TW202107156A - Window, medium and optical method - Google Patents
Window, medium and optical method Download PDFInfo
- Publication number
- TW202107156A TW202107156A TW109116925A TW109116925A TW202107156A TW 202107156 A TW202107156 A TW 202107156A TW 109116925 A TW109116925 A TW 109116925A TW 109116925 A TW109116925 A TW 109116925A TW 202107156 A TW202107156 A TW 202107156A
- Authority
- TW
- Taiwan
- Prior art keywords
- light
- configuration
- molecules
- molecule
- window
- Prior art date
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 65
- 238000000034 method Methods 0.000 title claims abstract description 31
- 230000031700 light absorption Effects 0.000 claims abstract description 58
- 239000007787 solid Substances 0.000 claims abstract description 34
- 239000000463 material Substances 0.000 claims abstract description 30
- 229920000642 polymer Polymers 0.000 claims abstract description 21
- 239000010410 layer Substances 0.000 claims description 41
- 238000010521 absorption reaction Methods 0.000 claims description 32
- 239000002356 single layer Substances 0.000 claims description 21
- 239000002243 precursor Substances 0.000 claims description 9
- 230000001795 light effect Effects 0.000 claims description 8
- 230000000694 effects Effects 0.000 claims description 7
- 230000000149 penetrating effect Effects 0.000 claims description 7
- 238000003491 array Methods 0.000 claims description 6
- 230000002401 inhibitory effect Effects 0.000 claims description 5
- DMLAVOWQYNRWNQ-UHFFFAOYSA-N azobenzene Chemical compound C1=CC=CC=C1N=NC1=CC=CC=C1 DMLAVOWQYNRWNQ-UHFFFAOYSA-N 0.000 claims description 4
- 150000001988 diarylethenes Chemical class 0.000 claims description 4
- 230000005540 biological transmission Effects 0.000 claims description 3
- 229910003471 inorganic composite material Inorganic materials 0.000 claims description 3
- 229910010272 inorganic material Inorganic materials 0.000 claims description 3
- 239000011147 inorganic material Substances 0.000 claims description 3
- LQNUZADURLCDLV-UHFFFAOYSA-N nitrobenzene Chemical compound [O-][N+](=O)C1=CC=CC=C1 LQNUZADURLCDLV-UHFFFAOYSA-N 0.000 claims 2
- 238000005516 engineering process Methods 0.000 abstract description 11
- 238000010586 diagram Methods 0.000 description 9
- 230000005284 excitation Effects 0.000 description 9
- 230000007774 longterm Effects 0.000 description 4
- 230000001678 irradiating effect Effects 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N diphenyl Chemical compound C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000000399 optical microscopy Methods 0.000 description 2
- 238000006116 polymerization reaction Methods 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 230000001629 suppression Effects 0.000 description 2
- FHQKLIHFKVAEEP-UHFFFAOYSA-N 3,3,4,4,5,5-hexafluorocyclopentene Chemical compound FC1(F)C=CC(F)(F)C1(F)F FHQKLIHFKVAEEP-UHFFFAOYSA-N 0.000 description 1
- 235000010290 biphenyl Nutrition 0.000 description 1
- 239000004305 biphenyl Substances 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 239000003999 initiator Substances 0.000 description 1
- 238000001459 lithography Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229920002120 photoresistant polymer Polymers 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B7/24—Record carriers characterised by shape, structure or physical properties, or by the selection of the material
- G11B7/2403—Layers; Shape, structure or physical properties thereof
- G11B7/24035—Recording layers
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B7/004—Recording, reproducing or erasing methods; Read, write or erase circuits therefor
- G11B7/0055—Erasing
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B7/24—Record carriers characterised by shape, structure or physical properties, or by the selection of the material
- G11B7/241—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
Landscapes
- Optical Recording Or Reproduction (AREA)
- Optical Record Carriers And Manufacture Thereof (AREA)
- Non-Silver Salt Photosensitive Materials And Non-Silver Salt Photography (AREA)
Abstract
Description
本發明是關於一種光學技術領域,特別是指一種窗口、介質及光學方法。The present invention relates to a field of optical technology, in particular to a window, medium and optical method.
光在能源、電子、通信、醫療保健等方面有著廣泛的應用,尤其是在資訊讀寫、半導體製造、資訊傳輸、光學顯微等領域,需要光在目標物上產生作用的區域盡可能小。由於光的衍射極限,光在目標物上產生作用的區域尺寸無法突破衍射極限的限制,因此,光學技術的發展受到了極大阻礙。Light has a wide range of applications in energy, electronics, communications, medical care, etc., especially in the fields of information reading and writing, semiconductor manufacturing, information transmission, and optical microscopy. The area where light acts on the target is as small as possible. Due to the diffraction limit of light, the size of the area where light acts on the target cannot break through the limitation of the diffraction limit. Therefore, the development of optical technology has been greatly hindered.
現有技術中,有一種新的雙光束超分辨技術,其利用激發光束在目標物上引發光聚合,一束焦點具有中空形狀的抑制光束對激發光束與抑制光束重疊區域內的聚合反應進行抑制,使聚合反應限制在中空部分的焦點中心,來達到縮小目標物上光作用區域的尺寸的目的,突破了單一光束衍射極限的限制。In the prior art, there is a new dual-beam super-resolution technology, which uses an excitation beam to initiate photopolymerization on a target. A suppression beam with a hollow focal point suppresses the polymerization reaction in the overlapping area of the excitation beam and the suppression beam. The polymerization reaction is limited to the focal center of the hollow part to achieve the purpose of reducing the size of the light action area on the target, which breaks the limitation of the diffraction limit of a single beam.
但現有雙光束超分辨技術中,因其需要兩束光均與物質相互作用,傳統用於單光束加工的光刻膠、引發劑等材料已無法滿足雙光束超分辨光刻技術的要求,需要尋找對雙光束均起作用的且能實現光作用功能的替代材料,材料要求高,且難度較大。However, in the existing dual-beam super-resolution technology, because it requires both beams of light to interact with the substance, the traditional photoresist, initiator and other materials used in single-beam processing can no longer meet the requirements of dual-beam super-resolution lithography. Looking for alternative materials that can work on both beams and can realize the function of light action, the material requirements are high, and it is difficult.
因此,本發明之目的,即在提供一種窗口、介質及光學方法,用於解決現有雙光束超分辨技術中對材料要求高的問題。Therefore, the purpose of the present invention is to provide a window, medium and optical method for solving the problem of high material requirements in the existing dual-beam super-resolution technology.
為實現上述目的及其他相關目的,本發明提供如下示例:In order to achieve the above objectives and other related objectives, the present invention provides the following examples:
本發明提供的示例1:一種窗口,包括高分子固態膜層,所述高分子固態膜層包括光吸收可控互變分子,所述光吸收可控互變分子在第一構型分子和第二構型分子之間轉換;所述第一構型分子的第一光的吸收率低於其第二光的吸收率,所述第二構型分子的第二光的吸收率低於其第一光的吸收率;所述第一構型分子在吸收所述第二光但不吸收所述第一光時,所述第一構型分子轉換為所述第二構型分子,所述第二構型分子在吸收所述第一光但不吸收第二光時,所述第二構型分子轉換為所述第一構型分子。Example 1: A window provided by the present invention includes a polymer solid film layer, the polymer solid film layer includes light absorption controllable interconversion molecules, and the light absorption controllable interconversion molecules are in the first configuration and the second configuration. Conversion between two-configuration molecules; the first light absorption rate of the first configuration molecule is lower than its second light absorption rate, and the second light absorption rate of the second configuration molecule is lower than its first light absorption rate A light absorption rate; when the first configuration molecule absorbs the second light but does not absorb the first light, the first configuration molecule is converted into the second configuration molecule, and the first configuration molecule is converted into the second configuration molecule. When the molecule of the second configuration absorbs the first light but does not absorb the second light, the molecule of the second configuration is converted into the molecule of the first configuration.
本發明提供的示例2:包括上述示例1,其中,,所述第一構型分子在同時吸收所述第一光和所述第二光的光子能量時,仍為所述第一構型分子;所述第二構型分子在同時吸收所述第一光和所述第二光的光子能量時,轉換為所述第一構型分子。The example 2 provided by the present invention includes the above example 1, wherein, when the first configuration molecule absorbs the photon energy of the first light and the second light at the same time, it is still the first configuration molecule When the second configuration molecule absorbs the photon energy of the first light and the second light at the same time, it is converted into the first configuration molecule.
本發明提供的示例3:包括上述示例1或2,其中,所述光吸收可控互變分子包括二芳基乙烯類分子及衍生分子、螺吡喃類分子及衍生分子、螺噁嗪類分子及衍生分子、偶氮苯類分子及衍生分子或俘精酸酐類分子及衍生分子。The example 3 provided by the present invention includes the above example 1 or 2, wherein the light absorption controllable interconversion molecule includes diarylethene molecules and derivative molecules, spiropyran molecules and derivative molecules, and spirooxazine molecules And derivative molecules, azobenzene molecules and derivative molecules or fulgide molecules and derivative molecules.
本發明提供的示例4:一種介質,包括窗口和光敏感部,所述窗口的材料中包括光吸收可控互變分子,所述光吸收可控互變分子在第一構型分子和第二構型分子之間轉換;所述第一構型分子的第一光的吸收率低於其第二光的吸收率,所述第二構型分子的第二光的吸收率低於其第一光的吸收率;所述第一構型分子在吸收所述第二光但不吸收所述第一光時,所述第一構型分子轉換為所述第二構型分子,所述第二構型分子在吸收所述第一光但不吸收第二光時,所述第二構型分子轉換為所述第一構型分子。Example 4: A medium provided by the present invention includes a window and a light-sensitive part. The material of the window includes light-absorption controllable interconversion molecules, and the light-absorption controllable interconversion molecules are in the first configuration and the second configuration. Conversion between molecules of the first configuration; the first light absorption rate of the first configuration molecule is lower than its second light absorption rate, and the second light absorption rate of the second configuration molecule is lower than its first light absorption rate When the first configuration molecule absorbs the second light but does not absorb the first light, the first configuration molecule is converted to the second configuration molecule, and the second configuration When the type molecule absorbs the first light but does not absorb the second light, the molecule of the second configuration is converted into the molecule of the first configuration.
本發明提供的示例5:包括上述示例4,其中,所述第一構型分子在同時吸收所述第一光和所述第二光的光子能量時,仍為所述第一構型分子;所述第二構型分子在同時吸收所述第一光和所述第二光的光子能量時,轉換為所述第一構型分子。The example 5 provided by the present invention includes the above example 4, wherein the molecule in the first configuration is still the molecule in the first configuration when absorbing the photon energy of the first light and the second light at the same time; When the second configuration molecule absorbs the photon energy of the first light and the second light at the same time, it is converted into the first configuration molecule.
本發明提供的示例6:包括上述示例4或5,其中,所述光吸收可控互變分子包括二芳基乙烯類分子及衍生分子、螺吡喃類分子及衍生分子、螺噁嗪類分子及衍生分子、偶氮苯類分子及衍生分子或俘精酸酐類分子及衍生分子。The example 6 provided by the present invention includes the above examples 4 or 5, wherein the light absorption controllable interconversion molecule includes diarylethene molecules and derivative molecules, spiropyran molecules and derivative molecules, and spirooxazine molecules And derivative molecules, azobenzene molecules and derivative molecules or fulgide molecules and derivative molecules.
本發明提供的示例7:包括上述示例4至6中的任一項,其中,所述窗口包括高分子固態膜層,所述高分子固態膜層包括光吸收可控互變分子。Example 7 provided by the present invention: includes any one of the foregoing Examples 4 to 6, wherein the window includes a polymer solid film layer, and the polymer solid film layer includes light absorption controllable interconversion molecules.
本發明提供的示例8:包括上述示例4至7中的任一項,其中,所述光敏感部的材料中包括光敏感記錄成分。The example 8 provided by the present invention includes any one of the above examples 4 to 7, wherein the material of the light-sensitive part includes a light-sensitive recording component.
本發明提供的示例9:包括上述示例4至8中的任一項,其中,所述光敏感記錄成分包括分子開關可控螢光分子、光致產酸劑及螢光前體分子、具有雙光子吸收特性的分子開關可控螢光分子,具有雙光子吸收特性的光致產酸分子及螢光前體,具有雙光子吸收特性的無機螢光材料及螢光前體,具有雙光子吸收特性的有機無機複合材料或具有雙光子吸收特性且聚合物具備螢光特性的無機材料。Example 9 provided by the present invention: includes any one of the foregoing Examples 4 to 8, wherein the light-sensitive recording component includes molecular switch controllable fluorescent molecules, photoacid generators and fluorescent precursor molecules, with double Molecular switch controllable fluorescent molecules with photon absorption characteristics, photoacid-generating molecules and fluorescent precursors with two-photon absorption characteristics, inorganic fluorescent materials and fluorescent precursors with two-photon absorption characteristics, and two-photon absorption characteristics Organic-inorganic composite materials or inorganic materials with two-photon absorption characteristics and polymers with fluorescent characteristics.
本發明提供的示例10:包括上述示例4至9中的任一項,其中,所述光敏感部包括高分子固態膜層,所述高分子固態膜層包括光敏感記錄成分。Example 10 provided by the present invention includes any one of the foregoing Examples 4 to 9, wherein the light sensitive portion includes a polymer solid film layer, and the polymer solid film layer includes a light sensitive recording component.
本發明提供的示例11:一種光存儲介質,包括上述示例4至10中的任一項所述的介質,所述光存儲介質包括單層單側讀取介質結構、單層雙側讀取介質結構、單層雙點雙側讀取介質結構、多層單側讀取介質結構、多層雙側讀取介質結構或多層雙點雙側讀取介質結構。Example 11 provided by the present invention: an optical storage medium, including the medium described in any one of the foregoing examples 4 to 10, the optical storage medium including a single-layer single-sided reading medium structure, a single-layer double-sided reading medium Structure, single-layer double-point double-side reading medium structure, multilayer single-side reading medium structure, multilayer double-side reading medium structure, or multilayer double-point double-side reading medium structure.
本發明提供示例12:一種光學系統,包括:光源和介質;所述光源包括第一光和第二光,所述介質包括上述示例1至3中任一項的窗口或上述示例4至10中任一項的介質或上述示例11的光儲存介質。The present invention provides Example 12: An optical system, including: a light source and a medium; the light source includes first light and second light, and the medium includes the window of any one of the foregoing examples 1 to 3 or the foregoing examples 4 to 10 The medium of any item or the optical storage medium of Example 11 above.
本發明提供的示例13:包括上述示例12,其中,所述第一光為空心光,所述第二光為實心光。The example 13 provided by the present invention includes the above example 12, wherein the first light is hollow light and the second light is solid light.
本發明提供的示例14:包括上述示例12或13,其中,所述第一光與所述第二光同軸。The example 14 provided by the present invention includes the above example 12 or 13, wherein the first light is coaxial with the second light.
本發明提供的示例15:包括上述示例12至14的任一項,其中,所述第一光採用單束空心光或多束空心光陣列,所述第一光的單一空心光的中央空心區域為奈米尺度,奈米尺度的可選範圍為0~10nm、10~20nm、20~30nm、30~40nm、40~50nm、50~60nm、60~70nm、70~80nm、80~90nm、90~100nm、100~110nm、110~120nm、120~130nm、130~140nm、140~150nm、150~160nm、160~170nm、170~180nm、180~190nm或190~200nm。Example 15 provided by the present invention: includes any one of the foregoing Examples 12 to 14, wherein the first light adopts a single hollow light or a multi-beam hollow light array, and the central hollow area of the single hollow light of the first light It is a nanoscale, and the optional range of nanoscale is 0~10nm, 10~20nm, 20~30nm, 30~40nm, 40~50nm, 50~60nm, 60~70nm, 70~80nm, 80~90nm, 90 ~100nm, 100~110nm, 110~120nm, 120~130nm, 130~140nm, 140~150nm, 150~160nm, 160~170nm, 170~180nm, 180~190nm or 190~200nm.
本發明提供的示例16:包括上述示例12至15的任一項,其中,所述第二光採用單束實心高斯光束或多束可各自獨立控制開關的高斯光束陣列,所述第二光的單一光束均與第一光相應空心光的中央空心中心同軸,第二光的單一光束照射範圍不超越所述第一光的單一光束的照射區域。Example 16: provided by the present invention: includes any one of the foregoing Examples 12 to 15, wherein the second light adopts a single solid Gaussian beam or multiple Gaussian beam arrays that can be independently switched on and off. The single light beams are all coaxial with the central hollow center of the hollow light corresponding to the first light, and the irradiation range of the single light beam of the second light does not exceed the irradiation area of the single light beam of the first light.
本發明提供的示例17:一種光學方法,包括:利用第一光照射包括光吸收可控互變分子的窗口,形成第一光區;利用第二光照射所述窗口,形成第二光區;其中,所述第一光區和所述第二光區部分重合;其中,在所述第一光區內,包括第一光區和第二光區重合部分,所述光吸收可控互變分子為第一構型分子;在所述第二光區的非重合部分,所述光吸收可控互變分子從第一構型分子轉換為所述第二構型分子;所述第一構型分子的第一光的吸收率低於其第二光的吸收率,所述第二構型分子的第二光的吸收率低於其第一光的吸收率。Example 17 provided by the present invention: an optical method, comprising: irradiating a window including light-absorbing controllable interconverting molecules with a first light to form a first light zone; irradiating the window with a second light to form a second light zone; Wherein, the first light area and the second light area partially overlap; wherein, in the first light area, the first light area and the second light area overlap part, and the light absorption is controllable and mutually variable The molecule is a molecule in the first configuration; in the non-overlapping part of the second optical zone, the light absorption controllable interconversion molecule is converted from the molecule in the first configuration to the molecule in the second configuration; the first configuration The absorption rate of the first light of the type molecule is lower than the absorption rate of the second light thereof, and the absorption rate of the second light of the molecule of the second configuration is lower than the absorption rate of the first light thereof.
本發明提供的示例18:包括上述示例17,其中,第二光區非重合部分小於第二光的衍射極限。The example 18 provided by the present invention includes the above example 17, wherein the non-overlapping portion of the second light zone is smaller than the diffraction limit of the second light.
本發明提供的示例19:包括上述示例17或18,其中,所述第一光區的中心區域為空心區域,第一光區的四周區域為用於抑制光作用的照射區域;所述第二光區為用於光作用的照射區域。The example 19 provided by the present invention includes the above examples 17 or 18, wherein the central area of the first light zone is a hollow area, and the surrounding area of the first light zone is an irradiation area for suppressing light effects; the second The light zone is the irradiated area for light effect.
本發明提供的示例20:包括上述示例17至19的任一項,其中,所述第一光為空心光,所述第二光為實心光。Example 20 provided by the present invention: includes any one of the foregoing Examples 17 to 19, wherein the first light is hollow light and the second light is solid light.
本發明提供的示例21:包括上述示例17至20的任一項,其中,所述第一光與所述第二光同軸。Example 21 provided by the present invention includes any one of the foregoing Examples 17 to 20, wherein the first light is coaxial with the second light.
本發明提供的示例22:包括上述示例20或21的任一項,其中,所述第一光採用單束空心光或多束空心光陣列,所述第一光的單一空心光的中央空心區域為奈米尺度,奈米尺度的可選範圍為0~10nm、10~20nm、20~30nm、30~40nm、40~50nm、50~60nm、60~70nm、70~80nm、80~90nm、90~100nm、100~110nm、110~120nm、120~130nm、130~140nm、140~150nm、150~160nm、160~170nm、170~180nm、180~190nm或190~200nm。Example 22 provided by the present invention: includes any one of the above examples 20 or 21, wherein the first light adopts a single hollow light or a multi-beam hollow light array, and the central hollow area of the single hollow light of the first light It is a nanoscale, and the optional range of nanoscale is 0~10nm, 10~20nm, 20~30nm, 30~40nm, 40~50nm, 50~60nm, 60~70nm, 70~80nm, 80~90nm, 90 ~100nm, 100~110nm, 110~120nm, 120~130nm, 130~140nm, 140~150nm, 150~160nm, 160~170nm, 170~180nm, 180~190nm or 190~200nm.
本發明提供的示例23:包括上述示例20至22中的任一項,其中,所述第二光採用單束實心高斯光束或多束可各自獨立控制開關的高斯光束陣列,所述第二光的單一光束均與第一光相應空心光的中央空心中心同軸,第二光的單一光束照射區域不超越所述第一光的單一光束的照射區域。Example 23 provided by the present invention includes any one of the foregoing Examples 20 to 22, wherein the second light adopts a single solid Gaussian beam or multiple Gaussian beam arrays that can be independently switched on and off, and the second light The single beams of the first light are coaxial with the central hollow center of the corresponding hollow light, and the single beam irradiation area of the second light does not exceed the single beam irradiation area of the first light.
本發明提供示例24:一種光存儲方法,包括上述示例17至23中任一項所述的光學方法,其中:所述第一光和第二光作用於光存儲介質的窗口,對所述窗口中的光吸收可控互變分子產生作用;所述第一光區的照射區域下的光吸收可控互變分子處於吸收所述第二光的光子能量的吸收狀態,形成阻擋所述第二光的關窗狀態,使所述第二光不能使光敏感部發生變化;所述第一光區的中央空心區域形成不吸收所述第二光的開窗狀態,所述第二光作用於所述光敏感部,啟動所述光敏感部中的光敏感記錄成分;啟動後的光敏感記錄成分吸收所述第二光的光子能量後,產生光記錄資訊點。The present invention provides Example 24: An optical storage method, including the optical method described in any one of the foregoing Examples 17 to 23, wherein: the first light and the second light act on a window of the optical storage medium, and the window The light absorption controllable interconversion molecule in the first light zone is in the absorbing state of absorbing the photon energy of the second light, and the light absorption controllable interconversion molecule under the irradiation area of the first light zone is formed to block the second light. The closed window state of light prevents the second light from changing the light sensitive part; the central hollow area of the first light zone forms an open window state that does not absorb the second light, and the second light acts on The light-sensitive part activates the light-sensitive recording component in the light-sensitive part; after the activated light-sensitive recording component absorbs the photon energy of the second light, a light recording information point is generated.
本發明提供的示例25:包括上述示例24,其中,所述光存儲方法還包括:利用第一光的照射,在所述第一光區的照射區域內抑制第二構型分子產生,所述第一光區的中央空心區域無抑制作用;利用第二光的照射,在窗口中的第一構型分子持續吸收與第一光區的重合部分內第二光,抑制第二光穿透窗口,在第一光區的中央空心區域,第二光將窗口中的第一構型分子轉換為第二構型分子後,透過窗口作用於下層的光敏感部。The example 25 provided by the present invention includes the above example 24, wherein the optical storage method further includes: using the irradiation of the first light to inhibit the generation of molecules of the second configuration in the irradiation area of the first light zone, the The central hollow area of the first light zone has no inhibitory effect; with the irradiation of the second light, the molecules of the first configuration in the window continue to absorb the second light in the overlapping part of the first light zone, inhibiting the second light from penetrating the window In the central hollow area of the first light zone, after the second light converts the molecules of the first configuration into the molecules of the second configuration in the window, it acts on the light sensitive part of the lower layer through the window.
本發明提供的示例26:包括上述示例24,其中,所述光存儲方法還包括:利用第一光的照射,在所述第一光區的照射區域內窗口中第二構型分子持續吸收第一光後,轉換為第一構型分子,所述第一光區的中央空心區域窗口仍為第二構型分子;利用第二光的照射,在窗口中的第一構型分子持續吸收與第一光區的重合部分內第二光,抑制第二光穿透窗口,在第一光區的中央空心區域,第二光透過窗口作用於下層光敏感部。The example 26 provided by the present invention includes the above example 24, wherein the optical storage method further includes: irradiating with the first light, and the molecules of the second configuration in the window within the irradiation area of the first light region continue to absorb the first light. After one light, it is converted into molecules of the first configuration, and the central hollow area window of the first light zone is still the molecules of the second configuration; by the irradiation of the second light, the molecules of the first configuration in the window continue to absorb and The second light in the overlapping part of the first light zone inhibits the second light from penetrating the window. In the central hollow area of the first light zone, the second light penetrating window acts on the lower light sensitive part.
如上所述,本發明提供的窗口、介質及光學方法方法,具有至少以下有益效果之一:As mentioned above, the window, medium, and optical method provided by the present invention have at least one of the following beneficial effects:
第一,本發明對光敏感部的材料要求低於現有技術,無需找到長期穩定、具有高雙光子吸收截面的分子開關材料,將所需性質複雜的材料分成兩種簡單的材料,選擇範圍大幅提升;First, the present invention has lower material requirements for the light-sensitive part than the prior art. There is no need to find long-term stable molecular switch materials with high two-photon absorption cross-sections. The materials with complex required properties are divided into two simple materials with a wide selection range. Promote
第二,本發明採用雙光束超分辨光學原理,結合窗口實現超分辨技術,提出了一種新的雙光束超分辨實現方法;Second, the present invention adopts the dual-beam super-resolution optical principle, combined with the window realization super-resolution technology, and proposes a new dual-beam super-resolution realization method;
第三,當本發明用於光存儲時,能實現長期穩定的光存儲,光敏感部材料更加穩定;Third, when the present invention is used for optical storage, long-term stable optical storage can be realized, and the material of the light sensitive part is more stable;
第四,當本發明用於光儲存時,能實現多層資訊寫入與讀取,並獲得良好的信噪比。Fourth, when the present invention is used for optical storage, it can realize multi-layer information writing and reading, and obtain a good signal-to-noise ratio.
以下通過特定的具體實例說明本發明的實施方式,本領域技術人員可由本說明書所揭露的內容輕易地瞭解本發明的其他優點與功效。本發明還可以通過另外不同的具體實施方式加以實施或應用,本說明書中的各項細節也可以基於不同觀點與應用,在沒有背離本發明的精神下進行各種修飾或改變。需說明的是,在不衝突的情況下,以下實施例及實施例中的特徵可以相互組合。The following describes the implementation of the present invention through specific specific examples, and those skilled in the art can easily understand other advantages and effects of the present invention from the content disclosed in this specification. The present invention can also be implemented or applied through other different specific embodiments, and various details in this specification can also be modified or changed based on different viewpoints and applications without departing from the spirit of the present invention. It should be noted that, in the case of no conflict, the following embodiments and the features in the embodiments can be combined with each other.
需要說明的是,以下實施例中所提供的圖示僅以示意方式說明本發明的基本構想,遂圖式中僅顯示與本發明中有關的組件而非按照實際實施時的元件數目、形狀及尺寸繪製,其實際實施時各元件的型態、數量及比例可為一種隨意的改變,且其元件佈局型態也可能更為複雜。It should be noted that the illustrations provided in the following embodiments only illustrate the basic idea of the present invention in a schematic way. The figures only show the components related to the present invention instead of the number, shape and number of elements in actual implementation. For the size drawing, the type, number, and ratio of each component can be changed at will during actual implementation, and the component layout type may also be more complicated.
實施例1Example 1
本實施例提供一種窗口11。This embodiment provides a
其中,窗口11的材料中包括光吸收可控互變分子,光吸收可控互變分子可以在第一構型分子和第二構型分子之間轉換。第一構型分子的第一光的吸收率低於其第二光的吸收率,第二構型分子的第二光的吸收率低於其第一光的吸收率。第一構型分子在吸收第二光但不吸收第一光時,第一構型分子可以轉換為第二構型分子,第二構型分子在吸收第一光但不吸收第二光時,第二構型分子可以轉換為第一構型分子。Wherein, the material of the
具體地,光吸收可控互變分子包括第一構型分子和第二構型分子。第一構型分子不吸收第一光且吸收第二光,第二構型分子不吸收第二光且吸收第一光。第一構型分子在吸收第二光的光子能量後,轉換為第二構型分子,第二構型分子在吸收第一光的光子能量後,轉換為第一構型分子。Specifically, the light absorption controllable interconversion molecule includes a molecule of a first configuration and a molecule of a second configuration. The molecules of the first configuration do not absorb the first light and absorb the second light, and the molecules of the second configuration do not absorb the second light and absorb the first light. The molecules of the first configuration are converted into molecules of the second configuration after absorbing the photon energy of the second light, and the molecules of the second configuration are converted into molecules of the first configuration after absorbing the photon energy of the first light.
第一構型分子在同時吸收第一光和第二光的光子能量時,仍為第一構型分子,一直處於可吸收第二光的光子能量的狀態。第二構型分子在同時吸收第一光和第二光的光子能量時,轉換為第一構型分子,一直處於可吸收第二光的光子能量的狀態。When the molecule of the first configuration absorbs the photon energy of the first light and the second light at the same time, it is still the molecule of the first configuration and is always in a state of being able to absorb the photon energy of the second light. When the second configuration molecule absorbs the photon energy of the first light and the second light at the same time, it is converted into the first configuration molecule, and is always in a state that can absorb the photon energy of the second light.
窗口11可以是高分子固態膜層,高分子固態膜層包括光吸收可控互變分子。光吸收可控互變分子的類型包括二芳基乙烯類分子及衍生分子、螺吡喃類分子及衍生分子、螺噁嗪類分子及衍生分子、偶氮苯類分子及衍生分子或俘精酸酐類分子及衍生分子等。The
實施例2Example 2
如圖1A所示,本實施例提供一種介質,包括:窗口11和光敏感部12。As shown in FIG. 1A, this embodiment provides a medium, including: a
其中,窗口11可以是實施例一中的窗口11,但窗口11的形狀不限於高分子固態膜層。光敏感部12的材料中包括光敏感記錄成分。光敏感記錄成分僅對第二光敏感,該光敏感記錄成分在吸收第二光的光子能量後,產生可穩定記錄的記錄資訊點。The
具體的,光敏感部12包括高分子固態膜層,高分子固態膜層包括光敏感記錄成分,光敏感記錄成分包括分子開關可控螢光分子、光致產酸劑及螢光前體分子、具有雙光子吸收特性的分子開關可控螢光分子,具有雙光子吸收特性的光致產酸分子及螢光前體,具有雙光子吸收特性的無機螢光材料及螢光前體,具有雙光子吸收特性的有機無機複合材料或具有雙光子吸收特性且聚合物具備螢光特性的無機材料等。Specifically, the light
實施例3Example 3
本實施例提供一種光儲存介質,包括實施例二中的介質。This embodiment provides an optical storage medium, including the medium in the second embodiment.
光儲存介質包括單層單側讀取介質、單層雙側讀取介質、單層雙點雙側讀取介質、多層單側讀取介質、多層雙側讀取介質或多層雙點雙側讀取介質。Optical storage media include single-layer single-sided reading media, single-layer double-sided reading media, single-layer double-point double-sided reading media, multi-layer single-sided reading media, multi-layer double-sided reading media, or multi-layer double-point double-sided reading Take the medium.
請參閱圖1A、圖1B、圖1C、圖1D、圖1E、圖1F,分別顯示為單層單側讀取介質、單層雙側讀取介質、單層雙點雙側讀取介質、多層單側讀取介質、多層雙側讀取介質、多層雙點雙側讀取介質的結構示意圖。Please refer to Figure 1A, Figure 1B, Figure 1C, Figure 1D, Figure 1E, Figure 1F, which are shown as single-layer single-sided reading media, single-layer double-sided reading media, single-layer double-point double-sided reading media, and multi-layer Schematic diagram of the structure of a single-sided reading medium, a multi-layer double-sided reading medium, and a multi-layer double-point double-side reading medium.
讀取光10包括第一光和第二光,用於資訊讀取。寫入光20包括另一第一光和另一第二光,用於資訊寫入。圖中箭頭所示方向為對應的讀取光10或寫入光20的照射方向。The reading
如圖1A所示,單層單側讀取介質包括一窗口11及與窗口11疊加的一光敏感部12。具體地,窗口11設置在光敏感部12的上層,讀取光10和寫入光20從單側的窗口11照射。As shown in FIG. 1A, the single-layer single-sided reading medium includes a
如圖1B所示,單層雙側讀取介質包括一窗口11及與窗口11疊加的一光敏感部12。寫入光20從一側的窗口11照射,讀取光10從另一側的光敏感部12照射。As shown in FIG. 1B, the single-layer double-sided reading medium includes a
如圖1C所示,單層雙點雙側讀取介質包括分別位於兩側的窗口11,及夾設於窗口11之間的光敏感部12。讀取光10和寫入光20從雙側的窗口11照射。As shown in FIG. 1C, a single-layer double-point double-sided reading medium includes
如圖1D所示,多層單側讀取介質包括若干組窗口11及與窗口11疊加的光敏感部12,其中,多層單側讀取介質的一側為窗口11,另一側為光敏感部12。讀取光10和寫入光20從一側的窗口11照射。As shown in Figure 1D, the multi-layer single-sided reading medium includes several sets of
如圖1E所示,多層雙側讀取介質包括若干組窗口11及與窗口11疊加的光敏感部12,其中,多層雙側讀取介質的一側為窗口11,另一側為光敏感部12。讀取光10從一側的窗口11照射,寫入光20從另一側的光敏感部12照射。As shown in Figure 1E, the multi-layer double-sided reading medium includes several sets of
如圖1F所示,多層雙點雙側讀取介質包括若干組窗口11及與窗口11疊加的光敏感部12,其中,多層雙點雙側讀取介質的兩側均為窗口11。讀取光10和寫入光20從雙側的窗口11照射。As shown in FIG. 1F, the multi-layer double-point double-sided reading medium includes several sets of
實施例4Example 4
如圖2所示,本實施例提供一種光學系統,包括第一光源21、第二光源22、光調製系統23和窗口11,窗口11可以是實施例一中的窗口11。As shown in FIG. 2, this embodiment provides an optical system, including a
第一光源21包括第一光211,第二光源22包括第二光221,第一光211和第二光221可以是使窗口11的第一構型分子和第二構型分子轉換的任何合適的光。The
其中一種實施例中,第一光211為空心光,第二光221為實心光,第一光211與第二光221的照射方式均可為連續或者脈衝式。第一光211的中心區域為空心區域,第一光211的四周區域為用於抑制光作用的照射區域,第二光221為用於光作用的照射區域。第一光211和第二光221經過光調製系統23後,第一光211與第二光221同軸且部分重合。經過調製後同軸的第一光211和第二光221照射窗口11,通過窗口11的作用,使第二光221的照射區域中與第一光211不重合的部分穿過窗口11。第二光221穿過窗口11的部分小於穿過窗口11之前的部分,可用於資訊讀寫、半導體製造、資訊傳輸、光學顯微等領域,實現突破衍射極限的超分辨技術。In one embodiment, the
第一光211包括單束空心光或多束空心光陣列。第一光211的單一空心光的中央空心區域為奈米尺度,奈米尺度的可選範圍為0~10nm、10~20nm、20~30nm、30~40nm、40~50nm、50~60nm、60~70nm、70~80nm、80~90nm、90~100nm、100~110nm、110~120nm、120~130nm、130~140nm、140~150nm、150~160nm、160~170nm、170~180nm、180~190nm或190~200nm。The
第二光221包括單束實心高斯光束或多束可各自獨立控制開關的高斯光束陣列,第二光221的單一光束均與第一光211相應空心光的中央空心中心同軸,第二光221的單一光束照射範圍不超越第一光211的單一光束的照射區域。The
實施例5Example 5
本實施例提供一種光學方法,包括:This embodiment provides an optical method, including:
利用第一光照射包括光吸收可控互變分子的窗口11,形成第一光區31;The first light is used to irradiate the
利用第二光照射窗口11,形成第二光區32。其中,第一光區31和第二光區32部分重合。在第一光區31內,包括第一光區31和第二光區32重合部分,光吸收可控互變分子為第一構型分子。在第二光區32的非重合部分,光吸收可控互變分子從第一構型分子轉換為第二構型分子。第一構型分子的第一光的吸收率低於其第二光的吸收率,第二構型分子的第二光的吸收率低於其第一光的吸收率。第二光區32非重合部分小於第二光的衍射極限。The
第一光為空心光,第二光為實心光,第一光與第二光的照射方式均可為連續或者脈衝式。如圖3所示,第一光區31的中心區域為空心區域,第一光區31的四周區域為用於抑制光作用的照射區域,第二光區32為用於光作用的照射區域。第一光區31與第二光區32同軸且部分重合。在本實施例中,如果由於第二光的衍射極限在沒有第一光的情況下不能產生第二光區32非重合部分,則第二光區32非重合部分小於第二光的衍射極限。第二光區32非重合部分小於第二光的衍射極限的定義為:第二光區32非重合部分,指的是窗口11僅僅被第二光照射,不受到第一光照射的區域。The first light is hollow light, the second light is solid light, and the irradiation mode of the first light and the second light can be continuous or pulsed. As shown in FIG. 3, the central area of the first light area 31 is a hollow area, the surrounding area of the first light area 31 is an irradiation area for suppressing light effects, and the second light area 32 is an irradiation area for light effects. The first light zone 31 and the second light zone 32 are coaxial and partially overlapped. In this embodiment, if the non-overlapping portion of the second light zone 32 cannot be generated without the first light due to the diffraction limit of the second light, the non-overlapping portion of the second light zone 32 is smaller than the diffraction limit of the second light. The non-overlapping part of the second light zone 32 is defined as being smaller than the diffraction limit of the second light: the non-overlapping part of the second light zone 32 refers to the area where the
具體的,第一光包括單束空心光或多束空心光陣列;第一光的單一空心光的中央空心區域為奈米尺度,奈米尺度的可選範圍為0~10nm、10~20nm、20~30nm、30~40nm、40~50nm、50~60nm、60~70nm、70~80nm、80~90nm、90~100nm、100~110nm、110~120nm、120~130nm、130~140nm、140~150nm、150~160nm、160~170nm、170~180nm、180~190nm或190~200nm。Specifically, the first light includes a single hollow light or a multi-beam hollow light array; the central hollow area of the single hollow light of the first light is a nanometer scale, and the optional range of the nanometer scale is 0~10nm, 10~20nm, 20~30nm, 30~40nm, 40~50nm, 50~60nm, 60~70nm, 70~80nm, 80~90nm, 90~100nm, 100~110nm, 110~120nm, 120~130nm, 130~140nm, 140~ 150nm, 150~160nm, 160~170nm, 170~180nm, 180~190nm or 190~200nm.
具體的,第二光包括單束實心高斯光束或多束可各自獨立控制開關的高斯光束陣列,第二光的單一光束均與第一光相應空心光的中央空心中心同軸,第二光的單一光束照射範圍不超越第一光的單一光束的照射區域。Specifically, the second light includes a single solid Gaussian beam or multiple Gaussian beam arrays that can be independently switched on and off. The single beams of the second light are all coaxial with the central hollow center of the hollow light corresponding to the first light. The beam irradiation range does not exceed the irradiation area of the single beam of the first light.
實施例6Example 6
本實施例提供一種光儲存方法,用於對實施例三的光儲存介質進行資訊讀取和資訊寫入,包括實施例四的光學方法。This embodiment provides an optical storage method for reading and writing information on the optical storage medium of the third embodiment, including the optical method of the fourth embodiment.
當進行資訊寫入操作時,空心光和實心光作用於光存儲介質的窗口11,對窗口11中的光吸收可控互變分子產生作用。第一光區31的照射區域下的光吸收可控互變分子處於吸收第二光的光子能量的吸收狀態,由於在空心光和實心光的重合部分空心光作用強於實心光作用,保證了在空心光的照射區域下光吸收可控互變分子一直處於可吸收實心光的光子能量的狀態,形成阻擋第一光的關窗狀態,使第一光無法達到光敏感部12。在本實施例中,關窗狀態是指通過激發光照射窗口11,使窗口11對某一波長的激發光不透明,從而使該波長的光無法透過窗口11,能限制作用於光敏感部12的激發光的光斑大小。When performing an information writing operation, hollow light and solid light act on the
由於空心光的中央空心區域沒有空心光的光子作用,第一光區31的中央空心區域無法吸收第二光,形成不吸收第二光的開窗狀態,第二光通過窗口11作用於光敏感部12,啟動光敏感部12中的光敏感記錄成分,吸收第二光的光子能量,產生光記錄點。啟動後的光敏感記錄成分在讀取時可以在另外波長的激發光作用下發射螢光,激發光與發射螢光均可透過窗口11,以實現資訊的寫入及讀取。在本實施例中,開窗狀態是指通過激發光照射窗口11,使窗口11對某一波長的激發光透明,從而使該波長的光可以透過窗口11作用於光敏感部12,並進行資訊的寫入或讀取。Since the central hollow area of the hollow light does not have the photon effect of the hollow light, the central hollow area of the first light zone 31 cannot absorb the second light, forming an open window state that does not absorb the second light. The second light acts on the light sensitive through the
在本實施例中,光儲存方法包括兩種實施方法:In this embodiment, the optical storage method includes two implementation methods:
第一種,接收第一光的照射,在第一光區31的照射區域內抑制第二構型分子產生,第一光區31的中央空心區域無抑制作用;The first type is to receive the irradiation of the first light to inhibit the generation of molecules of the second configuration in the irradiation area of the first light zone 31, and the central hollow area of the first light zone 31 has no inhibitory effect;
接收第二光的照射,在窗口11中的第一構型分子持續吸收與第一光的重疊區域內的第二光,抑制第二光穿透窗口11,在第一光區31的中央空心區域,第二光區32將窗口11中的第一構型分子轉換為第二構型分子後,透過窗口11作用於光敏感部12。Receiving the irradiation of the second light, the molecules of the first configuration in the
第二種,接收第一光的照射,在第一光區31的照射區域內,窗口11中的第二構型分子持續吸收第一光後,轉換為第一構型分子,第一光區31的中央空心區域窗口11仍為第二構型分子;The second type is to receive the irradiation of the first light. In the irradiation area of the first light zone 31, the molecules of the second configuration in the
接收第二光的照射,在窗口11中的第一構型分子持續吸收與第一光重疊區域內的第二光,抑制第二光穿透窗口11。在第一光區31的中央空心區域,第二光可透過窗口11中的第二構型分子作用於光敏感部12。光敏感部12中光敏感記錄成分僅對第二光敏感,吸收第二光的光子能量後產生可穩定記錄的信號點。Upon receiving the irradiation of the second light, the molecules of the first configuration in the
以第一種光存儲方法為例,當光存儲介質為單層雙側讀取介質時:Take the first optical storage method as an example, when the optical storage medium is a single-layer double-sided reading medium:
光存儲介質由窗口11和光敏感部12組成,窗口11的材料為1,2-二(5,5’-二甲基的-2,2’-二噻吩基)六氟環戊烯,光敏感部12材料為4,4’二(二苯氨基-反式-苯乙烯基)聯苯。窗口11是一種分子開關類材料,以開環形式保存。開環結構在吸收325nm光照射後,會轉變為閉環結構的同分異構體;閉環結構在吸收633nm光照射後,會轉變為開環結構的同分異構體。寫入光20採用中心疊加同心的空心光束和高斯光束,空心光束波長633nm,高斯光束波長325nm。寫入光20會在窗口11上形成一個小孔,僅小孔範圍內高斯光不會被窗口11吸收。325nm高斯光透過窗口11之後照射到光敏感部12上。光敏感部12的材料吸收高斯光後材料特性發生轉變,產生記錄點。讀取光10採用中心疊加同心的空心光束和高斯光束,空心光束波長633nm,高斯光束波長335nm。因此,空心光的照射區域的記錄點不會發出螢光,高斯光照射區域的記錄點會發出螢光,從而實現資訊的讀取。The optical storage medium is composed of a
當光儲存介質為單層雙點雙側讀取介質時:When the optical storage medium is a single-layer double-point double-sided reading medium:
寫入光20和讀取光10在位於光敏感部12兩側的窗口11各有一束,通過與單層雙側讀取介質結構的光儲存方法相同的原理,在光敏感部12的上半部分和下半部分均產生記錄點,形成兩層記錄點。The writing
綜上,本發明窗口、介質及光學方法具有至少以下有益效果之一:In summary, the window, medium and optical method of the present invention have at least one of the following beneficial effects:
第一,本發明對光敏感部的材料要求低於現有技術,無需找到長期穩定、具有高雙光子吸收截面的分子開關材料,將所需性質複雜的材料分成兩種簡單的材料,選擇範圍大幅提升;First, the present invention has lower material requirements for the light-sensitive part than the prior art. There is no need to find long-term stable molecular switch materials with high two-photon absorption cross-sections. The materials with complex required properties are divided into two simple materials with a wide selection range. Promote
第二,本發明採用雙光束超分辨光學原理,結合窗口實現超分辨技術,提出了一種新的雙光束超分辨實現方法;Second, the present invention adopts the dual-beam super-resolution optical principle, combined with the window realization super-resolution technology, and proposes a new dual-beam super-resolution realization method;
第三,當本發明用於光儲存時,能實現長期穩定的光儲存,光敏感部材料更加穩定;Third, when the present invention is used for light storage, long-term stable light storage can be realized, and the material of the light sensitive part is more stable;
第四,當本發明用於光儲存時,能實現多層資訊寫入與讀取,並獲得良好的信噪比。Fourth, when the present invention is used for optical storage, it can realize multi-layer information writing and reading, and obtain a good signal-to-noise ratio.
本發明有效克服了現有技術中的種種缺點而具高度產業利用價值。The invention effectively overcomes various shortcomings in the prior art and has a high industrial value.
上述實施例僅例示性說明本發明的原理及其功效,而非用於限制本發明。任何熟悉此技術的人士皆可在不違背本發明的精神及範疇下,對上述實施例進行修飾或改變。因此,舉凡所屬技術領域中具有通常知識者在未脫離本發明所揭示的精神與技術思想下所完成的一切等效修飾或改變,仍應由本發明的權利要求所涵蓋。The above-mentioned embodiments only exemplarily illustrate the principles and effects of the present invention, but are not used to limit the present invention. Anyone familiar with this technology can modify or change the above-mentioned embodiments without departing from the spirit and scope of the present invention. Therefore, all equivalent modifications or changes made by those with ordinary knowledge in the technical field without departing from the spirit and technical ideas disclosed in the present invention should still be covered by the claims of the present invention.
1:介質 11:窗口 12:光敏感部 21:第一光源 211:第一光 22:第二光源 221:第二光 31:第一光區 32:第二光區 10:寫入光 20:讀取光1: medium 11: window 12: Light sensitive part 21: The first light source 211: First Light 22: second light source 221: The Second Light 31: The first light zone 32: second light zone 10: Write light 20: Reading light
圖1A顯示為本發明單層單側讀取介質的結構示意圖; 圖1B顯示為本發明單層雙側讀取介質的結構示意圖; 圖1C顯示為本發明單層雙點雙側讀取介質的結構示意圖; 圖1D顯示為本發明多層單側讀取介質的結構示意圖; 圖1E顯示為本發明多層雙側讀取介質的結構示意圖; 圖1F顯示為本發明多層雙點雙側讀取介質的結構示意圖; 圖2顯示為本發明的光學系統的結構示意圖;及 圖3顯示為本發明的第一光和第二光的結構示意圖。FIG. 1A shows a schematic diagram of the structure of a single-layer and single-side reading medium of the present invention; Figure 1B shows a schematic diagram of the structure of a single-layer double-sided reading medium of the present invention; Figure 1C shows a schematic diagram of the structure of a single-layer double-point double-sided reading medium of the present invention; FIG. 1D shows a schematic diagram of the structure of a multi-layer single-side reading medium of the present invention; FIG. 1E shows a schematic diagram of the structure of the multi-layer double-sided reading medium of the present invention; Figure 1F shows a schematic diagram of the structure of a multi-layer double-point double-sided reading medium of the present invention; Figure 2 shows a schematic diagram of the structure of the optical system of the present invention; and Fig. 3 is a schematic diagram showing the structure of the first light and the second light of the present invention.
11:窗口 11: window
12:光敏感部 12: Light sensitive part
10:寫入光 10: Write light
20:讀取光 20: Reading light
Claims (26)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910423780.3 | 2019-05-21 | ||
CN201910423780 | 2019-05-21 |
Publications (1)
Publication Number | Publication Date |
---|---|
TW202107156A true TW202107156A (en) | 2021-02-16 |
Family
ID=73442095
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW109116925A TW202107156A (en) | 2019-05-21 | 2020-05-21 | Window, medium and optical method |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP2022534376A (en) |
CN (2) | CN111986705A (en) |
TW (1) | TW202107156A (en) |
WO (2) | WO2020233666A1 (en) |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100234261B1 (en) * | 1996-06-07 | 1999-12-15 | 윤종용 | Compatible optical pickup device |
CN1107945C (en) * | 2000-06-09 | 2003-05-07 | 清华大学 | 3D multi-colour storing optical head |
JP2003013053A (en) * | 2001-06-29 | 2003-01-15 | Univ Osaka | Photochromic material, photochromic amorphous thin film for information recording, information recording method, and information recording element |
US20030174560A1 (en) * | 2002-02-26 | 2003-09-18 | Klaus-Hermann Dahmen | Photochromic compounds for molecular switches and optical memory |
CN1957269A (en) * | 2004-05-17 | 2007-05-02 | 株式会社尼康 | Optical elements and combiner optical systems and image-display units |
US20080213625A1 (en) * | 2005-04-07 | 2008-09-04 | University Of Miami | Optical Data Storage and Retrieval Based on Fluorescent and Photochromic Components |
JP2010054623A (en) * | 2008-08-26 | 2010-03-11 | Ricoh Co Ltd | Two-photon absorption material and its use |
CN101436607B (en) * | 2008-12-25 | 2011-11-16 | 中国科学院上海微系统与信息技术研究所 | Electric resistance transition memory and manufacturing method thereof |
CN106932916B (en) * | 2017-05-04 | 2019-10-01 | 鲁东大学 | A kind of dual-beam super-resolution focus method using Meta Materials lens |
US20200341373A1 (en) * | 2017-10-23 | 2020-10-29 | Shanghai Bixiufu Enterprise Management Co., Ltd. | Lithographic Method, Lithographic Product and Lithographic Material |
CN108320758B (en) * | 2018-02-02 | 2019-12-20 | 中国科学院上海光学精密机械研究所 | Reversible phase-change material high-density storage device |
CN108877844B (en) * | 2018-04-09 | 2020-04-03 | 中国科学院上海光学精密机械研究所 | Two-photon two-beam super-resolution optical storage material reading and writing device and method |
CN108899053B (en) * | 2018-04-09 | 2020-04-03 | 中国科学院上海光学精密机械研究所 | Double-beam super-resolution optical storage material reading and writing device and method |
-
2020
- 2020-05-21 CN CN202010434116.1A patent/CN111986705A/en active Pending
- 2020-05-21 WO PCT/CN2020/091548 patent/WO2020233666A1/en active Application Filing
- 2020-05-21 TW TW109116925A patent/TW202107156A/en unknown
- 2020-05-21 WO PCT/CN2020/091547 patent/WO2020233665A1/en active Application Filing
- 2020-05-21 JP JP2021569242A patent/JP2022534376A/en active Pending
- 2020-05-21 CN CN202080037808.0A patent/CN113939872B/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2022534376A (en) | 2022-07-29 |
WO2020233666A1 (en) | 2020-11-26 |
CN113939872A (en) | 2022-01-14 |
CN113939872B (en) | 2024-01-30 |
CN111986705A (en) | 2020-11-24 |
WO2020233665A1 (en) | 2020-11-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6633726B2 (en) | Optical information storage medium and optical data storage system including the same | |
US8102742B2 (en) | Optical information recording medium, optical information recordng apparatus, and optical information recording method | |
US8169879B2 (en) | Optical recording system to record information with light | |
JP5117679B2 (en) | Dye material using multiphoton absorption material, method for producing dye material, multiphoton absorption reaction material, reaction product of multiphoton absorption reaction material, multiphoton absorption reaction aid, and dye solution | |
CN101548231B (en) | Photosensitized composite material, three-dimensional memory material and recording medium, optical power limiting material and element, photocuring material and stereolithography system, and fluoresc | |
US20090075014A1 (en) | Optical recording method and reproducing method | |
TW202107156A (en) | Window, medium and optical method | |
CN111462780A (en) | Nano-photoetching-based fluorescent dark state optical disk information reading and writing method and device | |
CN111508533B (en) | Nano photoetching-based optical disk and physical storage medium structure and writing and reading method thereof | |
CN101765515B (en) | Optical information recording medium, and two-photon absorbing material | |
JP4605796B2 (en) | Multi-photon absorption functional material, optical recording medium using the same, optical limiting element, and optical modeling system | |
KR102776540B1 (en) | Optical information storage media | |
JP2006196125A (en) | Multiphoton recording method and multilayer optical recording medium | |
CN1726545A (en) | Use of bi-layer photolithographic resists as new material for optical storage | |
JP2007080312A (en) | Optical recording medium and its manufacturing method | |
CN1758353A (en) | Optical recording medium | |
JPH05266478A (en) | Optical memory element and reproducing method using the same | |
JPS62165751A (en) | Optical multiplex recording method | |
JP2003016657A (en) | Writable multilayer optical recording medium and method for writing information in the same | |
JP5151124B2 (en) | Light limiting element and stereolithography system | |
JP4503525B2 (en) | Multilayer optical information recording medium | |
JP2008159207A (en) | Optical recording medium and optical recording/reproducing apparatus | |
TW594721B (en) | Method for manufacturing multi-recording-layer optical recording medium, apparatus for manufacturing multi-recording-layer optical recording medium, and multi-recording-layer optical recording medium | |
JP2006228359A (en) | Recording medium, information recording and reproducing apparatus, and information recording and reproducing method | |
JP2004029480A (en) | Two-photon absorption material |