第二分區中之電致變色窗可保持在其在接收到用於第一分區之手動覆寫時所處的色調位準下。第一分區可保持在手動命令模式下一段時間且接著第一分區及第二分區兩者可回復至處於來自透射率感測器之輸出的控制下。In some embodiments, a building manager, an occupant of a room in the first partition, or other personnel may manually instruct (using a tint command or a command from a user console such as a BMS) the first partition (eg, the main control partition) into a hue level such as a tinted state or a clear state. In some embodiments, the electrochromic windows in the second partition (eg, controlled partitions) remain at the control output from the external sensor when the tint level of the windows in the first partition is overridden with this manual command Down. The first partition may remain in the manual command mode for a period of time and then return to be under control of the output from the transmittance sensor. For example, after receiving the overwrite command, the first partition may remain in manual mode for an hour, and then may return to being under control of the output from the transmittance sensor. In some other embodiments, the electrochromic window in the second partition may remain at the tint level it was at when it received the manual overwrite for the first partition. The first partition may remain in the manual command mode for a period of time and then both the first and second partitions may return to be under control of the output from the transmittance sensor.
無關於窗控制器為獨立窗控制器抑或與建築物網路介接,可使用控制可著色窗之本文中所描述的任一種方法來控制可著色窗之色調。Regardless of whether the window controller is a stand-alone window controller or is interfaced with a building network, the tint of a tintable window can be controlled using any of the methods described herein for controlling a tintable window.
在一些實施例中,本文中所描述之窗控制器包括用於窗控制器、感測器及(例如,分開的)通信節點之間的有線或無線通信的組件。無線及/或有線通信可藉由(例如,直接)與窗控制器介接之通信介面實現。此介面可為微處理器原生的或經由使得能夠進行此等功能之額外電路系統提供。In some embodiments, the window controllers described herein include components for wired or wireless communication between the window controller, sensors, and (eg, separate) communication nodes. Wireless and/or wired communication can be achieved through a communication interface (eg, directly) interfacing with the window controller. This interface may be native to the microprocessor or provided via additional circuitry that enables these functions.
用於無線通信之分開的通信節點可為例如另一無線窗控制器、終端、中間或主窗控制器、遙控裝置或BMS。在窗控制器中使用無線通信用於以下操作中之至少一者:程式化及/或操作電致變色窗505
;自本文中所描述之各種感測器及協定收集來自EC窗505
之資料;及/或使用電致變色窗505
作為用於無線通信之中繼點。自電致變色窗505
收集之資料可包括計數資料,諸如EC裝置已啟動之次數;EC裝置隨時間、電流、電壓之效率;資料收集時間及/或日期;窗識別編號;窗部位;窗特性及其類似者。窗特性可包含可著色材料(例如,電致變色構造)或窗格之特性(例如,厚度、長度及寬度)。A separate communication node for wireless communication may be, for example, another wireless window controller, a terminal, an intermediate or main window controller, a remote control device or a BMS. Using wireless communication in the window controller for at least one of: programming and/or operating the
在一個實施例中,無線通信至少部分地用以例如經由紅外線(IR)及/或射頻(RF)信號操作相關聯之電致變色窗505
。在某些實施例中,控制器將包括無線協定晶片,諸如藍牙、EnOcean、WiFi、紫蜂(Zigbee)及其類似者。窗控制器可經組態以用於經由網路進行無線通信。至窗控制器之輸入可由終端使用者直接地或經由無線通信在壁開關處手動地輸入,或輸入可來自建築物之BMS,電致變色窗為該建築物之組件。In one embodiment, wireless communication is used, at least in part, to operate the associated
在一個實施例中,當窗控制器為控制器之分散式(例如,及階層式)網路的部分時,無線通信用以經由具有無線通信組件之控制器的分散式網路將資料轉移至複數個電致變色窗中之至少一者(例如,每一者)及自複數個電致變色窗中之至少一者(例如,每一者)轉移資料。舉例而言,再次參看圖 6
,主控制器603
與網路控制器607a
及607b
中之至少一者(例如,每一者)無線通信,該等網路控制器又與終端控制器608
無線通信,該等終端控制器與電致變色窗相關聯。主控制器603
可與BMS605
無線通信。在一個實施例中,無線地執行窗控制器中之至少一個層級的通信。在其他實施例中,通信可包含有線通信。In one embodiment, when the window controller is part of a distributed (eg, and hierarchical) network of controllers, wireless communication is used to transfer data to the Data is transferred from at least one (eg, each) of the plurality of electrochromic windows and from at least one (eg, each) of the plurality of electrochromic windows. For example, referring again to FIG. 6 ,
在一些實施例中,多於一個無線通信模式用於窗控制器分散式網路中。舉例而言,主窗控制器可經由WiFi及/或紫蜂與中間控制器無線通信,而中間控制器經由藍牙、紫蜂、EnOcean及/或其他協定與終端控制器通信。在另一實例中,窗控制器具有冗餘無線通信系統,以靈活地選擇終端使用者進行無線通信。In some embodiments, more than one wireless communication mode is used in the window controller decentralized network. For example, the master window controller may communicate wirelessly with the intermediate controller via WiFi and/or ZigBee, while the intermediate controller communicates with the end controller via Bluetooth, ZigBee, EnOcean, and/or other protocols. In another example, the window controller has a redundant wireless communication system to flexibly select end users for wireless communication.
舉例而言,主窗控制器及/或中間窗控制器與終端窗控制器之間的無線通信提供避免裝設硬通信線的優點。對於窗控制器與BMS之間的無線通信亦係如此。在一個態樣中,此等作用中之無線通信適用於至及/或自電致變色窗之資料轉移,其用於操作窗及將資料提供至例如BMS,以最佳化建築物中之環境及能量節省。窗部位資料以及來自感測器之反饋經協同作用以用於此最佳化。舉例而言,將顆粒級(逐窗)微氣候資訊饋入至BMS中以便最佳化建築物之各種環境。For example, wireless communication between the main window controller and/or the intermediate window controller and the terminal window controller provides the advantage of avoiding the need for hard communication wires. The same is true for wireless communication between the window controller and the BMS. In one aspect, these wireless communications in action are suitable for data transfer to and/or from electrochromic windows for operating the windows and providing data to, for example, a BMS to optimize the environment in a building and energy saving. Window site data and feedback from the sensors are used synergistically for this optimization. For example, particle-level (window-by-window) microclimate information is fed into the BMS to optimize the various environments of the building.
圖 7
為根據實施例的用於控制建築物(例如,圖 6
中所展示之建築物601
)之一或多個可著色窗之功能(例如,轉變至不同色調位準)的系統700
之組件的方塊圖之實例。系統700
可為由BMS(例如,圖 6
中所展示之BMS605
)管理之系統中之一者,或可獨立於BMS操作。 7 are components of a
系統700
包括具有窗控制器之網路的窗控制系統702
,該等窗控制器可將控制信號發送至可著色窗以控制其功能。系統700
包括與主控制器703
電子通信之網路701
。可經由網路701
將用於控制可著色窗之功能的預測控制邏輯、其他控制邏輯及指令、感測器資料及/或關於晴空模型之排程資訊傳達至主控制器703
。網路701
可為有線及/或無線網絡(例如,雲端網路)。在一個實施例中,網路701
可與BMS通信以允許BMS經由網路701
將用於控制可著色窗之指令發送至建築物中之可著色窗。
系統700
包括可著色窗(未圖示)之EC裝置780
及可選的壁開關790
,其兩者均與主控制器703
電子通信。在此所說明實例中,主控制器703
可將控制信號發送至EC裝置780
以控制具有EC裝置780
之可著色窗的色調位準。每一壁開關790
與EC裝置780
及主控制器703
通信。終端使用者(例如,具有可著色窗之房間的佔用者)可使用壁開關790
來輸入覆寫色調位準,且可使用具有EC裝置780
之可著色窗的其他功能。The
在圖 7
中,窗控制系統702
經描繪為窗控制器之分散式網路,該等窗控制器包括主控制器703
、與主控制器703
通信之複數個網路控制器705
以及多組複數個終端或分葉窗控制器710
。每組複數個終端或分葉窗控制器710
與單個網路控制器705
通信。圖 7
中之系統700
的組件在一些方面可類似關於圖 6
所描述之組件。舉例而言,主控制器703
可類似於主控制器603
且網路控制器705
可類似於網路控制器607
。圖 7
之分散式網路中的窗控制器中之每一者可包括處理器(例如,微處理器)及/或與處理器電通信之電腦可讀媒體。In FIG. 7 , a
在圖 7
中,每一分葉或終端窗控制器710
與單個可著色窗之EC裝置780
通信以控制建築物中之彼可著色窗的色調位準。在IGU之狀況下,分葉或終端窗控制器710
可與IGU之多個片上的EC裝置780
通信以控制IGU之色調位準。在一些實施例中,至少一個(例如,每一)分葉或終端窗控制器710
可與複數個可著色窗通信。分葉或終端窗控制器710
可整合至可著色窗中或可與其控制之可著色窗分開。圖 7
中之分葉及終端窗控制器710
可類似於圖 6
中之終端或分葉控制器608
及/或可類似於關於圖 4
所描述之窗控制器450
。In Figure 7 , each split or
在一些狀況下,來自壁開關790
之信號可覆寫來自窗控制系統702
之信號。在其他狀況(例如,高需求狀況)下,來自窗控制系統702
之控制信號可覆寫來自壁開關1490
之控制信號。每一壁開關790
亦與分葉或終端窗控制器710
通信以將關於自壁開關790
發送之控制信號的資訊(例如,時間、日期、所請求之色調位準等)發送回至主窗控制器703
。在一些狀況下,(例如,亦)可手動地操作壁開關790
。在其他狀況下,可由終端使用者使用遠端裝置(例如,行動電話、平板電腦等)無線地控制壁開關790
,該遠端裝置例如使用紅外線(IR)及/或射頻(RF)信號發送控制信號之無線通信。在一些狀況下,壁開關790
可包括無線協定晶片,諸如藍牙、EnOcean、WiFi、紫蜂及其類似者。儘管圖 7
中所描繪之壁開關790
位於壁上,但系統700
之其他實施例可具有位於房間中其他處之開關。In some cases, the signal from the
習知智慧型窗及/或遮光控制系統主動地模型化建築物上之陰影及反射,其對於建築物處之運算資源為繁瑣且低效的。本文中所描述之系統架構可能不需要控制系統主動地產生建築物之模型。實情為,可在雲端網路或與控制系統分開之其他網路上產生及/或維護特定於建築物地點之模型。舉例而言,神經網路模型(例如,深度神經網路(DNN)及/或長短期記憶體(LSTM))可經初始化、重新訓練,及/或在雲端網路或與窗控制系統分開之其他網路上執行的實時模型以及來自此等模型之色調排程資訊可經推送至窗控制系統840
。可用於一些實施方案中之實例DNN架構包括卷積神經網路(CNN)、遞迴神經網路(RNN)、深度信念網路(DBN)及其類似者。Conventional smart window and/or shading control systems actively model shadows and reflections on buildings, which are cumbersome and inefficient for computing resources at the building. The system architecture described herein may not require the control system to actively generate a model of the building. Indeed, building site-specific models may be generated and/or maintained on a cloud network or other network separate from the control system. For example, neural network models (eg, deep neural networks (DNN) and/or long short-term memory (LSTM)) can be initialized, retrained, and/or networked in the cloud or separately from the window control system Other real-time models running on the network and tint schedule information from these models can be pushed to the
色調排程資訊可用以定義自此等模型導出且被推送至窗控制系統之規則。窗控制系統可利用色調排程資訊(例如,自為所討論建築物定製之預定義模型導出),以作出在可著色窗處實施之最終著色決策。可在基於雲端之3D模型化平台上維護3D模型,例如,該模型化平台可產生3D模型之視覺效果以允許使用者管理用於設置及定製建築物地點之輸入及應用於可著色窗之對應最終色調狀態。一旦色調排程資訊經載入至窗控制系統中,則可能不需要模型化計算以佔用控制系統之運算能力。可在需要時(例如,按需求或在預定排程中)將由模型之任何改變產生的色調排程資訊推送至窗控制系統。應理解,儘管本文中關於控制可著色窗來描述系統架構,但建築物處之其他組件及系統可另外或替代地藉由此架構控制。The tint schedule information can be used to define rules derived from these models and pushed to the window control system. The window control system can utilize tinting schedule information (eg, derived from a predefined model customized for the building in question) to make final tinting decisions to implement at tintable windows. 3D models can be maintained on a cloud-based 3D modeling platform that, for example, can generate visuals of 3D models to allow users to manage inputs for setting and customizing building locations and application to tinted windows. Corresponds to the final tone state. Once the tint schedule information is loaded into the window control system, modeling calculations may not be required to take up the computing power of the control system. The tint schedule information resulting from any changes to the model can be pushed to the window control system when needed (eg, on demand or in a predetermined schedule). It should be understood that although the system architecture is described herein with respect to controlling tintable windows, other components and systems at the building may additionally or alternatively be controlled by this architecture.
在各種實施方案中,系統架構包括(例如,基於雲端之)模組以設置及/或定製封閉體(例如,建築物地點)之3D模型。在一些實施例中,基於雲端之3D模型系統使用建築模型作為輸入來初始化建築物地點之3D模型,例如可使用Autodesk ®Revit模型或其他行業標準建築物模型。呈最簡單形式之3D模型包括建築物之結構的外表面(包括窗開口)及建築物之內部的剝離版本(僅具有地板及壁)。更複雜之模型可包括建築物周圍之物件的外表面以及建築物之內部及外部的更詳細特徵。系統架構可包括(例如,基於雲端之)晴空模組,其將反射或非反射性質指派給3D模型中之物件的外表面,界定內部三維佔用區,將ID指派給窗及/或至少部分地基於來自使用者及/或感測器之輸入將窗分組成分區。所得晴空3D模型(例如,具有帶指派屬性之組態資料的3D模型)之時變模擬可用以判定在晴空條件下在太陽之不同位置處的日光方向且考慮(i)來自建築物地點處之物件的陰影及/或反射,(ii)進入建築物之空間的日光及/或(iii)日光之3D投影與建築物中之三維佔用區的相交。在一些實施例中,晴空模組使用此資訊來判定對於特定佔用區(例如,自佔用者之視角),某些條件是否存在,諸如眩光條件、直連反射條件、間接反射條件及/或被動加熱條件。在一些實施例中,晴空模組至少部分地基於以下各者而判定至少一個(例如,每一)分區在至少一個(例如,每一)時間間隔中之晴空色調狀態:(I)特定條件在彼時間之存在;(II)指派給條件之色調狀態及/或(III)在存在多個條件之情況下不同條件之優先級。可將色調排程資訊(例如,年度排程)傳達至(例如,推送至)建築物處之控制系統的例如主控制器。至少部分地基於感測器資料,諸如來自紅外線感測器及/或光感測器(例如,感測可見光譜中之光)的量測值,控制系統可判定至少一個(例如,每一)分區在至少一個(例如,每一)時間間隔中的基於天氣之色調狀態。控制系統接著判定基於天氣之色調狀態及晴空色調狀態的最小值以設定最終色調狀態,且發送色調指令以在可著色窗之分區處實施最終色調狀態。因此,在一些實施例中,窗控制系統不會模型化建築物或建築物周圍及內部的3D參數,其係離線進行,且因此控制系統之運算能力可用於其他任務,諸如至少部分地基於由控制系統接收之模型及/或其他輸入而應用色調狀態。In various implementations, the system architecture includes modules (eg, cloud-based) to set up and/or customize 3D models of enclosures (eg, building sites). In some embodiments, the cloud-based 3D modeling system uses a building model as input to initialize a 3D model of a building location, such as an Autodesk® Revit model or other industry standard building model. A 3D model in its simplest form includes the exterior surfaces of the building's structure (including window openings) and a stripped-out version of the building's interior (with only the floor and walls). More complex models may include the exterior surfaces of objects surrounding the building and more detailed features of the interior and exterior of the building. System architecture may include (eg, cloud-based) clear sky modules that assign reflective or non-reflective properties to exterior surfaces of objects in 3D models, define interior 3D footprints, assign IDs to windows and/or at least partially The windows are grouped into partitions based on input from users and/or sensors. Time-varying simulations of the resulting clear sky 3D models (eg, 3D models with configuration data with assigned properties) can be used to determine the direction of sunlight at different locations of the sun under clear sky conditions and take into account (i) solar radiation from the building site. Shadows and/or reflections of objects, (ii) sunlight entering the space of the building and/or (iii) the intersection of the 3D projection of sunlight and the three-dimensional occupancy in the building. In some embodiments, the clear sky module uses this information to determine whether certain conditions exist, such as glare conditions, direct reflection conditions, indirect reflection conditions, and/or passive conditions, for a particular occupancy area (eg, from the occupant's perspective) heating conditions. In some embodiments, the clear sky module determines the clear sky hue state of at least one (eg, each) partition in at least one (eg, each) time interval based at least in part on: (I) a particular condition is the existence of that time; (II) the hue state assigned to the condition and/or (III) the priority of different conditions in the presence of multiple conditions. The hue schedule information (eg, annual schedule) may be communicated (eg, pushed) to, eg, a master controller of a control system at the building. Based at least in part on sensor data, such as measurements from infrared sensors and/or light sensors (eg, sensing light in the visible spectrum), the control system may determine at least one (eg, each) Weather-based hue status of the partition in at least one (eg, each) time interval. The control system then determines the minimum of the weather-based hue state and the clear sky hue state to set the final hue state, and sends hue commands to implement the final hue state at the partitions of the tintable windows. Thus, in some embodiments, the window control system does not model the building or 3D parameters around and inside the building, it is done off-line, and thus the computing power of the control system is available for other tasks, such as based at least in part on the The hue state is applied by the model and/or other input received by the control system.
在一些實施例中,控制系統(例如,主控制器)利用一或多個模組(例如,如本文中所描述)。模組可促進控制至少一個可著色窗之色調(例如,藉由提供控制邏輯之至少一部分)。模組可至少部分地基於自真實實體感測器(例如,光感測器、IR感測器或本文中所揭示之任何其他感測器)收集的感測器資料。模組可在未來時間預測感測器值,例如使用機器學習(例如,人工智慧)、天氣預報、歷程感測器量測值及/或即時感測器量測值。模組可利用物理模擬,例如用於天氣預報。處理感測器資料包含執行感測器資料分析。感測器資料分析可包含至少一個合理的決策程序及/或學習。感測器資料分析可用以調整可著色窗之色調。感測器資料分析可用以調整及環境,例如藉由調整影響封閉體之環境的一或多個組件。資料分析可由基於機器之系統(例如,電路系統)執行。該電路系統可屬於處理器。感測器資料分析可利用人工智慧。感測器資料分析可依賴於一或多個模型(例如,數學模型,諸如天氣預報模型)。在一些實施例中,感測器資料分析包含線性回歸、最小平方擬合、高斯程序回歸、核回歸、非參數乘法回歸(NPMR)、回歸樹、局部回歸、半參數回歸、等滲回歸、多變量自適應回歸樣條(MARS)、邏輯回歸、穩健回歸、多項式回歸、逐步回歸、脊回歸、套索回歸、彈性網回歸、主成份分析(PCA)、奇異值分解、模糊測度論、波萊爾(Borel)測度、漢(Han)測度、風險中性測度、勒貝格(Lebesgue)測度、分組資料處置方法(GMDH)、樸素貝葉斯分類器、k最近相鄰演算法(k-NN)、支援向量機(SVM)、神經網路、支援向量機、分類及回歸樹(CART)、隨機森林、梯度提昇、廣義線性模型(GLM)技術或深度學習技術。In some embodiments, a control system (eg, a master controller) utilizes one or more modules (eg, as described herein). A module may facilitate controlling the tint of at least one tintable window (eg, by providing at least a portion of control logic). The modules may be based, at least in part, on sensor data collected from real-world sensors (eg, light sensors, IR sensors, or any other sensor disclosed herein). The module may predict sensor values at future times, eg, using machine learning (eg, artificial intelligence), weather forecasts, history sensor measurements, and/or real-time sensor measurements. Mods can utilize physics simulation, for example for weather forecasting. Processing sensor data includes performing sensor data analysis. Sensor data analysis may include at least one rational decision-making process and/or learning. Sensor data analysis can be used to adjust the tint of the tintable window. Sensor data analysis can be used to adjust the environment, such as by adjusting one or more components that affect the environment of the enclosure. Data analysis may be performed by machine-based systems (eg, circuitry). The circuitry may belong to a processor. Sensor data analysis can leverage artificial intelligence. Sensor data analysis may rely on one or more models (eg, mathematical models, such as weather forecast models). In some embodiments, sensor data analysis includes linear regression, least squares fitting, Gaussian program regression, kernel regression, nonparametric multiplicative regression (NPMR), regression trees, local regression, semiparametric regression, isotonic regression, multiple Variable Adaptive Regression Splines (MARS), Logistic Regression, Robust Regression, Polynomial Regression, Stepwise Regression, Ridge Regression, Lasso Regression, Elastic Net Regression, Principal Component Analysis (PCA), Singular Value Decomposition, Fuzzy Measure Theory, Pole Borel measure, Han measure, Risk neutral measure, Lebesgue measure, Grouped data handling method (GMDH), Naive Bayes classifier, k-Nearest Neighbor algorithm (k-NN) ), support vector machines (SVM), neural networks, support vector machines, classification and regression trees (CART), random forests, gradient boosting, generalized linear model (GLM) techniques or deep learning techniques.
圖 8
為描繪根據各種實施方案的在初始化及定製雲端網路801
中維護之模型及至少部分地基於輸出(諸如,來自模型之規則)控制建築物之可著色窗中所涉及的系統及使用者之架構800
的示意性說明。系統架構800
包括與基於雲端之晴空模組820
通信的基於雲端之3D模型系統810
,其中810
與820
之組合稱為模組A。在一個實施例中,模組A將輸入提供至窗控制系統840
。3D模型系統810
可初始化及/或修正建築物地點之3D模型且將3D模型之資料傳達至晴空模組820
。由3D模型系統初始化之3D模型包括建築物地點處之周圍結構及其他物件的外表面以及剝去除壁、地板及外表面以外之全部的建築物。基於雲端之晴空模組820
可將屬性指派給3D模型以產生晴空3D模型,諸如眩光/陰影模型、反射模型及/或被動加熱模型中之一或多者。基於雲端之系統可例如使用應用程式介面(API)經由(例如,雲端)網路彼此通信且與其他應用程式通信。基於雲端之3D模型系統810
及晴空模組820
兩者包括如本文中所描述之邏輯。應理解,此等基於雲端之模組(以及本文中所描述之其他模組)之邏輯可儲存於例如雲端網路之伺服器的電腦可讀媒體(例如,記憶體)中。一或多個處理器(例如,在雲端網路中之伺服器上)可與電腦可讀媒體通信,例如以執行指令從而執行邏輯之功能。在一個實施例中,窗控制系統840
自本文中所描述之模組B接收輸入。在另一實施例中,窗控制系統840
自模組A、C1及/或D1接收輸入。 8 is a diagram depicting the systems and uses involved in initializing and customizing a model maintained in a
晴空模組820
可使用建築物地點之3D模型以隨時間產生在晴空條件下之太陽之不同位置的模擬,以判定來自建築物地點處及周圍之一或多個物件的眩光、陰影及/或反射。舉例而言,晴空模組820
可產生晴空眩光/陰影模型及/或反射模型。晴空模組可利用光線追蹤引擎來至少部分地基於在晴空條件下之陰影及反射而判定穿過建築物之窗開口的直射日光。晴空模組820
可利用陰影及反射資料來判定建築物之佔用區(亦即,佔用者之可能部位)處的眩光、反射及/或被動加熱條件的存在。基於雲端之晴空模組820
可至少部分地基於此等條件中之一或多者而判定建築物之分區中之至少一個(例如,每一者)的色調狀態之年度排程(或其他選定時間段)。基於雲端之晴空模組820
將色調排程資訊傳達(例如,推送)至窗控制系統840
。The
在一些實施例中,窗控制系統840
包括窗控制器網路,諸如描述於圖 6
及圖 7
中之網路。控制系統840
與建築物中之可著色窗的分區通信,該等分區在圖 8
中描繪為自第1分區872
至第n分區874
之一系列分區。窗控制系統840
判定最終色調狀態且發送色調指令以控制可著色窗之色調狀態。最終色調狀態可至少部分地基於(例如,年度)排程資訊、感測器資料及/或天氣饋入資料而判定。如關於所說明之系統架構800
所描述,控制系統840
可能不在模型化時產生模型(或以其他方式投入運算能力)。在一些實施例中,可能特定於建築物地點之模型經建立、定製且儲存於雲端網路801
中。可最初且視情況僅在需要更新3D模型(例如,改變建築物佈局,周圍區域中存在新物件或其類似者)時將預定義色調排程資訊傳達(例如,推送)至窗控制系統。In some embodiments,
系統架構800
可包括圖形使用者介面(GUI)890
,例如以用於與客戶及/或其他使用者通信,從而提供應用程式服務、報告、3D模型之視覺效果,接收用於設置3D模型之輸入及/或接收用於定製3D模型之輸入。可例如經由GUI將3D模型之視覺效果提供至使用者及/或自使用者接收3D模型之視覺效果。在圖 8
中所展示之實例中,所說明之使用者包括在地點處之故障排除中所涉及的地點操作892
,且能夠檢閱視覺效果並編輯3D模型。使用者包括客戶成功管理者(CSM)894
,其能夠檢閱視覺效果及3D模型之現場組態改變。使用者包括與各種客戶通信之客戶組態入口898
。經由客戶組態入口站898
,客戶可檢閱映射至3D模型之資料的各種視覺效果且提供輸入以改變建築物地點處之組態。來自使用者之輸入的一些實例可包括空間組態,諸如佔用區域、建築物地點處之3D物件界定、用於特定條件之色調狀態以及條件之優先級。提供至使用者之輸出的一些實例包括3D模型上之資料的視覺效果、標準報告及建築物之效能評估。出於說明性目的而描繪某些使用者。應理解,可包括其他或額外使用者。
儘管本文中描述系統架構之許多實例,其中3D模型系統、晴空模組及神經網路模型駐存於雲端網路上,但在另一實施方案中,一或多個此等模組及模型未必需要駐存於雲端網路上。舉例而言,本文中所描述之3D模型系統、晴空模組及或其他模組或模型可駐存於獨立電腦或其他運算裝置上,該獨立電腦或其他運算裝置與窗控制系統分開且與窗控制系統通信。作為另一實例,本文中所描述之神經網路模型可駐存於窗控制器上,諸如主窗控制器或網路窗控制器。Although many examples of system architectures are described herein in which 3D model systems, clear sky modules, and neural network models reside on a cloud network, in another implementation, one or more of these modules and models may not necessarily require Residing on the cloud network. For example, the 3D model system, clear sky module, and or other modules or models described herein may reside on a stand-alone computer or other computing device that is separate from the window control system and separate from the window. Control system communication. As another example, the neural network models described herein may reside on a window controller, such as a master window controller or a network window controller.
在某些實施例中,用於訓練及執行本文中所描述之系統架構之各種模型(例如,DNN及LSTM模型)及模組的運算資源包括:(1)窗控制系統之本端資源;(2)與窗控制系統分開之遠端源;或(3)共用資源。在第一狀況下,用於訓練及執行各種模型及模組之運算資源駐存於窗控制器之分散式網路(諸如,圖 6
中之窗控制系統602
的分散式網路)的主控制器或一或多個窗控制器上。在第二狀況下,用於訓練及執行各種模型及模組的運算資源駐存於與窗控制系統分開的遠端資源上。舉例而言,運算資源可駐存於外部第三方網路之伺服器上或基於可租借雲端之資源的伺服器上,諸如在圖 8
中之雲端網路801
上為可用的。作為另一實例,運算資源可駐存於地點處之與窗控制系統分開且與窗控制系統通信的獨立運算裝置之伺服器上。在第三狀況下,用於訓練及執行各種模型及模組之運算資源駐存於共用資源(本端及遠端兩者)上。舉例而言,遠端資源(諸如,在圖 8
中之雲端網路801
上可用的基於可租借雲端之資源)在夜間執行DNN模型及/或LSTM模型之每日重新訓練操作,且本端資源(諸如,圖 6
中之窗控制系統602
的主窗控制器或窗控制器群組)在需要作出色調決策之日執行實時模型。In some embodiments, the computing resources used to train and execute the various models (eg, DNN and LSTM models) and modules of the system architecture described herein include: (1) local resources of the window control system; ( 2) a remote source separate from the window control system; or (3) a shared resource. In a first state, the computing resources used to train and execute various models and modules reside in the master control of a distributed network of window controllers (such as the distributed network of
在各種實施方案中,系統架構具有基於雲端之3D模型化系統,該模型化系統可使用3D模型化平台來產生建築物地點之3D模型(例如,實體模型、表面模型或線框模型)。各種市售程式可用作3D模型化平台。此市售程式之實例為由華盛頓州西雅圖(Seattle Washington)之McNeel North America產生的Rhino® 3D軟體。市售程式之另一實例為加利福尼亞州聖拉斐爾(San Rafael, California)之Autodesk®的Autocad®電腦輔助設計及繪圖軟體應用程式。可用以實施本發明之態樣的工具之其他實例為反射/直接眩光工具,該工具可作為WRLD3d自英國之鄧迪市DD1 1NJ(Dundee city DD1 1NJ, United Kingdom)之WRLD購得,及作為用於Revit及Rhino之IMMERSIFY! VR可獲自https://immersify.eu之Immersify Project。In various embodiments, the system architecture has a cloud-based 3D modeling system that can use a 3D modeling platform to generate 3D models (eg, solid models, surface models, or wireframe models) of building locations. Various commercially available programs are available as 3D modeling platforms. An example of such a commercially available program is the Rhino® 3D software produced by McNeel North America of Seattle Washington. Another example of a commercially available program is the Autocad® computer-aided design and drafting software application from Autodesk® of San Rafael, California. A further example of a tool that can be used to implement aspects of the invention is a reflective/direct glare tool, available as WRLD3d from WRLD, Dundee city DD1 1NJ, United Kingdom, and available as WRLD3d. IMMERSIFY! VR in Revit and Rhino is available from the Immersify Project at https://immersify.eu.
在一些實施例中,3D模型為建築物之三維表示,且視情況為具有可著色窗之建築物的地點處之其他物件的三維表示。建築物地點係指所關注建築物周圍之區。該區可界定為包括將在建築物上產生陰影及/或反射之建築物周圍的所有物件。3D模型可包括建築物及建築物周圍之其他物件的外表面以及剝去除壁、地板及外表面以外之其所有表面之建築物的三維表示。3D模型系統可例如使用3D模型(諸如,Revit或其他行業標準建築物模型)自動地及將模型化建築物剝去除壁、地板及具有窗開口之外表面以外之其所有表面來產生3D模型。3D模型中之任何其他物件將自動地被剝去除外表面以外的所有元件。作為另一實例,可使用3D模型化軟體從頭開始產生3D模型。圖 9 中展示具有三棟建築物之建築物地點的3D模型之實例。In some embodiments, the 3D model is a three-dimensional representation of a building, and optionally other objects at the location of the building with tintable windows. Building site means the area around the building of interest. The zone can be defined to include all objects around the building that will create shadows and/or reflections on the building. A 3D model may include the exterior surfaces of the building and other objects surrounding the building and a three-dimensional representation of the building stripped of all surfaces except walls, floors and exterior surfaces. A 3D model system can generate a 3D model, eg, using a 3D model such as Revit or other industry standard building models, automatically and by stripping the modeled building of all surfaces except the walls, floors, and surfaces with the exception of window openings. Any other objects in the 3D model will automatically be stripped of all components except the outer surface. As another example, a 3D model may be generated from scratch using 3D modeling software. An example of a 3D model of a building site with three buildings is shown in FIG. 9 .
在一些實施例中,封閉體之模型包含封閉體之架構(例如,包括一或多個固定裝置)。模型可包括封閉體(例如,包括建築物之設施)的2D及/或3D表示。模型可識別此等固定裝置所包含之一或多種材料。模型可包含建築物資訊模型化(BIM)軟體(例如,Autodesk Revit)產品(例如,檔案)。BIM產品可允許使用者利用參數模型化及繪圖元件設計建築物。在一些實施例中,BIM為允許智慧、3D及/或參數化基於物件之設計的電腦輔助設計(CAD)範例。BIM模型可含有關於建築物自概念至建構至解除調試之整個生命週期的資訊。此功能性可由可被稱作參數改變引擎之BIM模型的基礎關係資料庫架構提供。BIM產品可使用.RVT檔案用於儲存BIM模型。參數化物件(無論為3D建築物物件(諸如,窗或門)抑或2D繪圖物件)可被稱作族,可保存於.RFA檔案中且可匯入至RVT資料庫中。存在預繪製RFA程式庫的許多源。In some embodiments, the model of the enclosure includes the architecture of the enclosure (eg, including one or more fixtures). A model may include a 2D and/or 3D representation of an enclosed volume (eg, a facility including a building). Models can identify one or more materials contained in these fixtures. Models may include Building Information Modelling (BIM) software (eg, Autodesk Revit) products (eg, files). BIM products allow users to design buildings using parametric modeling and drawing components. In some embodiments, BIM is a computer-aided design (CAD) paradigm that allows intelligent, 3D, and/or parametric object-based design. A BIM model can contain information about the entire life cycle of a building from concept to construction to decommissioning. This functionality may be provided by the underlying relational database architecture of the BIM model which may be referred to as a parameter change engine. BIM products can use .RVT files to store BIM models. Parametric objects (whether 3D building objects (such as windows or doors) or 2D drawing objects) can be called families, saved in .RFA files and imported into the RVT database. There are many sources of pre-drawn RFA libraries.
BIM(例如,Revit)可允許使用者在圖形「族編輯器」中建立參數組件。模型可俘獲組件、視圖及註釋之間的關係,使得自動地傳播任何元件之改變以使模型保持一致。舉例而言,移動壁會更新相鄰壁、地板及屋頂,校正尺寸及註釋之置放及值,調整在排程中報告之樓層面積,重新繪製截面圖等。BIM可促進設施之模型與(例如,所有)文件之間的連續連接、更新及/或協調,例如用於簡化模型之即時更新及/或即刻修正。組件、視圖及註釋之間的雙向結合性之概念可為BIM之特徵。BIM (eg, Revit) allows users to create parametric components in the graphical "Family Editor". Models capture the relationships between components, views, and annotations so that any changes to components are automatically propagated to keep the model consistent. For example, moving walls updates adjacent walls, floors, and roofs, corrects placement and values of dimensions and annotations, adjusts floor areas reported in schedules, redraws sections, and more. BIM may facilitate continuous linking, updating and/or coordination between models of a facility and (eg, all) documents, eg, to simplify instant updates and/or instant corrections of models. The concept of bidirectional associativity between components, views and annotations can be a feature of BIM.
大規模建築物中之大量可著色窗(諸如,電致變色窗,有時被稱作「智慧型窗」)的最近裝設已導致對例如涉及廣泛運算資源之複雜控制系統的需求增加。舉例而言,大規模建築物中部署之大量可著色窗可具有需要複雜反射及眩光模型的大量分區(例如,10,000個)。隨著此等可著色窗持續獲得認可且被更廣泛地部署,其將需要將涉及大量資料之更複雜系統及模型。The recent installation of large numbers of tintable windows (such as electrochromic windows, sometimes referred to as "smart windows") in large-scale buildings has led to increased demands on complex control systems involving, for example, extensive computing resources. For example, a large number of tintable windows deployed in large scale buildings may have a large number of partitions (eg, 10,000) requiring complex reflection and glare models. As these tintable windows continue to gain acceptance and are more widely deployed, they will require more complex systems and models that will involve large amounts of data.
本文中所描述之系統架構使用可在本端、在遠端及/或在雲端中實施之3D模型化平台來產生3D模型視覺效果。該等模型包括例如眩光/陰影模型、反射模型及被動加熱模型。3D模型可用以使日光對建築物之內部及外部的影響可視化。圖10為在特定當日時間根據太陽之路徑沿建築物之外表面存在的眩光、陰影、反射及加熱之視覺效果的實例。可在晴空條件下產生視覺效果,例如其係至少部分地基於用於建築物之部位的晴空模型。視覺效果可用以評估及控制建築物之任何樓層上的任何大小之內部空間中之單個及/或多個佔用區及分區中的眩光,且可考慮建築物之外部及其可能在太陽路徑中之特徵(此懸垂物、立柱等)。3D表示可考慮自外部物件及建築物之複雜的彎曲及凸起形狀的主要反射、次要反射、單次反射及/或多次反射;以及其對建築物內之佔用區及分區的影響。視覺效果可用以模型化由直接輻射、由外部物件及建築物反射及/或漫射之輻射以及由外部物件及建築物遮擋之輻射所引起的熱量之存在及/或影響。The system architecture described herein uses a 3D modeling platform that can be implemented locally, remotely, and/or in the cloud to generate 3D model visuals. Such models include, for example, glare/shadow models, reflection models, and passive heating models. 3D models can be used to visualize the effects of sunlight on the interior and exterior of buildings. Figure 10 is an example of the visual effects of glare, shadows, reflections and heating present along the exterior surfaces of a building according to the path of the sun at a particular time of day. Visual effects may be produced in clear sky conditions, eg, based at least in part on clear sky models for parts of buildings. Visual effects can be used to assess and control glare in single and/or multiple occupancies and partitions in interior spaces of any size on any floor of a building, taking into account the exterior of the building and its possible exposure to the sun's path. Features (this overhang, upright, etc.). The 3D representation can take into account primary reflections, secondary reflections, single reflections and/or multiple reflections from external objects and complex curved and convex shapes of buildings; and their effects on occupied areas and partitions within buildings. Visual effects may be used to model the presence and/or effect of heat caused by direct radiation, radiation reflected and/or diffused by external objects and buildings, and radiation occluded by external objects and buildings.
晴空模組包括可經實施以將屬性指派給3D模型從而產生晴空3D模型的邏輯。晴空模組可包括可用以產生其他模型從而判定諸如眩光/陰影模型、反射模型及被動加熱模型之各種條件的邏輯。建築物地點之此等模型可用以產生用於建築物之分區的色調狀態之(例如,年度)排程,該排程被傳達(例如,推送)至建築物處之控制系統,例如以作出(例如,最終)著色決策。藉由此系統架構,大部分資料可保持於(例如,雲端)網路上。在(例如,雲端)網路上保持模型可允許客戶及其他使用者容易存取及/或定製。舉例而言,可將各種模型之視覺效果發送至使用者以允許其檢閱及發送輸入,以例如設置及定製模型及/或覆寫建築物處之最終著色排程或其他系統功能。舉例而言,使用者可使用視覺效果來管理用以將規則指派給晴空模型之輸入,諸如在例如作為地點設置及/或定製之部分的分區管理及/或窗管理中。The clear sky module includes logic that can be implemented to assign properties to the 3D model to generate a clear sky 3D model. The clear sky module can include logic that can be used to generate other models to determine various conditions such as glare/shadow models, reflection models, and passive heating models. These models of building locations can be used to generate (eg, annual) schedules for the tone status of the building's zoning, which schedules are communicated (eg, pushed) to control systems at the building, such as to make ( For example, final) coloring decisions. With this system architecture, most of the data can be kept on the network (eg, in the cloud). Maintaining a model on a network (eg, in the cloud) may allow easy access and/or customization by customers and other users. For example, the visuals of the various models can be sent to the user to allow them to review and send input, such as to set up and customize the model and/or override the final shading schedule at the building or other system functions. For example, a user may use visual effects to manage inputs used to assign rules to clear sky models, such as in partition management and/or window management, for example, as part of location setup and/or customization.
在一些實施例中,系統架構包括用於與各種客戶及其他使用者介接之GUI。GUI可將應用程式服務及/或報告提供至使用者,及/或自使用者接收用於各種模型之輸入。舉例而言,GUI可將各種模型之視覺效果提供至使用者。GUI可提供用於分區管理、窗管理及/或佔用區界定之介面以設置晴空模型。GUI可提供用於鍵入優先級資料、外表面之反射性質、覆寫值及/或其他資料的介面。使用者可使用GUI來定製3D模型之空間,例如在檢視建築物地點之晴空模型的視覺效果之後。定製之一些實例包括:(1)重新結構化建築物地點(移動建築物,修正外表面性質)以查看反射、眩光及加熱條件或建築物之分區之著色的改變;(2)重新結構化建築物之內部結構(壁、地板)及外部殼層以查看改變將如何影響色調狀態;(3)管理窗之分區;(4)改變用於建築物中之材料以查看反射性質之改變及反射模型及色調狀態的對應改變;(5)改變著色優先級以查看如映射至建築物之三維(3D)模型的色調狀態之改變;(6)覆寫排程資料中之色調狀態;(7)修正建築物地點處之建築物及/或(8)添加新條件之模型。In some embodiments, the system architecture includes a GUI for interfacing with various clients and other users. The GUI may provide application services and/or reports to the user, and/or receive input from the user for various models. For example, the GUI may provide the user with visual effects of various models. The GUI may provide interfaces for zone management, window management, and/or occupancy definition to set up clear sky models. The GUI may provide an interface for entering priority data, reflective properties of outer surfaces, override values, and/or other data. The user can use the GUI to customize the space of the 3D model, for example after viewing the visuals of the clear sky model of the building site. Some examples of customization include: (1) re-structuring the building site (moving the building, correcting exterior surface properties) to see changes in reflection, glare and heating conditions or the coloring of the building's zoning; (2) re-structuring Internal structure of the building (walls, floors) and external shell to see how changes will affect the tone state; (3) Manage zoning of windows; (4) Change materials used in the building to see changes in reflective properties and reflections Corresponding changes in model and tone state; (5) changing shading priority to see changes in tone state as mapped to a three-dimensional (3D) model of a building; (6) overriding tone state in schedule data; (7) Modified buildings at building locations and/or (8) added new conditional models.
本文中所描述之系統架構包括控制系統,該控制系統包括控制建築物處之可著色窗(例如,配置於一或多個分區中)之色調位準的控制器之網路。關於圖 6
至圖 8
描述可包括於系統架構之窗控制系統840
中的控制器之一些實例。窗控制器之其他實例描述於2016年10月26日申請且標題為「用於光學可切換裝置之控制器(CONTROLLERS FOR OPTICALLY-SWITCHABLE DEVICES)」的美國專利申請案第15/334,835號中,該申請案特此以全文引用之方式併入。The system architecture described herein includes a control system that includes a network of controllers that control the tint levels of tintable windows (eg, disposed in one or more partitions) at a building. Some examples of controllers that may be included in the system architecture
窗控制系統840
包括用於作出著色決策且發送色調指令以改變可著色窗之色調位準的控制邏輯。在某些實施例中,控制邏輯包括具有基於雲端之3D模型系統810
及基於雲端之晴空模組820
的模組A及下文進一步描述的模組B,其中模組B自具有一或多個光感測器值之模組C及/或自具有一或多個紅外線感測器值之模組D接收信號(參見圖27)。模組C可包括一或多個光感測器,該等光感測器獲取光感測器讀數或可自例如駐存於多感測器裝置或天空感測器中之一或多個光感測器接收具有原始光感測器讀數之信號。類似地,模組D可包括一或多個紅外線感測器及/或周圍環境溫度感測器,該(等)環境溫度感測器獲取溫度讀數或可自例如駐存於多感測器裝置或天空感測器中之一或多個紅外線感測器接收具有原始溫度量測值之信號。
在一些實施例中,著色決策(例如,基於真實實體感測器資料)在本文中可被稱作「智慧」模組。智慧模組可包含模組A、B、C、C1、D及/或D1。智慧模組可至少部分地依賴於過去發生的感測器資料。智慧模組可至少部分地依賴於來自真實實體感測器(例如,本文中所揭示之任何感測器或感測器模組,諸如光感測器、紅外線感測器及/或天空感測器)之感測器資料。智慧模組可能不依賴於虛擬感測器(例如,VSS),例如,如本文中所揭示。In some embodiments, shading decisions (eg, based on real-world sensor data) may be referred to herein as "intelligent" modules. Smart modules may include modules A, B, C, C1, D and/or D1. The smart module may rely, at least in part, on sensor data that occurred in the past. Smart modules may rely, at least in part, on sensors from real entities (eg, any of the sensors or sensor modules disclosed herein, such as light sensors, infrared sensors, and/or sky sensing device) sensor data. Smart modules may not rely on virtual sensors (eg, VSS), eg, as disclosed herein.
圖 11
為在圖 8
中所展示之系統架構800
的系統中之一些之間傳達的資料流之所說明實例。如所展示,模組A(包括810
及820
)將其資訊提供至窗控制系統840
。在一個實施方案中,窗控制系統840
之控制邏輯自模組B接收一或多個輸入,且至少部分地基於自模組A及/或模組B接收到的輸出而設定至少一個(例如,每一)分區之最終色調狀態。在圖 28
中所展示之另一實施方案中,窗控制系統840
之控制邏輯自模組C1及模組D1接收一或多個輸入,且至少部分地基於自模組A、模組C1及模組D1接收到的輸出而設定至少一個(例如,每一)分區之最終色調狀態。 FIG. 11 is an illustrative example of data flow communicated between some of the systems of
圖 12
為藉由晴空模組820
實施以至少部分地基於晴空條件而產生色調排程資訊的某些邏輯運算之實例的示意性說明。在此所說明實例中,晴空模組將指派給至少一個(例如,每一)條件之色調狀態應用於條件值,且接著應用來自優先級資料之優先級以判定至少一個(例如,每一)分區在特定時間之色調狀態。在另一實例中,晴空模組可將來自優先級資料之優先級應用於條件值以判定應用的條件,且接著應用彼條件之色調狀態以判定至少一個(例如,每一)分區在特定時間間隔之色調狀態。在圖 12
中,標題為「表1」之頂部表為藉由晴空模組判定之條件值的表之實例,其包括分區1在一日期間之時間間隔的眩光條件、直接反射條件及被動加熱條件的值。在此實例中,條件值為條件在一日期間之不同時間是否存在的二進位值0/1:0-條件不存在;及1-條件確實存在。圖 12
包括標題為「表2」之第二表,其展示自晴空模組輸出之色調狀態的實例。針對每一條件而將此色調狀態指派給每一分區。舉例而言,對於眩光條件,將分區1指派給色調4;對於反射條件,將分區1指派給色調3;對於被動加熱條件,將分區2指派給色調1。當條件為真時,晴空模組指派色調狀態以應用於彼條件。優先級資料係指用於將條件應用於建築物之每一分區處的優先級之清單。在某些狀況下,優先級資料可由使用者組態的。圖 12
中所說明之標題為「表3」的第三表為使系統知曉哪一條件取得優先級之可組態優先級表(例如,可由使用者組態)的實例。在此實例中,對於建築物之每一分區,針對眩光條件、直接反射條件及被動加熱條件而給定優先級。圖 12
中之底部曲線圖為在一日之一部分內基於應用於頂部表1及表2中之條件值的來自表3之優先級資料而在分區1處判定的色調狀態之實例。 12 is a schematic illustration of an example of certain logical operations implemented by
圖 13 為通過實施方案之系統架構的基於雲端之系統的模型資料流之示意性描繪。3D模型係在3D平台上產生。3D模型包括界定窗開口、壁及地板的建築物之3D版本。可將周圍物件之外表面(及其反射性質)添加至3D模型。3D模型中之窗開口可分組成分區及/或被給定名稱。 13 is a schematic depiction of model data flow through a cloud-based system through an embodiment of the system architecture. The 3D model is generated on the 3D platform. The 3D model includes a 3D version of the building defining window openings, walls and floors. The outer surfaces of surrounding objects (and their reflective properties) can be added to the 3D model. Window openings in the 3D model can be grouped into zones and/or given names.
舉例而言,經由使用者部位GUI自使用者接收資訊。舉例而言,使用者可突出顯示或以其他方式識別佔用部位之2D區域以及建築物(或用以產生3D模型之建築模型中)之3D模型的空間之樓層上的此等佔用部位之期望色調狀態。使用者可使用GUI來定義與至少一個(例如,每一)條件(諸如,直接眩光條件及反射條件)相關聯之至少一個(例如,每一)佔用區的色調狀態。使用者可輸入在地平面直至使用者眼睛高度之間的使用者高度,該高度可用以產生2D區域之3D立體化以產生佔用區之3D體積。在一個實施例中,若使用者不輸入高度,則高度預設(例如,為6呎)。晴空模組條件邏輯可用以產生各種條件模型,包括例如眩光/陰影模型、反射模型及/或加熱模型。此等條件模型中之至少一者可用以產生傳達至窗控制系統之(例如,年度)排程資訊。For example, information is received from the user via the user part GUI. For example, the user may highlight or otherwise identify the desired hue of the 2D area of the occupied parts and the floor of the space of the 3D model of the building (or in the architectural model used to generate the 3D model) for such occupied parts condition. A user may use the GUI to define the hue state of at least one (eg, each) footprint associated with at least one (eg, each) condition, such as a direct glare condition and a reflective condition. The user can input a user height between ground level up to the user's eye height, which can be used to generate a 3D volume of the 2D area to generate a 3D volume of the occupied area. In one embodiment, if the user does not input the height, the height is preset (eg, 6 feet). The clear sky module conditional logic can be used to generate various conditional models including, for example, glare/shadow models, reflection models, and/or heating models. At least one of these conditional models can be used to generate (eg, annual) schedule information that is communicated to the window control system.
在一些實施例中,在地點設置程序期間初始化建築物地點之3D模型。在一些實施方案中,向使用者給與修正模型之能力(例如,經由GUI),例如以定製建築物中之可著色窗及/或其他系統的控制。可藉由使用者經由3D模型化平台上之視覺效果來檢閱此等定製。舉例而言,客戶或其他使用者可在定製之後查看已為建築物設計何結構,且在給定日將如何操作並提供「假設」情境。不同使用者可檢閱儲存於(例如,雲端)網路上之同一3D模型,例如以比較及/或論述將迎合多個使用者之選項。舉例而言,CSM可在晴空條件期間例如藉由設施管理器根據條件、優先級及/或預期行為來檢閱使用者部位、色調狀態。In some embodiments, the 3D model of the building site is initialized during the site setup procedure. In some implementations, the user is given the ability to modify the model (eg, via a GUI), such as to customize controls for tintable windows and/or other systems in a building. These customizations can be reviewed by the user through the visuals on the 3D modeling platform. For example, a client or other user can view after customization what structure has been designed for a building and how it will operate on a given day and provide a "what if" scenario. Different users can review the same 3D model stored on the network (eg, in the cloud), eg, to compare and/or discuss options that will cater to multiple users. For example, the CSM may review user parts, hue status during clear sky conditions, eg, by a facility manager, based on conditions, priorities, and/or expected behavior.
在一些實施例中,地點設置程序包括產生建築物地點之3D模型及/或將屬性指派給3D模型之元件。3D模型平台可用以例如藉由自建築物之建築模型剝除不必要的特徵及建立建築物周圍之物件的外表面來產生建築物地點之3D模型。In some embodiments, the location setting procedure includes generating a 3D model of the building location and/or assigning attributes to elements of the 3D model. A 3D model platform can be used to generate a 3D model of a building site, for example, by stripping unnecessary features from the architectural model of the building and creating the exterior surfaces of objects surrounding the building.
圖 14
為根據各種實施方案的在3D模型平台上初始化3D模型中所涉及的操作之實例流程圖。在一個實施方案中,3D模型係藉由將建築模型剝去所有額外元件而自建築物及/或周圍結構之建築模型自動地產生。舉例而言,可接收建築物之Autodesk® Revit模型,且剝去除壁、地板及包括窗開口之外表面以外的所有元件。此等操作可由3D模型化系統實施。在圖 14
中,3D模型化系統接收針對結構以及建築物地點處之建築物周圍之其他物件的具有可著色窗之建築物的建築模型(1410
)。在操作1420
處,3D模型化系統剝去除表示具有可著色窗之建築物之窗開口、壁、地板及外表面之結構元件以外的全部。在操作1430
處,3D模型化系統建置建築物及建築物周圍之其他物件的外表面,或自周圍物件移除除外表面以外的所有元件。操作1430
之輸出為建築物地點之3D模型。建築物地點之3D模型的實例展示於圖 9
中。在一些實施例中,解除自至少一個(例如,所有)非結構元件剝離模型。 14 is an example flow diagram of operations involved in initializing a 3D model on a 3D model platform, according to various implementations. In one embodiment, the 3D model is automatically generated from the architectural model of the building and/or surrounding structure by stripping the architectural model of all extra elements. For example, an Autodesk® Revit model of a building can be taken and stripped of all elements except walls, floors, and surfaces including outside window openings. Such operations may be performed by a 3D modeling system. In Figure 14 , the 3D modeling system receives an architectural model of a building with tintable windows for the structure and other objects surrounding the building at the building site ( 1410 ). At
圖 15
為根據某些實施方案的在將屬性指派給3D模型,產生條件模型中所涉及的操作以及產生晴空排程資訊所涉及的其他操作的流程圖。可使用晴空模組之邏輯來實施此等操作中之一或多者。如所描繪,操作之輸入為來自3D模型化系統之建築物地點的3D模型。在操作1510
處,將反射或非反射性質指派給建築物地點之3D模型之建築物周圍的物件之表面元件。此等反射性質將用以產生反射模型以評估條件。在1520
處,將唯一窗ID指派給3D模型之每一窗開口。在此窗管理操作中,將窗開口映射至唯一窗/控制器ID。在一個實施方案中,可至少部分地基於在裝設於建築物中時來自窗調試之輸入而驗證及/或修正此等映射。在操作1530
處,將3D模型中之窗開口分組成分區且將分區ID及/或名稱指派給分區。在此分區管理操作中,將3D模型中之窗開口映射至分區。在1540
處,產生模型中之3D佔用區且向其指派色調狀態。舉例而言,使用者可識別3D模型之樓層上的2D佔用區域及佔用者之眼睛高度,且晴空模組之邏輯可產生3D佔用區域至眼睛高度之立體化以產生3D區。在操作1550
處,判定將應用的晴空模型,且運行模型以判定穿過窗開口之日光的3D投影。在此模型管理操作中,根據一個實施方案產生各種晴空模型,例如眩光/陰影模型及反射模型。晴空模組包括光線追蹤引擎,該光線追蹤引擎至少部分地基於一年中之一整日或其他時間段內太陽在天空中之不同位置而判定日光光線之方向,且自建築物周圍之物件的外表面之部位及反射性質而判定反射方向及強度。根據此等判定,可判定穿過3D模型中之窗開口的直射束日光的3D投影。在1560
處,判定來自模型之日光的3D投影與3D佔用區的任何相交之量及持續時間。在1570
處,至少部分地基於在操作1560
處判定之相交性質而評估條件。在操作1580
處,將優先級資料應用於條件值以判定建築物之至少一個(例如,每一)分區隨時間(例如,在(例如,年度)排程中)的色調狀態。將至少部分地基於晴空條件之此等色調狀態傳達至窗控制系統。 15 is a flowchart of operations involved in assigning attributes to a 3D model, generating a conditional model, and other operations involved in generating clear sky schedule information, according to some embodiments. One or more of these operations may be implemented using the logic of the clear sky module. As depicted, the input to the operation is the 3D model of the building site from the 3D modeling system. At
在一些實施例中,在建築物地點之3D模型的設置期間,向至少一個(例如,每一)窗開口指派對應於其本端窗控制器之唯一窗識別碼(ID)。將窗開口指派給窗ID會將窗開口映射至窗控制器。窗ID有效地表示可分組成分區之窗控制器。在將窗及其控制器裝設於建築物中之後,調試操作可用以判定將哪一窗裝設於哪一部位中且與哪一窗控制器配對。來自調試程序之此等關聯可接著用以比較及驗證3D模型中之映射及/或更新3D模型之組態資料中的映射。可判定此類映射之調試程序的實例描述於2017年11月20日申請之標題為「窗網路中之控制器的自動化調試(AUTOMATED COMMISSIONING OF CONTROLLERS IN A WINDOW NETWORK)」的國際專利申請案第PCT/US17/62634號中,該申請案特此以全文引用之方式併入。亦可至少部分地基於其他使用者定製而修正窗開口至窗ID之映射。In some embodiments, at least one (eg, each) window opening is assigned a unique window identification number (ID) corresponding to its local window controller during setup of the 3D model of the building site. Assigning a window opening to a window ID maps the window opening to a window controller. A window ID effectively represents a window controller that can be grouped into partitions. After a window and its controller are installed in a building, a commissioning operation can be used to determine which window is installed in which location and paired with which window controller. These associations from the debugger can then be used to compare and verify the mappings in the 3D model and/or update the mappings in the configuration data of the 3D model. An example of a debugger that can determine such a mapping is described in International Patent Application No. 1, filed on November 20, 2017, entitled "AUTOMATED COMMISSIONING OF CONTROLLERS IN A WINDOW NETWORK". In PCT/US17/62634, this application is hereby incorporated by reference in its entirety. The mapping of window openings to window IDs may also be modified based at least in part on other user customizations.
在一個實施方案中,使用者可在3D平台上之3D模型中選擇窗開口且指派唯一窗id。圖 16
為如適用於建築物之樓層中之十四(14)個窗開口的此實施方案之實例。如所展示,使用者已向此等窗開口指派1至14的窗ID。In one embodiment, the user can select a window opening and assign a unique window id in the 3D model on the 3D platform. Figure 16 is an example of this implementation as applied to fourteen (14) window openings in a floor of a building. As shown, the user has assigned
在一些實施例中,建築物之至少一個(例如,每一)分區包括一或多個可著色窗。可著色窗可在3D模型中表示為開口。分區中之一或多個可著色窗將控制為以相同方式運作。此意謂若與分區中之窗中之一者相關聯的佔用區經歷特定條件,則所有窗將控制為對彼條件作出反應。具有3D模型之屬性的組態資料包括分區性質,諸如名稱、玻璃SHGC及最大內部輻射。佔用者可(例如,手動地)覆寫窗在分區中的包括。In some embodiments, at least one (eg, each) partition of the building includes one or more tintable windows. Shaderable windows can be represented as openings in the 3D model. One or more of the shadeable windows in the partition will be controlled to behave in the same way. This means that if the occupancy associated with one of the windows in the partition experiences a particular condition, all windows will be controlled to react to that condition. Configuration data with properties of the 3D model include zone properties such as name, glass SHGC and maximum internal radiation. An occupant can (eg, manually) override the inclusion of a window in a partition.
在作為3D模型之地點設置或定製之部分的分區管理期間,使用者可界定將一起分組成分區的窗開口且將性質指派給所界定分區。圖 17A
為3D模型化平台上之介面的實例,該平台允許使用者選擇圖 16
中所展示之窗開口以一起分組為(映射至)分區且將該等分區命名。如所展示,將開口1、2及3界定為「分區1」,將開口4至7界定為「分區2」且將開口8至14界定為「分區3」。在一個態樣中,使用者可組合分區使得多個分區以相同方式運作。圖 17B
為3D模型化平台上之介面的實例,該平台允許使用者組合來自圖 17A
之多個分區。如所展示,「分區1」及「分區2」分組在一起。During partition management as part of location setup or customization of the 3D model, the user can define window openings that will be grouped together into partitions and assign properties to the defined partitions. 17A is an example of an interface on a 3D modeling platform that allows the user to select the window openings shown in FIG . 16 to group together (map to) partitions and name the partitions. As shown,
圖 18
為可由使用者使用以將3D模型之未映射空間映射至特定模型化分區的介面之實例。如所展示,使用者已選擇「辦公室1」、「辦公室2」、「辦公室3」及「辦公室4」之空間以映射至「分區1」。在此實例中,與此等空間相關聯之窗將與「分區1」相關聯。在一個實施例中,使用者可選擇「檢閱映射」按鈕以使「分區1」中之空間的經映射窗在建築物地點之3D模型上視覺化。 18 is an example of an interface that may be used by a user to map the unmapped space of a 3D model to a particular modeled partition. As shown, the user has selected the spaces of "
在分區管理期間,向至少一個(例如,每一)分區指派分區性質。分區性質之一些實例包括:分區名稱(使用者定義)、分區id(系統產生)、窗之ID、玻璃SHGC、以瓦特/平方公尺為單位之進入空間的最大容許輻射。圖 19 為可藉由檢閱指派給至少一個(例如,每一)分區之性質而使用的介面之實例。During partition management, at least one (eg, each) partition is assigned a partition property. Some examples of zone properties include: zone name (user defined), zone id (system generated), window ID, glass SHGC, maximum allowable radiation into the space in watts per square meter. 19 is an example of an interface that may be used by reviewing properties assigned to at least one (eg, each) partition.
如本文中所使用,佔用區係指在特定時間段期間可能被佔用或被佔用的三維體積。在地點設置期間界定且可在定製期間重新界定佔用區(例如,會議室)。界定佔用區可涉及藉由將二維區域立體化至佔用者眼睛高度及將性質指派給佔用區來界定三維體積。性質之一些實例包括佔用區名稱、眩光色調狀態(在眩光條件存在之情況下的色調狀態)、直接反射色調狀態(不同位準之直接反射輻射的色調狀態)及/或間接反射色調狀態(不同位準之間接反射輻射的色調狀態)。As used herein, occupied area refers to a three-dimensional volume that is likely to be occupied or occupied during a particular period of time. Occupancy areas (eg, meeting rooms) are defined during site setup and can be redefined during customization. Defining an occupancy area may involve defining a three-dimensional volume by three-dimensionalizing a two-dimensional area to occupant eye height and assigning properties to the occupancy area. Some examples of properties include footprint name, glare hue state (hue state in the presence of glare conditions), direct reflected hue state (hue state of directly reflected radiation at different levels), and/or indirect reflection hue state (different The hue state of the indirectly reflected radiation at the level).
在某些實施方案中,在3D模型化平台上產生佔用區。使用者可在3D模型之地板或其他表面(例如,桌面)上將使用者部位繪製或以其他方式界定為一或多個二維形狀(例如,多邊形)且界定佔用者眼睛高度。晴空模組可將三維佔用區界定為二維物件自表面至佔用者眼睛高度(例如,下部眼睛高度或上部眼睛高度)的立體化。圖 20A 中展示繪製於3D模型之地板上的二維四面使用者部位之實例。圖 20B 中展示藉由將圖 20A 中之二維物件立體化至上部眼睛高度而產生的三維佔用區之實例。In certain embodiments, the footprint is created on a 3D modeling platform. The user may draw or otherwise define the user part on the floor or other surface (eg, table top) of the 3D model as one or more two-dimensional shapes (eg, polygons) and define occupant eye height. The clear sky module may define a three-dimensional occupancy area as a three-dimensionalization of a two-dimensional object from the surface to the occupant's eye level (eg, lower eye level or upper eye level). An example of a two-dimensional four-sided user part drawn on a floor of a 3D model is shown in FIG. 20A . An example of a three-dimensional footprint created by stereoscopicting the two-dimensional object in FIG. 20A to upper eye level is shown in FIG. 20B .
在某些實施方案中,至少部分地基於3D模型而產生眩光/陰影模型、直接反射模型及間接反射模型。此等模型可用以至少部分地基於晴空條件而判定穿過3D模型之窗開口的日光隨時間之3D投影。在一些實施例中,光線追蹤引擎用以模擬在至少一個(例如,每一)時間間隔期間在太陽部位處之日光光線的方向。可運行模擬以評估建築物之分區中之至少一者(例如,每一者)中的不同眩光條件,諸如基本眩光條件(與佔用區相交之直接輻射)、直接反射眩光條件(自直接反射表面向佔用區之單次反彈式反射)及/或間接反射眩光條件(自間接反射表面向佔用區之多次反彈式反射)。在一些實施例中,模擬假定晴空條件且可考慮空間上之陰影及建築物周圍之外部物件的反射。模擬判定在一年或其他時間段內之時間間隔中的眩光及其他條件之值。排程資料可包括諸如一年之時間段內之至少一個(例如,每一)時間間隔(例如,每10分鐘)的條件中之至少一者(例如,每一者)的值及/或色調狀態。In certain implementations, a glare/shadow model, a direct reflection model, and an indirect reflection model are generated based at least in part on the 3D model. These models can be used to determine the 3D projection of sunlight over time through window openings in the 3D model based at least in part on clear sky conditions. In some embodiments, a ray tracing engine is used to simulate the direction of sunlight rays at the sun location during at least one (eg, each) time interval. Simulations may be run to evaluate different glare conditions in at least one (eg, each) of the building's partitions, such as base glare conditions (direct radiation intersecting the occupied area), direct reflective glare conditions (from directly reflective surfaces) single bounce to occupied area) and/or indirect reflective glare conditions (multiple bounces from indirect reflective surfaces to occupied area). In some embodiments, the simulation assumes clear sky conditions and can account for shadows in space and reflections from external objects around buildings. The simulation determines the value of glare and other conditions in time intervals over a one-year or other time period. The schedule data may include the value and/or hue of at least one (eg, each) of at least one of the conditions (eg, each) of at least one (eg, every) time interval (eg, every 10 minutes) within a time period such as a year condition.
在一些實施例中,晴空模組包括用以判定在諸如一年之時間段的至少一個(例如,每一)時間間隔(例如,每十分鐘)內在建築物之至少一個(例如,每一)分區處是否存在不同條件(例如,眩光、反射、被動加熱)。對於至少一個(例如,每一)時間間隔,晴空模組可針對至少一個(例如,每一)分區輸出此等條件之值及/或相關聯色調狀態的排程資訊。條件值可為例如二進位值1(條件確實存在)或0(條件並不存在)。在一些狀況下,晴空模組包括至少部分地基於太陽在不同時間之部位而判定日光光線(直射或反射)的方向。In some embodiments, the clear sky module includes a method to determine at least one (eg, each) of the buildings during at least one (eg, each) time interval (eg, every ten minutes) of a time period such as a year. Whether different conditions exist at the zone (eg, glare, reflections, passive heating). For at least one (eg, each) time interval, the clear sky module may output schedule information for values of these conditions and/or associated hue states for at least one (eg, each) partition. The condition value can be, for example, a binary value of 1 (condition does exist) or 0 (condition does not exist). In some cases, the clear sky module includes determining the direction of sunlight rays (direct or reflected) based at least in part on where the sun is at different times.
在一個實施例中,至少部分地基於來自單個佔用區中之模型的多個眩光區域而評估眩光條件。舉例而言,光投影可與單個佔用區內之不同佔用區域相交。在一個態樣中,至少部分地基於單個分區中之多個仰角而評估條件。In one embodiment, glare conditions are assessed based at least in part on multiple glare regions from a model in a single footprint. For example, light projections may intersect different occupancy areas within a single occupancy area. In one aspect, the condition is evaluated based at least in part on a plurality of elevation angles in a single partition.
在一些實施例中,眩光條件之判定係依據來自眩光(不存在陰影)模型及/或直接反射(一次反彈)模型之日光之3D投影與三維佔用區的相交。在一些實施例中,來自眩光模型之基本眩光的正向判定係依據與3D佔用區之總相交%及相交持續時間。在一些實施例中,至少部分地基於反射模型之反射眩光的判定係依據相交持續時間。In some embodiments, the determination of the glare condition is based on the intersection of the 3D projection of sunlight from the glare (no shadows) model and/or the direct reflection (one bounce) model with the 3D footprint. In some embodiments, the positive determination of the base glare from the glare model is based on the total intersection % and intersection duration with the 3D footprint. In some embodiments, the determination of reflected glare based at least in part on the reflection model is based on the intersection duration.
在一些實施例中,晴空模組包括用於至少部分地基於建築物周圍之物件而至少部分地基於眩光(不存在陰影)模型及/或直接反射(一次反彈)模型來評估眩光條件之存在的邏輯。In some embodiments, the clear sky module includes a method for evaluating the presence of a glare condition based at least in part on objects surrounding the building and at least in part on a glare (no shadows) model and/or a direct reflection (one bounce) model logic.
根據一些實施例,對於至少一個(例如,每一)分區,邏輯自眩光模型判定穿過分區之窗開口的直射日光之3D投影是否與分區中之任一三維佔用區相交。若相交%大於總相交之最小%(在考慮眩光條件之前自窗投影至佔用區中的最小重疊臨限值)且相交持續時間大於最小相交持續時間(在變得顯著之前相交必須發生的最小時間量),則返回眩光條件值(例如,1)及與眩光條件相關聯之色調狀態。若邏輯自眩光模型判定穿過窗開口之直射日光的3D投影不與分區中之任一三維佔用區相交,例如分區在陰影中,則返回眩光條件值(例如,0)及與無眩光條件相關聯之色調狀態。邏輯採用可連結在一起之分區的最大色調狀態。若不存在相交,則返回最低色調狀態(例如,色調1)。可預先判定佔用區(例如,使用封閉體(例如,設施)之3D模型)。對區之佔用可由感測器及/或發射器判定。感測器可為佔用感測器。感測器及/或發射器可包含地理位置技術(例如,超寬頻(UWB)無線電波、藍牙技術、全球定位系統(GPS)及/或紅外線(IR)輻射)。可使用微晶片(例如,包含感測器及/或發射器)來判定佔用。可使用空間映射來判定佔用。可使用例如包含微晶片、感測器及/或發射器之佔用者的識別標籤來判定佔用區。According to some embodiments, for at least one (eg, each) partition, a logical self-glare model determines whether a 3D projection of direct sunlight through a partition's window opening intersects any three-dimensional footprint in the partition. If Intersection % is greater than Minimum % of Total Intersection (minimum overlap threshold from window projection into occupied area before glare conditions are considered) and Intersection Duration is greater than Minimum Intersection Duration (minimum time an intersection must occur before it becomes noticeable) amount), the glare condition value (eg, 1) and the hue state associated with the glare condition are returned. If the logical self-glare model determines that the 3D projection of direct sunlight through the window opening does not intersect any of the 3D occupancy areas in the partition, such as the partition is in shadow, the glare condition value (eg, 0) is returned and associated with the no-glare condition Linked tonal state. The logic takes the maximum hue state of the partitions that can be linked together. If there is no intersection, returns the lowest hue state (for example, hue 1). The occupancy area can be pre-determined (eg, using a 3D model of an enclosed volume (eg, facility)). Occupancy of a zone may be determined by sensors and/or transmitters. The sensor may be an occupancy sensor. Sensors and/or transmitters may include geolocation technology (eg, ultra-wideband (UWB) radio waves, Bluetooth technology, global positioning system (GPS), and/or infrared (IR) radiation). Occupancy can be determined using a microchip (eg, including sensors and/or transmitters). Occupancy can be determined using spatial mapping. Occupied areas can be determined using, for example, identification tags of occupants including microchips, sensors, and/or transmitters.
在一實施方案中,對於至少一個(例如,每一)時間間隔,邏輯針對可著色窗之至少一個(例如,每一)分區(窗開口之集合)而判定太陽是否正與任一三維佔用區(例如,直接)相交。若與任一佔用區同時相交,則輸出為條件確實存在。若佔用區中無一者相交,則條件不存在。In one implementation, for at least one (eg, each) time interval, the logic determines whether the sun is interacting with any three-dimensional footprint for at least one (eg, each) partition (set of window openings) of the tintable window. (eg, directly) intersect. If it intersects with either occupied area at the same time, the output is that the condition does exist. If none of the occupied areas intersect, the condition does not exist.
圖 21 為使用眩光/陰影模型之模擬的實例,該模型未返回使用基本眩光之眩光條件。在此實例中,模擬產生眩光與3D佔用區之低的總相交量,且眩光在一整日內不會長時間存在使得晴空模組未返回眩光條件。 Figure 21 is an example of a simulation using a glare/shadow model that does not return glare conditions using basic glare. In this example, the simulation results in a low total amount of intersection of glare with the 3D footprint, and the glare does not persist for a long time throughout the day such that the clear sky module does not return to glare conditions.
圖 22 為使用直接反射(一次反彈)模型之模擬的實例,該模型返回使用來自直接一次反彈反射之眩光的眩光條件。在此實例中,模擬產生與3D佔用區之高的總相交量且延長時段之眩光在此日內出現使得返回眩光值。 Figure 22 is an example of a simulation using a direct reflection (one bounce) model that returns the glare condition using glare from a direct one bounce reflection. In this example, the simulation yields a high total intersection with the 3D footprint and extended periods of glare occur during the day such that the glare value is returned.
晴空模組包括用於在晴空條件下至少部分地基於模型而評估反射條件之存在且用於判定最低狀態以將內部輻射保持為低於最大容許內部輻射的邏輯。該邏輯至少部分地基於射中分區之窗開口的直接法向輻射而判定輻射條件。在一些實施例中,該邏輯至少部分地基於可將法向輻射保持為低於彼分區之所定義臨限值的最清透色調狀態而判定色調狀態。The clear sky module includes logic for evaluating the presence of reflective conditions under clear sky conditions, based at least in part on the model, and for determining a minimum state to keep internal radiation below a maximum allowable internal radiation. The logic determines radiation conditions based at least in part on direct normal radiation hitting the window opening of the partition. In some embodiments, the logic determines the hue state based at least in part on the clearest hue state that can keep normal radiance below a defined threshold for that partition.
在一些實施例中,該邏輯自3D模型判定可著色窗上之外部法向輻射,且藉由將所判定之外部輻射位準乘以玻璃SHGC來計算用於至少一個(例如,每一)色調狀態之內部輻射。在一些實施例中,該邏輯比較分區之最大內部輻射與用於色調狀態中之至少一者(例如,每一者)的所計算內部輻射,且選取低於彼分區之最大內部輻射的最亮所計算色調狀態。舉例而言,來自模型之外部法向輻射為800,且最大內部輻射為200,且T1 SHGC=.5,T2=0.25,且T3=0.1。該邏輯藉由將所判定之外部輻射位準乘以玻璃SHGC來計算用於至少一個(例如,每一)色調狀態之內部輻射:Calc T1 (800)*0.5 = 400,Calc T2 (800)*0.25 = 200,且Calc T3 (800)*0.1 = 80,符號「*」指明數學運算「乘」。在一些實施例中,該邏輯將選擇T2,此係因為T2比T3亮。In some embodiments, the logic determines the external normal radiation on the tintable window from the 3D model, and calculates for at least one (eg, each) hue by multiplying the determined external radiation level by the glass SHGC Internal Radiation of State. In some embodiments, the logic compares the maximum internal radiance of the partition with the calculated internal radiance for at least one (eg, each) of the hue states, and selects the brightest that is lower than the maximum internal radiance of that partition Calculated hue state. For example, the outer normal radiation from the model is 800, and the maximum inner radiation is 200, and T1 SHGC=.5, T2=0.25, and T3=0.1. The logic calculates the internal radiation for at least one (eg, each) hue state by multiplying the determined external radiation level by the glass SHGC: Calc T1 (800)*0.5 = 400, Calc T2 (800)* 0.25 = 200, and Calc T3 (800)*0.1 = 80, the symbol "*" indicates the mathematical operation "multiplication". In some embodiments, the logic will select T2 because T2 is brighter than T3.
在另一實施方案中,該邏輯針對窗之至少一個(例如,每一)分區(例如,開口之集合)而判定太陽是否具有自外部物件之單次反彈。若存在向任一佔用區之反射,則反射條件確實存在。若反射不在任一佔用區上,則反射條件不存在。In another implementation, the logic determines whether the sun has a single bounce from an external object for at least one (eg, each) partition of the window (eg, a set of openings). If there is a reflection to any occupied area, the reflection condition does exist. If the reflection is not on any occupied area, the reflection condition does not exist.
在某些實施方案中,晴空模組包括用於至少部分地基於來自晴空模型之輸出而評估被動加熱條件之存在的邏輯,該被動加熱條件設定分區之窗中的較暗著色狀態。該邏輯可自晴空模型判定在晴空條件下射中可著色窗之外部太陽輻射。該邏輯可至少部分地基於可著色窗上之外部輻射而判定進入房間之所估計晴空熱量。若該邏輯判定進入房間之所估計晴空熱量大於最大容許值,則被動加熱條件存在且可至少部分地基於被動加熱條件而為分區設定較暗色調狀態。最大容許值可至少部分地基於建築物之外部溫度及/或使用者輸入而設定。在一個實例中,若外部溫度低,則可將最大容許外部輻射設定得極高以允許增加位準之被動熱量進入建築物空間。In certain implementations, the clear sky module includes logic for evaluating the presence of passive heating conditions that set a darker tint state in the partitioned windows based at least in part on output from the clear sky model. The logic can determine from the clear sky model the external solar radiation hitting the tintable window under clear sky conditions. The logic may determine the estimated clear air heat entering the room based at least in part on external radiation on the tintable window. If the logic determines that the estimated clear air heat entering the room is greater than the maximum allowable value, then the passive heating condition exists and a darker tint state for the zone can be set based at least in part on the passive heating condition. The maximum allowable value may be set based, at least in part, on the outside temperature of the building and/or user input. In one example, if the outside temperature is low, the maximum allowable outside radiation may be set very high to allow increased levels of passive heat to enter the building space.
圖 23
為根據一個態樣的用於實施使用者輸入以定製建築物地點之晴空3D模型的動作及程序之流程圖的實例。可藉由圖 8
中所展示之晴空模組820
上的邏輯來實施此等地點編輯操作。晴空模型之屬性可在任何時間(包括即時)編輯(定製)、定義及/或重新定義。使用者可例如經由GUI鍵入輸入。在流程圖中,程序藉由開啟3D模型開始(2202
)。使用者接著可具有選擇至少一個分區以編輯之及/或選擇至少一個使用者部位以編輯的選項(2210
、2220
)。在一些實施例中,若使用者選擇編輯分區,則使用者可將界定至彼分區之窗重新分組(2212
),將分區重命名(2214
)及/或編輯分區之容許內部輻射或其他性質(2216
)。在一些實施例中,若使用者選擇使用者部位以編輯(2220
),則(i)使用者可編輯使用者偏好以選擇眩光模型或反射模型,從而映射至使用者部位(2222
)及/或(ii)刪除使用者部位(2224 )
及/或添加使用者部位(2226
)。一旦進行編輯或進行多次編輯,使用者便提交改變,例如以更新建築物地點之晴空3D模型(2230
)。該等改變可用以至少部分地基於修正之晴空3D模型而產生新的排程資料。可將排程資料匯出及傳達至窗控制模組(2240
)。 23 is an example of a flowchart of actions and procedures for implementing user input to customize a clear sky 3D model of a building site, according to one aspect . These location editing operations can be implemented by logic on the
在某些實施方案中,系統架構包括GUI,其允許使用者對晴空模型之屬性作出改變以在3D模型化平台上之視覺效果中查看模型之改變及/或排程資料之改變。3D模型化平台上之建築物地點的視覺效果可用於定製目的。In some implementations, the system architecture includes a GUI that allows a user to make changes to properties of the clear sky model to view changes to the model and/or changes to scheduling data in a visual on the 3D modeling platform. The visual effects of the building location on the 3D modeling platform can be used for customization purposes.
在一個實例中,GUI可包括滑件或其他介面,其允許使用者:(I)(例如,快速地)模擬太陽路徑中之定期(例如,每日)改變;及/或(II)使在一段時間(例如,一日)內由太陽引起之眩光、陰影及/或加熱可視化。In one example, the GUI may include a slider or other interface that allows the user to: (I) (eg, quickly) simulate periodic (eg, daily) changes in the sun's path; and/or (II) enable the Visualization of glare, shadows, and/or heating caused by the sun over a period of time (eg, a day).
除封閉體(例如,建築物)上或中之一或多個部位處的(a)直接及/或間接反射、(b)眩光、(c)陰影及/或(d)加熱的視覺效果以外,亦可經由窗之內部及/或外部視圖來使窗之色調狀態可視化。窗色調可由控制邏輯判定,例如,如本文中所描述。舉例而言,對於太陽之至少一個(例如,每一)時間及/或部位,使用者可使窗色調及/或藉由控制邏輯對其進行的改變可視化。使用者可使用此等視覺效果,例如以驗證模型及/或控制邏輯之適當操作。Except for the visual effects of (a) direct and/or indirect reflections, (b) glare, (c) shadows, and/or (d) heating on or at one or more parts of an enclosure (eg, a building) , the tint state of a window can also be visualized via the interior and/or exterior views of the window. The window tint may be determined by control logic, eg, as described herein. For example, for at least one (eg, each) time and/or location of the sun, the user may visualize the window tint and/or changes to it by control logic. The user may use these visual effects, for example, to verify proper operation of the model and/or control logic.
在一些實施例中,模組A體現用以在晴空條件下控制建築物中之眩光及反射率的控制邏輯及/或規則。有時,由模組A單獨作出之色調決策可導致將非最佳色調施加至窗(例如,此係因為由模組A使用之晴空模組不考慮天氣及任何天氣改變)。在一個實施例中,經由使用額外模組B來解決天氣改變。In some embodiments, module A embodies control logic and/or rules for controlling glare and reflectivity in a building under clear sky conditions. Sometimes, tint decisions made by Module A alone can result in a non-optimal tint being applied to the window (eg, because the clear sky module used by Module A does not take into account the weather and any weather changes). In one embodiment, weather changes are addressed through the use of additional module B.
圖 24
描繪具有控制邏輯之窗控制系統2600
的實例,該控制邏輯由傳達色調指令以轉變建築物中之一或多個分區內之可著色窗的窗控制系統2600
實施。在操作2620
處,控制邏輯至少部分地基於由模組A及模組B輸出之規則而判定至少一個(例如,每一)窗及/或分區之最終色調位準。舉例而言,在一個實施例中,窗控制系統2600
包括主控制器,該主控制器實施控制邏輯以作出著色決策且將至少一個(例如,每一)分區之最終色調位準傳達至控制彼分區之可著色窗的本端(例如,窗)控制器。在一個實施方案中,可著色窗中之至少一者(例如,全部)為包括至少一個電致變色裝置之電致變色窗。舉例而言,至少一個(例如,每一)可著色窗可為具有兩個玻璃片之絕緣玻璃單元,此等片中之至少一者上具有一電致變色裝置。該控制邏輯由窗控制系統之一或多個處理器執行。 24 depicts an example of a
圖 25
為窗控制系統2700
之另一表示,該窗控制系統包括窗控制器2720
,例如主控制器或本端窗控制器。窗控制系統2700
包括由窗控制系統2700
之一或多個組件(例如,其他控制器)實施的控制邏輯。如所說明,窗控制器2720
根據所說明控制邏輯自窗控制器系統2700
之其他組件接收色調排程資訊(例如,嵌入於規則中)。 FIG. 25 is another representation of a
在圖 25
中所展示之實例中,控制邏輯包括由模組B2710
體現之邏輯。模組B2710
經組態以預報在未來時間在地點之特定地理部位處的天氣條件。在一個實施例中,至少部分地基於由模組C2711
及模組D2712
提供之部位特定量測值來進行預報。在一個實施例中,以可用以在當前時間起始窗色調改變之一或多個規則的形式提供天氣條件之預報,以便在未來時間完成轉變,使得對於經預報在未來時間出現之天氣條件,最佳化在未來時間之內部光強度、眩光及反射。色調轉變發生在對未來條件之預期中。藉此,對於觀察者而言,其呈現為如同回應於天氣條件之即時或近即時改變而控制窗中之色調。模組B包括LSTM(單變量)子模組2710a
、映射至色調值之後處理子模組2714
、DNN(多變量)模組2710b
、二進位機率子模組2716
及表決子模組2786
。所說明控制邏輯包括具有3D模型及晴空模型之模組A2701
、具有用於根據光感測器讀數判定原始及/或經濾波光感測器值之邏輯的模組C2711
、具有用於根據紅外線及/或周圍環境溫度讀數判定原始及/或經濾波IR感測器及周圍環境感測器值之邏輯的模組D2712 ,
及具有無監督分類器子模組之模組E2713
。模組B可自與天氣相關之一或多個感測器(例如,如本文中所揭示)接收(例如,分鐘及/或即時)資料。模組B可自第三方(例如,天氣預報機構)接收關於任何所預報(例如,總體)天氣改變之資料。模組B可接收所預測感測器資料(例如,自VSS感測器)。所預測感測器值可利用人工智慧(例如,本文中所描述之任何人工智慧類型)。In the example shown in FIG. 25 , the control logic includes logic embodied by
在一個實施例中,以原始及/或經濾波值(例如,信號)之形式將來自模組C2711
之值提供至模組B2710
,該等值表示由一或多個感測器量測之當前環境條件。感測器可為光學感測器。感測器可包含光感測器。光學感測器可偵測可見光譜中之波長。在一個實施例中,以在不同樣本時間獲取之複數個光感測器讀數的(例如,經濾波)滾動均值之形式提供原始及/或經濾波值(例如,信號),其中至少一個(例如,每一)感測器讀數為由感測器獲取之最大量測值。在一個實施例中,至少一個(例如,每一)感測器讀取包含即時輻照度讀取。在一個實施例中,以在不同樣本時間獲取之感測器讀數的(例如,經濾波)滾動均值之形式提供原始及/或經濾波值(例如,信號),其中至少一個(例如,每一)感測器讀數為由感測器在不同時間獲取之量測值中的最大值。在一個實施例中,以在連續不同部位安置之複數個光感測器讀數的(例如,經濾波)滾動均值之形式提供原始及/或經濾波值(例如,信號),其中至少一個(例如,每一)感測器讀數為由感測器獲取之最大量測值。連續安置之感測器可具有接觸或重疊視角。連續安置之感測器可形成單列,例如沿著拱形或沿著圓形。In one embodiment, the values from
在一個實施例中,以原始及/或經濾波值(例如,信號)之形式將來自模組D2712
之值提供至模組B2710
,該等值表示由一或多個紅外線(IR)感測器量測之當前環境條件。在一個實施例中,以在不同樣本時間獲取之多個紅外線感測器讀數的經濾波滾動中值之形式提供原始或經濾波值(例如,信號),其中至少一個(例如,每一)讀數為由一或多個紅外線感測器獲取之最小量測值。在一個實施例中,紅外線感測器安置於不同部位處,且其中以在不同部位處獲取之複數個紅外線感測器讀數的經濾波滾動中值之形式提供原始及/或經濾波值(例如,信號)。In one embodiment, the values from
在一個實施例中,紅外線感測器量測值及/或周圍環境溫度感測器量測值包括:天空溫度讀數(Tsky )、周圍環境溫度讀數(例如,來自建築物處之本端感測器(Tamb )或來自天氣饋入(Tweather ))及/或Tsky 與Tamb 之間的差。至少部分地基於天空溫度讀數(Tsky )及來自本端感測器之周圍環境溫度讀數(Tamb )或來自天氣饋入之周圍環境溫度讀數(Tweather )而判定經濾波之紅外線感測器值。天空溫度讀數可藉由紅外線感測器獲取。周圍環境溫度讀數可藉由一或多個周圍環境溫度感測器獲取。可自各種源接收周圍環境溫度讀數。舉例而言,可自以板載方式位於紅外線感測器上之一或多個周圍環境溫度感測器及/或例如建築物處之多感測器裝置的獨立溫度感測器傳達周圍環境溫度讀數。作為另一實例,可自天氣饋入(例如,由諸如天氣預報機構之第三方供應)接收周圍環境溫度讀數。In one embodiment, the infrared sensor measurement value and/or the ambient temperature sensor measurement value includes: sky temperature reading ( T sky ), ambient temperature reading (for example, from the local sensor at the building ( T amb ) or from a weather feed ( T weather ) and/or the difference between T sky and Tamb . A filtered infrared sensor is determined based at least in part on a sky temperature reading ( T sky ) and an ambient temperature reading from the local sensor ( T amb ) or an ambient temperature reading from a weather feed ( T weather ) value. Sky temperature readings can be obtained by infrared sensors. Ambient temperature readings may be obtained by one or more ambient temperature sensors. Ambient temperature readings can be received from various sources. For example, ambient temperature may be communicated from one or more ambient temperature sensors onboard an infrared sensor and/or a separate temperature sensor such as a multi-sensor device at a building reading. As another example, ambient temperature readings may be received from a weather feed (eg, supplied by a third party such as a weather forecast agency).
在一個實施例中,模組D2712
包括用以使用多雲偏移值及天空溫度讀數(Tsky
)以及來自本端感測器之周圍環境溫度讀數(Tamb
)或來自天氣饋入之周圍環境溫度讀數(Tweather
)及/或天空溫度讀數與周圍環境溫度讀數之間的差(差量(Δ))來計算經濾波之IR感測器值的邏輯。在一些實施例中,多雲偏移值為對應於將由模組D中之邏輯使用以判定多雲條件之臨限值的溫度偏移。模組D之邏輯可由控制系統之一或多個處理器(例如,由網路控制器及/或由主控制器執行)。模組D之邏輯可由包括一或多個光感測器(例如,及紅外線感測器及/或光感測器)之感測器裝置的一或多個處理器執行。In one embodiment,
在操作2810 處,執行模組D之操作的處理器接收當前時間之感測器讀數作為輸入。可經由建築物處之通信網路例如自感測器裝置(例如,屋頂多感測器裝置)接收感測器讀數。所接收之感測器讀數可包括天空溫度讀數(Tsky )及/或周圍環境溫度讀數(例如,來自建築物處之本端感測器(Tamb )或來自天氣饋入(Tweather )及/或Tsky 與Tamb 之間的差(Δ)之讀數)。來自建築物處之本端感測器的周圍環境溫度讀數(Tamb )可為由以板載方式位於感測器裝置上及/或與感測器裝置分開之周圍環境溫度感測器獲取的量測值。周圍環境溫度感測器讀數可(例如,亦)來自天氣饋入資料。At operation 2810 , the processor performing the operations of module D receives as input the sensor reading of the current time. Sensor readings may be received via a communication network at the building, eg, from a sensor device (eg, a rooftop multi-sensor device). Received sensor readings may include sky temperature readings ( T sky ) and/or ambient temperature readings (eg, from local sensors at buildings ( Tamb ) or from weather feeds ( T weather ) and / or reading of the difference (Δ) between T sky and Tamb ). The ambient temperature reading ( T amb ) from a local sensor at the building may be obtained from an ambient temperature sensor onboard and/or separate from the sensor device measurement value. Ambient temperature sensor readings can (eg, also) come from weather feeds.
在一個實施方案中,模組D2712
接收(及使用)由建築物處(例如,屋頂及/或多感測器裝置)之兩個或多於兩個IR感測器裝置獲取之量測值的原始感測器讀數,至少一個(例如,每一)IR感測器裝置具有用於量測周圍環境溫度(Tamb
)之板載周圍環境溫度感測器及導向天空的用於至少部分地基於視場內接收到之紅外線輻射而量測天空溫度(Tsky
)的板載紅外線感測器。可使用兩個或多於兩個IR感測器裝置,例如以提供冗餘及/或提高準確性。在一種狀況下,至少一個(例如,每一)紅外線感測器裝置輸出周圍環境溫度(Tamb
)及天空溫度(Tsky
)之讀數。在另一狀況下,至少一個(例如,每一)紅外線感測器裝置輸出周圍環境溫度(Tamb
)、天空溫度(Tsky
)以及Tsky
與Tamb
之間的差(差量Δ)之讀數。在一種狀況下,至少一個(例如,每一)紅外線感測器裝置輸出Tsky
與Tamb
之間的差(差量Δ)之讀數。根據一個實施例,模組D之邏輯使用由建築物處之兩個IR感測器裝置獲取的量測值之原始感測器讀數。在一些實施例中,模組D之邏輯使用由建築物處之至少1、2、3、4、5、6、7、8、9或10個IR感測器裝置獲取的量測值之原始感測器讀數。In one implementation,
在另一實施方案中,模組D2712
接收及使用由建築物處之紅外線感測器獲取的原始天空溫度(Tsky
)讀數及來自天氣饋入資料之周圍環境溫度讀數(Tweather
),該等感測器導向天空以接收在其視場內之紅外線輻射。天氣饋入資料可經由通信網路自一或多個天氣服務及/或其他資料源接收。天氣饋入資料可包括與天氣條件(諸如,雲覆蓋百分比、能見度資料、風速資料、降水之百分比機率及/或濕度)相關聯之其他環境資料。天氣饋入資料可藉由窗控制器經由通信網路接收(在信號中)。窗控制器可經由通信介面在通信網路上將具有對天氣饋入資料之請求的信號發送至一或多個天氣服務。該請求可至少包括正控制之窗之部位的經度及緯度。作為回應,一或多個天氣服務可例如經由通信網路(例如,且經由通信介面)將具有天氣饋入資料之信號發送至窗控制器。通信介面及網路可呈有線及/或無線形式。在一些狀況下,天氣服務可經由天氣網站存取。可在www.forecast.io找到天氣網站之實例。另一實例為國家天氣服務(www.weather.gov)。天氣饋入資料可至少部分地基於當前時間,或可在未來時間進行預報。天氣饋入資料可至少部分地基於(例如,封閉體及/或窗之)地理部位。使用天氣饋入資料之邏輯的實例可見於2016年7月7日申請且標題為「用於可著色窗之控制方法(CONTROL METHOD FOR TINTABLE WINDOWS)」的國際專利申請案第PCT/US16/41344號中,該申請案特此以全文引用之方式併入。In another implementation,
在一個實施方案中,至少部分地基於(i)來自一或多個紅外線感測器之天空溫度讀數、(ii)來自一或多個本端周圍環境溫度感測器及/或來自天氣饋入之周圍環境溫度讀數及/或(ii)多雲偏移值而計算溫度值(Tcalc
)。在一些實施例中,多雲偏移值為對應於模組D2712
中用以判定雲條件之第一及第二臨限值的溫度偏移。在一個實施方案中,多雲偏移值為攝氏-17毫度。在一個實例中,攝氏-17毫度之多雲偏移值對應於攝氏0毫度之第一臨限值。在一個實施方案中,多雲偏移值在攝氏-30毫度至攝氏0毫度之範圍內。In one embodiment, based at least in part on (i) sky temperature readings from one or more infrared sensors, (ii) from one or more local ambient temperature sensors, and/or from weather feeds The temperature value ( T calc ) is calculated from the ambient temperature reading and/or (ii) the cloudy offset value. In some embodiments, the cloudy offset value corresponds to the temperature offset of the first and second threshold values used in
在一個實施方案中,可至少部分地基於來自兩對或多於兩對熱感測器之天空溫度讀數而計算溫度值(Tcalc ),至少一對(例如,每一對)熱感測器具有紅外線感測器及周圍環境溫度感測器。在一種狀況下,至少一對(例如,每一對)中之熱感測器為IR感測器裝置之一體式組件。至少一個(例如,每一)IR感測器裝置可具有板載紅外線感測器及/或板載周圍環境溫度感測器。可使用兩個IR感測器裝置,例如以提供冗餘及/或改善準確性。在另一狀況下,紅外線感測器及周圍環境溫度感測器分開地安置(例如,在分開的裝置及/或分開的部位中)。在此實施方案中,將溫度值計算為:Tcalc = minimum (Tsky1 , Tsky2 , ...) - minimum (Tamb1 , Tamb2 ,...) –雲偏移(等式 1 )Tsky1 、Tsky2 ……為由多個紅外線感測器獲取之溫度讀數,且Tamb1 、Tamb2 ……為由多個周圍環境溫度感測器獲取之溫度讀數。若使用兩個紅外線感測器及兩個周圍環境溫度感測器,則Tcalc = minimum (Tsky1 , Tsky2 ) - minimum (Tamb1 , Tamb2 )-雲偏移。來自同一類型之多個感測器的讀數之最小值用以使結果偏向將指示較高雲覆蓋且可導致較高色調位準之較低溫度值,以便使結果偏向減少(例如,避免)眩光。In one embodiment, a temperature value ( T calc ) may be calculated based at least in part on sky temperature readings from two or more pairs of thermal sensors, at least one (eg, each pair) of thermal sensors With infrared sensor and ambient temperature sensor. In one case, the thermal sensor in at least one pair (eg, each pair) is an integral component of the IR sensor device. At least one (eg, each) IR sensor device may have an onboard infrared sensor and/or an onboard ambient temperature sensor. Two IR sensor devices may be used, eg, to provide redundancy and/or improve accuracy. In another situation, the infrared sensor and the ambient temperature sensor are located separately (eg, in separate devices and/or separate locations). In this embodiment, the temperature value is calculated as: T calc = minimum ( T sky1 , T sky2 , ...) - minimum ( T amb1 , T amb2 , ...) - cloud offset ( equation 1 ) T sky1 , T sky2 . . . are temperature readings obtained by a plurality of infrared sensors, and Tamb1 , Tamb2 . . . are temperature readings obtained by a plurality of ambient temperature sensors. If two infrared sensors and two ambient temperature sensors are used, then T calc = minimum ( T sky1 , T sky2 ) - minimum ( T amb1 , T amb2 ) - cloud offset. The minimum value of readings from multiple sensors of the same type is used to bias the results towards lower temperature values that would indicate higher cloud cover and may result in higher hue levels in order to bias the results to reduce (eg, avoid) glare .
在另一實施方案中,模組D2712
可自使用本端周圍環境溫度感測器切換至使用天氣饋入資料,例如在周圍環境溫度感測器讀數變得不可用或不準確時,例如其中周圍環境溫度感測器正讀取自諸如屋頂及/或附近輻射(例如,加熱)源之本端源輻射的熱量。在此實施方案中,使用天空溫度讀數及來自天氣饋入資料之周圍環境溫度讀數(Tweather
)來計算溫度值(Tcalc
)。在此實施方案中,將溫度值計算為:Tcalc
= minimum (Tsky1
, Tsky2 ,
...) -Tweather
-雲偏移 (等式 2
)In another implementation,
在另一實施方案中,使用如由兩個或多於兩個IR感測器裝置量測之天空溫度與周圍環境溫度之間的差Δ之讀數來計算溫度值(Tcalc
),至少一個(例如,每一)感測器裝置具有板載紅外線感測器及周圍環境溫度感測器。在此實施方案中,將溫度值計算為:Tcalc
= minimum (Δ1
, Δ2
,...)-雲偏移 (等式 3
)
Δ 1 、
Δ 2
……為由多個IR感測器裝置量測之天空溫度與周圍環境溫度之間的差Δ之讀數。在使用等式 1 、等式 2
及等式 3
之實施方案中,控制邏輯使用天空溫度與周圍環境溫度之間的差來判定輸入至模組D2712
之IR感測器值,從而判定雲條件。周圍環境溫度讀數之波動傾向於小於天空溫度讀數。藉由使用天空溫度與周圍環境溫度之間的差作為輸入以判定色調狀態,隨時間判定之色調狀態可在較小程度上波動。In another embodiment, the temperature value ( T calc ) is calculated using a reading of the difference Δ between the sky temperature and the ambient temperature as measured by two or more IR sensor devices, at least one ( For example, each sensor device has an onboard infrared sensor and an ambient temperature sensor. In this embodiment, the temperature values are calculated as: T calc = minimum ( Δ 1 , Δ 2 ,...) - cloud offset ( eq . 3 ) Δ 1 , Δ 2 . . . are sensed by multiple IRs A reading of the difference Δ between the sky temperature measured by the device and the ambient temperature. In
在另一實施方案中,控制邏輯使用來自兩個或多於兩個紅外線感測器之天空溫度讀數來計算Tcalc
。在此實施方案中,由模組D2712
判定之IR感測器值利用天空溫度讀數(例如,且不基於周圍環境溫度讀數)。在此狀況下,模組D使用天空溫度讀數來判定雲條件。儘管用於判定Tcalc
之上文所描述之實施方案係基於每一類型之兩個或多於兩個(例如,冗餘)感測器,但應理解,控制邏輯可利用來自單個感測器之讀數來實施。In another embodiment, the control logic uses sky temperature readings from two or more infrared sensors to calculate Tcalc . In this implementation, the IR sensor values determined by
在一個實施例中,模組B2710
使用具有邏輯之子模組2710a
來提供天氣預報,該邏輯對由模組C及模組D提供之天氣資料的時間數列使用機器學習(例如,包括深度學習)。子模組2710a
包括遞迴人工智慧(例如,神經網路)模型邏輯以實施長短期記憶體(LSTM),從而映射序列至序列(例如,使用seq2seq編碼器/解碼器構架)預測。利用LSTM seq2seq預測或其他LSTM預測,歷史天氣資料之使用者定義持續期間(例如,3分鐘記憶體、5分鐘記憶體等)可用以在實時滾動基礎上產生具有使用者定義長度之短期預報(例如,未來4分鐘),例如當獲取來自模組C及D之新感測器值時。此參數靈活性增加僅在可用於所關注預報窗之尺度上保留改變天氣條件之記憶體的可能性。In one embodiment,
在一個實施例中,實施人工智慧模組LSTM(例如,seq2seq)預測,使得其利用將來自模組C及D之感測器值離散化成(例如,三個)相異範圍及對應色調建議(例如,色調2、3及4)。天氣預報所需之精確度等級可由與感測器值之適當範圍的及時對應性定義,例如在即時資料改變時。此精確度等級可允許使用經設計以限制過度回應模型行為之預報平滑及其他正則化控制結構來處置具有較大變動性(例如,條件之突然改變)之時段。在一個實施例中,人工智慧LSTM(例如,seq2seq)預測之實施方案使用(i)最大光感測器讀數之約5分鐘時間跨度的滾動均值及最小IR感測器讀數之滾動中值,且(ii)在T+4分鐘時使一系列四(4)個預報平均化以產生即刻未來之代表性量測。在由現有時間跨度(例如,5分鐘)窗控制系統命令循環所定義之約束內,此實施方案支援引入額外控制結構,例如以增加可在現有硬體能夠回應之時間範圍內作出命令改變的可能性(例如,忽略持續時間少於使用者定義之分鐘數的命令改變)。In one embodiment, artificial intelligence module LSTM (eg, seq2seq) prediction is implemented such that it utilizes discretization of sensor values from modules C and D into (eg, three) distinct ranges and corresponding hue suggestions ( For example, shades 2, 3 and 4). The level of accuracy required for the weather forecast can be defined by a timely correspondence to an appropriate range of sensor values, such as when real-time data changes. This level of accuracy may allow for periods of greater variability (eg, sudden changes in conditions) to be handled using forecast smoothing and other regularization control structures designed to limit over-response model behavior. In one embodiment, an implementation of artificial intelligence LSTM (eg, seq2seq) prediction uses (i) a rolling mean of the largest light sensor readings over a time span of about 5 minutes and a rolling median of the smallest IR sensor readings, and (ii) Average a series of four (4) forecasts at T+4 minutes to produce a representative measure of the immediate future. Within the constraints defined by the existing time span (eg, 5 minutes) window control system command loop, this implementation supports the introduction of additional control structures, eg to increase the likelihood that command changes can be made within the time frame that existing hardware can respond to properties (for example, ignore command changes that last less than a user-defined number of minutes).
在一個實施例中,模組B2710
之LSTM子模組2710a
根據LSTM(例如,seq2seq)方法將來自模組C2711
及模組D2712
之輸出處理為單變量輸入,例如其中一個單變量變數對應於由模組C提供之最大光感測器值,且另一單變量輸入對應於由模組D提供之最小IR感測器值。根據LSTM(例如,seq2seq)方法處理至少一個(例如,每一)輸入可提供真實值,該真實值藉由後處理模組2714
後處理及正則化以提供經映射至色調值的輸出值。在一些實施例中,已發現,相比用於提供較長期預測,使用LSTM(例如,seq2seq)方法更適合於提供相對短期的預測。In one embodiment, the LSTM sub-module 2710a of
在一些實施例中,為了至少部分地基於由模組C及D提供之值而獲得相對較長期的天氣預報預測,模組B2710
包括具有邏輯之子模組2170b
,該邏輯實施包含深度神經網路(DNN)多變量預報之人工智慧方法。在一個實施例中,DNN方法特徵化由模組C及D提供之光感測器值與IR感測器值之間的工程設計關係,該等關係可用於預報在較長時間範圍內出現的天氣及/或環境條件。在LSTM方法輸出實值預測(映射至其對應的所建議色調區上)之情況下,DNN預報可實施為二進位分類器,其對數似然輸出機率性地模型化晴天對比非晴天條件。使用二進位分類可需要靈活地判定(最佳化、地點指定及使用者個人化)信賴度臨限值(在零與一之間),高於該臨限值,該模型預報晴天(而非非晴天)條件。可設定較低信賴度臨限值以主動地減少(例如,防止)高風險眩光條件。為了最大化內部自然光,可設定較高信賴度臨限值。在一個實施例中,DNN輸出係至少部分地基於使用者可組態臨限值,其中大於或等於臨限值之輸出被視為晴天條件(例如,二進位值1)及/或其中低於臨限值之輸出被視為非晴天條件(例如,二進位值0)。In some embodiments, to obtain relatively longer-term weather forecast predictions based at least in part on the values provided by modules C and D,
在某些實施例中,人工智慧(例如,DNN及LSTM)模型駐存於雲端網路上之伺服器及/或窗控制器上,諸如窗控制器之分散式網路的主窗控制器或窗控制器群組。各種市售的機器學習構架可駐存於雲端伺服器及/或控制系統(例如,窗控制器)上,以定義、訓練及執行人工智慧(例如,DNN及/或LSTM)模型。市售的機器學習構架之實例為由加利福尼亞州之Google®提供的TensorFlow®。市售的機器學習(例如,人工智慧)構架之實例為由華盛頓州西雅圖之Amazon Web Services提供的Amazon® SageMaker®。In some embodiments, the artificial intelligence (eg, DNN and LSTM) models reside on servers and/or window controllers on a cloud network, such as the main window controller or window of a distributed network of window controllers Controller group. Various commercially available machine learning frameworks can reside on cloud servers and/or control systems (eg, window controllers) to define, train, and execute artificial intelligence (eg, DNN and/or LSTM) models. An example of a commercially available machine learning framework is TensorFlow® provided by Google® of California. An example of a commercially available machine learning (eg, artificial intelligence) framework is Amazon® SageMaker® provided by Amazon Web Services of Seattle, Washington.
在一個實施例中,DNN子模組2170b 使用DNN二進位分類器,該二進位分類器使用6分鐘歷史產生8分鐘天氣預報。不同於單變量LSTM預報,DNN二進位分類器可能無需即時運行,從而緩解現有硬體上的運算負荷。為了考慮地點特定差異(在地理部位、季節性變化及連續改變天氣前峰上),可使用每日更新之兩至三週歷史資料整夜運行DNN二進位分類器,捨棄最早的一日且在至少一(例如,每一)夜重新訓練模型時引入最近資料。此類滾動的每日更新可增加分類器與改變天氣條件之步調及定性性質保持一致的可能性。在重新訓練後,可調整模型參數權重以接收新輸入用於產生第二日持續時間的預報。In one embodiment, the DNN submodule 2170b uses a DNN binary classifier that generates an 8-minute weather forecast using a 6-minute history. Unlike univariate LSTM predictions, DNN binary classifiers may not need to run on-the-fly, easing the computational load on existing hardware. To account for site-specific differences (on top of geographic location, seasonal changes, and continuously changing weather peaks), a DNN binary classifier can be run overnight using two to three weeks of historical data updated daily, discarding the oldest day and Introduce recent data when retraining the model at least one (eg, every) night. Such rolling daily updates increase the likelihood that the classifier will keep pace with the pace and qualitative nature of changing weather conditions. After retraining, model parameter weights may be adjusted to receive new input for generating forecasts for the duration of the second day.
在一些實施例中,機器學習模組(例如,多變量DNN及單變量LSTM)預報子模組2710a
、2710b
一起在預期及/或回應於(例如,外部)環境之改變方面提供了遠見。在一個實施例中,為了緩解DNN之長期回應不足及LSTM之短期反應過度所造成的潛在影響,模組B2710
經組態以至少部分地基於由表決邏輯2786
作出的基於規則之決策而提供輸出。舉例而言,若針對光感測器(PS)之LSTM輸出映射至色調狀態3(亦即,太陽存在),針對紅外線(IR)之LSTM輸出映射至色調狀態3(亦即,太陽存在),且DNN輸出提供二進位輸出「0」(其中「0」指示「多雲」預報,且「1」指示「晴天」預報),則大多數LSTM(PS)、LSTM(IR)及DNN(PS及IR)用作環境條件在未來時間將為晴天的預報。LSTM(PS)、LSTM(IR)及DNN(PS及IR)中之兩者的一致可為將輸出提供至窗控制器2720
所基於的規則。上文大部分不應視為限制性的,此係因為在其他實施例中,可使用由LSTM(PS)、LSTM(IR)及DNN(PS及IR)提供之其他多數及少數來提供預報。In some embodiments, machine learning modules (eg, multivariate DNN and univariate LSTM)
在一個實施例中,藉由窗控制器2720
將由模組B2710
作出之天氣條件的未來預報與由模組A2701
提供之色調規則進行比較,且例如若模組B2710
之輸出提供在未來時間之天氣條件將為晴天的指示,則在彼未來時間之前,控制系統2720
根據由模組A2701
提供之色調規則而提供色調命令。在另一實施例中,反之亦然,若模組B2710
之輸出提供在未來之天氣條件將並非晴天的指示,則在未來時間之前,控制系統2720
提供覆寫由模組A2701
之晴空模組判定之色調命令的色調命令。In one embodiment, future forecasts of weather conditions made by
返回圖 24
,在一個實施例中,窗控制器2600
包括控制邏輯,該控制邏輯在操作2630
處判定是否存在覆寫以允許各種類型之覆寫來使邏輯分離。若存在覆寫,則控制邏輯在操作2640
處將分區之最終色調位準設定為覆寫值。舉例而言,覆寫可藉由將想要覆寫控制系統且設定色調位準之當前空間佔用者輸入。另一實例覆寫為高需求(或峰值負載)覆寫,其可與減少建築物中之能量消耗的公用設施要求相關聯。舉例而言,在大都會區域中之特定熱天,可能有必要減少整個市區之能量消耗,以免對市區之能量產生及遞送系統造成過大的負擔。在此類狀況下,建築物管理可覆寫來自控制邏輯之色調位準以確保所有可著色窗具有高色調位準。此覆寫可覆寫使用者之手動覆寫。覆寫值可存在優先級。Returning to Figure 24 , in one embodiment, the
在操作2650
處,控制邏輯可判定先前是否已判定正判定之建築物之至少一個(例如,每一)分區的色調位準。若否,則控制邏輯可進行反覆以判定下一分區之最終色調位準。在一些實施例中,若完成判定最終分區之色調狀態,則在操作2660
處經由網路將用於實施至少一個(例如,每一)分區之色調位準的控制信號傳輸至與分區之可著色窗之裝置電通信的電源供應器,以轉變至最終色調位準,且控制邏輯可針對下一時間間隔進行反覆,返回至操作2610
。舉例而言,可經由網路將色調位準傳輸至與一或多個電致變色窗之電致變色裝置電通信的電源供應器,以使窗轉變至該色調位準。在某些實施例中,可在考慮效率之情況下實施將色調位準傳輸至建築物之窗。舉例而言,若色調位準之重新計算表明不需要自當前色調位準改變色調,則可能不傳輸具有經更新色調位準之指令。作為另一實例,相比於具有較大窗之分區,控制邏輯可更頻繁地重新計算具有較小窗之分區的色調位準。At
在一些實施例中,圖 24 中之控制邏輯實施一種控制方法,該控制方法用於在單個裝置上(例如,在單個(例如,主或窗)控制器上)控制整棟建築物之所有電致變色窗的色調位準。此裝置可針對建築物中之至少一個(例如,所有)電致變色窗而執行計算,及/或提供用於將色調位準傳輸至例如個別電致變色窗中之電致變色裝置的介面。可存在實施例之控制邏輯的某些自適應組件。舉例而言,控制邏輯可判定終端使用者(例如,佔用者)如何嘗試在一日中之特定時間覆寫演算法,且以(例如,更)預測性方式使用此資訊,例如以判定期望色調位準。舉例而言,終端使用者可正使用壁開關將由控制邏輯在連續數日序列中之複數日(例如,每日)內的某一時間提供的色調位準覆寫至覆寫值。控制邏輯可接收關於此等情況之資訊,且改變控制邏輯以引入覆寫值,該覆寫值在彼當日時間將色調位準改變至來自終端使用者之覆寫值。In some embodiments, the control logic in FIG. 24 implements a control method for controlling all electrical power for the entire building on a single device (eg, on a single (eg, main or window) controller) The tint level of the chromatic window. Such a device may perform calculations for at least one (eg, all) electrochromic windows in a building, and/or provide an interface for transferring tint levels to, eg, electrochromic devices in individual electrochromic windows. There may be some adaptive components of the control logic of an embodiment. For example, the control logic can determine how an end user (eg, an occupant) attempts to override an algorithm at a particular time of day, and use this information in a (eg, more) predictive manner, eg, to determine desired hue levels . For example, an end user may be using a wall switch to overwrite a hue level provided by the control logic at a certain time in a sequence of consecutive days (eg, each day) to an overridden value. The control logic can receive information about these conditions and change the control logic to introduce an override value that changes the hue level to the override value from the end user at that time of day.
返回參看圖 25
,在一個實施例中,窗控制系統2700
包括具有控制邏輯之模組E2713
,該控制邏輯經組態以至少部分地基於過去(例如,歷程)資料而提供在地點處存在的光及熱輻射之地點特定及/或季節性區分剖面的以統計方式告知的預知。在一個實施例中,藉由窗控制系統2700
將由模組C2711
及模組D2712
提供之部位特定值作為時間數列資料儲存於記憶體中,藉由模組E2713
根據該時間數列資料產生剖面。使用在請求進行預報之特定部位處獲得之過去資料(在本文中亦被稱作「歷史資料」或「歷程資料」)的能力可使得預報能夠更準確。在一個實施例中,建構此等量變曲線涉及使用機器學習(例如,人工智慧)分類演算法,該等分類演算法適合於將時間數列資訊叢集化成縱向感測器值展現類似形狀及/或型樣之群組。根據所請求的粒度等級(對於一日中之給定小時、當日時間、一週、一月及/或一年中之某個季節),所識別之叢集質心可展示彼時間範圍內之所有記錄的均值之軌跡,該等記錄自身間的類似度可與類似記錄之其他群組定量地區別。群組之間的此類區別可允許相對於在時間範圍期間請求在給定部位處監測之「典型」環境條件而在統計學上進行推斷。Referring back to FIG. 25 , in one embodiment, the
在不具有被視為對於給定部位及時間範圍「典型」之地面實況知識的情況下,以無監督方式開始離散天氣剖面之演算法分類。由於無法預定義「正確」類別,因此評估分類器之效能可能需要作出關於多少輸出可採取動作之推斷決策,例如可實際上用於區別的相異叢集之數目。The algorithmic classification of discrete weather profiles begins in an unsupervised manner without having ground truth knowledge deemed "typical" for a given location and time frame. Since the "correct" class cannot be predefined, evaluating the performance of a classifier may require inferential decisions about how many outputs can take action, such as the number of distinct clusters that can actually be used for differentiation.
在圖 25
中,將具有所請求長度及/或粒度之單變量輸入(例如,來自模組C及/或模組D)傳遞至模組E2713
,該模組經組態以執行無監督學習分類器之功能。若所關注問題由剖面化給定一月內地點處之日間天氣型樣組成,則藉由模組E2713
預處理產生m
×n
維資料訊框,其中m
為日光分鐘數且n
為已收集光感測器輸入之天數。由於不同緯度在不同季節期間對應於不同太陽軌跡,因此在當日及/或季節的不同時間,不同感測器(例如,指向不同方向)可為重要的。併入此等差異可涉及執行資料簡化技術(例如,主成份分析)以將來自x
數目個感測器之時間數列資訊壓縮成一維向量,該一維向量俘獲自至少一個(例如,每一)主要方向接收到之y
個最強輻射信號。由於日光之資料點的數目將逐日變化,因此預處理模組E2713
之資料輸入亦涉及時間索引之對準。個別時間數列向量(例如,叢集候選者)之間的類似性可量測為逐點(歐幾里德(Euclidean))距離之函數。時間索引之未對準可導致歪曲的距離計算,從而使叢集化程序失真。In Figure 25 , a univariate input of the requested length and/or granularity (eg, from Module C and/or Module D) is passed to
用於處置由向量長度差引起之未對準的一種方法可涉及將原始時間數列分成同樣大小的訊框,及運算至少一個(例如,每一)訊框之均值。此變換可在分段基礎上近似時間數列之縱向形狀。可減小或擴大資料維度,使得可對相等長度之數目n個時間數列毫無疑問地執行叢集化距離計算。One method for dealing with misalignment caused by differences in vector lengths may involve dividing the original time series into equally sized frames, and computing the mean of at least one (eg, each) frame. This transformation approximates the longitudinal shape of the time series on a piecewise basis. The data dimension can be reduced or expanded so that clustering distance computations can be performed unquestionably for a number n of time series of equal length.
由模組E2713
提供之對準處理程序可組態以執行動態時間扭曲(DTW)方法。DTW方法藉由建構扭曲矩陣來拉伸或壓縮時間數列,邏輯自該扭曲矩陣搜尋在重新對準期間最小化資料失真之最佳扭曲路徑。此處理程序可增加以下可能性:由叢集化分類器執行之距離計算未找到比實際情況距離更「遠」的兩個序列(僅頻率略有不同)。跨越數千個記錄執行逐點距離計算為在運算上昂貴的。可藉由實行局部性約束或窗約束(例如,臨限窗大小)來加快DTW方法,超出該約束,DTW方法在判定最佳扭曲路徑時不進行搜尋。可在計算逐點距離時考慮此臨限窗大小內的映射,從而(例如,實質上)降低操作之複雜度。可應用其他局部性約束(例如,LB-Keogh定界),例如以精簡(例如,絕大部分)DTW運算。The alignment handler provided by
在藉由模組E2713
預處理之後,可將時間數列向量之資料訊框輸入至無監督學習邏輯。由於叢集之適當數目(k
)可根據部位、季節及其他未量化因素而變化,因此K均值叢集化邏輯之使用可識別為待由模組E2713
使用之合適方法。K均值叢集化邏輯之使用可允許使用者定義、手調及/或微調所識別之叢集的數目,以增加輸出不僅為廣泛代表性的,而且可解譯、可採取動作及/或實際上有用的可能性。在維持上文所提及之m
×n
維資料訊框之實例的情況下,執行K均值叢集化邏輯可藉由自數目n
個時間數列向量隨機地選取數目k
日作為數目k
個候選叢集之初始質心來開始。在計算至少一個(例如,每一)質心與資料訊框中之所有其他時間數列向量之間的逐點DTW距離之前施加局部性約束。可將向量指派給最接近(最類似)質心,隨後質心經重新計算為指派給同一群組之所有向量的均值。此程序可重複(I)使用者定義或其他預定義數目次反覆,或(II)直至其他反覆不再導致將向量重新指派給不同叢集。在一些實施例中,在程序結束時,模組E2713
之分類器將已將資料叢集化成展現縱向感測器值之類似型樣的向量之k
個群組,該等感測器值構成在指定過去時間範圍內收集之感測器資料的k
個最具代表性的剖面。用以建構此等剖面之歷史資料愈多,此等K均值分組可愈具代表性及資訊性。After preprocessing by
由模組E2713
判定之剖面可用以產生關於在給定地理部位處在給定時間範圍內之指定範圍內出現的輻射位準之先前分佈的資訊。在所識別之此等「典型」剖面構成高斯(Gaussian)(例如,隨機正態)程序之混合的貝葉斯(Bayesian)原理假設下,吾人可依據基礎高斯程序之第一(均值)及第二(方差)矩而量化在特定範圍內出現之所預報感測器值的確定性。受監督的基於核之模型(如高斯程序回歸(Gaussian Process Regression))可利用由無監督叢集化識別之剖面,以產生用於一者之預測的完全後驗分佈(例如,用於所預測感測器值之信賴區間),從而洞悉可能(方差)及最可能(均值)最終結果。因此,在一個實施例中,一個模組(例如,模組E2713
)之無監督機器學習技術可與另一模型(例如,模組B2710
)之受監督機器技術配對,例如以加強及/或改善天氣預測(例如,由模組B2710
進行)。在一個實施例中,使用DNN子模組2710b
獲得之機率信賴度使用由模組E2713
提供之剖面來修改及/或較佳地量化其預報。在一些情況下,至少一個模組可能無法正確地運作,在此時間期間(例如,且直至失敗經識別及校正),控制系統(例如,2700
)可能無法提供其預期功能性。在差旅成本、所使用材料、所提供之維護服務及/或影響客戶之系統停工時間之間;處理此事件所需要之費用可能會累積。可能發生的一種類型之失敗為當與一或多個模組(例如,模組C及/或D)相關聯之一或多個感測器發生故障時。儘管一或多個感測器可能無法提供其預期功能性,但本發明可將彼部位特定感測器資料(例如,由控制系統(例如,2700
)儲存)識別為時間數列資料,該時間數列資料可例如用於除本文中所描述以外的目的。The profiles determined by
在一個實施例中,若與一或多個模組(例如,模組C2711
及/或模組D2712
)相關聯之功能性失敗或變得不可用,則本發明識別出,經組態有控制邏輯以執行加權重心平均化(Barycenter averaging)之模組(例如,2719
)可應用於感測器資料(例如,在過去獲得)之歷史序列,以提供例如感測器值分佈,該等感測器值可用作當前讀數之替代及/或用以提供未來天氣條件之預報。在一個實施例中,替代讀數可藉由神經網路(例如,藉由模組B)處理。在一個實施例中,在跨越最近過去之滾動窗而平均化日長時間數列感測器資料時,可向較接近當前之數日給與對應較大權重。在硬體失敗之情況下,可在任何停工時間的持續期間(例如,維修或維護所需的)供應歷史感測器資料之加權重心平均值。In one embodiment, if functionality associated with one or more modules (eg,
在一些實施例中,計算加權重心平均值涉及預處理及/或機器學習,例如以在時間上對準座標及/或最小化在產生最佳均值集合中使用之時間數列剖面之間的距離,該最佳均值集合反映加權方案之要求。在一個實施例中,適當的預處理技術為分段聚合近似(PAA),其藉由將時間數列分成數目等於時間步長之期望數目的片段,隨後用其資料點之均值來替換至少一個(例如,每一)片段來沿時間軸壓縮資料。在應用PAA之後,包括於歷史滾動窗中之所有時間數列剖面可含有相等數目個時間步長(例如,無關於日長之季節性差異),該等步驟可在指定時間範圍內改變。可能需要沿著時間軸之相等尺寸來計算由用以執行重心平均化之最佳化函數最小化的逐點距離。儘管一系列不同距離量度可用以運算重心,但諸如歐幾里德或軟動態時間扭曲(軟DTW)量度之其他解決方案可用以提供均值剖面。在一些實施例中,前者運算更快且執行沿時間軸之座標之間的一般直線距離,而後者為DTW量度之正則化、平滑的公式,其將定界窗應用於其距離計算,例如以考慮(例如,略微)相位差。可將約束強加於重心最佳化函數上以判定待使用之歷史資料的滾動窗之長度。具有高最佳化成本之時間範圍可指示變動的天氣。具有高最佳化成本之時間範圍可保證使用數日之較短滾動窗來執行重心平均化。較低最佳化成本可對應於較穩定的天氣,可在執行重心平均化時自其中獲取資訊性歷史資料之較長滾動窗。在一個實施例中,可利用任何可用歷史資料在地點特定基礎上產生重心平均化。In some embodiments, computing the weighted centroid mean involves preprocessing and/or machine learning, such as to align the coordinates in time and/or minimize the distance between time series profiles used in generating the optimal set of means, The set of optimal means reflects the requirements of the weighting scheme. In one embodiment, a suitable preprocessing technique is piecewise aggregate approximation (PAA), which works by dividing a time series into a number of segments equal to the desired number of time steps, and then replacing at least one ( For example, each) segment to compress the data along the time axis. After applying PAA, all time series profiles included in the historical rolling window may contain an equal number of time steps (eg, regardless of seasonal differences in day length), which may vary within a specified time frame. Equal dimensions along the time axis may be required to compute the pointwise distance minimized by the optimization function used to perform centroid averaging. While a range of different distance measures can be used to compute the center of gravity, other solutions such as Euclidean or soft dynamic time warping (soft DTW) measures can be used to provide mean profiles. In some embodiments, the former is faster and performs a general straight-line distance between coordinates along the time axis, while the latter is a regularized, smoothed formulation of the DTW metric that applies a bounding window to its distance calculation, such as with Consider (eg, slightly) the phase difference. Constraints can be imposed on the centroid optimization function to determine the length of the rolling window of historical data to be used. A time frame with a high optimization cost may indicate changing weather. A time horizon with a high optimization cost guarantees that centroid averaging is performed using a short rolling window of several days. Lower optimization costs may correspond to more stable weather, and longer rolling windows from which informative historical data can be obtained when performing centroid averaging. In one embodiment, centroid averaging can be generated on a site-specific basis using any available historical data.
在一些實施例中,當即時資料變得(或為)不可用時,可實施重心平均化運算(例如,在模組2719
中或在模組2819
中)以自歷史資料產生合成的即時原始感測器資料。舉例而言,若感測器裝置(例如,地點處之多感測器裝置或天空感測器)失敗或以其他方式變得不可用,則重心平均化運算可用以產生合成的即時感測器(例如,光感測器及/或紅外線感測器)讀數。為了產生仿效即時原始感測器資料之合成感測器資料,重心平均化可使用在時間範圍內儲存之歷史感測器資料來計算至少一個(例如,每一)時間索引(例如,自日出至日落)之逐點加權距離,從而產生第二日之可能輻射剖面。在一個實例中,可使用7至10日範圍內之時間範圍上的歷史感測器資料。重心平均化可在時間範圍之至少兩日(例如,每日)內使用時間索引之間的相同距離,例如以至少約0.5分鐘(min)、1分鐘、1.5分鐘、2分鐘或3分鐘之間隔。時間索引之數目可取決於日出至日落之間的各別日之日長而改變。在一些實施例中,至少連續兩日中之時間索引的數目擴大或縮小,以考慮日光分鐘數隨著日變長或變短之季節性改變。在某些實施例中,重心平均化用以計算時間範圍內之至少兩個時間索引(例如,每一時間索引)的歷史感測器值之加權平均值,其中最近值之權重更大。舉例而言,重心平均化可使用在10日時間範圍內之每日正午12點獲取的所儲存之歷史光感測器讀數,對來自最近數日之讀數進行更大加權(例如,第10日之權重為10,第9日之權重為9,第8日之權重為8等),以計算光感測器值在正午12點之加權平均值。重心平均化可用以判定至少兩個時間索引(例如,在每一時間索引處)之感測器(例如,光感測器)值的加權平均值,從而產生一日內之合成的即時光感測器值之均值剖面。In some embodiments, when real-time data becomes (or is) unavailable, a centroid averaging operation (eg, in module 2719 or in module 2819 ) may be implemented to generate a synthetic real-time pristine feel from historical data tester data. For example, if a sensor device (eg, a multi-sensor device or a sky sensor at a location) fails or otherwise becomes unavailable, a centroid averaging operation can be used to generate a composite real-time sensor (eg, light sensor and/or infrared sensor) readings. To generate synthetic sensor data that emulates real-time raw sensor data, centroid averaging may use historical sensor data stored over a time frame to calculate at least one (eg, each) time index (eg, since sunrise). Point-by-point weighted distance to sunset), resulting in a possible radiation profile for the second day. In one example, historical sensor data over a time frame in the range of 7 to 10 days may be used. Center of gravity averaging may use the same distance between time indices over at least two days (eg, daily) of the time range, eg, at intervals of at least about 0.5 minutes (min), 1 minute, 1.5 minutes, 2 minutes, or 3 minutes . The number of time indices may vary depending on the day lengths of the respective days between sunrise and sunset. In some embodiments, the number of time indices in at least two consecutive days expands or contracts to account for seasonal changes in daylight minutes as days get longer or shorter. In some embodiments, centroid averaging is used to calculate a weighted average of historical sensor values for at least two time indices (eg, each time index) within a time range, with more recent values weighted more heavily. For example, centroid averaging may use stored historical light sensor readings taken at 12:00 noon each day over a 10-day time frame, with greater weighting of readings from recent days (eg,
重心平均化運算可用以產生合成的即時感測器值(諸如,光感測器值、紅外線感測器值、周圍環境溫度感測器值等)之均值剖面。重心平均化運算可使用自均值剖面獲取之合成的即時感測器值以產生可能需要在一日內執行之各種模組及模型的輸入。舉例而言,重心平均化運算可使用滾動歷史資料來產生合成的感測器(例如,光感測器)值作為至例如模組2710a
之LSTM神經網路及/或模組2710b
之DNN的神經網路模型(或其他模型)中之輸入。The centroid averaging operation may be used to generate mean profiles of synthesized real-time sensor values (such as light sensor values, infrared sensor values, ambient temperature sensor values, etc.). The centroid averaging operation can use the synthesized real-time sensor values obtained from the mean profile to generate inputs for various modules and models that may need to be executed within a day. For example, a centroid averaging operation may use rolling history data to generate synthesized sensor (eg, light sensor) values as a neural network to, for example, the LSTM neural network of
在一些實施例中,用於神經網路模型(或其他模型)中之至少一者(例如,每一者)的輸入特徵集合保持最新,且準備好饋入至實時模型中,例如以預報地點處之條件。在某些實施例中,輸入特徵係至少部分地基於來自地點處之感測器(例如,光感測器、紅外線感測器、周圍環境溫度感測器、紫外線感測器、佔用感測器等)之(例如,原始)量測值。感測器可為本文中所揭示之感測器。輸入特徵可至少部分地基於電流及/或電壓之(例如,原始)量測值。在某些實施例中,感測器位於單個外殼中或以其他方式居中地位於例如多感測器裝置(諸如,裝置集合)中。裝置集合可安置於封閉體(例如,設施、建築物或房間)中,或在封閉體外部。舉例而言,感測器集可位於建築物之屋頂上及/或天空感測器中。多感測器裝置可包括包括複數個感測器,例如至少約2、4、6、8、10或十二(12)個感測器。感測器可包含光感測器。感測器可按單列配置。單列可安置於弧上。單列可沿環安置。感測器可徑向地安置。感測器可按各種方位定向安置。至少一個感測器(例如,一個光感測器)可豎直地定向(在裝設時面向與重力中心相反之方向向上)。裝置可包含至少一個或兩個紅外線感測器(例如,向上定向)。裝置可包含至少一個或兩個周圍環境溫度感測器。裝置可包含透明外殼部分(例如,玻璃、藍寶石或塑膠)。裝置可包含不透明外殼部分。裝置可包含對由安置於外殼中之感測器感測到之輻射透明的一部分。該集合可包含感測器之冗餘。該集合可包含相同類型之至少兩個感測器。該集合可包含不同類型之至少兩個感測器。可安裝至建築物之屋頂的此多感測器裝置之實例描述於2016年10月06日申請之標題為「具有圍繞光感測器及紅外線感測器之環之周邊的光漫射元件之多感測器裝置及系統(Multi-sensor device and system with a light diffusing element around a periphery of a ring of photosensors and an infrared sensor)」的美國專利申請案第15/287,646號(現為在2020年1月14日發佈的美國專利第10,533,892號)中,該專利申請案特此以全文引用之方式併入。可按各種方式使用來自多個不同感測器之資訊。舉例而言,在特定時間,可組合來自另外兩個感測器(例如,屬於相同類型)之量測值,例如集中趨勢,感測器值之此均值或平均值。在特定時間,可僅使用一個量測值;例如來自所有感測器之最大值、所有感測器之最小值或集合中之所有感測器讀數的中值。在一個實施例中,模型輸入特徵係至少部分地基於由集合感測器獲取(例如,多感測器)之多個原始感測器讀數的最大值、最小值及/或平均值(例如,均值或中值)。舉例而言,模型輸入特徵可至少部分地基於由多感測器裝置之(例如,十三個)光感測器獲取的多個原始光感測器讀數之最大值及/或至少部分地基於最小紅外線感測器值,例如兩個紅外線感測器讀數之最小值小於多感測器裝置之兩個周圍環境溫度感測器讀數之最小值。最大光感測器值可表示地點處之太陽輻射的最高位準,且最小紅外線感測器值表示地點處之晴空的最高位準。In some embodiments, the set of input features for at least one (eg, each) of the neural network models (or other models) is kept up-to-date and ready to be fed into a real-time model, eg, to predict locations conditions of the place. In some embodiments, the input feature is based at least in part on sensors from the location (eg, light sensor, infrared sensor, ambient temperature sensor, ultraviolet sensor, occupancy sensor etc.) (eg, raw) measurements. The sensor may be a sensor disclosed herein. The input characteristics may be based at least in part on (eg, raw) measurements of current and/or voltage. In certain embodiments, the sensors are located in a single housing or otherwise centrally located, for example, in a multi-sensor device such as a set of devices. A collection of devices can be housed in an enclosure (eg, a facility, building, or room), or outside the enclosure. For example, sensor sets may be located on roofs of buildings and/or in sky sensors. A multi-sensor device may include a plurality of sensors, such as at least about 2, 4, 6, 8, 10, or twelve (12) sensors. The sensor may include a light sensor. Sensors can be configured in a single column. A single row can be placed on an arc. A single row can be placed along the ring. The sensors may be positioned radially. The sensors can be placed in various azimuthal orientations. At least one sensor (eg, a light sensor) may be oriented vertically (facing upwards in a direction opposite the center of gravity when installed). The device may include at least one or two infrared sensors (eg, upwardly oriented). The device may include at least one or two ambient temperature sensors. The device may include a transparent housing portion (eg, glass, sapphire, or plastic). The device may include an opaque housing portion. The device may include a portion that is transparent to radiation sensed by a sensor disposed in the housing. The set may include redundancy of sensors. The set may include at least two sensors of the same type. The set may include at least two sensors of different types. An example of such a multi-sensor device that can be mounted to the roof of a building is described in an application entitled "Light Diffusing Elements with a Perimeter Surrounding a Ring of Light Sensors and Infrared Sensors," filed on Oct. 06, 2016. Multi-sensor device and system with a light diffusing element around a periphery of a ring of photosensors and an infrared sensor" U.S. Patent Application Serial No. 15/287,646 (now in January 2020) US Patent No. 10,533,892, issued March 14), which patent application is hereby incorporated by reference in its entirety. Information from multiple different sensors can be used in various ways. For example, at a particular time, measurements from two other sensors (eg, of the same type) can be combined, such as the central tendency, this mean or the average of the sensor values. At a particular time, only one measurement may be used; such as the maximum value from all sensors, the minimum value of all sensors, or the median value of all sensor readings in the set. In one embodiment, the model input features are based, at least in part, on maximum, minimum, and/or average values of a plurality of raw sensor readings (eg, mean or median). For example, the model input feature may be based at least in part on a maximum of multiple raw light sensor readings obtained by (eg, thirteen) light sensors of a multi-sensor device and/or at least in part on The minimum IR sensor value, eg, the minimum value of the two IR sensor readings is less than the minimum value of the two ambient temperature sensor readings of the multi-sensor device. The maximum light sensor value may represent the highest level of solar radiation at the location, and the minimum infrared sensor value may represent the highest level of clear sky at the location.
在某些實施例中,饋入至神經網路模型(或其他模型)中之輸入特徵集合包括歷史感測器資料之多個滾動窗的計算。在一種狀況下,使用長度範圍為約五(5)分鐘至約十(10)分鐘之複數個(例如,六(6)個)滾動窗。滾動計算之實例可包括滾動均值、滾動中值、滾動最小值、滾動最大值、滾動指數加權移動平均值及/或滾動相關性。在一個實施例中,輸入特徵集合包括最大光感測器值及最小IR感測器值之歷史資料之多個滾動窗的滾動均值、滾動中值、滾動最小值、滾動最大值、滾動指數加權移動平均值及/或滾動相關性之(例如,六次)滾動計算(例如,其中依據此等輸入之歷史的時間範圍而習得預報輸出)。舉例而言,若對於最大光感測器及最小IR感測器值中之每一者,六(6)次滾動計算用於長度範圍為六(6)分鐘至十(10)分鐘之五(5)個滾動窗,其中依據四(4)分鐘歷史而習得所預報輸出,則輸入特徵集合將為240(=6次滾動計算×5個滾動窗×2個感測器值×4分鐘)。可定期地(例如,每分鐘)更新滾動窗以捨棄(例如,刪除)最舊資料且引入最近資料(例如,用最近資料更新)。在一些狀況下,選擇滾動窗之長度以最小化在實時(即時)預測期間將資料排入佇列中的延遲。In some embodiments, the set of input features fed into the neural network model (or other model) includes the computation of multiple rolling windows of historical sensor data. In one case, a plurality (eg, six (6)) rolling windows ranging in length from about five (5) minutes to about ten (10) minutes are used. Examples of rolling calculations may include rolling mean, rolling median, rolling minimum, rolling maximum, rolling exponentially weighted moving average, and/or rolling correlation. In one embodiment, the input feature set includes rolling mean, rolling median, rolling minimum, rolling maximum, and rolling exponential weighting of multiple rolling windows of historical data of maximum light sensor value and minimum IR sensor value Rolling calculations (eg, six times) of moving averages and/or rolling correlations (eg, where forecast outputs are learned based on historical time horizons for these inputs). For example, if for each of the maximum light sensor and minimum IR sensor values, six (6) rolling calculations are used for a length ranging from six (6) minutes to five of ten (10) minutes ( 5) rolling windows, where the predicted output is learned from four (4) minutes of history, then the input feature set will be 240 (=6 rolling computations × 5 rolling windows × 2 sensor values × 4 minutes). The rolling window may be updated periodically (eg, every minute) to discard (eg, delete) the oldest data and bring in the most recent data (eg, update with the most recent data). In some cases, the length of the rolling window is chosen to minimize delays in queuing data during real-time (real-time) forecasting.
在某些實施例中,可實施具有諸如本文中所描述之自校正特徵選擇程序的機器學習子模組,以(例如,間接地)量化及/或憑經驗驗證所有潛在模型輸入之相對重要性,從而將輸入集合中之特徵的數目減小至更高效的輸入組態。在此等狀況下,可將輸入特徵之總數目減小至可用以初始化及/或執行模型之較小子集。舉例而言,可將至少部分地基於對於原始最大光感測器值及最小IR感測器值兩者而言長度範圍為約五(5)分鐘至約十(10)分鐘之六(6)個滾動窗之六次滾動計算的七十二(72)個輸入特徵之集合減小至50個輸入特徵之子集。In certain embodiments, a machine learning submodule with self-correcting feature selection procedures such as those described herein may be implemented to (eg, indirectly) quantify and/or empirically verify the relative importance of all potential model inputs , thereby reducing the number of features in the input set to a more efficient input configuration. In such cases, the total number of input features can be reduced to a smaller subset that can be used to initialize and/or execute the model. For example, six (6) lengths ranging from about five (5) minutes to about ten (10) minutes may be based, at least in part, on both the raw maximum light sensor value and the minimum IR sensor value. The set of seventy-two (72) input features is reduced to a subset of 50 input features for six rolling calculations over a rolling window.
在一個實施例中,將輸入特徵(例如,兩百(200)個或多於兩百個輸入特徵之集合)饋入至神經網路中。神經網路架構之一個實例為深度密集神經網路,諸如具有至少七(7)個層及至少五十五(55)個總節點的網路。在一些DNN架構中,至少一個(例如,每一)輸入特徵與至少一個(例如,每一)第一層節點連接,且至少一個(例如,每一)節點為與至少一個(例如,每個)其他節點連接之占位符(變數X)。第一層中之節點模型化所有輸入特徵之間的關係。後續層中之節點學習在先前層中之至少一者中模型化的關係中之一關係。當執行DNN時,可例如藉由更新至少一個(例如,每一)節點占位符之係數權重來反覆地最小化誤差。In one embodiment, the input features (eg, a set of two hundred (200) or more input features) are fed into the neural network. One example of a neural network architecture is a deep dense neural network, such as a network with at least seven (7) layers and at least fifty-five (55) total nodes. In some DNN architectures, at least one (eg, each) input feature is connected to at least one (eg, each) first layer node, and at least one (eg, each) node is connected to at least one (eg, each) node ) placeholder for other node connections (variable X). Nodes in the first layer model the relationship between all input features. A node in a subsequent layer learns one of the relationships modeled in at least one of the previous layers. When performing a DNN, the error can be iteratively minimized, eg, by updating the coefficient weights of at least one (eg, each) node placeholder.
在一些狀況下,模型輸出未來之一或多個所預報條件值。舉例而言,模型可輸出在未來某個點(例如,未來約五(5)分鐘至約六十(60)分鐘)的所預報條件。在一些實施例中,模型輸出在未來約七(7)分鐘(t+7分鐘)的所預報條件。作為另一實例,模型可輸出未來若干時間之所預報條件,例如未來約七(7)分鐘(t+7分鐘)、未來約十(10)分鐘或未來約十五(15)分鐘(t+10分鐘)。在其他狀況下,模型輸出所預報感測器值,諸如在單個DNN架構實施例中。In some cases, the model outputs one or more predicted condition values in the future. For example, the model may output forecasted conditions at some point in the future (eg, about five (5) minutes to about sixty (60) minutes in the future). In some embodiments, the model outputs forecasted conditions about seven (7) minutes in the future (t+7 minutes). As another example, the model may output forecasted conditions some time in the future, such as about seven (7) minutes in the future (t+7 minutes), about ten (10) minutes in the future, or about fifteen (15) minutes in the future (
為了考慮地理部位、季節性變化及改變天氣前峰之地點特定差異,可定期地重新訓練各種神經網路模型(或其他預測模型)。在某些實施例中,每日或在某一其他定期基礎上(例如,介於每1日與10日之間)利用經更新訓練資料來重新訓練該等網路模型。可在某一時間重新訓練該等模型,例如當不執行實時模型時,諸如在夜間、假期、假日、其他設施關閉期間或在任何其他低佔用時間窗期間。在某些實施例中,利用訓練資料重新訓練該等模型,該訓練資料包括在一段時間內儲存之歷史資料,諸如至少約一週、兩週、三週或更長時間。可及時地(例如,定期地)更新歷史資料,例如根據排程。可更新歷史資料以捨棄(例如,刪除及/或封存)最舊資料且引入最近資料(例如,用最近資料更新)。舉例而言,在每日在夜間更新歷史資料之情況下,捨棄來自最早日之資料且插入來自彼日之最近資料。此等定期更新增加如下可能性(例如,確保):歷史資料與諸如溫度、太陽角度及/或雲覆蓋之改變外部天氣條件之步調及/或定性性質保持一致。在一些實施例中,利用至少部分地基於在多個時段內儲存之一或多個歷史資料區塊的訓練資料來重新訓練模型。在一些實施例中,使用至少部分地基於歷史資料與歷史資料區塊之組合的訓練資料來重新訓練模型。訓練資料可包括在正常及/或例行執行期間由模型用作輸入之類型的特徵輸入值。舉例而言,如本文中所描述,特徵輸入資料可包括感測器讀數之滾動平均值。Various neural network models (or other predictive models) may be retrained periodically to account for geographic location, seasonal variation, and location-specific differences in changing weather pre-peaks. In some embodiments, the network models are retrained daily or on some other periodic basis (eg, between every 1 and 10 days) with updated training data. The models may be retrained at a certain time, such as when the real-time model is not executing, such as during nighttime, vacation, holiday, other facility closures, or during any other low-occupancy time window. In certain embodiments, the models are retrained using training data, including historical data stored over a period of time, such as at least about one week, two weeks, three weeks, or more. Historical data may be updated in a timely (eg, periodically) manner, eg, according to a schedule. Historical data may be updated to discard (eg, delete and/or archive) the oldest data and bring in the most recent data (eg, update with the most recent data). For example, in the case where historical data is updated daily at night, the data from the earliest day is discarded and the latest data from that day is inserted. Such periodic updates increase the likelihood (eg, ensure) that historical data is consistent with the pace and/or qualitative nature of changing external weather conditions such as temperature, sun angle and/or cloud cover. In some embodiments, the model is retrained using training data based at least in part on storing one or more blocks of historical data over multiple time periods. In some embodiments, the model is retrained using training data based at least in part on a combination of historical data and blocks of historical data. The training data may include characteristic input values of the type used by the model as input during normal and/or routine execution. For example, as described herein, the characteristic input data may include a rolling average of sensor readings.
在一些實施例中,訓練資料包括至少部分地基於在地點處收集之歷史資料(滾動或其他)的模型特徵之值。舉例而言,訓練資料可包括地點處(例如,封閉體處)之光感測器及紅外線感測器之歷史讀數的最大光感測器值及/或最小IR感測器值。在另一實例中,訓練資料可包括至少部分地基於在地點處收集之光感測器及/或紅外線感測器之歷史讀數的滾動窗(例如,滾動均值、滾動中值、滾動最小值、滾動最大值、滾動指數加權移動平均值及滾動相關性等)之計算的模型特徵。取決於由訓練資料涵蓋之天氣條件的數目及類型,訓練資料可包括在數日、數週、數月或數年內獲得的資料。In some embodiments, the training data includes values of model features based at least in part on historical data (rolled or otherwise) collected at the location. For example, training data may include maximum light sensor values and/or minimum IR sensor values for historical readings of light sensors and IR sensors at a location (eg, at an enclosure). In another example, the training data may include a rolling window (eg, rolling mean, rolling median, rolling minimum, Model characteristics for the calculation of rolling maximums, rolling exponentially weighted moving averages, rolling correlations, etc.). Depending on the number and type of weather conditions covered by the training data, the training data may include data obtained over days, weeks, months or years.
在某些實施例中,饋入至神經網路模型或其他模型中之訓練資料包括模型輸入特徵,該等模型輸入特徵係至少部分地基於諸如上文所描述之歷史感測器資料的多個滾動窗之計算。舉例而言,訓練資料集可包括最大光感測器值及最小IR感測器值中之至少一者(例如,每一者)的歷史資料之多個滾動窗的滾動均值、滾動中值、滾動最小值、滾動最大值、滾動指數加權移動平均值及滾動相關性之六次滾動計算,其中依據此等輸入之歷史的時間範圍而習得所預報輸出。若對於最大光感測器及最小IR感測器值中之至少一者(例如,每一者),六(6)次滾動計算用於長度範圍為六(6)分鐘至十(10)分鐘之五(5)個滾動窗,其中依據四(4)分鐘歷史習得所預報輸出,則訓練資料中之輸入特徵集合將為240。In some embodiments, the training data fed into the neural network model or other model includes model input features based at least in part on a plurality of historical sensor data such as those described above Calculation of rolling windows. For example, the training data set may include rolling mean, rolling median, Six rolling calculations of rolling minimum, rolling maximum, rolling exponentially weighted moving average, and rolling correlation, where the predicted output is learned based on the historical time horizon of these inputs. If for at least one (eg, each) of the maximum light sensor and minimum IR sensor values, six (6) rolling calculations are used for lengths ranging from six (6) minutes to ten (10) minutes Five (5) rolling windows, in which the predicted output is learned based on four (4) minutes of history, the input feature set in the training data will be 240.
在某些實施例中,使用至少部分地基於在期間地點處存在各種天氣條件之一或多個時段內收集之歷史資料區塊的訓練資料來重新訓練神經網路模型(或其他模型),以針對此等條件最佳化模型且使訓練資料在整個域之子集上多樣化。舉例而言,訓練資料可包括在多個時段內收集之模型特徵的值,在該等時段期間,在地點處存在部分多雲條件、圖勒(Tule)霧條件、晴空條件及其他天氣條件。In some embodiments, a neural network model (or other model) is retrained using training data based, at least in part, on blocks of historical data collected during one or more periods of the existence of various weather conditions at the period location to The model is optimized for these conditions and the training data is diversified over a subset of the entire domain. For example, training data may include values of model features collected over time periods during which partially cloudy conditions, Tule fog conditions, clear sky conditions, and other weather conditions exist at the location.
在一些狀況下,訓練資料經設計成具有模型特徵以俘獲地點處之一或多個(例如,所有)可能的天氣條件。舉例而言,訓練資料可包括在過去一年、過去兩年等內收集之(例如,所有)滾動歷史資料。在另一實例中,訓練資料可包括在多個時段內獲得之歷史資料區塊,在該等時段期間,在地點處存在各別天氣條件。舉例而言,訓練資料可包括具有在圖勒霧條件期間獲得之資料的一個資料集、具有在晴空條件期間獲得之資料的一個資料集、具有在20%之部分雲條件期間獲得之資料的一個資料集、具有在60%之部分多雲條件期間獲得之資料的一個資料集等。In some cases, the training data is designed with model features to capture one or more (eg, all) possible weather conditions at the location. For example, training data may include (eg, all) rolling historical data collected over the past year, the past two years, and so on. In another example, the training data may include blocks of historical data obtained over time periods during which individual weather conditions exist at the location. For example, training data may include one data set with data obtained during Thule fog conditions, one data set with data obtained during clear sky conditions, one data set with data obtained during 20% partial cloud conditions datasets, one dataset with data obtained during 60% partially cloudy conditions, etc.
在一些狀況下,訓練資料經設計成具有與地點處之一或多個(例如,所有)可能的天氣條件之子集相關聯的模型特徵。舉例而言,訓練資料可包括在多個時段內獲得之歷史資料區塊,在該等時段期間,在地點處出現天氣條件之子集。在此狀況下,針對天氣條件之子集而最佳化模型。舉例而言,用於針對圖勒霧條件而最佳化之模型的訓練資料可使用在冬季數月期間且進一步在存在圖勒霧之時段期間獲得的輸入特徵。In some cases, the training data is designed to have model features associated with a subset of one or more (eg, all) possible weather conditions at the location. For example, training data may include blocks of historical data obtained over time periods during which a subset of weather conditions occurred at a location. In this case, the model is optimized for a subset of weather conditions. For example, training data for a model optimized for Thule fog conditions may use input features obtained during the winter months and further during periods when Thule fog is present.
隨著天氣型樣改變及/或圍繞地點發生建構,可能在地點處出現微氣候變化、建築物陰影及其他局部條件改變。為適應改變的條件,訓練資料可經設計成具有輸入特徵,該等輸入特徵針對在地點處存在此等局部條件時獲得之資料。在一個實施例中,可實施轉移學習以初始化利用模型參數重新訓練之模型,該等模型參數係來自先前針對地點處之所有先前存在的天氣條件而訓練的模型。可接著利用在新局部條件期間獲得之訓練資料來重新訓練模型,例如以增加如下機率(例如,確保):模型與地點處之改變的局部條件之定性性質保持一致。As weather patterns change and/or construction occurs around the site, microclimate changes, building shading, and other local changes in conditions may occur at the site. To accommodate changing conditions, training data can be designed with input features for data obtained when these local conditions exist at a location. In one embodiment, transfer learning may be implemented to initialize a model retrained with model parameters from a model previously trained for all pre-existing weather conditions at the location. The model may then be retrained using training data obtained during the new local conditions, eg, to increase the probability (eg, to ensure) that the model remains consistent with the qualitative properties of the changed local conditions at the location.
在某些實施例中,首先利用模型參數(例如,係數權重、偏差等)來初始化正經重新訓練之模型,該等模型參數係至少部分地基於超參數;例如至少部分地基於資料之隨機分佈。各種技術可用以諸如使用截斷常態分佈而判定隨機分佈。In some embodiments, the model being retrained is first initialized with model parameters (eg, coefficient weights, biases, etc.) that are based at least in part on hyperparameters; eg, based at least in part on a random distribution of the data. Various techniques can be used to determine a random distribution, such as using a truncated normal distribution.
在模型訓練期間,可調整該等模型參數(例如,係數權重、偏差等)且可反覆地最小化誤差直至收斂。可訓練神經網路模型(或其他模型)以設定將在第二日用於實時模型中之模型參數。正執行之實時模型可使用至少部分地基於即時感測器值之輸入特徵,例如以預報將由控制邏輯使用以作出色調決策(例如,在彼日期間及/或即時地)之條件。可儲存在重新訓練程序期間習得之模型參數及/或將其用作轉移學習程序中之起點。During model training, the model parameters (eg, coefficient weights, biases, etc.) can be adjusted and the error can be iteratively minimized until convergence. A neural network model (or other model) can be trained to set the model parameters that will be used in the live model the next day. The real-time model being executed may use input features based at least in part on real-time sensor values, such as to predict conditions that will be used by control logic to make hue decisions (eg, during that day and/or in real time). Model parameters learned during the retraining procedure can be stored and/or used as a starting point in the transfer learning procedure.
在一些實施例中,轉移學習操作使用在先前訓練程序中習得之所儲存模型參數作為起點,以重新訓練新模型。舉例而言,轉移學習操作可使用先前訓練之神經網路模型的節點占位符之係數權重來初始化一或多個新模型。在此實例中,將經訓練模型之節點占位符的係數權重保存至記憶體,且重新載入以初始化例如每日重新訓練之新模型。利用經預先訓練模型之模型參數初始化新模型可促進及/或加快收斂至最終最佳化模型參數,及/或加速重新訓練程序。轉移學習可消除對從頭開始重新訓練新模型(利用隨機初始化)之需要。舉例而言,在每日重新訓練程序期間,可利用經先前訓練模型之節點占位符的係數權重來初始化模型。模型訓練可特徵界定為微調係數權重及修改工作參數化。藉由以經先前訓練模型之係數權重開始,係數權重之最佳化開始更接近全局誤差最小值。此訓練可減小在最佳化期間係數權重更新及/或反覆之次數,此可有助於減少平台停工時間及/或運算資源。對於某些層及/或節點,轉移學習操作可固定新模型中之所轉移模型參數。轉移學習操作可僅重新訓練未固定層及/或節點,此可減少運算資源及/或平台停工時間。In some embodiments, the transfer learning operation uses the stored model parameters learned in the previous training procedure as a starting point to retrain the new model. For example, a transfer learning operation may initialize one or more new models using the coefficient weights of the node placeholders of a previously trained neural network model. In this example, the coefficient weights for the node placeholders of the trained model are saved to memory and reloaded to initialize a new model such as daily retraining. Initializing the new model with the model parameters of the pretrained model may facilitate and/or speed up the convergence to the final optimized model parameters, and/or speed up the retraining process. Transfer learning eliminates the need to retrain a new model from scratch (with random initialization). For example, during the daily retraining procedure, the model may be initialized with the coefficient weights of the node placeholders of the previously trained model. Model training can be characterized by fine-tuning coefficient weights and modifying job parameterizations. By starting with the coefficient weights of the previously trained model, the optimization of the coefficient weights starts closer to the global error minimum. This training may reduce the number of coefficient weight updates and/or iterations during optimization, which may help reduce platform downtime and/or computing resources. For certain layers and/or nodes, the transfer learning operation may fix the transferred model parameters in the new model. Transfer learning operations may only retrain unpinned layers and/or nodes, which may reduce computing resources and/or platform downtime.
在某些實施例中,轉移學習操作包括於模型之重新訓練程序中。可利用來自先前訓練程序之所儲存模型參數來初始化經重新訓練之模型中的至少一者(例如,每一者)。在一個實施例中,轉移學習操作包括於可能需要在一日內執行之模型的每日重新訓練中。舉例而言,轉移學習操作可包括於圖 27A
之重新訓練操作2903
中。在此等實施例中,轉移在初始化及每日重新訓練期間獲取之知識促進對條件之地點特定改變進行更精細粒度的調整。In some embodiments, transfer learning operations are included in the retraining process of the model. At least one (eg, each) of the retrained models may be initialized with stored model parameters from a previous training procedure. In one embodiment, transfer learning operations are included in daily retraining of the model that may need to be performed within a day. For example, transfer learning operations may be included in
在一個實施例中,轉移學習操作利用來自先前訓練程序之所儲存模型參數來初始化模型,該先前訓練程序使用來自第一時間段內之歷史資料區塊的訓練資料。舉例而言,先前訓練程序可使用在至少一(1)個月、兩(2)個月、三(3)個月或多於三個月之時間段內的歷史資料區塊。在重新訓練經初始化模型期間,可重新訓練模型以例如使用至少部分地基於第二時間段內之滾動歷史資料的訓練資料來更新模型。舉例而言,重新訓練程序可使用具有在約五(5)日至約十(10)日範圍內之第二時間段的滾動窗。歷史資料區塊之時間段長於滾動窗之時間段。In one embodiment, the transfer learning operation initializes the model with stored model parameters from a previous training procedure using training data from blocks of historical data within a first time period. For example, the previous training procedure may use blocks of historical data over time periods of at least one (1) month, two (2) months, three (3) months, or more than three months. During retraining of the initialized model, the model may be retrained to update the model, eg, using training data based at least in part on rolling historical data over a second time period. For example, the retraining procedure may use a rolling window with a second time period ranging from about five (5) days to about ten (10) days. The time period of the historical data block is longer than the time period of the rolling window.
在一個實施例中,轉移學習操作利用來自先前訓練程序之所儲存模型參數來初始化模型,該先前訓練程序使用來自第一時間段(例如,至少約一(1)個月、兩(2)個月、三(3)個月或多於三個月)內之歷史資料區塊的訓練資料。在重新訓練經初始化模型期間,可使用至少部分地基於天氣條件之目標子集的訓練資料來重新訓練經初始化模型,以更新經初始化模型。舉例而言,訓練資料可包括在第二時間段期間在新天氣條件下獲得的資料,該第二時間段例如出現在重新訓練之前的三個月中之兩週時段期間。重新訓練程序可在第二時間段期間使用訓練資料來重新訓練模型。In one embodiment, the transfer learning operation initializes the model with stored model parameters from a previous training program using data from a first time period (eg, at least about one (1) month, two (2) month, three (3) months or more) of training data for historical data blocks. During retraining of the initialized model, the initialized model may be retrained using training data based at least in part on a target subset of weather conditions to update the initialized model. For example, training data may include data obtained under new weather conditions during a second time period, such as during a two-week period of three months prior to retraining. The retraining procedure may use the training data to retrain the model during the second time period.
在某些實施例中,實時模型選擇構架促進釋放專門模型,諸如經最佳化以與(例如,僅)光感測器輸入、(例如,僅)紅外線感測器輸入、(例如,僅)天氣饋入資料等一起使用之彼等模型。在此等實施例及其他實施例中,控制邏輯執行圖 25 中所說明之模組及模型的完整集合之子集。未執行部分可儲存於記憶體中且經重新訓練以供在未來的一日執行,或可能不存在於架構中。In certain embodiments, the real-time model selection framework facilitates the release of specialized models, such as optimized to work with (eg, only) light sensor inputs, (eg, only) infrared sensor inputs, (eg, only) These models are used with weather feeds, etc. In these and other embodiments, the control logic executes a subset of the full set of modules and models illustrated in FIG. 25 . The unexecuted portion may be stored in memory and retrained for execution at a future day, or may not exist in the architecture.
控制邏輯可執行一或多個模型(例如,選擇性地)。舉例而言,在一個實施例中,圖 25
中所說明之控制邏輯不實施模組B及模組E,且替代地執行模組C2711
、模組D2712
及重心平均化模組2719
。在此實施例中,不實施模組2710a
之遞迴LSTM神經網路,且替代地實施單個深度神經網路(DNN)。根據一個態樣,單個DNN為稀疏DNN,其具有來自將用於實施模型及模組之完整集合的模組2710b
之DNN中的總數目個模型參數中之減小數目個模型參數。在一個實例中,稀疏DNN具有模組2710b
之DNN的模型特徵之20%。在一個實施例中,執行線性核支援向量機(SVM)或其他類似技術以將稀疏DNN之模型特徵消除至模組2710b
之DNN的總數目個潛在特徵之子集。The control logic may execute one or more models (eg, selectively). For example, in one embodiment, the control logic illustrated in FIG. 25 does not implement modules B and E, and instead implements
圖 26
為根據實施例的具有單個DNN架構之窗控制系統2800
的方塊圖之實例。窗控制系統2800
包括窗控制器2820
,例如主控制器或本端窗控制器。窗控制系統2800
包括由某些區塊描繪之控制邏輯。窗控制系統2800
之一或多個組件實施控制邏輯。控制邏輯包括重心平均化模組2819
、DNN模組2830
、模組A2801
、模組C12811
及模組D12812 。
在一種狀況下,DNN模組2830
包括稀疏DNN。模組A2801
包括類似於圖 25
之模組2701
的邏輯。 26 is an example of a block diagram of a
可執行重心平均化模組2819
以至少部分地基於歷史感測器資料而判定合成的即時感測器值及/或至少部分地基於合成的即時感測器值而判定一日之平均感測器剖面。舉例而言,可執行重心平均化模組2819以判定一日內之均值光感測器剖面及/或均值紅外線感測器剖面。在一種狀況下,可執行重心平均化模組2819
以(例如,另外)判定一日內之均值周圍環境溫度感測器剖面。重心平均化模組2819
可使用滾動歷史資料來產生合成值作為DNN模組2830
之輸入。DNN模組2830
之實時稀疏DNN可使用至少部分地基於來自重心平均化模組2819
之合成值的輸入特徵,以輸出用作模組D12812
之輸入的一或多個所預報IR感測器值且輸出用作模組C12811
之輸入的一或多個所預報光感測器值。舉例而言,DNN模組2830
可輸出未來至少約7分鐘、未來約10分鐘或未來約15分鐘等之時間的所預報IR感測器值及所預報光感測器(PS)值。The center of
在一些實施例中,模組C12811
包括控制邏輯,可執行該控制邏輯以藉由比較自DNN模組2830
之實時DNN輸出的光感測器值與臨限值來判定雲覆蓋條件,從而至少部分地基於所判定之雲覆蓋條件而判定色調位準。可執行模組D12812
以至少部分地基於自實時DNN2830
輸出之紅外線感測器值及/或周圍環境溫度感測器而判定色調位準。窗控制器2820
可至少部分地基於自模組A2801
、模組C12811
及模組D12812
輸出之色調位準的最大值而執行色調命令。In some embodiments,
在某些實施例中,經組態以判定窗色調狀態之控制邏輯自可用模型套件中動態地選擇及/或部署特定模型。至少一個(例如,每一)模型可具有一組條件。模型可具有一組條件,在該組條件下,該模型比該套件中之至少一個其他模型(例如,其他模型)更佳地判定窗色調狀態。用於實施此方法之架構(或構架)可包括用於選擇經訓練以在特定條件下產生最佳結果之模型(例如,專門模型之套件)的邏輯,該等模型針對該等條件經最佳化。該構架可提供不間斷及/或即時的色調狀態決策,例如即使在不同時間部署不同模型亦如此。In some embodiments, the control logic configured to determine the window tint state dynamically selects and/or deploys a particular model from a suite of available models. At least one (eg, each) model may have a set of conditions. A model may have a set of conditions under which the model determines the window tint state better than at least one other model (eg, the other model) in the suite. The framework (or framework) used to implement this method may include logic for selecting models (eg, a suite of specialized models) trained to produce the best results under specific conditions for which the models are optimized change. The framework may provide for uninterrupted and/or real-time hue state decisions, eg, even when different models are deployed at different times.
在一些實施例中,替代部署單目的模型以處置建築物在整日、整週、整個季節或整年內遇到之所有可能的外部條件;模型選擇構架動態地選取模型。模型選擇邏輯可例如在任何時刻選擇經判定為例如在特定種類之外部條件出現(例如,即時)時最高效地處置該等條件的模型。舉例而言,該選擇可至少部分地基於當前在特定部位處(例如,在建築物地點處)盛行之環境條件及/或至少部分地基於當年未來時間、當日時間等期間預期的條件。In some embodiments, instead of deploying a single-purpose model to handle all possible external conditions that a building encounters throughout the day, week, season, or year; the model selection framework dynamically selects the model. The model selection logic may, for example, select a model at any time that is determined to most efficiently handle certain kinds of external conditions as they arise (eg, instantaneously), for example. For example, the selection may be based, at least in part, on the environmental conditions currently prevailing at a particular location (eg, at a building site) and/or at least in part on conditions expected during a future time of the year, time of day, etc.
在某些實施例中,模型選擇邏輯評估條件及/或選擇模型,例如在可用模型中之一者正執行(實時)時。此意謂色調判定邏輯可在模型之間移位,例如而無任何(例如,顯著)停工時間。為此,控制邏輯可(例如,連續地或間歇地)接收當前可用資料。控制邏輯可動態地部署經最佳化以用於處置(例如,當前觀測到的即時及/或未來)條件的模型。該等條件可為封閉體(例如,設施)之外部條件(例如,溫度、太陽角度、雲覆蓋、輻射及/或任何其他天氣條件)。In some embodiments, the model selection logic evaluates conditions and/or selects a model, eg, while one of the available models is executing (in real time). This means that the hue decision logic can be shifted between models, eg, without any (eg, significant) downtime. To this end, the control logic may (eg, continuously or intermittently) receive currently available data. Control logic can dynamically deploy models optimized for handling (eg, currently observed immediate and/or future) conditions. Such conditions may be external conditions (eg, temperature, sun angle, cloud cover, radiation, and/or any other weather conditions) external to the enclosure (eg, facility).
在一些實施例中,動態模型選擇構架用以為色調選擇邏輯提供彈性。在某些實施例中,模型選擇邏輯考慮一或多種類型之特徵輸入資料(用於模型)變得暫時不可用的情形。舉例而言,第一模型可能需要多種類型之輸入特徵以及至少一種特定類型之特徵(例如,以及IR感測值),且第二模型可能需要相同輸入特徵,但不需要至少一種特定類型之特徵(例如,但不需要IR感測值)。若色調決策邏輯正使用第一模型進行且IR感測器突然變得停用(例如,離線),則模型選擇邏輯可接著切換至第二模型以繼續作出即時色調決策。在一些狀況下,模型選擇邏輯可考慮模型中之一或多者失敗或以其他方式變得不可用之情況,且邏輯必須(例如,即刻或在最少流逝時間後)選取不同模型。In some embodiments, a dynamic model selection framework is used to provide flexibility for the tone selection logic. In some embodiments, the model selection logic considers situations where one or more types of feature input data (for the model) become temporarily unavailable. For example, a first model may require multiple types of input features and at least one specific type of feature (eg, and IR sensing values), and a second model may require the same input feature but not at least one specific type of feature (eg, but IR sensed values are not required). If the hue decision logic is using the first model and the IR sensor suddenly becomes disabled (eg, offline), the model selection logic may then switch to the second model to continue making immediate hue decisions. In some cases, the model selection logic may consider situations where one or more of the models fails or otherwise becomes unavailable, and the logic must choose a different model (eg, immediately or after a minimum elapse of time).
在一些實施例中,實時模型選擇構架促進釋放專門模型(諸如,經最佳化以與(例如,僅)光感測器輸入一起使用之彼等模型),例如允許配備有感測器單元之較早(或多個)版本的建築物地點實現模型驅動預測之益處。In some embodiments, the real-time model selection framework facilitates the release of specialized models (such as those optimized for use with (eg, only) light sensor inputs), eg, allowing sensor units equipped with An earlier (or more) version of the building site realizes the benefits of model-driven prediction.
圖 27A
呈現說明動態模型選擇之一種方法的流程圖之實例。所描繪程序在操作2901
處開始,該操作可與重複事件(諸如,新的一日的開始、日出等)相關聯。此事件之時序無需每日皆相同,且在一些狀況下,甚至不需要至少部分地基於重複的每日事件。無關於事件之基礎,程序初始化或以其他方式準備用於在操作2903
處執行的各種可用模型。在所描繪之實施例中,彼操作涉及重新訓練可能需要在一日或其他時間段內執行的所有模型,直至程序再次開始。當頻繁地重新訓練模型(例如,每日或甚至更頻繁地)時,色調條件判定模型之效能可改善(例如,顯著地)。在操作2905
處,將當前條件提供至模型選擇邏輯。可在使所有模型準備好藉由重新訓練或其他操作執行之前、期間或之後執行此操作。當前條件可與外部天氣條件(例如,溫度、太陽角度、雲覆蓋、輻射等)相關,該等天氣條件可藉由諸如本文中所描述之IR感測器及/或光感測器的一或多個感測器來判定。或者,當前條件可至少部分地基於當前可用之輸入特徵集合(例如,自網際網路饋入之天氣資料、IR感測器資料、光感測器資料等)。當僅可用輸入特徵之子集可用時,套件中之某些模型可能不可使用。 27A presents an example of a flowchart illustrating one method of dynamic model selection. The depicted procedure begins at
在操作2907
處,模型選擇邏輯藉由考慮當前外部條件來選擇模型以供執行。舉例而言,若當前天氣條件指示霧(或類似條件),則模型選擇邏輯可(例如,自動地)選擇經訓練及/或最佳化以用於在此等(例如,霧天)條件下準確地選取色調狀態之模型。在另一實例中,若主要模型需要複數個輸入特徵(例如,天氣饋入、IR感測器資料及光感測器資料);且當通信鏈路失敗(且天氣饋入突然變得不可用)時彼主要模型正執行,則模型選擇邏輯可(例如,自動地)觸發執行備份模型,該備份模型僅需要輸入特徵之部分(例如,僅IR感測器資料及/或光感測器資料)作為輸入特徵。At
在一些實施例中,當模型選擇邏輯至少部分地基於當前條件而識別待執行之模型時,邏輯應確保持續無縫操作。為此目的,邏輯可判定在操作2907
中選取之模型是否為當前正執行之模型。參見決策操作2909
。若是,則其准許當前正執行之模型繼續執行且判定未來色調狀態。參見操作2913
。若否,則其轉變至新選取的模型且允許其開始判定未來色調狀態。參見操作2911
。In some embodiments, when the model selection logic identifies a model to execute based at least in part on current conditions, the logic should ensure continued seamless operation. To this end, logic may determine whether the model selected in
無關於模型切換抑或保持恆定,程序可循環進行對當前條件之重複檢查(例如,操作2905
)及針對該等條件之最佳模型的選擇(例如,操作2907
),直至不再需要窗著色,諸如在日落或一日結束時。參見決策操作2915
。當由操作2915
判定結束事件時,程序控制導向結束狀態2917
,且直至下一次出現開始事件2901
,才執行進一步模型選擇。Regardless of model switching or remaining constant, the program may loop through repeated checks of current conditions (eg, operation 2905 ) and selection of the best model for those conditions (eg, operation 2907 ) until window shading is no longer needed, such as At sunset or at the end of the day.
色調決策邏輯可使用具有複數個模型之架構,該複數個模型具有可用於判定窗之哪一色調狀態最佳地考慮(例如,近期)天氣條件。可用於選擇之模型的數目可取決於許多狀況特定因素,諸如(i)唯一及/或可能脆弱的輸入特徵源之數目;(ii)特定部位中在定性上不同的天氣條件之範圍;及/或(iii)可用的訓練及/或運算資源。在某些實施例中,可供選擇之模型的數目為至少三個。在某些實施例中,可用模型之數目為約兩個至約二十個,或約三個至約十個。The hue decision logic may use an architecture having a plurality of models with a plurality of models that can be used to determine which hue state of the window best considers (eg, recent) weather conditions. The number of models available for selection may depend on a number of situation-specific factors, such as (i) the number of unique and/or potentially vulnerable sources of input features; (ii) the range of qualitatively different weather conditions in a particular location; and/ or (iii) available training and/or computing resources. In some embodiments, the number of models to choose from is at least three. In certain embodiments, the number of available models is from about two to about twenty, or from about three to about ten.
在一些實施方案中,可供選擇之(例如,所有)模型提供類似輸出,諸如(i)色調決策及/或(ii)色調控制邏輯可用以至少部分地基於當前(例如,天氣、輻射及/或太陽部位)條件而判定待提議何色調狀態的資訊。舉例而言,在一些實施例中,至少一個(例如,每一)模型經組態以輸出兩個或多於兩個可能(例如,離散)色調狀態(例如,兩個、三個、四個或多於四個可能色調狀態)當中的色調狀態。在一些實施例中,至少一個(例如,每一)模型經組態以輸出所預測之輻射、眩光條件、熱通量及/或其他類似預測(例如,如本文中所揭示)。In some implementations, alternative (eg, all) models provide similar outputs, such as (i) hue decision and/or (ii) hue control logic may be used based at least in part on current (eg, weather, radiance, and/or) or sun position) conditions to determine what hue state to propose. For example, in some embodiments, at least one (eg, each) model is configured to output two or more possible (eg, discrete) hue states (eg, two, three, four) or more than four possible hue states). In some embodiments, at least one (eg, each) model is configured to output predicted radiation, glare conditions, heat flux, and/or other similar predictions (eg, as disclosed herein).
可供選擇之模型可能需要或可能不需要類似輸入。在模型選擇構架意欲提供特徵輸入冗餘之狀況下,模型中之一或多者可能需要一個特徵輸入集合,而一或多個其他模型可能需要不同的特徵輸入集合。Alternative models may or may not require similar inputs. In situations where the model selection framework is intended to provide feature input redundancy, one or more of the models may require one set of feature inputs, while one or more other models may require a different set of feature inputs.
可供選擇之模型(例如,所有模型)可屬於相同、類似或不相關模型類型。舉例而言,所有模型可至少部分地在具有相同或類似架構之人工神經網路上結構化,例如該等網路可皆為具有相同架構之遞迴及/或卷積神經網路。在一些實施例中,該等模型中之一些具有第一神經網路架構,而其他模型具有不同的神經網路架構。在一些實施例中,一個或移動模型為神經網路,而一或多個其他模型可為回歸模型、隨機森林模型及/或其他模型架構(例如,如本文中所揭示)。在某些實施例中,該等模型中之一些或全部為前饋神經網路。在某些實施例中,該等模型中之一或多者為密集神經網路。Models to choose from (eg, all models) can be of the same, similar, or unrelated model types. For example, all models may be structured at least in part on artificial neural networks having the same or similar architecture, eg, the networks may all be recurrent and/or convolutional neural networks having the same architecture. In some embodiments, some of the models have a first neural network architecture, while other models have a different neural network architecture. In some embodiments, one or the mobile model is a neural network, and the one or more other models may be regression models, random forest models, and/or other model architectures (eg, as disclosed herein). In some embodiments, some or all of these models are feedforward neural networks. In some embodiments, one or more of these models is a dense neural network.
在一些實施例中,存在各種情形,其中在每一情形下使用實時(例如,即時及/或動態)模型選擇(例如,所使用之模型及/或基礎模型架構之類型的選擇)。In some embodiments, there are various scenarios in which real-time (eg, real-time and/or dynamic) model selection (eg, selection of the type of model used and/or underlying model architecture) is used in each scenario.
在一些實施例中,根據特徵源彈性來選擇模型。在此狀況下,可供選擇之模型可經設計以對不同輸入特徵集合起作用。給定神經網路可僅對(例如,僅)指定輸入特徵類型集合(例如,特定模型可能需要來自IR感測器之四個輸入及來自天氣饋入之一個輸入)起作用。神經網路可具有一組輸入節點,至少一個(例如,每一)輸入節點專用於接收(例如,僅)一種類型之輸入特徵。另外,需要不同輸入特徵集合之模型可用不同方式(例如,使用不同訓練集)進行訓練且可具有不同內部架構。舉例而言,若兩個色調預測模型使用神經網路模型架構,則其第一層可具有(i)不同數目個節點(至少部分地基於預期數目個相異輸入特徵)及/或(ii)不同類型之節點。至少一個(例如,每一)可用模型可具有對其自身的預期輸入特徵集合特定之架構及/或訓練方法。In some embodiments, the model is selected based on feature source elasticity. In this case, alternative models can be designed to work on different sets of input features. A given neural network may only function (eg, only) on a specified set of input feature types (eg, a particular model may require four inputs from an IR sensor and one input from a weather feed). A neural network may have a set of input nodes, at least one (eg, each) of which is dedicated to receiving (eg, only) one type of input feature. Additionally, models that require different sets of input features may be trained in different ways (eg, using different training sets) and may have different internal architectures. For example, if two hue prediction models use a neural network model architecture, their first layer may have (i) a different number of nodes (based at least in part on the expected number of distinct input features) and/or (ii) Nodes of different types. At least one (eg, each) available model may have an architecture and/or training method specific to its own set of expected input features.
在某些實施例中,藉由使用如此處所描述之模型選擇構架來提供特徵源彈性。在某些實施例中,藉由使用如本文中別處所描述之補充重心平均化構架(或模組)來提供特徵源彈性。在某些實施例中,當感測器資料可用時,重心平均化用以產生用於在實時預測期間產生之資料的信賴區間。In some embodiments, feature source resiliency is provided by using a model selection framework as described herein. In certain embodiments, feature source elasticity is provided by using a supplemental center of gravity averaging framework (or module) as described elsewhere herein. In some embodiments, centroid averaging is used to generate confidence intervals for data generated during real-time prediction when sensor data is available.
在一些實施例中,將模型選擇為外部條件特定模型。在此狀況下,可針對不同類型之外部條件設計及/或最佳化可供選擇之模型。外部條件可包含不同天氣條件(例如,晴天、霧天、快速飄過的雲、雷暴、煙霧、區域火災及/或其類似者)。在某些實施例中,模型選擇邏輯自各種可能類型之外部條件當中識別當前類型之外部條件。模型選擇邏輯可接著選擇經最佳化以在當前外部條件下最佳地執行的模型。在某些實施例中,可判定相異外部條件之特性,例如使用諸如無監督學習模型之演算法分類器。In some embodiments, the model is selected as an external condition specific model. In this case, alternative models can be designed and/or optimized for different types of external conditions. External conditions may include various weather conditions (eg, sunny, foggy, rapidly passing clouds, thunderstorms, smoke, area fires, and/or the like). In some embodiments, the model selection logic identifies the current type of external conditions from among various possible types of external conditions. The model selection logic may then select the model optimized to perform best under the current external conditions. In some embodiments, the characteristics of distinct external conditions may be determined, eg, using algorithmic classifiers such as unsupervised learning models.
在特徵源彈性狀況之實例中,選取模型套件中之色調預測模型以依據輸入特徵集合而彼此互補。舉例而言,套件中之第一模型可能需要第一輸入特徵集合(例如,特徵A、B及C),且套件中之第二模型可能需要第二輸入特徵集合(例如,特徵A及C)。取決於輸入特徵之複雜度,可在套件中提供額外及/或不同模型。舉例而言,套件可另外包括需要輸入特徵A、B及D之第三模型及需要輸入特徵C、E及F之第四模型。對於特徵彈性,可藉由平衡運算費用與潛在失敗點數目而判定模型套件中之模型數目。在某些實施例中,僅存在兩個可用模型。在一些實施例中,存在另外兩個實施例。在其他實施例中,存在四個或多於四個模型。In the example of the feature source elasticity case, the hue prediction models in the model suite are chosen to complement each other according to the input feature set. For example, the first model in the suite may require a first set of input features (eg, features A, B, and C), and the second model in the suite may require a second set of input features (eg, features A and C) . Depending on the complexity of the input features, additional and/or different models may be provided in the kit. For example, the kit may additionally include a third model requiring input features A, B and D and a fourth model requiring input features C, E and F. For feature elasticity, the number of models in the model suite can be determined by balancing the computational cost with the number of potential failure points. In some embodiments, there are only two models available. In some embodiments, there are two other embodiments. In other embodiments, there are four or more models.
在一個實例中,實時模型選擇構架使用(i)主要模型,其最佳地執行且使用第一輸入特徵集合(例如,IR及光感測器資料);及(ii)一或多個後饋模型,該等後饋模型之執行不佳但使用確實需要整個第一輸入參數集合之輸入特徵集合。舉例而言,備份模型可能僅需要第一類型之讀數(例如,光感測器讀數)及第二類型之讀數(例如,天氣饋入)作為輸入特徵。舉例而言,備份模型可能僅需要第三類型之讀數(例如,IR感測器讀數)及第二類型之讀數(例如,天氣饋入)作為輸入特徵。若主要模型正在執行,則當第三類型之讀數(例如,IR感測器)突然變得不可用時,模型選擇邏輯可選取適當的後饋模型以介入且執行利用第一類型之讀數(例如,光感測器讀數)及第二類型之讀取(例如,天氣饋入)的模型。In one example, the real-time model selection framework uses (i) a primary model that performs optimally and uses a first set of input features (eg, IR and light sensor data); and (ii) one or more feedbacks models that perform poorly but use input feature sets that do require the entire first set of input parameters. For example, a backup model may only require readings of a first type (eg, light sensor readings) and readings of a second type (eg, weather feeds) as input features. For example, a backup model may only require a third type of readings (eg, IR sensor readings) and a second type of readings (eg, weather feeds) as input features. If the primary model is executing, when readings of the third type (eg, IR sensors) suddenly become unavailable, the model selection logic may select an appropriate feed-back model to intervene and execute using readings of the first type (eg, IR sensors) , light sensor readings) and models of the second type of readings (eg, weather feeds).
在外部條件變化狀況之實例中,至少部分地基於在色調選擇邏輯操作所在之給定部位中遇到的在定性上相異之天氣條件的數目而選取模型套件。應注意,此構架可與使用通用模型之構架進行對比。通用模型可對任何可用資訊進行訓練,例如在所有類型之外部(例如,天氣)條件下。理論上,此模型可預測所有類型之未來外部(例如,天氣)條件,且因此針對所有類型之外部(例如,天氣)條件而判定適當色調狀態。然而,在一些情況下,此靈活性可能以準確性降低、模型化時間增加及/或運算資源增加為代價。經最佳化以在某些特定情況下預測未來條件之經訓練模型有時優於該等情況下之通用模型。專用模型可能優於通用模型之情況的一個實例可為在快速移動的雲之情況下。In the example of an external condition change situation, the model suite is selected based, at least in part, on the number of qualitatively distinct weather conditions encountered in a given location where the tone selection logic operates. It should be noted that this architecture can be compared to architectures using a generic model. A generic model can be trained on any available information, such as under all types of external (eg, weather) conditions. In theory, this model can predict all types of future external (eg, weather) conditions, and thus determine the appropriate hue state for all types of external (eg, weather) conditions. However, in some cases, this flexibility may come at the expense of reduced accuracy, increased modeling time, and/or increased computational resources. A trained model that is optimized to predict future conditions under certain specific circumstances is sometimes better than a generic model for those circumstances. An example of a situation where a specialized model may be superior to a general purpose model may be in the case of a fast moving cloud.
作為不同模型為何可提供更佳結果之實例,針對霧天或主要多雲條件而最佳化之模型在曝露於來自晴天條件之資料的情況下可能為飽和的,且因此可能不適合用於在晴天條件期間判定色調狀態,但在霧天條件期間,將比通用模型更佳地執行。舉例而言,霧天或多雲條件最佳化模型可在霧或雲覆蓋期間提供更精細粒度及/或更具細微差別之條件變化圖像。訓練此模型會使用具有較低強度輻射值之訓練資料。As an example of why different models may provide better results, a model optimized for foggy or predominantly cloudy conditions may be saturated when exposed to data from sunny conditions, and therefore may not be suitable for use in sunny conditions Determines the hue state during periods, but will perform better than the generic model during foggy conditions. For example, a fog or cloudy condition-optimized model may provide finer-grained and/or more nuanced images of changing conditions during fog or cloud cover. Training this model uses training data with lower intensity radiation values.
當使用專門用於外部條件變化狀況之模型套件時,實時模型構架設置可能涉及首先識別可受益於具有自身模型之環境條件的群組或類型,至少一個(例如,每一)模型經最佳化以在特定類型之外部條件的範圍內預測未來外部條件。When using a model suite dedicated to changing conditions of external conditions, real-time model framing may involve first identifying groups or types of environmental conditions that can benefit from having their own models, at least one (eg, each) model optimized To predict future external conditions within a range of specific types of external conditions.
在一種方法中,設置程序至少部分地基於特徵值(例如,所量測之光感測器(例如,可見光輻射感測器)及/或IR感測器值)之重複集合而識別天氣條件之可能類別,該等特徵值諸如特徵值剖面(在例如一日之一部分或一整日內的特徵值之時間序列)。對於給定部位,可在許多日,例如至少約100天、300天或500天內收集特徵剖面。使用演算法分類工具,產品可識別特徵剖面之叢集。至少一個(例如,每一)叢集可表示需要分開模型之外部環境條件。In one approach, a setup process identifies a weather condition based at least in part on repeating sets of characteristic values (eg, measured light sensor (eg, visible radiation sensor) and/or IR sensor values) Possible categories, such eigenvalues such as eigenvalue profiles (time series of eigenvalues over eg a part of a day or an entire day). For a given site, characteristic profiles can be collected over a number of days, eg, at least about 100 days, 300 days, or 500 days. Using algorithmic classification tools, products can identify clusters of characteristic profiles. At least one (eg, each) cluster may represent external environmental conditions that require separate models.
在另一種方法中,設置涉及識別預期需要不同模型(例如,針對霧、煙霧、無雲天空、有積雲飄過、卷雲、雷暴及/或本文中所揭示之任何其他外部條件而最佳化的模型)的不同類型之外部(例如,天氣)條件。對於此等不同外部(例如,天氣)條件中之至少一者(例如,每一者),程序可收集特徵值(其可隨時間提供為剖面)及/或用演算法判定與不同天氣條件相關聯之型樣。In another approach, setting involves identifying the expected need for a different model (eg, optimized for fog, smoke, cloudless sky, cumulus drifting, cirrus, thunderstorms, and/or any other external conditions disclosed herein model) of different types of external (e.g. weather) conditions. For at least one (eg, each) of these different external (eg, weather) conditions, the program may collect characteristic values (which may be provided as profiles over time) and/or algorithmically determine correlation with the different weather conditions Linked pattern.
在某些實施例中,在模型套件中,可能存在四個或多於四個模型,至少一個(例如,每一)模型經設計及訓練以擅長預測特定類型(或特定類型組合)之外部(例如,天氣)條件,例如,如本文中所揭示。在某些實施例中,可能存在至少五個、七個或多於七個此類模型。In some embodiments, there may be four or more models in a model suite, at least one (eg, each) model designed and trained to excel at predicting a particular type (or a particular combination of types) outside ( For example, weather) conditions, eg, as disclosed herein. In some embodiments, there may be at least five, seven, or more than seven such models.
在各種實施例中,相異的外部條件類型(或叢集)係(I)藉由分析歷史資料(例如,輻射剖面)及(II)至少部分地基於適當的分類算法而叢集化此等剖面來識別,該等資料可提供為依據時間而變化的輻射強度集合。剖面之集合可在(例如,長)時段內獲取,例如在一個月或多個月或一年或多年內。在一些實施例中,剖面含有單個所量測值之依序值(例如,依據時間而變化之外部輻射通量的原始光感測器量測值)。In various embodiments, distinct extrinsic condition types (or clusters) are generated (I) by analyzing historical data (eg, radiation profiles) and (II) by clustering the profiles based at least in part on an appropriate classification algorithm identification, such data can be provided as a time-dependent collection of radiation intensities. A collection of profiles may be acquired over a (eg, long) period, such as one or more months or one or more years. In some embodiments, the profile contains sequential values of a single measured value (eg, raw photosensor measurements of external radiant flux as a function of time).
在某些實施例中,剖面叢集用以產生平均或代表性剖面,該剖面可接著用於與當前輻射資料進行比較以判定待使用哪一模型。可使用各種距離量度(包括例如歐幾里德距離)實現判定當前條件最接近哪一叢集。In some embodiments, the profile clustering is used to generate an average or representative profile, which can then be used for comparison with current radiation data to determine which model to use. Determining which cluster the current condition is closest to can be accomplished using various distance metrics, including, for example, Euclidean distance.
叢集化演算法可產生相異輻射剖面之數個叢集(例如,至少可供選擇之模型的數目)。在適當設計之叢集化演算法中,叢集可至少部分地基於在給定色調控制邏輯之情況下有意義的性質,例如針對給定感測器讀數具有不同的窗色調序列。引起在定性上不同之輻射剖面的發散條件之實例包括產生快速移動雲(例如,積雲)、低垂雲或霧、晴朗及晴天條件、雪及/或類似天氣條件之天氣。The clustering algorithm can generate clusters of distinct radiation profiles (eg, at least the number of models to choose from). In a properly designed clustering algorithm, the clustering can be based, at least in part, on properties that are meaningful given the tone control logic, such as having different window tone sequences for a given sensor reading. Examples of divergent conditions that cause qualitatively different radiation profiles include weather that produces fast-moving clouds (eg, cumulus clouds), low-hanging clouds or fog, clear and sunny conditions, snow, and/or similar weather conditions.
合適的叢集化演算法可採取不同形式。在一種方法中,可提供輻射剖面且將其彼此比較以產生逐點距離。在多維剖面空間中,剖面可自然地叢集化成不同群組,該等群組可與不同外部(例如,天氣)條件相關聯。然而,此並非必要的,亦不必要明確地識別與不同叢集相關聯之不同外部(例如,天氣)條件。Suitable clustering algorithms can take different forms. In one approach, radiation profiles can be provided and compared to each other to yield point-by-point distances. In a multi-dimensional section space, sections can naturally be clustered into different groups, which can be associated with different external (eg, weather) conditions. However, this is not necessary, nor is it necessary to explicitly identify different external (eg, weather) conditions associated with different clusters.
在某些實施例中,收集所量測輻射值隨時間之剖面且將其用以識別叢集。輻射剖面可橫跨各種時間長度。舉例而言,在一些狀況下,其橫跨至少每小時或至少整日的輻射剖面。可在至少一(數)小時、一(數)日、一(數)週、一(數)月或一(數)年之時段內收集用於叢集化中之輻射剖面。可至少以秒或分鐘解析度收集輻射剖面。至少一個(例如,每一)剖面可具有至少約每秒、每分鐘、每幾分鐘、每半小時或每小時收集之輻射值。在某些實施例中,可至少約數分鐘(例如,具有至少一秒、數秒、一分鐘或數分鐘之解析度)獲取值。此等剖面可用作叢集化之至少一個基礎。該等剖面可按無監督方式叢集化,例如考慮哪些剖面形成相異叢集。In some embodiments, profiles of measured radiation values over time are collected and used to identify clusters. Radiation profiles can span various lengths of time. For example, in some cases it spans at least an hourly or at least an entire day of radiation profiles. Radiation profiles for use in clustering may be collected over a period of at least one (s) hour, one (s) days, one (s) weeks, one (s) months, or one (s) years. Radiation profiles can be collected at least with second or minute resolution. At least one (eg, each) profile can have radiation values collected at least about every second, every minute, every few minutes, every half hour, or every hour. In some embodiments, the values may be acquired at least on the order of minutes (eg, with a resolution of at least one second, seconds, minutes, or minutes). These profiles can be used as at least one basis for clustering. The profiles can be clustered in an unsupervised manner, eg considering which profiles form distinct clusters.
為了促進叢集化程序及/或減少運算工作量(例如,時間及/或資源),可藉由各種技術中之任一者減小輻射剖面中之資料的大小。一種方法可將剖面映射至(例如,仍)對叢集化有效之降維空間。此叢集化方法可藉由諸如谷歌(Google)之Tensorflow中的seq2seq構架的自動編碼器實施。某些技術可提供識別可最終叢集在一起的相關剖面之一般特性的無監督預訓練。可藉由將來自兩個或多於兩個時段(例如,數天)之資料組合成單個剖面來減少運算問題。舉例而言,諸如重心平均化之技術可用以組合來自兩個或多於兩個時段(例如,數天)之剖面。在某些實施例中,使用k均值叢集化技術。To facilitate the clustering process and/or reduce computational effort (eg, time and/or resources), the size of the data in the radiation profile may be reduced by any of a variety of techniques. A method can map the profile to (eg, still) a dimensionality reduction space that is efficient for clustering. This clustering approach can be implemented by an autoencoder such as the seq2seq framework in Google's Tensorflow. Certain techniques may provide unsupervised pre-training to identify general properties of related profiles that can eventually be clustered together. Computational problems can be reduced by combining data from two or more time periods (eg, days) into a single profile. For example, techniques such as centroid averaging can be used to combine profiles from two or more time periods (eg, days). In some embodiments, k-means clustering techniques are used.
在已識別叢集之後,可測試該等叢集。可使用任何各種叢集化測試或驗證處理程序。實例包括: 1. 慣量(樣本[例如,資料例項]至其最近叢集中心之距離的總和) 2. 輪廓(Silhouette)分數(對於每一樣品之均值叢集內距離與均值最近叢集距離之間的差除以兩者中之最大值) 3. Calinski-Harabaz分數(叢集內與叢集間分散之間的比率)(參見Rousseeuw, P.(1986年)。Silhouettes:對叢集分析之解譯及驗證的圖形輔助(a Graphical Aid to the Interpretation and Validation of Cluster Analysis)。在:運算及應用數學期刊 ,20.53至65中)。(參見Caliński T.及Harabasz J.(1974年)。用於叢集分析之枝晶方法(A Dendrite Method for Cluster Analysis),在:統計通信 (Communications in Statistics ),3:1,1至27中)。After clusters have been identified, the clusters can be tested. Any of the various clustering test or verification handlers can be used. Examples include: 1. Inertia (sum of the distances of a sample [eg, data instance] to its nearest cluster center) 2. Silhouette score (for each sample the difference between the mean intracluster distance and the mean nearest cluster distance) Difference divided by the maximum of the two) 3. Calinski-Harabaz score (ratio between intracluster and intercluster dispersion) (see Rousseeuw, P. (1986). Silhouettes: Interpretation and Verification of Cluster Analysis Graphical Aid (a Graphical Aid to the Interpretation and Validation of Cluster Analysis. In: Journal of Computational and Applied Mathematics , 20.53-65). (See Caliński T. and Harabasz J. (1974). A Dendrite Method for Cluster Analysis. In: Communications in Statistics , 3:1, 1-27) .
在一些狀況下,測試檢查叢集內距離及叢集間距離且將其進行比較。In some cases, the test examines and compares intra-cluster distances and inter-cluster distances.
輻射剖面之叢集可具有可辨識的特性。圖 27B 描繪來自不同叢集之特性輻射剖面的實例。此圖說明不同叢集中之輻射剖面的特性剖面之實例。標記如下:(1.)晴天;(2.)多雲;(3.)部分多雲;(4.)混合晴天/部分多雲;(5.)具有遮擋之晴天;及(6.)具有遮擋之部分多雲。所有剖面為具有分鐘級解析度之日長。Y軸為自(0至779瓦特/平方公尺)按比例調整至(0至1)之光感測器值。Clusters of radiation profiles may have identifiable characteristics. Figure 27B depicts examples of characteristic radiation profiles from different clusters. This figure illustrates an example of a characteristic profile of radiation profiles in different clusters. Labeled as follows: (1.) sunny; (2.) cloudy; (3.) partly cloudy; (4.) mixed sunny/partly cloudy; (5.) sunny with occlusion; and (6.) partly occluded partly cloudy. All profiles are day lengths with minute resolution. The Y-axis is the light sensor value scaled from (0 to 779 watts/square meter) to (0 to 1).
在某些實施例中,叢集化邏輯識別輻射剖面之個別叢集的區別性特性特徵。可出於此目的使用各種技術。一個實施例使用形狀子特徵(shapelet)分析。剖面中之輻射資料點的某些子集可充當特性特徵。可使用形狀子特徵識別演算法。當使用實時模型選擇時,可例如即時地處理當前條件,以產生與相關聯於各種可用實時模型之各種叢集之對應特性進行比較的形狀子特徵或其他特徵。至少部分地基於當前條件與哪一叢集相關聯,可選擇實時模型。In some embodiments, the clustering logic identifies distinctive characteristics of individual clusters of the radiation profile. Various techniques can be used for this purpose. One embodiment uses shapelet analysis. Certain subsets of radiation data points in the profile can serve as characteristic features. Shape sub-feature recognition algorithms may be used. When using real-time model selection, current conditions can be processed, for example, on-the-fly to generate shape sub-features or other features that are compared to corresponding characteristics associated with various clusters of the various available real-time models. A real-time model may be selected based at least in part on which cluster the current conditions are associated with.
在某些實施例中,使用受監督或無監督學習進行叢集化。在一些狀況下,使用無監督學習且視情況使用所收集之資訊及使用在圖 25 之上下文中所論述之模組E中的邏輯得出的結論來進行叢集化。In some embodiments, supervised or unsupervised learning is used for clustering. In some cases, clustering is performed using unsupervised learning and, as appropriate, using the information collected and conclusions drawn using the logic in module E discussed in the context of FIG. 25 .
在一些實施例中,當識別不同類型之模型以包括於構架中時,應產生或獲得彼等模型。因此,相關工作流程至少部分地基於特定模型之剖面或其他資訊的資料而產生或選擇模型。In some embodiments, different types of models should be generated or obtained as they are identified for inclusion in the framework. Accordingly, related workflows generate or select models based at least in part on data from a particular model's profile or other information.
在一些實施例中(例如,在輸入特徵彈性之狀況下),必須利用一或多個不同訓練集(例如,可使用輸入特徵之不同組合)訓練不同模型。舉例而言,可使用具有IR感測器讀數及對應天氣饋入資訊之資料來訓練一個模型,而可使用具有光感測器讀數連同對應IR感測器讀數及天氣饋入資訊之資料來訓練另一模型。可使用光感測器讀數及對應天氣饋入資訊來訓練又一模型。此等模型中之至少一者(例如,每一者)可具有不同架構。In some embodiments (eg, with input feature elasticity), different models must be trained using one or more different training sets (eg, different combinations of input features may be used). For example, a model can be trained using data with IR sensor readings and corresponding weather feeds, while a model can be trained using data with light sensor readings and corresponding IR sensor readings and weather feeds another model. Yet another model can be trained using light sensor readings and corresponding weather feeds. At least one of these models (eg, each) can have a different architecture.
在針對不同外部條件(例如,不同天氣類型)而最佳化之模型套件的情況下,個別模型可(例如,各自)在針對其自身特定類型之外部條件而收集的資料上進行訓練。對於在設置中識別之至少一個(例如,每一)外部條件,工作流程可(例如,僅)使用在此條件出現時獲得之資料來保留模型。舉例而言,工作流程可使用來自第一外部(例如,天氣)條件(例如,霧天早晨)之訓練資料來開發及/或測試第一模型,使用來自第二日氣條件(例如,有雲飄過)之訓練資料來開發及測試第二模型,等等。在某些實施例中,相對於一些基準(諸如,利用來自多個不同天氣條件之資料訓練的模型之效能)來測試經訓練模型之至少一個(例如,每一)效能。In the case of a suite of models optimized for different external conditions (eg, different weather types), individual models may (eg, each) be trained on data collected for their own specific types of external conditions. For at least one (eg, each) external condition identified in the setup, the workflow may (eg, only) preserve the model using data obtained when this condition occurs. For example, the workflow may use training data from a first external (eg, weather) condition (eg, foggy morning) to develop and/or test a first model, using training data from a second day's weather condition (eg, cloudy) to develop and test a second model, etc. In some embodiments, at least one (eg, each) performance of the trained model is tested against some benchmarks, such as the performance of a model trained with data from multiple different weather conditions.
模型選擇邏輯可使用各種因素來選擇模型用於即時(例如,即刻)或近期色調狀態判定。即時(或近即時)決定使用哪一模型之程序可取決於即刻或預期條件及/或可供選擇之模型之間的差異。舉例而言,在特徵源彈性狀況下,模型選擇邏輯可監測輸入參數源是否存在可能的問題。若觀測到已導致或將可能導致輸入特徵變得不可用於當前執行模型之失敗,則模型選擇邏輯可即時(例如,即刻或迅速)移位至所有所需輸入特徵當前可用的不同模型。The model selection logic may use various factors to select a model for immediate (eg, immediate) or recent hue state determination. The immediate (or near-instant) process of deciding which model to use may depend on immediate or anticipated conditions and/or differences between the available models. For example, in a feature source resiliency condition, the model selection logic can monitor the input parameter source for possible problems. If a failure is observed that has caused or will likely cause an input feature to become unavailable to the currently executing model, the model selection logic may shift (eg, immediately or rapidly) to a different model for which all desired input features are currently available.
在一個實例中,主要模型最佳地執行且使用第一輸入特徵集合(例如,IR感測器及光感測器資料),且一或多個後饋模型之執行不佳,但使用確實需要(例如,整個)第一輸入參數集合之輸入特徵集合。舉例而言,備用模型可能需要(例如,僅)光感測器讀數及天氣饋入作為輸入特徵。或者,備用模型可能需要(例如,僅)IR感測器讀數及天氣饋入作為輸入特徵。接著,若主要模型正在執行,則當IR感測器或光感測器突然變得不可用時,模型選擇邏輯可選取不需要IR感測器讀數之適當後饋模型以介入及執行。In one example, the main model performs optimally and uses the first set of input features (eg, IR sensor and light sensor data), and one or more feedback models perform poorly, but use does require (eg, the entire) set of input features of the first set of input parameters. For example, an alternate model may require (eg, only) light sensor readings and weather feeds as input features. Alternatively, alternate models may require (eg, only) IR sensor readings and weather feeds as input features. Then, if the main model is executing, when the IR sensor or light sensor suddenly becomes unavailable, the model selection logic can select an appropriate feed-back model that does not require IR sensor readings to intervene and execute.
在模型套件包括經最佳化以處置不同類型之外部條件之模型的狀況下,選擇邏輯可監測外部條件且定期判定哪一模型在給定彼等條件下最佳地執行。Where the model suite includes models optimized to handle different types of external conditions, the selection logic can monitor the external conditions and periodically determine which model performs best given those conditions.
在一些實施例中,此模型選擇邏輯使用當前資料集(例如,本端IR感測器及/或光感測器讀數)及/或當前資訊(例如,天氣饋入)來評估當前外部條件(例如,至少部分地基於輻射剖面)。模型選擇邏輯使當前外部條件與暗示特定模型之最類似叢集或分類相關聯。各種技術可用以識別最類似於當前條件之叢集或分類。舉例而言,若叢集或分類由多維空間中之區或點表示,則模型選擇邏輯可判定距離(諸如,當前條件與叢集或分類中之每一者之間的歐幾里德距離)。可使用非歐幾里德技術。在一些實施例中,k均值用以與當前條件相關聯。在叢集化當前條件之後,邏輯選擇與叢集或分類(與當前條件相關聯)相關聯之模型以供執行。In some embodiments, this model selection logic uses current data sets (eg, local IR sensor and/or light sensor readings) and/or current information (eg, weather feeds) to evaluate current external conditions (eg, weather feeds). For example, based at least in part on the radiation profile). Model selection logic associates the current external conditions with the most similar clusters or classifications that suggest a particular model. Various techniques can be used to identify clusters or classifications that are most similar to current conditions. For example, if clusters or classifications are represented by regions or points in a multidimensional space, the model selection logic may determine distances (such as Euclidean distances between the current condition and each of the clusters or classifications). Non-Euclidean techniques can be used. In some embodiments, k-means are used to correlate with current conditions. After clustering the current condition, logic selects the model associated with the cluster or classification (associated with the current condition) for execution.
作為一實例,若輻射剖面由於例如霧升起或風暴前鋒接近而改變,則經處理感測器讀數可指示外部條件已自輻射剖面之一個分類轉變至輻射剖面之另一分類,且此轉變需要選擇針對新輻射剖面而最佳化的新模型。As an example, if the radiation profile changes due to, for example, rising fog or the approach of a storm front, the processed sensor readings may indicate that external conditions have transitioned from one classification of radiation profiles to another, and this transition requires Select a new model optimized for the new radiation profile.
模型選擇邏輯可按適合於即時控制窗著色之特定頻率選擇模型,例如至少一秒至數小時。模型選擇邏輯可判定以諸如每秒、每幾秒、每分鐘、每幾分鐘、每小時或每幾小時之所定義頻率使用哪一模型。在某些實施例中,模型選擇邏輯判定以約5秒至約30分鐘之頻率使用哪一模型。在某些實施例中,模型選擇邏輯判定以約30秒至約15分鐘之頻率使用哪一模型。在一些實施例中,模型選擇邏輯在由偵測到之事件(諸如,偵測到之輻射剖面的改變大於所定義臨限值)觸發時選擇模型。The model selection logic may select models at a particular frequency suitable for real-time control window shading, such as at least one second to several hours. The model selection logic can decide which model to use at a defined frequency, such as every second, every few seconds, every minute, every few minutes, every hour, or every few hours. In certain embodiments, the model selection logic determines which model to use at a frequency of about 5 seconds to about 30 minutes. In certain embodiments, the model selection logic determines which model to use at a frequency of about 30 seconds to about 15 minutes. In some embodiments, the model selection logic selects a model when triggered by a detected event, such as a detected change in the radiation profile greater than a defined threshold.
在模型套件內,當前未用以判定色調狀態之彼等模型可能需要保持準備好供執行。可及時(例如,每日或在某一其他定期基礎上(例如,介於每1日與每10日之間))重新訓練套件中之所有模型。在某些實施例中,在實時模型不在執行的某一時間,諸如在設施中之低佔用時間期間(例如,在夜間之某時間,諸如在午夜或在任何其他低佔用時段,例如,如本文中所揭示),重新訓練該等模型。Within a model suite, those models that are not currently used to determine hue state may need to remain ready for execution. All models in the suite may be retrained in time (eg, daily or on some other periodic basis (eg, between every 1 and every 10 days)). In certain embodiments, at some time when the real-time model is not executing, such as during a low occupancy time in the facility (eg, at some time during the night, such as at midnight or at any other low occupancy time, eg, as described herein ), retrain the models.
在一些實施例中,當正作出色調決策時(例如,在白天時間期間),所有模型必須準備好供部署。所有模型所需之資料,特定而言,包括歷史分量之資料(諸如,滾動平均感測器資料)應保持最新且準備好充當用於新選定模型之特徵輸入,例如即使其並不用於當前執行模型中亦如此。在各種實施例中,恆定地產生或以其他方式使所有模型之所有輸入特徵保持最新且準備好饋入至模型中。In some embodiments, all models must be ready for deployment when hue decisions are being made (eg, during daylight hours). Data required for all models, in particular, data including historical components (such as rolling average sensor data) should be kept up to date and ready to serve as feature input for newly selected models, eg even if they are not used for the current implementation The same is true in the model. In various embodiments, all input features of all models are constantly generated or otherwise kept up-to-date and ready to be fed into the models.
在當前未用以判定色調狀態之模型為遞迴神經網路時,可能有必要向其饋入輸入特徵且使其執行(例如,即使當前未使用其輸出),使得若模型經選定,則其準備好即提供有用輸出。若模型為非時間相依的(例如,其不包括記憶體及/或不具有如前饋神經網路狀況中之反饋迴路),則在需要該模型來判定色調狀態之前,無需執行該模型。When the model that is not currently used to determine the hue state is a recurrent neural network, it may be necessary to feed it input features and have it execute (eg, even if its output is not currently used) so that if the model is selected, its Provides useful output when ready. If the model is not time-dependent (eg, it does not include memory and/or does not have a feedback loop as in the case of a feedforward neural network), then the model need not be executed until it is needed to determine the hue state.
圖 28
呈現用於實時模型選擇構架之實例架構3001
的方塊圖。該構架依賴於實時模型選擇邏輯3003
,該邏輯可實施為程式指令及相關聯處理硬體。邏輯3003
接收與當前外部條件相關之各種輸入。在所描繪之實施例中,此等輸入包括本端感測器資料3007
及遠端資料3009
,諸如經由因特網提供之天氣饋入。實時模型選擇邏輯3003
可存取簽章3011
或其他所儲存資訊,其允許邏輯將當前條件與先前分類之條件類型進行比較。在某些實施例中,分類簽章為形狀子特徵。藉由將分類邏輯應用於當前條件,實時模型選擇邏輯3003
自多個條件特定模型當中判定其應選擇哪一類型之模型來預測未來條件。當作出此決策時,邏輯3003
自可用條件特定模型之套件3005
中之彼等模型當中選擇一模型。在所描繪之實施例中,存在六個可用模型。 28 presents a block diagram of an
在某些實施例中,實時模型選擇構架使用感測器資料及/或當前條件資訊。感測器資料之實例包括光偵測器及/或IR感測器輸入。可經由例如來自例如選定第三方應用程式設計介面(API)之實時天氣饋入來提供當前條件資訊。In some embodiments, the real-time model selection framework uses sensor data and/or current condition information. Examples of sensor data include photodetector and/or IR sensor inputs. Current condition information may be provided, for example, via real-time weather feeds from, for example, selected third-party application programming interfaces (APIs).
在一些實施例中,輸入彈性為此構架之一個應用。在除來自硬體單元(例如,屋頂感測器單元,諸如描述於在2017年5月4日公開之美國專利公開案第2017/0122802號中的彼等單元,該公開案以全文引用的方式併入本文中)之光及/或IR感測器輸入以外亦利用來自第三方API之實時天氣資料的預測模型中,存在三個可能的失敗點。因為三個輸入中之任一者在連接失敗事件期間可能存在或不存在,所以存在支援實時模型選擇之(例如,僅)構架可無縫地處置而無停工時間的(例如,至少約8個(或23個))可能的輸入組合。In some embodiments, input elasticity is one application of this framework. In addition to those from hardware units (eg, rooftop sensor units, such as those described in US Patent Publication No. 2017/0122802, published May 4, 2017, which is incorporated by reference in its entirety) In a prediction model that utilizes real-time weather data from third-party APIs in addition to light and/or IR sensor inputs (incorporated herein), there are three possible points of failure. Because any of the three inputs may or may not be present during a connection failure event, there are (eg, only) frameworks that support real-time model selection that can be handled seamlessly without downtime (eg, at least about 8 (or 23)) possible input combinations.
不同於感測器資料,第三方天氣資料不能使用例如加權重心平均化技術由歷史值可靠地合成。然而,實驗結果已展示:例如當至感測器輸入中之一或兩者的連接缺失及/或必須合成時,用真實的天氣資料補充模型為有幫助的。因為給定模型可僅在提供所有預期輸入時執行,所以在連接失敗之情況下,兩個模型應準備好供部署(例如,一個模型包括準備好自實時天氣饋入接收輸入之網路占位符,而另一模型不包括)。Unlike sensor data, third party weather data cannot be reliably synthesized from historical values using techniques such as weighted centroid averaging. However, experimental results have shown that it is helpful to supplement the model with real weather data, for example when connections to one or both of the sensor inputs are missing and/or must be synthesized. Because a given model can only execute when all expected inputs are provided, both models should be ready for deployment in the event of a connection failure (e.g. one model includes a network footprint ready to receive input from a real-time weather feed , while the other model does not).
藉由此架構,實時模型選擇構架(例如,僅)在其可用時利用真實天氣資料,且構架(例如,僅)針對缺失之任何輸入而合成感測器值,從而保留所接收之(例如,每個)實際資料點。以此方式,每分鐘輸入之存在或不存在即時驅動模型選擇,確保當前部署模型支援當前接收之輸入的組合。With this architecture, the real-time model selection framework (eg, only) utilizes real weather data when it is available, and the framework (eg, only) synthesizes sensor values for any inputs that are missing, preserving what is received (eg, only). each) actual data points. In this way, the presence or absence of every minute input drives model selection in real time, ensuring that the currently deployed model supports the combination of currently received inputs.
在一些實施例中,此方法(及相關聯架構)使得能夠將具有專門模型之單個構架部署至當前配備有(例如,僅)光感測器硬體單元之地點。若地點在接收到升級時偏好維持硬體之兩個版本(例如,一棟建築物上的一種類型之感測器,及另一棟建築物上的感測器之升級版本),則實時模型選擇構架可支援同時部署兩個預測模型,該等模型(例如,各自)針對其自其對應硬體單元接收到之輸入而最佳化。以此方式,構架可提供感測器預報軟體之多功能性。In some embodiments, this method (and associated architecture) enables deployment of a single architecture with specialized models to locations currently equipped with (eg, only) light sensor hardware units. If the location prefers to maintain two versions of the hardware when it receives the upgrade (for example, one type of sensor on one building, and an upgraded version of the sensor on another building), the real-time model The architecture of choice may support the simultaneous deployment of two predictive models that are (eg, each) optimized for the input it receives from its corresponding hardware unit. In this way, the framework can provide the versatility of sensor prediction software.
為了驗證實時模型選擇構架之彈性,可設計極端變動壓力測試,其取決於解析度(例如,每分鐘)而在每一時間段內隨機化預測模組之輸入。此測試可模擬隨機判定存在或不存在三個輸入中之(例如,任)一者的情境。自一分鐘至下一分鐘,可使兩個輸入中之全部、無一者、僅一者或任何組合可用於預測模組,該預測模組即時選擇針對彼等輸入而設計之兩個模型中的一者。對於期間預測模組經受壓力測試之持續期間(七日中之每一日的持續時間),部署實時模型選擇構架導致零停工時間為零,從而成功地產生一整日內之分鐘級預測。圖 29
呈現自正午至日落運行之壓力測試的結果。線3103
(指明為「所有輸入預測」)表示使用所有輸入(光感測器、IR、來自天氣饋入之預報IO資料)產生的預測。線3111
(指明為「實際10分鐘最大值」)表示所預測之實際值;例如自外部實際量測的輻射強度。線3119
(指明為「僅天氣預測」)表示使用預報IO資料及合成的光感測器及IR資料產生的預測。合成資料係由最近數日之資料的重心平均化產生。線3105
(指明為「僅感測器預測」)表示僅使用真實光感測器及IR資料產生的預測。線3107
(指明為「無輸入預測」)表示僅使用合成的光感測器及IR資料產生的預測。線3117
(指明為「僅IR預測」)表示使用合成的光感測器資料及真實IR資料產生的預測。線3102
(指明為「僅光感測器預測」)表示使用真實光感測器資料及合成IR資料產生的預測。且線3131
(指明為「除錯預測」)表示由經受壓力測試之模型產生的預測,其中逐分鐘隨機化模型之三個輸入中之任一者的存在或不存在。使用兩個模型之實時模型選擇來產生以線3131
展示之預測,一個模型經設計以用於接受光感測器資料、IR感測器資料及預報IO資料,且另一模型經設計以用於僅接收光感測器及IR感測器資料。使用自以下所有三個源接受資料之模型來產生所有其他曲線:光感測器資料、IR資料及預報IO資料。因為實時模型選擇運行(線)在兩個模型之間來回轉變,所以所產生之預測跨越由所有先前所描述模型輸出之預測值的範圍而波動。然而,雖然線3131
波動,但其保持合理地接近輻射通量之實際所量測值(線3111
),因此指示其在挑戰性條件下提供合理的預測。To verify the resiliency of the real-time model selection framework, extreme variation stress tests can be designed that randomize the inputs to the prediction module within each time period depending on the resolution (eg, every minute). This test can simulate a situation where the presence or absence of (eg, any) of the three inputs is randomly determined. From one minute to the next, all, none, only one, or any combination of the two inputs can be made available to a prediction module that instantly selects which of the two models designed for those inputs one of. For the duration (duration of each of the seven days) the period forecasting module was stress tested, deploying the real-time model selection framework resulted in zero downtime, successfully producing minute-level forecasts for a full day. Figure 29 presents the results of a stress test run from noon to sunset. Line 3103 (designated "All Input Forecast") represents the forecast produced using all inputs (light sensors, IR, forecast IO data from weather feeds). Line 3111 (designated "Actual 10 Minute Max") represents the predicted actual value; eg, the radiation intensity actually measured from the outside. Line 3119 (designated "Weather Forecast Only") represents the forecast generated using forecast IO data and synthesized light sensor and IR data. Composite data is generated by averaging the centroids of data from the last few days. Line 3105 (designated "Sensor-Only Prediction") represents a prediction generated using only real light sensors and IR data. Line 3107 (designated "No Input Prediction") represents the prediction produced using only the synthesized photosensor and IR data. Line 3117 (designated "IR Prediction Only") represents the prediction generated using synthesized photosensor data and real IR data. Line 3102 (designated "Light Sensor Prediction Only") represents the prediction generated using real light sensor data and synthetic IR data. And line 3131 (designated "Debug Forecast") represents the forecast produced by the model subjected to the stress test, where the presence or absence of any of the three inputs to the model is randomized minute by minute. The prediction shown as
在一些實施例中,深度學習能力依賴於輸入特徵之資訊性信號強度,該等輸入特徵之關係由網路架構層表示。可能無法預先判定哪一基線輸入特徵集合在(例如,所有)地理部位中及一年內(例如,所有)時間導致最佳預測效能。可能存在用於神經網路之各種可能的輸入特徵,有時數百或多於數百個。如本文中所提及,一些實例具有約200個可用輸入特徵。然而,使用(例如,所有)彼等特徵可導致某些問題,諸如過度擬合及/或需要額外運算資源,其增加費用及/或減慢程序。In some embodiments, deep learning capabilities rely on informative signal strengths of input features whose relationships are represented by network architecture layers. It may not be possible to predetermine which set of baseline input features results in the best predictive performance in (eg, all) geographic locations and at (eg, all) times of the year. There may be a variety of possible input features for a neural network, sometimes hundreds or more. As mentioned herein, some instances have about 200 input features available. However, using (eg, all) of these features can lead to certain problems, such as overfitting and/or requiring additional computing resources, which increases cost and/or slows down the program.
在一些實施例中,神經網路在一些方面為「黑箱(black box)」演算法。也許不可能直接量化輸入特徵之相對重要性。對於此等網路,無論建構了多少表示層,(i)輸入之間的模型關係及/或(ii)關係(其他關係……)之關係皆有效地掩蓋了輸入特徵之相對重要性。深度學習模型之此特性可使得難以判定當前正使用之輸入特徵集合是否為最佳的。不同的輸入特徵集合可訓練不同的關係(其他關係……)集合,且替代基線特徵集合之神經表示可更成功地最小化總體預測誤差。多種地點特定外部條件及其相異及/或不規則改變速率可使模型輸入特徵之手調不切實際。In some embodiments, the neural network is a "black box" algorithm in some aspects. It may not be possible to directly quantify the relative importance of input features. For such networks, no matter how many representation layers are constructed, (i) model relationships between inputs and/or (ii) relationships (other relationships...) effectively mask the relative importance of input features. This property of deep learning models can make it difficult to determine whether the set of input features currently being used is optimal. Different sets of input features can train different sets of relationships (other relationships...), and neural representations that replace the baseline feature set can more successfully minimize overall prediction error. The variety of site-specific external conditions and their varying and/or irregular rates of change can make manual tuning of model input features impractical.
在某些實施例中,機器學習用以自動化否則可能需要由以定期更新模型參數為任務之專家組進行監測的特徵選擇程序。在某些實施例中,藉由將機器學習模組整合至用於預測窗著色之未來值及/或本端天氣條件之模型的初始化架構中來實施自動化特徵選擇。此特徵選擇模組可經組態以量化及/或(例如,憑經驗)驗證相對特徵重要性。在某些實施例中,此資訊允許利用新輸入自動重新初始化預測模型及/或針對例如不同部位及/或一年中不同時間之改變而更新特徵集合。In some embodiments, machine learning is used to automate feature selection procedures that might otherwise require monitoring by a panel of experts tasked with regularly updating model parameters. In some embodiments, automated feature selection is implemented by integrating a machine learning module into the initialization framework of a model for predicting future values of window shading and/or local weather conditions. This feature selection module can be configured to quantify and/or (eg, empirically) verify relative feature importance. In some embodiments, this information allows the predictive model to be automatically re-initialized with new inputs and/or feature sets updated for changes such as different locations and/or different times of the year.
在一些實施例中,在特定時間及/或場所處盛行之條件可判定哪一輸入特徵集合對於最小化預測誤差為最佳的。隨時間之地點特定條件改變可驅動利用改善之輸入集合重新初始化模型,使得其能夠自動地自校正及/或更新其現有參數化。In some embodiments, conditions prevailing at a particular time and/or location may determine which set of input features is best for minimizing prediction error. Changes in site-specific conditions over time can drive reinitialization of the model with an improved set of inputs, enabling it to automatically self-correct and/or update its existing parameterizations.
在一些實施例中,程序有效地對各種可用輸入特徵中之一或多者進行濾波。雖然可使用各種濾波程序,但以下論述集中於遞歸特徵消除程序(RFE),該程序可藉由諸如支援向量機或隨機森林技術之回歸及/或分類法實施。In some embodiments, the program effectively filters one or more of the various available input features. Although various filtering procedures can be used, the following discussion focuses on a recursive feature elimination procedure (RFE), which can be implemented by regression and/or classification methods such as support vector machines or random forest techniques.
所揭示技術可允許遞歸特徵消除系統自所有可能的特徵輸入當中識別可能在任何給定日最有價值的特定特徵輸入。因此,相對較小的輸入特徵集合可用以初始化及/或運行模型。因此,執行預測常式可能只需要減少的運算資源及/或時間。預測常式之執行可減少模型誤差,例如與選取色調適當窗色調狀態相關之未來外部條件的不準確預測。The disclosed techniques may allow a recursive feature elimination system to identify, from among all possible feature inputs, the specific feature input that is likely to be most valuable on any given day. Therefore, a relatively small set of input features can be used to initialize and/or run the model. Therefore, execution of the prediction routine may require only reduced computing resources and/or time. Execution of prediction routines can reduce model errors, such as inaccurate predictions of future external conditions associated with selecting hue-appropriate window hue states.
如本文中所建議,遞歸特徵消除程序(RFE)可用以俘獲(i)在不同部位處(例如,甚至在同一城市或街區內)及/或(ii)在一年中不同時間的天氣資料及/或天氣特性之行為差異。在一個部位處運作良好的輸入特徵集合在不同部位處可能運作不佳。在2月初運作良好的特徵集合可能在3月中旬運作不佳。每當選擇新的輸入特徵集合時,其可用以重新初始化神經網路(諸如,密集神經網路及/或遞迴神經網路),該神經網路用以預測未來色調狀態及/或天氣條件。As suggested herein, a recursive feature elimination procedure (RFE) can be used to capture (i) weather data at different locations (eg, even within the same city or block) and/or (ii) at different times of the year and and/or behavioral differences in weather characteristics. An input feature set that works well at one location may not work well at a different location. A feature set that worked well in early February may not work well in mid-March. Whenever a new set of input features is selected, it can be used to re-initialize a neural network (such as a dense neural network and/or a recurrent neural network) used to predict future hue states and/or weather conditions .
在某些實施例中,特徵消除系統識別特徵輸入之相對重要性。程序可使用自如本文中所描述之光感測器及/或IR感測器輸入導出的各種特徵。In some embodiments, the feature elimination system identifies the relative importance of feature inputs. The program may use various features derived from light sensor and/or IR sensor input as described herein.
在某些實施例中,定期地重新初始化(例如,如本文中所描述)之模型為神經網路(例如,如本文中所描述),諸如密集神經網路及/或遞迴神經網路(例如,LSTM)。在某些實施例中,模型經組態以預測未來至少約五分鐘之外部條件。在某些實施例中,預測進一步延長至未來,諸如未來至少約15分鐘或至少約30分鐘。在一些實施例中,其延長時段不再為自任一個色調狀態轉變至不同色調狀態所需之最長時間段。In certain embodiments, the model that is periodically reinitialized (eg, as described herein) is a neural network (eg, as described herein), such as a dense neural network and/or a recurrent neural network ( For example, LSTM). In certain embodiments, the model is configured to predict external conditions at least about five minutes into the future. In certain embodiments, the prediction is further extended into the future, such as at least about 15 minutes or at least about 30 minutes into the future. In some embodiments, the extended period is no longer the maximum time period required to transition from any one hue state to a different hue state.
在某些實施例中,用於對輸入特徵進行濾波之子模組經組態以執行支援向量回歸,或更具體而言,執行線性核支援向量機。此類型之演算法工具可產生所有可用輸入參數之係數。係數之相對量值可充當相關聯之輸入參數相對重要性的定量指示符。特徵濾波子模組可嵌入於特徵工程化管線中,該管線用於在模型訓練期間預處理神經網路之輸入。作為一實例,參見下文所描述之圖 30 。In some embodiments, the submodule for filtering input features is configured to perform support vector regression, or more specifically, a linear kernel support vector machine. Algorithmic tools of this type can generate coefficients for all available input parameters. The relative magnitudes of the coefficients can serve as quantitative indicators of the relative importance of the associated input parameters. The feature filtering submodule can be embedded in the feature engineering pipeline used to preprocess the input of the neural network during model training. As an example, see Figure 30 described below.
在某些實施例中,支援向量機用於回歸上下文而非分類上下文(例如,用於支援向量機)。在數學上,兩個程序可產生超平面且識別最接近超平面之資料點。經由此程序,支援向量機可識別用於特徵輸入之係數,該等係數可用以指定特徵輸入之重要性。在一些實施例中,用於不同特徵類型之係數的產生為部分最小平方及主成份分析共同的。在一些實施例中,不同於主成份分析,支援向量機不將特徵類型組合成分量及/或其分開地呈現獨立特徵輸入。In some embodiments, SVMs are used for regression contexts rather than classification contexts (eg, for SVMs). Mathematically, two procedures can generate the hyperplane and identify the data points closest to the hyperplane. Through this procedure, the support vector machine can identify coefficients for the feature input, which can be used to specify the importance of the feature input. In some embodiments, the generation of coefficients for different feature types is common to partial least squares and principal component analysis. In some embodiments, unlike principal component analysis, support vector machines do not combine feature types into components and/or present independent feature inputs separately.
在一些實施例中,支援向量機之「支援向量」為處於誤差臨限值之外的資料點,支援向量機在針對所預報目標變數(例如,對於光感測器為瓦特/平方公尺,對於IR感測器為華氏度或攝氏度等)使潛在模型輸入回歸時容忍該誤差臨限值。當訓練支援向量機時,(例如,僅)此等資料點可用以最小化預測誤差,例如確保相對於對模型造成最大困難之彼等條件而量化相對特徵重要性。In some embodiments, the "support vector" of a SVM is a data point that is outside the error threshold, and the SVM is working on a predicted target variable (eg, watts/square meter for a light sensor, Fahrenheit or Celsius for IR sensors, etc.) to tolerate this error threshold when regressing the underlying model input. When training a support vector machine, (eg, only) these data points can be used to minimize prediction error, such as ensuring relative feature importance is quantified with respect to those conditions that cause the most difficulty for the model.
在某些實施例中,回歸分析使用在給定時間(例如,特定冬日之正午)獲取之歷史資料點,且每一資料點包括(i)單個推定輸入特徵之值(例如,在最近10分鐘內之IR感測器讀數的滾動均值)及(ii)相關聯之原始所量測外部輻射值(例如,由外部光感測器量測之輻射,該光感測器可為提供一些推定輸入特徵值之同一光感測器)。原始所量測外部輻射值可充當標記及/或充當回歸分析之自變數。In some embodiments, the regression analysis uses historical data points acquired at a given time (eg, noon on a particular winter day), and each data point includes (i) the value of a single putative input feature (eg, within the last 10 minutes) the rolling mean of the IR sensor readings within the eigenvalues of the same light sensor). The raw measured external radiation values can serve as markers and/or as independent variables for regression analysis.
在一些實施例中,回歸分析之輸入為每一推定輸入特徵之單個資料點。一些輸入資料點(推定輸入特徵)可具有相關聯之時間值。除彼時間值以外,該等資料點可表示與一或多個其他輸入點相同之特徵類型。一些或所有輸入特徵可存在時間滯後,例如四個或多於四個時間步長。舉例而言,最小所量測IR值之五分鐘滾動中值可由四個模型參數(例如,其在時間索引「t」、「t-1」、「t-2」及「t-3」處之值)表示,該等模型參數中之一些可由RFE選擇。因此,在每個時間間隔,諸如每分鐘(例如,輸入資料結構中之每一列中),模型可含有關於彼特徵在前四分鐘內如何改變之一些資訊。In some embodiments, the input to the regression analysis is a single data point for each putative input feature. Some input data points (putative input features) may have associated time values. Except for that time value, the data points may represent the same feature type as one or more other input points. Some or all of the input features may have time lags, such as four or more time steps. For example, the five-minute rolling median of the smallest measured IR value can be determined by four model parameters (eg, which are at time indices "t", "t-1", "t-2", and "t-3" value) means that some of these model parameters can be selected by RFE. Thus, at each time interval, such as every minute (eg, in each column of the input data structure), the model may contain some information about how that characteristic changed during the previous four minutes.
支援向量回歸(或另一回歸技術)可用以開發係數(例如,具有其推定輸入特徵)與外部輻射值之間的表達式(或關係)。表達式可為輸入特徵值及其相關聯係數之函數。舉例而言,表達式可為係數與其相關聯推定輸入特徵之值的乘積之總和。Support vector regression (or another regression technique) may be used to develop an expression (or relationship) between coefficients (eg, with their putative input characteristics) and external radiation values. An expression can be a function of the input eigenvalues and their associated correlations. For example, the expression may be the sum of the products of the coefficients and the values of their associated inferred input features.
在一些實施例中,誤差最小化常式用以調整係數,例如使得由函數產生之所計算輻射值匹配所量測之實際輻射值(例如,經獲取以產生特徵值之光感測器值)。回歸技術可使用由支援向量機使用之計算以對所標記點進行分類。程序可消除對最小化預測誤差貢獻最小之彼等特徵。無關於所使用之特定技術,程序可產生具有用於至少一個(例如,每一)特徵值之係數的回歸表達式。In some embodiments, an error minimization routine is used to adjust the coefficients, eg, so that the calculated radiation values generated by the function match the measured actual radiation values (eg, the light sensor values acquired to generate the eigenvalues) . Regression techniques may use calculations used by support vector machines to classify the marked points. The program can eliminate those features that contribute the least to minimizing prediction error. Regardless of the particular technique used, the program can generate a regression expression with coefficients for at least one (eg, each) eigenvalue.
在一些實施例中,特徵消除程序最初將回歸應用於所有潛在的輸入特徵,且經由此程序,至少部分地基於係數量值對特徵進行排名。可濾出具有低量值係數之一或多個推定輸入特徵。接著,程序可再次應用回歸,但此時利用推定輸入特徵之減小集合,該集合已藉由消除先前回歸中之某些低排名輸入特徵而減小。程序可遞歸地繼續與適合於達到所要數目個輸入特徵一樣多的循環。舉例而言,程序可繼續直至達到使用者定義之停止準則或剩餘預測子之所請求數目(例如,臨限值)。In some embodiments, a feature elimination procedure initially applies regression to all potential input features, and through this procedure, features are ranked based at least in part on coefficient values. One or more putative input features with low magnitude coefficients may be filtered out. Then, the program can apply regression again, but this time with a reduced set of putative input features that have been reduced by eliminating some of the low-ranked input features from the previous regression. The program may continue recursively as many loops as is appropriate to reach the desired number of input features. For example, the process may continue until a user-defined stopping criterion or a requested number of remaining predictors (eg, a threshold value) is reached.
所得特徵集合可接著用以初始化神經網路(例如,具有最高效輸入組態)。關於現有輸入特徵對最近歷史資料之相同驗證集合執行的良好程度,可作出利用輸入特徵之新組態重新初始化模型的決策。The resulting set of features can then be used to initialize the neural network (eg, with the most efficient input configuration). A decision can be made to re-initialize the model with the new configuration of the input features as to how well the existing input features perform against the same validation set of recent historical data.
雖然支援向量回歸可為用於對推定輸入特徵進行濾波及/或消除推定輸入特徵之合適技術,但其可能並非僅有的合適技術。其他實例可包括隨機森林回歸、部分最小平方及/或主成份分析。While support vector regression may be a suitable technique for filtering and/or eliminating putative input features, it may not be the only suitable technique. Other examples may include random forest regression, partial least squares, and/or principal component analysis.
在一些實施例中,「遞歸」消除程序多次運行濾波演算法(例如,線性核支援向量回歸),每次皆獲得更大程度的濾波。經由此方法,逐步程序可消除最不重要的特徵輸入,例如經由多次運行濾波演算法。可為使用者可定義參數之參數可指定待在遞歸濾波程序結束時選擇多少特徵。In some embodiments, the "recursive" elimination procedure runs the filtering algorithm (eg, linear kernel support vector regression) multiple times, each time obtaining a greater degree of filtering. Through this method, a step-by-step procedure can eliminate the least significant feature inputs, eg, by running the filtering algorithm multiple times. Parameters, which can be user definable parameters, can specify how many features to select at the end of the recursive filtering procedure.
在一些實施例中,每當利用潛在輸入特徵集合來運行支援向量機時,消除固定數目個特徵。舉例而言,在每次反覆中,可消除單個特徵且接著可利用少一個的資料點重新運行支援向量機。作為一實例,若最初存在200個可用輸入特徵且每當運行支援向量機時,消除另一個輸入特徵,則支援向量機將必須運行100次以將輸入特徵之數目自200減小至100。In some embodiments, a fixed number of features are eliminated each time a support vector machine is run with a set of potential input features. For example, in each iteration, a single feature can be eliminated and then the support vector machine can be re-run with one less data point. As an example, if initially there were 200 input features available and each time the SVM was run, another input feature was eliminated, the SVM would have to be run 100 times to reduce the number of input features from 200 to 100.
在某些實施例中,RFE程序移除初始數目個可用特徵之約20%至約70%。在某些實施例中,RFE程序移除特徵之至少約10%、25%、50%或75%。在某些實施例中,RFE程序移除約50個至約200個特徵。作為一實例,最初存在200個相異輸入特徵且在RFE程序中,濾出此等特徵中之100個(50%),以在程序結束時將數目輸入特徵減小至100個特徵。In certain embodiments, the RFE process removes about 20% to about 70% of the initial number of available features. In certain embodiments, the RFE process removes at least about 10%, 25%, 50%, or 75% of the features. In certain embodiments, the RFE process removes about 50 to about 200 features. As an example, there are initially 200 distinct input features and in the RFE procedure, 100 of these (50%) are filtered out to reduce the number of input features to 100 features at the end of the procedure.
在一些實施例中,輸入特徵消除在識別待濾波之特徵方面為靈活的。舉例而言,在給定反覆中,可對任何類型之特徵進行濾波。考慮例如存在僅基於靜態感測器讀數之50個輸入特徵的狀況,且彼等50個輸入特徵在四個不同時間間隔中之每一者(例如,在當前時間之前的連續四分鐘中之每一分鐘)內可用。因此,在此實例中,存在200個可用輸入特徵。消除處理程序可考慮在一個時間間隔消除一些特徵,在不同時間間隔(例如,時間間隔或時間步長)消除其他特徵,在第三時間間隔消除另外其他特徵,等等。可在多於一個時間間隔保留一些特徵類型。因此,消除處理程序可至少部分地基於特徵類型(例如,滾動光感測器均值對比滾動IR感測器中值)及/或至少部分地基於時間增量(相較於當前時間)而消除特徵。In some embodiments, input feature cancellation is flexible in identifying features to filter. For example, in a given iteration, any type of feature can be filtered. Consider, for example, a situation where there are 50 input features based only on static sensor readings, and those 50 input features are in each of four different time intervals (eg, each of the four consecutive minutes preceding the current time within one minute). Therefore, in this example, there are 200 input features available. The elimination handler may consider eliminating some features at one time interval, eliminating other features at a different time interval (eg, time interval or time step), eliminating still other features at a third time interval, and so on. Some feature types may be retained for more than one time interval. Accordingly, the elimination process may eliminate features based at least in part on feature type (eg, rolling light sensor mean vs rolling IR sensor median) and/or at least in part based on time delta (compared to current time) .
在運算模型設計中,可能存在模型定義及開發之各種階段。可初始化此等階段中之一者。在一些實施例中,在至少一次(例如,每次)定義新的輸入特徵類型集合時,程序初始化或重新初始化模型。In computational model design, there may be various stages of model definition and development. One of these phases can be initialized. In some embodiments, the program initializes or reinitializes the model at least once (eg, each time) a new set of input feature types is defined.
(1)模型架構-在神經網路之狀況下,此可表示包括數個層、至少一個(例如,每一)層中之節點及鄰近層中之節點之間的連接的網路之整體結構。(2)模型超參數最佳化-在訓練之前設定超參數。作為一實例,超參數可為網路中之個別節點之啟動功能中的一或多個參數之初始(在訓練之前)參數值集合。在另一實例中,待最佳化之超參數包括個別節點之初始(例如,在訓練之前)權重。超參數可用以定義模型如何學習。舉例而言,其可設定模型以例如梯度下降技術學習之速率。(3)初始化-一旦設定了超參數,便藉由定義將使用之輸入特徵類型集合來初始化模型。利用輸入特徵集合對神經網路模型之初始訓練為初始化。在至少一次(例如,每次)重新初始化模型時,可利用新的輸入特徵類型集合來訓練該模型。(4)學習-藉由初始化模型,訓練演算法使用具有輸入特徵值及相關聯標記之訓練資料集來訓練模型。(1) Model Architecture - In the case of a neural network, this may represent the overall structure of the network including several layers, at least one (eg, each) node in a layer, and connections between nodes in adjacent layers . (2) Model hyperparameter optimization - setting hyperparameters before training. As an example, a hyperparameter may be an initial (before training) set of parameter values for one or more parameters in the startup function of an individual node in the network. In another example, the hyperparameters to be optimized include initial (eg, prior to training) weights for individual nodes. Hyperparameters can be used to define how the model learns. For example, it can set the rate at which the model learns with techniques such as gradient descent. (3) Initialization - Once the hyperparameters are set, the model is initialized by defining the set of input feature types that will be used. The initial training of the neural network model using the input feature set is initialization. The model may be trained with the new set of input feature types when the model is reinitialized at least once (eg, each time). (4) Learning - By initializing the model, the training algorithm uses the training data set with input feature values and associated labels to train the model.
圖 30
呈現展示用於使用定期輸入特徵濾波之模型更新的程序之一個實施方案的流程圖3201
。可執行以下操作:(a)接收大的潛在輸入特徵集合(例如,自頻率特定感測器讀數之歷史值導出的多於約100個特徵)。參見操作3203
。(b)對整個集合進行初始特徵濾波(例如,使用SVM RFE)以識別第一輸入特徵子集。參見操作3205
。(c)利用當前輸入特徵子集來初始化及訓練模型。參見操作3207
。(d)使用當前經訓練模型來預測窗色調條件且定期地執行轉移學習(例如,每日)。參見操作3209
。(e)檢查是否修正輸入特徵集合(例如,自最後一次重新初始化模型起等待臨限數目日,諸如約三至十日)。參見操作3211
。(f)在需要時,使用大的潛在輸入特徵集合來重新運行輸入特徵濾波,但利用自最後一次初始化模型起獲得的資料進行更新。識別經更新之輸入特徵子集且重新初始化及訓練模型。參見操作3213
。(g)將具有新特徵集合之經更新模型的效能與先前模型(其可為當前模型)之效能進行比較。參見操作3215
。(h)若新模型更佳地執行,則將其設定為「當前」模型(參見操作3217
)且利用新模型及經更新特徵子集回圈返回至操作3209
(d
);若否,則繼續使用如在操作3217
處指示之先前模型。 Figure 30 presents a
在一些實施例中,為確保過早模型重新初始化不會漸漸損害藉由諸如轉移學習程序(其可使用重新訓練模組定期(諸如,每夜)執行)之其他定期最佳化常式得到的效能增益,可將由RFE
及重新初始化產生之模型的預測能力與藉由轉移學習或其他常式重新訓練技術最佳化之模型的預測能力進行比較。此可藉由圖 30
中之操作3215
及3217
進行說明。若常式模型勝過具有RFE重新初始化之模型,則可保留先前輸入特徵集合。視情況,更新現有預測子之係數權重,因此其可再用以初始化下一回歸分析。若RFE重新初始化模型勝過正常的重新訓練模型,則輸入特徵集合自校正,不需要使用者干預。In some embodiments, to ensure that premature model reinitialization does not gradually compromise the results obtained by other periodic optimization routines such as transfer learning procedures (which may be performed periodically (such as nightly) using the retraining module) The performance gain can be compared to the predictive ability of the model generated by RFE and reinitialization with the predictive ability of the model optimized by transfer learning or other routine retraining techniques. This can be illustrated by
在一些實施例中,將基於SVM之遞歸特徵消除嵌入至(重新)訓練模組中允許在給定部位處及在一年內給定時間盛行的條件驅動模型參數化及重新初始化。以此方式,可提示模型輸入之神經表示與自身進行連續競爭。結果可為自最困難情境學習、記住仍有用的內容、忘記不可用的內容及在找到眼前問題之更佳解決方案時自校正的人工智慧應用。In some embodiments, embedding SVM-based recursive feature elimination into a (re)training module allows for condition-driven model parameterization and reinitialization that prevail at a given location and at a given time of year. In this way, the neural representation of the model input can be prompted to continuously compete with itself. The results could be applications of artificial intelligence that learn from the most difficult situations, remember what is still useful, forget what is not, and self-correct when finding better solutions to the problems at hand.
圖 31 表示重新訓練架構之實例。 Figure 31 shows an example of a retraining architecture.
遞歸特徵消除-概要點: u 隨時間且根據部位改進輸入特徵集合可濾出額外輸入 u 在不太有用的特徵內散佈有意義的信號會阻礙模型收斂 u 將機器學習子模組嵌入於深度學習管線中 u 可使用線性核支援向量回歸(SVR)來量化特徵重要性 u SVR模型擬合集中於最困難資料點,被稱為「支援向量」 u 以遞歸方式消除對最小化損失函數貢獻較小的特徵 u 使用者輸入定義待保留的原始特徵數目(例如,200+個特徵) u 模型初始化可應用RFE以識別最佳基線特徵集合 u 最佳特徵集合並非靜態的,根據部位而變化,且全年皆在改變 u 最高效模型參數化為未知的,且手調為不切實際的 u 可利用RFE來自動化自校正特徵選擇 u 轉移學習與RFE模型重新初始化可能會定期彼此衝突 u 在最近歷史資料上驗證模型效能 u 若轉移學習勝過RFE重新初始化,則保留特徵且更新權重 u 若RFE重新初始化勝過轉移學習,則特徵集合自校正 u 盛行的條件因此驅動參數化及模型重新初始化Recursive Feature Elimination - Summary Points: u Improve the input feature set over time and by location to filter out additional inputs u Spreading meaningful signals within less useful features can hinder model convergence u Embed machine learning submodules into deep learning pipelines u Can use linear kernel support vector regression (SVR) to quantify feature importance u SVR model fitting focuses on the most difficult data points, known as "support vectors" u recursively eliminate features that contribute less to minimizing the loss function u User input defines the number of original features to keep (eg, 200+ features) u Model initialization can apply RFE to identify the best baseline feature set u The optimal feature set is not static, varies by location, and changes throughout the year u The most efficient model parameterization is unknown and hand tuning is impractical u RFE can be used to automate self-correcting feature selection u Transfer learning and RFE model reinitialization may periodically conflict with each other u Validate model performance on recent historical data u If transfer learning outperforms RFE reinitialization, keep features and update weights u If RFE reinitialization outperforms transfer learning, the feature set is self-correcting u prevailing conditions thus drive parameterization and model reinitialization
某些實施方案使用虛擬天空感測器應用程式(有時在本文中被稱作「虛擬天空感測器」或「VSS」),該應用程式可代管所預報資料或測試資料以供控制邏輯消耗,該控制邏輯至少部分地基於資料作出決策以控制地點處之一或多個系統(例如,窗控制系統)。可藉由VSS模組應用統計後處理。虛擬天空感測器可用於例如預測、A-B測試及/或品質保證(QA)資料模擬中。在預測使用實例中,虛擬天空感測器應用程式可代管預測模型輸出(預測),諸如來自深度學習應用程式(例如,深度神經網路(DNN))之所預報感測器資料,且所預報感測器資料被傳遞至控制邏輯。在另一實例中,虛擬天空感測器應用程式可代管用於多種條件之測試案例(例如,出於品質保證之目的的測試資料套件。可將測試案例傳遞至控制邏輯上以判定控制邏輯在多種條件下的行為。在另一實例中,一個所預報資料集由VSS傳遞,且一個實際(例如,真實的實體感測器所量測之)資料集自實體感測器傳遞至控制系統,例如使用複製地點組態。控制系統(例如,主控制器)可例如使用所複製地點組態來運行效能的並列比較。Certain implementations use a virtual sky sensor application (sometimes referred to herein as a "virtual sky sensor" or "VSS") that can host forecast data or test data for control logic Consumption, the control logic makes decisions based at least in part on the data to control one or more systems (eg, window control systems) at the site. Statistical post-processing can be applied via the VSS module. Virtual sky sensors may be used, for example, in forecasting, A-B testing and/or quality assurance (QA) data simulation. In a prediction use case, a virtual sky sensor application may host prediction model output (prediction), such as predicted sensor data from a deep learning application (eg, a deep neural network (DNN)), and the The forecast sensor data is passed to the control logic. In another example, the virtual sky sensor application may host test cases for various conditions (eg, test data suites for quality assurance purposes. The test cases may be passed to the control logic to determine the control logic Behavior under various conditions. In another example, a predicted data set is delivered by the VSS, and an actual (eg, measured by a real physical sensor) data set is delivered from the physical sensor to the control system , eg, using a replicated site configuration. A control system (eg, a master controller) may, for example, use the replicated site configuration to run a side-by-side comparison of performance.
藉由虛擬天空感測器所啟用之測試台,可追蹤及評估各種地點組態上之不同預測模型的執行及效能(例如,色調加速度、誤差量度、平台上CPU及記憶體使用情況),例如在(例如,單個)控制系統上之受控實驗中。同一虛擬天空感測器介面可提供資料模擬構架,該資料模擬構架用於例如在可能不頻繁或難以複製之條件下進行預測模型之品質保證及其他測試。經由虛擬天空感測器代管預測模型輸出可允許加速色調命令,例如而不必更改現有程式碼及/或資料基礎架構。來自VSS實施方案之實例的資料之不同組合可藉由VSS並行地代管。可使用一或多個虛擬天空感測器。The testbed enabled by the virtual sky sensor can track and evaluate the performance and performance of different prediction models (e.g., tonal acceleration, error metrics, on-platform CPU and memory usage) on various location configurations, such as In a controlled experiment on a (eg, a single) control system. The same virtual sky sensor interface may provide a data simulation framework for, for example, quality assurance and other testing of predictive models under conditions that may be infrequent or difficult to replicate. Hosting the prediction model output via a virtual sky sensor may allow for accelerated tone commands, eg, without having to change existing code and/or data infrastructure. Different combinations of data from instances of VSS implementations can be hosted by VSS in parallel. One or more virtual sky sensors may be used.
在一些狀況下,VSS代管可傳遞至諸如窗控制邏輯之控制邏輯的資料。舉例而言,虛擬天空感測器可代管感測器資料及/或天氣條件預測以傳遞至本文中所描述之窗控制邏輯的模組C及/或模組D。在VSS代管來自深度學習應用程式(例如,深度神經網路(DNN))之所預報感測器資料的實例中,深度學習應用程式可駐存於控制系統上。在某些態樣中,控制系統可能不包括深度學習應用程式。舉例而言,VSS可代管用於測試窗控制邏輯之模組C及/或模組D的測試資料。In some cases, VSS hosting may pass data to control logic such as window control logic. For example, a virtual sky sensor may host sensor data and/or weather condition predictions to pass to Module C and/or Module D of the window control logic described herein. In instances where the VSS hosts predicted sensor data from a deep learning application (eg, a deep neural network (DNN)), the deep learning application may reside on the control system. In some aspects, the control system may not include deep learning applications. For example, the VSS may host test data for Module C and/or Module D for testing the window control logic.
在一些實施例中,虛擬天空感測器應用程式經組態以與控制邏輯介接及互動,如實體天空感測器,諸如具有複數個感測器(例如,紅外線感測器及/或光感測器)之感測器集合(例如,環形感測器)所進行的。虛擬天空感測器應用程式可在本端主機IP位址上運行。在一些狀況下,資料提取器應用程式(例如,Viewfetcher)將由虛擬天空感測器應用程式代管之預測(例如,天氣條件及/或感測器資料)插入至資料庫中,例如駐存於控制系統上之現場資料庫。在一個態樣中,虛擬天空感測器為第三方API。In some embodiments, a virtual sky sensor application is configured to interface and interact with control logic, such as a physical sky sensor, such as having a plurality of sensors (eg, infrared sensors and/or light sensor) of a sensor set (eg, a ring sensor). The virtual sky sensor application can run on the local host IP address. In some cases, a data fetcher application (eg, Viewfetcher) inserts forecasts (eg, weather conditions and/or sensor data) hosted by the virtual sky sensor application into a database, such as residing in Field database on the control system. In one aspect, the virtual sky sensor is a third-party API.
在某些實施例中,VSS為網路應用程式/伺服器。在一些實施例中,當VSS自資料提取器應用程式(例如,Viewfetcher)接收對資料之請求時,自現場資料庫擷取預測,VSS對資料執行計算,且經由資料提取器應用程式將資料傳回至控制系統(例如,主控制器)上之現場資料庫。資料提取器應用程式(例如,Viewfetcher)可駐存於控制系統上及/或雲端中。在一些狀況下,虛擬天空感測器應用程式及/或地點監測系統駐存於地點處之運算裝置上。In some embodiments, the VSS is a web application/server. In some embodiments, when VSS receives a request for data from a data fetcher application (eg, Viewfetcher), fetches predictions from a live database, VSS performs calculations on the data, and transmits the data through the data fetcher application Go back to the field database on the control system (eg, the main controller). A data fetcher application (eg, Viewfetcher) can reside on the control system and/or in the cloud. In some cases, the virtual sky sensor application and/or location monitoring system resides on a computing device at the location.
Flask Python庫(或類似應用程式庫)可用以將虛擬天空感測器執行個體化為在使用者指定埠號處之本端主機上運行的(例如,網路)應用程式。在此狀況下,資料提取器平台可指向使用者指定埠號,例如使用諸如地點管理控制台之使用者介面。在執行後,Flask應用程式回應於來自資料提取器之對XML格式化感測器資料的請求,該應用程式經由對資料源之查詢來處理該等請求。在一個實例中,資料源為儲存於資料庫中之最近預測值的表。在另一實例中,資料源為含有對應於正在執行之測試案例之模擬值的資料訊框之儲存庫。現有預測模組(例如,模組C及/或模組D)可消耗插入於現場資料庫中之感測器值,正如其將消耗由諸如環形感測器之實體天空感測器產生的實際感測器資料一樣。The Flask Python library (or similar application library) can be used to individualize the virtual sky sensor implementation into an (eg, web) application running on the local host at a user-specified port. In this case, the data extractor platform can point to a user-specified port number, eg, using a user interface such as a location management console. After execution, the Flask application responds to requests for XML-formatted sensor data from the data extractor, which the application processes by querying the data source. In one example, the data source is a table of recent forecast values stored in the database. In another example, the data source is a repository of data frames containing simulated values corresponding to the test cases being executed. Existing prediction modules (eg, module C and/or module D) may consume sensor values inserted in the field database, just as they would consume actual sky sensors generated by physical sky sensors such as ring sensors. The sensor data is the same.
在一些實施方案中,多個虛擬天空感測器可用以代管感測器值,但在A/B測試之效能比較中、在品質保證(QA)測試套件完成之測試案例中及/或在預測使用案例中使用許多預測模型及/或測試條件。在此多VSS構架下,可指派網路控制器及窗分區以接收由感測器值驅動之控制指令,該等感測器值由指派給彼等網路控制器及分區之VSS傳遞。多VSS構架對預測使用實施方案之益處可為:可支援定向感測器輻射模型化。在此情況下,單個主控制器可執行多個預測模型,該等模型之感測器值係分別使用相異的虛擬天空感測器來代管。In some implementations, multiple virtual sky sensors may be used to host sensor values, but in performance comparisons for A/B testing, in test cases completed by a quality assurance (QA) test suite, and/or in There are many predictive models and/or test conditions used in forecasting use cases. Under this multi-VSS architecture, network controllers and window partitions can be assigned to receive control commands driven by sensor values passed by the VSSs assigned to them. A benefit of the multi-VSS architecture for the predictive usage implementation may be that it can support directional sensor radiation modeling. In this case, a single master controller can execute multiple prediction models whose sensor values are hosted using distinct virtual sky sensors.
某些態樣係關於使用虛擬天空感測器(例如,代管由深度學習應用程式判定之預測的虛擬天空感測器)之預測使用實例。在一些實施例中,深度學習應用程式(例如,DNN)獲取由實體天空感測器(例如,環形感測器)偵測之實時(例如,即時)感測器資料,執行計算以判定預測,且預測經傳遞至虛擬天空感測器上。虛擬天空感測器應用程式可代管來自深度學習應用程式之預測,例如以將預測傳遞至資料庫。控制邏輯可接著自資料庫擷取預測以供消耗。舉例而言,來自(例如,主)控制器上之DNN的預測可保存至資料庫(例如,在控制器上或耦接至網路之別處),且控制器之控制邏輯可至少部分地基於自資料庫擷取之預測而作出色調決策。可將來自VSS之資料傳達(例如,傳遞)至資料庫,如由實體天空感測器偵測之資料一樣。Certain aspects relate to prediction use cases using virtual sky sensors (eg, virtual sky sensors that host predictions determined by a deep learning application). In some embodiments, a deep learning application (eg, DNN) obtains real-time (eg, real-time) sensor data detected by physical sky sensors (eg, ring sensors), performs calculations to determine predictions, And the prediction is passed to the virtual sky sensor. The virtual sky sensor application can host predictions from deep learning applications, for example, to pass the predictions to a database. Control logic may then retrieve predictions from the database for consumption. For example, predictions from a DNN on a (eg, a master) controller can be saved to a database (eg, on a controller or elsewhere coupled to a network), and the controller's control logic can be based at least in part on Hue decisions are made based on predictions retrieved from the database. Data from the VSS can be communicated (eg, passed) to the database, as data detected by physical sky sensors.
在某些實施方案中,虛擬天空感測器將藉由深度學習應用程式(例如,DNN)計算之所預報或所預測資料(預報或預測)傳達(例如,傳遞)至控制邏輯以供消耗。舉例而言,DNN可用以輸出一或多個所預報感測器值(例如,IR感測器值及/或光感測器值)及/或一或多個條件(例如,天氣條件)。虛擬天空感測器可指導資料提取器應用程式(回應於來自資料提取器之請求)將來自DNN之所預報資料保存至控制系統(例如,如本文中所揭示)上或可由控制系統存取之資料庫。控制邏輯可擷取保存至資料庫之值以作出色調決策及/或控制地點處之光學可切換窗之一或多個分區中的色調狀態。在一些狀況下,所使用的DNN為稀疏DNN,其具有來自將用於實施模型及模組之完整集合之DNN中的總數目個模型參數中之減小數目個模型參數。可執行以將模型特徵消除至總數目個潛在特徵之子集的實例技術包括線性核支援向量機(SVM)、使用資訊理論量度(例如,費雪(Fisher)資訊量度或其他類似量度)之隨機最佳化、主成份分析(PCA)或其任何組合。在一個實例中,執行線性核支援向量機(SVM)(或其他類似技術)以將模型特徵消除至將使用的總數目個潛在特徵之子集。在另一實例中,執行使用資訊理論量度(例如,費雪資訊量度)之隨機最佳化以將模型特徵消除至將使用的總數目個潛在特徵之子集。在又一實例中,執行PCA以將模型特徵消除至將使用的總數目個潛在特徵之子集。在某些實施方案中,兩種或多於兩種技術可組合使用,例如以將模型特徵消除至將使用的總數目個潛在特徵之子集。在一些狀況下,重心平均化可用以至少部分地基於歷史感測器資料而判定合成的即時感測器值,且至少部分地基於合成的即時感測器值而判定一日之均值感測器剖面。DNN可使用至少部分地基於來自重心平均化之合成值的輸入特徵來輸出所預報感測器值。舉例而言,DNN可輸出未來約7分鐘、未來10分鐘、未來15分鐘等的所預報紅外線感測器(IR)值及所預報光感測器(PS)值。In some implementations, the virtual sky sensor communicates (eg, passes) the forecasted or predicted data (forecast or forecast) computed by a deep learning application (eg, DNN) to the control logic for consumption. For example, a DNN may be used to output one or more predicted sensor values (eg, IR sensor values and/or light sensor values) and/or one or more conditions (eg, weather conditions). The virtual sky sensor can instruct the data extractor application (in response to a request from the data extractor) to save the forecast data from the DNN to or be accessed by the control system (eg, as disclosed herein) database. Control logic may retrieve the values saved to the database to make tint decisions and/or control tint states in one or more partitions of the optically switchable windows at the location. In some cases, the DNN used is a sparse DNN with a reduced number of model parameters from the total number of model parameters in the DNN that would be used to implement the full set of models and modules. Example techniques that can be performed to eliminate model features to a subset of the total number of potential features include linear kernel support vector machines (SVMs), stochastic maximum using information-theoretic metrics (eg, Fisher information metrics or other similar metrics). Optimization, Principal Component Analysis (PCA), or any combination thereof. In one example, a linear kernel support vector machine (SVM) (or other similar technique) is implemented to eliminate model features to a subset of the total number of potential features to be used. In another example, a stochastic optimization using an information-theoretic metric (eg, Fisher information metric) is performed to eliminate model features to a subset of the total number of potential features to be used. In yet another example, PCA is performed to eliminate model features to a subset of the total number of potential features to be used. In certain implementations, two or more techniques may be used in combination, eg, to eliminate model features to a subset of the total number of potential features to be used. In some cases, centroid averaging may be used to determine a composite real-time sensor value based at least in part on historical sensor data, and to determine a one-day mean sensor based at least in part on the composite real-time sensor value profile. The DNN may output predicted sensor values using input features based at least in part on synthesized values from centroid averaging. For example, the DNN may output predicted infrared sensor (IR) values and predicted photo sensor (PS) values about 7 minutes in the future, 10 minutes in the future, 15 minutes in the future, etc.
某些態樣係關於使用一或多個虛擬天空感測器來代管用於測試控制邏輯在多種條件下之行為之模擬資料的品質保證(QA)或其他類型之測試。舉例而言,VSS可代管用於測試智慧控制邏輯在多種天氣條件下之行為的模擬資料。測試資料可由地點監測控制台之使用者介面提供。虛擬天空感測器應用程式可代管模擬資料且將此測試資料傳遞至控制系統上或可由控制系統存取之資料庫,例如以供控制邏輯使用。在此等測試實施方案中,虛擬天空感測器可用以提供構架,藉由該構架在預測模型上執行測試案例之測試套件,該等預測模型需要在指定時間範圍內之感測器值的某些改變,可促進模擬否則可能需要若干日等待時間才出現之條件。舉例而言,替代必須等待直至多種天氣條件自然出現,可將模擬資料饋入至虛擬天空感測器中以產生用於測試套件之各種天氣條件的測試資料。Certain aspects relate to quality assurance (QA) or other types of testing using one or more virtual sky sensors to host simulated data for testing the behavior of control logic under various conditions. For example, VSS can host simulation data used to test the behavior of intelligent control logic under various weather conditions. Test data can be provided by the user interface of the site monitoring console. The virtual sky sensor application can host the simulation data and pass this test data to the control system or a database accessible by the control system, eg for use by the control logic. In these test implementations, a virtual sky sensor can be used to provide a framework by which to execute a test suite of test cases on predictive models that require a certain percentage of sensor values over a specified time range. These changes can facilitate simulation of conditions that might otherwise require several days of waiting time to arise. For example, instead of having to wait until various weather conditions naturally arise, simulated data can be fed into a virtual sky sensor to generate test data for the various weather conditions of the test suite.
在某些實施方案中,測試套件可包括用於將與感測器讀數之不同位準相關的變化類型之條件及其他類型之事件的模擬測試資料,例如光感測器及/或IR感測器位準。對於測試資料中之感測器讀數的此等不同位準,例如取決於當日時間及日期,控制邏輯之不同結構可不同地表現。出於測試目的,可利用產生可複製控制情形之不同感測器位準來開發測試資料套件。在一個實施方案中,由VSS代管且傳遞至資料庫之測試資料可包括:時間及日期戳記、感測器值(例如,光感測器及/或IR感測器位準)及/或用於測試案例之其他相關資料。實例測試案例將驗證在天氣條件(及感測器值)改變期間的適當色調鎖定行為,該改變在用於發出色調命令之所定義控制邏輯改變的時間範圍內出現(例如,在日間>200瓦特/平方公尺=T3,但在太陽角度低且眩光風險高的早晨/晚上為T4)。可利用例如由VSS代管之使用者所提供感測器值來預先複製測試條件。In certain implementations, a test kit may include simulated test data for correlating varying types of conditions and other types of events associated with different levels of sensor readings, such as light sensors and/or IR sensing device level. For these different levels of sensor readings in the test data, eg depending on the time and date of the day, different structures of the control logic may behave differently. For testing purposes, a test data suite can be developed with different sensor levels that produce reproducible control situations. In one implementation, the test data hosted by the VSS and passed to the database may include: time and date stamps, sensor values (eg, light sensor and/or IR sensor levels) and/or Other relevant information for the test case. Example test cases will verify proper hue locking behavior during changes in weather conditions (and sensor values) that occur within the time frame of the defined control logic change used to issue the hue command (eg, >200 watts during the day) /m² = T3, but T4 in the morning/evening when the sun angle is low and the risk of glare is high). Test conditions can be pre-replicated using user-supplied sensor values, eg hosted by the VSS.
A/B測試係指具有至少兩個變體A及B之隨機化實驗。在此測試中,地點組態(例如,網路控制器(NC)及分區組態)可在單個主控制器上複製,控制邏輯在該主控制器上接收真實及虛擬天空感測器值兩者以評估及/或比較由系統同位控制之實驗設定中的預測模型之效能。A/B testing refers to a randomized experiment with at least two variants A and B. In this test, the site configuration (eg, network controller (NC) and partition configuration) can be replicated on a single master controller where the control logic receives both real and virtual sky sensor values to evaluate and/or compare the performance of predictive models in an experimental setting controlled by the system.
在一些實施例中,執行A/B測試係藉由使用一或多個虛擬天空感測器以代管至少部分地基於來自預測模型之所預報及/或所計算感測器值的資料集及來自藉由實體感測器獲取之實際(例如,真實)實體感測器讀數的資料集來進行,例如以評估預測模型之效能。在A/B測試實施方案中,可在主控制器上複製地點組態。舉例而言,網路控制器識別碼(ID)至分區ID、分區ID至終端/分葉控制器ID及終端/分葉控制器ID至窗ID的複製映射。In some embodiments, A/B testing is performed by using one or more virtual sky sensors to host data sets based at least in part on predicted and/or calculated sensor values from a predictive model and Conducted on a data set from actual (eg, real) physical sensor readings acquired by physical sensors, eg, to evaluate the performance of predictive models. In an A/B testing implementation, the site configuration can be replicated on the primary controller. For example, replication mappings of network controller identifiers (IDs) to partition IDs, partition IDs to terminal/leaf controller IDs, and terminal/leaf controller IDs to window IDs.
在一些實施例中,A/B測試評估係藉由以下操作執行:使用虛擬天空感測器將來自預測模型之所預報及/或所計算感測器值(虛擬天空感測器值)傳遞至控制邏輯,及可將來自與另一複製地點組態相關聯之實體感測器(例如,感測器集合,諸如環形感測器及/或天空感測器)的實際感測器值傳遞至控制邏輯。控制邏輯可計算用於兩個地點組態之控制位準,諸如色調狀態,且可追蹤此等控制位準之效能。此可允許並列比較(a)使用來自預測模型之所預報及/或所計算感測器值計算的控制位準與(b)使用實際感測器值計算的控制位準。在一些實施方案中,替代複製整個地點組態,在主控制器上複製一或多個分區組態且執行類似A/B測試評估。在一些實施方案中,A/B測試評估係藉由以下操作執行:使用虛擬天空感測器將來自一或多個預測模型之第一集合的所預報及/或所計算感測器值傳遞至控制邏輯;及使用虛擬天空感測器將來自一或多個不同預測模型之第二集合的所預報及/或所計算感測器值傳遞至控制邏輯,以評估及比較預測模型之第一集合與第二集合之間的效能。In some embodiments, A/B test evaluation is performed by using a virtual sky sensor to pass predicted and/or calculated sensor values (virtual sky sensor values) from a prediction model to Control logic, and may pass actual sensor values from physical sensors (eg, sensor sets such as ring sensors and/or sky sensors) associated with another replication site configuration to control logic. Control logic can calculate control levels, such as hue states, for the configuration of the two locations, and can track the performance of these control levels. This may allow a side-by-side comparison of (a) control levels calculated using predicted and/or calculated sensor values from a predictive model and (b) control levels calculated using actual sensor values. In some implementations, instead of duplicating the entire site configuration, one or more partition configurations are duplicated on the primary controller and a similar A/B test evaluation is performed. In some implementations, the A/B test evaluation is performed by using a virtual sky sensor to communicate predicted and/or calculated sensor values from a first set of one or more prediction models to control logic; and using virtual sky sensors to communicate predicted and/or calculated sensor values from a second set of one or more different prediction models to control logic to evaluate and compare the first set of prediction models performance with the second set.
在某些A/B測試實施方案中,效能度量用以比較使用來自預測模型之所預報感測器值判定的控制位準之效能與使用藉由諸如環形感測器之實體感測器偵測到之實際感測器值判定的控制位準之效能。效能量度之一些實例包括:眩光保護量之差異、日光量之差異、色調轉變之平均加速度量的差異及/或任何類似效能量度。可將效能量度進一步細分為諸如關於以下各者之類別:平均週日(例如,上午8:00至下午6:00)、至少部分地基於特定匯流條組態之片的平均轉變時間,及/或其類似者。In some A/B testing implementations, performance metrics are used to compare the performance of control levels determined using predicted sensor values from a predictive model to those detected using physical sensors such as ring sensors The performance of the control level determined by the actual sensor value. Some examples of efficacy measures include: difference in glare protection amount, difference in sunlight amount, difference in average acceleration amount of hue transition, and/or any similar efficacy measure. Efficiency metrics may be further subdivided into categories such as with respect to: average weekday (eg, 8:00 am to 6:00 pm), average transition time of a slice based at least in part on a particular busbar configuration, and/or its similar.
在一個實施例中,在(例如,主)控制器上複製地點組態(例如,第一地點組態及第二地點組態)。控制器可為控制系統之任何控制器,例如,如本文中所揭示。可將用於A/B測試之測試資料傳回至資料庫。可自VSS傳遞所計算感測器值(例如,來自DNN之預測)且將其傳回至用於第一地點組態之資料庫。可將來自本端及/或遠端源之真實實體感測器值傳回至用於第二地點組態之資料庫。In one embodiment, the site configuration (eg, the first site configuration and the second site configuration) is replicated on the (eg, primary) controller. The controller may be any controller of a control system, eg, as disclosed herein. Test data for A/B testing can be sent back to the database. Calculated sensor values (eg, predictions from the DNN) can be passed from the VSS and passed back to the database for the first location configuration. Real physical sensor values from local and/or remote sources can be passed back to the database for configuration at the second location.
在一些實施例中,虛擬天空感測器應用程式與地點監測控制台或其他使用者介面介接,以接收輸入。「地點監測控制台」可指使用者介面(UI),該使用者介面可由操作者用作設定用於一或多個應用程式之地點層級定製之參數的手段,該一或多個應用程式控制(例如,監測)一或多個地點處之系統的功能(例如,控制IGU)。在某些實施方案中,地點監測控制台或其他使用者介面可與一或多個VSS介接。舉例而言,地點監測控制台(或其他UI)可用以設定參數,該等參數由VSS使用以判定哪些感測器值(或其他資料)已傳回至(例如,主)控制器上之(例如,現場)資料庫。舉例而言,若在某個地點請求改變參數以判定及/或實施用於光學可切換窗之色調狀態,從而將更保守地防止眩光,則可由VSS設定及使用參數以計算感測器值,且將所計算感測器值傳回至現場資料庫,該現場資料庫將由預測模型擷取及使用以判定更多眩光保守色調狀態。作為另一實例,若在某個地點請求更多日光進入光學可切換窗之分區使得不使用最暗色調狀態(例如,色調位準4),則可針對彼分區設定參數且藉由VSS使用參數以計算低於與最暗色調狀態相關聯之上臨限值的感測器值,例如使得預測模型將判定彼分區之將小於最暗色調狀態的色調狀態。In some embodiments, the virtual sky sensor application interfaces with a location monitoring console or other user interface to receive input. "Location Monitoring Console" may refer to a user interface (UI) that may be used by an operator as a means of setting parameters for location-level customization of one or more applications, the one or more applications Control (eg, monitor) the function of the system at one or more locations (eg, control the IGU). In some implementations, a site monitoring console or other user interface can interface with one or more VSSs. For example, a site monitoring console (or other UI) can be used to set parameters that are used by the VSS to determine which sensor values (or other data) have been communicated back to (eg, the master) controller ( For example, on-site) database. For example, if a change in parameters is requested at a certain location to determine and/or implement a tint state for an optically switchable window that will more conservatively prevent glare, the parameters can be set and used by VSS to calculate sensor values, And the calculated sensor values are passed back to the field database, which will be captured and used by the prediction model to determine more glare conservative hue states. As another example, if at a certain location more sunlight is requested to enter a partition of the optically switchable window such that the darkest tone state (eg, tone level 4) is not used, then parameters can be set for that partition and used by VSS To calculate a sensor value below an upper threshold value associated with the darkest tone state, for example, such that the prediction model will determine that there will be less than the darkest tone state.
地點監測控制台(或其他組件)之使用者介面可支援使用者(例如,操作者)鍵入用於QA測試及/或A/B測試之欄位。舉例而言,地點監測控制台可包括支援使用者鍵入關於QA測試之測試案例之欄位(例如,時戳、感測器值)的使用者介面。可(例如,自動地)產生由虛擬天空感測器自QA資料庫擷取之模擬資料。The user interface of the site monitoring console (or other component) may support a user (eg, an operator) to enter fields for QA testing and/or A/B testing. For example, a site monitoring console may include a user interface that supports the user to enter fields (eg, timestamps, sensor values) for test cases related to QA testing. The simulated data retrieved by the virtual sky sensor from the QA database can be generated (eg, automatically).
地點監測控制台可與一或多個地點處之系統介接以監測諸如感測器、控制器或其他裝置之組件的功能及/或輸出。地點監測控制台可允許使用者(例如,操作者)(i)輸入資訊及/或(ii)檢視地點處之一或多個組件的狀態之細節。使用者介面可在各種組件上顯示日誌及/或效能報告(有時被稱作「儀錶板」)。A site monitoring console may interface with systems at one or more sites to monitor the function and/or output of components such as sensors, controllers, or other devices. A site monitoring console may allow a user (eg, an operator) to (i) enter information and/or (ii) view details of the status of one or more components at the site. The user interface can display logs and/or performance reports (sometimes referred to as "dashboards") on various components.
在某些實施方案中,地點監測控制台與地點處之窗控制系統介接。控制系統可自資料庫擷取資料,該資料可用以分析來自地點之資訊,從而判定何時調整裝置之控制。在一些實施方案中,控制系統包括控制邏輯(例如,具有深度學習應用程式(例如,DNN)),該控制邏輯可(I)自諸如本端及/或遠端感測器資料之資料學習及/或(II)調適其邏輯以滿足使用者及/或客戶目標。在一些實施例中,控制邏輯可學習如何較佳地節約能量,有時經由與地點之照明系統、HVAC系統及/或窗系統互動,且視情況相應地修改控制器設定。藉由如此進行(例如,在多個地點上及/或在地點處多次),可在一個地點處學習及在其他地點上部署新的能量控制及/或節約方法。在某些實施方案中,可提取與DNN之一或多個層(例如,隱藏層)相關聯的學習權重及/或值。此等權重及/或值可對應於所關注參數。所關注參數可包括:使用者目標、客戶目標、與能源節約相關之參數(例如,與關於地點照明系統、HVAC系統及/或窗系統之能源節約相關的參數)或其任何組合。在某些實施方案中,控制系統可提取與DNN之一或多個層(例如,隱藏層)相關聯的學習權重及/或值,例如以實施使一或多個控制器設定與一或多個使用者及/或客戶目標相關之一或多個學習規則。In certain embodiments, a site monitoring console interfaces with a site window control system. The control system can retrieve data from a database, which can be used to analyze information from the location to determine when to adjust the controls of the device. In some implementations, the control system includes control logic (eg, with a deep learning application (eg, DNN)) that can (I) learn from data such as local and/or remote sensor data and /or (II) adapt its logic to meet user and/or client goals. In some embodiments, the control logic can learn how to best conserve energy, sometimes by interacting with the lighting system, HVAC system, and/or window system of the location, and modify controller settings accordingly, as appropriate. By doing so (eg, at multiple locations and/or multiple times at a location), new energy control and/or conservation methods can be learned at one location and deployed at other locations. In some implementations, learned weights and/or values associated with one or more layers (eg, hidden layers) of the DNN may be extracted. Such weights and/or values may correspond to parameters of interest. Parameters of interest may include: user goals, customer goals, parameters related to energy conservation (eg, parameters related to energy conservation with respect to location lighting systems, HVAC systems, and/or window systems), or any combination thereof. In some implementations, the control system may extract learned weights and/or values associated with one or more layers (eg, hidden layers) of the DNN, eg, to implement correlating one or more controller settings with one or more One or more learning rules associated with individual user and/or client goals.
「地點」係指包含設施之部位,該設施包含建築物及/或至少一個結構。地點可包含互動系統,該等互動系統包括控制地點處之裝置的一或多個控制器。該地點可具有提供本端感測器資料之本端感測器。舉例而言,建築物可具有位於建築物處或附近之環形感測器,該環形感測器具有提供本端感測器資料之光感測器及/或IR感測器。可自諸如天氣饋入資料之其他源提供遠端感測器資料。本端及/或遠端感測器資料可用於作出決策以控制地點處之裝置(可切換光學裝置,諸如電致變色裝置)。有時,虛擬合成資料可至少部分地用於作出此決策。在一些狀況下,一個系統可控制不同系統之元件的功能。舉例而言,窗控制系統可將指令發送至照明系統及/或HVAC系統,例如以調整控制系統控制窗之色調位準的地點(例如,房間)或分區之封閉體中的照明度及/或空氣調節位準。"Location" means a site that includes a facility, which facility includes a building and/or at least one structure. A location may include interactive systems including one or more controllers that control devices at the location. The location may have a local sensor that provides local sensor data. For example, a building may have a ring sensor located at or near the building with a light sensor and/or an IR sensor that provides local sensor data. Remote sensor data may be provided from other sources such as weather feed data. Local and/or remote sensor data can be used to make decisions to control devices (switchable optical devices, such as electrochromic devices) at the site. At times, virtual composites can be used, at least in part, to make this decision. In some cases, one system may control the function of elements of different systems. For example, the window control system may send commands to the lighting system and/or the HVAC system, such as to adjust the level of illumination in a location (eg, a room) or enclosure of a partition where the control system controls the tint level of a window and/or Air conditioning level.
該地點處之系統可使用API以允許外部系統存取否則對外部系統不透明之資料及/或功能。API可提供語法及/或入口以准許存取。舉例而言,用於控制系統之API可允許經由URL、使用者名稱及/或交握存取窗感測器資料(例如,溫度)。符合HomeKit之定義及符合Thread之定義為提供第三方API之市售實例,該等API用於控制包括NEST及三星(Samsung)(韓國首爾的三星集團)之其他技術公司的裝置。Thread及HomeKit定義用於訊息傳遞之標準連接協定。Systems at that location may use APIs to allow external systems to access data and/or functionality that is otherwise opaque to external systems. The API may provide syntax and/or entry to allow access. For example, an API for controlling the system may allow for handshaking of access window sensor data (eg, temperature) via URL, username, and/or. HomeKit-compliant and Thread-compliant are commercially available examples that provide third-party APIs for controlling devices from other technology companies including NEST and Samsung (Samsung Group of Seoul, Korea). Thread and HomeKit define standard connection protocols for message passing.
圖 32
為根據一態樣之系統3200
的示意圖,該系統包括在地點處之彼此介接的一或多個互動系統。系統3200
包括經組態以監測一或多個地點之地點管理控制台3210
及與地點管理控制台3210
通信之虛擬天空感測器應用程式3211
。地點管理控制台3210
經組態以接收使用者輸入且解譯資訊。在此實例中,地點管理控制台3210
經組態以接收使用者輸入,該使用者輸入包括分區之ID及/或裝置之ID至虛擬天空感測器應用程式3214
或至諸如環形感測器及/或天空感測器集合之實體感測器的映射。在一些狀況下,地點管理控制台3210
為能夠與在地點外部之系統介接的API。 32 is a schematic diagram of a
系統3200
包括主控制器3250
,該主控制器具有:資料提取器應用程式3252
;現場資料庫3254
,其與資料提取器應用程式3252
通信以將資料插入至現場資料庫3254
中;控制邏輯3256
,其具有與現場資料庫3254
通信之預測模型以接收感測器資料且發送保存至現場資料庫3254
之預測。現場資料庫3254
可包括本端感測器資料庫、天氣饋入資料庫、預測資料庫及QA測試案例資料庫中之一或多者。資料提取器應用程式3252
與虛擬天空感測器3212
通信以將對資料之請求發送至虛擬天空感測器3212
且接收資料。資料提取器應用程式3252
與資料源3220
通信以自諸如環形感測器之本端感測器接收本端感測器資料,或經由第三方API自諸如天氣饋入資料之遠端資料源接收遠端感測器資料。控制邏輯3256
包括產生諸如所預報感測器資料及/或所預報天氣條件之預測的深度神經網路(DNN)3258
。控制邏輯3256
與現場資料庫3254
通信以接收感測器資料且將由DNN3258
判定之預測插入至現場資料庫3254
中。The
系統3200
包括:第一網路控制器3262
,其與控制裝置(例如,可著色窗)之第一分區(「分區1」)的複數(三)個分葉/終端控制器通信;及第二網路控制器3264
,其與控制裝置之第二分區(「分區2」)的複數(五)個分葉/終端控制器通信。在其他實施方案中,可使用更少或更多網路控制器、分區及分葉/終端控制器。The
圖 32
為根據一態樣之預測使用情境的說明性實例。在此實施方案中,DNN3258
獲取自資料源3220
之實體天空感測器傳達的實時感測器資料,執行預測且將預測傳遞至VSS3212
。資料提取器3252
向虛擬天空感測器及VSS3212
請求資料,且資料提取器3252
將來自DNN3258
之預測插入於現場資料庫3254
中,以供控制邏輯消耗從而判定控制指令。將控制指令傳達至第一網路控制器3262
以控制裝置之分區1,且傳達至第二網路控制器3264
以控制裝置之分區2。 32 is an illustrative example of a predicted usage context according to an aspect. In this implementation,
在某些實施方案中,由操作者在使用者介面(例如,地點管理控制台)處鍵入的資料用以將分區ID或裝置ID(例如,IGU ID)及/或網路控制器ID指派給特定VSS或特定實體天空感測器。在此類狀況下,此等映射可用以使用來自特定VSS之測試及/或模擬資料(虛擬天空感測器值),使用來自實體(例如,天空)感測器之實際資料或虛擬及真實感測器資料之任何組合來判定是否運行用於分區及/或裝置之預測模型。In some implementations, data entered by an operator at a user interface (eg, a site management console) is used to assign a partition ID or device ID (eg, IGU ID) and/or network controller ID to Specific VSS or specific entity sky sensor. In such cases, these maps can be used to use test and/or simulated data (virtual sky sensor values) from a specific VSS, real data from physical (eg sky) sensors, or virtual and real-world sensing Any combination of instrument data is used to determine whether to run the predictive model for the partition and/or device.
圖 33
為根據一態樣之地點管理控制台3310
的實例。地點管理控制台3310
經組態以接收使用者輸入且解譯資訊。舉例而言,地點管理控制台3310
可組態以在虛擬天空感測器3314
處接收使用者輸入。地點管理控制台3310
包括第一部分3320
,該第一部分具有標記為「環形感測器」之下部按鈕,該等感測器在選定時可將天空(環形)感測器映射至可著色窗之分區或映射至特定可著色窗。第一部分3320
包括標記為「光感測器」之上部按鈕,該等感測器在選定時可映射光感測器。在此說明中,已選擇標記為「環形感測器」之下部按鈕。地點管理控制台3310
包括第二部分3330
,該第二部分用於選擇環形感測器以指派給分區/窗,該等感測器包括:1)「MFST遠端」感測器3332
,其為實體天空感測器;或2)「Foresigh感測器」感測器3334
,其為虛擬天空感測器。 33 is an example of a
在一個實施方案中,來自本端感測器之感測器資料或天氣饋入用以判定一或多個裝置之第一分區集合的控制狀態,且虛擬天空感測器資料用以判定一或多個裝置之第二分區集合的控制狀態。在此狀況下,第一分區集合之映射為至實體天空感測器,且第二分區集合之映射為至虛擬天空感測器。若感測器資料不可用,則天氣饋入資料將用以判定第一分區集合之控制狀態。地點管理控制台可用以將天空感測器映射至分區。In one implementation, sensor data or weather feeds from local sensors are used to determine the control status of a first set of partitions of one or more devices, and virtual sky sensor data is used to determine one or more devices. The control state of the second set of partitions of the plurality of devices. In this case, the first set of partitions are mapped to physical sky sensors, and the second set of partitions are mapped to virtual sky sensors. If sensor data is not available, the weather feed data will be used to determine the control status of the first set of zones. The location management console can be used to map sky sensors to zones.
圖 34
說明根據一態樣的虛擬天空感測器之品質保證(QA)或測試情境實施方案。圖 34
為根據一態樣之系統3400
的示意圖,該系統包括在地點處之彼此介接的一或多個互動系統。系統3300
包括經組態以監測一或多個地點之地點管理控制台3410
及與地點管理控制台3410
通信之虛擬天空感測器應用程式3412
。地點管理控制台3410
經組態以接收使用者輸入且解譯資訊。在此實例中,地點管理控制台3410
經組態以接收使用者輸入,該使用者輸入包括用於包括時間/日期戳記及感測器值之測試套件的測試案例。在一些狀況下,地點管理控制台3410
為能夠與在地點外部之系統介接的API。 34 illustrates a quality assurance (QA) or test scenario implementation of a virtual sky sensor according to one aspect. 34 is a schematic diagram of a
系統3400
包括主控制器3450
,該主控制器具有:資料提取器應用程式3452
;現場資料庫3454
,其與資料提取器應用程式3452
通信以將資料插入至現場資料庫3454
中;控制邏輯3456
,其具有與現場資料庫3454
通信之預測模型以接收感測器資料且發送保存至現場資料庫3454
之預測。現場資料庫3454
可包括本端感測器資料庫、天氣饋入資料庫、預測資料庫及QA測試案例資料庫中之一或多者。資料提取器應用程式3452
與虛擬天空感測器3412
通信以將對資料之請求發送至虛擬天空感測器3412
且接收資料。資料提取器應用程式3452
與資料源3420
通信以自諸如環形感測器之本端感測器接收本端感測器資料,或經由第三方API自諸如天氣饋入資料之遠端資料源接收遠端感測器資料。在另一實施方案中,控制邏輯3456
進一步包括深度神經網路(DNN)。The
儘管DNN用於本文中所敍述之實例中,但將理解,可在各種實施方案中使用其他深度學習應用程式。Although DNNs are used in the examples described herein, it will be appreciated that other deep learning applications may be used in various implementations.
系統3400
包括:第一網路控制器3462
,其與控制裝置(例如,可著色窗)之第一分區(「分區1」)的複數(三)個分葉/終端控制器通信;及第二網路控制器3464
,其與控制裝置之第二分區(「分區2」)的複數(五)個分葉/終端控制器通信。在其他實施方案中,可使用更少或更多網路控制器、分區及分葉/終端控制器。The
在此實施方案中,將來自測試套件中具有多種條件之測試案例的時間及/或日期戳記及感測器值提供至地點管理控制台3410
。將此資料傳遞VSS3412
。資料提取器3452
向VSS3412
請求資料,且資料提取器3452
將資料插入至現場資料庫3454
中以供控制邏輯3456
消耗,從而判定控制指令。控制邏輯3456
作出判定且比較預測模型在測試套件中之多種條件下的行為。可將比較結果傳遞迴至地點管理控制台3410
以供使用者檢視。視情況(由虛線表示),可將至少部分地基於各種案例之控制指令傳達至第一網路控制器3462
以控制裝置之分區1且傳達至第二網路控制器3464
以控制裝置之分區2。In this implementation, time and/or date stamps and sensor values from test cases with multiple conditions in the test suite are provided to the
圖 35
說明根據一態樣的虛擬天空感測器之A/B測試實施方案。圖 35
包括根據一態樣之系統3500
的示意圖,該系統包括在地點處之彼此介接的一或多個互動系統。系統3500
包括經組態以監測一或多個地點之地點管理控制台3510
及與地點管理控制台3510
通信之虛擬天空感測器應用程式3512
。地點管理控制台3510
經組態以接收使用者輸入且解譯資訊。在此實例中,地點管理控制台3510
經組態以接收使用者輸入,該使用者輸入包括分區之ID及/或裝置之ID至虛擬天空感測器應用程式3512
的映射及分區之ID及/或裝置之ID至諸如所複製地點組態中之環形感測器的實體天空感測器(或感測器集合)的映射。在一些狀況下,地點管理控制台3510
為能夠與在地點外部之系統介接的API。 35 illustrates an A/B testing implementation of a virtual sky sensor according to an aspect. 35 includes a schematic diagram of a
在另一實施方案中,系統3500
使用虛擬天空感測器3512
或多個虛擬天空感測器來代管具有來自所複製地點組態上之多個預測模組的所預報/所計算感測器值的資料集,從而能夠評估預測模組之效能。In another embodiment, the
返回圖 35
,系統3500
包括主控制器3550
,該主控制器具有:資料提取器應用程式3552
;現場資料庫3554
,其與資料提取器應用程式3552
通信以將資料插入至現場資料庫3554
中;控制邏輯3556
,其具有與現場資料庫3554
通信之預測模型以接收感測器資料且發送保存至現場資料庫3554
之預測。現場資料庫3554
可包括本端感測器資料庫、天氣饋入資料庫、預測資料庫及Q/A測試案例資料庫中之一或多者。資料提取器應用程式3552
與虛擬天空感測器3512
通信以將對資料之請求發送至虛擬天空感測器3512
且接收資料。資料提取器應用程式3552
與資料源3520
通信以自諸如環形感測器之本端感測器接收本端感測器資料,或經由第三方API自諸如天氣饋入資料之遠端資料源接收遠端感測器資料。控制邏輯3556
包括產生諸如所預報感測器資料及/或所預報天氣條件之預測的深度神經網路(DNN)3558
。控制邏輯3556
與現場資料庫3554
通信以接收感測器資料且將由DNN3558
判定之預測插入至現場資料庫3554
中。Returning to FIG. 35 , the
系統3500
包括:第一網路控制器3562
,其與控制裝置(例如,可著色窗)之第一分區(「分區1」)的複數(三)個分葉/終端控制器通信;及第二網路控制器3564
,其與控制裝置之第二分區(「分區2」)的複數(五)個分葉/終端控制器通信。在其他實施方案中,可使用更少或更多網路控制器、分區及分葉/終端控制器。The
在此實施方案中,DNN3558
獲取自資料源3520
之實體天空感測器傳達的實時感測器資料,執行預測且將預測傳遞至VSS3512
。資料提取器3552
向VSS3512
請求資料,且資料提取器3552
將來自一個複製地點組態之DNN3558
的預測插入至現場資料庫3554
中。資料提取器3552
自資料源3220接收感測器資料,且將用於另一複製地點組態之資料插入至現場資料庫3554
中。控制邏輯分別使用用於複製地點組態之資料以判定不同的控制位準集合。控制邏輯3456
比較相關聯於來自預測模型之資料的控制位準與相關聯於來自資料源3220
之實際感測器資料的控制位準。將資料比較結果傳遞迴至地點管理控制台3410
以供使用者檢視。視情況(由虛線表示),可將至少部分地基於此等控制位準集合中之一者的控制指令傳達至第一網路控制器3562
以控制裝置之分區1且傳達至第二網路控制器3564
以控制裝置之分區2。In this implementation,
圖 36 說明根據一態樣的由實體環形感測器偵測之感測器讀數、由DNN判定之所預報及/或所預測感測器值及由控制邏輯使用由DNN判定之所預報及/或所預測感測器值而判定之色調位準的曲線圖。此為A/B評估之結果的實例。 36 illustrates sensor readings detected by a physical ring sensor, predicted and/or predicted sensor values determined by DNN, and use of predicted and/or predicted sensor values determined by DNN by control logic, according to one aspect Or a graph of the hue level determined by the predicted sensor value. This is an example of the results of an A/B evaluation.
某些態樣係關於使用表示相異天氣條件之訓練資料建置專門預測模型及/或在出現代表性天氣條件時選擇特定的專門預測模型以供即時(實時)部署。可按「受監督」及/或「無監督」方式建置此等專門天氣模型。在以「無監督」方式建置專門天氣模型之實施方案中,機器學習程序可用以將類似的日長輻射剖面叢集化成在定量上不同的天氣類型。在以「受監督」方式建置專門天氣模型之實施方案中,可例如藉由利用可經由第三方API獲得之資料來在已存在定量分類之資料上訓練專門預測模型。現有分類及/或條件之一些實例包含晴天條件或「晴天」、部分多雲條件或「部分多雲」、霧天條件或「霧天」、雨條件或「雨天」、冰雹條件或「冰雹」、暴風雨條件或「暴風雨」,或煙霧條件或「煙霧」。可最佳化此等專門模型在此等天氣條件下之效能。可在已滿足或已例如在來自第三方API之天氣饋入中預報對應條件(例如,如由感測器感測)之數日內部署專門預測模型以供實時預測。此等專門預測模型可受益於至少一個(例如,每一)條件之型樣特性的專門課程學習。Certain aspects relate to building specialized forecasting models using training data representing distinct weather conditions and/or selecting specific specialized forecasting models for immediate (real-time) deployment when representative weather conditions occur. These specialized weather models can be constructed in a "supervised" and/or "unsupervised" manner. In embodiments where specialized weather models are built in an "unsupervised" fashion, machine learning programs can be used to cluster similar day-length radiation profiles into quantitatively distinct weather types. In implementations where ad hoc weather models are built in a "supervised" fashion, ad hoc prediction models can be trained on data for which quantitative classifications already exist, for example by utilizing data available through third-party APIs. Some examples of existing classifications and/or conditions include sunny conditions or "sunny", partly cloudy conditions or "partly cloudy", foggy conditions or "fog", rain conditions or "rain", hail conditions or "hail", storms Conditions or "storms", or smog conditions or "smokes". The performance of these specialized models can be optimized for these weather conditions. Specialized forecasting models may be deployed for real-time forecasting within days when the corresponding conditions have been met or forecasted (eg, as sensed by sensors), eg, in weather feeds from third-party APIs. Such specialized predictive models may benefit from specialized curriculum learning of the pattern properties of at least one (eg, each) condition.
在某些實施方案中,以「無監督」方式建置專門天氣模型。機器學習程序可用以將類似日長輻射剖面叢集化成在定量上相異的天氣類型。可使用之無監督分類器模組的實例為圖 25 中所展示之模組E。在此狀況下,無監督叢集化方法用以自資料識別不同天氣剖面,且針對不同種類之天氣而訓練模型且部署該等模型。舉例而言,可使用以「無監督」方式建置專門天氣模型,例如當無法自第三方API存取天氣饋入資料時。相比一些受監督方法,開發供學習之天氣類型之課程的一些無監督方法可能在計算上更昂貴且資料更密集,此係因為此等無監督方法:(1)表示相異類別經識別之條件範圍的較長歷史;及(2)主題專家判定所進行的定量區別是否在定性上有效之工作。可按各種組合使用之無監督叢集化演算法的實例包括:k均值叢集化、隱式馬爾可夫(Hidden Markov)模型、PCA、t-分佈隨機鄰域嵌入(t-SNE)及其類似者。In some implementations, specialized weather models are built in an "unsupervised" fashion. Machine learning programs can be used to cluster similar day-length radiation profiles into quantitatively distinct weather types. An example of an unsupervised classifier module that can be used is module E shown in FIG. 25 . In this case, unsupervised clustering methods are used to identify different weather profiles from the data, and to train and deploy models for different kinds of weather. For example, building specialized weather models in an "unsupervised" manner can be used, such as when weather feed data cannot be accessed from a third-party API. Some unsupervised methods to develop a curriculum of weather types for learning may be computationally more expensive and more data-intensive than some supervised methods because such unsupervised methods: (1) represent distinct classes of identified The longer history of the condition range; and (2) the work of subject matter experts to determine whether the quantitative distinctions made are qualitatively valid. Examples of unsupervised clustering algorithms that can be used in various combinations include: k-means clustering, Hidden Markov models, PCA, t-distributed Stochastic Neighbor Embedding (t-SNE), and the like .
在某些實施方案中,以「受監督」方式建置專門天氣模型。舉例而言,可使用以「受監督」方式建置專門天氣模型,其中可自一或多個第三方API存取天氣饋入資料且將資料留存於資料庫上。在此狀況下,藉由利用可經由第三方API獲得之資料在已存在定性分類之資料上訓練專門預測模型。可在與天氣條件相關聯之資料上訓練模型,且接著可在預報天氣條件時部署針對特定天氣條件訓練之專門模型。在某些情況下,利用第三方APl來監督在預先標記之訓練資料上訓練針對效能而最佳化的模型,此可消除(1)「冷啟動」問題(例如,可用資料不足)及/或(2)在模型策展(curation)期間對人工干預之需要。可按各種組合使用之受監督模型的實例包括:多層感知器、決策樹、回歸(例如,邏輯回歸、線性回歸及其類似者)、SVM、樸素貝葉斯及其類似者。在某些實施方案中,無監督叢集化可與以「受監督」方式建置之專門天氣模型組合。在一個實例中,叢集化演算法可用來減小用以訓練受監督模型之訓練集的特徵空間之維度,以便減小受監督模型之方差。In some embodiments, specialized weather models are built in a "supervised" fashion. For example, a "supervised" approach to building specialized weather models can be used, where weather feed data can be accessed from one or more third-party APIs and persisted on a database. In this case, specialized predictive models are trained on data for which qualitative classifications already exist by utilizing data available through third-party APIs. Models can be trained on data associated with weather conditions, and then specialized models trained for specific weather conditions can be deployed when weather conditions are forecast. In some cases, utilizing a third-party AP1 to supervise training a model optimized for performance on pre-labeled training data can eliminate (1) "cold-start" problems (eg, insufficient data available) and/or (2) The need for human intervention during model curation. Examples of supervised models that can be used in various combinations include: multilayer perceptrons, decision trees, regression (eg, logistic regression, linear regression, and the like), SVM, Naive Bayes, and the like. In some implementations, unsupervised clustering can be combined with specialized weather models built in a "supervised" fashion. In one example, a clustering algorithm may be used to reduce the dimension of the feature space of the training set used to train the supervised model in order to reduce the variance of the supervised model.
根據某些態樣,控制邏輯可使用留存於資料庫中之歷史感測器資料及隨時間自第三方API接收到之天氣預報以受監督方式產生訓練資料。舉例而言,可在增量時間段內(例如,在一日內、在一小時內、在一分鐘內等)接收天氣預報。系統可根據此等時間段劃分儲存至資料庫之歷史感測器資料,且用在來自第三方API之天氣饋入中提供的彼時間段之對應天氣條件對感測器資料進行標記(編索引)。用天氣條件標記之感測器資料可用作用於專門預測模型之訓練資料。According to some aspects, the control logic may generate training data in a supervised manner using historical sensor data retained in a database and weather forecasts received from third-party APIs over time. For example, weather forecasts may be received in incremental time periods (eg, within a day, within an hour, within a minute, etc.). The system can divide historical sensor data stored into the database according to these time periods, and tag the sensor data with the corresponding weather conditions for that time period provided in the weather feed from the third-party API (indexed). ). Sensor data tagged with weather conditions can be used as training data for specialized prediction models.
作為一實例,控制邏輯可將一小時之時間段內的來自實體天空感測器(例如,環形感測器,諸如屋頂單元,具有紅外線感測器及光感測器)之歷史感測器資料(每分鐘一個讀數)儲存至資料庫。在此小時期間,可在來自第三方API之天氣饋入中接收「晴天」天氣條件。在此實例中,控制邏輯將具有在彼小時期間獲取之讀數的每一感測器資料標記為「晴天」。控制邏輯可產生訓練資料,該訓練資料可用以利用感測器資料針對「晴天」天氣條件訓練專門天氣模型,該感測器資料標記有「晴天」(或用「晴天」識別之標記),包括在彼小時期間獲取之所標記資料。控制邏輯可產生其他訓練資料集,該等資料集供用於使用資料庫中已用其他對應天氣條件標記之感測器資料針對諸如「雨天」、「暴風雨」之其他天氣條件訓練其他專門天氣模型。As an example, the control logic may store historical sensor data from a physical sky sensor (eg, a ring sensor, such as a rooftop unit, with an infrared sensor and a light sensor) over a period of one hour (one reading per minute) is stored in the database. During this hour, "sunny" weather conditions can be received in weather feeds from third-party APIs. In this example, the control logic marks each sensor data with readings taken during that hour as "sunny." The control logic can generate training data that can be used to train specialized weather models for "sunny" weather conditions using sensor data labeled "sunny" (or identified by "sunny"), including Marked data obtained during that hour. The control logic may generate other training data sets for training other specialized weather models for other weather conditions such as "rainy", "stormy" using sensor data already tagged with other corresponding weather conditions in the database.
在一個實施例中,以受監督及無監督方式中之每一者建置用於特定天氣條件之至少兩個專門預測模型,例如以比較結果及/或驗證待可用於部署之一個或兩個模型。In one embodiment, at least two specialized prediction models for particular weather conditions are built in each of a supervised and unsupervised manner, eg, to compare results and/or verify one or both to be available for deployment Model.
在某些實施方案中,使用諸如本文中所描述之實時模型選擇構架即時部署經預先訓練之專門預測模型。舉例而言,若第三方API預報第二日之天氣條件混合,則預測模組之實時模型選擇構架可用以在由預報指定之時間索引處部署對應的經預先訓練之專門天氣模型。圖 27A
呈現說明動態模型選擇方法之流程圖的實例,該方法可用以判定經預先訓練之專門預測模型以供部署及何時部署。舉例而言,流程圖之操作2907
可進一步包括在由來自第三方API之天氣饋入中之預報指定的索引處選擇專門預測模型。可在由預報指定之時間索引處部署選定的經預先訓練之專門天氣模型。In certain implementations, pre-trained specialized predictive models are deployed on-the-fly using a real-time model selection framework such as described herein. For example, if a third-party API forecasts mixed weather conditions for the next day, the real-time model selection framework of the forecast module can be used to deploy the corresponding pre-trained specialized weather model at the time index specified by the forecast. 27A presents an example of a flow diagram illustrating a dynamic model selection method that can be used to determine pre-trained specialized predictive models for deployment and when to deploy. For example,
在某些實施方案中,使用實時模型選擇構架(例如,圖 27A 中之方法)至少部分地基於監督部署架構而部署經預先訓練之專門預測模型,以部署已以監督方式建置之專門預測模型。不同於實時模型選擇之一些無監督方法,監督部署架構可減少(例如,避免)在例如執行階段識別在定量上相異之感測器輻射型樣之出現中所涉及的額外計算費用及/或時間。使用受監督方法會利用第三方資訊來驅動天氣條件範圍之課程開發,對於該等天氣條件,可學習、轉移及/或高效地部署相異預測模型。In certain implementations, a pre-trained specialized predictive model is deployed using a real-time model selection framework (eg, the method in FIG. 27A ) based at least in part on a supervised deployment framework to deploy specialized predictive models that have been supervised . Unlike some unsupervised methods of real-time model selection, a supervised deployment architecture may reduce (eg, avoid) the additional computational overhead and/or involved in identifying the occurrence of quantitatively distinct sensor radiation patterns, eg, at the execution stage time. Using a supervised approach leverages third-party information to drive curriculum development for the range of weather conditions for which dissimilar prediction models can be learned, transferred, and/or efficiently deployed.
在一個實施例中,以受監督及無監督方式兩者建置專門預測模型。模型選擇構架可用以識別(例如,預先)待部署此等專門預測模型中之哪一者。選擇可涉及使用例如效能量度來判定是否使用以受監督方式建置之專門預測模型及/或以無監督方式建置之專門預測模型。以無監督方式訓練之模型的優點為允許資料(例如,唯一的超本端天氣條件)自身定義最適當的「天氣類型」。以受監督方式訓練之模型的優點可為節省在使由第三方API提供之彼等「天氣類型」作為現成標記中所涉及的運算費用。在無監督模型之狀況下,定量量度將判定天氣條件改變何時保證不同模型之部署(例如,每30分鐘將經預先訓練之時間數列分類器應用於感測器資料之滾動窗一次,從而量化自天氣條件之30分鐘原型範本至當前觀測到之範本的感測器值之間的「距離」(歐幾里德、餘弦、動態時間扭曲及/或其類似者)。部署對應於其分類之模型)。在受監督模型之狀況下,吾人可依賴於第3方預報之準確性以判定何時部署不同模型。In one embodiment, specialized predictive models are built in both supervised and unsupervised ways. A model selection framework can be used to identify (eg, in advance) which of these specialized predictive models to deploy. Selection may involve using, for example, an efficacy measure to determine whether to use a supervised-built specialized predictive model and/or an unsupervised built specialized predictive model. The advantage of unsupervised training of a model is that it allows the data (e.g. unique hyperlocal weather conditions) to define the most appropriate "weather type" by itself. The advantage of a supervised model is to save the computational cost involved in having those "weather types" provided by third-party APIs as out-of-the-box tags. In the case of an unsupervised model, a quantitative measure will determine when weather conditions change to warrant deployment of different models (eg, applying a pretrained time series classifier to a rolling window of sensor data every 30 minutes to quantify self- The "distance" (Euclidean, Cosine, Dynamic Time Warp, and/or the like) between the 30-minute prototype template of weather conditions and the sensor values of the currently observed template. Deploy the model corresponding to its classification ). In the case of supervised models, we can rely on the accuracy of 3rd party forecasts to decide when to deploy different models.
當已累積可與對應天氣標記(例如,由第三方API提供)配對之歷史資料的最小數目個日長資料訊框(例如,7日)時,可初始化專門預測模型。在一些狀況下,歷史資料可儲存於諸如雲端儲存器之場外儲存器中,及/或留存於現場資料庫上(例如,持續特定時長(例如,10日))。若場外儲存器中不可獲得最少量的歷史資料,則可延長在現場資料庫上之留存(例如,延長30日)以支援某些情況下之初始化。When a minimum number of day-length data frames (eg, 7 days) of historical data that can be paired with corresponding weather markers (eg, provided by a third-party API) have been accumulated, a specialized prediction model may be initialized. In some cases, historical data may be stored in off-site storage, such as cloud storage, and/or persisted on an on-site database (eg, for a specified period of time (eg, 10 days)). If the minimum amount of historical data is not available in off-site storage, the retention on the on-site database may be extended (eg, by 30 days) to support initialization in some cases.
在一些實施例中,使用自藉由至少一個(例如,每一)地點處之實體(例如,天空)感測器獲取之感測器輸入及/或自對應於地點之實體部位之天氣饋入資料導出的訓練資料針對該地點而初始化專門預測模型。在某些狀況下,可使用來自另一地點(附近地點)處之實體(例如,天空)感測器的感測器輸入及適用於另一(例如,附近)地點之天氣饋入資料來初始化其他地點(諸如,緊密接近之彼等地點)處之專門預測模型。來自另一(例如,附近)地點之感測器輸入及/或天氣饋入資料可擴增用於其他地點處之至少一個(例如,每一)類別的訓練資料佇列。針對另一(例如,附近)地點而初始化之專門預測模型可用作針對不同地點(例如,針對具有空感測器資料佇列之新調試地點)的經預先訓練之模型。經初始化之專門模型可針對至少一個(例如,每一)天氣條件而建立類別範本,在該等天氣條件下,隨著額外數日展現自身的天氣條件,(例如,每夜)轉移學習程序得到改善該轉移可在地點之低佔用時段期間進行(例如,如本文中所揭示)。In some embodiments, sensor inputs obtained from physical (eg, sky) sensors at at least one (eg, each) location and/or weather feeds from physical parts corresponding to locations are used The data-derived training data initializes a specialized prediction model for that location. In some cases, sensor input from a physical (eg, sky) sensor at another location (eg, a nearby location) and weather feed data applicable to another (eg, nearby) location may be used to initialize Specialized predictive models at other locations, such as those in close proximity. Sensor input and/or weather feed data from another (eg, nearby) location can augment the queue of training data for at least one (eg, each) category at the other location. A specialized prediction model initialized for another (eg, nearby) location can be used as a pretrained model for a different location (eg, for a new debug location with an empty sensor data queue). An initialized ad hoc model can create a class template for at least one (eg, each) weather condition under which the (eg, nightly) transfer learning procedure yields as additional days reveal its own weather conditions. Improving the transfer can occur during low occupancy periods of the location (eg, as disclosed herein).
可定期(例如,每日或在某一其他定期基礎上(例如,介於每1日與每10日之間))重新訓練專門預測模型。在某些實施例中,在不執行實時模型之時間(例如,在低佔用地點時段期間,諸如在夜間某個時間,諸如在午夜),可重新訓練專門預測模型。可在自最後一次訓練起已更新之資料(感測器資料及/或天氣饋入資料)上重新訓練模型。為了自第三方API接收天氣饋入資料,可在訓練開始時(例如,在午夜)及在預測結束時(例如,在日落時)向第三方API提出請求。可將天氣饋入資料附加至用於其天氣類別之對應訓練佇列的最近日長資料訊框。天氣饋入資料可用以識別適當的專門天氣模型以供部署,例如在第二日的實時預測期間。The specialized predictive model may be retrained periodically (eg, daily or on some other periodic basis (eg, between every 1 and every 10 days)). In certain embodiments, the ad hoc predictive model may be retrained at times when the real-time model is not being executed (eg, during periods of low occupancy, such as sometime during the night, such as at midnight). The model can be retrained on data (sensor data and/or weather feed data) that has been updated since the last training. To receive weather feeds from a third-party API, requests can be made to the third-party API at the start of training (eg, at midnight) and at the end of predictions (eg, at sunset). Weather feed data can be attached to the Recent Day Length data frame for the corresponding training queue for its weather category. Weather feeds can be used to identify appropriate specialized weather models for deployment, such as during the next day's real-time forecast.
在一些實施例中,網路操作性地(例如,通信地)耦接至至少一個預報(例如,預測)模組(例如,諸如本文中所揭示之外部條件預報)。預報模組可處理來自(例如,階層式控制系統之)一或多個控制器的資料(或指導處理資料)。預報模組可預測(或指導預測)光感測器、紅外線(IR)及/或溫度感測器資料。光感測器可組態以感測普通人敏感之一或多個波長(例如,可見光譜中之一或多個波長)。光感測器可組態以感測紅外線及/或紫外線輻射。預測模組可用以預測及/或加速可著色窗之色調轉變,例如藉由加速著色命令(例如,使可著色窗變暗及/或變亮)。預測模組可利用應用於感測器資料之統計後處理。感測器資料可屬於本文中所揭示之任一感測器(例如,天空感測器)。感測器可為虛擬感測器(例如,虛擬天空感測器)。感測器可為組合感測器。組合感測器之實例可見於2017年3月24日申請之標題為「組合感測器系統(COMBI-SENSOR SYSTEMS)」的美國專利申請案第15/514,480號(現為在2020年1月21日發佈的美國專利第10,539,456號)中,該申請案以全文引用之方式併入本文中。虛擬感測器可使用缺乏感測器之至少一個部位的一或多個鄰近感測器之量測值來預測該部位中之一或多個特性,該一或多個鄰近感測器感測一或多個性質。虛擬感測器可實施於(例如,非暫時性)電腦可讀媒體中。虛擬感測器可包含預測缺乏感測器之一或多個部位中之感測器讀數的邏輯。預報模組可包含預報感測器之一或多個所感測性質的邏輯。預報模組可減小處理感測器資料及形成預測中之偏差及/或差異。In some embodiments, the network is operatively (eg, communicatively) coupled to at least one forecast (eg, forecast) module (eg, external condition forecasts such as disclosed herein). The forecasting module may process data (or direct processing data) from one or more controllers (eg, of a hierarchical control system). The forecasting module can predict (or guide forecasting) light sensor, infrared (IR) and/or temperature sensor data. The light sensor can be configured to sense one or more wavelengths (eg, one or more wavelengths in the visible spectrum) that the average person is sensitive to. The light sensor can be configured to sense infrared and/or ultraviolet radiation. The prediction module may be used to predict and/or accelerate the hue transition of the tintable window, such as by accelerating shading commands (eg, darkening and/or lightening the tintable window). The prediction module may utilize statistical post-processing applied to the sensor data. The sensor data may belong to any sensor disclosed herein (eg, a sky sensor). The sensor may be a virtual sensor (eg, a virtual sky sensor). The sensor may be a combined sensor. An example of a combined sensor can be found in US Patent Application Serial No. 15/514,480, filed March 24, 2017, entitled "COMBI-SENSOR SYSTEMS" (now filed on January 21, 2020) U.S. Patent No. 10,539,456 issued today), which application is incorporated herein by reference in its entirety. The virtual sensor may use measurements from one or more adjacent sensors for at least one portion of the lacking sensor to predict one or more characteristics in that portion, the one or more adjacent sensors sensing one or more properties. A virtual sensor may be implemented in a (eg, non-transitory) computer-readable medium. The virtual sensor may include logic to predict the absence of sensor readings in one or more locations of the sensor. The forecast module may include logic to forecast one or more properties sensed by the sensors. The forecasting module may reduce bias and/or variance in processing sensor data and forming forecasts.
在一些實施例中,本文中所揭示之模組的預測係(1)使用來自(例如,天空)感測器之輸入及/或天氣預報(例如,第3方天氣API)產生,且(2)儲存於資料庫(例如,在主控制器上)上。在一些實施例中,本文中所揭示之模組在應用程式之至少一部分(例如,整個)生命週期內提供自動化模型控管,例如以增加轉移學習成功地繼續及/或使得模組能夠適應隨時間改變之天氣條件的機率。在一些實施例中,包含模組之(例如,自主)學習系統受益於關於準則之至少最少指導,該等準則包含(1)學習系統學習何內容;2)學習系統如何學習;及3)學習系統正在學習。In some embodiments, predictions for the modules disclosed herein are (1) generated using input from (eg, sky) sensors and/or weather forecasts (eg, 3rd party weather APIs), and (2) ) is stored on the database (for example, on the main controller). In some embodiments, the modules disclosed herein provide automated model governance over at least a portion (eg, the entire) life cycle of an application, eg, to increase transfer learning to successfully continue and/or to enable the module to adapt to subsequent Probability of time-altered weather conditions. In some embodiments, a (eg, autonomous) learning system that includes modules benefits from at least minimal guidance on criteria including (1) what the learning system learns; 2) how the learning system learns; and 3) learning The system is learning.
在一些實施例中,學習系統(例如,包含VSS)學習例如最小化預測誤差之人工智慧(例如,神經網路)模型參數。在一些實施例中,學習系統至少部分地藉由使用超參數來執行其學習。可調諧之實例超參數包括:隱藏層之數目、指示在每個時期期間移除以防止過度擬合之神經元的百分比之丟失率、選定激發函數、權重初始化或其任何組合。超參數學習至少部分地判定學習系統如何達到其最佳模型參數化,例如學習系統達到彼最佳所採用的路徑。在一些實施例中,學習系統正學習之內容係關於由學習系統(例如,包含本文中所揭示之模組)提供之模型控管功能性。在一些實施例中,為了提供此功能性,學習系統解譯在預測後處理期間加旗標之潛在模型偏差事件。In some embodiments, a learning system (eg, including a VSS) learns, eg, artificial intelligence (eg, neural network) model parameters that minimize prediction error. In some embodiments, the learning system performs its learning at least in part by using hyperparameters. Example hyperparameters that can be tuned include: number of hidden layers, dropout rate indicating the percentage of neurons removed during each epoch to prevent overfitting, selected firing function, weight initialization, or any combination thereof. Hyperparameter learning determines, at least in part, how the learning system achieves its optimal model parameterization, eg, the path the learning system takes to achieve that optimal. In some embodiments, what the learning system is learning relates to model management functionality provided by the learning system (eg, including the modules disclosed herein). In some embodiments, to provide this functionality, the learning system interprets potential model bias events that are flagged during prediction post-processing.
在一些實施例中,模型偏差至少在(1)訓練因平台失敗而中斷及/或(2)執行訓練之操作由使用者(例如,錯誤地及/或無意地)移除時出現。此失敗可影響學習系統之訓練及/或重新訓練。學習可在對地點(例如,如本文中所揭示)之低佔用時段期間執行,諸如在夜間。使用者可能正在遠端服務控制系統之一部分。控制系統部分可為資料庫及/或模組駐存及/或操作之處(例如,在主控制器處)。訓練及/或重新訓練之失敗可影響模型品質,且可引入偏差,例如此係因為(例如,每夜)訓練會隨著天氣條件改變而使學習系統保持最新。In some embodiments, model bias occurs at least when (1) training is interrupted by a platform failure and/or (2) the operation to perform the training is removed by the user (eg, by mistake and/or inadvertently). This failure can affect the training and/or retraining of the learning system. Learning may be performed during periods of low occupancy for a location (eg, as disclosed herein), such as at night. The user may be remotely serving part of the control system. The control system portion may be where the database and/or modules reside and/or operate (eg, at the main controller). Failure to train and/or retrain can affect model quality and can introduce bias, for example because (eg, nightly) training keeps the learning system up to date as weather conditions change.
可在後處理期間量化(例如,即時)模型偏差。偏差偵測可按若干方式發生,例如藉由比較所預測值與最終出現之值(例如,如由真實實體感測器感測)。模型偏差可為在時間t預測(例如,在時間t之前由諸如VSS之模型化系統預測)之感測器值與由真實實體感測器在時間t實際感測(一旦彼時間到達)之值之間的差異。在一些實施例中,健康監測器(包含VSS)針對每一時間增量(例如,分鐘)而預測光感測器及/或IR感測器值,以加速用於可著色窗之著色命令。VSS可至少部分地基於用以控制地點處之一或多個系統(例如,窗控制系統)的資料而預報感測器資料。健康監測器在本文中可被稱作「Foresight健康監測器」或「Foresight」。Model bias can be quantified (eg, on-the-fly) during post-processing. Deviation detection can occur in several ways, such as by comparing a predicted value with a value that eventually occurs (eg, as sensed by a real-world sensor). The model deviation can be the sensor value predicted at time t (eg, predicted by a modeled system such as VSS before time t) and the value actually sensed by the real entity sensor at time t (once that time arrives) difference between. In some embodiments, the health monitor (including the VSS) predicts light sensor and/or IR sensor values for each time increment (eg, minute) to speed up shading commands for shading windows. The VSS may predict sensor data based at least in part on data used to control one or more systems (eg, window control systems) at the site. The health monitor may be referred to herein as a "Foresight Health Monitor" or "Foresight".
在一些實施例中,一旦所預報值與實際量測值之間存在超過臨限值之差,便會發現模型偏差。模型偏差可藉由追蹤以下兩者之間的差異來量化:(i)學習系統之預測(例如,使用VSS);及(i)預設滾動量測感測器值(例如,由諸如實體天空感測器集合之實體感測器量測)。實體感測器值經饋入至網路中且由控制系統利用以例如更改可著色窗之色調。滾動實體感測器量測值可在諸如每約t(例如,約10分鐘)時間段之時間段(例如,本文中所揭示之任何時間段)內滾動。複數個連續感測器值可由一個感測器值表示,該感測器值為複數個連續感測器值之平均值/均值/中值。舉例而言,在一段時間(例如,10分鐘)期間獲取之感測器值可用於此平均值/均值/中值計算。感測器可包含光感測器或IR感測器(或本文中所揭示之任何其他感測器)。In some embodiments, model deviations are found once there is a difference between the predicted value and the actual measured value that exceeds a threshold value. Model bias can be quantified by tracking the difference between: (i) the predictions of the learning system (eg, using VSS); and (i) preset roll-metric sensor values (eg, determined by a system such as a solid sky) physical sensor measurements of the sensor set). The physical sensor values are fed into the network and utilized by the control system to, for example, change the hue of the tintable window. The rolling physical sensor measurements may be rolled over a time period (eg, any of the time periods disclosed herein), such as every about t (eg, about 10 minutes) time period. A plurality of consecutive sensor values may be represented by a single sensor value that is the mean/average/median value of the plurality of consecutive sensor values. For example, sensor values acquired over a period of time (eg, 10 minutes) can be used for this mean/mean/median calculation. The sensor may include a light sensor or an IR sensor (or any other sensor disclosed herein).
在一些實施例中,在時間「t」期間藉由學習系統預測之感測器值與實體感測器值之間的差(例如,差量、偏移)大於臨限值(例如,藉由偏差控制自動地及/或藉由使用者手動地設定),從而形成不健康之第一偏差。臨限值可包含值或函數。函數可為時間及/或空間相依的。函數可取決於感測器類型。學習系統(例如,經由其資料庫,諸如日誌檔案)可促進將在「t」之所預測值識別(例如,加旗標)為潛在模型偏差事件(例如,使用其產生之虛擬感測器資料的任何時戳)。學習系統(例如,健康監測器模組)可追蹤與在時間「t」之所識別偏差的任何連續偏差(例如,在與臨限值比較及發現其為健康/不健康偏差之前或之後)。若偏差之連續時間大於連續時間臨限值且若偏差大於偏差臨限值(例如,將其加旗標為「不健康」偏差),則健康監測器可記錄及/或通知不健康偏差(例如,以起始補救)。In some embodiments, the difference (eg, delta, offset) between the sensor value predicted by the learning system and the physical sensor value during time "t" is greater than a threshold value (eg, by The deviation control is automatically and/or manually set by the user), resulting in an unhealthy first deviation. Threshold values can contain values or functions. Functions may be time and/or space dependent. The function may depend on the sensor type. The learning system (eg, via its database, such as a log file) may facilitate identifying (eg, flagging) the predicted value at "t" as a potential model bias event (eg, using the virtual sensor data it generates) any timestamp). A learning system (eg, a health monitor module) can track any continuous deviations from the identified deviations at time "t" (eg, before or after comparing to a threshold value and finding it to be a healthy/unhealthy deviation). If the duration of the deviation is greater than the duration threshold and if the deviation is greater than the deviation threshold (eg, flag it as an "unhealthy" deviation), the health monitor may log and/or notify the unhealthy deviation (eg, with initial remedy).
在一些實施例中,學習系統在地點中之低佔用時段期間(例如,每夜)操作。學習系統可針對此類分鐘級偏差事件而分析(例如,剖析)VSS資料(例如,體現於日誌檔案中)。當任何此事件在長時間段(例如,長於「t」,例如t為10分鐘,且較長時間段為一小時)內發生時,健康監測器模組可偵測會發生偏差事件之時間範圍。偏差模組可記錄或以其他方式指示學習系統中之偏差事件的「不健康」狀態。舉例而言,偏差模組可在(例如,專用)資料庫上更新(例如,在表中)「不健康」偏差事件。資料庫可屬於控制系統(例如,主控制器)。資料庫可儲存於佔用及/或操作偏差模組之處理器中。資料庫可儲存於不佔用及/或操作偏差模組之處理器中。偏差模組平台可(例如,自動地)警示及/或報告「不健康」狀態,例如使得其可被快速解決。可向地點管理者、服務小組、擁有者、使用者及/或其類似者報告。偏差模組可為健康監測器模組之部分,且操作性地(例如,通信地)耦接至健康監測器模組(例如,且聯合地操作)。In some embodiments, the learning system operates during low occupancy periods in the location (eg, nightly). The learning system may analyze (eg, dissect) VSS data (eg, embodied in log files) for such minute-level deviation events. When any such event occurs over a long period of time (eg, longer than "t", eg, t is 10 minutes, and the longer period is one hour), the health monitor module can detect the time frame in which a deviation event will occur . The deviation module may record or otherwise indicate the "unhealthy" status of deviation events in the learning system. For example, a deviation module may update (eg, in a table) "unhealthy" deviation events on a (eg, dedicated) database. The database may belong to a control system (eg, a master controller). The database may be stored in the processor of the occupancy and/or operational deviation module. The database can be stored in a processor that does not occupy and/or operate the deviation module. The deviation module platform can (eg, automatically) alert and/or report an "unhealthy" state, eg, so that it can be quickly resolved. Reports may be made to site managers, service groups, owners, users and/or the like. The deviation module may be part of the health monitor module and is operatively (eg, communicatively) coupled to (eg, and operating in conjunction with) the health monitor module.
偏差模組可經組配而以即時方式(例如,在實時預測設定中之執行階段)或以非即時方式遞送及時(例如,分鐘級)控管。健康監測器可追蹤任何偏差事件之持續時間及/或持續性,例如定期(例如,每日)。追蹤偏差事件可為在健康監測器操作(例如,及其他模組操作)之至少一部分(例如,整個)生命週期內提供模組控管。模組控管可增加如下機率(例如,確保):轉移學習成功地繼續且學習系統適應隨時間改變之天氣條件。Deviation modules can be configured to deliver timely (eg, minute-level) control either in real-time (eg, at the execution stage in a real-time forecast setting) or non-real-time. The health monitor may track the duration and/or persistence of any deviation event, eg, periodically (eg, daily). Tracking deviation events may provide module control over at least a portion (eg, the entire) lifecycle of health monitor operations (eg, and other module operations). Modular governance can increase the chances (eg, ensure) that transfer learning continues successfully and that the learning system adapts to changing weather conditions over time.
在一些實施例中,在執行階段,偏差觸發器傳回由天氣預測模組(例如,VSS)在彼分鐘內預測之感測器值。隔離之偏差觸發器可反映天氣預測模組對例如快速改變天氣之緩慢回應。在時間跨度內持續偏差觸發器可干擾(例如,每夜)模型重新訓練。In some embodiments, during the execution phase, the deviation trigger returns the sensor value predicted by the weather prediction module (eg, VSS) within that minute. Isolated deviation triggers may reflect the slow response of the weather forecasting module to, for example, rapidly changing weather. Persistent bias triggers over a time span can interfere (e.g., nightly) with model retraining.
圖 37
展示描繪健康監測器及偏差模型之操作的流程圖3700
之實例。在區塊3701
中,處理感測器資料(例如,VSS感測器資料)。舉例而言,光感測器資料可具備光感測器識別符串,且IR感測器可具備IR識別符串。感測器資料可儲存於資料庫中(例如,作為日誌檔案)。分析可能需要提取所儲存資料。在區塊3702
中,例如藉由感測器類型識別感測器資料且視情況根據感測器類型及/或時間將感測器資料打包。舉例而言,識別光感測器與IR感測器資料及/或其各別時戳資訊。時戳資訊可包含感測器量測之開始及/或結束。在區塊3703
中,識別偏差資料(例如,藉由與預設感測器資料進行比較)。可將資料分裂成(例如,連續發生的)偏差事件。在區塊3704
中,將偏差資料與臨限值進行比較,且將其分類為「健康」或「不健康」。健康旗標可為二進位旗標(例如,對於「健康」為1,且對於「不健康」為0)。在區塊3705
及3706
中,分析偏差資料之時戳以找到持續超過時間窗(例如,持續超過1小時)之事件,例如找到對於持續超過時間臨限值之連續量測值為「不健康」的偏差資料。對於至少兩個資料類型(例如,光感測器及IR感測器),時間臨限值可為相同的。對於至少兩個資料類型(例如,光感測器及IR感測器),時間臨限值可為不同的。舉例而言,光感測器偏差之時間臨限值可為60分鐘,且IR感測器偏差之時間窗可為70分鐘。在區塊3707
中,利用(i)偏差相關資訊、(ii)健康旗標及(iii)相關聯時戳中之至少兩者來更新健康監測器資料庫(例如,表)。 37 shows an example of a
在一些實施例中,可量化(例如,在量化模組中)本文中所揭示之模組(例如,健康監測器模組)的一或多個益處。量化模組益處可促進色調決策之加速。舉例而言,量化可允許知曉日光及/或眩光保護之任何增益。舉例而言,藉由將某些模組與其他模組進行比較。舉例而言,將來自模組A、B、C及/或C1之資料(例如,關於基於色調之決策)與來自健康監測器及/或VSS模組之資料(例如,關於基於色調之決策)進行比較。健康監測器模組在本文中可被稱作「Foresight健康監測器」或「Foresight」。量化模組在本文中可被稱作「Foresight分析模組」。智慧模組可包括模組A、B、C、C1、D及/或D1,例如,如本文中所揭示。Foresight模組可包含學習模組、健康監測器模組及/或VSS模組,例如,如本文中所揭示。In some embodiments, one or more benefits of a module disclosed herein (eg, a health monitor module) can be quantified (eg, in a quantified module). Quantifying module benefits can facilitate accelerated tone decisions. For example, quantification may allow knowing any gain in sunlight and/or glare protection. For example, by comparing some modules to others. For example, combine data from modules A, B, C, and/or C1 (eg, regarding hue-based decisions) with data from health monitors and/or VSS modules (eg, regarding hue-based decisions) Compare. The health monitor module may be referred to herein as the "Foresight Health Monitor" or "Foresight". The quantification module may be referred to herein as the "Foresight Analysis Module". Smart modules may include modules A, B, C, C1, D, and/or D1, eg, as disclosed herein. Foresight modules may include learning modules, health monitor modules, and/or VSS modules, eg, as disclosed herein.
在一些實施例中,量化模組可藉由利用任一模組(包括其邏輯、變數、方法及/或臨限值)來量化提供至設施佔用者之額外眩光保護及/或額外日光的量。In some embodiments, the quantification module may quantify the amount of additional glare protection and/or additional daylight provided to facility occupants by utilizing either module, including its logic, variables, methods, and/or thresholds .
在一些實施例中,檢核模組經組態以(例如,可量化地)比較智慧模組色調命令與Foresight色調命令。可自智慧模組輸出直接獲取或可藉由量化模組重新產生智慧模組色調命令。舉例而言,量化模組可(I)使用智慧模組產生之色調命令或(II)藉由使用感測器資料(例如,如由智慧模組使用)、智慧模組分析方案及/或智慧模組臨限值來重新產生智慧模組色調命令。在一些實施例中,學習模組(例如,Foresight健康監測器)及/或量化模組經組態以進行一或多個操作(例如,方案或邏輯)。在一些實施例中,檢核模組可進行智慧模組(例如,智慧控制邏輯)之一或多個操作,例如以評估智慧色調命令(例如,藉由將彼等命令與各別Foresight命令進行比較)。In some embodiments, the verification module is configured to compare (eg, quantifiably) the smart module tint command with the Foresight tint command. It can be directly obtained from the output of the smart module or can be regenerated by the quantization module to the smart module tone command. For example, the quantization module may (I) use the hue command generated by the smart module or (II) by using sensor data (eg, as used by the smart module), the smart module analysis scheme and/or the smart module Mod threshold to regenerate smart mod tint commands. In some embodiments, learning modules (eg, Foresight health monitors) and/or quantification modules are configured to perform one or more operations (eg, protocols or logic). In some embodiments, the verification module may perform one or more operations of a smart module (eg, smart control logic), such as to evaluate smart tone commands (eg, by comparing them with respective Foresight commands) Compare).
圖 38
展示描繪量化模組操作之流程圖3800
的實例。在區塊3801
中,接收實體感測器資料(例如,直接自感測器或經由智慧模組)。在區塊3802
中,使用各別智慧模組中之邏輯(例如,包括任何臨限值)分析感測器資料,以輸出(3807
)第一色調命令(例如,接收第一時戳)。輸出3807
可直接來自智慧模組(未圖示)。在區塊3803
中,接收虛擬感測器資料(例如,直接自VSS或經由Foresight模組)。在區塊3804
中,使用各別Foresight模組中之邏輯(例如,包括任何臨限值)分析虛擬感測器資料,以輸出(3808
)第二色調命令(例如,接收第二時戳)。輸出3808
可直接來自智慧模組(未圖示)。在區塊3805
中,比較色調命令及/或時戳(例如,可定量地)以產生結果。在區塊3806
中,識別及/或輸出結果,例如當第一色調命令與第二色調命令之間存在變化(例如,包括時戳之變化)時。比較可對照臨限值(例如,時間臨限值、色調臨限值)。該變化可有助於對設施中之使用者的日光及/或眩光保護之增益。輸出可依據日光及/或眩光保護之增益。 38 shows an example of a
在一些實施例中,檢核模組使用(i)提供至智慧模組之原始資料及/或(ii)一或多個智慧模組之處理方案(例如,邏輯)來重新產生智慧模組之值。舉例而言,檢核模組可使用原始(例如,光感測器或IR)實體感測器資料(例如,尾部)及/或一或多個智慧模組之處理方案(例如,邏輯)來重新產生智慧模組之值。量化模組可利用由一或多個智慧模組(例如,智慧模組C/C1或D/D1)用於(例如,光感測器或IR)感測器量測分析之臨限值(例如,其參數),以重新產生各別智慧模組命令。可自Foresight輸出直接獲取或藉由量化模組重新產生Foresight模組色調命令。Foresight色調命令可利用虛擬的合成感測器資料(例如,VSS資料)及輸入以及用於產生色調命令之Foresight邏輯。In some embodiments, the verification module uses (i) the raw data provided to the smart module and/or (ii) the processing scheme (eg, logic) of one or more smart modules to regenerate the smart module's value. For example, the verification module may use raw (eg, light sensor or IR) physical sensor data (eg, tail) and/or processing schemes (eg, logic) of one or more smart modules to Regenerates the wisdom module value. The quantification module can utilize thresholds (eg, light sensors or IR) for sensor measurement analysis by one or more smart modules (eg, smart modules C/C1 or D/D1 ). For example, its parameters), to regenerate the respective intelligence module commands. The Foresight module tint command can be obtained directly from the Foresight output or regenerated by the quantization module. Foresight tint commands may utilize virtual composite sensor data (eg, VSS data) and inputs and Foresight logic for generating tint commands.
在一些實施例中,量化模組可利用感測器資料。舉例而言,量化模組可包含光感測器及/或IR感測器資料。量化模組可利用分區相關資料。分區可包含複數個窗,該複數個窗具有相同地理部位,安置於設施(例如,建築物)之同一樓層、同一立面上,具有相同房間類型(例如,會議室、辦公室或自助餐廳)或相同佔用程度(例如,經指派用於10個或少於10個佔用者、介於10個與100個佔用者之間以及100個及多於100個佔用者的房間)。佔用程度可為實際的(例如,使用佔用感測器或及ID標籤輸入)或預計的(例如,使用設施之預計日期及/或每小時排程)。量化模組可利用感測器值預測(例如,使用健康監測器模組、VSS模組及/或本文中所揭示之任何其他預測模組(例如,使用人工智慧))。量化模組可利用一或多個臨限量(例如,臨限值),例如由智慧模組或Foresight模組中之任一者利用。In some embodiments, the quantization module may utilize sensor data. For example, the quantization module may include light sensor and/or IR sensor data. The quantization module can utilize partition-related data. A partition may contain multiple windows with the same geographic location, placed on the same floor, on the same facade of a facility (eg, a building), with the same room type (eg, a meeting room, office, or cafeteria) or The same degree of occupancy (eg, assigned for rooms with 10 or less occupants, between 10 and 100 occupants, and 100 and more occupants). The level of occupancy can be actual (eg, entered using an occupancy sensor or and ID tag) or predicted (eg, estimated dates and/or hourly schedules for using the facility). The quantification module may utilize sensor value predictions (eg, using a health monitor module, a VSS module, and/or any other prediction module disclosed herein (eg, using artificial intelligence)). The quantification module may utilize one or more thresholds (eg, thresholds), such as utilized by either an intelligence module or a Foresight module.
在一些實施例中,量化模組執行分析(例如,包含一或多個計算)。分析可包含使用實體感測器資料(例如,使用光感測器及/或IR感測器值)計算用於智慧模組(例如,模組C(或C1)及模組D(或D1))中之一或多者的色調命令相關資料。可針對安置於分區中之窗(例如,在表中列出或以其他方式與分區相關聯)計算用於色調命令之資料。分析可包含導出用於指明時間範圍(例如,早晨及晚上或白天及夜晚)之感測器時間資訊(例如,經由感測器量測之時戳)。分析可包含至少部分地基於臨限值(例如,模組A、B、C、C1、D及/或D1之臨限參數(例如,一或多個臨限參數))將模組C值指派給非尾部資料區且將模組D(或D1)值指派給尾部資料區。智慧模組可包含模組A、B、C、C1、D及/或D1。分析可包含使用由真實實體感測器獲取之原始感測器資料(例如,光感測器量測值及/或IR量測值)重新產生一或多個智慧模組值。在一些實施例中,量化模組經組態以接收及/或獲取(例如,載入)原始感測器量測值(例如,自光感測器)。感測器資料可屬於複數個感測器(例如,至少2、4、6、8、10、12或13個感測器)。感測器資料可來自感測器集合中之感測器(例如,真實實體天空感測器)。可對來自複數個感測器之感測器值進行濾波。濾波可利用矩形波濾波。矩形波可包含短矩形波或長矩形波。濾波可包含高通或低通濾波器。分析可包含計算指派給複數個光感測器之均值/中值/平均值。複數個光感測器可安置於單列中(例如,安置於諸如圓形或橢圓形或其部分之曲線上)。複數個(例如,光)感測器中之至少一者可安置於設施(例如,建築物)之外部中,諸如安置於建築物之屋頂上或附接至建築物立面。濾波可包含對在時間範圍期間獲取之量測值進行濾波。時間範圍可為至少約5分鐘(min.)、10分鐘、15分鐘、20分鐘、40分鐘、60分鐘或80分鐘。時間範圍可為至多約2分鐘、分鐘、10分鐘、15分鐘、20分鐘、40分鐘、60分鐘或70分鐘。時間範圍可為本文中所揭示之任何時間範圍。以至多約每0.25分鐘、0.5分鐘、1分鐘、2.5分鐘、5分鐘或7.5分鐘之時間間隔(例如,頻率)量測感測器值。可按至多約每2.5分鐘、5分鐘、7.5分鐘、10分鐘、15分鐘、20分鐘、30分鐘之時間間隔(例如,頻率)發出色調命令。可按比感測器量測間隔(例如,感測器量測頻率)慢至少約2.5*、5*、7.5*或10*之間隔(例如,頻率)發出色調命令。符號「*」指明數學運算「乘」。In some embodiments, the quantification module performs analysis (eg, including one or more calculations). Analysis may include using physical sensor data (eg, using light sensor and/or IR sensor values) to calculate for smart modules (eg, module C (or C1 ) and module D (or D1 ) ) for one or more of the hue commands. The data for the tint command may be computed for windows placed in the partitions (eg, listed in a table or otherwise associated with the partitions). Analysis may include deriving sensor time information (eg, time stamps measured by the sensor) for a specified time range (eg, morning and night or day and night). Analyzing may include assigning module C values based at least in part on threshold values (eg, threshold parameters (eg, one or more threshold parameters) of modules A, B, C, C1, D, and/or D1 ) To the non-tail data area and assign the module D (or D1) value to the tail data area. Smart modules may include modules A, B, C, C1, D and/or D1. Analysis may include regenerating one or more smart module values using raw sensor data (eg, light sensor measurements and/or IR measurements) acquired by real physical sensors. In some embodiments, the quantization module is configured to receive and/or acquire (eg, load) raw sensor measurements (eg, from a light sensor). Sensor data may belong to a plurality of sensors (eg, at least 2, 4, 6, 8, 10, 12, or 13 sensors). The sensor data may come from a sensor in a sensor set (eg, a real-world sky sensor). Sensor values from a plurality of sensors may be filtered. Filtering can utilize rectangular wave filtering. Rectangular waves may include short rectangular waves or long rectangular waves. Filtering can include high-pass or low-pass filters. Analysis may include calculating mean/median/mean values assigned to the plurality of light sensors. A plurality of light sensors may be arranged in a single row (eg, arranged on a curve such as a circle or ellipse or portions thereof). At least one of the plurality of (eg, light) sensors may be placed in the exterior of a facility (eg, a building), such as on a roof of a building or attached to a building facade. Filtering may include filtering measurements taken during the time range. The time frame may be at least about 5 minutes (min.), 10 minutes, 15 minutes, 20 minutes, 40 minutes, 60 minutes, or 80 minutes. The time range may be up to about 2 minutes, minutes, 10 minutes, 15 minutes, 20 minutes, 40 minutes, 60 minutes, or 70 minutes. The time frame can be any of the time frames disclosed herein. Sensor values are measured at time intervals (eg, frequency) at most about every 0.25 minutes, 0.5 minutes, 1 minute, 2.5 minutes, 5 minutes, or 7.5 minutes. The tint command may be issued at intervals (eg, frequency) at most about every 2.5 minutes, 5 minutes, 7.5 minutes, 10 minutes, 15 minutes, 20 minutes, 30 minutes. Hue commands may be issued at intervals (eg, frequency) that are at least about 2.5*, 5*, 7.5*, or 10* slower than the sensor measurement interval (eg, sensor measurement frequency). The symbol "*" indicates the mathematical operation "multiplication".
在一些實施例中,量化模組區分色調轉變類型(例如,自亮至暗或自暗至亮;自較少著色至較多著色或自較多著色至較少著色)。在一些實施例中,量化模組分析色調轉變,例如自亮至暗(例如,自較少著色至較多著色)。模組C(及/或C1)可經組態以例如至少部分地(例如,僅)基於感測器量測值(例如,如本文中所揭示)而作出關於目標色調值之判定(例如,建議)的決策。可至少部分地基於(i)經濾波感測器資料(例如,經矩形波濾波之光感測器及IR感測器值)而產生(例如,計算)智慧模組(例如,模組C或C1)之色調決策。可將色調決策指派給日間時間範圍(可被稱作「非尾部」時間範圍)。早晨或晚上時間範圍可被稱作「尾部」時間範圍。In some embodiments, the quantization module distinguishes the type of hue transition (eg, from light to dark or dark to light; from less tinted to more tinted or from more tinted to less tinted). In some embodiments, the quantization module analyzes hue transitions, such as from light to dark (eg, from less tint to more tint). Module C (and/or C1 ) may be configured, for example, to make determinations about target hue values (eg, based at least in part (eg, only) on sensor measurements (eg, as disclosed herein) recommendations) decisions. Smart modules (eg, module C or C1) color tone decision. Hue decisions can be assigned to day timeframes (which may be referred to as "non-tail" timeframes). The morning or evening time range may be referred to as the "tail" time range.
在一些實施例中,檢核模組使用原始(例如,光感測器或IR)實體感測器資料(例如,在早晨或晚上時間範圍期間收集之「尾部」資料)及/或一或多個智慧模組之處理方案(例如,邏輯)來重新產生智慧模組之值。可將由一或多個智慧模組用於(例如,光感測器或IR)感測器量測分析之臨限值(例如,其參數)指派(例如,給智慧模組C/C1或D/D1)。In some embodiments, the inspection module uses raw (eg, light sensor or IR) physical sensor data (eg, "tail" data collected during morning or evening time frames) and/or one or more A smart module's processing scheme (eg, logic) to regenerate the smart module's value. Threshold values (eg, parameters thereof) for use by one or more smart modules for (eg, light sensor or IR) sensor measurement analysis can be assigned (eg, to smart modules C/C1 or D) /D1).
在一些實施例中,量化模組重新產生智慧模組處理方案。舉例而言,檢核模組可執行較低色調位準與較高(例如,較暗)色調位準之間(諸如,色調2與較暗色調4轉變之間)的中間色調(例如,色調3)命令,該色調命令係自模組C(或C1)輸出導出且在其執行時接收時戳。可針對每個此中間色調(例如,色調3)決策實行模組C(或C1)之鎖定時間範圍。根據智慧命令循環,以(例如,2分鐘、5分鐘、7分鐘或10分鐘之)時間間隔將自(例如,Foresight健康模組之)資料表中之值導出的色調決策與自感測器導出(例如,直接或經由智慧模組)的色調決策進行比較。可例如藉由比較發出智慧色調命令及Foresight健康監測器模組色調命令之時戳來計算由任何變化(例如,加速)之Foresight決策引起的日光增益及/或眩光保護增益。此時戳比較亦可揭露任何經延遲Foresight決策(例如,提示Foresight模組邏輯之修正及/或評估)。以及時(例如,每日)方式,藉由Foresight健康監測器模組之所預測感測器值(例如,VSS之所預測光感測器及/或IR感測器)遞送的日光及/或眩光保護之增益(例如,以分鐘為單位)可在(例如,專用)資料庫中之(例如,專用)表中更新及/或儲存於該資料庫中。In some embodiments, the quantization module regenerates the smart module processing scheme. For example, the inspection module may perform a mid-tone (eg, tint) between a lower tone level and a higher (eg, darker) tone level (such as between the transition of
應理解,用以實施本文中所描述之技術的控制邏輯及其他邏輯可按以下各者之形式實施:電路、處理器(包括微處理器、數位信號處理器、特殊應用積體電路、諸如場可程式化閘陣列之可程式化邏輯等)、電腦、電腦軟體、諸如感測器之裝置或其組合。It should be understood that control logic and other logic to implement the techniques described herein may be implemented in the form of circuits, processors (including microprocessors, digital signal processors, application-specific integrated circuits, such as field programmable logic of programmable gate arrays, etc.), computers, computer software, devices such as sensors, or combinations thereof.
本申請案中所描述之軟體組件或功能中的任一者可實施為待由處理器使用諸如Java、C++或Python之任何合適的電腦語言而使用例如習知或物件導向式技術執行的程式碼。程式碼可作為一系列指令或命令儲存於諸如以下各者的電腦可讀媒體上:隨機存取記憶體(RAM)、唯讀記憶體(ROM)、可程式化記憶體(EEPROM)、諸如硬碟機或軟磁之磁性媒體或諸如CD-ROM之光學媒體。任何此電腦可讀媒體可駐存於單個運算設備上或內,且可存在於系統或網路內之不同運算設備上或內。Any of the software components or functions described in this application can be implemented as code to be executed by a processor using any suitable computer language such as Java, C++ or Python using, for example, conventional or object-oriented techniques . The code may be stored as a series of instructions or commands on a computer readable medium such as random access memory (RAM), read only memory (ROM), programmable memory (EEPROM), hardware such as Disk drives or soft magnetic media or optical media such as CD-ROMs. Any such computer-readable medium can reside on or within a single computing device and can exist on or within different computing devices within a system or network.
另外,儘管本發明揭示使用特定類型之遞歸神經網路,但使用其他神經網路架構以進行環境條件之短期及/或較長期預測,例如但不限於本領域中熟習此項技術者已知之遞迴多層感知(RMLP)、閘控遞迴單元(GRU)及時間卷積神經網路(TCNN)架構。Additionally, although the present disclosure discloses the use of certain types of recurrent neural networks, other neural network architectures are used for short-term and/or longer-term prediction of environmental conditions, such as, but not limited to, those known to those skilled in the art. Multilayer Perception (RMLP), Gated Recurrent Unit (GRU) and Temporal Convolutional Neural Network (TCNN) architectures.
儘管已在諸如電致變色窗之光學可切換窗的內容背景中描述用於控制經由窗或建築物內部接收之照明的前述所揭示實施例,但吾人可瞭解本文中所描述之方法可如何實施於適當控制器上以調整遮光簾、遮窗簾、百葉窗或可經調整以限制或阻擋光到達建築物內部空間之任何其他裝置的位置。在一些狀況下,本文中所描述之方法可用以控制一或多個光學可切換窗之色調及遮光裝置之位置兩者。所有此類組合意欲在本揭示案之範圍內。While the previously disclosed embodiments for controlling lighting received through a window or inside a building have been described in the context of optically switchable windows such as electrochromic windows, one can appreciate how the methods described herein may be implemented On the appropriate controls to adjust the position of the shades, blinds, blinds, or any other device that can be adjusted to limit or block light from reaching the interior spaces of the building. In some cases, the methods described herein can be used to control both the tint of one or more optically switchable windows and the position of the shading device. All such combinations are intended to be within the scope of this disclosure.
在不脫離本揭示案之範圍的情況下,可將來自任何實施例之一或多個特徵與任何其他實施例之一或多個特徵組合。另外,在不脫離本揭示案之範圍的情況下,可進行對任何實施例之修改、添加或省略。在不脫離本揭示案之範圍的情況下,任何實施例之組件及模組可根據特定需要整合或分開。One or more features from any embodiment may be combined with one or more features of any other embodiment without departing from the scope of the present disclosure. In addition, modifications, additions, or omissions may be made to any embodiments without departing from the scope of the present disclosure. The components and modules of any embodiment may be integrated or separated according to particular needs without departing from the scope of this disclosure.
因此,儘管已相當詳細地描述了前述所揭示實施例以促進理解,但所描述實施例將被視為說明性而非限制性的。本領域中一般熟習此項技術者將顯而易見,可在隨附申請專利範圍之範圍內實踐某些改變及修改。Accordingly, while the foregoing disclosed embodiments have been described in considerable detail to facilitate understanding, the described embodiments are to be regarded as illustrative and not restrictive. It will be apparent to one of ordinary skill in the art that certain changes and modifications can be practiced within the scope of the appended claims.
在一些實施例中,感測器操作性地耦接至至少一個控制器及/或處理器。感測器讀數可由一或多個處理器及/或控制器獲得。控制器可包含處理單元(例如,CPU或GPU)。控制器可接收輸入(例如,自至少一個感測器)。控制器可包含電路系統、電佈線、光學佈線、通訊端及/或插座。控制器可遞送輸出。控制器可包含多個(例如,子)控制器。控制器可為控制系統之一部分。控制系統可包含主控制器、樓層(例如,包含網路控制器)控制器或本端控制器。本端控制器可為窗控制器(例如,控制光學可切換窗)、封閉體控制器及/或組件控制器。控制器可為裝置控制器(例如,本文中所揭示之任何裝置,諸如感測器或發射器)。舉例而言,控制器可為階層式控制系統(例如,包含主控制器,該主控制器指導一或多個控制器,例如樓層控制器、本端控制器(例如,窗控制器)、封閉體控制器及/或組件控制器)之一部分。階層式控制系統中之控制器類型的實體部位可能正在改變。舉例而言,在第一時間:第一處理器可承擔主控制器之角色,第二處理器可承擔樓層控制器之角色,且第三處理器可承擔本端控制器之角色;在第二時間:第二處理器可承擔主控制器之角色,第一處理器可承擔樓層控制器之角色,且第三處理器可保持本端控制器之角色;且在第三時間:第三處理器可承擔主控制器之角色,第二處理器可承擔樓層控制器之角色,且第一處理器可承擔本端控制器之角色。控制器可控制一或多個裝置(例如,直接耦接(例如,連接)至裝置)。控制器可接近其正控制之一或多個裝置而安置。舉例而言,控制器可控制光學可切換裝置(例如,IGU)、天線、感測器及/或輸出裝置(例如,光源、聲源、氣味源、氣體源、HVAC插座或加熱器)。在一個實施例中,樓層控制器可指導一或多個窗控制器、一或多個封閉體控制器、一或多個組件控制器或其任何組合。樓層控制器可包含樓層控制器。舉例而言,樓層(例如,包含網路)控制器可控制複數個本端(例如,包含窗)控制器。複數個本端控制器可安置於設施之一部分中(例如,建築物之一部分中)。設施之該部分可為設施之樓層。舉例而言,可將樓層控制器指派給樓層。在一些實施例中,樓層可包含複數個樓層控制器,例如取決於樓層大小及/或耦接至樓層控制器之本端控制器的數目。舉例而言,可將樓層控制器指派給樓層之一部分。舉例而言,可將樓層控制器指派給安置於設施中之本端控制器的一部分。舉例而言,可將樓層控制器指派給設施之樓層的一部分。主控制器可耦接至一或多個樓層控制器。樓層控制器可安置於設施中。主控制器可安置於設施中或安置於設施外部。主控制器可安置於雲端中。控制器可為建築物管理系統之一部分或操作性地耦接至建築物管理系統。控制器可接收一或多個輸入。控制器可產生一或多個輸出。控制器可為單輸入單輸出控制器(SISO)或多輸入多輸出控制器(MIMO)。控制器可解譯所接收之輸入信號。控制器可自一或多個組件(例如,感測器)獲取資料。獲取可包含接收或提取。資料可包含量測、估計、判定、產生或其任何組合。控制器可包含反饋控制。控制器可包含前饋控制。控制可包含開關控制、比例控制、比例積分(PI)控制或比例-積分-導數(PID)控制。控制可包含開放迴路控制或封閉迴路控制。控制器可包含封閉迴路控制。控制器可包含開放迴路控制。控制器可包含使用者介面。使用者介面可包含(或操作性地耦接至)鍵盤、小鍵盤、滑鼠、觸控式螢幕、麥克風、語音辨識封裝、攝影機、成像系統或其任何組合。輸出可包括顯示器(例如,螢幕)、揚聲器或印表機。圖 39
展示控制系統架構3900
之實例,該控制系統架構包含控制樓層控制器3906
之主控制器3908
,該樓層控制器又控制本端控制器3904
。在一些實施例中,本端控制器控制一或多個IGU、一或多個感測器、一或多個輸出裝置(例如,一或多個發射器)或其任何組合。圖 39
展示主控制器操作性地耦接(例如,無線地及/或有線地)至建築物管理系統(BMS)3924
及資料庫3920
之組態的實例。圖 39
中之箭頭表示通信通路。控制器可操作性地耦接(例如,直接地/間接地及/或有線地及/無線地)至外部源3910
。外部源可包含網路。外部源可包含一或多個感測器或輸出裝置。外部源可包含基於雲端之應用程式及/或資料庫。通信可為有線及/或無線的。外部源可安置於設施外部。舉例而言,外部源可包含安置於例如壁上或設施之頂板上的一或多個感測器及/或天線。通信可為單向或雙向的。在圖 39
中所展示之實例中,通信所有通信箭頭意欲為雙向的。In some embodiments, the sensor is operatively coupled to at least one controller and/or processor. Sensor readings may be obtained by one or more processors and/or controllers. A controller may include a processing unit (eg, a CPU or GPU). The controller can receive input (eg, from at least one sensor). The controller may include circuitry, electrical wiring, optical wiring, communication terminals and/or sockets. The controller can deliver output. A controller can contain multiple (eg, sub) controllers. The controller may be part of a control system. The control system can include a main controller, a floor (eg, including a network controller) controller, or a local controller. The local controller may be a window controller (eg, controlling an optically switchable window), an enclosure controller, and/or a component controller. The controller may be a device controller (eg, any of the devices disclosed herein, such as a sensor or transmitter). For example, a controller may be a hierarchical control system (eg, including a master controller that directs one or more controllers, such as floor controllers, local controllers (eg, window controllers), closed body controller and/or component controller). The physical part of the controller type in a hierarchical control system may be changing. For example, at the first time: the first processor can assume the role of the main controller, the second processor can assume the role of the floor controller, and the third processor can assume the role of the local controller; in the second Time: the second processor can assume the role of the main controller, the first processor can assume the role of the floor controller, and the third processor can maintain the role of the local controller; and at the third time: the third processor It can assume the role of the main controller, the second processor can assume the role of the floor controller, and the first processor can assume the role of the local controller. The controller may control one or more devices (eg, directly coupled (eg, connected) to the devices). A controller may be positioned proximate to one or more devices it is controlling. For example, the controller may control optically switchable devices (eg, IGUs), antennas, sensors, and/or output devices (eg, light sources, sound sources, odor sources, gas sources, HVAC outlets, or heaters). In one embodiment, a floor controller may direct one or more window controllers, one or more enclosure controllers, one or more component controllers, or any combination thereof. Floor controllers may include floor controllers. For example, a floor (eg, including a network) controller may control a plurality of local (eg, including a window) controller. A plurality of local controllers may be located in a portion of a facility (eg, in a portion of a building). This part of the facility may be the floor of the facility. For example, floor controllers can be assigned to floors. In some embodiments, a floor may include a plurality of floor controllers, eg, depending on the floor size and/or the number of local controllers coupled to the floor controllers. For example, a floor controller can be assigned to a portion of a floor. For example, a floor controller can be assigned to a portion of the local controllers located in the facility. For example, a floor controller can be assigned to a portion of a floor of a facility. The main controller can be coupled to one or more floor controllers. Floor controllers can be placed in the facility. The main controller may be located in the facility or located outside the facility. The main controller can be located in the cloud. The controller may be part of or operatively coupled to the building management system. The controller can receive one or more inputs. The controller can generate one or more outputs. The controller can be a single-input single-output controller (SISO) or a multiple-input multiple-output controller (MIMO). The controller can interpret the received input signal. The controller may obtain data from one or more components (eg, sensors). Acquiring can include receiving or extracting. Data may include measurements, estimates, determinations, generation, or any combination thereof. The controller may include feedback control. The controller may include feedforward control. Control may include on-off control, proportional control, proportional-integral (PI) control, or proportional-integral-derivative (PID) control. Control can include open loop control or closed loop control. The controller may contain closed loop control. The controller may contain open loop control. The controller may include a user interface. The user interface may include (or be operatively coupled to) a keyboard, keypad, mouse, touch screen, microphone, speech recognition package, camera, imaging system, or any combination thereof. Output can include a display (eg, a screen), speakers, or a printer. 39 shows an example of a
控制器可監測及/或指導本文中所描述之設備、軟體及/或方法之操作條件的(例如,實體)更改。控制可包含調節、操控、限制、指導、監測、調整、調變、變化、更改、約束、檢查、導引或管理。控制(例如,由控制器進行)可包括衰減、調變、變化、管理、抑制、規訓、調節、約束、監督、操縱及/或導引。控制可包含控制一控制變數(例如,溫度、功率、電壓及/或剖面)。控制可包含即時或離線控制。可即時及/或離線進行由控制器利用之計算。控制器可為手動或非手動控制器。控制器可為自動控制器。控制器可應請求操作。控制器可為可程式化控制器。控制器可經程式化。A controller may monitor and/or direct (eg, physical) changes to the operating conditions of the apparatus, software, and/or methods described herein. Control may include regulating, manipulating, limiting, directing, monitoring, adjusting, modulating, changing, altering, restraining, checking, directing or managing. Controlling (eg, by a controller) may include attenuating, modulating, varying, managing, suppressing, discipline, regulating, constraining, supervising, manipulating, and/or directing. Controlling may include controlling a control variable (eg, temperature, power, voltage, and/or profile). Control can include instant or offline control. Calculations utilized by the controller can be performed in real-time and/or offline. The controller can be manual or non-manual. The controller may be an automatic controller. The controller can operate on request. The controller may be a programmable controller. The controller can be programmed.
本文中所描述之方法、系統及/或設備可包含控制系統。控制系統可與本文中所描述之任一設備(例如,感測器及/或可著色窗)通信。設備可屬於相同類型或不同類型,例如,如本文中所描述。舉例而言,控制系統可與第一感測器及/或第二感測器通信。控制系統可控制一或多個感測器。控制系統可控制建築物管理系統(例如,照明、安全及/或空氣調節系統)之一或多個組件。控制器可調節封閉體之至少一個(例如,環境)特性。控制系統可使用建築物管理系統之任何組件來調節封閉體環境。舉例而言,控制系統可調節由加熱元件及/或冷卻元件供應之能源。舉例而言,控制系統可調節經由通風口流動至封閉體及/或自封閉體流動之空氣的速度。控制系統可包含處理器。處理器可為處理單元。控制器可包含處理單元。處理單元可為中央處理單元。處理單元可包含中央處理單元(本文中縮寫為「CPU」)。處理單元可為圖形處理單元(本文中縮寫為「GPU」)。控制器或控制機構(例如,包含電腦系統)可經程式化以實施本揭示案之一或多種方法。處理器可經程式化以實施本揭示案之方法。控制器可控制形成本文中所揭示之系統及/或設備的至少一個組件。The methods, systems and/or apparatus described herein may include a control system. The control system can communicate with any of the devices described herein (eg, sensors and/or tintable windows). The devices may be of the same type or of different types, eg, as described herein. For example, the control system may communicate with the first sensor and/or the second sensor. The control system can control one or more sensors. The control system may control one or more components of the building management system (eg, lighting, security and/or air conditioning systems). The controller can adjust at least one (eg, environmental) characteristic of the enclosure. The control system may use any component of the building management system to regulate the enclosure environment. For example, the control system may regulate the energy supplied by the heating element and/or the cooling element. For example, the control system may regulate the speed of air flowing to and/or from the enclosure through the vent. The control system may include a processor. The processor may be a processing unit. The controller may include a processing unit. The processing unit may be a central processing unit. The processing unit may include a central processing unit (abbreviated herein as "CPU"). The processing unit may be a graphics processing unit (abbreviated herein as "GPU"). A controller or control mechanism (eg, including a computer system) can be programmed to implement one or more of the methods of the present disclosure. A processor can be programmed to implement the methods of the present disclosure. A controller may control at least one component forming the systems and/or apparatus disclosed herein.
圖 40
展示電腦系統4000
之示意性實例,該電腦系統經程式化或以其他方式經組態以執行本文中所提供之任一種方法的一或多個操作。電腦系統可控制(例如,指導、監測及/或調節)本揭示案之方法、設備及系統的各種特徵,諸如控制封閉體之加熱、冷卻、照明、通風,或其任何組合。電腦系統可為本文中所揭示之任何感測器或感測器集合的部分,或與本文中所揭示之任何感測器或感測器集合通信。電腦可耦接至本文中所揭示之一或多個機構及/或其任何部分。舉例而言,電腦可耦接至一或多個感測器、閥、開關、燈、窗(例如,IGU)、馬達、泵、光學組件或其任何組合。 40 shows a schematic example of a
電腦系統可包括處理單元(例如,4006
)(本文中亦使用「處理器」、「電腦」及「電腦處理器」)。電腦系統可包括記憶體或記憶體部位(例如,4002
)(例如,隨機存取記憶體、唯讀記憶體、快閃記憶體)、電子儲存單元(例如,4004
)(例如,硬碟)、用於與一或多個其他系統通信之通信介面(例如,4003
)(例如,網路配接器),及周邊裝置(例如,4005
),諸如快取記憶體、其他記憶體、資料儲存器及/或電子顯示配接器。在圖 40
中所展示之實例中,記憶體4002
、儲存單元4004
、介面4003
及周邊裝置4005
經由諸如主機板之通信匯流排(實線)與處理單元4006
通信。儲存單元可為用於儲存資料之資料儲存單元(或資料儲存庫)。電腦系統可藉助於通信介面操作性地耦接至電腦網路(「網路」)(例如,4001
)。網路可為網際網路、網際網路及/或企業間網路,或與網際網路通信之企業內部網路及/或企業間網路。在一些狀況下,該網路為電信及/或資料網路。該網路可包括一或多個電腦伺服器,該一或多個電腦伺服器可使得能夠進行分散式運算,諸如雲端運算。在一些狀況下,網路可藉助於電腦系統實施對等網路,其可使得耦接至電腦系統之裝置能夠充當用戶端或伺服器。A computer system may include a processing unit (eg, 4006 ) ("processor", "computer" and "computer processor" are also used herein). A computer system may include memory or parts of memory (eg, 4002 ) (eg, random access memory, read-only memory, flash memory), electronic storage units (eg, 4004 ) (eg, hard disks), Communication interfaces (eg, 4003 ) (eg, network adapters) for communicating with one or more other systems, and peripheral devices (eg, 4005 ) such as cache, other memory, data storage and/or electronic display adapter. In the example shown in Figure 40 ,
處理單元可執行可體現於程式或軟體中之機器可讀取指令序列。該等指令可儲存於諸如記憶體4002
之記憶體部位中。可將該等指令引導至處理單元,該處理單元可隨後程式化或以其他方式組態處理單元,以實施本揭示案之方法。由處理單元執行之操作的實例可包括提取、解碼、執行及寫回。處理單元可解譯及/或執行指令。處理器可包括微處理器、資料處理器、中央處理單元(CPU)、圖形處理單元(GPU)、系統單晶片(SOC)、共處理器、網路處理器、特殊應用積體電路(ASIC)、特殊應用指令集處理器(ASIP)、控制器、可程式化邏輯裝置(PLD)、晶片組、場可程式化閘陣列(FPGA)或其任何組合或複數者。處理單元可為諸如積體電路之電路的部分。系統4000
之一或多個其他組件可包括於電路中。The processing unit can execute a sequence of machine-readable instructions that can be embodied in a program or software. These instructions may be stored in a memory location such as
儲存單元可儲存檔案,諸如驅動程式、程式庫及保存的程式。儲存單元可儲存使用者資料(例如,使用者偏好及使用者程式)。在一些狀況下,電腦系統可包括一或多個額外資料儲存單元,該等資料儲存單元處於電腦系統外部,諸如位於經由企業內部網路或網際網路與電腦系統通信之遠端伺服器上。The storage unit can store files, such as drivers, libraries, and saved programs. The storage unit may store user data (eg, user preferences and user programs). In some cases, the computer system may include one or more additional data storage units external to the computer system, such as on a remote server that communicates with the computer system via an intranet or the Internet.
電腦系統可經由網路與一或多個遠端電腦系統通信。舉例而言,電腦系統可與使用者(例如,操作者)之遠端電腦系統通信。遠端電腦系統之實例包括個人電腦(例如,攜帶型PC)、板式電腦或平板PC(例如,Apple® iPad、Samsung® Galaxy Tab)、電話、智慧型手機(例如,Apple® iPhone、具備Android功能之裝置、Blackberry®)或個人數位助理。使用者(例如,用戶端)可經由網路存取電腦系統。The computer system may communicate with one or more remote computer systems via a network. For example, a computer system can communicate with a remote computer system of a user (eg, an operator). Examples of remote computer systems include personal computers (eg, pocket PCs), tablet or tablet PCs (eg, Apple® iPad, Samsung® Galaxy Tab), telephones, smartphones (eg, Apple® iPhone, Android-enabled device, Blackberry®) or personal digital assistant. A user (eg, a client) can access the computer system via a network.
如本文中所描述之方法可藉助於機器(例如,電腦處理器)可執行程式碼來實施,該可執行程式碼儲存於電腦系統之電子儲存部位上,諸如儲存於記憶體4002
或電子儲存單元4004
上。機器可執行或機器可讀取程式碼可按軟體形式來提供。在使用期間,處理器4006
可執行程式碼。在一些狀況下,可自儲存單元擷取程式碼且將其儲存於記憶體上以準備好供處理器存取。在一些情形中,可排除電子儲存單元,且將機器可執行指令儲存於記憶體上。The methods as described herein may be implemented by means of machine (eg, computer processor) executable code stored on an electronic storage location of a computer system, such as in
程式碼可經預編譯且經組態以供具有經調適以執行程式碼之處理器的機器使用,或可在執行階段期間編譯。程式碼可用程式設計語言供應,該程式設計語言可經選擇以使得程式碼能夠以預編譯或編譯時(as-compiled)方式執行。The code may be precompiled and configured for use by a machine with a processor adapted to execute the code, or may be compiled during the execution phase. The code may be supplied in a programming language that may be selected to enable the code to be executed in a precompiled or as-compiled manner.
在一些實施例中,處理器包含程式碼。程式碼可為程式指令。程式指令可使至少一個處理器(例如,電腦)指導前饋及/或反饋控制迴路。在一些實施例中,程式指令使至少一個處理器指導封閉迴路及/或開放迴路控制方案。控制可至少部分地基於一或多個感測器讀數(例如,感測器資料)。一個控制器可指導複數個操作。至少兩個操作可由不同控制器指導。在一些實施例中,不同控制器可指導操作(a)、(b)及(c)中之至少兩者。在一些實施例中,不同控制器可指導操作(a)、(b)及(c)中之至少兩者。在一些實施例中,非暫時性電腦可讀媒體使每一不同電腦指導操作(a)、(b)及(c)中之至少兩者。在一些實施例中,不同的非暫時性電腦可讀媒體使每一不同電腦指導操作(a)、(b)及(c)中之至少兩者。控制器及/或電腦可讀媒體可指導本文中所揭示之設備或其組件中的任一者。控制器及/或電腦可讀媒體可指導本文中所揭示之方法的任何操作。In some embodiments, the processor includes program code. The code may be program instructions. Program instructions may cause at least one processor (eg, a computer) to direct the feedforward and/or feedback control loop. In some embodiments, the program instructions cause the at least one processor to direct a closed loop and/or open loop control scheme. Control may be based at least in part on one or more sensor readings (eg, sensor data). One controller can direct multiple operations. At least two operations may be directed by different controllers. In some embodiments, different controllers may direct at least two of operations (a), (b), and (c). In some embodiments, different controllers may direct at least two of operations (a), (b), and (c). In some embodiments, the non-transitory computer-readable medium causes each distinct computer to direct at least two of operations (a), (b), and (c). In some embodiments, different non-transitory computer-readable media cause each different computer to direct at least two of operations (a), (b), and (c). A controller and/or computer-readable medium may direct any of the apparatuses disclosed herein or components thereof. A controller and/or computer-readable medium may direct any operation of the methods disclosed herein.
在一些實施例中,至少一個感測器操作性地耦接至控制系統(例如,電腦控制系統)。感測器可包含光感測器、聲學感測器、振動感測器、化學感測器、電感測器、磁性感測器、流動性感測器、移動感測器、速度感測器、位置感測器、壓力感測器、力感測器、密度感測器、距離感測器或近接感測器。感測器可包括溫度感測器、重量感測器、材料(例如,粉末)含量感測器、度量感測器、氣體感測器或濕度感測器。度量感測器可包含量測感測器(例如,高度、長度、寬度、角度及/或體積)。度量感測器可包含磁性、加速度、定向或光學感測器。感測器可傳輸及/或接收聲音(例如,回音)、磁性、電子或電磁信號。電磁信號可包含可見光、紅外線、紫外線、超音波、無線電波或微波信號。氣體感測器可感測本文中所敍述之任一種氣體。距離感測器可為一種類型之度量感測器。距離感測器可包含光學感測器或電容感測器。溫度感測器可包含輻射熱計、雙金屬片、熱量計、排氣溫度計、火焰偵測、戈登(Gardon)計、戈萊盒(Golay cell)、熱通量感測器、紅外線溫度計、微輻射熱計、微波輻射計、淨輻射計、石英溫度計、電阻溫度偵測器、電阻溫度計、矽帶隙溫度感測器、特殊感測器微波/成像器、溫度計、熱敏電阻、熱電偶、溫度計(例如,電阻溫度計)或高溫計(例如,日射強度計,諸如矽日射強度計)。溫度感測器可包含光學感測器。溫度感測器可包含影像處理。溫度感測器可包含攝影機(例如,IR攝影機、CCD攝影機)。壓力感測器可包含氣壓儀、氣壓計、增壓計、波爾登管式壓力計(Bourdon gauge)、熱燈絲電離計、電離計、麥克里德壓力計(McLeod gauge)、U形振盪管、永久井下壓力計、壓強計、皮拉尼壓力計(Pirani gauge)、壓力感測器、壓力計、觸覺感測器或時間壓力計。位置感測器可包含生長計、電容式位移傳感器、電容感測、自由下落感測器、重力計、陀螺儀感測器、碰撞感測器、傾角計、積體電路壓電感測器、雷射測距儀、雷射表面速度計、LIDAR、線性編碼器、線性可變差動變壓器(LVDT)、液體電容傾角計、里程錶、光感測器、壓電加速度計、速率感測器、旋轉編碼器、旋轉可變差動變壓器、同步儀、衝擊偵測器、衝擊資料記錄器、傾斜感測器、轉速計、超聲波厚度計、可變磁阻感測器或速度接收器。光學感測器可包含電荷耦合裝置、色度計、接觸式影像感測器、電光感測器、紅外線感測器、動態電感偵測器、發光二極體(例如,光感測器)、光可定址電位感測器、尼科爾斯福射計(Nichols radiometer)、光纖感測器、光學位置感測器、光電偵測器、光電二極體、光電倍增管、光電晶體、光電感測器、光電離偵測器、光電倍增器、光電阻器、光電開關、光電管、閃爍計數器、夏克哈特曼波前感測器(Shack-Hartmann)、單光子突崩二極體、超導奈米線單光子偵測器、過渡邊緣感測器、可見光光子計數器或波前感測器。一或多個感測器可連接至控制系統(例如,連接至處理器,連接至電腦)。In some embodiments, at least one sensor is operatively coupled to a control system (eg, a computerized control system). Sensors may include light sensors, acoustic sensors, vibration sensors, chemical sensors, electrical sensors, magnetic sensors, mobility sensors, motion sensors, speed sensors, position sensors sensor, pressure sensor, force sensor, density sensor, distance sensor or proximity sensor. Sensors may include temperature sensors, weight sensors, material (eg, powder) content sensors, metric sensors, gas sensors, or humidity sensors. Metric sensors may include measurement sensors (eg, height, length, width, angle, and/or volume). Metrology sensors may include magnetic, acceleration, orientation, or optical sensors. Sensors can transmit and/or receive acoustic (eg, echo), magnetic, electronic, or electromagnetic signals. Electromagnetic signals may include visible light, infrared, ultraviolet, ultrasonic, radio waves, or microwave signals. The gas sensor can sense any of the gases described herein. The distance sensor may be a type of metric sensor. Distance sensors may include optical sensors or capacitive sensors. Temperature sensors may include bolometers, bimetals, calorimeters, exhaust thermometers, flame detection, Gardon meters, Golay cells, heat flux sensors, infrared thermometers, micro- bolometers, microwave radiometers, net radiometers, quartz thermometers, resistance temperature detectors, resistance thermometers, silicon bandgap temperature sensors, special sensors microwave/imagers, thermometers, thermistors, thermocouples, thermometers (eg, resistance thermometers) or pyrometers (eg, pyranometers, such as silicon pyranometers). The temperature sensor may include an optical sensor. The temperature sensor may include image processing. The temperature sensor may include a camera (eg, IR camera, CCD camera). Pressure sensors can include barometers, barometers, booster gauges, Bourdon gauges, hot filament ionization gauges, ionization gauges, McLeod gauges, U-shaped oscillating tubes , permanent downhole manometer, manometer, Pirani gauge, pressure sensor, manometer, tactile sensor or time pressure gauge. Position sensors may include growth meters, capacitive displacement sensors, capacitive sensing, free fall sensors, gravimeters, gyroscope sensors, impact sensors, inclinometers, integrated circuit piezoelectric sensors, Laser Rangefinders, Laser Surface Velocimeters, LIDAR, Linear Encoders, Linear Variable Differential Transformers (LVDTs), Liquid Capacitive Inclinometers, Odometers, Optical Sensors, Piezoelectric Accelerometers, Velocity Sensors , rotary encoders, rotary variable differential transformers, synchronizers, shock detectors, shock data recorders, tilt sensors, tachometers, ultrasonic thickness gauges, variable reluctance sensors or speed receivers. Optical sensors may include charge-coupled devices, colorimeters, contact image sensors, electro-optical sensors, infrared sensors, dynamic inductance detectors, light emitting diodes (eg, light sensors), Optically addressable potentiometric sensors, Nichols radiometers, fiber optic sensors, optical position sensors, photodetectors, photodiodes, photomultipliers, phototransistors, photoinductors detectors, photoionization detectors, photomultipliers, photoresistors, photoswitches, photocells, scintillation counters, Shack-Hartmann wavefront sensors (Shack-Hartmann), single-photon burst diodes, super Conductive nanowire single-photon detectors, transition edge sensors, visible light photon counters or wavefront sensors. One or more sensors can be connected to the control system (eg, to a processor, to a computer).
雖然本發明之較佳實施例已展示且描述於本文中,但本領域中熟習此項技術者將顯而易見,此等實施例僅作為實例而提供。不希望本發明受本說明書內所提供之特定實例的限制。儘管已參考前述說明書描述了本發明,但本文中之實施例的描述及說明並不意欲以限制性意義來解釋。在不脫離本發明之情況下,本領域中熟習此項技術者將想到眾多變化、改變及取代。此外,應理解,本發明之所有態樣不限於本文中所闡述之特定描繪、組態或相對比例,此取決於多種條件及變數。應理解,可在實踐本發明時使用本文中所描述之本發明實施例的各種替代例。因此,預期本發明應涵蓋任何此類替代例、修改、變化或等效物。希望以下申請專利範圍界定本發明之範圍,且藉此涵蓋此等申請專利範圍及其等效物之範圍內的方法及結構。While preferred embodiments of the invention have been shown and described herein, it will be apparent to those skilled in the art that these embodiments are provided by way of example only. It is not intended that the present invention be limited to the specific examples provided within this specification. While the invention has been described with reference to the foregoing specification, the description and illustration of the embodiments herein are not intended to be construed in a limiting sense. Numerous changes, changes, and substitutions will occur to those skilled in the art without departing from this invention. Furthermore, it is to be understood that all aspects of the invention are not limited to the specific depictions, configurations or relative proportions set forth herein, which depend upon various conditions and variables. It should be understood that various alternatives to the embodiments of the invention described herein may be employed in practicing the invention. Accordingly, it is intended that the present invention shall cover any such alternatives, modifications, variations or equivalents. It is intended that the following patent claims define the scope of the invention and that methods and structures within the scope of these claims and their equivalents be covered thereby.
100:電致變色片 105:玻璃薄片 110:擴散障壁 115:第一透明導電氧化物層(TCO) 120:隔離溝槽 125:電致變色堆疊 130:第二TCO 135:部分 140:區域 145:部分 150:雷射刻劃溝槽 155:雷射刻劃溝槽 160:雷射刻劃溝槽 165:雷射刻劃溝槽 170:部分 175:部分 200:IGU 201:片 205:間隔物 210:第二片 215:主要密封材料 220:次要密封件 225:內部空間 230:加強窗格 235:樹脂 300:電致變色裝置 302:基板 304:第一導電層(CL) 306:電致變色層(EC)/電致變色層 308:離子導電層(IC) 310:相對電極層(CE)/相對電極 314:第二導電層(CL) 316:電壓源 320:電致變色堆疊 400:電致變色裝置 402:基板 404:導電層(CL) 406:氧化鎢電致變色層(EC) 408:離子導電層(IC) 410:氧化鎳鎢相對電極層(CE)/氧化鎳鎢相對電極 414:導電層(CL) 416:電源/電壓源 420:電致變色堆疊 450:窗控制器 455:微處理器 460:脈寬調變器 465:輸入 475:組態檔案 480:網路 500:封閉體/房間 505:電致變色窗 510:外部光感測器 601:建築物 602:窗控制系統/階層式控制系統 603:主控制器 605:BMS 607a:樓層控制器/網路控制器 607b:樓層控制器/網路控制器 608:本端(例如,終端或分葉)控制器 610:雲端網路 700:系統 701:網路 702:窗控制系統 703:主控制器 705:網路控制器 710:終端或分葉窗控制器 780:EC裝置 790:壁開關 800:系統架構 801:雲端網路 810:基於雲端之3D模型系統 820:基於雲端之晴空模組 840:窗控制系統 872:第1分區 874:第n分區 890:圖形使用者介面(GUI) 892:地點操作 894:客戶成功管理者(CSM) 898:客戶組態入口 1410:操作 1420:操作 1430:操作 1510:操作 1520:操作 1530:操作 1540:操作 1550:操作 1560:操作 1570:操作 1580:操作 2202:操作 2210:操作 2212:操作 2214:操作 2216:操作 2220:操作 2222:操作 2224:操作 2226:操作 2230:操作 2240:操作 2600:窗控制系統 2610:操作 2620:操作 2630:操作 2640:操作 2650:操作 2660:操作 2700:窗控制系統 2701:模組A 2710:模組B 2710a:LSTM(單變量)子模組 2710b:DNN(多變量)模組 2711:模組C 2712:模組D 2713:無監督分類器子模組/模組E 2714:映射至色調值之後處理子模組 2716:二進位機率子模組 2719:重心平均化模組 2720:窗控制器/控制系統 2786:表決子模組/表決邏輯 2800:窗控制系統 2801:模組A 2810:操作 2811:模組C1 2812:模組D1 2819:重心平均化模組 2820:窗控制器 2830:DNN模組 2901:操作/開始事件 2903:重新訓練操作 2905:操作 2907:操作 2909:決策操作 2911:操作 2913:操作 2915:決策操作 2917:結束狀態 3001:架構 3003:實時模型選擇邏輯 3005:套件 3007:本端感測器資料 3009:遠端資料 3011:簽章 3102:線 3103:線 3105:線 3107:線 3111:線 3117:線 3119:線 3131:線 3200:系統 3201:流程圖 3203:操作 3205:操作 3207:操作 3209:操作 3210:地點管理控制台 3211:操作/虛擬天空感測器應用程式 3212:虛擬天空感測器 3213:操作 3215:操作 3217:操作 3220:資料源 3250:主控制器 3252:資料提取器應用程式 3254:現場資料庫 3256:控制邏輯 3258:深度神經網路(DNN) 3262:第一網路控制器 3264:第二網路控制器 3310:地點管理控制台 3314:虛擬天空感測器 3320:第一部分 3330:第二部分 3332:「MFST遠端」感測器 3334:「Foresight感測器」感測器 3400:系統 3410:地點管理控制台 3412:虛擬天空感測器應用程式/虛擬天空感測器 3420:資料源 3450:主控制器 3452:資料提取器應用程式/資料提取器 3454:現場資料庫 3456:控制邏輯 3462:第一網路控制器 3464:第二網路控制器 3500:系統 3510:地點管理控制台 3512:虛擬天空感測器應用程式/虛擬天空感測器 3520:資料源 3550:主控制器 3552:資料提取器應用程式/資料提取器 3554:現場資料庫 3556:控制邏輯 3558:深度神經網路(DNN) 3562:第一網路控制器 3564:第二網路控制器 3700:流程圖 3701:區塊 3702:區塊 3703:區塊 3704:區塊 3705:區塊 3706:區塊 3707:區塊 3800:流程圖 3801:區塊 3802:區塊 3803:區塊 3804:區塊 3805:區塊 3806:區塊 3807:輸出 3808:輸出 3900:控制系統架構 3904:本端控制器 3906:樓層控制器 3908:主控制器 3910:外部源 3920:資料庫 3924:建築物管理系統(BMS) 4000:電腦系統 4001:電腦網路(「網路」) 4002:記憶體或記憶體部位 4003:通信介面 4004:電子儲存單元 4005:周邊裝置 4006:處理單元100: Electrochromic sheet 105: Glass flakes 110: Diffusion Barrier 115: first transparent conductive oxide layer (TCO) 120: Isolation trench 125: Electrochromic Stacking 130: Second TCO 135: Part 140: Area 145: Part 150: Laser scribed grooves 155: Laser scribed grooves 160: Laser scribed grooves 165: Laser scribed grooves 170: Parts 175: Part 200:IGU 201: Piece 205: Spacer 210: Second piece 215: Main sealing material 220: Secondary Seal 225: Interior Space 230: Enhanced pane 235: Resin 300: Electrochromic Device 302: Substrate 304: First Conductive Layer (CL) 306: Electrochromic Layer (EC) / Electrochromic Layer 308: Ion Conductive Layer (IC) 310: Counter Electrode Layer (CE) / Counter Electrode 314: Second Conductive Layer (CL) 316: Voltage source 320: Electrochromic Stacking 400: Electrochromic Device 402: Substrate 404: Conductive layer (CL) 406: Tungsten oxide electrochromic layer (EC) 408: Ion Conductive Layer (IC) 410: nickel tungsten oxide opposite electrode layer (CE) / nickel tungsten oxide opposite electrode 414: Conductive layer (CL) 416: Power/Voltage Source 420: Electrochromic Stacking 450: Window Controller 455: Microprocessor 460: Pulse Width Modulator 465: input 475: Configuration file 480: Internet 500: Enclosed body/room 505: Electrochromic Windows 510: External light sensor 601: Buildings 602: Window Control System / Hierarchical Control System 603: Main Controller 605: BMS 607a: Floor Controller/Network Controller 607b: Floor Controller/Network Controller 608: Local (e.g. terminal or leaflet) controller 610: Cloud Network 700: System 701: Internet 702: Window Control System 703: Main Controller 705: Network Controller 710: Terminal or louver controller 780: EC Device 790: Wall Switch 800: System Architecture 801: Cloud Network 810: Cloud-based 3D model system 820: Cloud-based clear sky module 840: Window Control System 872: Division 1 874: nth partition 890: Graphical User Interface (GUI) 892: Location Operations 894: Customer Success Manager (CSM) 898:Customer configuration entry 1410: Operation 1420: Operation 1430: Operation 1510: Operation 1520: Operation 1530: Operation 1540: Operation 1550: Operation 1560: Operation 1570: Operation 1580: Operation 2202: Operation 2210: Operation 2212: Operation 2214: Operation 2216: Operation 2220:Operation 2222: Operation 2224:Operation 2226:Operation 2230:Operation 2240:Operation 2600: Window Control System 2610: Operation 2620: Operation 2630: Operation 2640:Operation 2650:Operation 2660:Operation 2700: Window Control System 2701: Module A 2710: Module B 2710a: LSTM (univariate) submodule 2710b: DNN (multivariate) module 2711: Module C 2712: Module D 2713: Unsupervised classifier submodule/module E 2714: Process submodules after mapping to hue values 2716: Binary probability submodule 2719: Center of Gravity Averaging Module 2720: Window Controllers/Control Systems 2786: Voting submodule/voting logic 2800: Window Control System 2801: Module A 2810: Operation 2811: Module C1 2812: Module D1 2819: Center of Gravity Averaging Module 2820: Window Controller 2830: DNN module 2901: Action/Start event 2903: retrain operation 2905:Operation 2907: Operation 2909: Decision Operations 2911: Operation 2913: Operation 2915: Decision Operations 2917: End state 3001: Architecture 3003: Real-time model selection logic 3005: Kit 3007: Local sensor data 3009: Remote data 3011: Signature 3102: Line 3103: Line 3105: Line 3107: Line 3111: Line 3117: Line 3119: Line 3131: Line 3200: System 3201: Flowchart 3203: Operation 3205: Operation 3207: Operation 3209: Operation 3210: Location Management Console 3211: Operation/Virtual Sky Sensor Application 3212: Virtual Sky Sensor 3213: Operation 3215: Operation 3217: Operation 3220: Source 3250: Main Controller 3252: Data Extractor Application 3254: Field Library 3256: Control Logic 3258: Deep Neural Networks (DNN) 3262: First Network Controller 3264: Second network controller 3310: Location Management Console 3314: Virtual Sky Sensor 3320: Part 1 3330: Part II 3332: "MFST Remote" Sensor 3334: "Foresight Sensor" sensor 3400: System 3410: Location Management Console 3412: Virtual Sky Sensor Application / Virtual Sky Sensor 3420: Source 3450: Main Controller 3452: Data Extractor Application/Data Extractor 3454: Field Library 3456: Control Logic 3462: First Network Controller 3464: Second Network Controller 3500: System 3510: Location Management Console 3512: Virtual Sky Sensor Application / Virtual Sky Sensor 3520: Source 3550: Main Controller 3552: Data Extractor Application/Data Extractor 3554: Field Library 3556: Control Logic 3558: Deep Neural Networks (DNN) 3562: First Network Controller 3564: Second Network Controller 3700: Flowchart 3701: Block 3702: Block 3703:Block 3704:Block 3705:Block 3706:Block 3707:Block 3800: Flowchart 3801: Block 3802: Block 3803: Block 3804:Block 3805:Block 3806: Block 3807: output 3808: output 3900: Control System Architecture 3904: Local controller 3906: Floor Controller 3908: Main Controller 3910: External source 3920:Database 3924: Building Management Systems (BMS) 4000: Computer System 4001: Computer Network ("Network") 4002: Memory or memory parts 4003: Communication interface 4004: Electronic Storage Unit 4005: Peripherals 4006: Processing unit
本發明的新穎特徵細緻地闡述於隨附申請專利範圍中。將參考以下實施方式及隨附圖式或諸圖(在本文中為「圖」及「諸圖」)來獲得對本發明之特徵及優點的較佳理解,實施方式闡述利用本發明原理之說明性實施例,在圖式中:The novel features of the invention are set forth in detail in the appended claims. A better understanding of the features and advantages of the present invention will be obtained by reference to the following embodiments and the accompanying drawings or figures (herein "drawings" and "drawings"), which illustrate illustrative utilization of the principles of the invention Examples, in the drawings:
圖 1A 至圖 1C 展示形成於玻璃基板上之電致變色裝置(例如,電致變色片)的示意圖; 1A - 1C show schematic diagrams of electrochromic devices (eg, electrochromic sheets) formed on a glass substrate;
圖 2A 及圖 2B 展示整合至絕緣玻璃單元中之如關於圖 1A 至圖 1C 所描述的電致變色片之橫截面示意圖; 2A and 2B show schematic cross-sectional views of an electrochromic sheet as described with respect to FIGS. 1A - 1C integrated into an insulating glass unit;
圖 3A 描繪電致變色裝置之示意性橫截面; 3A depicts a schematic cross-section of an electrochromic device;
圖 3B 描繪在脫色狀態中(或轉變至脫色狀態)之電致變色裝置的示意性橫截面; 3B depicts a schematic cross-section of an electrochromic device in a decolorized state (or transitioning to a decolorized state);
圖 3C 描繪展示於圖 3B 中但在有色狀態中(或轉變至有色狀態)之電致變色裝置的示意性橫截面; 3C depicts a schematic cross-section of the electrochromic device shown in FIG. 3B but in a colored state (or transitioning to a colored state);
圖 4 描繪窗控制器之組件的簡化方塊圖; 4 depicts a simplified block diagram of the components of the window controller;
圖 5 為根據所揭示實施例之包括可著色窗及至少一個感測器的房間之示意圖; 5 is a schematic diagram of a room including a tintable window and at least one sensor in accordance with disclosed embodiments;
圖 6 為根據某些實施方案之建築物、控制系統及建築物管理系統(BMS)的示意圖; 6 is a schematic diagram of a building, a control system, and a building management system (BMS) according to certain embodiments;
圖 7 為階層式控制系統及受控裝置之組件的方塊圖; 7 is a block diagram of components of a hierarchical control system and controlled devices;
圖 8 為描繪根據各種實施方案的在雲端網路上維護晴空模型及至少部分地基於自來自模型之輸出導出的資料而控制建築物之可著色窗中所涉及的系統及使用者之通用系統架構的示意圖; 8 is a general system architecture depicting the systems and users involved in maintaining a clear sky model over a cloud network and controlling tintable windows of a building based at least in part on data derived from output from the model , according to various implementations schematic diagram;
圖 9 為根據一個實例之建築物地點的3D模型之說明; 9 is an illustration of a 3D model of a building site according to one example;
圖 10 為根據一個實例的至少部分地基於3D模型且展示在晴空條件下來自天空中之一個位置處的太陽之直射日光之光線的眩光/陰影及反射模型之視覺效果的說明; 10 is an illustration of a visual effect based at least in part on a 3D model and showing a glare/shadow and reflection model for direct sunlight rays from the sun at a location in the sky under clear sky conditions, according to one example;
圖 11 為在圖 8 中所展示之系統架構的系統中之一些之間傳達的資料流之所說明實例; 11 is an illustrative example of data flow communicated between some of the systems of the system architecture shown in FIG. 8 ;
圖 12 說明根據實施方案的在產生晴空模型排程資訊中之晴空模組的邏輯運算之實例; 12 illustrates an example of logical operations of a clear sky module in generating clear sky model scheduling information, according to an embodiment;
圖 13 為通過圖 8 中所展示之系統架構的基於雲端之系統的模型資料流之示意性描繪; Figure 13 is a schematic depiction of the model data flow of the cloud-based system through the system architecture shown in Figure 8 ;
圖 14 為根據各種實施方案的在3D模型平台上初始化3D模型中所涉及的一般操作之流程圖; 14 is a flowchart of the general operations involved in initializing a 3D model on a 3D model platform, according to various embodiments;
圖 15 為根據各種實施方案的在將屬性指派給3D模型、產生條件模型中所涉及之一般操作以及產生晴空排程資訊所涉及的其他操作之流程圖; 15 is a flowchart of general operations involved in assigning attributes to 3D models, generating conditional models, and other operations involved in generating clear sky schedule information, according to various implementations;
圖 16 為根據各種實施方案的3D模型化平台上之窗管理的視覺效果之實例; 16 is an example of visual effects of window management on a 3D modeling platform according to various embodiments;
圖 17A 為根據各種實施方案的3D模型化平台上之分區管理的視覺效果之實例; 17A is an example of a visual effect of partition management on a 3D modeling platform according to various implementations;
圖 17B 為根據各種實施方案的3D模型化平台上之分區管理的視覺效果之實例; 17B is an example of a visual effect of partition management on a 3D modeling platform according to various implementations;
圖 18 為根據各種實施方案的可藉由使用者在分區管理中使用之介面的實例; 18 is an example of an interface that may be used by a user in partition management, according to various implementations;
圖 19 為根據各種實施方案的可藉由使用者在分區管理中使用以檢閱指派給每一分區之性質的介面之實例; 19 is an example of an interface that may be used by a user in partition management to review properties assigned to each partition , according to various implementations;
圖 20A 為根據實施方案的繪製於3D模型之地板上的二維使用者部位之所說明實例; 20A is an illustrative example of a two-dimensional user part drawn on a floor of a 3D model, according to an embodiment;
圖 20B 為藉由將圖 20A 中之二維物件立體化至上部眼睛高度(eye level)而產生的三維佔用區之所說明實例; FIG. 20B is an illustrative example of a three-dimensional footprint created by three-dimensionalizing the two-dimensional object in FIG. 20A to the upper eye level;
圖 21 為使用眩光/陰影模型之所說明實例,該模型至少部分地基於圖 20B 中所展示之三維佔用區而返回無眩光條件; 21 is an illustrative example using a glare/shadow model that returns a glare-free condition based at least in part on the three-dimensional footprint shown in FIG. 20B ;
圖 22 為使用直接反射(一次反彈)模型之所說明實例,該模型至少部分地基於圖 20B 中所展示之三維佔用區而返回眩光條件; 22 is an illustrative example using a direct reflection (one bounce) model that returns glare conditions based at least in part on the three-dimensional footprint shown in FIG. 20B ;
圖 23 為根據一個態樣的用於實施使用者輸入以定製建築物地點之晴空3D模型的動作及程序之流程圖; 23 is a flowchart of actions and procedures for implementing user input to customize a clear sky 3D model of a building site, according to one aspect;
圖 24 描繪根據各種實施方案的具有用以控制建築物中之可著色窗之一或多個分區的一般控制邏輯之窗控制系統; 24 depicts a window control system with general control logic to control one or more partitions of tintable windows in a building , according to various embodiments;
圖 25 描繪根據各種實施方案的用於至少部分地基於來自模組A至E之輸出而作出色調決策的控制邏輯之流程圖; 25 depicts a flow diagram of control logic for making hue decisions based at least in part on outputs from modules A-E, according to various implementations;
圖 26 描繪根據各種實施方案的用於至少部分地基於來自模組之輸出而作出色調決策的控制邏輯之流程圖; 26 depicts a flow diagram of control logic for making hue decisions based at least in part on output from a module, according to various implementations;
圖 27A 呈現說明動態模型選擇之一種方法的流程圖; 27A presents a flowchart illustrating one method of dynamic model selection;
圖 27B 呈現可用於實時模型選擇中之不同叢集或模型的實例特性輻射量變曲線; 27B presents example characteristic radiance curves for different clusters or models that can be used in real-time model selection;
圖 28 呈現用於動態模型選擇之架構之實例的方塊圖; 28 presents a block diagram of an example of an architecture for dynamic model selection;
圖 29 呈現用於動態模型選擇程序之自正午運行至日落之壓力測試的結果; Figure 29 presents the results of a stress test run from noon to sunset for the dynamic model selection procedure;
圖 30 呈現用於使用定期輸入特徵濾波之模型更新的程序之流程圖 ; 30 presents a flow diagram of a procedure for model update using periodic input feature filtering;
圖 31 表示模型重新初始化及重新訓練架構之實例; Figure 31 represents an example of a model reinitialization and retraining architecture;
圖 32 為根據一態樣的虛擬天空感測器之預測使用情境實施方案的說明性實例; 32 is an illustrative example of a predicted usage scenario implementation of a virtual sky sensor according to an aspect;
圖 33
為根據一態樣之地點管理控制台3310
的實例; 33 is an example of a
圖 34 說明根據一態樣的虛擬天空感測器之品質保證(Q/A)或測試情境實施方案; 34 illustrates a quality assurance (Q/A) or test scenario implementation of a virtual sky sensor according to one aspect;
圖 35 說明根據一態樣的虛擬天空感測器之A/B測試實施方案; 35 illustrates an A/B testing implementation of a virtual sky sensor according to an aspect;
圖36 說明根據一態樣的由實體環形感測器偵測之感測器讀數、由DNN判定之所預報/所預測感測器值及由控制邏輯使用由DNN判定之所預報/所預測感測器值而判定之色調位準的曲線圖; 36 illustrates sensor readings detected by a physical ring sensor, predicted/predicted sensor values determined by DNN, and use of predicted/predicted sense determined by DNN by control logic, according to one aspect A graph of the hue level determined by the detector value;
圖 37 說明學習系統(例如,Foresight健康監測器)中之操作的流程圖; 37 illustrates a flow diagram of operations in a learning system (eg, Foresight health monitor);
圖 38 說明量化模組之流程圖; Figure 38 illustrates a flow chart of the quantization module;
圖 39 說明階層式控制系統及受控裝置;及 Figure 39 illustrates a hierarchical control system and controlled devices; and
圖 40 說明處理系統及其各種組件。 Figure 40 illustrates the processing system and its various components.
諸圖及其中的組件可能未按比例繪製。本文中所描述之諸圖的各種組件可能未按比例繪製。The figures and components therein may not be drawn to scale. Various components of the figures described herein may not be drawn to scale.
601:建築物 601: Buildings
602:窗控制系統/階層式控制系統 602: Window Control System / Hierarchical Control System
603:主控制器 603: Main Controller
605:BMS 605: BMS
607a:樓層控制器/網路控制器 607a: Floor Controller/Network Controller
607b:樓層控制器/網路控制器 607b: Floor Controller/Network Controller
608:本端(例如,終端或分葉)控制器 608: Local (e.g. terminal or leaflet) controller
610:雲端網路 610: Cloud Network
Claims (217)
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US202062975677P | 2020-02-12 | 2020-02-12 | |
US62/975,677 | 2020-02-12 | ||
US202063075569P | 2020-09-08 | 2020-09-08 | |
US63/075,569 | 2020-09-08 | ||
US202163145333P | 2021-02-03 | 2021-02-03 | |
US63/145,333 | 2021-02-03 |
Publications (1)
Publication Number | Publication Date |
---|---|
TW202204939A true TW202204939A (en) | 2022-02-01 |
Family
ID=77291644
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW110105176A TW202204939A (en) | 2020-02-12 | 2021-02-09 | Predictive modeling for tintable windows |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP4104016A4 (en) |
CN (1) | CN115461676A (en) |
TW (1) | TW202204939A (en) |
WO (1) | WO2021163287A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI811167B (en) * | 2022-12-12 | 2023-08-01 | 中國鋼鐵股份有限公司 | Method for predicting nitrogen oxide |
TWI876497B (en) * | 2023-08-29 | 2025-03-11 | 三和技研股份有限公司 | Manufacturing environment data management device, method and intelligent automation equipment system |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US12345568B2 (en) | 2012-04-13 | 2025-07-01 | View Operating Corporation | Predictive modeling for tintable windows |
US12124147B2 (en) | 2012-04-13 | 2024-10-22 | View, Inc. | Control methods and systems using external 3D modeling and neural networks |
US12271868B2 (en) | 2018-08-15 | 2025-04-08 | View Operating Corporation | Failure prediction of at least one tintable window |
US11769066B2 (en) | 2021-11-17 | 2023-09-26 | Johnson Controls Tyco IP Holdings LLP | Building data platform with digital twin triggers and actions |
DE112022005457T5 (en) * | 2021-11-17 | 2024-09-05 | Tyco Fire & Security Gmbh | Building platform with digital twins |
US11934966B2 (en) | 2021-11-17 | 2024-03-19 | Johnson Controls Tyco IP Holdings LLP | Building data platform with digital twin inferences |
CN114994797B (en) * | 2022-06-17 | 2025-02-11 | 淮阴工学院 | Wind speed and wind pressure IoT intelligent big data system |
US20240329483A1 (en) * | 2023-03-29 | 2024-10-03 | Lenovo (Singapore) Pte. Ltd. | Device and method for controlling tint of a transparent medium |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10253564B2 (en) * | 2004-05-06 | 2019-04-09 | Mechoshade Systems, Llc | Sky camera system for intelligent building control |
US8577822B2 (en) * | 2008-09-25 | 2013-11-05 | University Of Iowa Research Foundation | Data-driven approach to modeling sensors wherein optimal time delays are determined for a first set of predictors and stored as a second set of predictors |
KR101542684B1 (en) * | 2014-02-04 | 2015-08-06 | 한국기술교육대학교 산학협력단 | Smart window system and control method thereof |
US11743071B2 (en) * | 2018-05-02 | 2023-08-29 | View, Inc. | Sensing and communications unit for optically switchable window systems |
TW202314111A (en) * | 2014-09-29 | 2023-04-01 | 美商唯景公司 | Combi-sensor systems |
US10425376B2 (en) * | 2015-01-12 | 2019-09-24 | Kinestral Technologies, Inc. | Install mode and cloud learning for smart windows |
US10192125B2 (en) * | 2016-10-20 | 2019-01-29 | Ford Global Technologies, Llc | Vehicle-window-transmittance-control apparatus and method |
-
2021
- 2021-02-09 TW TW110105176A patent/TW202204939A/en unknown
- 2021-02-11 CN CN202180026951.4A patent/CN115461676A/en not_active Withdrawn
- 2021-02-11 EP EP21754072.3A patent/EP4104016A4/en active Pending
- 2021-02-11 WO PCT/US2021/017603 patent/WO2021163287A1/en active IP Right Grant
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI811167B (en) * | 2022-12-12 | 2023-08-01 | 中國鋼鐵股份有限公司 | Method for predicting nitrogen oxide |
TWI876497B (en) * | 2023-08-29 | 2025-03-11 | 三和技研股份有限公司 | Manufacturing environment data management device, method and intelligent automation equipment system |
Also Published As
Publication number | Publication date |
---|---|
EP4104016A4 (en) | 2024-05-29 |
EP4104016A1 (en) | 2022-12-21 |
WO2021163287A1 (en) | 2021-08-19 |
CN115461676A (en) | 2022-12-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3837414B1 (en) | Control methods and systems using external 3d modeling and neural networks | |
TW202204939A (en) | Predictive modeling for tintable windows | |
US12124147B2 (en) | Control methods and systems using external 3D modeling and neural networks | |
US12345568B2 (en) | Predictive modeling for tintable windows | |
US10956231B2 (en) | Multiple interacting systems at a site | |
CN112004984B (en) | Method, apparatus and computer readable medium for determining hue level of tintable windows | |
US12260269B2 (en) | Multiple interacting systems at a site | |
US20230194115A1 (en) | Environmental adjustment using artificial intelligence | |
CN112627704A (en) | Monitoring a site containing a switchable optical device and a controller | |
Basu et al. | Sensor-based predictive modeling for smart lighting in grid-integrated buildings | |
TW202212945A (en) | Environmental adjustment using artificial intelligence | |
US20240427212A1 (en) | Control methods and systems using external 3d modeling and neural networks | |
US20240210781A1 (en) | Control methods and systems using external 3d modeling and schedule-based computing | |
US12271868B2 (en) | Failure prediction of at least one tintable window | |
Kim et al. | Model predictive lighting control for a factory building using a deep deterministic policy gradient | |
WO2022221234A1 (en) | Temperature and thermal comfort mapping of an enclosed environment | |
US20250237545A1 (en) | Predictive modeling for tintable windows | |
WO2022093629A1 (en) | Failure prediction of at least one tintable window | |
CN117178227B (en) | Failure prediction for at least one tintable window | |
Aneja | Improving Efficient Daytime Luminance and Improvement of Daylight Feasibility Using Google Net Convolutional Neural Network | |
US20250123528A1 (en) | Temperature and thermal comfort mapping of an enclosed environment | |
EP4237908A1 (en) | Failure prediction of at least one tintable window |