TW202133388A - Semiconductor storage device - Google Patents
Semiconductor storage device Download PDFInfo
- Publication number
- TW202133388A TW202133388A TW110103466A TW110103466A TW202133388A TW 202133388 A TW202133388 A TW 202133388A TW 110103466 A TW110103466 A TW 110103466A TW 110103466 A TW110103466 A TW 110103466A TW 202133388 A TW202133388 A TW 202133388A
- Authority
- TW
- Taiwan
- Prior art keywords
- voltage
- memory
- source line
- fuse
- mentioned
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C17/00—Read-only memories programmable only once; Semi-permanent stores, e.g. manually-replaceable information cards
- G11C17/06—Read-only memories programmable only once; Semi-permanent stores, e.g. manually-replaceable information cards using diode elements
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C17/00—Read-only memories programmable only once; Semi-permanent stores, e.g. manually-replaceable information cards
- G11C17/14—Read-only memories programmable only once; Semi-permanent stores, e.g. manually-replaceable information cards in which contents are determined by selectively establishing, breaking or modifying connecting links by permanently altering the state of coupling elements, e.g. PROM
- G11C17/16—Read-only memories programmable only once; Semi-permanent stores, e.g. manually-replaceable information cards in which contents are determined by selectively establishing, breaking or modifying connecting links by permanently altering the state of coupling elements, e.g. PROM using electrically-fusible links
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C17/00—Read-only memories programmable only once; Semi-permanent stores, e.g. manually-replaceable information cards
- G11C17/14—Read-only memories programmable only once; Semi-permanent stores, e.g. manually-replaceable information cards in which contents are determined by selectively establishing, breaking or modifying connecting links by permanently altering the state of coupling elements, e.g. PROM
- G11C17/18—Auxiliary circuits, e.g. for writing into memory
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B20/00—Read-only memory [ROM] devices
- H10B20/20—Programmable ROM [PROM] devices comprising field-effect components
- H10B20/25—One-time programmable ROM [OTPROM] devices, e.g. using electrically-fusible links
Landscapes
- Semiconductor Memories (AREA)
- Read Only Memory (AREA)
Abstract
本發明提供一種可抑制資料寫入時之洩漏電流之半導體記憶裝置。於半導體記憶裝置1中,複數個反熔絲記憶體M配置為矩陣狀。反熔絲記憶體M具有記憶體電容器10與MOS電晶體20。記憶體電容器10係記憶體閘極電極10a連接於MOS電晶體20之源極區域20b,擴散區域10b連接於各行之源極線SL。MOS電晶體20之閘極電極20a連接於各行之字元線WL,汲極區域20c連接於各列之位元線BL,使獨立施加之電壓受到控制。The present invention provides a semiconductor memory device capable of suppressing leakage current during data writing. In the semiconductor memory device 1, a plurality of anti-fuse memories M are arranged in a matrix. The anti-fuse memory M has a memory capacitor 10 and a MOS transistor 20. In the memory capacitor 10, the memory gate electrode 10a is connected to the source region 20b of the MOS transistor 20, and the diffusion region 10b is connected to the source line SL of each row. The gate electrode 20a of the MOS transistor 20 is connected to the word line WL of each row, and the drain region 20c is connected to the bit line BL of each column, so that the independently applied voltage is controlled.
Description
本發明係關於一種半導體記憶裝置。The present invention relates to a semiconductor memory device.
已知有一種僅可進行1次資料寫入之反熔絲記憶體(例如參照專利文獻1)。於反熔絲記憶體中,藉由將記憶體電容器之絕緣膜即記憶體閘極絕緣膜電性地絕緣破壞而進行資料之寫入。There is known an anti-fuse memory in which data can be written only once (for example, refer to Patent Document 1). In the anti-fuse memory, data is written by electrically insulating and destroying the insulating film of the memory capacitor, that is, the insulating film of the memory gate.
於專利文獻1中,記載有一種半導體記憶裝置,其將包含二極體連接之N型之MOS(Metal Oxide Semiconductor:金屬氧化物半導體)電晶體(整流元件)與記憶體電容器之複數個反熔絲記憶體配置為矩陣狀。記憶體電容器係將因字元線與位元線之電壓差而被絕緣破壞之記憶體閘極絕緣膜與記憶體閘極電極積層於活性區域上的構成。對應反熔絲記憶體之各列,字元線對應各行分別設置有位元線。各反熔絲記憶體之記憶體電容器係於設置於活性區域之一端之擴散區域連接位元線,且於記憶體閘極電極連接有MOS電晶體之源極區域。又,MOS電晶體係閘極電極與汲極區域彼此連接且二極體連接,該等閘極電極及汲極區域連接於字元線。In
於上述半導體記憶裝置中,將資料寫入配置為矩陣狀之反熔絲記憶體中特定之反熔絲記憶體之情形,對寫入該資料之反熔絲記憶體所連接之位元線施加0 V電壓,且對字元線施加5 V電壓。對於其外之位元線、字元線分別施加3 V、0 V之電壓。於藉此寫入資料之反熔絲記憶體中,於記憶體閘極電極與擴散區域之間產生將記憶體閘極絕緣膜絕緣破壞之電壓差,於其以外之反熔絲記憶體中,設為記憶體閘極絕緣膜不會絕緣破壞之電壓差。 [先前技術文獻] [專利文獻]In the above-mentioned semiconductor memory device, when data is written into a specific anti-fuse memory in the anti-fuse memory arranged in a matrix, the bit line connected to the anti-fuse memory for writing the data is applied A voltage of 0 V is applied, and a voltage of 5 V is applied to the word line. Apply voltages of 3 V and 0 V to the other bit lines and word lines, respectively. In the anti-fuse memory through which data is written, a voltage difference that breaks the insulation of the memory gate insulating film is generated between the memory gate electrode and the diffusion region, and in the other anti-fuse memory, Set the voltage difference at which the insulating film of the memory gate will not be damaged. [Prior Technical Literature] [Patent Literature]
[專利文獻1]國際公開第2016/136604號[Patent Document 1] International Publication No. 2016/136604
[發明所欲解決之問題][The problem to be solved by the invention]
如上所述之構成之反熔絲記憶體中,與寫入資料之反熔絲記憶體(以下,稱為選擇反熔絲記憶體)連接於相同字元線之不寫入資料之反熔絲記憶體(以下,稱為非選擇反熔絲記憶體)中,與選擇反熔絲記憶體相同,對MOS電晶體之閘極電極與汲極區域,自字元線施加寫入用之5 V電壓。其結果,於該非選擇反熔絲記憶體中,MOS電晶體亦成為導通狀態,且5 V之電壓施加於記憶體電容器之記憶體閘極電極。於連接於非選擇反熔絲記憶體之位元線,以記憶體閘極絕緣膜不被絕緣破壞之方式施加3 V電壓,但於記憶體閘極電極與擴散區域之間產生約2 V之電壓差。其結果,於該非選擇反熔絲記憶體之記憶體閘極絕緣膜已被絕緣破壞之情形,有洩漏電流通過該非選擇反熔絲記憶體自字元線流動至位元線的問題。In the anti-fuse memory structured as described above, the anti-fuse memory for writing data (hereinafter referred to as the selective anti-fuse memory) is connected to the same character line as the anti-fuse for not writing data In the memory (hereinafter referred to as non-selected anti-fuse memory), it is the same as the selected anti-fuse memory. The gate electrode and drain area of the MOS transistor are applied with 5 V for writing from the word line Voltage. As a result, in the non-selective anti-fuse memory, the MOS transistor is also turned on, and a voltage of 5 V is applied to the memory gate electrode of the memory capacitor. On the bit line connected to the non-selective anti-fuse memory, a voltage of 3 V is applied so that the memory gate insulating film is not damaged by the insulation, but about 2 V is generated between the memory gate electrode and the diffusion region Voltage difference. As a result, when the memory gate insulating film of the non-selective anti-fuse memory has been damaged by insulation, there is a problem that leakage current flows from the word line to the bit line through the non-selected anti-fuse memory.
本發明係鑑於上述情況而完成者,其目的在於提供一種可抑制資料寫入時之洩漏電流之半導體記憶裝置。 [解決問題之技術手段]The present invention was completed in view of the above circumstances, and its object is to provide a semiconductor memory device that can suppress leakage current during data writing. [Technical means to solve the problem]
本發明之半導體記憶裝置係具備:記憶體陣列,其由複數個反熔絲記憶體配置為矩陣狀,該反熔絲記憶體具備:記憶體電容器,其具有活性區域、形成於上述活性區域上之記憶體閘極絕緣膜、形成於上述記憶體閘極絕緣膜上之記憶體閘極電極及形成於上述活性區域內之擴散區域;及MOS電晶體,其具有閘極電極、源極區域及汲極區域,且上述源極區域連接於上述記憶體閘極電極;複數條位元線,其等按上述複數個反熔絲記憶體之各列沿列方向延伸設置,且分別連接於列內之上述汲極區域,並於上述複數個反熔絲記憶體中之寫入對象之反熔絲記憶體所連接之1條位元線,施加使上述記憶體閘極絕緣膜絕緣破壞之電壓即第1選擇列電壓;複數條字元線,其等按上述複數個反熔絲記憶體之各行沿行方向延伸設置,且分別連接於行內之上述閘極電極,並於上述寫入對象之反熔絲記憶體所連接之1條字元線,施加將上述MOS電晶體設為導通狀態之電壓即第1選擇行電壓;及複數條源極線,其等按上述複數個反熔絲記憶體之各行沿行方向延伸設置,且分別連接於行內之上述擴散區域,並於上述寫入對象之反熔絲記憶體所連接之1條源極線,於上述MOS電晶體為N型之情形時,施加形成有上述活性區域之井被施加之井電壓以上之第1選擇源極線電壓,於上述MOS電晶體為P型之情形時,施加井電壓以下之第1選擇源極線電壓,並於未連接上述寫入對象之反熔絲記憶體之源極線,施加上述第1選擇源極線電壓與上述第1選擇列電壓之間之中間電壓即第1非選擇源極線電壓。The semiconductor memory device of the present invention includes: a memory array, which is arranged in a matrix with a plurality of anti-fuse memories, and the anti-fuse memory includes: a memory capacitor having an active area and formed on the active area The memory gate insulating film, the memory gate electrode formed on the above-mentioned memory gate insulating film, and the diffusion region formed in the above-mentioned active region; and a MOS transistor, which has a gate electrode, a source region, and The drain region, and the source region is connected to the gate electrode of the memory; a plurality of bit lines, which are arranged along the row direction according to the rows of the plurality of anti-fuse memories, and are respectively connected in the row The above-mentioned drain region, and a bit line connected to the anti-fuse memory of the writing target in the above-mentioned plurality of anti-fuse memories, apply a voltage that breaks the insulation of the above-mentioned memory gate insulating film, namely The first selection column voltage; a plurality of word lines, which extend in the row direction according to the rows of the plurality of anti-fuse memories, and are respectively connected to the gate electrodes in the rows, and are placed in the writing object A word line connected to the anti-fuse memory is applied with the voltage that sets the MOS transistor to the on-state, that is, the first selected row voltage; and a plurality of source lines, which are stored in accordance with the above-mentioned plurality of anti-fuse memory Each row of the body extends in the row direction, and is respectively connected to the above-mentioned diffusion region in the row, and is connected to a source line of the anti-fuse memory of the above-mentioned writing object. The above-mentioned MOS transistor is an N-type In this case, apply a first selected source line voltage higher than the well voltage applied to the well in which the active region is formed. When the MOS transistor is P-type, apply a first selected source line voltage lower than the well voltage , And to the source line of the anti-fuse memory that is not connected to the write target, apply the first non-selected source line voltage that is the middle voltage between the first selected source line voltage and the first selected column voltage .
本發明之半導體記憶裝置係具備:記憶體陣列,其由複數個反熔絲記憶體配置為矩陣狀,該反熔絲記憶體具備:記憶體電容器,其具有活性區域、形成於上述活性區域上之記憶體閘極絕緣膜、形成於上述記憶體閘極絕緣膜上之記憶體閘極電極及形成於上述活性區域內之擴散區域;及MOS電晶體,其具有閘極電極、源極區域及汲極區域,且上述源極區域連接於上述記憶體閘極電極;複數條位元線,其等按上述複數個反熔絲記憶體之各列沿列方向延伸設置,並分別連接於列內之上述汲極區域,且於上述複數個反熔絲記憶體中之寫入對象之反熔絲記憶體所連接之1條位元線,施加使上述記憶體閘極絕緣膜絕緣破壞之電壓即第1選擇列電壓;複數條字元線,其等按上述複數個反熔絲記憶體之各行沿行方向延伸設置,並分別連接於行內之上述閘極電極,且於上述寫入對象之反熔絲記憶體所連接之1條字元線,施加將上述MOS電晶體設為導通狀態之電壓即第1選擇行電壓;及複數條源極線,其等按上述複數個反熔絲記憶體之各行沿行方向延伸設置,並分別連接於行內之上述擴散區域,且於上述寫入對象之反熔絲記憶體所連接之1條源極線,於上述MOS電晶體為N型之情形時,施加形成有上述活性區域之井被施加之井電壓以上之第1選擇源極線電壓,而於上述MOS電晶體為P型之情形時,施加井電壓以下之第1選擇源極線電壓,且未連接上述寫入對象之反熔絲記憶體之源極線被設為浮動狀態。The semiconductor memory device of the present invention includes: a memory array, which is arranged in a matrix with a plurality of anti-fuse memories, and the anti-fuse memory includes: a memory capacitor having an active area and formed on the active area The memory gate insulating film, the memory gate electrode formed on the above-mentioned memory gate insulating film, and the diffusion region formed in the above-mentioned active region; and a MOS transistor, which has a gate electrode, a source region, and The drain region, and the source region is connected to the gate electrode of the memory; a plurality of bit lines, which are arranged along the row direction according to the rows of the plurality of anti-fuse memories, and are respectively connected in the row The above-mentioned drain region, and a bit line connected to the anti-fuse memory of the writing target in the above-mentioned plurality of anti-fuse memories, apply a voltage that breaks the insulation of the above-mentioned memory gate insulating film, namely The first selection column voltage; a plurality of word lines, which are arranged in the row direction according to the rows of the plurality of anti-fuse memories, and are respectively connected to the gate electrodes in the rows, and in the writing object A word line connected to the anti-fuse memory is applied with the voltage that sets the MOS transistor to the on-state, that is, the first selected row voltage; and a plurality of source lines, which are stored in accordance with the above-mentioned plurality of anti-fuse memory Each row of the body extends along the row direction, and is respectively connected to the above-mentioned diffusion region in the row, and is connected to a source line of the anti-fuse memory of the above-mentioned writing object. The above-mentioned MOS transistor is an N-type In this case, the first selected source line voltage above the well voltage applied to the well where the active region is formed is applied, and when the MOS transistor is P-type, the first selected source line below the well voltage is applied The source line of the anti-fuse memory that is not connected to the above-mentioned writing object is set to a floating state.
本發明之半導體記憶裝置係具備:記憶體陣列,其由複數個反熔絲記憶體配置為矩陣狀,該反熔絲記憶體具備:記憶體電容器,其具有活性區域、形成於上述活性區域上之記憶體閘極絕緣膜、形成於上述記憶體閘極絕緣膜上之記憶體閘極電極及形成於上述活性區域內之擴散區域;及MOS電晶體,其具有閘極電極、源極區域及汲極區域,且上述源極區域連接於上述記憶體閘極電極;複數條位元線,其等按上述複數個反熔絲記憶體之各列沿列方向延伸設置,且分別連接於列內之上述汲極區域;複數條字元線,其等按上述複數個反熔絲記憶體之各行沿行方向延伸設置,且分別連接於行內之上述閘極電極;複數條源極線,其等按上述複數個反熔絲記憶體之各行沿行方向延伸設置,且分別連接於行內之上述擴散區域;位元線驅動器,其對上述複數條位元線中之、上述複數個反熔絲記憶體中之寫入對象之反熔絲記憶體所連接之1條位元線,施加使上述記憶體閘極絕緣膜絕緣破壞之電壓即第1選擇列電壓;字元線驅動器,其對上述複數條字元線中之、上述寫入對象之反熔絲記憶體所連接之1條字元線,施加將上述MOS電晶體設為導通狀態之電壓即第1選擇行電壓;及源極線驅動器,其對上述複數條源極線中之上述寫入對象之反熔絲記憶體所連接之1條源極線,於上述MOS電晶體為N型之情形,施加形成有上述活性區域之井被施加之井電壓以上之第1選擇源極線電壓,而於上述MOS電晶體為P型之情形時,施加井電壓以下之第1選擇源極線電壓,並對上述寫入對象之反熔絲記憶體未連接之源極線,施加上述第1選擇源極線電壓與上述第1選擇列電壓之間之中間電壓,即第1非選擇源極線電壓。The semiconductor memory device of the present invention includes: a memory array, which is arranged in a matrix with a plurality of anti-fuse memories, and the anti-fuse memory includes: a memory capacitor having an active area and formed on the active area The memory gate insulating film, the memory gate electrode formed on the above-mentioned memory gate insulating film, and the diffusion region formed in the above-mentioned active region; and a MOS transistor, which has a gate electrode, a source region, and The drain region, and the source region is connected to the gate electrode of the memory; a plurality of bit lines, which are arranged along the row direction according to the rows of the plurality of anti-fuse memories, and are respectively connected in the row The above-mentioned drain region; a plurality of character lines, which are arranged along the row direction according to the rows of the plurality of anti-fuse memories, and are respectively connected to the above-mentioned gate electrodes in the rows; a plurality of source lines, which The rows of the plurality of anti-fuse memories extend along the row direction, and are respectively connected to the above-mentioned diffusion regions in the rows; bit line drivers, which anti-fuse the above-mentioned plurality of bit lines among the above-mentioned plurality of bit lines. A bit line connected to the anti-fuse memory of the writing target in the silk memory is applied with a voltage that destroys the insulation of the above-mentioned memory gate insulating film, that is, the first selected column voltage; the word line driver is opposite to Among the plurality of word lines, one of the word lines connected to the anti-fuse memory of the writing target is applied with a voltage that turns the MOS transistor into a conductive state, that is, the first selected row voltage; and a source A line driver, which applies to one source line connected to the anti-fuse memory of the writing target among the plurality of source lines, when the MOS transistor is N-type, the active region is formed The first selected source line voltage above the well voltage to which the well is applied, and when the MOS transistor is P-type, the first selected source line voltage below the well voltage is applied, and the opposite of the above writing target The unconnected source line of the fuse memory is applied with an intermediate voltage between the first selected source line voltage and the first selected column voltage, that is, the first non-selected source line voltage.
本發明之半導體記憶裝置係具備:記憶體陣列,其由複數個反熔絲記憶體配置為矩陣狀,該反熔絲記憶體具備:記憶體電容器,其具有活性區域、形成於上述活性區域上之記憶體閘極絕緣膜、形成於上述記憶體閘極絕緣膜上之記憶體閘極電極及形成於上述活性區域內之擴散區域;及MOS電晶體,其具有閘極電極、源極區域及汲極區域,且上述源極區域連接於上述記憶體閘極電極;複數條位元線,其等按上述複數個反熔絲記憶體之各列沿列方向延伸設置,且分別連接於列內之上述汲極區域;複數條字元線,其等按上述複數個反熔絲記憶體之各行沿行方向延伸設置,且分別連接於行內之上述閘極電極;複數條源極線,其等按上述複數個反熔絲記憶體之各行沿行方向延伸設置,且分別連接於行內之上述擴散區域;位元線驅動器,其對上述複數條位元線中之、上述複數個反熔絲記憶體中之寫入對象之反熔絲記憶體所連接之1條位元線,施加使上述記憶體閘極絕緣膜絕緣破壞之電壓即第1選擇列電壓;字元線驅動器,其對上述複數條字元線中之、上述寫入對象之反熔絲記憶體所連接之1條字元線,施加將上述MOS電晶體設為導通狀態之電壓即第1選擇行電壓;及源極線驅動器,其對上述複數條源極線中之、上述寫入對象之反熔絲記憶體所連接之1條源極線,於上述MOS電晶體為N型之情形,施加形成有上述活性區域之井被施加之井電壓以上之第1選擇源極線電壓,而於上述MOS電晶體為P型之情形時,施加井電壓以下之第1選擇源極線電壓,並將上述寫入對象之反熔絲記憶體未連接之源極線設為浮動狀態。 [發明之效果]The semiconductor memory device of the present invention includes: a memory array, which is arranged in a matrix with a plurality of anti-fuse memories, and the anti-fuse memory includes: a memory capacitor having an active area and formed on the active area The memory gate insulating film, the memory gate electrode formed on the above-mentioned memory gate insulating film, and the diffusion region formed in the above-mentioned active region; and a MOS transistor, which has a gate electrode, a source region, and The drain region, and the source region is connected to the gate electrode of the memory; a plurality of bit lines, which are arranged along the row direction according to the rows of the plurality of anti-fuse memories, and are respectively connected in the row The above-mentioned drain region; a plurality of character lines, which are arranged along the row direction according to the rows of the plurality of anti-fuse memories, and are respectively connected to the above-mentioned gate electrodes in the rows; a plurality of source lines, which The rows of the plurality of anti-fuse memories extend along the row direction, and are respectively connected to the above-mentioned diffusion regions in the rows; bit line drivers, which anti-fuse the above-mentioned plurality of bit lines among the above-mentioned plurality of bit lines. A bit line connected to the anti-fuse memory of the writing target in the silk memory is applied with a voltage that destroys the insulation of the above-mentioned memory gate insulating film, that is, the first selected column voltage; the word line driver is opposite to Among the plurality of word lines, one of the word lines connected to the anti-fuse memory of the writing target is applied with a voltage that turns the MOS transistor into a conductive state, that is, the first selected row voltage; and a source A line driver that applies to one source line connected to the anti-fuse memory of the writing target among the plurality of source lines, when the MOS transistor is N-type, and the active region is formed The first selected source line voltage above the well voltage to which the well is applied, and when the MOS transistor is P-type, the first selected source line voltage below the well voltage is applied, and the above write target The unconnected source line of the anti-fuse memory is set to a floating state. [Effects of Invention]
根據本發明,於寫入對象之反熔絲記憶體未連接之源極線,施加對寫入對象之反熔絲記憶體有連接之源極線施加之第1選擇源極線電壓、與對寫入對象之反熔絲記憶體有連接之位元線施加之第1選擇列電壓之間之中間電壓即第1非選擇源極線電壓,或將寫入對象之反熔絲記憶體未連接之源極線設為浮動狀態,因而可抑制反熔絲記憶體之洩漏電流。According to the present invention, to the source line that is not connected to the anti-fuse memory of the writing target, the first selected source line voltage applied to the source line that is connected to the anti-fuse memory of the writing target, and the pair The intermediate voltage between the first selected column voltage applied to the bit line of the write target anti-fuse memory is the first non-selected source line voltage, or the write target anti-fuse memory is not connected The source line is set to a floating state, which can suppress the leakage current of the anti-fuse memory.
[第1實施形態]
於圖1中,半導體記憶裝置1具備記憶體陣列CA、位元線BL、字元線WL、及源極線SL。於記憶體陣列CA,複數個反熔絲記憶體(記憶胞)M配置為矩陣狀。位元線BL對應反熔絲記憶體M之各列分別設置,字元線WL及源極線SL對應反熔絲記憶體M之各行分別設置。即,由沿列方向排列之反熔絲記憶體M共有一條位元線BL,且由沿行方向排列之反熔絲記憶體M共有一條字元線WL及一條源極線SL。[First Embodiment]
In FIG. 1, the
另,以下,於區分各個反熔絲記憶體M之情形,將i及j設為1、2、3......,且將第i行第j列者作為反熔絲記憶體Mij說明。又,將字元線WL、源極線SL區分為特定行者之情形,將第i行者作為字元線WLi、源極線SLi說明。關於位元線BL亦同樣,於區分為特定列者時,將第j列者作為位元線BLj說明。In addition, in the following, in the case of distinguishing each anti-fuse memory M, i and j are set to 1, 2, 3..., and the i-th row and j-th column are regarded as the anti-fuse memory Mij illustrate. In addition, the case where the word line WL and the source line SL are classified into specific rows, and the i-th row is described as the word line WLi and the source line SLi. The same applies to the bit line BL. When it is classified into a specific row, the j-th row is described as the bit line BLj.
再者,於區分作為資料之寫入及讀取之對象之反熔絲記憶體M、與未作為對象之反熔絲記憶體M之情形,將前者稱為選擇反熔絲記憶體M,將後者稱為非選擇反熔絲記憶體M說明。Furthermore, in the case of distinguishing between the antifuse memory M which is the object of data writing and reading, and the antifuse memory M which is not the object, the former is called the selective antifuse memory M, and the The latter is called non-selective anti-fuse memory M description.
反熔絲記憶體M為任一者皆相同之構成,分別具有記憶體電容器10與MOS電晶體20。各字元線WL及各源極線SL分別連接於對應之行之各反熔絲記憶體M。各位元線BL連接於對應之列之各反熔絲記憶體M。因此,第i行第j列之反熔絲記憶體Mij分別連接於字元線WLi、源極線SLi、位元線BLj。另,如後所述,位元線BL沿列方向延伸,字元線WL及源極線SL沿行方向延伸且彼此正交。The anti-fuse memory M has the same structure as any one, and has a
又,半導體記憶裝置1具備行選擇電路25、列選擇電路26、感測放大器27。位元線BL分別連接於列選擇電路26及感測放大器27,字元線WL及源極線SL分別連接於行選擇電路25。In addition, the
反熔絲記憶體M係分別將MOS電晶體20之閘極電極20a連接於字元線WL,源極區域20b連接於記憶體電容器10之記憶體閘極電極10a,汲極區域20c連接於位元線BL。又,記憶體電容器10之擴散區域10b連接於源極線SL。反熔絲記憶體M藉由行選擇電路25及列選擇電路26,控制所連接之位元線BL、源極線SL及字元線WL之電壓,藉此進行資料之寫入、讀取。The anti-fuse memory M connects the
記憶體電容器10具有記憶體閘極電極10a、擴散區域10b、記憶體閘極絕緣膜10c(參照圖3),且藉由記憶體閘極絕緣膜10c之絕緣破壞之有無,非揮發性地保持1位元之資料。即,記憶體電容器10係記憶體閘極絕緣膜10c未被絕緣破壞而記憶體閘極電極10a與擴散區域10b之間電性絕緣之絕緣狀態、與記憶體閘極絕緣膜10c被絕緣破壞而記憶體閘極電極10a與擴散區域10b電性短路之短路狀態對應1位元資料之「0」與「1」。另,於該例中,將記憶體閘極絕緣膜10c絕緣破壞且設為短路狀態之情況,係稱為反熔絲記憶體M之資料之寫入。又,資料讀取意指檢測記憶體電容器10為絕緣狀態或短路狀態。The
資料之寫入及讀取時,行選擇電路25將電壓施加於字元線WL及源極線SL,且列選擇電路26將電壓施加於位元線BL。作為施加於字元線WL之電壓,具有寫入時之第1選擇行電壓及第1非選擇行電壓、與讀取時之第2選擇行電壓及第2非選擇行電壓。又,作為施加於源極線SL之電壓,具有寫入時之第1源極線電壓、與讀取時之第2源極線電壓。作為施加於位元線BL之電壓,具有寫入時之第1選擇列電壓及第1非選擇列電壓、與讀取時之第2選擇列電壓及第2非選擇列電壓。When data is written and read, the
因此,如圖2所示,行選擇電路25具有於寫入時,自電源部PS接受各種電壓之供給,對字元線WL選擇性施加第1選擇行電壓及第1非選擇行電壓之字元線驅動器25a、與對源極線SL施加第1源極線電壓之源極線驅動器25b,列選擇電路26具有於寫入時,自電源部PS接受各種電壓之供給,對位元線BL選擇性施加第1選擇列電壓及第1非選擇列電壓之位元線驅動器26a。於該例中,第1選擇列電壓為5 V,第1選擇行電壓為6 V,第1非選擇行電壓、第1非選擇列電壓及第1源極線電壓為0 V,該等3種電壓作為寫入用電壓自電源部PS供給至字元線驅動器25a、源極線驅動器25b、位元線驅動器26a。又,於井S2(參照圖3),於寫入時,通過井電壓施加部28供給來自電源部PS之0 V,井S2之電壓設為0 V。該等電壓之詳細內容予以後述。Therefore, as shown in FIG. 2, the
另,上述之電源部PS例如具有產生寫入用之電壓之複數個電壓產生電路,輸出該等各電壓產生電路產生之電壓。於該例中,具有產生0 V、5 V、6 V之3個電壓產生電路。該等電壓產生電路只要按所需之寫入用之電壓各者設置即可。又,實際上,於讀取時應施加於字元線WL、源極線SL、位元線BL及井S2之電壓、與用以分別驅動行選擇電路25自身、列選擇電路26、井電壓施加部28自身之驅動電壓,自電源部PS供給至行選擇電路25、列選擇電路26、井電壓施加部28,但於圖2中省略其等之圖示。In addition, the above-mentioned power supply unit PS has, for example, a plurality of voltage generating circuits that generate voltages for writing, and outputs the voltages generated by the respective voltage generating circuits. In this example, there are three voltage generating circuits that generate 0 V, 5 V, and 6 V. The voltage generating circuits only need to be set according to the required voltage for writing. In addition, in fact, the voltage that should be applied to the word line WL, source line SL, bit line BL, and well S2 during reading, and the voltage used to drive the
於資料之讀取時,採用預充電方式。感測放大器27基於預充電至第2選擇列電壓之位元線BL之電位之變化,而取得寫入反熔絲記憶體M之1位元之資料。例如,感測放大器27檢測位元線BL之電位於一定時間內是否低於特定閾值電位。另,於該例中,資料之讀取使用預充電方式,但資料之讀取方式未特別限定。When reading data, pre-charging is used. The
圖3顯示反熔絲記憶體M之剖面構造之一例。另,於列方向相鄰之反熔絲記憶體M彼此為相對於行方向線對稱之配置。因此,於反熔絲記憶體M中具有圖3所示之配置、及與其線對稱之配置。反熔絲記憶體M形成於半導體基板S1上之P型井S2。於P型井S2,設置有藉由以絕緣材料形成之元件分離膜IL沿列方向分離之第1活性區域31與第2活性區域32。FIG. 3 shows an example of the cross-sectional structure of the anti-fuse memory M. In addition, the anti-fuse memories M adjacent to each other in the column direction are arranged line-symmetrically with respect to the row direction. Therefore, the anti-fuse memory M has the configuration shown in FIG. 3 and the configuration that is line-symmetrical with it. The anti-fuse memory M is formed in the P-type well S2 on the semiconductor substrate S1. In the P-type well S2, a first
於第1活性區域31,形成有記憶體電容器10。於第1活性區域31,與元件分離膜IL空開特定間隔,形成有高濃度摻雜有N型摻雜物之擴散區域10b。如後所述,擴散區域10b作為源極線SL起作用。於元件分離膜IL與擴散區域10b之間之第1活性區域31上,形成有記憶體閘極絕緣膜10c。跨及記憶體閘極絕緣膜10c、元件分離膜IL之各上表面設置有記憶體閘極電極10a。於記憶體閘極電極10a之兩側壁,設置有以絕緣材料形成之側壁SW1。In the first
於第2活性區域32,形成有MOS電晶體20。於第2活性區域32,以與元件分離膜IL相鄰之方式形成有高濃度摻雜有N型摻雜物之源極區域20b。又,於第2活性區域32,與源極區域20b空開特定間隔,形成有高濃度摻雜有N型摻雜物之汲極區域20c。於源極區域20b與汲極區域20c之間之第2活性區域32上,形成閘極絕緣膜20d,且於該閘極絕緣膜20d上形成有閘極電極20a。如後所述,閘極電極20a作為字元線WL起作用。於閘極電極20a之兩側壁,設置有以絕緣材料形成之側壁SW2。閘極絕緣膜20d為了於資料之寫入時不絕緣破壞,其厚度根據第1選擇行電壓決定,且設得較記憶體閘極絕緣膜10c者更大。In the second
跨及MOS電晶體20之源極區域20b、與記憶體電容器10之記憶體閘極電極10a設置有接點C1。藉由該接點C1,連接有記憶體電容器10之記憶體閘極電極10a與MOS電晶體20之源極區域20b。亦可於記憶體閘極電極10a上與源極區域20b上分別設置接點,以配線連接各接點,以取代藉由接點C1連接記憶體閘極電極10a與源極區域20b之情況。A contact point C1 is provided across the
於汲極區域20c設置有接點C2,藉由該接點C2,而與包含設置於較閘極電極20a更上層之金屬配線層之金屬配線的位元線BL連接。於該例中,接點C2包含與接點C1形成於同層之接點C2a、及形成於該接點C2a之上部之接點C2b。亦可將接點C2以一接點形成。位元線BL沿列方向延設。記憶體閘極電極10a、閘極電極20a、接點C1、接點C2、位元線BL藉由層間絕緣膜覆蓋。記憶體電容器10之記憶體閘極電極10a、與MOS電晶體20之閘極電極20a為以相同步驟形成之相同配線層(同層)之配線。A contact point C2 is provided in the
圖4顯示反熔絲記憶體M之平面布局之一例。複數個反熔絲記憶體M配置為矩陣狀,構成記憶體陣列CA。於列方向相鄰之反熔絲記憶體M之各要件之配置如上所述相對於行方向線對稱。又,各列之反熔絲記憶體M之各要件之配置相同。FIG. 4 shows an example of the planar layout of the anti-fuse memory M. A plurality of anti-fuse memories M are arranged in a matrix to form a memory array CA. The arrangement of the elements of the anti-fuse memory M adjacent in the column direction is line-symmetrical with respect to the row direction as described above. In addition, the configuration of each element of the anti-fuse memory M in each row is the same.
於井S2形成有沿行方向延伸之複數個第1活性區域31。第1活性區域31係以高濃度摻雜N型摻雜物,構成源極線SL。於記憶體陣列端之第1活性區域31上形成接點C3,源極線SL經由接點C3、金屬配線(省略圖示)等連接於行選擇電路25,被賦予第1源極線電壓、第2源極線電壓。源極線SL沿行方向延伸,由列方向上相鄰之反熔絲記憶體M共有。A plurality of first
於彼此相鄰之第1活性區域31之間之井S2,於列方向較長之矩形狀之複數個第2活性區域32空開特定間隔沿行方向配置。第2活性區域32與於列方向相鄰之反熔絲記憶體M者一體化。In the well S2 between the first
記憶體電容器10之記憶體閘極電極10a形成為於列方向較長之矩形狀,其一端延伸至第1活性區域31內。另一端位於第1活性區域31與第2活性區域32之間,但亦可延伸至第2活性區域32內。接點C1跨及記憶體閘極電極10a與第2活性區域32形成,記憶體閘極電極10a與設置於第2活性區域32之MOS電晶體20之源極區域20b電性連接。The
如上所述,於記憶體電容器10中,記憶體閘極電極10a之一端延伸至第1活性區域31,其一端側之閘極邊緣配置於第1活性區域31上。閘極邊緣成為其自身或其角部彎曲或轉向之形狀。因此,對記憶體閘極電極10a施加第1選擇列電壓時,因該記憶體閘極電極10a之一端側之閘極邊緣中之電場變強,故助長記憶體閘極絕緣膜10c之絕緣破壞。因此,此種配置可降低第1選擇列電壓。另,於記憶體電容器為電晶體型之電容器之情形,因記憶體閘極電極穿過活性區域,故於活性區域上僅配置記憶體閘極電極之直線部,而不存在彎曲或轉向之形狀之閘極邊緣。As described above, in the
又,如上所述記憶體閘極電極10a之一端側係閘極邊緣配置於第1活性區域31上,未穿過第1活性區域31。相對於記憶體閘極電極之一端側穿過第1活性區域之布局,如該例所示,於記憶體閘極電極10a之一端側之閘極邊緣配置於第1活性區域31上之布局中,反熔絲記憶體M之胞尺寸變小。又,於記憶體閘極電極10a之一端側之閘極邊緣配置於第1活性區域31上之布局之情形,可將一記憶體電容器10之擴散區域設為一擴散區域10b,只需設置1個用於向作為源極線SL發揮作用之擴散區域10b供電之接點即可,可減少每個胞之接點數,謀求反熔絲記憶體M之胞尺寸之縮小。In addition, as described above, one end side of the
作為由沿行方向配置之反熔絲記憶體M共有之配線,按各行設置有沿行方向延伸之字元線WL。各字元線WL配置為將第2活性區域32沿行方向橫截。字元線WL之第2活性區域32上之部分,成為MOS電晶體20之閘極電極20a。於記憶體陣列端之字元線WL上形成接點C4,字元線WL經由接點C4、金屬配線(省略圖示)等連接於行選擇電路25,被賦予第1選擇行電壓、第1非選擇行電壓、第2選擇行電壓、第2非選擇行電壓。As wirings shared by the anti-fuse memories M arranged in the row direction, word lines WL extending in the row direction are provided for each row. Each word line WL is arranged to cross the second
於第2活性區域32之列方向之中央形成有接點C2。接點C2由列方向上相鄰之反熔絲記憶體M共有。作為由沿列方向配置之反熔絲記憶體M共有之配線,按各列設置有位元線BL。各位元線BL沿列方向延伸,與字元線WL及源極線SL正交。位元線BL藉由接點C2,與設置於第2活性區域32之MOS電晶體20之汲極區域20c連接。位元線BL連接於列選擇電路26,被賦予第1選擇列電壓、第1非選擇列電壓、第2選擇列電壓、第2非選擇列電壓。A contact point C2 is formed in the center of the second
以下,就上述構成之資料之寫入與讀取進行說明。於選擇1個反熔絲記憶體M且將資料寫入該反熔絲記憶體M之情形,將第1選擇行電壓施加於選擇反熔絲記憶體M所連接之成為選擇字元線之字元線WL,且將第1非選擇行電壓施加於其他成為非選擇字元線之字元線WL。又,對選擇反熔絲記憶體M所連接之成為選擇位元線之位元線BL施加第1選擇列電壓,且對其他成為非選擇位元線之位元線BL施加第1非選擇列電壓。再者,對選擇反熔絲記憶體M所連接之成為選擇源極線之源極線SL及其他成為非選擇源極線之源極線SL之任一者,皆施加第1源極線電壓。In the following, the writing and reading of the above-mentioned data will be described. When an anti-fuse memory M is selected and data is written to the anti-fuse memory M, the first selected row voltage is applied to the selected anti-fuse memory M to be connected to become the word of the selected word line The cell line WL, and the first non-selected row voltage is applied to the other non-selected word lines WL. In addition, the first selected column voltage is applied to the bit line BL which is the selected bit line connected to the selective antifuse memory M, and the first non-selected column is applied to the other bit lines BL which become non-selected bit lines Voltage. Furthermore, the first source line voltage is applied to any one of the source line SL that becomes the selected source line and the other source line SL that becomes the non-selected source line connected to the selective anti-fuse memory M .
第1選擇行電壓係可將施加有第1選擇列電壓作為汲極電壓之MOS電晶體20設為導通狀態之閘極電壓,且設定為MOS電晶體20之閾值電壓以上。第1非選擇行電壓係將MOS電晶體20設為斷開狀態之閘極電壓。The first selected row voltage is a gate voltage that can set the
第1選擇列電壓及第1非選擇列電壓係作為MOS電晶體20之汲極電壓施加者。第1選擇列電壓設定為於經由MOS電晶體20施加該電壓之記憶體閘極電極10a與被施加第1源極線電壓之擴散區域10b之間,產生將記憶體閘極絕緣膜10c絕緣破壞之電壓差的電壓。該第1選擇列電壓設定得較第1源極線電壓更高。The first selected column voltage and the first non-selected column voltage are applied as the drain voltage of the
第1非選擇列電壓為了防止記憶體閘極絕緣膜10c之絕緣破壞,且阻止洩漏電流經由非選擇反熔絲記憶體M自位元線BL流動至源極線SL,而設定為與第1源極線電壓相同。The first non-selected column voltage is set to be the same as the first non-selected column voltage in order to prevent the insulation breakdown of the memory
於該例中,第1選擇列電壓為5 V,第1選擇行電壓為6 V。又,第1非選擇行電壓及第1非選擇列電壓及第1源極線電壓與井電壓(電位)同為0 V。In this example, the voltage of the first selected column is 5 V, and the voltage of the first selected row is 6 V. In addition, the first non-selected row voltage, the first non-selected column voltage, and the first source line voltage are the same as the well voltage (potential) of 0V.
於選擇反熔絲記憶體M中,來自字元線WL之第1選擇行電壓施加於閘極電極20a,來自位元線BL之第1選擇列電壓施加於汲極區域20c。藉此,MOS電晶體20成為導通狀態,位元線BL之第1選擇列電壓經由MOS電晶體20施加於記憶體閘極電極10a。又,第1源極線電壓自源極線SL被施加於記憶體電容器10之擴散區域10b。In the selective anti-fuse memory M, the first selected row voltage from the word line WL is applied to the
如此,於選擇反熔絲記憶體M中,因第1選擇列電壓(=5 V)被施加至記憶體電容器10之記憶體閘極電極10a,且第1源極線電壓(=0 V)被施加於擴散區域10b,故於記憶體閘極電極10a之正下方之第1活性區域31之表面形成通道(未圖示)且成為導通狀態,通道電位與源極線SL之電位相同。藉此,於選擇反熔絲記憶體M中,因通道與記憶體閘極電極10a之電位差為5 V,故記憶體閘極電極10a之下部之記憶體閘極絕緣膜10c被絕緣破壞。如此,記憶體閘極電極10a與擴散區域10b經由通道成為低電阻之導通狀態,成為被寫入資料之狀態。In this way, in the selected anti-fuse memory M, because the first selected column voltage (=5 V) is applied to the
例如,於反熔絲記憶體M11寫入資料之情形,如圖5所示,將字元線WL1設為第1選擇行電壓(=6 V),將字元線WL2、WL3......設為第1非選擇行電壓(=0 V),將位元線BL1設為第1選擇列電壓(=5 V),將位元線BL2、BL3......設為第1非選擇列電壓(=0 V)。For example, in the case of writing data into the anti-fuse memory M11, as shown in Figure 5, set the word line WL1 to the first selected row voltage (=6 V), and set the word lines WL2, WL3... .. Set the first non-selected row voltage (=0 V), set the bit line BL1 to the first selected column voltage (=5 V), set the bit lines BL2, BL3... 1 Non-selected column voltage (=0 V).
自字元線WL1對反熔絲記憶體M11之MOS電晶體20之閘極電極20a施加6 V,自位元線BL1對汲極區域20c施加5 V。藉此,MOS電晶體20成為導通狀態,施加於汲極區域20c之5 V經由MOS電晶體20之源極區域20b施加於記憶體閘極電極10a。6 V is applied to the
反熔絲記憶體M11係其記憶體電容器10之擴散區域10b設為源極線SL1之第1源極線電壓(=0 V)。藉此,於反熔絲記憶體M11中,如上所述,於記憶體閘極電極10a與形成於該記憶體閘極電極10a之正下方之第1活性區域31之通道之間,產生將記憶體閘極絕緣膜10c絕緣破壞之5 V之電壓差。其結果,記憶體閘極絕緣膜10c被絕緣破壞,記憶體電容器10成為短路狀態,於反熔絲記憶體M11寫入資料。In the anti-fuse memory M11, the
另一方面,於非選擇反熔絲記憶體M中,成為自字元線WL對閘極電極20a施加第1非選擇行電壓而MOS電晶體20成為斷開狀態、或自位元線BL對MOS電晶體20之汲極區域20c施加第1非選擇行電壓之任一者或兩者。On the other hand, in the non-selected anti-fuse memory M, the first non-selected row voltage is applied to the
於前者之情形,來自位元線BL之電壓未經由MOS電晶體20施加於記憶體閘極電極10a,於後者之情形,經由MOS電晶體20施加於記憶體閘極電極10a之第1非選擇列電壓與自源極線SL施加於擴散區域10b之第1源極線電壓相同。因此,於任一者之情形,於非選擇反熔絲記憶體M中,於記憶體閘極電極10a與其正下方之第1活性區域31之間未產生將記憶體閘極絕緣膜10c絕緣破壞之電壓差,記憶體閘極絕緣膜10c未被絕緣破壞而保持絕緣狀態,維持未被寫入資料之狀態。又,阻止洩漏電流經由非選擇反熔絲記憶體M自位元線BL流動至源極線SL。In the former case, the voltage from the bit line BL is not applied to the
以下,(A)對與選擇反熔絲記憶體M相同列之非選擇反熔絲記憶體M進行說明,(B)對與選擇反熔絲記憶體M相同行之非選擇反熔絲記憶體M進行說明,(C)對與選擇反熔絲記憶體M不同之列及行之非選擇反熔絲記憶體M進行說明。Hereinafter, (A) will describe the non-selected anti-fuse memory M in the same column as the selected anti-fuse memory M, and (B) the non-selected anti-fuse memory M in the same row as the selected anti-fuse memory M M is described, (C) the non-selected anti-fuse memory M in a row and row different from the selected anti-fuse memory M is described.
(A)於與選擇反熔絲記憶體M相同列之非選擇反熔絲記憶體M,即連接於與反熔絲記憶體M11相同之位元線BL1之反熔絲記憶體M21、M31......中,自位元線BL1對其等之MOS電晶體20之汲極區域20c施加第1選擇列電壓(=5 V),但對記憶體閘極電極10a,自字元線WL2、WL3......施加第1非選擇行電壓(=0 V)。藉此,反熔絲記憶體M21、M31......之MOS電晶體20成為斷開狀態。其結果,於反熔絲記憶體M21、M31......中,於其等之記憶體電容器10之記憶體閘極電極10a、與施加有第1源極線電壓(=0 V)之擴散區域10b之間,未產生將記憶體閘極絕緣膜10c絕緣破壞之電壓差。因此,未於反熔絲記憶體M21、M31......寫入資料。(A) The non-selected anti-fuse memory M in the same column as the selected anti-fuse memory M, that is, the anti-fuse memory M21, M31 connected to the same bit line BL1 as the anti-fuse memory M11. In ...., the first selected column voltage (=5 V) is applied to the
反熔絲記憶體M21、M31......之一部分或全部存在已寫入資料且記憶體電容器10成為短路狀態之情形。如上所述,於以連接MOS電晶體之閘極電極與汲極區域之先前之反熔絲記憶體構成之先前之半導體記憶裝置中,與共有字元線之選擇反熔絲記憶體相同列之非選擇反熔絲記憶體之MOS電晶體成為導通狀態,因而存在洩漏電流通過短路狀態之記憶體電容器自字元線流動至位元線之問題。於該半導體記憶裝置1中,若反熔絲記憶體M21、M31......之MOS電晶體20成為導通狀態,則洩漏電流自位元線BL1通過MOS電晶體20、記憶體電容器10流動至源極線SL2、SL3......。然而,於該半導體記憶裝置1中,可獨立對位元線BL與字元線WL施加電壓,且將第1非選擇行電壓施加於反熔絲記憶體M21、M31......之MOS電晶體20之閘極電極20a而設為斷開狀態,因而未產生此種洩漏電流。Some or all of the anti-fuse memory M21, M31... has written data and the
然而,於對選擇反熔絲記憶體M寫入資料時,若於記憶體閘極電極10a與擴散區域10b之間產生過大電壓差、或流動過大電流,則有記憶體電容器10之破壞之範圍波及至井S2之內部之情形。此時,除經由記憶體閘極電極10a、記憶體閘極絕緣膜10c、井S2表面流動至源極線SL之通常之洩漏電流之路徑外,亦形成自記憶體閘極電極10a通過記憶體閘極絕緣膜10c流動至井S2之洩漏路徑。流動至源極線SL之洩漏電流可藉由調整源極線SL之電壓而阻止,但因需將井電位設為0 V,故無法阻止流動至井S2之洩漏電流。However, when writing data to the selected anti-fuse memory M, if an excessive voltage difference or excessive current flows between the
如上所述,於先前之半導體記憶裝置中,因與選擇反熔絲記憶體相同列之非選擇反熔絲記憶體之MOS電晶體成為導通狀態,故於存在流動至井之洩漏路徑之情形,產生洩漏電流通過短路狀態之記憶體電容器自字元線流動至井之問題。因此,於先前之半導體記憶裝置中,為了避免記憶體電容器之過度破壞且進行適當絕緣破壞,不可缺少用以寫入資料之施加電壓等之精密調整及控制。As described above, in the previous semiconductor memory device, since the MOS transistors of the non-selected anti-fuse memory in the same column as the selected anti-fuse memory are turned on, there is a leakage path to the well. There is a problem that leakage current flows from the character line to the well through the memory capacitor in the short-circuit state. Therefore, in the previous semiconductor memory device, in order to avoid excessive damage of the memory capacitor and perform proper insulation damage, it is indispensable to precisely adjust and control the applied voltage for writing data.
相對於此,於該半導體記憶裝置1中,可獨立對位元線BL與字元線WL施加電壓,且將第1非選擇行電壓施加於反熔絲記憶體M21、M31......之MOS電晶體20之閘極電極20a而設為斷開狀態,因而即便存在流動至井S2之洩漏路徑,洩漏電流亦未流動於該洩漏路徑。該情況意指於資料之寫入時容許形成通往井S2之洩漏路徑,於可容易決定第1選擇行電壓、第1選擇列電壓等之資料寫入條件且進行確實之絕緣破壞之方面有利。In contrast, in the
又,因通過反熔絲記憶體M21、M31......之一部分或全部之流向源極線SL2、SL3.......之洩漏電流如上所述由斷開狀態之MOS電晶體20抑制,故不必將對源極線SL2、SL3......設定之電壓設得較0 V更高來抑制洩漏電流。因此,因未使連接於源極線SL2、SL3......之非選擇反熔絲記憶體M即反熔絲記憶體M22、M32......、M23、M33......等之擴散區域10b之電位上升,故可防止對連接於源極線SL2、SL3......之其他反熔絲記憶體M22、M32......、M23、M33......等進行錯誤寫入。In addition, because part or all of the anti-fuse memory M21, M31... flows to the source lines SL2, SL3... the leakage current is changed from the off-state MOS circuit as described above. The
(B)於與選擇反熔絲記憶體M相同行之非選擇反熔絲記憶體M,即連接於與反熔絲記憶體M11相同之字元線WL1及源極線SL1之反熔絲記憶體M12、M13......中,其等之MOS電晶體20自字元線WL1對閘極電極20a施加第1選擇行電壓而成為導通狀態。然而,於該等反熔絲記憶體M12、M13.....中,對MOS電晶體20之汲極區域20c施加有來自位元線BL2、BL3......之第1非選擇列電壓(=0 V)。又,自源極線SL1對記憶體電容器10之擴散區域10b施加第1源極線電壓(=0 V)。因此,於經由MOS電晶體20被施加第1非選擇列電壓之記憶體閘極電極10a、與施加有第1源極線電壓之擴散區域10b之間,未產生將記憶體閘極絕緣膜10c絕緣破壞之電壓差。因此,未對反熔絲記憶體M12、M13......寫入資料。又,位元線BL2、BL3......與源極線SL1為相同電壓,因而洩漏電流未通過記憶體電容器10成為短路狀態之反熔絲記憶體M12、M13......流動於源極線SL1與位元線BL2、BL3......之間。(B) The non-selected anti-fuse memory M in the same row as the selected anti-fuse memory M, that is, the anti-fuse memory connected to the same character line WL1 and source line SL1 as the anti-fuse memory M11 In the bodies M12, M13,..., the
另,於反熔絲記憶體M12、M13......之MOS電晶體20之閘極絕緣膜20d,施加將記憶體閘極絕緣膜10c絕緣破壞之電壓以上之第1選擇行電壓(=6 V),但因根據第1選擇行電壓將閘極絕緣膜20d設得較記憶體閘極絕緣膜10c更厚,故閘極絕緣膜20d未被絕緣破壞。In addition, to the
(C)於與選擇反熔絲記憶體M不同之列及行之非選擇反熔絲記憶體M,即連接之位元線BL、字元線WL、源極線SL之任一者與反熔絲記憶體M11不同之反熔絲記憶體M22、M32......、M23、M33......等中,對其等之MOS電晶體20之閘極電極20a施加有來自字元線WL2、WL3......之第1非選擇行電壓(=0 V)。因此,因MOS電晶體20維持斷開狀態,故與上述反熔絲記憶體M21、M31之情形同樣,未於反熔絲記憶體M22、M32......、M23、M33......等寫入資料。(C) The non-selected anti-fuse memory M in a row and row different from the selected anti-fuse memory M, that is, any one of the connected bit line BL, word line WL, source line SL and the opposite In the anti-fuse memory M22, M32..., M23, M33... etc. which are different from the fuse memory M11, the
又,洩漏電流亦未通過記憶體電容器10成為短路狀態之反熔絲記憶體M22、M32......、M23、M33......等流動於源極線SL2、SL3......與位元線BL2、BL3......之間。另,於反熔絲記憶體M22、M32......、M23、M33......等所連接之位元線BL2、BL3......施加有第1非選擇列電壓(=0 V),因而亦未因位元線BL2、BL3......之電壓進行資料寫入,亦無洩漏電流流動。In addition, the leakage current does not flow through the source lines SL2, SL3, etc. of the anti-fuse memories M22, M32..., M23, M33... etc. which have not been short-circuited through the
接著,對資料讀取動作進行說明。於讀取資料時,首先設為對各源極線SL分別設定第2源極線電壓之狀態。如此,以設定第2源極線電壓之狀態,對選擇反熔絲記憶體M所連接之位元線BL施加第2選擇列電壓,且將該位元線BL預充電至第2選擇列電壓。另,其他位元線BL未預充電為第2非選擇列電壓。Next, the data reading operation will be described. When reading data, first set the second source line voltage to each source line SL. In this way, in the state of setting the second source line voltage, the second selected column voltage is applied to the bit line BL connected to the selected anti-fuse memory M, and the bit line BL is precharged to the second selected column voltage . In addition, the other bit lines BL are not precharged to the second non-selected column voltage.
預充電結束後,該位元線BL設為自列選擇電路26電性切斷之狀態。其後,分別對選擇反熔絲記憶體M所連接之字元線WL設定第2選擇行電壓,對其他字元線WL設定第2非選擇行電壓。接著,以感測放大器27檢測此時之位元線BL之電位之變化。After the precharge is completed, the bit line BL is set to a state of being electrically cut off from the
第2選擇行電壓定為將MOS電晶體20設為導通狀態之閘極電壓,且設定為MOS電晶體20之閾值電壓以上。於該例中,將第2選擇行電壓設定得較第1選擇行電壓更低。第2非選擇列電壓為將MOS電晶體20設為斷開狀態之閘極電壓。第2非選擇列電壓設定為與第2源極線電壓相同之電壓。於該例中,第2選擇列電壓、第2選擇行電壓為3 V,第2非選擇列電壓、第2非選擇行電壓、第2源極線電壓與井電壓同為0 V。The second selected row voltage is set to be the gate voltage at which the
例如,於讀取反熔絲記憶體M11之資料時,如圖6所示,以將源極線SL1、SL2、SL3......設為第2源極線電壓(=0 V)之狀態,將位元線BL1預充電至第2選擇列電壓(=3 V)。預充電結束後,將字元線WL1設為第2選擇行電壓(=3 V),且將其他字元線WL2、WL3......設為第2非選擇行電壓(=0 V)。For example, when reading the data of the anti-fuse memory M11, as shown in Figure 6, set the source lines SL1, SL2, SL3... as the second source line voltage (=0 V) In this state, the bit line BL1 is precharged to the second selected column voltage (=3 V). After the precharge is over, set the word line WL1 to the second selected row voltage (=3 V), and set the other word lines WL2, WL3... to the second non-selected row voltage (=0 V ).
反熔絲記憶體M11之MOS電晶體20藉由自字元線WL1對該閘極電極20a施加3 V而成為導通狀態。其結果,位元線BL1之電壓經由MOS電晶體20施加於記憶體閘極電極10a。The
資料未寫入反熔絲記憶體M11之情形,即記憶體電容器10為絕緣狀態之情形,電流未自記憶體電容器10向源極線SL1方向流動。因此,位元線BL1繼續保持預充電之3 V。另一方面,於資料已寫入反熔絲記憶體M11之情形,即記憶體電容器10為短路狀態之情形,電流自位元線BL1通過MOS電晶體20、記憶體電容器10沿源極線SL1方向流動,且位元線之電位下降。When data is not written into the anti-fuse memory M11, that is, when the
於連接於位元線BL1之其他反熔絲記憶體M21、M31......中,自字元線WL2、WL3......對其等之MOS電晶體20之記憶體閘極電極10a施加0 V。藉此,反熔絲記憶體M21、M31......之MOS電晶體20維持斷開狀態。因此,電流未通過反熔絲記憶體M21、M31......自位元線BL1流動。Among other anti-fuse memories M21, M31... connected to the bit line BL1, from the word lines WL2, WL3... the memory gates of their
如上所述,根據選擇反熔絲記憶體M即反熔絲記憶體M11之記憶體電容器10是否為短路狀態,而決定位元線BL1之電位。若反熔絲記憶體M11之記憶體電容器10為短路狀態,則位元線BL1之電位隨著時間自施加有第2選擇列電壓之時點之經過而下降。As described above, the potential of the bit line BL1 is determined according to whether the
藉由以感測放大器27檢測上述位元線BL1之電位之變化,可判定反熔絲記憶體M11是否被寫入,即反熔絲記憶體M11保持之1位元資料。By detecting the change in the potential of the bit line BL1 with the
如上所述,於對選擇反熔絲記憶體M寫入資料時,有記憶體電容器10之破壞之範圍波及至井S2之內部,形成自記憶體閘極電極10a通過記憶體閘極絕緣膜10c流動至井S2之電流之洩漏路徑之情形。As described above, when writing data to the selected anti-fuse memory M, the damage of the
於先前之半導體記憶裝置中,以感測放大器檢測記憶體電容器之擴散區域所連接之位元線之電位並進行讀取。具體而言,若記憶體電容器為短路狀態,則施加於字元線之電壓通過MOS電晶體(整流元件)施加於記憶體電容器之記憶體閘極電極,電流流動於記憶體電容器,位元線之電位上升。若記憶體電容器為絕緣狀態,則即便施加於字元線之電壓通過MOS電晶體(整流元件)施加於記憶體電容器之記憶體閘極電極,電流亦未流動於記憶體電容器,位元線之電位無變化。In the previous semiconductor memory device, a sense amplifier is used to detect and read the potential of the bit line connected to the diffusion region of the memory capacitor. Specifically, if the memory capacitor is in a short-circuit state, the voltage applied to the word line is applied to the memory gate electrode of the memory capacitor through the MOS transistor (rectifier element), and the current flows through the memory capacitor and the bit line The potential rises. If the memory capacitor is in an insulated state, even if the voltage applied to the word line is applied to the memory gate electrode of the memory capacitor through the MOS transistor (rectifier element), the current does not flow in the memory capacitor. There is no change in potential.
若於記憶體電容器形成自記憶體閘極電極通過記憶體閘極絕緣膜流動至井之電流之洩漏路徑,則電流自記憶體閘極電極流動至井,未流動至記憶體電容器之擴散區域。如此,於先前之半導體記憶裝置中,即便記憶體電容器為短路狀態,位元線之電位亦未上升,變得無法讀取。If a leakage path of current flowing from the memory gate electrode to the well through the memory gate insulating film is formed in the memory capacitor, the current flows from the memory gate electrode to the well, and does not flow to the diffusion area of the memory capacitor. In this way, in the previous semiconductor memory device, even if the memory capacitor is in a short-circuit state, the potential of the bit line does not rise, and it becomes unreadable.
與此相對,於該半導體記憶裝置1中,記憶體電容器10為短路狀態時,存在自記憶體閘極電極10a通過記憶體閘極絕緣膜10c流動至井S2之電流之洩漏路徑,即便電流未自位元線BL1通過MOS電晶體20、記憶體電容器10沿源極線SL1方向流動而流動至井S2,位元線BL1之電位亦下降。因此,對選擇反熔絲記憶體M寫入資料時,於記憶體電容器10之破壞範圍波及至井S2之內部,形成自記憶體閘極電極10a通過記憶體閘極絕緣膜10c流動至井S2之電流之洩漏路徑之情形,亦可藉由以感測放大器27檢測位元線BL1之電位之變化,而判定是否於反熔絲記憶體M11寫入資料。In contrast, in the
於上述之例中,於資料之寫入動作中,將第1非選擇列電壓設為與井電壓(=0 V)相同,但亦可設為井電壓與第1選擇列電壓之間之中間電壓。例如,於第1源極線電壓及井電壓為0 V,第1選擇列電壓為6 V之情形,可將第1非選擇列電壓設為3 V左右。如此,藉由將第1非選擇列電壓設為中間電壓,可減小施加於閘極絕緣膜20d之電壓。即,可將自字元線WL被施加第1選擇行電壓之閘極電極20a、與形成於閘極電極20a之正下方之第2活性區域32之表面且經由汲極區域20c自位元線BL被施加第1非選擇列電壓(中間電壓)之通道的電壓差設得較上述例更小。因此,可減小閘極絕緣膜20d之厚度,可例如將記憶體閘極絕緣膜10c與閘極絕緣膜20d設為相同厚度。另,於如此將第1非選擇列電壓設為中間電壓之情形,該中間電壓設定為與井電壓之電壓差較將記憶體閘極絕緣膜10c絕緣破壞之電壓更低。In the above example, in the data writing operation, the first non-selected row voltage is set to be the same as the well voltage (=0 V), but it can also be set to the middle between the well voltage and the first selected row voltage Voltage. For example, when the first source line voltage and well voltage are 0 V, and the first selected column voltage is 6 V, the first non-selected column voltage can be set to about 3 V. In this way, by setting the first non-selected column voltage to the intermediate voltage, the voltage applied to the
又,於上述之例中,於資料之寫入動作中,對各源極線SL分別設定0 V作為第1源極線電壓,但未連接於選擇反熔絲記憶體M之各源極線SL之電壓未限定於此。例如,亦可將未連接於選擇反熔絲記憶體M之各源極線SL之電壓設為高於0 V且低於第1選擇列電壓之中間電壓。此時,可將第1選擇列電壓設為5 V,且將未連接於選擇反熔絲記憶體M之各源極線SL之電壓設為例如3 V左右。此時,例如MOS電晶體20之斷開特性不充分之情形,位元線BL之第1選擇列電壓之一部分施加於記憶體電容器10之記憶體閘極電極10a之情形,亦因該記憶體閘極電極10a與源極線SL之電壓差變小,故可減少通過短路狀態之記憶體電容器10流動之洩漏電流。另,於控制如此按各行施加於源極線SL之電壓之情形,自不待言,只要例如按各行形成沿行方向延伸之第1活性區域31,且分別設為源極線SL即可。Also, in the above example, in the data writing operation, each source line SL is set to 0 V as the first source line voltage, but it is not connected to each source line of the selective anti-fuse memory M The voltage of SL is not limited to this. For example, the voltage of each source line SL not connected to the selective anti-fuse memory M may be set to an intermediate voltage higher than 0 V and lower than the voltage of the first selected column. At this time, the voltage of the first selected column can be set to 5 V, and the voltage of each source line SL not connected to the selected anti-fuse memory M can be set to, for example, about 3 V. At this time, for example, when the turn-off characteristic of the
於如上所述將未連接於選擇反熔絲記憶體M之各源極線SL之電壓設定為中間電壓之情形,亦可將第1非選擇行電壓設定為高於0 V且低於第1選擇行電壓之電壓,且以自施加有第1選擇行電壓之位元線BL通過MOS電晶體20施加於記憶體閘極電極10a之電壓為中間電壓以下之方式於MOS電晶體20產生電壓降,以此方式設定第1非選擇行電壓。例如,可將第1選擇行電壓設為6 V,將第1選擇列電壓設為5 V,將中間電壓設為3 V,且將第1非選擇行電壓設定為例如3 V以下。此時,如先前之半導體記憶裝置所示,與選擇反熔絲記憶體M相同列之非選擇反熔絲記憶體M之MOS電晶體20成為導通狀態,但因施加於記憶體閘極電極10a之電壓與源極線SL之中間電壓之電壓差較小,故可抑制與選擇反熔絲記憶體M連接於相同之位元線BL之非選擇反熔絲記憶體M中之洩漏電流。In the case where the voltage of each source line SL not connected to the selective anti-fuse memory M is set to an intermediate voltage as described above, the first non-selected row voltage can also be set to be higher than 0 V and lower than the first Select the voltage of the row voltage, and generate a voltage drop in the
再者,於資料之讀取動作中,將第2選擇行電壓與第2選擇列電壓設為相同,但未限定於此,亦可設為不同之電壓。例如,亦可將第2選擇行電壓設得較第2選擇列電壓更高,又可將第2選擇列電壓設定為3 V,且將第2選擇行電壓設定為5 V。藉由將第2選擇行電壓設定得較高,可使MOS電晶體20之導通電流增加,增大記憶體電容器10處於短路狀態時之位元線BL之電壓下降速度,可使資料之讀取動作高速化。Furthermore, in the data reading operation, the second selected row voltage and the second selected column voltage are set to be the same, but it is not limited to this, and may be set to different voltages. For example, the second selected row voltage can also be set higher than the second selected column voltage, the second selected column voltage can be set to 3 V, and the second selected row voltage can be set to 5 V. By setting the second selected row voltage to be higher, the conduction current of the
如上所述,於半導體記憶裝置1中,即便將所有源極線SL之電壓設為0 V,亦可進行資料之寫入及讀取。因此,如圖7中顯示電路構成之半導體記憶裝置1A所示,亦可構成為使記憶體電容器10之擴散區域10b與井S2等電位。此時,例如,只要形成高濃度摻雜P型摻雜物之擴散區域來取代記憶體電容器10之擴散區域10b即可。或,只要於第1活性區域31形成擴散區域即可。於此種構成之資料寫入時,藉由記憶體閘極電極10a與第1活性區域31(井S2)之間之電壓差,破壞記憶體閘極絕緣膜10c,於讀取時,來自位元線BL1之電流自記憶體閘極電極10a通過被絕緣破壞之記憶體閘極絕緣膜10c流動至第1活性區域31。根據此種半導體記憶裝置1A,可廢止源極線SL,且可縮小電路規模。As described above, in the
於上述之例中,以於P型井(第1活性區域)上積層記憶體閘極絕緣膜及記憶體閘極電極之N型記憶體電容器、與於P型井(第2活性區域)上積層閘極絕緣膜及閘極電極之N型MOS電晶體構成反熔絲記憶體,但本發明未限定於此,亦可以P型記憶體電容器與P型MOS電晶體構成反熔絲記憶體。此時,P型記憶體電容器只要構成為於設置於N型井之第1活性區域上積層記憶體閘極絕緣膜及記憶體閘極電極,又於第1活性區域高濃度摻雜P型摻雜物且形成擴散區域即可。關於該P型記憶體電容器之擴散區域,與上述例同樣,除高濃度摻雜P型摻雜物外,亦可構成為高濃度摻雜N型摻雜物,又可構成為不形成擴散區域。P型MOS電晶體只要設為於N型井積層閘極絕緣膜及閘極電極,且高濃度摻雜P型摻雜物之汲極區域及源極區域即可。In the above example, an N-type memory capacitor in which a memory gate insulating film and a memory gate electrode are laminated on the P-well (first active region), and on the P-well (second active region) The laminated gate insulating film and the N-type MOS transistor of the gate electrode constitute an anti-fuse memory, but the present invention is not limited to this, and a P-type memory capacitor and a P-type MOS transistor may also be used to constitute an anti-fuse memory. At this time, the P-type memory capacitor only needs to be constructed such that a memory gate insulating film and a memory gate electrode are stacked on the first active region provided in the N-well, and the first active region is doped with a high concentration of P-type dopant. Impurities and form a diffusion area. Regarding the diffusion region of the P-type memory capacitor, as in the above example, in addition to high-concentration doping with P-type dopants, it can also be configured as high-concentration doping with N-type dopants, or it can be configured to not form diffusion regions. . The P-type MOS transistor only needs to be set in the gate insulating film and the gate electrode of the N-type well build-up layer, and the drain region and the source region of the P-type dopant are doped with high concentration.
[第2實施形態] 第2實施形態之半導體記憶裝置係將寫入資料時施加於非選擇源極線之電壓設為施加於選擇源極線之電壓與施加於選擇位元線之電壓之間之中間電壓者。該第2實施形態之半導體記憶裝置除以下說明細節外,與第1實施形態同樣。以下說明中,對與第1實施形態實質性相同之構成構件附註同一符號且省略其詳細說明。以下,對藉由N型記憶體電容器與N型MOS電晶體構成反熔絲記憶體之情形進行說明。[Second Embodiment] In the semiconductor memory device of the second embodiment, the voltage applied to the non-selected source line during data writing is set to an intermediate voltage between the voltage applied to the selected source line and the voltage applied to the selected bit line. The semiconductor memory device of the second embodiment is the same as the first embodiment except for the details described below. In the following description, components that are substantially the same as those of the first embodiment are given the same reference numerals, and detailed descriptions thereof are omitted. Hereinafter, the case where the anti-fuse memory is formed by an N-type memory capacitor and an N-type MOS transistor will be described.
於該例中,如圖8所示,電源部PS對行選擇電路25之字元線驅動器25a、源極線驅動器25b、列選擇電路26之位元線驅動器26a、井電壓施加部28供給寫入用電壓。對字元線驅動器25a供給第1選擇行電壓(VSWL
)、第1非選擇行電壓(VUWL
)。又,對源極線驅動器25b供給第1選擇源極線電壓(VSSL
)與第1非選擇源極線電壓(VUSL
)。第1選擇源極線電壓為寫入資料時施加於選擇反熔絲記憶體M所連接之源極線SL即選擇源極線之電壓,第1非選擇源極線電壓為施加於選擇反熔絲記憶體M未連接之源極線SL即非選擇源極線之電壓。In this example, as shown in FIG. 8, the power supply unit PS supplies the
對位元線驅動器26a供給第1選擇列電壓(VSBL
)與第1非選擇列電壓(VUBL
)。又,於井電壓施加部28,自電源部PS供給施加至井S2之井電壓(VWEL
)。井電壓施加部28於資料之寫入時,將井電壓施加於井S2。The
另,自電源部PS供給於讀取時用於施加至字元線WL、源極線SL、位元線BL及井S2之各種電壓、或用於驅動行選擇電路25、列選擇電路26、井電壓施加部28自身的電壓,但圖8中省略其等之圖示。後述之圖12亦同樣。In addition, various voltages for applying to the word line WL, source line SL, bit line BL, and well S2 are supplied from the power supply PS during reading, or used to drive the
於該例之半導體記憶裝置1中,將第1選擇源極線電壓設為與第1非選擇列電壓相同之電壓(VSSL
=VUBL
)。又,使第1非選擇源極線電壓高於第1選擇源極線電壓,且低於第1選擇列電壓(VSSL
<VUSL
<VSBL
)。即,將第1非選擇源極線電壓,設為第1選擇源極線電壓與第1選擇列電壓之間之中間電壓。雖將井電壓設為第1選擇源極線電壓以下(VWEL
≦VSSL
),但較佳使井電壓低於第1選擇源極線電壓。雖將第1非選擇行電壓設為第1選擇源極線電壓以上(VSSL
≦VUWL
),但較佳將第1非選擇行電壓設為高於第1選擇源極線電壓的電壓。又,雖將第1選擇行電壓設為第1選擇列電壓以上(VSBL
≦VSWL
),但較佳將第1選擇行電壓設為高於第1選擇列電壓的電壓。使第1非選擇行電壓低於第1選擇列電壓,且低於第1選擇行電壓(VUWL
<VSBL
、VUWL
<VSWL
)。In the
第1選擇列電壓係於經由MOS電晶體20被施加該電壓之記憶體閘極電極10a與被施加第1選擇源極線電壓之擴散區域10b之間,產生將記憶體閘極絕緣膜10c絕緣破壞之電壓差的電壓,且設定得較第1選擇源極線電壓更高(VSSL
<VSBL
)。The first selected column voltage is generated between the
表1顯示如上述之寫入用電壓之組合之具體例(電壓例)。表1所示之電壓例N1~N8之任一者皆將第1非選擇源極線電壓設為第1選擇源極線電壓與第1選擇列電壓之間之中間電壓。又,電壓例N1~N8將第1選擇源極線電壓與第1非選擇列電壓設為相同。另,電壓例N2與電壓例N4係各個電壓不同但各電壓之相對高低關係設為相同者。同樣,電壓例N6與電壓例N8係各個電壓不同但各電壓之相對高低關係設為相同者。Table 1 shows a specific example (voltage example) of the combination of the above-mentioned writing voltage. In any of the voltage examples N1 to N8 shown in Table 1, the first non-selected source line voltage is set as an intermediate voltage between the first selected source line voltage and the first selected column voltage. In addition, in the voltage examples N1 to N8, the first selected source line voltage and the first non-selected column voltage are the same. In addition, the voltage example N2 and the voltage example N4 have different voltages, but the relative high-low relationship of each voltage is set to be the same. Similarly, in the voltage example N6 and the voltage example N8, each voltage is different, but the relative high-low relationship of each voltage is set to be the same.
[表1] [Table 1]
電壓例N1~N8中之電壓例N1~N4為將第1選擇源極線電壓與第1非選擇行電壓設為相同者,電壓例N5~N8係使第1選擇源極線電壓低於第1非選擇行電壓者。於電壓例N1、N2、N4~N6、N8中,將第1選擇源極線電壓與井電壓設為相同,但於電壓例N3、N7中,使井電壓低於第1選擇源極線電壓。又,於電壓例N1、N5中,將第1選擇列電壓與第1選擇行電壓設為相同,但於電壓例N2~N4、N6~N8中使第1選擇行電壓高於第1選擇列電壓。The voltage examples N1 to N4 in the voltage examples N1 to N8 are the ones that set the first selected source line voltage and the first non-selected row voltage to be the same. The voltage examples N5 to N8 make the first selected source line voltage lower than the first selected source line voltage. 1 Non-selection of line voltage. In voltage examples N1, N2, N4 to N6, and N8, set the first selected source line voltage to be the same as the well voltage, but in voltage examples N3 and N7, make the well voltage lower than the first selected source line voltage . Also, in the voltage examples N1 and N5, the first selected column voltage and the first selected row voltage are set to be the same, but in the voltage examples N2 to N4, N6 to N8, the first selected row voltage is higher than the first selected row voltage Voltage.
以下,以電壓例N3之情形為例對寫入用電壓之細節進行說明。於電壓例N3中,井電壓為最低之-2 V,第1選擇行電壓為最高之6 V。第1選擇源極線電壓與第1非選擇列電壓同為0 V,將井電壓設得較第1選擇源極線電壓更低。又,第1非選擇行電壓為0 V,第1非選擇行電壓與第1選擇源極線電壓相同。第1選擇列電壓為5 V,第1選擇行電壓高於該第1選擇列電壓。第1非選擇源極線電壓為3 V,即如上述般設定之第1選擇源極線電壓與第1選擇列電壓之間之中間電壓。如上所述,第1非選擇行電壓為0 V,低於5 V之第1選擇列電壓及6 V之第1選擇行電壓。Hereinafter, the details of the writing voltage will be described by taking the case of the voltage example N3 as an example. In voltage example N3, the well voltage is the lowest -2 V, and the first selection row voltage is the highest 6 V. The voltage of the first selected source line and the voltage of the first non-selected column are the same at 0 V, and the well voltage is set lower than the voltage of the first selected source line. In addition, the first non-selected row voltage is 0 V, and the first non-selected row voltage is the same as the first selected source line voltage. The voltage of the first selected column is 5 V, and the voltage of the first selected row is higher than the voltage of the first selected column. The first non-selected source line voltage is 3 V, that is, the intermediate voltage between the first selected source line voltage and the first selected column voltage set as described above. As described above, the voltage of the first non-selected row is 0 V, which is lower than the voltage of the first selected column of 5 V and the voltage of the first selected row of 6 V.
於將資料寫入反熔絲記憶體M之情形,例如將資料寫入反熔絲記憶體M11之情形時,如圖9所示,將井S2設為井電壓即-2 V,將字元線WL1設為第1選擇行電壓即6 V,將字元線WL2、WL3......設為第1非選擇行電壓即0 V。又,將位元線BL1設為第1選擇列電壓即5 V,將位元線BL2、BL3......設為第1非選擇列電壓即0 V。再者,將源極線SL1設為第1選擇源極線電壓即0 V,將源極線SL2、3......設為第1非選擇源極線電壓即3 V。In the case of writing data into the anti-fuse memory M, such as when writing data into the anti-fuse memory M11, as shown in Figure 9, set the well S2 to the well voltage, which is -2 V, and set the character The line WL1 is set to the first selected row voltage, which is 6 V, and the word lines WL2, WL3,... Are set to the first non-selected row voltage, which is 0 V. In addition, the bit line BL1 is set to 5 V, which is the first selected column voltage, and the bit lines BL2, BL3, ... are set to 0 V, which is the first non-selected column voltage. Furthermore, the source line SL1 is set to 0 V, which is the first selected source line voltage, and the source lines SL2, 3, ... are set to 3 V, which is the first non-selected source line voltage.
藉由如上所述施加電壓,反熔絲記憶體M11與第1實施形態之情形同樣,成為經由導通狀態之MOS電晶體20自位元線BL1對記憶體閘極電極10a施加第1選擇列電壓,且對反熔絲記憶體M11之擴散區域10b施加源極線SL1之第1選擇源極線電壓的狀態。藉此,於反熔絲記憶體M11中,於記憶體閘極電極10a與形成於該記憶體閘極電極10a之正下方之第1活性區域31之通道之間,產生將記憶體閘極絕緣膜10c絕緣破壞之5 V之電壓差,記憶體閘極絕緣膜10c被絕緣破壞,對反熔絲記憶體M11寫入資料。By applying the voltage as described above, the anti-fuse memory M11 is the same as in the first embodiment, and the first selected column voltage is applied to the
另一方面,於非選擇反熔絲記憶體M中,為自字元線WL對閘極電極20a施加第1非選擇行電壓而MOS電晶體20成為斷開狀態、自位元線BL對MOS電晶體20之汲極區域20c施加第1非選擇行電壓之任一者或兩者。於與選擇反熔絲記憶體M不同之行(以下,稱為非選擇行)內之非選擇反熔絲記憶體M中,因MOS電晶體20成為斷開狀態,故第1選擇列電壓未施加於記憶體閘極電極10a,因而記憶體閘極絕緣膜10c未被絕緣破壞。另一方面,於與選擇反熔絲記憶體M相同之行內之非選擇反熔絲記憶體M中,MOS電晶體20成為導通狀態,對記憶體閘極電極10a施加來自位元線BL之第1非選擇列電壓(0 V),但對記憶體電容器10之擴散區域10b施加來自源極線SL之第1源極線電壓(0 V)。因此,於記憶體閘極電極10a與擴散區域10b之間,未產生將記憶體閘極絕緣膜10c絕緣破壞之電壓差。因此,記憶體閘極絕緣膜10c未被絕緣破壞。On the other hand, in the non-selected anti-fuse memory M, since the first non-selected row voltage is applied to the
如上所述,將第1非選擇源極線電壓設為3 V,且設為0 V之第1選擇源極線電壓與5 V之第1選擇列電壓之間之中間電壓。藉此,於寫入有非選擇行內之資料之非選擇反熔絲記憶體M中,MOS電晶體20之斷開特性不充分之情形,通過該MOS電晶體20被施加第1選擇列電壓之一部分之記憶體閘極電極10a與源極線SL之電壓差亦變小。其結果,通過短路狀態之記憶體電容器10、MOS電晶體20而流動於源極線SL與位元線BL之間之洩漏電流減少。As described above, the first non-selected source line voltage is set to 3 V, and it is set to an intermediate voltage between the first selected source line voltage of 0 V and the first selected column voltage of 5 V. As a result, in the non-selected anti-fuse memory M in which data in the non-selected row is written, if the disconnection characteristic of the
另,於電壓例N3之其他電壓例N1、N2、N4~N8之情形,亦因將第1非選擇源極線電壓設為第1選擇源極線電壓與第1選擇列電壓之間之中間電壓,故與上述同樣,減少洩漏電流。In addition, in the case of the other voltage examples N1, N2, N4~N8 of the voltage example N3, the first non-selected source line voltage is also set as the middle between the first selected source line voltage and the first selected column voltage Therefore, the same as the above, the leakage current is reduced.
第1非選擇列電壓為與第1選擇源極線電壓相同之0 V。如此,藉由將第1非選擇列電壓與第1選擇源極線電壓設為相同之電壓,而防止與選擇反熔絲記憶體M相同行內之非選擇反熔絲記憶體M中之記憶體閘極絕緣膜10c之絕緣破壞,且阻止洩漏電流經由非選擇反熔絲記憶體M自位元線BL流動至源極線SL。另,於電壓例N3之其他電壓例N1、N2、N4~N8之情形,亦因將第1非選擇列電壓與第1選擇源極線電壓設為相同,故阻止洩漏電流流動。The voltage of the first non-selected column is 0 V which is the same as the voltage of the first selected source line. In this way, by setting the voltage of the first non-selected column and the voltage of the first selected source line to the same voltage, the memory in the non-selected anti-fuse memory M in the same row as the selected anti-fuse memory M is prevented The insulation of the body
將第1選擇源極線電壓設為0 V,將井電壓設為-2 V,將井電壓設為低於第1選擇源極線電壓。藉此,第1選擇源極線電壓與井電壓使MOS電晶體20反向偏壓。因此,藉由基板偏壓效果,MOS電晶體20之閾值電壓變高,截止特性提高。其結果,減少非選擇行內之非選擇反熔絲記憶體M中之位元線BL與源極線SL之間之洩漏電流。另,電壓例N7亦獲得相同效果。Set the first selected source line voltage to 0 V, set the well voltage to -2 V, and set the well voltage to be lower than the first selected source line voltage. Thereby, the first selected source line voltage and the well voltage cause the
於電壓例N3中,根據如上述之第1選擇源極線電壓與井電壓之高低關係,第1選擇源極線電壓成為井電壓與第1非選擇源極線電壓之間之中間電壓。又,第1非選擇源極線電壓為第1選擇源極線電壓與第1選擇列電壓之間之中間電壓。因此,井電壓、第1選擇源極線電壓、第1非選擇源極線電壓、第1選擇列電壓具有電壓依序變高之電壓高低關係(VWEL <VSSL <VUSL <VSBL )。In the voltage example N3, according to the above-mentioned relationship between the first selected source line voltage and the well voltage, the first selected source line voltage becomes the intermediate voltage between the well voltage and the first non-selected source line voltage. In addition, the first non-selected source line voltage is an intermediate voltage between the first selected source line voltage and the first selected column voltage. Therefore, the well voltage, the first selected source line voltage, the first non-selected source line voltage, and the first selected column voltage have a voltage relationship that sequentially increases in voltage (V WEL <V SSL <V USL <V SBL ) .
相對於5 V之第1選擇列電壓,將第1選擇行電壓設為6 V,且將第1選擇行電壓設得較第1選擇列電壓更高。藉此,通過MOS電晶體20將第1選擇列電壓施加於記憶體電容器10之記憶體閘極電極10a時之電壓之降低被減少。另,關於電壓例N2、N4、N6~N8,亦因將第1選擇行電壓設得較第1選擇列電壓更高,故獲得相同效果。Relative to the first selected column voltage of 5 V, the first selected row voltage is set to 6 V, and the first selected row voltage is set to be higher than the first selected column voltage. Thereby, the voltage drop when the first selected column voltage is applied to the
使用電壓例N7所示之寫入用電壓之組合,例如於將資料寫入反熔絲記憶體M11之情形,如圖10所示,將字元線WL2、WL3......設為第1非選擇行電壓即1.5 V。對其他字元線WL1、源極線SL1、2......、位元線BL1、BL2......、井電壓施加之電壓與電壓例N3之情形相同。Use the combination of the writing voltage shown in the voltage example N7, for example, in the case of writing data into the anti-fuse memory M11, as shown in Figure 10, set the word lines WL2, WL3... The first non-selected row voltage is 1.5 V. The voltages applied to the other word lines WL1, source lines SL1, 2..., bit lines BL1, BL2..., and well voltages are the same as in the case of voltage example N3.
如該電壓例N7,藉由將第1非選擇行電壓設為1.5 V,而將第1非選擇行電壓設得較第1選擇源極線電壓更高。如此,藉由將第1非選擇行電壓設得較第1選擇源極線電壓更高,而可減小與選擇反熔絲記憶體M相同列之非選擇反熔絲記憶體M中之MOS電晶體20之閘極電極20a之下部之汲極區域20c端部之電場並減少接合洩漏電流(GIDL:Gate-Induced Drain Leakage)。關於電壓例N5、N6、N8,亦因將第1非選擇行電壓設得較第1選擇源極線電壓更高,故獲得相同效果。As in the voltage example N7, by setting the first non-selected row voltage to 1.5 V, the first non-selected row voltage is set to be higher than the first selected source line voltage. In this way, by setting the first non-selected row voltage higher than the first selected source line voltage, the MOS in the non-selected anti-fuse memory M in the same column as the selected anti-fuse memory M can be reduced. The electric field at the end of the
另,第1非選擇行電壓設定得較第1選擇列電壓及第1選擇行電壓更低。因此,於電壓例N5~N8中,第1非選擇行電壓為第1選擇源極線電壓與第1選擇列電壓之間之中間電壓,又為第1選擇源極線電壓與第1選擇行電壓之間之中間電壓。當然,第1非選擇行電壓為將MOS電晶體20設為斷開狀態之電壓。In addition, the first non-selected row voltage is set to be lower than the first selected column voltage and the first selected row voltage. Therefore, in voltage examples N5 to N8, the first non-selected row voltage is the intermediate voltage between the first selected source line voltage and the first selected column voltage, and is the first selected source line voltage and the first selected row voltage. The intermediate voltage between voltages. Of course, the first non-selected row voltage is the voltage at which the
於電壓例N7中,與電壓例N3相同,第1選擇源極線電壓成為井電壓與第1非選擇源極線電壓之間之中間電壓。又,第1非選擇源極線電壓為第1選擇源極線電壓與第1選擇列電壓之間之中間電壓。因此,井電壓、第1選擇源極線電壓、第1非選擇源極線電壓、第1選擇列電壓具有電壓依序變高之電壓高低關係(VWEL <VSSL <VUSL <VSBL )。In the voltage example N7, as in the voltage example N3, the first selected source line voltage becomes an intermediate voltage between the well voltage and the first non-selected source line voltage. In addition, the first non-selected source line voltage is an intermediate voltage between the first selected source line voltage and the first selected column voltage. Therefore, the well voltage, the first selected source line voltage, the first non-selected source line voltage, and the first selected column voltage have a voltage relationship that sequentially increases in voltage (V WEL <V SSL <V USL <V SBL ) .
再者,於電壓例N7中,如上所述,第1非選擇行電壓為1.5 V即0 V之第1選擇源極線電壓與3 V之第1非選擇源極線電壓之間之中間電壓。因此,井電壓、第1選擇源極線電壓、第1非選擇行電壓、第1非選擇源極線電壓、第1選擇列電壓具有電壓依序變高之電壓高低關係(VWEL <VSSL <VUWL <VUSL <VSBL )。Furthermore, in voltage example N7, as described above, the first non-selected row voltage is the intermediate voltage between the first selected source line voltage of 1.5 V, or 0 V, and the first non-selected source line voltage of 3 V . Therefore, the well voltage, the first selected source line voltage, the first non-selected row voltage, the first non-selected source line voltage, and the first selected column voltage have a voltage relationship (V WEL <V SSL <V UWL <V USL <V SBL ).
使用如上述之寫入用電壓進行反熔絲記憶體M之資料寫入時,例如電壓例N7般使用6種寫入用電壓之情形,如圖11中顯示一例,作為電源部PS可使用對應6種寫入用電壓而設置電壓產生部Pa~Pf者。電壓產生部Pa~Pf輸出電壓Va~Vf。電壓Va、Vb、Vc、Vd、Ve、Vf係電壓依序降低(Va>Vb>Vc>Vd>Ve>Vf)。When using the above-mentioned writing voltage for data writing in the anti-fuse memory M, for example, in the case of using six writing voltages as in voltage example N7, an example is shown in Figure 11, and the corresponding power supply PS can be used. There are six types of voltages for writing, and the voltage generating units Pa to Pf are provided. The voltage generating units Pa to Pf output voltages Va to Vf. The voltages Va, Vb, Vc, Vd, Ve, and Vf are sequentially reduced (Va>Vb>Vc>Vd>Ve>Vf).
於應用於電壓例N7之情形,電壓Va為6 V,電壓Vb為5 V,電壓Vc為3 V,電壓Vd為1.5 V,電壓Ve為0 V,電壓Vf為-2 V。又,於字元線驅動器25a連接電壓產生部Pa與電壓產生部Pd,且將來自電壓產生部Pa之電壓Va作為第1選擇行電壓供給,將來自電壓產生部Pd之電壓Vd作為第1非選擇行電壓供給。於源極線驅動器25b連接電壓產生部Pc與電壓產生部Pe,將來自電壓產生部Pe之電壓Ve作為第1選擇源極線電壓供給,且將來自電壓產生部Pc之電壓Vc作為第1非選擇源極線電壓供給。於位元線驅動器26a連接電壓產生部Pb與電壓產生部Pe,且將來自電壓產生部Pb之電壓Vb作為第1選擇列電壓供給,將來自電壓產生部Pe之電壓Ve作為第1非選擇列電壓供給。於井電壓施加部28連接電壓產生部Pf,且將電壓Vf作為井電壓供給。In the case of voltage application N7, the voltage Va is 6 V, the voltage Vb is 5 V, the voltage Vc is 3 V, the voltage Vd is 1.5 V, the voltage Ve is 0 V, and the voltage Vf is -2 V. In addition, the voltage generating unit Pa and the voltage generating unit Pd are connected to the
於使用如電壓例N1之3種寫入用電壓之情形,只要使用設置電壓產生部Pb、Pc、Pe,輸出3種寫入用電壓之電源部PS即可。此時,於字元線驅動器25a連接電壓產生部Pb與電壓產生部Pe,且將來自電壓產生部Pb之電壓Vb作為第1選擇行電壓供給,將來自電壓產生部Pe之電壓Ve作為第1非選擇行電壓供給。又,於源極線驅動器25b連接電壓產生部Pc與電壓產生部Pe,且將來自電壓產生部Pe之電壓Ve作為第1選擇源極線電壓供給,將來自電壓產生部Pc之電壓Vc作為第1非選擇源極線電壓供給。再者,於位元線驅動器26a連接電壓產生部Pb與電壓產生部Pe,且將來自電壓產生部Pb之電壓Vb作為第1選擇列電壓供給,將來自電壓產生部Pe之電壓Ve作為第1非選擇列電壓供給。於井電壓施加部28連接電壓產生部Pe,且將電壓Ve作為井電壓供給。另,於電壓例N1中,將電壓Vb、Vc、Ve設為5 V、3 V、0 V。In the case of using three types of writing voltages such as the voltage example N1, it is sufficient to use the power supply part PS that is provided with the voltage generating parts Pb, Pc, and Pe and outputting the three types of writing voltages. At this time, the voltage generating unit Pb and the voltage generating unit Pe are connected to the
於使用如電壓例N2、N4之4種寫入用電壓之情形,只要使用設置電壓產生部Pa、Pb、Pc、Pe,輸出4種寫入用電壓之電源部PS即可。此時,於字元線驅動器25a連接電壓產生部Pa與電壓產生部Pe,且將來自電壓產生部Pa之電壓Va作為第1選擇行電壓供給,將來自電壓產生部Pe之電壓Ve作為第1非選擇行電壓供給。此外,與電壓例N1之情形相同。另,電壓Va、Vb、Vc、Ve係於電壓例N2中設為6 V、5 V、3 V、0 V,於電壓例N4中設為3 V、2 V、0 V、-3 V。In the case of using 4 types of writing voltages such as voltage examples N2 and N4, it is sufficient to use the power supply unit PS which is provided with the voltage generating units Pa, Pb, Pc, and Pe and outputs 4 types of writing voltages. At this time, the voltage generating unit Pa and the voltage generating unit Pe are connected to the
於使用如電壓例N3之5種寫入用電壓之情形,只要使用設置電壓產生部Pa、Pb、Pc、Pe、Pf,輸出5種寫入用電壓之電源部PS即可。此時,於井電壓施加部28連接電壓產生部Pe且將電壓Ve作為井電壓供給。此外,與電壓例N2之情形相同。另,於電壓例N3中,電壓Va、Vb、Vc、Ve、Vf設為6 V、5 V、3 V、0 V、-2 V。In the case of using five types of writing voltages such as voltage example N3, it is sufficient to use the power supply part PS that sets the voltage generating parts Pa, Pb, Pc, Pe, and Pf to output the five types of writing voltages. At this time, the voltage generating unit Pe is connected to the well
於使用如電壓例N5之4種寫入用電壓之情形,只要使用設置電壓產生部Pb、Pc、Pd、Pe,輸出4種寫入用電壓之電源部PS即可。此時,於字元線驅動器25a連接電壓產生部Pb與電壓產生部Pd,將來自電壓產生部Pb之電壓Vb作為第1選擇行電壓供給,將來自電壓產生部Pd之電壓Vd作為第1非選擇行電壓供給。此外,與電壓例N1之情形相同。另,於電壓例N5中,電壓Vb、Vc、Vd、Ve設為5 V、3 V、1.5 V、0 V。In the case of using four types of writing voltages such as voltage example N5, it is sufficient to use the power supply part PS that sets the voltage generating parts Pb, Pc, Pd, and Pe and outputs four types of writing voltages. At this time, the voltage generating part Pb and the voltage generating part Pd are connected to the
於使用如電壓例N6、N8之5種寫入用電壓之情形,只要使用設置電壓產生部Pa、Pb、Pc、Pd、Pe,輸出5種寫入用電壓之電源部PS即可。於字元線驅動器25a連接電壓產生部Pa與電壓產生部Pd,將來自電壓產生部Pa之電壓Va作為第1選擇行電壓供給,將來自電壓產生部Pd之電壓Vd作為第1非選擇行電壓供給。此外,與電壓例N2之情形相同。另,電壓Va、Vb、Vc、Vd、Ve係於電壓例N6中設為6 V、5 V、3 V、1.5 V、0 V,於電壓例N8中設為3 V、2 V、0 V、-1.5 V、-3 V。In the case of using five types of writing voltages such as voltage examples N6 and N8, it is sufficient to use the power supply part PS that is provided with the voltage generating parts Pa, Pb, Pc, Pd, and Pe and outputting five types of writing voltages. The voltage generating part Pa and the voltage generating part Pd are connected to the
以P型記憶體電容器及MOS電晶體構成反熔絲記憶體之情形時,只要將寫入用電壓之高低設為與以N型記憶體電容器及MOS電晶體構成反熔絲記憶體之上述情形相反即可。因此,只要將自電源部輸出之電壓Va~Vf之高低關係設為相反即可。When using P-type memory capacitors and MOS transistors to form an anti-fuse memory, just set the writing voltage to the same as the above situation when using N-type memory capacitors and MOS transistors to form an anti-fuse memory. The opposite is fine. Therefore, it is only necessary to reverse the relationship between the high and low voltages Va to Vf output from the power supply unit.
以P型記憶體電容器及MOS電晶體構成反熔絲記憶體之情形,將第1選擇源極線電壓設為與第1非選擇列電壓相同之電壓(VSSL =VUBL )。使第1非選擇源極線電壓低於第1選擇源極線電壓,且高於第1選擇列電壓(VSSL >VUSL >VSBL )。即,將第1非選擇源極線電壓設為第1選擇源極線電壓與第1選擇列電壓之間之中間電壓。雖將井電壓設為第1選擇源極線電壓以上(VWEL ≧VSSL ),但較佳使井電壓高於第1選擇源極線電壓。雖將第1非選擇行電壓設為第1選擇源極線電壓以下(VSSL ≧VUWL ),但較佳將第1非選擇行電壓設為低於第1選擇源極線電壓的電壓。第1非選擇行電壓高於第1選擇列電壓,又高於第1選擇行電壓(VUWL >VSBL 、VUWL >VSWL )。又,較佳將第1選擇行電壓設為第1選擇列電壓以下(VSBL ≧VSWL ),亦較佳將第1選擇行電壓設得較第1選擇列電壓更低(VSBL >VSWL )。In the case of using P-type memory capacitors and MOS transistors to form an anti-fuse memory, set the first selected source line voltage to the same voltage as the first non-selected column voltage (V SSL =V UBL ). Make the first non-selected source line voltage lower than the first selected source line voltage and higher than the first selected column voltage (V SSL >V USL >V SBL ). That is, the first non-selected source line voltage is set to an intermediate voltage between the first selected source line voltage and the first selected column voltage. Although the well voltage is set to be equal to or higher than the first selected source line voltage (V WEL ≧V SSL ), it is preferable to make the well voltage higher than the first selected source line voltage. Although the first non-selected row voltage is set to be equal to or lower than the first selected source line voltage (V SSL ≧V UWL ), it is preferable to set the first non-selected row voltage to a voltage lower than the first selected source line voltage. The voltage of the first non-selected row is higher than the voltage of the first selected column and is higher than the voltage of the first selected row (V UWL > V SBL , V UWL > V SWL ). Furthermore, it is preferable to set the voltage of the first selected row to be lower than the voltage of the first selected column (V SBL ≧V SWL ), and it is also preferable to set the voltage of the first selected row to be lower than the voltage of the first selected column (V SBL >V SWL ).
作為以P型記憶體電容器及MOS電晶體構成反熔絲記憶體之情形之井電壓、第1選擇源極線電壓、第1非選擇源極線電壓、第1選擇行電壓、第1非選擇行電壓、第1選擇列電壓及第1非選擇列電壓之具體電壓之組合例,於表2中顯示電壓例P1~P6。As the well voltage, the first selected source line voltage, the first non-selected source line voltage, the first selected row voltage, and the first non-selected when the anti-fuse memory is composed of P-type memory capacitors and MOS transistors The specific voltage combination examples of row voltage, first selected column voltage, and first non-selected column voltage are shown in Table 2 for voltage examples P1 to P6.
[表2] [Table 2]
電壓例P1~P6皆將第1非選擇源極線電壓設定為第1選擇源極線電壓與第1選擇列電壓之間之中間電壓。電壓例P1~P6中之電壓例P2及P5係將第1選擇源極線電壓設得較井電壓更低(將井電壓設得較第1選擇源極線電壓更高)。又,電壓例P4~P6將第1非選擇行電壓設得較第1選擇源極線電壓更低。The voltage examples P1 to P6 all set the first non-selected source line voltage to the intermediate voltage between the first selected source line voltage and the first selected column voltage. In the voltage examples P2 and P5 of the voltage examples P1 to P6, the first selection source line voltage is set lower than the well voltage (the well voltage is set higher than the first selection source line voltage). In addition, in the voltage examples P4 to P6, the first non-selected row voltage is set to be lower than the first selected source line voltage.
於第1、第2實施形態中,將資料寫入時施加於未連接選擇反熔絲記憶體M之源極線SL之電壓設為1種,但亦可以施加根據行而不同之電壓之方式設為2種。In the first and second embodiments, the voltage applied to the source line SL of the non-connected selective anti-fuse memory M during data writing is set to one type, but it is also possible to apply a different voltage according to the row Set to 2 types.
[第3實施形態] 第3實施形態之半導體記憶裝置係於資料之寫入時將非選擇源極線設為浮動者。因除以下說明細節外,與第2實施形態同樣,故對與第2實施形態實質性相同之構成構件附設同一符號,且省略其詳細說明。又,對藉由N型記憶體電容器與N型MOS電晶體構成反熔絲記憶體之情形進行說明。[Third Embodiment] In the semiconductor memory device of the third embodiment, the non-selected source line is set to float during data writing. Except for the details described below, it is the same as in the second embodiment, so constituent members that are substantially the same as those in the second embodiment are assigned the same reference numerals, and detailed descriptions thereof are omitted. In addition, the case where the anti-fuse memory is formed by an N-type memory capacitor and an N-type MOS transistor will be described.
於該例中,如圖12所示,作為資料寫入用電壓,自電源部PS對行選擇電路25之字元線驅動器25a供給第1選擇行電壓(VSWL
)與第1非選擇行電壓(VUWL
),且對源極線驅動器25b供給第1選擇源極線電壓(VSSL
)。又,對列選擇電路26之位元線驅動器26a自電源部PS供給第1選擇列電壓(VSBL
)與第1非選擇列電壓(VUBL
)。再者,關於井S2,亦自電源部PS對井電壓施加部28供給井電壓(VWEL
)。源極線驅動器25b對連接有選擇反熔絲記憶體M之源極線SL施加第1選擇源極線電壓,對未連接選擇反熔絲記憶體M之源極線SL,設為自包含電源部PS之電壓源電性切斷之浮動狀態。In this example, as shown in FIG. 12, as the voltage for data writing, the first selected row voltage (V SWL ) and the first non-selected row voltage are supplied from the power supply section PS to the
該例中之寫入用電壓設定為如下之高低關係。將第1選擇源極線電壓與第1非選擇列電壓設為相同電壓,且將該等與第1非選擇行電壓設為相同電壓(VSSL =VUBL =VUWL )。雖將井電壓設為第1選擇源極線電壓以下(VWEL ≦VSSL ),但較佳使井電壓低於第1選擇源極線電壓。又,雖將第1選擇行電壓設為第1選擇列電壓以上(VSBL ≦VSWL ),但較佳將第1選擇行電壓設為高於第1選擇列電壓的電壓。使第1非選擇行電壓低於第1選擇列電壓,又低於第1選擇行電壓(VUWL <VSBL 、VUWL <VSWL )。The voltage used for writing in this example is set to the following high-low relationship. The first selected source line voltage and the first non-selected column voltage are set to the same voltage, and these and the first non-selected row voltage are set to the same voltage (V SSL =V UBL =V UWL ). Although the well voltage is set to be equal to or lower than the first selected source line voltage (V WEL ≦V SSL ), it is preferable to make the well voltage lower than the first selected source line voltage. In addition, although the first selected row voltage is set to be equal to or higher than the first selected column voltage (V SBL ≦V SWL ), it is preferable to set the first selected row voltage to a voltage higher than the first selected column voltage. Make the first non-selected row voltage lower than the first selected column voltage and lower than the first selected row voltage (V UWL <V SBL , V UWL <V SWL ).
於源極線驅動器25b按各源極線SL設置有開關部41。開關部41以例如1或複數個MOS電晶體等之開關元件構成,設為將電源部PS連接於源極線SL並施加第1選擇源極線電壓之導通、與將源極線SL自電源部PS電性切斷且將該源極線SL設為浮動狀態之斷開之任一者。The
表3顯示上述寫入用電壓之組合之具體例(電壓例)。表3中之電壓例N9~N11皆將未連接選擇反熔絲記憶體M之源極線SL設為浮動狀態,又,將第1選擇源極線電壓、第1非選擇列電壓、及第1非選擇行電壓設為相同。電壓例N9、N10將井電壓與第1選擇源極線電壓設為相同,於電壓例N11中將井電壓設為低於第1選擇源極線電壓。又,於電壓例N9中,將第1選擇行電壓與第1選擇列電壓設為相同,於電壓例N10、N11中,將第1選擇行電壓設為高於第1選擇列電壓。Table 3 shows a specific example (voltage example) of the combination of the above-mentioned writing voltages. The voltage examples N9 to N11 in Table 3 all set the source line SL of the unconnected selective anti-fuse memory M to a floating state, and set the first selected source line voltage, the first non-selected column voltage, and the first 1 Non-selected row voltages are set to be the same. In the voltage examples N9 and N10, the well voltage and the first selected source line voltage are set to be the same, and in the voltage example N11, the well voltage is set to be lower than the first selected source line voltage. In addition, in the voltage example N9, the first selected row voltage and the first selected column voltage are set to be the same, and in the voltage examples N10 and N11, the first selected row voltage is set to be higher than the first selected column voltage.
[表3] [table 3]
例如,藉由電壓例N11之寫入用電壓,將資料寫入反熔絲記憶體M11之情形,如圖13所示,將井S2設為井電壓即-2 V,將字元線WL1設為第1選擇行電壓即6 V,將字元線WL2、WL3......設為第1非選擇行電壓即3 V,將位元線BL1設為第1選擇列電壓即5 V,將位元線BL2、BL3......設為第1非選擇列電壓即0 V。又,將連接於源極線SL1之開關部41設為導通,將源極線SL1設為第1選擇源極線電壓即0 V,將連接於源極線SL2、3......之各開關部41設為斷開,將源極線SL2、3......設為浮動狀態。For example, using the voltage for writing in the voltage example N11 to write data into the anti-fuse memory M11, as shown in Figure 13, set the well S2 to the well voltage, which is -2 V, and set the word line WL1 to For the first selected row voltage, which is 6 V, set the word lines WL2, WL3... to the first non-selected row voltage, which is 3 V, and set the bit line BL1 to the first selected column voltage, which is 5 V. , Set the bit lines BL2, BL3... to the first non-selected column voltage, which is 0 V. In addition, the
如上所述藉由將未連接選擇反熔絲記憶體M之源極線SL設為浮動狀態,而抑制位元線BL與源極線SL之間之洩漏電流。即,於MOS電晶體20之斷開特性不充分之情形,於寫入有非選擇行內之資料之非選擇反熔絲記憶體M中,連接於記憶體電容器10之源極線SL成為浮動狀態,因而洩漏電流未通過MOS電晶體20及短路狀態之記憶體電容器10流動於位元線BL與源極線SL之間。As described above, by setting the source line SL to which the selective anti-fuse memory M is not connected to a floating state, the leakage current between the bit line BL and the source line SL is suppressed. That is, in the case where the off characteristic of the
又,關於第1非選擇行電壓,藉由設為與第1選擇源極線電壓相同之電壓,而於與選擇反熔絲記憶體M相同之列(以下稱為選擇列)之各非選擇反熔絲記憶體M中,MOS電晶體20未導通。於寫入有選擇列內之資料之非選擇反熔絲記憶體M中,若MOS電晶體20變為導通,則洩漏電流以將設為浮動狀態之源極線SL之電容成分充電之方式自位元線BL向設為浮動狀態之源極線SL流動。然而,於該例中,因MOS電晶體20未導通,故洩漏電流未通過寫入有選擇列內之資料之非選擇反熔絲記憶體M自位元線BL向設為浮動狀態之源極線SL流動。In addition, regarding the first non-selected row voltage, by setting it to the same voltage as the first selected source line voltage, each non-selected row in the same column as the selected anti-fuse memory M (hereinafter referred to as the selected column) In the anti-fuse memory M, the
第1非選擇列電壓設為與第1選擇源極線電壓相同之電壓,因而與第2實施形態之情形同樣,防止與選擇反熔絲記憶體M相同之行內之非選擇反熔絲記憶體M中之記憶體閘極絕緣膜10c之絕緣破壞,且阻止洩漏電流經由非選擇反熔絲記憶體M自位元線BL流動至源極線SL。The first non-selected column voltage is set to the same voltage as the first selected source line voltage, so as in the second embodiment, the non-selected anti-fuse memory in the same row as the selected anti-fuse memory M is prevented The insulation of the memory
如上述之不使洩漏電流流動之各效果除電壓例N11外,關於電壓例N9、N10亦為同樣。The effects of preventing leakage current from flowing as described above are the same for voltage examples N9 and N10, except for voltage example N11.
又,於電壓例11中,藉由使井電壓低於第1選擇源極線電壓,而使MOS電晶體20反向偏壓,且藉由基板偏壓效果,使MOS電晶體20之閾值電壓變高並提高截止特性。再者,於電壓例N10、N11中,因使第1選擇行電壓高於第1選擇列電壓,故通過MOS電晶體20將第1選擇列電壓施加於記憶體電容器10之記憶體閘極電極10a時之電壓之降低被減少。Furthermore, in voltage example 11, the
於以P型記憶體電晶體及MOS電晶體構成反熔絲記憶體之情形,亦可將未連接選擇反熔絲記憶體之源極線設為浮動狀態。以P型記憶體電容器及MOS電晶體構成反熔絲記憶體之情形,寫入用電壓之高低關係只要與以上述N型記憶體電容器及MOS電晶體構成反熔絲記憶體之情形相反即可。In the case of P-type memory transistors and MOS transistors constituting the anti-fuse memory, the source line of the unconnected selective anti-fuse memory can also be set to a floating state. When using P-type memory capacitors and MOS transistors to form an anti-fuse memory, the relationship between the writing voltage and the above-mentioned N-type memory capacitors and MOS transistors to form an anti-fuse memory can be reversed. .
因此,將第1選擇源極線電壓與第1非選擇列電壓設為相同之電壓,且將該等與第1非選擇行電壓設為相同(VSSL =VUBL =VUWL )。雖將井電壓設為第1選擇源極線電壓以上(VWEL ≧VSSL ),但較佳使井電壓高於第1選擇源極線電壓。使第1非選擇行電壓高於第1選擇列電壓,又高於第1選擇行電壓(VUWL >VSBL 、VUWL >VSWL )。另,第1選擇行電壓設為與第1選擇列電壓相同。Therefore, the first selected source line voltage and the first non-selected column voltage are set to the same voltage, and these are set to be the same as the first non-selected row voltage (V SSL =V UBL =V UWL ). Although the well voltage is set to be equal to or higher than the first selected source line voltage (V WEL ≧V SSL ), it is preferable to make the well voltage higher than the first selected source line voltage. Make the first non-selected row voltage higher than the first selected column voltage and higher than the first selected row voltage (V UWL > V SBL , V UWL > V SWL ). In addition, the first selected row voltage is set to be the same as the first selected column voltage.
作為以P型記憶體電容器及MOS電晶體構成反熔絲記憶體之情形之井電壓、第1選擇源極線電壓、第1非選擇源極線電壓、第1選擇行電壓、第1非選擇行電壓、第1選擇列電壓及第1非選擇列電壓之具體電壓之組合例,於表4中顯示電壓例P7、P8。電壓例P7係將第1選擇源極線電壓與井電壓設為相同,電壓例P8係將第1選擇源極線電壓設為井電壓以下。As the well voltage, the first selected source line voltage, the first non-selected source line voltage, the first selected row voltage, and the first non-selected when the anti-fuse memory is composed of P-type memory capacitors and MOS transistors Table 4 shows voltage examples P7 and P8 for specific voltage combinations of row voltage, first selected column voltage, and first non-selected column voltage. In the voltage example P7, the first selected source line voltage is the same as the well voltage, and in the voltage example P8, the first selected source line voltage is set to the well voltage or lower.
[表4] [Table 4]
於上述之各實施形態中,將複數個反熔絲記憶體配置於複數列及複數行之矩陣狀,但只要列數及行數為1以上即可,例如亦可設為1列複數行之矩陣狀、複數列1行之矩陣狀。In each of the above-mentioned embodiments, a plurality of anti-fuse memories are arranged in a matrix of plural columns and plural rows, but as long as the number of columns and the number of rows is 1 or more, for example, it can also be set as 1 column and plural rows. Matrix-like, a matrix with a complex number of columns and 1 row.
1:半導體記憶裝置 1A:半導體記憶裝置 10:記憶體電容器 10a:記憶體閘極電極 10b:擴散區域 10c:記憶體閘極絕緣膜 20:MOS電晶體 20a:閘極電極 20b:源極區域 20c:汲極區域 20d:閘極絕緣膜 25:行選擇電路 25a:字元線驅動器 25b:源極線驅動器 26:列選擇電路 26a:位元線驅動器 27:感測放大器 28:井電壓施加部 31:活性區域 32:活性區域 41:開關部 BL:位元線 BL1:位元線 BL2:位元線 BL3:位元線 C1:接點 C2:接點 C2a:接點 C2b:接點 C3:接點 C4:接點 CA:記憶體陣列 IL:元件分離膜 M:反熔絲記憶體 M11:反熔絲記憶體 M12:反熔絲記憶體 M13:反熔絲記憶體 M21:反熔絲記憶體 M22:反熔絲記憶體 M23:反熔絲記憶體 M31:反熔絲記憶體 M32:反熔絲記憶體 M33:反熔絲記憶體 Mij:反熔絲記憶體 Pa~Pf:電壓產生部 PS:電源部 S1:半導體基板 S2:井 SL:源極線 SL1:源極線 SL2:源極線 SL3:源極線 SLi:源極線 SW1:側壁 SW2:側壁 Va~Vf:電壓 VSBL :第1選擇列電壓 VSSL :第1選擇源極線電壓 VSWL :第1選擇行電壓 VUBL :第1非選擇列電壓 VUSL :第1非選擇源極線電壓 VUWL :第1非選擇行電壓 VWEL :井電壓 WL:字元線 WL1:字元線 WL2:字元線 WL3:字元線 WLi:字元線1: Semiconductor memory device 1A: Semiconductor memory device 10: Memory capacitor 10a: Memory gate electrode 10b: Diffusion region 10c: Memory gate insulating film 20: MOS transistor 20a: Gate electrode 20b: Source region 20c : Drain region 20d: Gate insulating film 25: Row selection circuit 25a: Word line driver 25b: Source line driver 26: Column selection circuit 26a: Bit line driver 27: Sense amplifier 28: Well voltage applying section 31 : Active area 32: Active area 41: Switch part BL: Bit line BL1: Bit line BL2: Bit line BL3: Bit line C1: Contact C2: Contact C2a: Contact C2b: Contact C3: Contact Point C4: contact CA: memory array IL: component separation film M: anti-fuse memory M11: anti-fuse memory M12: anti-fuse memory M13: anti-fuse memory M21: anti-fuse memory M22: Anti-fuse memory M23: Anti-fuse memory M31: Anti-fuse memory M32: Anti-fuse memory M33: Anti-fuse memory Mij: Anti-fuse memory Pa~Pf: Voltage generating part PS : Power supply section S1: Semiconductor substrate S2: Well SL: Source line SL1: Source line SL2: Source line SL3: Source line SLi: Source line SW1: Side wall SW2: Side wall Va to Vf: Voltage V SBL : No. 1Selected column voltage V SSL : 1st selected source line voltage V SWL : 1st selected row voltage V UBL : 1st non-selected column voltage V USL : 1st non-selected source line voltage V UWL : 1st non-selected row Voltage V WEL : Well voltage WL: Character line WL1: Character line WL2: Character line WL3: Character line WLi: Character line
圖1係顯示第1實施形態之半導體記憶裝置之電路構成之概略圖。 圖2係顯示來自電源部之寫入用電壓對行選擇電路、列選擇電路之供給的說明圖。 圖3係顯示反熔絲記憶體之構造之剖視圖。 圖4係顯示記憶體陣列之各活性區域、源極線、字元線、位元線之平面布局之說明圖。 圖5係顯示寫入動作時對各源極線、各字元線及各位元線之電壓之施加狀態之一例之說明圖。 圖6係顯示讀取動作時對各源極線、各字元線及各位元線之電壓之施加狀態之一例之說明圖。 圖7係顯示將各記憶體電容器之擴散區域以分別與井等電位之方式電性連接之例之半導體記憶裝置之電路構成之概略圖。 圖8係顯示對第2實施形態之行選擇電路、列選擇電路之來自電源部之寫入用電壓之供給的說明圖。 圖9係顯示第2實施形態中寫入動作時對各源極線、各字元線及各位元線之電壓之施加狀態之一例之說明圖。 圖10係顯示使第1非選擇行電壓高於第1選擇源極線電壓之例之說明圖。 圖11係顯示電源部之構成之一例之方塊圖。 圖12係顯示對第3實施形態之行選擇電路、列選擇電路之來自電源部之寫入用電壓之供給的說明圖。 圖13係顯示第3實施形態中寫入動作時對各源極線、各字元線及各位元線之電壓之施加狀態之一例之說明圖。FIG. 1 is a schematic diagram showing the circuit configuration of the semiconductor memory device of the first embodiment. Fig. 2 is an explanatory diagram showing the supply of the writing voltage from the power supply unit to the row selection circuit and the column selection circuit. FIG. 3 is a cross-sectional view showing the structure of the anti-fuse memory. FIG. 4 is an explanatory diagram showing the planar layout of each active area, source line, word line, and bit line of the memory array. FIG. 5 is an explanatory diagram showing an example of the voltage application state to each source line, each word line, and each bit line during the write operation. FIG. 6 is an explanatory diagram showing an example of the voltage application state to each source line, each word line, and each bit line during the reading operation. FIG. 7 is a schematic diagram of the circuit configuration of a semiconductor memory device showing an example of electrically connecting the diffusion regions of the memory capacitors to the wells in an equal potential manner. FIG. 8 is an explanatory diagram showing the supply of the writing voltage from the power supply unit to the row selection circuit and the column selection circuit of the second embodiment. FIG. 9 is an explanatory diagram showing an example of the voltage application state to each source line, each word line, and each bit line during the write operation in the second embodiment. FIG. 10 is an explanatory diagram showing an example in which the voltage of the first non-selected row is higher than the voltage of the first selected source line. FIG. 11 is a block diagram showing an example of the structure of the power supply unit. FIG. 12 is an explanatory diagram showing the supply of the writing voltage from the power supply unit to the row selection circuit and the column selection circuit of the third embodiment. FIG. 13 is an explanatory diagram showing an example of the state of voltage application to each source line, each word line, and each bit line during the write operation in the third embodiment.
1:半導體記憶裝置 1: Semiconductor memory device
10:記憶體電容器 10: Memory capacitor
10a:記憶體閘極電極 10a: Memory gate electrode
10b:擴散區域 10b: Diffusion area
20:MOS電晶體 20: MOS transistor
20a:閘極電極 20a: gate electrode
20b:源極區域 20b: source region
20c:汲極區域 20c: Drain area
25:行選擇電路 25: Row selection circuit
26:列選擇電路 26: column selection circuit
27:感測放大器 27: Sense amplifier
BL:位元線 BL: bit line
CA:記憶體陣列 CA: Memory Array
M:反熔絲記憶體 M: Anti-fuse memory
SL:源極線 SL: source line
WL:字元線 WL: Character line
Claims (6)
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020017455A JP6721205B1 (en) | 2020-02-04 | 2020-02-04 | Semiconductor memory device |
JP2020-017455 | 2020-02-04 | ||
JP2020110035A JP7517683B2 (en) | 2020-06-25 | 2020-06-25 | Semiconductor memory device |
JP2020-110035 | 2020-06-25 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW202133388A true TW202133388A (en) | 2021-09-01 |
TWI859407B TWI859407B (en) | 2024-10-21 |
Family
ID=77199321
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW110103466A TWI859407B (en) | 2020-02-04 | 2021-01-29 | Semiconductor memory devices |
Country Status (2)
Country | Link |
---|---|
TW (1) | TWI859407B (en) |
WO (1) | WO2021157419A1 (en) |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7280425B2 (en) * | 2005-09-30 | 2007-10-09 | Intel Corporation | Dual gate oxide one time programmable (OTP) antifuse cell |
JP5537020B2 (en) * | 2008-01-18 | 2014-07-02 | ルネサスエレクトロニクス株式会社 | Nonvolatile semiconductor memory device |
US10014066B2 (en) * | 2015-11-30 | 2018-07-03 | Taiwan Semiconductor Manufacturing Company, Ltd. | Anti-fuse cell structure including reading and programming devices with different gate dielectric thickness |
JP2018006525A (en) * | 2016-06-30 | 2018-01-11 | ルネサスエレクトロニクス株式会社 | Semiconductor device |
-
2021
- 2021-01-26 WO PCT/JP2021/002578 patent/WO2021157419A1/en active Application Filing
- 2021-01-29 TW TW110103466A patent/TWI859407B/en active
Also Published As
Publication number | Publication date |
---|---|
WO2021157419A1 (en) | 2021-08-12 |
TWI859407B (en) | 2024-10-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI602282B (en) | Memory cell and memory array | |
US5689458A (en) | Semiconductor memory device having negative resistance element operated stably with single low power source | |
JP3059145B2 (en) | Nonvolatile semiconductor memory device and driving method thereof | |
US8045414B2 (en) | Non-volatile semiconductor memory device | |
JP5756971B1 (en) | Antifuse memory and semiconductor memory device | |
CN105719698B (en) | Fuse cell circuit, fuse cell array and memory device including the same | |
TW201523838A (en) | Semiconductor device | |
CN105869678A (en) | One-time programmable memory cell and memory cell arrays | |
US9042159B2 (en) | Configuring resistive random access memory (RRAM) array for write operations | |
US9514839B2 (en) | Nonvolatile memory, nonvolatile programmable logic switch including nonvolatile memory, and nonvolatile programmable logic circuit | |
US10128852B2 (en) | Low leakage ReRAM FPGA configuration cell | |
US20200006430A1 (en) | Circuit and layout for resistive random-access memory arrays | |
KR20210110137A (en) | One-time-programmable memory | |
JP2015076556A (en) | Memory unit, writing method and reading method | |
JP2020149746A (en) | Semiconductor storage device | |
US10553643B2 (en) | Circuit and layout for resistive random-access memory arrays having two bit lines per column | |
JP5596467B2 (en) | Method for writing to semiconductor device and memory device | |
JP7517683B2 (en) | Semiconductor memory device | |
JP5016244B2 (en) | Semiconductor memory device | |
US9786382B1 (en) | Semiconductor device and memory element | |
US10607696B2 (en) | FPGA configuration cell utilizing NVM technology and redundancy | |
TWI859407B (en) | Semiconductor memory devices | |
JP6721205B1 (en) | Semiconductor memory device | |
JP2012195038A (en) | Semiconductor storage device | |
JP2016092393A (en) | Anti-fuse memory and semiconductor storage device |