TW202023865A - 用於確定自動駕駛中的駕駛路徑的系統和方法 - Google Patents
用於確定自動駕駛中的駕駛路徑的系統和方法 Download PDFInfo
- Publication number
- TW202023865A TW202023865A TW107146734A TW107146734A TW202023865A TW 202023865 A TW202023865 A TW 202023865A TW 107146734 A TW107146734 A TW 107146734A TW 107146734 A TW107146734 A TW 107146734A TW 202023865 A TW202023865 A TW 202023865A
- Authority
- TW
- Taiwan
- Prior art keywords
- sample
- driving
- samples
- cost
- candidate
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 72
- 238000012549 training Methods 0.000 claims description 37
- 230000008569 process Effects 0.000 claims description 33
- 230000004044 response Effects 0.000 claims description 16
- 238000004891 communication Methods 0.000 claims description 11
- 238000001514 detection method Methods 0.000 claims description 5
- 238000012545 processing Methods 0.000 description 94
- 230000000875 corresponding effect Effects 0.000 description 56
- 238000010586 diagram Methods 0.000 description 12
- 230000001133 acceleration Effects 0.000 description 11
- 230000006870 function Effects 0.000 description 10
- 238000012360 testing method Methods 0.000 description 10
- 238000012986 modification Methods 0.000 description 9
- 230000004048 modification Effects 0.000 description 9
- 238000004364 calculation method Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 238000013528 artificial neural network Methods 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 238000004590 computer program Methods 0.000 description 2
- 238000013527 convolutional neural network Methods 0.000 description 2
- 230000002596 correlated effect Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000012706 support-vector machine Methods 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 1
- 238000013500 data storage Methods 0.000 description 1
- 238000003066 decision tree Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 230000014509 gene expression Effects 0.000 description 1
- 239000010977 jade Substances 0.000 description 1
- 238000010801 machine learning Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000004377 microelectronic Methods 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 230000000644 propagated effect Effects 0.000 description 1
- 230000000306 recurrent effect Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 230000001953 sensory effect Effects 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/02—Control of position or course in two dimensions
- G05D1/021—Control of position or course in two dimensions specially adapted to land vehicles
- G05D1/0212—Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
- G05D1/0217—Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory in accordance with energy consumption, time reduction or distance reduction criteria
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C21/00—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
- G01C21/26—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
- G01C21/34—Route searching; Route guidance
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W30/00—Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
- B60W30/08—Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
- B60W30/09—Taking automatic action to avoid collision, e.g. braking and steering
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W30/00—Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
- B60W30/08—Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
- B60W30/095—Predicting travel path or likelihood of collision
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W40/00—Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
- B60W40/02—Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to ambient conditions
- B60W40/06—Road conditions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W40/00—Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
- B60W40/10—Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to vehicle motion
- B60W40/105—Speed
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/02—Control of position or course in two dimensions
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
- G06Q10/04—Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
Landscapes
- Engineering & Computer Science (AREA)
- Automation & Control Theory (AREA)
- Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- General Physics & Mathematics (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Business, Economics & Management (AREA)
- Strategic Management (AREA)
- Aviation & Aerospace Engineering (AREA)
- Economics (AREA)
- Mathematical Physics (AREA)
- Human Resources & Organizations (AREA)
- Game Theory and Decision Science (AREA)
- Entrepreneurship & Innovation (AREA)
- Marketing (AREA)
- Operations Research (AREA)
- Quality & Reliability (AREA)
- Tourism & Hospitality (AREA)
- General Business, Economics & Management (AREA)
- Theoretical Computer Science (AREA)
- Development Economics (AREA)
- Traffic Control Systems (AREA)
- Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
- Navigation (AREA)
Abstract
本申請涉及一種用於確定自動駕駛中的駕駛路徑的系統和方法。所述系統可以獲取複數個候選駕駛路徑;基於訓練的係數產生模型,獲取與所述複數個候選駕駛路徑相關的一個或多個係數;基於所述一個或多個係數,確定所述複數個候選駕駛路徑中的每一個候選駕駛路徑的行程成本;以及基於對應於所述複數個候選駕駛路徑的複數個行程成本,從所述複數個候選駕駛路徑中識別目標駕駛路徑。
Description
本申請涉及用於自動駕駛的系統和方法,具體涉及用於確定自動駕駛中的駕駛路徑的系統和方法。
本申請主張2018年12月19日提交的編號為PCT/CN2018/122102的國際申請案和2018年12月18日提交的編號為201811548158.7的中國申請案的優先權,其內容以引用方式被包含於此。
隨著微電子技術和機器人技術的發展,自動駕駛的探索現已迅速發展。對於自動駕駛系統來說,基於與自動駕駛系統的運輸工具相關的行駛資訊(例如,起始位置、定義的目的地、道路狀況)確定合適的駕駛路徑是很重要的。通常,自動駕駛系統會確定複數個候選駕駛路徑,並基於與所述複數個候選駕駛路徑中的每一個路徑相關的特徵(例如,行程成本),從所述複數個候選駕駛路徑中選擇目標駕駛路徑,並且與所述複數個候選駕駛路徑中的每一個路徑相關的特徵通常是基於人工定義的參數確定的。然而,在某些情況下,人工定義的參數可能不準確或不適合,因此難以基於這些參數確定最佳駕駛路徑。因此,希望提供用於準確和有效地確定最佳駕駛路徑的系統和方法,從而改善自動駕駛系統的性能。
本申請的一態樣涉及一種用於確定自動駕駛中的駕駛路徑的系統。所述系統包括包含一組指令的至少一個儲存媒體以及與所述至少一個儲存媒體通訊的至少一個處理器。其中當所述至少一個處理器執行所述一組指令時,使所述系統執行下述操作。所述系統可以獲取複數個候選駕駛路徑。所述系統可以基於訓練的係數產生模型來獲取與所述複數個候選駕駛路徑相關的一個或多個係數。所述系統可以基於所述一個或多個係數來確定所述複數個候選駕駛路徑中的每一個候選駕駛路徑的行程成本。所述系統可以基於對應於所述複數個候選駕駛路徑的複數個行程成本,從所述複數個候選駕駛路徑中識別目標駕駛路徑。
在一些實施例中,所述系統可以確定一個或多個成本因素。所述系統可以基於所述一個或多個成本因素和所述一個或多個係數來確定所述複數個候選駕駛路徑中的每一個候選駕駛路徑的所述行程成本。
在一些實施例中,所述一個或多個成本因素包括速度成本因素、相似度成本因素及/或曲率成本因素中的至少一個。
在一些實施例中,所述訓練的係數產生模型藉由訓練流程而確定,所述訓練流程包括:獲取複數個樣本駕駛路徑;基於所述複數個樣本駕駛路徑確定複數個樣本,其中,所述複數個樣本中的每一個樣本都包括對應於相同起始位置和相同目的地的樣本駕駛路徑集;對於所述複數個樣本中的每一個樣本,確定對應於所述樣本駕駛路徑集的樣本分數集;以及基於所述複數個樣本的分數來確定所述訓練的係數產生模型。
在一些實施例中,基於所述複數個樣本來確定所述訓練的係數產生模型包括:獲取包括複數個初始係數的初始係數產生模型,其中,所述複數個初始係數中的每一個係數都對應於樣本;提取所述複數個樣本中的每一個樣本的特徵資訊;對於所述複數個樣本中的每一個樣本,基於相應的初始係數和所述特徵資訊來確定對應於所述樣本駕駛路徑集的樣本行程成本集;確定對應於所述複數個樣本的複數個樣本行程成本集和複數個樣本分數集是否滿足預設條件;以及回應於確定所述複數個樣本行程成本集和所述複數個樣本分數集滿足所述預設條件,指定所述初始係數產生模型作為所述訓練的係數產生模型。
在一些實施例中,基於所述複數個樣本來確定所述訓練的係數產生模型,進一步包括:回應於確定所述複數個樣本行程成本集和所述複數個樣本分數集不滿足所述預設條件,更新所述複數個初始係數;重複確定對應於所述複數個樣本的複數個樣本行程成本集和複數個樣本分數集是否滿足所述預設條件的步驟。
在一些實施例中,所述複數個樣本中的每一個樣本的所述特徵資訊包括所述樣本駕駛路徑集的每一個樣本駕駛路徑的速度資訊以及與所述樣本駕駛路徑集的每一個樣本駕駛路徑相關的障礙物資訊。
在一些實施例中,所述系統可以從所述複數個行程成本中識別出最小的行程成本;以及將所述最小的行程成本對應的候選駕駛路徑指定為所述目標駕駛路徑。
在一些實施例中,所述系統可以將所述目標駕駛路徑發送到運輸工具的一個或多個控制元件,指示所述運輸工具遵循所述目標駕駛路徑。
本申請的另一態樣涉及一種在計算裝置上實施的方法,所述計算裝置可以包括至少一個處理器、至少一個儲存媒體和連接到網路的通訊平臺。所述方法包括:獲取複數個候選駕駛路徑;基於訓練的係數產生模型來獲取與所述複數個候選駕駛路徑相關的一個或多個係數;基於所述一個或多個係數來確定所述複數個候選駕駛路徑中每一個候選駕駛路徑的行程成本;以及基於對應於所述複數個候選駕駛路徑的複數個行程成本,從所述複數個候選駕駛路徑中識別目標駕駛路徑。
在一些實施例中,確定所述複數個候選駕駛路徑中的每一個候選駕駛路徑的所述行程成本,包括:確定一個或多個成本因素;以及基於所述一個或多個成本因素和所述一個或多個係數來確定所述複數個候選駕駛路徑中的每一個候選駕駛路徑的所述行程成本。
在一些實施例中,所述一個或多個成本因素包括速度成本因素、相似度成本因素及/或曲率成本因素中的至少一個。
在一些實施例中,所述訓練的係數產生模型藉由訓練流程而確定,所述訓練流程包括:獲取複數個樣本駕駛路徑;基於所述複數個樣本駕駛路徑確定複數個樣本,其中所述複數個樣本中的每一個樣本包括對應於相同起始位置和相同目的地的樣本駕駛路徑集;對於所述複數個樣本中的每一個樣本,確定對應於所述樣本駕駛路徑集的樣本分數集;以及基於所述複數個樣本的分數來確定所述訓練的係數產生模型。
在一些實施例中,基於所述複數個樣本來確定所述訓練的係數產生模型,包括:獲取包括複數個初始係數的初始係數產生模型,其中所述複數個初始係數中的每一個係數都對應於樣本;提取所述複數個樣本中的每一個樣本的特徵資訊;對於所述複數個樣本中的每一個樣本,基於相應的初始係數和所述特徵資訊來確定對應於所述樣本駕駛路徑集的樣本行程成本集;確定對應於所述複數個樣本的複數個樣本行程成本集和複數個樣本分數集是否滿足預設條件;以及回應於確定所述複數個樣本行程成本集和所述複數個樣本分數集滿足所述預設條件,指定所述初始係數產生模型作為所述訓練的係數產生模型。
在一些實施例中,基於所述複數個樣本來確定所述訓練的係數產生模型,進一步包括:回應於確定所述複數個樣本行程成本集和所述複數個樣本分數集不滿足所述預設條件,更新所述複數個初始係數;重複確定對應於所述複數個樣本的複數個樣本行程成本集和複數個樣本分數集是否滿足所述預設條件的步驟。
在一些實施例中,所述複數個樣本中的每一個樣本的所述特徵資訊包括所述樣本駕駛路徑集的每一個樣本駕駛路徑的速度資訊以及與所述樣本駕駛路徑集的每一個樣本駕駛路徑相關的障礙物資訊。
在一些實施例中,基於對應於所述複數個候選駕駛路徑的複數個行程成本,從所述複數個候選駕駛路徑中識別所述目標駕駛路徑,包括:從所述複數個行程成本中識別出最小的行程成本;以及將所述最小的行程成本對應的候選駕駛路徑指定為所述目標駕駛路徑。
在一些實施例中,所述方法還包括:將所述目標駕駛路徑發送到運輸工具的一個或多個控制元件上,指示所述運輸工具遵循所述目標駕駛路徑。
本申請的又一態樣涉及一種用於自動駕駛的運輸工具。所述運輸工具可以包括檢測元件、規劃元件和控制元件。所述規劃元件用於:獲取複數個候選駕駛路徑;基於訓練的係數產生模型來獲取與所述複數個候選駕駛路徑相關的一個或多個係數;基於所述一個或多個係數來確定所述複數個候選駕駛路徑中的每一個候選駕駛路徑的行程成本;以及基於對應於所述複數個候選駕駛路徑的複數個行程成本,從所述複數個候選駕駛路徑中識別目標駕駛路徑。
另外的特徵將在接下來的描述中部分地闡述,並且對於本領域具有通常知識者在檢閱下文和附圖時將部分地變得顯而易見,或者可以藉由示例的生產或操作而被學習。本申請的特徵可以藉由實踐或使用在下面討論的詳細示例中闡述的方法、手段和組合的各個方面來實現和獲得。
下述描述是為了使本領域具有通常知識者能製造和使用本申請,並且該描述是在特定的應用及其要求的背景下提供的。對於本領域具有通常知識者來說,顯然可以對所揭露的實施例作出各種改變。另外,在不偏離本申請的精神和範圍的情況下,本申請中所定義的普遍原則可以適用於其他實施例和應用場景。因此,本申請並不限於所揭露的實施例,而應被給予與申請專利範圍一致的最寬泛的範圍。
此處使用的術語僅僅用來描述特定的示意性實施例,並且不具有限定性。如本申請和申請專利範圍中所示,除非上下文明確提示例外情形,「一」、「一個」、「一種」及/或「該」等詞並非特指單數,也可以包括複數。應該被理解的是,本申請中所使用的術語「包括」與「包含」僅提示已明確標識的特徵、整數、步驟、操作、元素及/或元件,而不排除可以存在和添加其他一個或多個特徵、整數、步驟、操作、元素、元件及/或其組合。
根據以下對圖式的描述,本申請的這些和其他的特徵、特點以及相關結構元件的功能和操作方法,以及部件組合和製造經濟性,可以變得更加顯而易見,這些圖式都構成本申請說明書的一部分。然而,應當理解,附圖僅僅是為了說明和描述的目的,並不旨在限制本申請的範圍。應當理解的是,附圖並不是按比例的。
本申請中使用了流程圖用來說明根據本申請的實施例的系統所執行的操作。應當理解的是,流程圖的操作不一定按照順序來精確地執行。相反,可以按照倒序執行或同時處理各種步驟。此外,可以將一個或多個其他操作添加到這些流程圖中。也可以從這些流程圖中移除一個或多個操作。
此外,儘管本申請中揭露的系統和方法主要涉及陸地中的運輸系統,但應該理解,這僅是一個示例性實施例。本申請的系統和方法可以應用於任何其他類型的運輸系統。例如,本申請的系統和方法可以應用於不同環境的運輸系統,包括海洋、航太或類似物或其任何組合。運輸系統的運輸工具可包括汽車、公共汽車、列車、地鐵、船隻、飛機、太空船、熱氣球或類似物或其任何組合。
本申請中使用的定位技術可以包括全球定位系統(Global Positioning System,GPS)、全球衛星導航系統(Global Navigation Satellite System,GLONASS)、北斗導航系統(Compass Navigation System,COMPASS)、伽利略定位系統、準天頂衛星系統(Quasi-Zenith Satellite System,QZSS)、無線保真(Wireless Fidelity,WiFi)定位技術或類似物或其任意組合。以上定位技術中的一個或多個可以在本申請中交換使用。
本申請的一個態樣涉及用於確定自動駕駛中的駕駛路徑的系統和方法。該系統和方法可以獲取複數個候選駕駛路徑。可以基於與運輸工具相關的行駛資訊(例如,道路狀況資訊、障礙物資訊)確定複數個候選駕駛路徑。該系統和方法可以基於訓練的係數產生模型,獲取與複數個候選駕駛路徑相關的一個或多個係數。該系統和方法可以基於一個或多個係數,確定複數個候選駕駛路徑中的每一個候選駕駛路徑的行程成本。此外,該系統和方法可以基於與複數個候選駕駛路徑相對應的複數個行程成本,從複數個候選駕駛路徑中識別目標駕駛路徑(例如,對應於最小行程成本的候選駕駛路徑)。根據本申請的系統和方法,候選駕駛路徑的行程成本基於由訓練的模型所產生的係數而確定,可以提高運輸工具的路徑規劃的準確性。
圖1係根據本申請的一些實施例所示的示例性自動駕駛系統的示意圖。在一些實施例中,自動駕駛系統100可包括伺服器110、網路120、運輸工具130和儲存器140。
在一些實施例中,伺服器110可以是單一伺服器或伺服器組。伺服器組可以是集中式的或分散式的(例如,伺服器110可以是分散式系統)。在一些實施例中,伺服器110可以是本地的或遠端的。例如,伺服器110可以藉由網路120存取儲存在運輸工具130及/或儲存器140中的資訊及/或資料。又例如,伺服器110可以直接連接到運輸工具130及/或儲存器140以存取儲存的資訊及/或資料。在一些實施例中,伺服器110可以在雲端平臺或車載電腦上實現。僅僅作為範例,該雲端平臺可以包括一私有雲、公共雲、混合雲、社區雲、分散式雲、內部雲、多層雲或類似物或其任意組合。在一些實施例中,伺服器110可以在計算裝置200上實現,該計算裝置200包括本申請中的圖2中所示的一個或多個元件。
在一些實施例中,伺服器110可包含處理引擎112。處理引擎112可以處理與運輸工具130的行駛資訊相關的資訊及/或資料,以執行本申請中描述的一個或多個功能。例如,處理引擎112可以獲取與運輸工具130相關的行駛資訊(例如,道路狀況資訊、障礙物資訊),並基於行駛資訊確定運輸工具130的駕駛路徑。也就是說,處理引擎112可以被配置為運輸工具130的規劃元件。又例如,處理引擎112可以基於駕駛路徑確定控制指令(例如,速度控制指令、方向控制指令)。在一些實施例中,處理引擎112可包括一個或者多個處理引擎(例如,單核心處理引擎或多核心處理器)。僅作為範例,處理引擎112可包括一中央處理單元(CPU)、特定應用積體電路(ASIC)、特定應用指令集處理器(ASIP)、圖形處理單元(GPU)、物理運算處理單元(PPU)、數位訊號處理器(DSP)、現場可程式閘陣列(FPGA)、可程式邏輯裝置(PLD)、控制器、微控制器單元、精簡指令集電腦(RISC)、微處理器或類似物或其任意組合。
在一些實施例中,伺服器110可以連接到網路120以與自動駕駛系統100的一個或多個元件(例如,運輸工具130、儲存器140)通訊。在一些實施例中,伺服器110可以直接連接到自動駕駛系統100的一個或多個元件(例如,運輸工具130、儲存器140)或與之通訊。在一些實施例中,伺服器110可以整合在運輸工具130中。例如,伺服器110可以是安裝在運輸工具130中的計算裝置(例如,車載電腦)。
網路120可以促進資訊及/或資料的交換。在一些實施例中,自動駕駛系統100的一個或多個元件(例如,伺服器110、運輸工具130、儲存器140)可以藉由網路120將資訊及/或資料發送到自動駕駛系統100的其他元件。例如,伺服器110可以藉由網路120獲取與運輸工具130相關的行駛資訊。在一些實施例中,網路120可以是任意形式的有線或者無線網路,或其任意組合。僅作為示例,網路120可以包括纜線網路、有線網路、光纖網路、電信網路、內部網路、網際網路、區域網路(LAN)、廣域網路(WAN)、無線區域網路(WLAN)、都會網路(MAN)、公共交換電話網路(PSTN)、藍牙網路、紫蜂網路、近場通訊(NFC)網路或類似物或其任何組合。在一些實施例中,網路120可包括一個或者多個網路存取點。例如,網路120可以包括有線或無線網路存取點,藉由該存取點,自動駕駛系統100的一個或多個元件可以連接到網路120以交換資料及/或資訊。
運輸工具130可以是任何類型的自動運輸工具。自動運輸工具能夠在沒有人類操縱的情況下感測環境資訊和導航。運輸工具130可包括傳統運輸工具的結構。例如,運輸工具130可包括複數個控制元件,其被配置為控制運輸工具130的操作。複數個控制元件可包括轉向裝置(例如,方向盤)、剎車裝置(例如,剎車踏板)、加速器或類似物。轉向裝置可以被配置為調節運輸工具130的朝向及/或方向。剎車裝置可以被配置為執行剎車操作以停止運輸工具130。加速器可以被配置為控制運輸工具130的速度及/或加速度。
運輸工具130還可包括複數個檢測單元,被配置為檢測與運輸工具130相關的行駛資訊。複數個檢測單元可包括相機、全球定位系統(GPS)模組、加速度感測器(例如,壓電感測器)、速度感測器(例如,霍爾感測器)、距離感測器(例如,雷達、光達、紅外光感測器)、轉向角感測器(例如,傾斜感測器)、牽引相關感測器(例如,力感測器)或類似物。在一些實施例中,與運輸工具130相關的行駛資訊可包括運輸工具130一定範圍內的感知資訊(例如,道路狀況資訊、障礙物資訊)、運輸工具130的一定範圍內的地圖資訊或類似物。
儲存器140可以儲存資料及/或指令。在一些實施例中,儲存器140可以儲存從運輸工具130獲取的資料,例如由複數個檢測單元獲取的與運輸工具130相關的行駛資訊。在一些實施例中,儲存器140可以儲存伺服器110用來執行或使用來完成本申請揭示的示例性方法的資料及/或指令。在一些實施例中,儲存器140可包括一大容量儲存器、可移除式儲存器、揮發性讀寫記憶體、唯讀記憶體(ROM)或類似物或其任意組合。示例性可移除式儲存器可包括一快閃驅動器、軟碟、光碟、記憶卡、壓縮碟、磁帶等。示例性的揮發性讀寫記憶體可包括隨機存取記憶體(RAM)。示例性RAM可包括動態隨機存取記憶體(DRAM)、雙倍資料速率同步動態隨機存取記憶體(DDR SDRAM)、靜態隨機存取記憶體(SRAM)、閘流體隨機存取記憶體(T-RAM)和零電容隨機存取記憶體(Z-RAM)或類似物。示例性唯讀記憶體可以包括遮罩唯讀記憶體(MROM)、可程式唯讀記憶體(PROM)、可清除可程式唯讀記憶體(EPROM)、電子可清除可程式唯讀記憶體(EEPROM)、光碟唯讀記憶體(CD-ROM)和數位多功能影音光碟(digital versatile disk)唯讀記憶體或類似物。在一些實施例中,儲存器140可在雲端平臺上實現。僅僅作為範例,該雲端平臺可以包括私有雲、公共雲、混合雲、社區雲、分散式雲、內部雲、多層雲或類似物或其任意組合。
在一些實施例中,儲存器140可以連接到網路120,以與自動駕駛系統100的一個或多個元件(例如,伺服器110、運輸工具130)通訊。自動駕駛系統100的一個或多個元件可以藉由網路120存取儲存在儲存器140中的資料或指令。在一些實施例中,儲存器140可以直接連接到自動駕駛系統100的一個或多個元件(例如,伺服器110和運輸工具130)或與之通訊。在一些實施例中,儲存器140可以是伺服器110的一部分。在一些實施例中,儲存器140可以整合在運輸工具130中。
應當注意自動駕駛系統100僅用於說明的目的,並不意圖限制本申請的範圍。對於本領域具有通常知識者來說,可以根據本申請的描述,做出各種各樣的修正或改變。例如,自動駕駛系統100還可以包括資料庫、資訊源或類似物。又例如,自動駕駛系統100可以在其他裝置上實施以實現類似或不同的功能。然而,這些修正和改變不會背離本申請的範圍。
圖2係根據本申請的一些實施例所示的示例性計算裝置的示例性硬體和軟體元件的示意圖。在一些實施例中,伺服器110可以在計算裝置200上實現。例如,處理引擎112可以在計算裝置200上實施並執行本申請所揭露的處理引擎112的功能。
計算裝置200可用於實現本申請的自動駕駛系統100的任何元件。例如,自動駕駛系統100的處理引擎112可以藉由其硬體、軟體程式、韌體或其組合在計算裝置200上實現。儘管為了方便僅示出了一個這樣的電腦,但是與這裡描述的自動駕駛系統100相關的電腦功能可以在多個類似平臺上以分散式方式實現,以分配處理負荷。
例如,計算裝置200可以包括連接到與其連接的網路(例如,網路120)的通訊埠250,以促進資料通訊。計算裝置200還可以包括處理器(例如,處理器220),其形式為一個或多個處理器(例如,邏輯電路),用於執行程式指令。例如,處理器可以包括其中的介面電路和處理電路。介面電路可以被配置為從匯流排210接收電信號,其中電信號編碼用於處理電路的結構化資料及/或指令。處理電路可以進行邏輯計算,然後將結論、結果及/或指令編碼確定為電信號。然後,介面電路可以藉由匯流排210從處理電路發出電信號。
計算裝置200還可以包括不同形式的程式儲存和資料儲存,例如,磁碟270以及唯讀記憶體(ROM)230或隨機存取記憶體(RAM)240,用於儲存要由計算裝置200處理及/或發送的各種資料檔。計算裝置200還可以包括儲存在ROM 230、RAM 240及/或由處理器220執行的其他類型的非暫時性儲存媒體中的程式指令。本申請的方法及/或流程可以以程式指令的方式實現。計算裝置200還包括輸入/輸出元件260,其支援計算裝置200與其中的其他元件之間的輸入/輸出。計算裝置200也可以藉由網路通訊接收程式設計和資料。
僅僅為了說明,在計算裝置200中僅描述了一個處理器。然而,應該注意的是,本申請中的計算裝置200還可以包括多個處理器,因此由本申請中描述的一個處理器執行的操作也可以由多個處理器聯合或單獨執行。例如,計算裝置200的處理器執行操作A和操作B。如在另一示例中,操作A和操作B也可以由計算裝置200中的兩個不同的處理器聯合或分開執行(例如,第一處理器執行操作A並且第二處理器執行操作B、或者第一和第二處理器聯合執行操作A和B)。
圖3係根據本申請的一些實施例所示的示例性處理引擎的方塊圖。處理引擎112可包括獲取模組310、訓練模組320、確定模組330和識別模組340。
獲取模組310可以被配置為獲取與運輸工具(例如,運輸工具130)相關的複數個候選駕駛路徑。在一些實施例中,獲取模組310可以從儲存裝置(例如,儲存器140)中獲取複數個候選駕駛路徑,例如本申請中其他地方揭露的儲存裝置。在一些實施例中,獲取模組310可以基於行駛資訊(例如,運輸工具的當前位置、運輸工具的當前速度、運輸工具的當前加速度、定義的目的地、與運輸工具相關的道路狀況、障礙物資訊),確定複數個候選駕駛路徑。關於複數個候選駕駛路徑的更多描述可以在本申請的其他地方找到(例如,圖4及其描述)。
訓練模組320可以被配置為基於複數個樣本確定訓練的係數產生模型。複數個樣本中的每一個樣本可以包括對應於相同起始位置和相同目的地的樣本駕駛路徑集。訓練的係數產生模型的更多描述可以在本申請的其他地方找到(例如,圖6及其描述)。
確定模組330可以被配置為基於訓練的係數產生模型,獲取與複數個候選駕駛路徑相關的一個或多個係數。確定模組330也可以被配置為基於一個或多個係數確定複數個候選駕駛路徑中的每一個候選駕駛路徑的行程成本。在一些實施例中,確定模組330可以確定一個或多個成本因素,並基於一個或多個成本因素和一個或多個係數,確定複數個候選駕駛路徑中的每一個候選駕駛路徑的行程成本。關於行程成本的更多描述可以在本申請的其他地方找到(例如,圖4及其描述)。
識別模組340可以被配置為基於與複數個候選駕駛路徑相對應的複數個行程成本,從複數個候選駕駛路徑中識別目標駕駛路徑。在一些實施例中,識別模組340可以從複數個行程成本中識別最小行程成本,並將對應於最小行程成本的候選駕駛路徑識別為目標駕駛路徑。
在一些實施例中,處理引擎112可以進一步包括傳輸模組(未示出),該傳輸模組可以被配置為將目標駕駛路徑傳輸到運輸工具的一個或多個控制元件(例如,剎車裝置、加速器),並指示運輸工具遵循目標駕駛路徑。
處理引擎112中的模組可以藉由有線連接或無線連接彼此連接或通訊。有線連接可以包括金屬纜線、光纜、混合纜線或類似物或其任何組合。無線連接可以包括區域網路(LAN)、廣域網路(WAN)、藍牙、紫蜂、近場通訊(NFC)或類似物或其任何組合。兩個或更多的模組可以合併成一個模組,且任意一個模組可以被拆分成兩個或更多的單元。例如,確定模組330和識別模組340可以組合為單個模組,其可以確定複數個候選駕駛路徑中的每一個候選駕駛路徑的行程成本並且從複數個候選駕駛路徑中識別目標駕駛路徑。又例如,獲取模組也可以用於獲取與複數個候選駕駛路徑相關的一個或多個係數。作為另一個例子,處理引擎112可以包括儲存模組(圖3中未示出),其可以被配置為儲存複數個候選駕駛路徑、對應於複數個候選行駛路線的複數個行程成本、目標駕駛路徑或類似物。作為又一示例,訓練模組320可以是不必要的,訓練的係數產生模型可以從儲存裝置(例如,儲存器140)中獲取,例如本申請中其他地方揭露的儲存裝置。
圖4係根據本申請的一些實施例所示的用於確定駕駛路徑的示例性流程的流程圖。流程400可以由自動駕駛系統100執行。例如,流程400可以實現為儲存在儲存器ROM 230或RAM 240中的一組指令(例如,應用程式)。處理器220及/或圖3中所示的模組可以執行該組指令,並且當執行指令時,處理器220及/或模組可以被配置為執行流程400。下述流程/方法的操作僅是示例性的。在一些實施例中,流程400在實現時可以添加一個或多個未描述的額外操作及/或刪減一個或多個此處所討論的操作。另外,圖4中示出並在下面描述的流程400的操作的順序不是限制性的。
在410中,處理引擎112(例如,獲取模組310)(例如,處理器220的介面電路)可以獲取與運輸工具(例如,運輸工具130)相關的複數個候選駕駛路徑。
在一些實施例中,處理引擎112可以從儲存裝置(例如,儲存器140)中獲取複數個候選駕駛路徑,例如本申請中其他地方所揭露的儲存裝置。在一些實施例中,處理引擎112可以基於與運輸工具相關的行駛資訊(例如,運輸工具的當前位置、運輸工具的當前速度、運輸工具的當前加速度、定義的目的地、道路狀況、障礙物資訊)確定複數個候選駕駛路徑。例如,處理引擎112可以基於曲線擬合方法,確定與運輸工具的當前位置和所定義的目的地相關的複數條曲線,並且選擇不與障礙物碰撞的曲線作為複數個候選駕駛路徑。又例如,處理引擎112可以基於與運輸工具相關的行駛資訊,根據機器學習模型(例如,人工神經網路模型、支援向量機(Support Vector Machine,SVM)模型、決策樹模型),確定複數個候選駕駛路徑。關於確定候選駕駛路徑的更多描述可以在2017年7月13日提交的國際申請案PCT/CN2017/092714中找到,其全部的內容以引用方式將其整體併入本文。
在一些實施例中,處理引擎112可以確定複數個候選駕駛路徑中的每一個候選駕駛路徑與對應於先前時間點的先前目標駕駛路徑之間的差異。此外,處理引擎112可以過濾出具有大於差異臨界值(可以是默認設置或可以是可調節的)的候選駕駛路徑,並且確定複數個候選駕駛路徑中的剩餘部分作為最終候選駕駛路徑。應當注意自動駕駛系統100可以根據預定的時間間隔(例如,5ms、10ms、15ms、20ms)確定駕駛路徑,即自動駕駛系統100可以確定在第一時間點的第一目標駕駛路徑和在第二時間點的第二目標駕駛路徑,其中第一時間點和第二時間點被預定的時間間隔分開並且可以被指定為「相鄰時間點」。因此,這裡所說的先前時間點是指當前時間點之前的相鄰時間點。
在420中,處理引擎112(例如,獲取模組310或確定模組330)(例如,處理器220的處理電路)可以基於訓練的係數產生模型,獲取與複數個候選駕駛路徑相關的一個或多個係數。處理引擎112可以從訓練模組320或儲存裝置(例如,儲存器140)獲取訓練的係數產生模型,例如本申請中其他地方所揭露的儲存裝置。係數產生模型可以基於複數個樣本駕駛路徑獲得。訓練的係數產生模型的更多描述可以在本申請的其他地方找到(例如,圖6及其描述)。
在430中,處理引擎112(例如,確定模組330)(例如,處理器220的處理電路)可以基於一個或多個係數,確定複數個候選駕駛路徑中的每一個候選駕駛路徑的行程成本。在一些實施例中,處理引擎112可以確定一個或多個成本因素,並基於一個或多個成本因素和一個或多個係數,確定複數個候選駕駛路徑中的每一個候選駕駛路徑的行程成本。以特定候選駕駛路徑為例,處理引擎112可根據下述公式(1)確定特定候選駕駛路徑的行程成本:(1)
其中,是指特定候選駕駛路徑的行程成本,是指特定候選駕駛路徑的第i個成本因素,是指與第i個成本因素相對應的第i個係數,以及n是指一個或多個成本因素的數量。
在一些實施例中,一個或多個成本因素可包括速度成本因素、相似度成本因素、曲率成本因素或類似物。如本文所使用的,還以特定候選駕駛路徑為例,速度成本因素表示特定候選駕駛路徑上的複數個點之間的速度差資訊;相似度成本因素表示特定候選駕駛路徑和先前時間點對應的先前目標駕駛路徑之間的相似度資訊;曲率成本因素表示與特定候選駕駛路徑相關的平滑度資訊。
在一些實施例中,處理引擎112可以根據下述公式(2)確定速度成本因素:(2)
其中,是指速度成本因素,指特定候選者駕駛路徑上的第i個點的速度,指特定候選駕駛路徑上的第(i+1)個點的速度,以及m指特定候選駕駛路徑上的至少兩個點的數量。在一些實施例中,特定候選駕駛路徑上的兩個相鄰點(即第i點和第(i+1)點)之間的時間間隔可以是自動駕駛系統100的默認設置(例如,5ms、10ms、15ms、20ms),或者可以在不同情況下進行調整。
在一些實施例中,處理引擎112可以根據下述公式(3)確定相似度成本因素:(3)
其中,是指相似度成本因素,是指特定候選駕駛路徑上的第i個點,是指對應於先前時間點的先前目標駕駛路徑上的第j個點(其中第j個點是指對應於先前時間點的先前目標駕駛路徑上的距離候選駕駛路徑上第i個點的最近點),p是指特定候駕駛路徑和對應於先前時間點的先前目標駕駛路徑的重疊部分(例如,圖5-B中所示的重疊部分)內的點的數量。
在一些實施例中,處理引擎112可以基於特定候選駕駛路徑的全域曲率確定曲率成本因素。例如,處理引擎112可以確定特定候選駕駛路徑上的每個點的曲率,並且確定與特定候選駕駛路徑上的複數個點相對應的複數個曲率的總和作為全域曲率。又例如,處理引擎112可以確定與特定候選駕駛路徑上的複數個點相對應的複數個曲率的平均值(或加權平均值)作為全域曲率。
在440中,處理引擎112(例如,識別模組340)(例如,處理器220的處理電路)可以基於對應於複數個候選駕駛路徑的複數個行程成本,從複數個候選駕駛路徑中識別目標駕駛路徑。在一些實施例中,處理引擎112可以從複數個行程成本中識別最小行程成本,並將對應於最小行程成本的候選駕駛路徑識別為目標駕駛路徑。
在一些實施例中,處理引擎112可以進一步將目標駕駛路徑傳輸到運輸工具的一個或多個控制元件(例如,剎車裝置、加速器),並指示運輸工具遵循目標駕駛路徑。例如,處理引擎112可以確定與目標駕駛路徑相關的控制命令,並將控制命令發送到一個或多個控制元件。
如上所述,自動駕駛系統基於與候選駕駛路徑相對應的行程成本確定目標駕駛路徑,所述候選駕駛路徑基於一個或多個係數(其可以基於訓練的係數產生模型獲取)確定。應當注意自動駕駛系統是一個即時或基本即時的系統,需要快速計算和反應。然而,基於訓練的係數產生模型確定一個或多個係數需要時間(儘管非常短),並且累積時間可能導致決策延遲。因此,在某些情況下(例如,簡單的道路狀況(例如,直路)),可以使用人工定義的係數,以減少計算時間並確保自動駕駛系統的正常操作。
應該注意的是,上述僅出於說明性目的而提供,並不旨在限制本申請的範圍。對於本領域具有通常知識者來說,可以根據本申請的描述,做出各種各樣的修正和改變。然而,這些修正和改變不會背離本申請的範圍。例如,可以在流程400中的其他地方添加一個或多個其他可選操作(例如,儲存操作)。在儲存操作中,處理引擎112可以儲存複數個候選駕駛路徑、對應於複數個候選駕駛路徑的複數個行程成本、目標駕駛路徑或類似物。又例如,一個或多個成本因素還可以包括與候選駕駛路徑的一個或多個特徵(例如,候選駕駛路徑和障礙物之間的距離、候選駕駛路徑的行程時間)相關的其他參數。
圖5-A、5-B和5-C係根據本申請的一些實施例所示的行程成本的示例性成本因素的示意圖。如結合操作430所述,成本因素可包括速度成本因素、相似度成本因素、曲率成本因素或類似物。
如圖5-A所示,候選駕駛路徑包括複數個點,並且兩個相鄰點(例如,點i和點(i+1))之間的時間間隔是10ms。根據公式(2),處理引擎112可以基於候選駕駛路徑上的任何兩個相鄰點之間的複數個速度差(例如,vi
和vi
+1之間的速度差)確定速度成本因素。
如圖5-B所示,實線是指對應於先前時間點的先前目標駕駛路徑,虛線是指候選駕駛路徑。可以基於先前時間點的運輸工具的位置和第一預設目的地確定先前目標駕駛路徑。可以基於運輸工具的當前位置和第二預設目的地(與第一預設的目的地相同或不同)確定當前時間點的候選駕駛路徑。處理引擎112可以基於先前目標駕駛路徑和候選駕駛路徑之間的重疊部分內的點確定相似度成本因素。如圖所示,第j點是先前目標駕駛路徑上的距離候選駕駛路徑上的第i點的最近點。根據公式(3),處理引擎112可以基於與多個點對(例如,候選駕駛路徑上的第i點和前一目標駕駛路徑上的第j點)相關的多個差確定相似度成本因素。
如圖5-C所示,候選駕駛路徑包括複數個點,並且兩個相鄰點之間的時間間隔(例如,點i和點(i+1))是10ms。處理引擎112可以確定全域曲率(例如,對應於複數個點的複數個曲率的和或者平均值)作為曲率成本因素。
應當注意示例性成本因素是出於說明目的而不是限制性的,處理引擎112還可以確定與候選駕駛路徑一個或多個特徵(例如,候選駕駛路徑與障礙物之間的距離、候選駕駛路徑的行程時間)相關的其他成本因素。
圖6係根據本申請的一些實施例所示的用於確定訓練的係數產生模型的示例性流程的流程圖。流程600可以由自動駕駛系統100執行。例如,流程600可以實現為儲存在儲存器ROM 230或RAM 240中的一組指令(例如,應用程式)。處理器220及/或訓練模組320可以執行該組指令,並且當執行指令時,處理器220及/或訓練模組320可以被配置為執行該流程600。以下所示流程的操作僅出於說明的目的。在一些實施例中,流程600在實施時可以添加一個或多個本申請未描述的額外操作,及/或刪減一個或多個此處所描述的操作。另外,圖6中示出並在下面描述的流程600的操作的順序不是限制性的。
在610中,處理引擎112(例如,訓練模組320)(例如,處理器220的介面電路)可以獲取複數個樣本駕駛路徑。處理引擎112可以從儲存裝置(例如,儲存器140、整合在處理引擎112中的儲存模組(未示出))中獲取複數個樣本駕駛路徑,例如本申請中其他地方揭露的儲存裝置。複數個樣本駕駛路徑的數量可以是自動駕駛系統100的默認設置(例如,256、512、1024),或者在不同情況下是可調節的。在一些實施例中,複數個樣本駕駛路徑可以包括基於GPS資訊獲取的實際駕駛路徑或模擬的駕駛路徑。
例如,處理引擎112可以定義複數個駕駛場景並指示司機在複數個駕駛場景中實際駕駛測試運輸工具。如本文所使用的,駕駛場景可包括道路狀況(例如,高速公路、環形道路、支線、天橋、車道資訊)、駕駛狀況(例如,直線、90°左轉彎、60°左轉彎、30°左轉彎、90°右轉彎、60°右轉彎、30°右轉彎、掉頭)、天氣資訊或類似物。終端(例如,行動裝置)、行車記錄器或與測試運輸工具相關的GPS裝置可以在駕駛期間收集GPS資訊。進一步地,處理引擎112可以基於與複數個駕駛場景相關的GPS資訊獲取實際駕駛路徑並作為複數個樣本駕駛路徑。
又例如,處理引擎112可以獲取與複數個歷史服務訂單(例如,計程車服務)相關的複數個歷史駕駛路徑,並基於複數個歷史駕駛路徑確定複數個樣本駕駛路徑。以特定歷史服務訂單為例,在服務訂單期間,與服務訂單的乘客相關的請求方終端、與服務訂單的司機相關的提供方終端及/或整合在服務訂單的運輸工具中的GPS裝置可以週期性地將GPS資訊發送到處理引擎112(例如,訓練模組320)或本揭露中其他地方揭露的儲存裝置(例如,儲存裝置140)中。進一步地,根據GPS資訊,處理引擎112可以將對應的歷史駕駛路徑或歷史駕駛路徑的一部分確定為樣本駕駛路徑。
作為另一示例,處理引擎112可基於運輸工具的一個或多個特徵(例如,運輸工具類型、運輸工具重量、運輸工具模型)和複數個駕駛場景模擬運輸工具的操作,並獲取複數個模擬的駕駛路徑作為複數個樣本駕駛路徑。
在620中,處理引擎112(例如,訓練模組320)(例如,處理器220的處理電路)可基於複數個樣本駕駛路徑確定複數個樣本,其中複數個樣本中的每一個樣本包括對應於相同起始位置和相同目的地的樣本駕駛路徑集。在一些實施例中,處理引擎112可以將複數個樣本劃分為訓練集和測試集。
在630中,對於複數個樣本中的每一個樣本,處理引擎112(例如,訓練模組320)(例如,處理器220的處理電路)可以確定對應於該樣本駕駛路徑集的樣本分數集。如本文所使用的,樣本分數是預定範圍(例如,0~1)內的值,並且可以與樣本駕駛路徑的一個或多個特徵相關,例如,從樣本駕駛路徑到車道中心線的偏移、樣本駕駛路徑的行駛時間、樣本駕駛路徑的舒適度或類似物。
在一些實施例中,從樣本駕駛路徑到車道中心線的偏移越大,樣本駕駛路徑的樣本分數可能越低;樣本駕駛路徑的行駛時間越長,樣本駕駛路徑的樣本分數可能越低;樣本駕駛路徑的舒適度越低,樣本駕駛路徑的樣本分數可能越低。如本文所使用的,舒適度可以與對應於樣本駕駛路徑上的複數個點的複數個加速度相關。例如,假設複數個加速度中的每一個加速度小於第一加速度臨界值(例如,3m/s2
),舒適度可以被指定為1,而假設大於第二加速度臨界值(例如,10m/s2
)的加速度的百分比大於臨界值百分比(例如,50%、60%、70%),則舒適度可以指定為0。相應地,大於第二加速度臨界值的加速度百分比越大,樣本駕駛路徑的舒適度可能越低。
在640中,處理引擎112(例如,訓練模組320)(例如,處理器220的處理電路)可以獲取包括複數個初始係數的初始係數產生模型,其中複數個初始係數中的每一個係數對應一個樣本。應當注意,為方便起見,這裡使用單數「初始係數」。「初始係數」是指分別對應於一個或多個成本因素的一個或多個初始係數。
在一些實施例中,初始係數產生模型可以是監督學習模型。在一些實施例中,初始係數產生模型可包括初始卷積神經網路(Convolutional Neural Network,CNN)模型、初始遞迴神經網路(Recurrent Neural Network,RNN)模型或類似物。初始係數產生模型可以是系統100的默認設置,或者可以在不同情況下調整。
在650中,處理引擎112(例如,訓練模組320)(例如,處理器220的處理電路)可以提取複數個樣本中的每一個樣本的特徵資訊。在一些實施例中,複數個樣本中的每一個樣本的特徵資訊可以包括該樣本駕駛路徑集中的每一個樣本駕駛路徑的速度資訊、與該樣本駕駛路徑集中的每一個樣本駕駛路徑相關的障礙物資訊、該樣本駕駛路徑集中的每一個樣本駕駛路徑的行程時間。
在660中,對於複數個樣本中的每一個樣本,處理引擎112(例如,訓練模組320)(例如,處理器220的處理電路)可以基於相應的初始係數和特徵資訊確定對應於該樣本駕駛路徑集的樣本行程成本集。如結合操作430所述,處理引擎112可根據公式(1)確定該樣本行程成本集。
在670中,處理引擎112(例如,訓練模組320)(例如,處理器220的處理電路)可以確定對應於複數個樣本的複數個樣本行程成本集和複數個樣本分數集是否滿足預設條件。
例如,對於複數個樣本中的每一個樣本,處理引擎112可以確定該樣本行程成本集是否與該樣本分數集負相關。回應於確定該樣本行程成本集與該樣本分數集負相關,可以確定對應於複數個樣本的複數個樣本行程成本集和複數個樣本分數集滿足預設條件。
又例如,處理引擎112可以確定初始係數產生模型的損失函數,並基於複數個樣本行程成本集和複數個樣本分數集確定損失函數的值。進一步地,處理引擎112可以確定損失函數的值是否小於損失臨界值。回應於確定損失函數的值小於損失臨界值,可以確定對應於複數個樣本的複數個樣本行程成本集和複數個樣本分數集滿足預設條件。
作為另一示例,處理引擎112可以確定初始係數產生模型的準確率是否大於準確率臨界值。回應於確定準確率大於準確率臨界值,可以確定對應於複數個樣本的複數個樣本行程成本集和複數個樣本分數集滿足預設條件。
作為又一示例,處理引擎112可以確定反覆運算次數是否大於計數臨界值。回應於確定反覆運算次數大於計數臨界值,可以確定對應於複數個樣本的複數個樣本行程成本集和複數個樣本分數集滿足預設條件。
作為又一示例,處理引擎112可以基於測試資料測試初始係數產生模型,並確定測試結果(例如,測試準確率)是否大於測試臨界值。回應於確定測試結果大於測試臨界值,可以確定對應於複數個樣本的複數個樣本行程成本集和複數個樣本分數集滿足預設條件。
回應於確定對應於複數個樣本的複數個樣本行程成本集和複數個樣本分數集滿足預設條件,則處理引擎112(例如,訓練模組320)(例如,處理器220的處理電路)可以在680中將初始係數產生模型指定為訓練的係數產生模型,這意味著訓練流程已經完成。
回應於確定對應於複數個樣本的複數個樣本行程成本集和複數個樣本分數集不滿足預設條件,則處理引擎112(例如,訓練模組320)(例如,處理器220的處理電路)可以執行流程600以返回640以更新複數個初始係數(即,更新初始係數產生模型)。
進一步地,處理引擎112可以確定對應於複數個樣本的複數個更新的樣本行程成本集和複數個樣本分數集是否滿足預設條件。回應於確定複數個更新的樣本行程成本集和複數個樣本分數集滿足預設條件,處理引擎112可將更新後的係數產生模型指定為訓練後的係數產生模型。另一態樣,回應於確定對應於複數個樣本的複數個更新的樣本行程成本集和複數個樣本分數集不滿足預設條件,處理引擎112仍可執行流程600返回640以再次更新係數產生模型,直到對應於複數個樣本的複數個更新的樣本行程成本集和複數個樣本分數集滿足預設條件。
應該注意的是,上述僅出於說明性目的而提供,並不旨在限制本申請的範圍。對於本領域具有通常知識者來說,根據本申請的教導可以做出多種變化和修改。然而,變化和修改不會背離本申請的範圍。例如,訓練模組320可以以特定時間間隔(例如,每月、每兩個月),基於複數個新獲取的樣本更新訓練的係數產生模型。
圖7係根據本申請的一些實施例的示例性駕駛場景的示意圖。如圖所示,點A指的是起始位置,點F指的是預設的目的地。駕駛場景包括直線部分(例如,AB、BC、CD、DE和EF)、90°右轉彎(例如,從AB到BC)、150°右轉彎(例如,從DE到EF)、90°左轉彎(例如,從BC到CD)、60°左轉彎(例如,從CD到DE)或類似物。
圖8係根據本申請的一些實施例的包括樣本駕駛路徑集的示例性樣本的示意圖。如圖所示,M指的是起始位置、N指的是預設的目的地。樣本包括對應於相同起始位置和相同目的地的樣本駕駛路徑集(例如,L1
、L2
、L3
和L4
)。
應該注意的是,上述僅出於說明性目的而提供,並不旨在限制本申請的範圍。對於本領域具有通常知識者來說,可以根據本申請的描述,做出各種各樣的修正和改變。然而,這些修正和改變不會背離本申請的範圍。
為了實施本申請描述的各種模組、單元及其功能,電腦硬體平臺可用作本文中描述之一個或多個元素的硬體平臺。具有使用者介面元素的電腦可用於實施個人電腦(PC)或任何其他類型的工作站或終端裝置。若電腦被適當的程式化,電腦亦可用作伺服器。
上文已對基本概念做了描述,顯然,對於已閱讀此詳細揭露的本領域具有通常知識者來講,上述詳細揭露僅作為示例,而並不構成對本申請的限制。雖然此處並沒有明確說明,本領域具有通常知識者可能會對本申請進行各種變更、改良和修改。該類變更、改良和修改在本申請中被建議,並且該類變更、改良、修改仍屬於本申請示範實施例的精神和範圍。
同時,本申請使用了特定術語來描述本申請的實施例。如「一個實施例」、「一實施例」、及/或「一些實施例」意指與本申請至少一個實施例相關所描述的一特定特徵、結構或特性。因此,應強調並注意的是,本說明書中在不同部分兩次或多次提到的「一實施例」或「一個實施例」或「一替代性實施例」並不一定是指同一實施例。此外,本申請的一個或多個實施例中的某些特徵、結構或特性可以進行適當的組合。
此外,本領域具有通常知識者可以理解,本申請的各個態樣可以藉由若干具有可專利性的種類或情況進行說明和描述,包括任何新的和有用的流程、機器、產品或物質的組合,或對他們的任何新的和有用的改良。相應地,本申請的各個態樣可以完全由硬體執行、可以完全由軟體(包括韌體、常駐軟體、微代碼等)執行、也可以由硬體和軟體組合執行。以上硬體或軟體均可被稱為「單元」、「模組」或「系統」。此外,本申請的各個態樣可能具體化為內含於一個或多個電腦可讀取媒體中的電腦程式產品,該電腦可讀取媒體具有內含於其上之電腦可讀取程式編碼。
電腦可讀取訊號媒體可能包括一個內含有電腦程式編碼的傳播資料訊號,例如在基頻上或作為載波的一部分。所述傳播訊號可能有多種形式,包括電磁形式、光形式或類似物、或合適的組合形式。電腦可讀取訊號媒體可以是除電腦可讀取儲存媒體之外的任何電腦可讀取媒體,該媒體可以藉由連接至一個指令執行系統、裝置或設備以實現通訊、傳播或傳輸供使用的程式。內含於電腦可讀取訊號媒體上的程式編碼可以藉由任何合適的介質進行傳播,包括無線電、纜線、光纖電纜、RF、或類似介質、或任何上述介質的合適組合。
本申請各態樣操作所需的電腦程式碼可以用一種或多種程式語言的任何組合編寫,包括物件導向的程式設計語言,如Java、Scala、Smalltalk、Eiffel、JADE、Emerald、C++、C#、VB. NET、Python或類似物,常規程式程式設計語言,如"C"程式設計語言、Visual Basic、Fortran 2003、Perl、COBOL 2002,PHP、ABAP,動態程式設計語言如Python、Ruby和Groovy或其它程式設計語言。該程式碼可以完全在使用者電腦上運行、或作為獨立的套裝軟體在使用者電腦上運行、或部分在使用者電腦上運行部分在遠端電腦上運行、或完全在遠端電腦或伺服器上運行。在後種情況下,遠端電腦可以藉由任何網路形式與使用者電腦連接,例如,區域網路(LAN)或廣域網路(WAN),或連接至外部電腦(例如藉由網際網路服務提供方(ISP)之網際網路),或在雲端計算環境中,或作為服務使用如軟體即服務(SaaS)。
此外,除非請求項中明確說明,本申請所述處理元素和序列的順序、數字、字母或其他名稱的使用,並非意欲限定本申請流程和方法的順序。儘管上述揭露中藉由各種示例討論了一些目前認為有用的發明實施例,但應當理解的是,該類細節僅起到說明的目的,附加的請求項並不僅限於揭露的實施例,相反,請求項意欲覆蓋所有符合本申請實施例精神和範圍的修正和均等組合。例如,雖然以上所描述的系統元件可以在硬體裝置中而被具體化,但是也可以實現為只有軟體的解決方案,如安裝在現有的伺服器或行動裝置上。
同理,應當注意的是,為了簡化本申請揭示的表述,從而幫助對一個或多個發明實施例的理解,前文對本申請實施例的描述中,有時會將多種特徵歸併至一個實施例、圖式或對其的描述中。然而,本申請的方法不應被解釋為反映所主張的發明標的需要比每個請求項中所明確記載的還要多的特徵的意圖。實際上,所主張的發明標的的特徵要少於上述揭露的單個實施例的全部特徵。
100:自動駕駛系統
110:伺服器
112:處理引擎
120:網路
130:運輸工具
140:儲存器
200:計算裝置
210:匯流排
220:處理器
230:唯讀記憶體
240:隨機存取記憶體
250:通訊埠
260:輸入/輸出元件
270:磁碟
310:獲取模組
320:訓練模組
330:確定模組
340:識別模組
400:流程
410:操作
420:操作
430:操作
440:操作
600:流程
610:操作
620:操作
630:操作
640:操作
650:操作
660:操作
670:操作
680:操作
本申請以示例性實施例的方式來進一步描述。這些示例性實施例參考至圖式而被詳細地描述。圖式不按比例繪製。這些實施例是非限制性的示意實施例,其中相同的元件符號表示貫穿圖式的若干視圖的類似結構,並且其中:
圖1係根據本申請的一些實施例所示的示例性自動駕駛系統的示意圖;
圖2係根據本申請的一些實施例所示的示例性計算裝置的示例性硬體及/或軟體元件的示意圖;
圖3係根據本申請的一些實施例所示的示例性處理引擎的方塊圖;
圖4係根據本申請的一些實施例所示的用於確定駕駛路徑的示例性流程的流程圖;
圖5-A、5-B和5-C係根據本申請的一些實施例所示的行程成本的示例性成本因素的示意圖;
圖6係根據本申請的一些實施例所示的用於確定訓練的係數產生模型的示例性流程的流程圖;
圖7係根據本申請的一些實施例所示的示例性駕駛場景的示意圖;以及
圖8係根據本申請的一些實施例所示的包括樣本駕駛路徑集的示例性樣本的示意圖。
400:流程
410:操作
420:操作
430:操作
440:操作
Claims (21)
- 一種用於確定自動駕駛中的駕駛路徑的系統,包括: 包括一組指令的至少一個儲存媒體;以及 與所述至少一個儲存媒體通訊的至少一個處理器,其中當所述至少一個處理器執行所述一組指令時使所述系統: 獲取複數個候選駕駛路徑; 基於訓練的係數產生模型來獲取與所述複數個候選駕駛路徑相關的一個或多個係數; 基於所述一個或多個係數來確定所述複數個候選駕駛路徑中的每一個候選駕駛路徑的行程成本;以及 基於對應於所述複數個候選駕駛路徑的複數個行程成本,從所述複數個候選駕駛路徑中識別目標駕駛路徑。
- 如申請專利範圍第1項之系統,其中,為了確定所述複數個候選駕駛路徑中的每一個候選駕駛路徑的所述行程成本,所述至少一個處理器用於使所述系統: 確定一個或多個成本因素;以及 基於所述一個或多個成本因素和所述一個或多個係數,確定所述複數個候選駕駛路徑中的每一個候選駕駛路徑的所述行程成本。
- 如申請專利範圍第2項之系統,其中,所述一個或多個成本因素包括速度成本因素、相似度成本因素或曲率成本因素中的至少一個因素。
- 如申請專利範圍第2項之系統,其中,所述一個或多個成本因素包括速度成本因素、相似度成本因素和曲率成本因素。
- 如申請專利範圍第1-4項中任一項之系統,其中,所述訓練的係數產生模型藉由訓練流程而確定,所述訓練流程包括: 獲取複數個樣本駕駛路徑; 基於所述複數個樣本駕駛路徑確定複數個樣本,其中,所述複數個樣本中的每一個樣本都包括對應於相同起始位置和相同目的地的樣本駕駛路徑集; 對於所述複數個樣本中的每一個樣本,確定對應於所述樣本駕駛路徑集的樣本分數集;以及 基於所述複數個樣本的分數來確定所述訓練的係數產生模型。
- 如申請專利範圍第5項之系統,其中,基於所述複數個樣本來確定所述訓練的係數產生模型包括: 獲取包括複數個初始係數的初始係數產生模型,其中,所述複數個初始係數中的每一個係數都對應於樣本; 提取所述複數個樣本中的每一個樣本的特徵資訊; 對於所述複數個樣本中的每一個樣本,基於相應的初始係數和所述特徵資訊來確定對應於所述樣本駕駛路徑集的樣本行程成本集; 確定對應於所述複數個樣本的複數個樣本行程成本集和複數個樣本分數集是否滿足預設條件;以及 回應於確定所述複數個樣本行程成本集和所述複數個樣本分數集滿足所述預設條件,指定所述初始係數產生模型作為所述訓練的係數產生模型。
- 如申請專利範圍第6項之系統,其中,基於所述複數個樣本來確定所述訓練的係數產生模型,進一步包括: 回應於確定所述複數個樣本行程成本集和所述複數個樣本分數集不滿足所述預設條件,更新所述複數個初始係數; 重複確定對應於所述複數個樣本的複數個樣本行程成本集和複數個樣本分數集是否滿足所述預設條件的步驟。
- 如申請專利範圍第6項之系統,其中,所述複數個樣本中的每一個樣本的所述特徵資訊包括所述樣本駕駛路徑集的每一個樣本駕駛路徑的速度資訊以及與所述樣本駕駛路徑集的每一個樣本駕駛路徑相關的障礙物資訊。
- 如申請專利範圍第1-4項中任一項之系統,其中,為了基於對應於所述複數個候選駕駛路徑的所述複數個行程成本,從所述複數個候選駕駛路徑中識別所述目標駕駛路徑,所述至少一個處理器用於使所述系統: 從所述複數個行程成本中識別出最小的行程成本;以及 將所述最小的行程成本對應的候選駕駛路徑指定為所述目標駕駛路徑。
- 如申請專利範圍第1-4項中任一項之系統,其中,所述至少一個處理器用於使所述系統進一步: 將所述目標駕駛路徑發送到運輸工具的一個或多個控制元件,指示所述運輸工具遵循所述目標駕駛路徑。
- 一種在計算裝置上實施的方法,所述計算裝置具有至少一個處理器,至少一個儲存媒體和連接到網路的通訊平臺,所述方法包括: 獲取複數個候選駕駛路徑; 基於訓練的係數產生模型來獲取與所述複數個候選駕駛路徑相關的一個或多個係數; 基於所述一個或多個係數來確定所述複數個候選駕駛路徑中的每一個候選駕駛路徑的行程成本;以及 基於對應於所述複數個候選駕駛路徑的複數個行程成本,從所述複數個候選駕駛路徑中識別目標駕駛路徑。
- 如申請專利範圍第11項之方法,其中,確定所述複數個候選駕駛路徑中的每一個候選駕駛路徑的所述行程成本,包括: 確定一個或多個成本因素;以及 基於所述一個或多個成本因素和所述一個或多個係數,確定所述複數個候選駕駛路徑中的每一個候選駕駛路徑的所述行程成本。
- 如申請專利範圍第12項之方法,其中,所述一個或多個成本因素包括速度成本因素、相似度成本因素或曲率成本因素中的至少一個因素。
- 如申請專利範圍第12項之方法,其中,所述一個或多個成本因素包括速度成本因素、相似度成本因素和曲率成本因素。
- 如申請專利範圍第11-14項中任一項之方法,其中,所述訓練的係數產生模型藉由訓練流程而確定,所述訓練流程包括: 獲取複數個樣本駕駛路徑; 基於所述複數個樣本駕駛路徑確定複數個樣本,其中所述複數個樣本中的每一個樣本包括對應於相同起始位置和相同目的地的樣本駕駛路徑集; 對於所述複數個樣本中的每一個樣本,確定對應於所述樣本駕駛路徑集的樣本分數集;以及 基於所述複數個樣本的分數來確定所述訓練的係數產生模型。
- 如申請專利範圍第15項之方法,其中,基於所述複數個樣本來確定所述訓練的係數產生模型,包括: 獲取包括複數個初始係數的初始係數產生模型,其中所述複數個初始係數中的每一個係數都對應於樣本; 提取所述複數個樣本中的每一個樣本的特徵資訊; 對於所述複數個樣本中的每一個樣本,基於相應的初始係數和所述特徵資訊來確定對應於所述樣本駕駛路徑集的樣本行程成本集; 確定對應於所述複數個樣本的複數個樣本行程成本集和複數個樣本分數集是否滿足預設條件;以及 回應於確定所述複數個樣本行程成本集和所述複數個樣本分數集滿足所述預設條件,指定所述初始係數產生模型作為所述訓練的係數產生模型。
- 如申請專利範圍第16項之方法,其中,基於所述複數個樣本來確定所述訓練的係數產生模型,進一步包括: 回應於確定所述複數個樣本行程成本集和所述複數個樣本分數集不滿足所述預設條件,更新所述複數個初始係數; 重複確定對應於所述複數個樣本的複數個樣本行程成本集和複數個樣本分數集是否滿足所述預設條件的步驟。
- 如申請專利範圍第16項之方法,其中,所述複數個樣本中的每一個樣本的所述特徵資訊包括所述樣本駕駛路徑集的每一個樣本駕駛路徑的速度資訊以及與所述樣本駕駛路徑集的每一個樣本駕駛路徑相關的障礙物資訊。
- 如申請專利範圍第11-14項中任一項之方法,其中,基於對應於所述複數個候選駕駛路徑的複數個行程成本,從所述複數個候選駕駛路徑中識別所述目標駕駛路徑,包括: 從所述複數個行程成本中識別出最小的行程成本;以及 將所述最小的行程成本對應的候選駕駛路徑指定為所述目標駕駛路徑。
- 如申請專利範圍第11-14項中任一項之方法,其中,所述方法還包括: 將所述目標駕駛路徑發送到運輸工具的一個或多個控制元件上,指示所述運輸工具遵循所述目標駕駛路徑。
- 一種用於自動駕駛的運輸工具,包括: 檢測元件、規劃元件和控制元件,其中所述規劃元件用於: 獲取複數個候選駕駛路徑; 基於訓練的係數產生模型,獲取與所述複數個候選駕駛路徑相關的一個或多個係數; 基於所述一個或多個係數,確定所述複數個候選駕駛路徑中的每一個候選駕駛路徑的行程成本;以及 基於對應於所述複數個候選駕駛路徑的複數個行程成本,從所述複數個候選駕駛路徑中識別目標駕駛路徑。
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811548158.7A CN111413958B (zh) | 2018-12-18 | 2018-12-18 | 用于确定自动驾驶中的驾驶路径的系统和方法 |
CN201811548158.7 | 2018-12-18 | ||
PCT/CN2018/122102 WO2020124438A1 (en) | 2018-12-18 | 2018-12-19 | Systems and methods for determining driving path in autonomous driving |
WOPCT/CN2018/122102 | 2018-12-19 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW202023865A true TW202023865A (zh) | 2020-07-01 |
TWI712526B TWI712526B (zh) | 2020-12-11 |
Family
ID=71102385
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW107146734A TWI712526B (zh) | 2018-12-18 | 2018-12-24 | 用於確定自動駕駛中的駕駛路徑的系統和方法 |
Country Status (7)
Country | Link |
---|---|
EP (1) | EP3697661A1 (zh) |
JP (1) | JP2021514883A (zh) |
CN (1) | CN111413958B (zh) |
AU (1) | AU2018286588B2 (zh) |
SG (1) | SG11201811629SA (zh) |
TW (1) | TWI712526B (zh) |
WO (1) | WO2020124438A1 (zh) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SG11201811270WA (en) * | 2017-07-13 | 2019-02-27 | Beijing Didi Infinity Technology & Development Co Ltd | Systems and methods for trajectory determination |
CN111413957B (zh) | 2018-12-18 | 2021-11-02 | 北京航迹科技有限公司 | 用于确定自动驾驶中的驾驶动作的系统和方法 |
CN111415520A (zh) | 2018-12-18 | 2020-07-14 | 北京航迹科技有限公司 | 处理交通目标的系统和方法 |
CN114064825A (zh) * | 2020-07-31 | 2022-02-18 | 北京无限感测科技有限公司 | 车辆行驶路径确定方法、装置、存储介质和电子设备 |
CN114590267A (zh) * | 2020-12-07 | 2022-06-07 | 长沙智能驾驶研究院有限公司 | 车辆运动规划方法、装置、设备及计算机存储介质 |
CN112525551B (zh) * | 2020-12-10 | 2023-08-29 | 北京百度网讯科技有限公司 | 自动驾驶车辆的路测方法、装置、设备及存储介质 |
CN114111830B (zh) * | 2021-12-16 | 2024-01-26 | 童浩峰 | 一种基于ai模型的路径规划方法及装置 |
CN114291111B (zh) * | 2021-12-30 | 2024-03-08 | 广州小鹏自动驾驶科技有限公司 | 目标路径的确定方法、装置、车辆及存储介质 |
JP7593379B2 (ja) * | 2022-07-25 | 2024-12-03 | トヨタ自動車株式会社 | 配車システム、走行ルート生成方法、配車プログラム |
Family Cites Families (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3544577B2 (ja) * | 1995-03-30 | 2004-07-21 | 株式会社日立製作所 | 経路選択装置 |
US7474961B2 (en) * | 2005-02-04 | 2009-01-06 | Visteon Global Technologies, Inc. | System to determine the path of a vehicle |
US8775006B2 (en) * | 2011-07-14 | 2014-07-08 | GM Global Technology Operations LLC | System and method for enhanced vehicle control |
US10427676B2 (en) * | 2017-05-31 | 2019-10-01 | GM Global Technology Operations LLC | Trajectory planner for autonomous driving using bézier curves |
CN104121918A (zh) * | 2013-04-25 | 2014-10-29 | 北京搜狗信息服务有限公司 | 一种实时路径规划的方法和系统 |
DE102013008605A1 (de) * | 2013-05-16 | 2014-11-20 | Audi Ag | Navigationshilfe für ein Kraftfahrzeug mit Autopiloten |
JP6467773B2 (ja) * | 2014-02-25 | 2019-02-13 | アイシン・エィ・ダブリュ株式会社 | 経路探索システム、経路探索方法及びコンピュータプログラム |
US9428187B2 (en) * | 2014-06-05 | 2016-08-30 | GM Global Technology Operations LLC | Lane change path planning algorithm for autonomous driving vehicle |
JP6318933B2 (ja) * | 2014-07-14 | 2018-05-09 | 株式会社豊田自動織機 | 無人搬送車の搬送システム |
KR101664582B1 (ko) * | 2014-11-12 | 2016-10-10 | 현대자동차주식회사 | 자율주행차량의 주행경로 생성장치 및 방법 |
CN118816923A (zh) * | 2015-02-10 | 2024-10-22 | 御眼视觉技术有限公司 | 用于自主车辆导航的稀疏地图 |
US9778658B2 (en) * | 2015-03-13 | 2017-10-03 | Nissan North America, Inc. | Pattern detection using probe data |
JP6455598B2 (ja) * | 2015-07-27 | 2019-01-30 | 日産自動車株式会社 | 経路探索装置及び経路探索方法 |
US9958864B2 (en) * | 2015-11-04 | 2018-05-01 | Zoox, Inc. | Coordination of dispatching and maintaining fleet of autonomous vehicles |
US9824580B2 (en) * | 2015-12-17 | 2017-11-21 | International Business Machines Corporation | Method, computer readable storage medium and system for producing an uncertainty-based traffic congestion index |
US20180004210A1 (en) * | 2016-07-01 | 2018-01-04 | nuTonomy Inc. | Affecting Functions of a Vehicle Based on Function-Related Information about its Environment |
US10227075B2 (en) * | 2016-09-28 | 2019-03-12 | Baidu Usa Llc | System delay estimation method for autonomous vehicle control |
KR102518532B1 (ko) * | 2016-11-11 | 2023-04-07 | 현대자동차주식회사 | 자율주행차량의 경로 결정장치 및 그 방법 |
US10353390B2 (en) * | 2017-03-01 | 2019-07-16 | Zoox, Inc. | Trajectory generation and execution architecture |
EP4357869A3 (en) * | 2017-03-20 | 2024-06-12 | Mobileye Vision Technologies Ltd. | Trajectory selection for an autonomous vehicle |
CN108663059A (zh) * | 2017-03-29 | 2018-10-16 | 高德信息技术有限公司 | 一种导航路径规划方法和装置 |
CN109313036B (zh) * | 2017-04-27 | 2022-04-15 | 北京嘀嘀无限科技发展有限公司 | 路线规划的系统及方法 |
US10317907B2 (en) * | 2017-04-28 | 2019-06-11 | GM Global Technology Operations LLC | Systems and methods for obstacle avoidance and path planning in autonomous vehicles |
JP6524144B2 (ja) * | 2017-06-02 | 2019-06-05 | 本田技研工業株式会社 | 車両制御システム及び方法、並びに走行支援サーバ |
CN108303110A (zh) * | 2017-12-29 | 2018-07-20 | 东莞产权交易中心 | 一种车载控制系统及路径速度确定方法 |
US20180150080A1 (en) * | 2018-01-24 | 2018-05-31 | GM Global Technology Operations LLC | Systems and methods for path planning in autonomous vehicles |
CN108489500A (zh) * | 2018-03-13 | 2018-09-04 | 安徽江淮汽车集团股份有限公司 | 一种基于能耗经济性的全局路径规划方法及系统 |
US10836379B2 (en) * | 2018-03-23 | 2020-11-17 | Sf Motors, Inc. | Multi-network-based path generation for vehicle parking |
-
2018
- 2018-12-18 CN CN201811548158.7A patent/CN111413958B/zh active Active
- 2018-12-19 SG SG11201811629SA patent/SG11201811629SA/en unknown
- 2018-12-19 WO PCT/CN2018/122102 patent/WO2020124438A1/en unknown
- 2018-12-19 JP JP2018567920A patent/JP2021514883A/ja active Pending
- 2018-12-19 EP EP18819525.9A patent/EP3697661A1/en not_active Withdrawn
- 2018-12-19 AU AU2018286588A patent/AU2018286588B2/en active Active
- 2018-12-24 TW TW107146734A patent/TWI712526B/zh active
Also Published As
Publication number | Publication date |
---|---|
EP3697661A4 (en) | 2020-08-26 |
AU2018286588A1 (en) | 2020-07-02 |
AU2018286588B2 (en) | 2020-09-10 |
SG11201811629SA (en) | 2020-07-29 |
EP3697661A1 (en) | 2020-08-26 |
WO2020124438A1 (en) | 2020-06-25 |
CN111413958A (zh) | 2020-07-14 |
CN111413958B (zh) | 2021-09-24 |
TWI712526B (zh) | 2020-12-11 |
JP2021514883A (ja) | 2021-06-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI712526B (zh) | 用於確定自動駕駛中的駕駛路徑的系統和方法 | |
TWI703065B (zh) | 用於確定自動駕駛中的駕駛動作的系統和方法 | |
AU2020104467A4 (en) | Systems and methods for path determination | |
TWI703538B (zh) | 用於確定軌跡的系統和方法 | |
TWI706238B (zh) | 用於自動駕駛的系統和方法 | |
US11669097B2 (en) | Systems and methods for autonomous driving | |
US20200191586A1 (en) | Systems and methods for determining driving path in autonomous driving | |
TWI715904B (zh) | 用於確定交通物件的處理優先順序的系統、方法和儲存媒體 | |
US10891951B2 (en) | Vehicle language processing |