[go: up one dir, main page]

TW202010140A - Optical sensor, optical sensing system and method for manufacturing the same - Google Patents

Optical sensor, optical sensing system and method for manufacturing the same Download PDF

Info

Publication number
TW202010140A
TW202010140A TW108129675A TW108129675A TW202010140A TW 202010140 A TW202010140 A TW 202010140A TW 108129675 A TW108129675 A TW 108129675A TW 108129675 A TW108129675 A TW 108129675A TW 202010140 A TW202010140 A TW 202010140A
Authority
TW
Taiwan
Prior art keywords
light
layer
optical sensor
microlenses
parallel
Prior art date
Application number
TW108129675A
Other languages
Chinese (zh)
Other versions
TWI765170B (en
Inventor
范成至
黃振昌
傅同龍
黃郁湘
Original Assignee
神盾股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 神盾股份有限公司 filed Critical 神盾股份有限公司
Publication of TW202010140A publication Critical patent/TW202010140A/en
Application granted granted Critical
Publication of TWI765170B publication Critical patent/TWI765170B/en

Links

Images

Landscapes

  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

An optical sensor includes a substrate having a plurality of sensing pixels arranged into an array, a first transparent medium layer disposed over the substrate, and a plurality of micro lenses arranged into an array and disposed on or over the the first transparent medium layer. The plurality of microlenses respectively guide a plurality of parallel normal incident lights and parallel oblique incident lights which enter the plurality of microlenses from the outside, and the plurality of parallel normal incident lights and parallel oblique incident lights are incident to a portion or all of the total number of the sensing pixels through the first transparent medium layer to sense an image of a target.

Description

光學感測器、光學感測系統及其製造方法Optical sensor, optical sensing system and manufacturing method thereof

本發明有關於一種光學元件,特別是有關於一種具有可控角度准直結構的光學感測器、光學感測系統及其製造方法。The invention relates to an optical element, in particular to an optical sensor with a controllable angle collimating structure, an optical sensing system and a manufacturing method thereof.

現今的移動電子裝置(例如手機、平板電腦、筆記型電腦等)通常配備有使用者生物識別系統,包括了例如指紋、臉型、虹膜等等不同技術,用於保護個人資料安全,其中例如應用於手機或智慧手錶等攜帶型裝置,也兼具有行動支付的功能,對於使用者生物識別更是變成一種標準的功能,而手機等攜帶型裝置的發展更是朝向全螢幕(或超窄邊框)的趨勢,使得傳統電容式指紋按鍵(例如iphone 5到iphone 8的按鍵)無法再被繼續使用,進而演進出新的微小化光學成像裝置(非常類似傳統的相機模組,具有互補式金屬氧化物半導體(Complementary Metal-Oxide Semiconductor (CMOS) Image Sensor (簡稱CIS))感測元件及光學鏡頭模組)。將微小化光學成像裝置設置於螢幕下方(可稱為屏下),通過螢幕部分透光(特別是有機發光二極體(Organic Light Emitting Diode,OLED)螢幕),可以擷取按壓於螢幕上方的物體的圖像,特別是指紋圖像,可以稱為螢幕下指紋感測(Fingerprint On Display,FOD)。Today's mobile electronic devices (such as mobile phones, tablets, notebook computers, etc.) are usually equipped with user biometric systems, including different technologies such as fingerprints, face shapes, irises, etc., used to protect the security of personal data. Mobile devices such as mobile phones or smart watches also have the function of mobile payment, which becomes a standard function for user biometrics, and the development of mobile devices such as mobile phones is toward full screen (or ultra-narrow bezel) The trend of making traditional capacitive fingerprint buttons (such as the buttons of iphone 5 to iphone 8) can no longer be used, and has evolved new miniaturized optical imaging devices (much like traditional camera modules, with complementary metal oxide Semiconductor (Complementary Metal-Oxide Semiconductor (CMOS) Image Sensor (referred to as CIS) sensing element and optical lens module). Set the miniaturized optical imaging device under the screen (may be called under the screen), through the screen part of the light transmission (especially the organic light emitting diode (Organic Light Emitting Diode, OLED) screen), you can capture the press on the top of the screen The image of the object, especially the fingerprint image, can be called Fingerprint On Display (FOD).

這種已知的微小化光學成像裝置設計成模組後,其厚度大於3mm,而且為了配合使用者按壓位置的習慣,所述模組的位置會與部分手機電池的區域重迭,因此就必須要縮小電池的尺寸以讓出空間設置所述微小化光學成像裝置。為此,手機電池就無法有較長的使用時間。又因為未來新的5G手機的耗電量更大,對於電池的使用更是斤斤計較。After this known miniaturized optical imaging device is designed as a module, its thickness is greater than 3mm, and in order to match the user's habit of pressing the position, the position of the module will overlap with the area of some mobile phone batteries, so it is necessary The size of the battery needs to be reduced to make room for the miniaturized optical imaging device. For this reason, the battery of the mobile phone cannot be used for a long time. Because of the greater power consumption of new 5G mobile phones in the future, the use of batteries is even more cautious.

因此,如何提供超薄的光學成像裝置,特別是可以不犧牲電池的空間,而且可以設置於電池與螢幕之間的超窄區域(>0.5 mm),正是本發明的重點。Therefore, how to provide an ultra-thin optical imaging device, especially without sacrificing the space of the battery, and can be disposed in an ultra-narrow area (>0.5 mm) between the battery and the screen, is the focus of the present invention.

本發明的實施例提供一種光學感測器,包括:一基板,具有多個感測畫素,排列成陣列;一第一透明介質層,位於基板的上方;以及多個微透鏡,排列成陣列,並位於第一透明介質層上或上方,其中此些微透鏡分別將從外界進入此些微透鏡的多個平行的正向入射光,通過第一透明介質層而入射於此些感測畫素總數的一部分或全部的內部,並將從外界進入此些微透鏡的多個平行的斜向入射光入射於此些感測畫素總數的一部分或全部的外部,藉此感測一目標物的一圖像。目標物產生此些平行的正向入射光以及此些平行的斜向入射光,此些正向入射光平行於此些微透鏡的多個光軸,各斜向入射光與各光軸夾出一個角度。An embodiment of the present invention provides an optical sensor including: a substrate having a plurality of sensing pixels arranged in an array; a first transparent medium layer located above the substrate; and a plurality of microlenses arranged in an array And located on or above the first transparent medium layer, where the microlenses respectively enter the parallel positive incident light from the outside into the microlenses, and enter the total number of sensing pixels through the first transparent medium layer Part or all of the inside, and a plurality of parallel oblique incident lights entering the microlenses from the outside are incident on part or all of the total number of sensing pixels, thereby sensing a picture of a target Like. The target produces these parallel positively incident light and these parallel obliquely incident lights. The normally incident light is parallel to the multiple optical axes of the microlenses, and each obliquely incident light is sandwiched by each optical axis angle.

本發明的實施例更提供一種光學感測器,包括:一基板,具有多個感測畫素,排列成陣列;一第一透明介質層,位於基板的上方;以及多個偏移微透鏡,排列成陣列,並位於第一透明介質層上或上方。此些偏移微透鏡分別將從外界進入此些偏移微透鏡的多個平行的正向入射光,通過第一透明介質層而入射於此些感測畫素總數的一部分或全部的外部,並將從外界進入此些偏移微透鏡的多個平行的斜向入射光入射於此些感測畫素總數的一部分或全部的內部,藉此感測一目標物的一圖像,目標物產生此些平行的正向入射光以及此些平行的斜向入射光,此些正向入射光平行於此些偏移微透鏡的多個光軸,各斜向入射光與各光軸夾出一個角度。An embodiment of the present invention further provides an optical sensor, including: a substrate having a plurality of sensing pixels arranged in an array; a first transparent medium layer located above the substrate; and a plurality of offset microlenses, Arranged in an array and located on or above the first transparent dielectric layer. These offset microlenses respectively enter a plurality of parallel positive incident light from the outside into the offset microlenses, and pass through the first transparent medium layer to be incident outside part or all of the total number of sensing pixels, And a plurality of parallel oblique incident lights entering the offset microlenses from the outside are incident on a part or all of the total number of sensing pixels, thereby sensing an image of a target, the target These parallel normal incident light and parallel oblique incident light are generated. The normal incident light is parallel to the multiple optical axes of the offset microlenses, and each oblique incident light is sandwiched by each optical axis An angle.

本發明的實施例再提供一種光學感測系統,包括:一底座;一電池,設置於底座上;一框架,設置於電池的上方;一光學感測器,用於感測一目標物的一圖像;一顯示器,用於顯示資訊,其中光學感測器裝設於框架或貼合於顯示器的一下表面,目標物位於顯示器上或上方,光學感測器通過顯示器感測目標物的圖像,電池供電給光學感測器與顯示器。An embodiment of the present invention further provides an optical sensing system, including: a base; a battery, disposed on the base; a frame, disposed above the battery; an optical sensor, used to sense a target Image; a display for displaying information, wherein the optical sensor is mounted on the frame or attached to the lower surface of the display, the target is located on or above the display, and the optical sensor senses the image of the target through the display , Battery power for optical sensors and displays.

本發明的實施例又提供一種光學感測器的製造方法,包括以下步驟:提供一基板,具有多個感測畫素,排列成陣列;於基板的上方形成一第一透明介質層;以及於第一透明介質層上或上方形成多個微透鏡,排列成陣列。此些微透鏡分別將從外界進入此些微透鏡的多個平行的正向入射光,通過第一透明介質層而入射於此些感測畫素總數的一部分或全部的內部,並將從外界進入此些微透鏡的多個平行的斜向入射光入射於此些感測畫素總數的一部分或全部的外部,藉此感測一目標物的一圖像,目標物產生此些平行的正向入射光以及此些平行的斜向入射光,此些正向入射光平行於此些微透鏡的多個光軸,各斜向入射光與各光軸夾出一個角度。An embodiment of the present invention further provides a method for manufacturing an optical sensor, including the following steps: providing a substrate having a plurality of sensing pixels arranged in an array; forming a first transparent dielectric layer above the substrate; and A plurality of microlenses are formed on or above the first transparent medium layer, arranged in an array. The microlenses respectively enter a plurality of parallel positive incident light from the outside into the microlenses through a first transparent medium layer and enter the part or all of the total number of sensing pixels, and enter the outside from the outside A plurality of parallel obliquely incident lights of the microlenses are incident outside a part or all of the total number of sensing pixels, thereby sensing an image of a target, and the target produces the parallel normal incident light And the parallel oblique incident light, the normal incident light is parallel to the multiple optical axes of the microlenses, and each oblique incident light forms an angle with each optical axis.

本發明的實施例又提供一種光學感測器的製造方法,包括以下步驟:提供一基板,具有多個感測畫素,排列成陣列;於基板的上方形成一第一透明介質層;以及於第一透明介質層上或上方形成多個偏移微透鏡,排列成陣列。此些偏移微透鏡分別將從外界進入此些偏移微透鏡的多個平行的正向入射光,通過第一透明介質層而入射於此些感測畫素總數的一部分或全部的外部,並將從外界進入此些偏移微透鏡的多個平行的斜向入射光入射於此些感測畫素總數的一部分或全部的內部,藉此感測一目標物的一圖像,目標物產生此些平行的正向入射光以及此些平行的斜向入射光,此些正向入射光平行於此些偏移微透鏡的多個光軸,各斜向入射光與各光軸夾出一個角度。An embodiment of the present invention further provides a method for manufacturing an optical sensor, including the following steps: providing a substrate having a plurality of sensing pixels arranged in an array; forming a first transparent dielectric layer above the substrate; and A plurality of offset microlenses are formed on or above the first transparent medium layer, arranged in an array. These offset microlenses respectively enter a plurality of parallel positive incident light from the outside into the offset microlenses, and pass through the first transparent medium layer to be incident outside part or all of the total number of sensing pixels, And a plurality of parallel oblique incident lights entering the offset microlenses from the outside are incident on a part or all of the total number of sensing pixels, thereby sensing an image of a target, the target These parallel normal incident light and parallel oblique incident light are generated. The normal incident light is parallel to the multiple optical axes of the offset microlenses, and each oblique incident light is sandwiched by each optical axis An angle.

本發明的一些實施例提供一種光學感測器,包含:基底、第一遮光層、微透鏡層、以及第一透明介質層。此基底包含感測畫素陣列。此第一遮光層位於此感測畫素陣列上方且具有多個第一開孔,其中這些第一開孔露出此感測畫素陣列的多個感測畫素。此微透鏡層位於此第一遮光層上方且包含多個微透鏡。此第一透明介質層位於此感測畫素陣列上方且介於此微透鏡層與此感測畫素陣列之間,其中此第一透明介質層具有第一厚度。此微透鏡層用以引導入射光穿透此第一透明介質層至這些第一開孔下方的這些感測畫素。Some embodiments of the present invention provide an optical sensor, including: a substrate, a first light-shielding layer, a microlens layer, and a first transparent medium layer. The substrate includes an array of sensing pixels. The first light-shielding layer is located above the sensing pixel array and has a plurality of first openings, wherein the first openings expose the sensing pixels of the sensing pixel array. The microlens layer is located above the first light shielding layer and includes a plurality of microlenses. The first transparent medium layer is located above the sensing pixel array and between the microlens layer and the sensing pixel array, wherein the first transparent medium layer has a first thickness. The microlens layer is used to guide incident light to penetrate the first transparent medium layer to the sensing pixels below the first openings.

本發明的一些實施例提供一種光學感測器,包含:基底、第一透明介質層、以及微透鏡層。此基底包含感測畫素陣列,其中此感測畫素陣列包含多個感測畫素,而每一該感測畫素具有一畫素尺寸。此第一透明介質層位於此感測畫素陣列之上方。此微透鏡層位於此第一透明介質層之上方且包含多個微透鏡,而每一該微透鏡具有一直徑,其中這些微透鏡用以引導入射光穿透此第一透明介質層至這些感測畫素。此畫素尺寸在3微米至10微米的範圍之間,而此直徑在10微米至50微米的範圍。Some embodiments of the present invention provide an optical sensor, including: a substrate, a first transparent medium layer, and a microlens layer. The substrate includes a sensing pixel array, wherein the sensing pixel array includes a plurality of sensing pixels, and each of the sensing pixels has a pixel size. The first transparent medium layer is located above the sensing pixel array. The microlens layer is located above the first transparent medium layer and includes a plurality of microlenses, and each of the microlenses has a diameter, wherein the microlenses are used to guide incident light through the first transparent medium layer to the senses Pixels. The pixel size is in the range of 3 microns to 10 microns, and the diameter is in the range of 10 microns to 50 microns.

通過上述實施例,通過對光學感測器的遮光層、微透鏡及感測畫素的設計,可以讓的感測畫素接收來自特定入射角範圍的光線,消除不必要的雜散光,並可有效縮小光學感測器的厚度,可以使光學感測器能輕易地設置於手機等電子設備的電池與顯示器之間,更可利用顯示器的光源實現屏下光學感測。Through the above embodiments, through the design of the light-shielding layer of the optical sensor, the microlens, and the sensing pixel, the sensing pixel can receive light from a specific incident angle range, eliminating unnecessary stray light, and Effectively reducing the thickness of the optical sensor can enable the optical sensor to be easily placed between the battery of a mobile phone and other electronic devices and the display, and the light source of the display can also be used to realize under-screen optical sensing.

為讓本發明的上述內容能更明顯易懂,下文特舉較佳實施例,並配合附圖,作詳細說明如下。In order to make the above content of the present invention more comprehensible, preferred embodiments are described below in conjunction with the drawings, which are described in detail below.

以下公開提供了許多的實施例或範例,各元件和其配置的具體範例描述如下,以簡化本發明實施例的說明。當然,這些僅僅是範例,並非用以限定本發明實施例。舉例而言,敘述中若提及第一元件形成在第二元件之上,可能包含第一和第二元件直接接觸的實施例,也可能包含額外的元件形成在第一和第二元件之間,使得它們不直接接觸的實施例。此外,本發明實施例可能在不同的範例中重複參考數位及/或字母。如此重複是為了簡明和清楚,而非用以表示所討論的不同實施例之間的關係。The following disclosure provides many embodiments or examples, and specific examples of each element and its configuration are described below to simplify the description of the embodiments of the present invention. Of course, these are only examples and are not intended to limit the embodiments of the present invention. For example, if the first element is formed on the second element in the description, it may include an embodiment where the first and second elements are in direct contact, or may include additional elements formed between the first and second elements , So that they do not directly contact the embodiment. In addition, embodiments of the present invention may repeat reference numerals and/or letters in different examples. This repetition is for conciseness and clarity, not for expressing the relationship between the different embodiments discussed.

此外,其中可能用到與空間相對用詞,例如“在…下方”、“下方”、“較低的”、“上方”、“較高的”及類似的用詞,這些空間相對用詞為了便於描述圖示中一個(些)元件或特徵與另一個(些)元件或特徵之間的關係,這些空間相對用詞包括使用中或操作中的裝置的不同方位,以及附圖中所描述的方位。當裝置被轉向不同方位時(旋轉90度或其他方位),則其中所使用的空間相對形容詞也將依轉向後的方位來解釋。In addition, relative terms may be used, such as "below", "below", "lower", "above", "higher" and similar terms. It is convenient to describe the relationship between one (s) element or feature and another (s) element or feature in the illustration. These spatial relative terms include different orientations of the device in use or in operation, as well as those described in the drawings position. When the device is turned to different orientations (rotated 90 degrees or other orientations), the relative adjectives used in the space will also be interpreted according to the turned orientation.

在此,“約”、“大約”、“大抵”的用語通常表示在一給定值或範圍的20%之內,優選是10%之內,且優選是5%之內,或3%之內,或2%之內,或1%之內,或0.5%之內。應注意的是,說明書中所提供的數量為大約的數量,亦即在沒有特定說明“約”、“大約”、“大抵”的情況下,仍可隱含“約”、“大約”、“大抵”的含義。Here, the terms “about”, “approximately” and “approximately” generally mean within 20% of a given value or range, preferably within 10%, and preferably within 5%, or within 3% Within, or within 2%, or within 1%, or within 0.5%. It should be noted that the quantity provided in the description is an approximate quantity, that is, without specifying "about", "approximately", "approximately", the terms "about", "approximately" and "approximately" may still be implied The meaning of "approximately".

雖然所述的一些實施例中的步驟以特定順序進行,這些步驟亦可以其他合邏輯的順序進行。在不同實施例中,可替換或省略一些所述的步驟,亦可於本發明實施例所述的步驟之前、之中、及/或之後進行一些其他操作。本發明實施例中的光學感測器及光學感測系統可加入其他的特徵。在不同實施例中,可替換或省略一些特徵。Although the steps in some of the described embodiments are performed in a specific order, these steps may also be performed in other logical orders. In different embodiments, some of the described steps may be replaced or omitted, and some other operations may be performed before, during, and/or after the steps described in the embodiments of the present invention. Other features can be added to the optical sensor and the optical sensing system in the embodiments of the present invention. In different embodiments, some features may be replaced or omitted.

[第一組實施例][First group of embodiments]

第1圖顯示依據本發明第一實施例的光學感測系統的剖面示意圖。第2圖顯示依據本發明第一實施例的光學感測器的剖面示意圖。如第1圖與第2圖所示,本實施例的一種光學感測系統1-600,譬如是手機或平板電腦的電子設備,包含一底座1-610、一電池1-500、一框架1-400、一光學感測器1-200及一顯示器1-300。FIG. 1 shows a schematic cross-sectional view of an optical sensing system according to a first embodiment of the invention. FIG. 2 shows a schematic cross-sectional view of the optical sensor according to the first embodiment of the present invention. As shown in FIGS. 1 and 2, an optical sensing system 1-600 of this embodiment, such as an electronic device of a mobile phone or a tablet computer, includes a base 1-610, a battery 1-500, and a frame 1 -400, an optical sensor 1-200 and a display 1-300.

底座1-610為電子設備的機殼的一部分,電池1-500設置於底座1-610上。框架1-400設置於電池1-500的上方,並具有一容置槽1-410(這一容置槽得視設計予以省略)。光學感測器1-200裝設於容置槽1-410的一容置底部1-420上,用於感測一目標物1-F的一圖像。當容置槽被省略時,光學感測器1-200裝設於框架1-400。顯示器1-300設置於光學感測器1-200的上方,用於顯示資訊。目標物1-F位於顯示器1-300上或上方。光學感測器1-200通過顯示器1-300感測目標物1-F的圖像,電池1-500供電給光學感測器1-200與顯示器1-300,以維持電子設備的運作。供光學感測器1-200安裝的框架1-400的容置底部1-420與顯示器1-300之間的一最短距離1-d介於0.1 mm至0.5 mm之間;0.2至0.5mm之間;0.3至0.5mm之間;或0.4至0.5mm之間。The base 1-610 is a part of the casing of the electronic device, and the battery 1-500 is disposed on the base 1-610. The frame 1-400 is disposed above the battery 1-500, and has a receiving slot 1-410 (this receiving slot may be omitted depending on the design). The optical sensor 1-200 is installed on a receiving bottom 1-420 of the receiving slot 1-410, and is used to sense an image of a target 1-F. When the accommodating groove is omitted, the optical sensor 1-200 is installed on the frame 1-400. The display 1-300 is disposed above the optical sensor 1-200, and is used to display information. The target 1-F is located on or above the display 1-300. The optical sensor 1-200 senses the image of the target 1-F through the display 1-300, and the battery 1-500 supplies power to the optical sensor 1-200 and the display 1-300 to maintain the operation of the electronic device. The shortest distance 1-d between the accommodating bottom 1-420 of the frame 1-400 for mounting the optical sensor 1-200 and the display 1-300 is between 0.1 mm and 0.5 mm; 0.2 to 0.5 mm Time; between 0.3 and 0.5mm; or between 0.4 and 0.5mm.

光學感測器1-200包含一基板1-201、一第一透明介質層1-207以及多個微透鏡1-210。基板1-201具有多個感測畫素(Sensor Pixel)203,排列成陣列。第一透明介質層1-207位於基板1-201的上方。此些微透鏡1-210排列成陣列,並位於第一透明介質層1-207上(第1圖)或上方(譬如後述的第9圖)。此些微透鏡1-210分別將從外界進入此些微透鏡1-210的多個平行的正向入射光(或稱直向入射光)1-L1,通過第一透明介質層1-207而入射於此些感測畫素1-203總數的一部分(後述的第16A圖與16B,指的是某些感測畫素1-203)或全部(圖1)的內部(表示對應的感測畫素1-203收得到光),並將從外界進入此些微透鏡1-210的多個平行的斜向入射光L2入射於此些感測畫素1-203總數的一部分(後述的第16A圖與16B,指的是某些感測畫素1-203)或全部(圖1)的外部(表示對應的感測畫素1-203收不到光),藉此感測目標物1-F的一圖像。有關感測畫素1-203總數的一部分的意義說明如下。譬如,總數為(M+N)個感測畫素1-203,其中M與N為自然數,而M個感測畫素1-203就是感測畫素1-203總數的一部分。有關感測畫素1-203總數的全部的意義說明如下。譬如,總數為(M+N)個感測畫素1-203,其中(M+N)個感測畫素1-203就是感測畫素1-203總數的全部。目標物1-F可以反射來自環境光、顯示器1-300所提供的光線或兩者的混合而產生此些平行的正向入射光1-L1以及此些平行的斜向入射光1-L2。此些正向入射光1-L1平行於此些微透鏡1-210的多個光軸1-OA。各斜向入射光1-L2與各光軸1-OA夾出一個角度1-ANG。由於第2圖所繪製的正向入射光1-L1是沿著鉛直方向行進,故與光軸1-OA平行。但本實施例並未將正向入射光1-L1限制成與光軸1-OA平行。於一實施例中,可以通過微透鏡1-210被感測畫素1-203接收到的正向入射光1-L1與光軸1-OA的夾角的範圍在-3.5度至3.5度之間;-4度至+4度之間;或-5度至+5度之間,也就是角度1-ANG介於3.5度到90度之間;4度到90度之間;或5度到90度之間。亦即,與光軸1-OA的夾角大於3.5度或5度的斜向入射光1-L2都無法進入到感測畫素1-203中。The optical sensor 1-200 includes a substrate 1-201, a first transparent dielectric layer 1-207, and a plurality of microlenses 1-210. The substrate 1-201 has a plurality of sensor pixels 203 arranged in an array. The first transparent dielectric layer 1-207 is located above the substrate 1-201. The microlenses 1-210 are arranged in an array, and are located on or above the first transparent dielectric layer 1-207 (Figure 1) or above (such as Figure 9 described later). The microlenses 1-210 respectively enter a plurality of parallel normal incident light (or normal incidence light) 1-L1 entering the microlenses 1-210 from the outside through the first transparent medium layer 1-207 Part of the total number of these sensing pixels 1-203 (Figures 16A and 16B described later, referring to certain sensing pixels 1-203) or all (Figure 1) inside (indicating the corresponding sensing pixels 1-203 receives light), and a plurality of parallel obliquely incident light L2 entering these microlenses 1-210 from the outside is incident on a part of the total number of these sensing pixels 1-203 (Figure 16A and 16B, which refers to the outside of some sensing pixels 1-203) or all (Figure 1) (indicating that the corresponding sensing pixels 1-203 cannot receive light), thereby sensing the target 1-F One image. The meaning of a part of the total number of sensing pixels 1-203 is explained below. For example, the total number is (M+N) sensing pixels 1-203, where M and N are natural numbers, and the M sensing pixels 1-203 are part of the total number of sensing pixels 1-203. The meaning of the total number of sensing pixels 1-203 is explained below. For example, the total number is (M+N) sensing pixels 1-203, of which (M+N) sensing pixels 1-203 are all of the total number of sensing pixels 1-203. The target 1-F can reflect the ambient light, the light provided by the display 1-300, or a mixture of the two to generate the parallel normal incident light 1-L1 and the parallel oblique incident light 1-L2. The forward incident light 1-L1 is parallel to the multiple optical axes 1-OA of the microlenses 1-210. Each obliquely incident light 1-L2 forms an angle 1-ANG with each optical axis 1-OA. Since the normal incident light 1-L1 drawn in FIG. 2 travels in the vertical direction, it is parallel to the optical axis 1-OA. However, this embodiment does not limit the normal incident light 1-L1 to be parallel to the optical axis 1-OA. In an embodiment, the angle between the normal incident light 1-L1 and the optical axis 1-OA that can be received by the sensing pixel 1-203 through the microlens 1-210 ranges from -3.5 degrees to 3.5 degrees ; -4 degrees to +4 degrees; or -5 degrees to +5 degrees, that is, angle 1-ANG between 3.5 degrees to 90 degrees; 4 degrees to 90 degrees; or 5 degrees to Between 90 degrees. That is, obliquely incident light 1-L2 with an angle greater than 3.5 degrees or 5 degrees from the optical axis 1-OA cannot enter the sensing pixel 1-203.

以下說明第一實施例的細部結構。光學感測器1-200還包含一介電層組1-202、一第一遮光層1-204、一保護層1-205以及一光學濾波層1-206(保護層1-205也可以被視為是光學濾波層1-206的一部分)。介電層組1-202位於基板1-201上並覆蓋此些感測畫素1-203。第一遮光層1-204位於介電層組1-202上,並具有多個第一光孔(Aperture)1-204A。此些正向入射光1-L1通過此些第一光孔1-204A,此些斜向入射光1-L2不通過此些第一光孔1-204A。保護層1-205位於第一遮光層1-204上,並可填入於第一遮光層1-204中。光學濾波層1-206位於保護層1-205上,並對此些正向入射光1-L1與此些斜向入射光1-L2執行光線波長過濾動作,其中第一透明介質層1-207位於光學濾波層1-206上,且此些微透鏡1-210位於第一透明介質層1-207上。The detailed structure of the first embodiment will be described below. The optical sensor 1-200 further includes a dielectric layer group 1-202, a first light-shielding layer 1-204, a protective layer 1-205, and an optical filter layer 1-206 (the protective layer 1-205 can also be (Considered to be part of the optical filter layer 1-206). The dielectric layer group 1-202 is located on the substrate 1-201 and covers the sensing pixels 1-203. The first light-shielding layer 1-204 is located on the dielectric layer group 1-202, and has a plurality of first apertures (Aperture) 1-204A. The normally incident light 1-L1 passes through the first light holes 1-204A, and the obliquely incident light 1-L2 does not pass through the first light holes 1-204A. The protective layer 1-205 is located on the first light-shielding layer 1-204, and can be filled in the first light-shielding layer 1-204. The optical filter layer 1-206 is located on the protective layer 1-205, and performs a light wavelength filtering action on these normally incident light 1-L1 and these obliquely incident light 1-L2, wherein the first transparent medium layer 1-207 Located on the optical filter layer 1-206, and these microlenses 1-210 are located on the first transparent dielectric layer 1-207.

因此,本發明提供了光學感測器及應用此光學感測器的光學感測系統及其製造方法,特別是一種應用於螢幕下光學式生物識別感測器及應用此光學感測器的光學感測系統。如第1圖所示,本發明實施例所提供的光學感測器1-200具有可控角度准直結構(Angle Controllable Collimator),此可控角度准直結構包含了露出感測畫素1-203的第一遮光層1-204及去除部分第一遮光層1-204所形成的第一光孔1-204A、形成在第一遮光層1-204及第一光孔1-204A上的光學濾波層1-206及第一透明介質層1-207、以及形成在第一透明介質層1-207上的微透鏡1-210。Therefore, the present invention provides an optical sensor and an optical sensing system using the optical sensor and a manufacturing method thereof, in particular to an optical biometric sensor applied under the screen and an optical device using the optical sensor Sensing system. As shown in FIG. 1, the optical sensor 1-200 provided by the embodiment of the present invention has a controllable angle collimating structure (Angle Controllable Collimator), which includes exposing the sensing pixels 1- 203, the first light-shielding layer 1-204 and the first light hole 1-204A formed by removing a portion of the first light-shielding layer 1-204, and the optical formed on the first light-shielding layer 1-204 and the first light hole 1-204A The filter layer 1-206 and the first transparent dielectric layer 1-207, and the microlens 1-210 formed on the first transparent dielectric layer 1-207.

此可控角度准直結構是利用微透鏡1-210與第一光孔1-204A(包含感測畫素1-203)間的相對位置設計(例如光軸對準或偏移),可以控制特定入射光的角度(正向入射或者斜向入射)才能被感測畫素1-203感測,因此可以有效提高光學感測器的品質。本發明所提供的光學感測器的可控角度准直結構的形成方式,相較於傳統製程之下,具有成本及製造流程簡化的優點,最重要的是,使用此光學感測器,其模組設計的高度或厚度更可以低於0.5mm,完全可以在不影響電池的配置下,將所述光學感測器模組,設置於螢幕下與電池之間,完全解決已知技術的問題。值得一提的是,應用本發明的感測器及光學感測器模組,並不受限於如背景技術所述的指紋應用,其更可以應用於包含指靜脈、血流速及血氧檢測。甚者,其可以用來做非接觸的圖像拍攝,例如屏下像機等,拍攝例如人臉或眼睛或者一般的拍照功能,用於作為人臉識別或虹膜識別等等。The controllable angle collimating structure is designed by using the relative position between the micro lens 1-210 and the first optical hole 1-204A (including the sensing pixel 1-203) (such as optical axis alignment or offset), which can be controlled Only a certain angle of incident light (normal incidence or oblique incidence) can be sensed by the sensing pixels 1-203, so the quality of the optical sensor can be effectively improved. The method for forming the controllable angle collimating structure of the optical sensor provided by the present invention has the advantages of cost and simplified manufacturing process compared with the traditional manufacturing process. The most important thing is to use this optical sensor. The height or thickness of the module design can be lower than 0.5mm, and the optical sensor module can be placed between the screen and the battery without affecting the configuration of the battery, completely solving the problems of the known technology . It is worth mentioning that the application of the sensor and optical sensor module of the present invention is not limited to the fingerprint application as described in the background art, it can also be applied to include finger veins, blood flow rate and blood oxygen Detection. What's more, it can be used for non-contact image capture, such as under-screen cameras, etc., for capturing faces or eyes or general camera functions, for face recognition or iris recognition, etc.

當第1圖的光學感測器1-200應用於例如手機系統的光學感測系統1-600時,由於手機系統為已知技術,在此並不會展示所有的細部結構,反而只針對配合本發明的光學感測器1-200必須要整合一起考慮的幾個關鍵元件做描述。光學感測系統1-600包含顯示器1-300以及在顯示器1-300的下方的光學感測器1-200,其中顯示器1-300可為有機發光二極體(Organic Light-Emitting Diode,OLED)顯示器或微型發光二極體(Micro LED)顯示器、或者其他未來可能發展的各種顯示幕。在一些實施例中,可利用光學感測系統1-600中的顯示器1-300作為光源,其發出的光線將照射與顯示器1-300的上表面接觸或非接觸的目標物1-F,目標物1-F再將此光線反射至設置在顯示器1-300下的光學感測器1-200以對目標物1-F的輪廓特徵(例如:手指的指紋特徵)進行感測與識別。值得注意的是,光學感測系統1-600中的光學感測器1-200也可搭配其他形態及波長的光源(例如紅外線光源),故本發明實施例並不以此為限,所述光學感測器也可以是被動式拍照,也就是不需要投射光源到待測目標物(物體) 1-F。另外,值得說明的是,本發明為了說明簡化起見,光學感測器1-200的結構並沒有顯示出所有的細部結構層,例如CMOS製造製程分為前段(Front End Of Line, FEOL)及後段(Back End Of Line, BEOL),前段包含金屬氧化物半導體(Metal Oxide Semiconductor, MOS)結構,或者後段包含多層的金屬連接層及金屬間介電層(Inter-Metal Dielectric, IMD),在此大部分省略,僅著重於本發明創新精神之處加以說明,此一部分將在後面製造流程再詳細說明。When the optical sensor 1-200 of FIG. 1 is applied to an optical sensing system 1-600 such as a mobile phone system, since the mobile phone system is a known technology, not all the detailed structures are shown here, but only for cooperation The optical sensor 1-200 of the present invention must be described by integrating several key elements considered together. The optical sensing system 1-600 includes a display 1-300 and an optical sensor 1-200 below the display 1-300, wherein the display 1-300 may be an organic light-emitting diode (OLED) A display or a Micro LED display, or other various display screens that may be developed in the future. In some embodiments, the display 1-300 in the optical sensing system 1-600 can be used as a light source, and the light emitted from it will illuminate the target 1-F that is in contact or non-contact with the upper surface of the display 1-300. The object 1-F then reflects this light to the optical sensor 1-200 disposed under the display 1-300 to sense and recognize the outline feature of the object 1-F (for example, the fingerprint feature of the finger). It is worth noting that the optical sensors 1-200 in the optical sensing system 1-600 can also be combined with light sources of other shapes and wavelengths (such as infrared light sources), so the embodiments of the present invention are not limited thereto. The optical sensor can also be a passive camera, that is, there is no need to project the light source onto the target object (object) 1-F to be measured. In addition, it is worth noting that for the sake of simplicity, the structure of the optical sensor 1-200 of the present invention does not show all the detailed structure layers. For example, the CMOS manufacturing process is divided into the front end (Front End Of Line, FEOL) and Back End Of Line (BEOL), the front section contains a metal oxide semiconductor (Metal Oxide Semiconductor, MOS) structure, or the back section contains a multi-layer metal connection layer and inter-metal dielectric layer (Inter-Metal Dielectric, IMD), here Most of them are omitted, and only the focus on the innovative spirit of the present invention will be described. This part will be described in detail later in the manufacturing process.

在第1圖中,光學感測器1-200被設置成包含於一光學感測器模組1-1300中,光學感測器模組1-1300包含一承載硬版1-1301、一軟性電路板1-1302及將光學感測器1-200與軟性電路板1-1302電連接的焊線(bond wire) 1-1303,焊線1-1303由封膠層1-1306封裝保護住。封膠層1-1306的頂面可與第一透明介質層1-207的頂面齊平,但不限定於此。在一些實施例中,焊線1-1303可由鋁(Aluminum)、銅(Copper)、金(Gold)、其他適當的導電材料、上述的合金、或上述的組合所形成。In FIG. 1, the optical sensor 1-200 is configured to be included in an optical sensor module 1-1300, and the optical sensor module 1-1300 includes a bearing hard plate 1-301, a soft The circuit board 1-1302 and the bond wire 1-1303 that electrically connects the optical sensor 1-200 and the flexible circuit board 1-1302 are encapsulated and protected by the sealant layer 1-1306. The top surface of the sealant layer 1-1306 may be flush with the top surface of the first transparent dielectric layer 1-207, but it is not limited thereto. In some embodiments, the bonding wire 1-1303 may be formed of aluminum, copper, gold, other suitable conductive materials, the above alloy, or a combination of the above.

光學感測器模組1-1300(包含光學感測器1-200)被設置於一手機內部組裝支撐使用的框架1-400(俗稱中框)上,所述框架1-400通常為一金屬材料所製成。如本發明前言所提,為了將本發明的光學感測器模組1-1300設置於小於0.5mm的狹小距離1-d內(在本發明中定義為光學感測器模組1-1300的底部到顯示器1-300的底部的距離),當然框架1-400也可以事先製造形成一凹處(如圖所示,當然不限定於此,也可以不需要凹處,亦或者所述中框可以形成一穿孔,所述模組設置於所述穿孔中,此時的光學感測器1-200裝設於框架1-400),以供光學感測器模組1-1300設置,增加整體厚度設計時的彈性。另外在框架1-400的底下設置電池1-500,用於說明本發明最主要的重點就是,在不需要讓出部分電池的空間下,提出超薄的光學感測器模組1-1300(包含光學感測器1-200),設置於框架1-400(電池1-500)與顯示器1-300之間,當然設置的方式為了便於生產維修,也可以是採用膠合、螺絲或其他方式的固定。The optical sensor module 1-1300 (including the optical sensor 1-200) is set on a frame 1-400 (commonly known as a middle frame) used for assembly and support inside a mobile phone, and the frame 1-400 is usually a metal Made of materials. As mentioned in the introduction of the present invention, in order to place the optical sensor module 1-1300 of the present invention within a narrow distance 1-d of less than 0.5 mm (in the present invention it is defined as the optical sensor module 1-1300’s The distance from the bottom to the bottom of the display 1-300), of course, the frame 1-400 can also be manufactured in advance to form a recess (as shown in the figure, of course, it is not limited to this, or the recess may not be required, or the middle frame A perforation can be formed, the module is disposed in the perforation, and the optical sensor 1-200 is installed on the frame 1-400 at this time, for the optical sensor module 1-1300 to be installed, increasing the overall Thickness design flexibility. In addition, a battery 1-500 is provided under the frame 1-400, which is used to illustrate that the main focus of the present invention is to propose an ultra-thin optical sensor module 1-1300 (without leaving room for some batteries) Including optical sensor 1-200), set between frame 1-400 (battery 1-500) and display 1-300, of course, in order to facilitate production and maintenance, it can also be glued, screwed or other methods fixed.

根據本發明的一些實施例,在第1圖中所示出的光學感測器1-200包含具有排列成陣列的感測畫素(例如光電二極體(Photodiode)) 1-203的基板1-201、介電層組(可包含一個或多個介電層及一個或多個金屬導線層) 1-202、具有多個第一光孔1-204A的第一遮光層1-204、保護層1-205、光學濾波層1-206(用於過濾太陽光中的紅外光,當然不限定於此)、第一透明層1-207以及微透鏡1-210。在一些實施例中,第一光孔1-204A與感測畫素1-203可以是一對一、一對多或多對一的設計;微透鏡1-210與感測畫素1-203也可以是一對一、一對多或多對一的設計。According to some embodiments of the present invention, the optical sensor 1-200 shown in FIG. 1 includes a substrate 1 having sensing pixels (eg, photodiode) 1-203 arranged in an array. -201, a dielectric layer group (which may include one or more dielectric layers and one or more metal wire layers) 1-202, a first light-shielding layer 1-204 with a plurality of first light holes 1-204A, protection Layer 1-205, optical filter layer 1-206 (for filtering infrared light in sunlight, of course not limited thereto), first transparent layer 1-207, and microlens 1-210. In some embodiments, the first light hole 1-204A and the sensing pixel 1-203 can be a one-to-one, one-to-many, or many-to-one design; the microlens 1-210 and the sensing pixel 1-203 It can also be a one-to-one, one-to-many or many-to-one design.

以下將用第2圖來解釋本發明的光學感測器1-200的操作原理,正向入射光1-L1、斜向入射光1-L2分別以不同的角度入射至光學感測器1-200。如果微透鏡1-210與第一光孔1-204A對準同一光軸,則因為透鏡的聚焦效應,正向入射光1-L1就會被聚焦到感測畫素1-203,而斜向入射光1-L2也因為透鏡效應而被偏離光軸聚焦,因而被第一遮光層1-204阻擋。因此便具有可控角度准直結構的功能。第3圖顯示依據本發明第一實施例的光學感測器的特性曲線圖。第3圖清楚的展現利用本發明所量測到的資料,可以輕易的控制半高寬僅有3.5度左右的發散角,證明了本發明的可控角度准直結構的特殊性及優越性。The operation principle of the optical sensor 1-200 of the present invention will be explained below with reference to FIG. 2. Normally incident light 1-L1, obliquely incident light 1-L2 are respectively incident on the optical sensor 1- at different angles 1- 200. If the microlens 1-210 and the first optical hole 1-204A are aligned on the same optical axis, then due to the focusing effect of the lens, the normal incident light 1-L1 will be focused to the sensing pixel 1-203, but obliquely The incident light 1-L2 is also focused off the optical axis due to the lens effect, and thus is blocked by the first light shielding layer 1-204. Therefore, it has the function of controllable angle collimation structure. FIG. 3 shows the characteristic curve of the optical sensor according to the first embodiment of the present invention. Figure 3 clearly shows that using the data measured by the present invention, the divergence angle of the half-height width of only about 3.5 degrees can be easily controlled, proving the particularity and superiority of the controllable angle collimating structure of the present invention.

第4圖顯示依據本發明第二實施例的光學感測系統的剖面示意圖。如第4圖所示,本實施例類似於第一實施例,不同點在於由集成化晶圓製造(晶圓的薄膜製造製程)所形成的光學濾波層1-206是以光學濾波板1-900來取代,其中光學濾波板1-900為一後段模組組裝的獨立光學濾波板,利用一設置於一軟性電路板1-1302上的支撐體(dam structure)或框體1-1305,用於承載光學濾波板1-900,其餘部分皆相同於第1圖的各部件說明,因此在此就不贅述。因此,保護層1-205位於第一遮光層1-204上,此些微透鏡1-210位於第一透明介質層1-207上。光學濾波板1-900位於此些微透鏡1-210的上方,並對此些正向入射光1-L1與此些斜向入射光1-L2執行光線波長過濾動作。譬如,光學濾波板1-900通過光學感測器模組1-1300而設置於微透鏡1-210的上方。FIG. 4 shows a schematic cross-sectional view of an optical sensing system according to a second embodiment of the invention. As shown in FIG. 4, this embodiment is similar to the first embodiment, except that the optical filter layer 1-206 formed by integrated wafer manufacturing (wafer thin film manufacturing process) is an optical filter plate 1- Replaced by 900, where the optical filter board 1-900 is an independent optical filter board assembled by a rear-end module, using a dam structure or frame 1-1305 provided on a flexible circuit board 1-1302, using For carrying the optical filter plate 1-900, the remaining parts are the same as the description of the components in FIG. 1, so they will not be described here. Therefore, the protective layer 1-205 is located on the first light-shielding layer 1-204, and the microlenses 1-210 are located on the first transparent dielectric layer 1-207. The optical filter plate 1-900 is located above the microlenses 1-210, and performs light wavelength filtering on the normal incident light 1-L1 and the obliquely incident light 1-L2. For example, the optical filter plate 1-900 is disposed above the microlens 1-210 through the optical sensor module 1-1300.

值得注意的是,雖然本發明的光學感測系統1-600的光學感測器模組1-1300是設置於框架1-400的上方或中間,但其他實施例也可以是貼合於顯示器1-300的一下表面1-300B。It is worth noting that although the optical sensor module 1-1300 of the optical sensing system 1-600 of the present invention is disposed above or in the middle of the frame 1-400, other embodiments may also be attached to the display 1 The surface of -300 is 1-300B.

第5圖顯示依據本發明第一實施例的光學感測器的工作狀態的示意圖。如第5圖所示,因為組成的陣列的微透鏡1-210彼此之間在製造時會有留下空白區域(譬如間隙1-G所指區域),如圖所示的平坦區。這主要是因為微透鏡1-210為圓形結構,而微透鏡1-210下方的感測畫素1-203的陣列因為光罩佈局,而無法完全匹配微透鏡1-210的幾何尺度。因此如果有光線從微透鏡1-210之間的空白區域入射,例如圖中所示的第二斜向入射光(或稱相鄰間隙雜散光)L3,因而進入第一光孔1-204A中所露出的感測畫素1-203,則會造成雜光干擾,降低圖像品質。FIG. 5 shows a schematic diagram of the working state of the optical sensor according to the first embodiment of the present invention. As shown in FIG. 5, because the arrayed microlenses 1-210 will leave blank areas (such as the area indicated by the gap 1-G) between them during manufacturing, as shown in the flat area. This is mainly because the microlens 1-210 has a circular structure, and the array of sensing pixels 1-203 under the microlens 1-210 cannot fully match the geometric dimensions of the microlens 1-210 because of the layout of the photomask. Therefore, if light is incident from the blank area between the microlenses 1-210, such as the second oblique incident light (or stray light from the adjacent gap) L3 shown in the figure, it enters the first light hole 1-204A The exposed sensing pixels 1-203 will cause stray light interference and reduce the image quality.

第6圖顯示依據本發明第三實施例的光學感測器的剖面示意圖。如第6圖所示,本實施例類似於第一實施例,不同點在於在相鄰微透鏡1-210之間的空白處設置一透鏡遮光層1-211,而僅露出微透鏡1-210的曲面區域,這樣可以有效解決上述第二斜向入射光1-L3造成的相鄰間隙雜散光干擾問題。FIG. 6 shows a schematic cross-sectional view of an optical sensor according to a third embodiment of the invention. As shown in FIG. 6, this embodiment is similar to the first embodiment, except that a lens light-shielding layer 1-211 is provided in the space between adjacent microlenses 1-210, and only the microlenses 1-210 are exposed. This can effectively solve the problem of stray light interference in the adjacent gap caused by the second oblique incident light 1-L3.

因此,光學感測器1-200可以還包含透鏡遮光層1-211,位於第一透明介質層1-207上,以及此些微透鏡1-210之間的多個間隙1-G中,以遮蔽從外界進入此些間隙1-G中的多個平行的第二斜向入射光1-L3免於進入第一透明介質層1-207及此些感測畫素1-203中。有關第2圖的斜向入射光1-L2的特徵,同樣適用於本實施例,故亦可參見第2圖的相關說明。Therefore, the optical sensor 1-200 may further include a lens shading layer 1-211, located on the first transparent dielectric layer 1-207, and a plurality of gaps 1-G between the microlenses 1-210, to shield A plurality of parallel second obliquely incident lights 1-L3 entering the gaps 1-G from the outside are prevented from entering the first transparent dielectric layer 1-207 and the sensing pixels 1-203. The characteristics of the obliquely incident light 1-L2 in FIG. 2 are also applicable to this embodiment, so please also refer to the relevant description in FIG. 2.

第7圖顯示依據本發明第三實施例的光學感測器的特性曲線圖。如第7圖所示為實際的量測結果圖,微透鏡1-210之間的相鄰間隙雜散光可以被有效壓制。譬如,曲線1-CV1是沒有設置透鏡遮光層1-211的結果,而曲線1-CV2是有設置透鏡遮光層1-211的結果。FIG. 7 shows the characteristic curve of the optical sensor according to the third embodiment of the present invention. As shown in Figure 7 for the actual measurement results, stray light in the adjacent gap between the microlenses 1-210 can be effectively suppressed. For example, curve 1-CV1 is the result of not providing the lens shading layer 1-211, while curve 1-CV2 is the result of having the lens shading layer 1-211.

第8圖顯示依據本發明第一實施例的光學感測器的另一工作狀態的示意圖。如第8圖所示,類似於第5圖的相鄰間隙雜散光干擾,當相鄰的微透鏡之間(不限於第一個相鄰的微透鏡)會有串擾(Cross Talk)的問題,即一目標微透鏡1-210M的隔壁的相鄰微透鏡1-210N的第三斜向入射光(或稱相鄰透鏡雜散光) 1-L4會耦合進入目標微透鏡1-210M的正向入射光1-L1,一起入射至從第一光孔1-204A露出的一目標感測畫素1-203M,會造成干擾,降低圖像品質。以下將說明解決上述問題的方法。FIG. 8 is a schematic diagram showing another working state of the optical sensor according to the first embodiment of the present invention. As shown in Fig. 8, similar to the stray light interference of adjacent gaps in Fig. 5, when adjacent microlenses (not limited to the first adjacent microlens) will have crosstalk (Cross Talk) problems, That is, the third oblique incident light (or adjacent lens stray light) of the adjacent microlens 1-210N of the target microlens 1-210M will be coupled into the normal incidence of the target microlens 1-210M The light 1-L1 is incident on a target sensing pixel 1-203M exposed from the first light hole 1-204A together, which may cause interference and reduce image quality. The method for solving the above problems will be explained below.

第9圖顯示依據本發明第四實施例的光學感測器的剖面示意圖。如第9圖所示,光學感測器1-200還包含一第二遮光層1-208及一第二透明介質層1-209。第二遮光層1-208位於第一透明介質層1-207上,並具有多個第二光孔1-208A,此些光軸1-OA分別通過此些第二光孔1-208A。第二透明介質層1-209位於第二遮光層1-208上。此些微透鏡1-210位於第二透明介質層1-209上。為簡化說明,定義此些微透鏡1-210的其中一個為目標微透鏡1-210M,目標微透鏡1-210M所具有的光軸1-OA定義為一目標光軸1-OAM,目標光軸1-OAM所通過的感測畫素1-203定義為目標感測畫素1-203M,與目標微透鏡1-210M相鄰的此些微透鏡1-210定義為相鄰微透鏡1-210N。於此狀態下,第二遮光層1-208遮蔽從外界進入此些相鄰微透鏡1-210N的多個平行的第三斜向入射光1-L4免於進入第一透明介質層1-207及目標感測畫素1-203M中。有關第2圖的斜向入射光1-L2的特徵,同樣適用於本實施例,故亦可參見第2圖的相關說明。FIG. 9 shows a schematic cross-sectional view of an optical sensor according to a fourth embodiment of the invention. As shown in FIG. 9, the optical sensor 1-200 further includes a second light-shielding layer 1-208 and a second transparent dielectric layer 1-209. The second light-shielding layer 1-208 is located on the first transparent dielectric layer 1-207, and has a plurality of second light holes 1-208A. The optical axes 1-OA pass through the second light holes 1-208A, respectively. The second transparent dielectric layer 1-209 is located on the second light shielding layer 1-208. These microlenses 1-210 are located on the second transparent dielectric layer 1-209. To simplify the description, one of the microlenses 1-210 is defined as the target microlens 1-210M, and the optical axis 1-OA of the target microlens 1-210M is defined as a target optical axis 1-OAM and the target optical axis 1 -The sensing pixel 1-203 passed by OAM is defined as the target sensing pixel 1-203M, and the microlenses 1-210 adjacent to the target microlens 1-210M are defined as adjacent microlenses 1-210N. In this state, the second light shielding layer 1-208 shields a plurality of parallel third oblique incident light 1-L4 entering the adjacent microlenses 1-210N from the outside from entering the first transparent dielectric layer 1-207 And target sensing pixels 1-203M. The characteristics of the obliquely incident light 1-L2 in FIG. 2 are also applicable to this embodiment, so please also refer to the relevant description in FIG. 2.

因此,通過設置第二遮光層1-208及第二光孔1-208A於微透鏡1-210與第一遮光層1-204及第一光孔1-204A之間,則可以有效遮擋來自於相鄰透鏡間的串擾所造成的光線干擾。Therefore, by providing the second light-shielding layer 1-208 and the second light hole 1-208A between the microlens 1-210 and the first light-shielding layer 1-204 and the first light hole 1-204A, the effective Light interference caused by crosstalk between adjacent lenses.

第10圖顯示第8圖的光學感測器的特性曲線圖。第11圖顯示第9圖的光學感測器的特性曲線圖。如第10圖所示,沒有設置第二遮光層1-208時,感測畫素接收到正向入射光1-L1(通過目標微透鏡1-210M)與第三斜向入射光1-L4(通過相鄰微透鏡1-210N),造成圖像重影現象。如第11圖所示,有設置第二遮光層1-208時,感測畫素僅接收到正向入射光1-L1,而沒有接收到第三斜向入射光,不會造成圖像重影現象。因此,第二遮光層1-208可以非常有效的解決串擾問題,增強信號品質,提高圖像清晰度。同時,通過設置第二遮光層1-208,不僅可以有效解決串擾問題,連同第5圖所描述的微透鏡之間的空白區域的雜光干擾,也可以同時被壓抑,是很有效的一石兩鳥的作法。Figure 10 shows the characteristic curve of the optical sensor of Figure 8. Figure 11 shows the characteristic curve of the optical sensor of Figure 9. As shown in FIG. 10, when the second light-shielding layer 1-208 is not provided, the sensing pixel receives normal incident light 1-L1 (through the target microlens 1-210M) and the third oblique incident light 1-L4 (Through the adjacent microlens 1-210N), causing image ghosting. As shown in FIG. 11, when the second light-shielding layer 1-208 is provided, the sensing pixel receives only the normal incident light 1-L1, but does not receive the third oblique incident light, which does not cause image repetition. Shadow phenomenon. Therefore, the second light-shielding layer 1-208 can effectively solve the crosstalk problem, enhance the signal quality, and improve the image clarity. At the same time, by providing the second light-shielding layer 1-208, not only can the crosstalk problem be effectively solved, but also the stray light interference in the blank area between the microlenses described in FIG. 5 can also be suppressed at the same time, which is very effective. The bird's approach.

第12圖顯示依據本發明第四實施例的光學感測器的工作原理的局部剖面示意圖。通過第9圖的結構的優越特性,第12圖可以更細部的闡述如何結合微透鏡1-210、第一光孔1-204A與第二光孔1-208A的幾何設計並且結合第一透明介質層1-207與第二透明介質層1-209的控制,設計出不同解析度的光學感測器,以利應用於不同的系統及應用。當設計任何一種感測陣列元件時,有一個品質因數(Figure Of Merit)就是要儘量提高單一感測元有效的填充因數(Fill Factor)(有效感測區面積/單一畫素面積)。應用此觀念於本發明的光學感測器,就是要提高每一微透鏡1-210的填充因數(包含了對應的感測畫素1-203),在第6圖中,最佳的填充因數就是相鄰微透鏡1-210之間幾乎沒有留下空白。在第12圖中,A1是第一光孔1-204A的直徑(孔徑),而A2是第二光孔1-208A的直徑(孔徑),h為第一遮光層1-204與第二遮光層1-208之間的厚度,而H則是第一遮光層1-204至微透鏡1-210的底面1-210B之間的厚度。通過幾何三角關係(相似三角形),可以得到一種解析度的設計公式,也就是X(兩微透鏡1-210之間的節距或間距(pitch))表示如下:

Figure 02_image001
,也就是
Figure 02_image003
。FIG. 12 shows a partial cross-sectional view of the working principle of the optical sensor according to the fourth embodiment of the invention. Through the superior characteristics of the structure of Figure 9, Figure 12 can explain in more detail how to combine the geometric design of the microlens 1-210, the first light hole 1-204A and the second light hole 1-208A and combine the first transparent medium For the control of layers 1-207 and the second transparent dielectric layer 1-209, optical sensors with different resolutions are designed to be used in different systems and applications. When designing any kind of sensing array element, there is a figure of merit (Figure Of Merit) which is to maximize the effective fill factor (effective sensing area area/single pixel area) of a single sensing element. Applying this concept to the optical sensor of the present invention is to increase the fill factor of each microlens 1-210 (including the corresponding sensing pixel 1-203). In Figure 6, the optimal fill factor That is, there is almost no gap between adjacent microlenses 1-210. In Figure 12, A1 is the diameter (aperture) of the first light hole 1-204A, and A2 is the diameter (aperture) of the second light hole 1-208A, and h is the first light-shielding layer 1-204 and the second light-shielding The thickness between layers 1-208, and H is the thickness between the first light-shielding layer 1-204 and the bottom surface 1-210B of the microlens 1-210. Through the geometric triangle relationship (similar triangles), a resolution design formula can be obtained, that is, X (pitch or pitch between two microlenses 1-210) is expressed as follows:
Figure 02_image001
, That is
Figure 02_image003
.

在作為指紋感測使用時,一個較佳實施例可以設計為H約等於43µm,h約等於15µm,A1約等於4.5µm,A2約等於9µm,則根據上述公式,X約等於20µm。因此這公式可以做為設計不同解析度的光學感測器的一種設計準則,當然由於製造的工序不可能完美,因此,此公式不是採用完全的”=”號,而是” ”近似號,其誤差是可以被容許在20µm以內。When used as a fingerprint sensor, a preferred embodiment may be designed such that H is approximately 43 μm, h is approximately 15 μm, A1 is approximately 4.5 μm, and A2 is approximately 9 μm. According to the above formula, X is approximately 20 μm. Therefore, this formula can be used as a design criterion for designing optical sensors with different resolutions. Of course, since the manufacturing process cannot be perfect, this formula is not a complete "=" sign, but an "" approximate number, which The error can be tolerated within 20µm.

因此,在光學感測器1-200中,第一遮光層1-204位於基板1-201的上方,並具有多個第一光孔1-204A;第二遮光層1-208位於第一遮光層1-204的上方,並具有多個第二光孔1-208A。此些微透鏡1-210分別位於此些第二光孔1-208A的上方,且此些光軸1-OA分別通過此些第二光孔1-208A及此些第一光孔1-204A。此些微透鏡1-210的間距(pitch)X由以下公式表示:Therefore, in the optical sensor 1-200, the first light shielding layer 1-204 is located above the substrate 1-201 and has a plurality of first light holes 1-204A; the second light shielding layer 1-208 is located on the first light shielding Above the layer 1-204, there are a plurality of second light holes 1-208A. The microlenses 1-210 are respectively located above the second light holes 1-208A, and the optical axes 1-OA pass through the second light holes 1-208A and the first light holes 1-204A, respectively. The pitch X of these microlenses 1-210 is expressed by the following formula:

X=A1+(H/h)*(A2-A1)±20µmX=A1+(H/h)*(A2-A1)±20µm

其中A1表示第一光孔1-204A的孔徑,A2表示第二光孔1-208A的孔徑,H表示微透鏡1-210的底面1-210B與第一遮光層1-204之間的距離,h表示第二遮光層1-208與第一遮光層1-204之間的距離。Where A1 represents the aperture of the first light hole 1-204A, A2 represents the aperture of the second light hole 1-208A, and H represents the distance between the bottom surface 1-210B of the microlens 1-210 and the first light-shielding layer 1-204, h represents the distance between the second light-shielding layer 1-208 and the first light-shielding layer 1-204.

第13圖顯示依據本發明第五實施例的光學感測器的剖面示意圖。如第13圖所示,本實施例類似於第一實施例,不同點在於感測畫素1-203'的橫向尺寸(第13圖的水準方向的尺寸)被設計成接收到此些正向入射光1-L1,但不接收到此些斜向入射光1-L2,而光學感測器1-200於第一透明介質層1-207與此些感測畫素1-203'之間不具有任何遮光層來遮蔽此些斜向入射光1-L2。FIG. 13 shows a schematic cross-sectional view of an optical sensor according to a fifth embodiment of the invention. As shown in FIG. 13, this embodiment is similar to the first embodiment, except that the lateral dimension of the sensing pixel 1-203' (the horizontal dimension in FIG. 13) is designed to receive these positive directions The incident light 1-L1, but does not receive these obliquely incident light 1-L2, and the optical sensor 1-200 is between the first transparent dielectric layer 1-207 and the sensing pixels 1-203' There is no light shielding layer to shield these obliquely incident light 1-L2.

詳細來說,在光學感測器1-200中,介電層組1-202,位於基板1-201上並覆蓋此些感測畫素1-203',保護層1-205位於介電層組1-202上,光學濾波層1-206位於保護層1-205上,並對此些正向入射光1-L1與此些斜向入射光1-L2執行光線波長過濾動作。第一透明介質層1-207位於光學濾波層1-206上,此些微透鏡1-210位於第一透明介質層1-207上。因此,本實施例並沒有第2圖的第一遮光層1-204及第一光孔1-204A的設計,而是通過設計感測畫素1-203'的幾何尺寸(約相當於第2圖中第一光孔1-204A的尺寸),以避開如第2圖中的斜向入射光1-L2所造成的干擾,此舉可以有效簡化製造製程步驟及成本。In detail, in the optical sensor 1-200, the dielectric layer group 1-202 is located on the substrate 1-201 and covers the sensing pixels 1-203', and the protective layer 1-205 is located in the dielectric layer On the group 1-202, the optical filter layer 1-206 is located on the protective layer 1-205, and performs a light wavelength filtering action on these normally incident light 1-L1 and these obliquely incident light 1-L2. The first transparent dielectric layer 1-207 is located on the optical filter layer 1-206, and the microlenses 1-210 are located on the first transparent dielectric layer 1-207. Therefore, in this embodiment, there is no design of the first light-shielding layer 1-204 and the first light hole 1-204A in FIG. 2, but the geometric dimensions of the pixel 1-203' (about the equivalent of the second The size of the first light hole 1-204A in the figure) to avoid the interference caused by the obliquely incident light 1-L2 in the second figure, which can effectively simplify the manufacturing process steps and costs.

第14圖顯示依據本發明第六實施例的光學感測器的局部剖面示意圖。第15圖顯示第14圖的光學感測器的特性曲線圖。第16A圖與第16B圖顯示依據本發明第七實施例的光學感測器的兩個例子的局部剖面示意圖。如第14圖至第16圖所示,為避免混淆起見,僅繪製出遮光層的剖面線,本實施例類似於第一實施例,不同點在於光學感測器1-200還包含:多個偏移微透鏡1-210A,排列成陣列,並位於第一透明介質層1-207上或上方;以及類似於第6圖的透鏡遮光層1-211,位於第一透明介質層1-207上,以及此些偏移微透鏡1-210A之間的間隙1-G中。於第16A圖中,此些偏移微透鏡1-210A排列於此些微透鏡1-210的週邊。此些微透鏡1-210分別將此些平行的正向入射光1-L1入射於此些感測畫素1-203總數的一部分的內部,並將此些平行的斜向入射光1-L2(參見第2圖)入射於此些感測畫素1-203總數的一部分的外部。此些偏移微透鏡1-210A分別將從外界進入此些偏移微透鏡1-210A的多個平行的第二正向入射光1-L1',通過第一透明介質層1-207而入射於此些感測畫素1-203總數的其餘部分的外部,並將從外界進入此些偏移微透鏡1-210A的多個平行的第四斜向入射光1-L5入射於此些感測畫素1-203總數的其餘部分的內部。目標物1-F產生此些平行的第二正向入射光1-L1'以及此些平行的第四斜向入射光1-L5。此些第二正向入射光1-L1'平行於此些偏移微透鏡1-210A的多個光軸1-OAA。各第四斜向入射光1-L5與各光軸1-OAA夾出一個第二角度1-ANG2(參見第14圖)。如第15圖的角度回應結果所示,本實施例可以控制35度±3.5度左右的第四斜向入射光1-L5進入到感測畫素1-203,也就是本實施例的第二角度1-ANG2介於31.5度與38.5度之間,當然這個第二角度1-ANG2是可以通過設計來選定的,在本發明中,介於3.5或5度到60度之間的任一角度的斜向入射光可以入射於所述感測畫素1-203的內部。故第二角度1-ANG2是可以選擇性改變的。第16B圖類似於第16A圖,不同點在於併入第二遮光層1-208及第二透明介質層1-209,相關特徵可參見第9圖的相關說明,於此不再贅述。FIG. 14 shows a schematic partial cross-sectional view of an optical sensor according to a sixth embodiment of the invention. Figure 15 shows the characteristic curve of the optical sensor of Figure 14. 16A and 16B show partial cross-sectional views of two examples of the optical sensor according to the seventh embodiment of the invention. As shown in FIGS. 14 to 16, to avoid confusion, only the hatching of the shading layer is drawn. This embodiment is similar to the first embodiment, except that the optical sensor 1-200 further includes: Two offset microlenses 1-210A, arranged in an array, and located on or above the first transparent dielectric layer 1-207; and a lens shading layer 1-211 similar to FIG. 6, located on the first transparent dielectric layer 1-207 Above, and these offsets in the gap 1-G between the microlenses 1-210A. In FIG. 16A, the offset microlenses 1-210A are arranged around the periphery of the microlenses 1-210. The microlenses 1-210 respectively incident the parallel normal incident light 1-L1 inside a portion of the total number of the sensing pixels 1-203, and the parallel oblique incident light 1-L2 ( (See Fig. 2) incident outside part of the total number of these sensing pixels 1-203. The offset microlenses 1-210A respectively enter a plurality of parallel second normal incident lights 1-L1' entering the offset microlenses 1-210A from the outside through the first transparent dielectric layer 1-207 On the outside of the remaining parts of the total number of sensing pixels 1-203, a plurality of parallel fourth oblique incident light 1-L5 entering these offset microlenses 1-210A from the outside are incident on these senses Measure the interior of the rest of the 1-203 total. The target 1-F generates the parallel second normal incident light 1-L1' and the parallel fourth oblique incident light 1-L5. The second normal incident light 1-L1' is parallel to the multiple optical axes 1-OAA of the offset microlenses 1-210A. Each fourth obliquely incident light 1-L5 forms a second angle 1-ANG2 with each optical axis 1-OAA (see FIG. 14). As shown in the angle response result in FIG. 15, this embodiment can control the fourth oblique incident light 1-L5 of about 35 degrees ± 3.5 degrees to enter the sensing pixel 1-203, which is the second of this embodiment. Angle 1-ANG2 is between 31.5 degrees and 38.5 degrees, of course, this second angle 1-ANG2 can be selected by design, in the present invention, any angle between 3.5 or 5 degrees to 60 degrees The oblique incident light may be incident inside the sensing pixel 1-203. Therefore, the second angle 1-ANG2 can be selectively changed. FIG. 16B is similar to FIG. 16A, except that the second light-shielding layer 1-208 and the second transparent dielectric layer 1-209 are incorporated. For related features, please refer to the relevant description in FIG. 9, which will not be repeated here.

因此,在第14圖中,是將前述幾個實施例僅允許正向入射光1-L1的准直器的設計,更改為全部或者部分畫素僅允許第四斜向入射光1-L5進入其中,或者是允許幾個斜向角度的入射光,亦或者是漸進式的改變入射斜向角度的入射光進入其中。由於可以實施的方式很多種,為了簡化說明,第14圖僅描述允許一特定斜向角度入射的設計。圖中所示,並不需要增加新的材料或結構(相較於第2圖),而是通過設計將微透鏡1-210的光軸偏移,使其不與相對應的第一光孔1-204A對齊,因而包含正向入射的光線會被第一遮光層1-204阻擋(如第14圖中的第二正向入射光1-L1')。從第14圖顯示的實際量測資料中,可以看出即使在斜向35度左右的入射光,依然可以得到半高寬約3.5度的品質(相較於第3圖的正向入射的數據)。Therefore, in FIG. 14, the design of the collimator that allows only the forward incident light 1-L1 in the foregoing embodiments is changed to all or part of the pixels to only allow the fourth oblique incident light 1-L5 to enter Among them, either incident light of several oblique angles is allowed, or incident light of gradually changing incident oblique angle is allowed to enter. Since there are many ways to implement, in order to simplify the description, Figure 14 only describes the design that allows a specific oblique angle of incidence. As shown in the figure, there is no need to add new materials or structures (compared to Figure 2), but the optical axis of the microlens 1-210 is shifted by design so that it does not correspond to the corresponding first optical aperture 1-204A is aligned, so that the light including the normal incidence will be blocked by the first light-shielding layer 1-204 (as the second normal incidence light 1-L1' in FIG. 14). From the actual measurement data shown in Figure 14, it can be seen that even when the incident light is at an oblique angle of about 35 degrees, the quality with a half-height width of about 3.5 degrees can still be obtained (compared to the normal incidence data of Figure 3 ).

應用第14圖的發明精神,第16A圖與16B結合了第2圖與第14圖,在感測畫素1-203所排列成的陣列中,由中心至週邊所對應的微透鏡1-210的光軸與光孔的偏移量,從0度偏移到可以對應於預定的斜向角度(例如35度),其中可以允許幾個斜向角度(幾個光軸的偏移量),亦或者是漸進式的改變入射斜向角度(連續性光軸偏移),這樣可以用較小的感測畫素1-203的陣列的面積1-SR,感測到更大的待測物面積1-CR(例如指紋接觸面積),不僅增加感測的准度(隨面積增大而增大),也有效降低成本(隨感測器面積降低而降低)。熟悉本項技藝者,當可以通過本發明的幾個實施例的描述,組合出不同的設計,這些都不超出本實施例及發明的範圍。Applying the inventive spirit of Figure 14, Figures 16A and 16B combine Figures 2 and 14 with the microlens 1-210 corresponding from the center to the periphery in the array of sensing pixels 1-203 The offset of the optical axis from the optical aperture is offset from 0 degrees to a predetermined oblique angle (for example, 35 degrees), where several oblique angles (offset of several optical axes) can be allowed, Or it is a gradual change of the incident oblique angle (continuous optical axis offset), so that the area 1-SR of the array of 1-2-3 sensing pixels can be used to sense a larger object to be measured Area 1-CR (for example, fingerprint contact area) not only increases the accuracy of sensing (increases as the area increases), but also effectively reduces the cost (decreases as the area of the sensor decreases). Those skilled in the art can use the description of several embodiments of the present invention to combine different designs, which are not beyond the scope of this embodiment and the invention.

值得注意的是,依據第14圖所示的結構,本實施例亦提供一種光學感測器1-200,包含一基板1-201、一第一透明介質層1-207以及多個偏移微透鏡1-210A。基板1-201具有多個感測畫素1-203,排列成陣列。第一透明介質層1-207位於基板1-201的上方。此些偏移微透鏡1-210A排列成陣列,並位於第一透明介質層1-207上或上方。此些偏移微透鏡1-210A分別將從外界進入此些偏移微透鏡1-210A的多個平行的正向入射光1-L1',通過第一透明介質層1-207而入射於此些感測畫素1-203總數的一部分或全部的外部,並將從外界進入此些偏移微透鏡1-210A的多個平行的第四斜向入射光1-L5入射於此些感測畫素1-203總數的一部分或全部的內部,藉此感測一目標物1-F的一圖像,目標物1-F產生此些平行的正向入射光1-L1'以及此些平行的第四斜向入射光1-L5,此些正向入射光1-L1'平行於此些偏移微透鏡1-210A的多個光軸1-OAA,各第四斜向入射光1-L5與各光軸1-OAA夾出第二角度1-ANG2。It is worth noting that, according to the structure shown in FIG. 14, this embodiment also provides an optical sensor 1-200, including a substrate 1-201, a first transparent dielectric layer 1-207, and a plurality of offset micros Lens 1-210A. The substrate 1-201 has a plurality of sensing pixels 1-203 arranged in an array. The first transparent dielectric layer 1-207 is located above the substrate 1-201. These offset microlenses 1-210A are arranged in an array and are located on or above the first transparent dielectric layer 1-207. The offset microlenses 1-210A respectively enter a plurality of parallel positive incident lights 1-L1' entering the offset microlenses 1-210A from the outside through the first transparent medium layer 1-207 Some or all of the total number of the sensing pixels 1-203 are external, and a plurality of parallel fourth oblique incident light 1-L5 entering the offset micro lenses 1-210A from the outside are incident on the sensing Part or all of the total number of pixels 1-203, thereby sensing an image of a target 1-F, the target 1-F generates these parallel normal incident light 1-L1' and these parallel The fourth obliquely incident light 1-L5, the positively incident light 1-L1' are parallel to the multiple optical axes 1-OAA of the offset microlens 1-210A, the fourth obliquely incident light 1- A second angle 1-ANG2 is formed between L5 and each optical axis 1-OAA.

於光學感測器1-200中,介電層組1-202位於基板1-201上並覆蓋此些感測畫素1-203;第一遮光層1-204位於介電層組1-202上,並具有多個第一光孔1-204A。此些正向入射光1-L1'不通過此些第一光孔1-204A,此些第四斜向入射光1-L5通過此些第一光孔1-204A。保護層1-205位於第一遮光層1-204上。光學濾波層1-206位於保護層1-205上,並對此些正向入射光1-L1'與此些第四斜向入射光1-L5執行光線波長過濾動作。第一透明介質層1-207位於光學濾波層1-206上,此些偏移微透鏡1-210A位於第一透明介質層1-207上。第14圖的光學感測器1-200亦可應用於第1圖的光學感測系統1-600,本領域具有通常知識者可以輕易推敲其應用於第1圖的光學感測系統1-600的設置方式,故於此不再詳述。In the optical sensor 1-200, the dielectric layer group 1-202 is located on the substrate 1-201 and covers the sensing pixels 1-203; the first light-shielding layer 1-204 is located in the dielectric layer group 1-202 And has a plurality of first light holes 1-204A. The forward incident light 1-L1' does not pass through the first light holes 1-204A, and the fourth oblique incident light 1-L5 passes through the first light holes 1-204A. The protective layer 1-205 is located on the first light-shielding layer 1-204. The optical filter layer 1-206 is located on the protective layer 1-205, and performs a light wavelength filtering action on the forward incident light 1-L1' and the fourth oblique incident light 1-L5. The first transparent dielectric layer 1-207 is located on the optical filter layer 1-206, and the offset microlenses 1-210A are located on the first transparent dielectric layer 1-207. The optical sensor 1-200 of FIG. 14 can also be applied to the optical sensing system 1-600 of FIG. 1. Those with ordinary knowledge in the art can easily speculate on its application to the optical sensor system 1-600 of FIG. 1. The way of setting is not detailed here.

第17A圖至第17E圖顯示依據本發明第八實施例的光學感測器的製造方法的各步驟的結構剖面示意圖。本實施例的結構類似於第2圖的第一實施例,不同點在於更具有透鏡遮光層1-211。首先,如第17A圖所示,提供一基板1-201,具有多個感測畫素1-203,排列成陣列。接著,如第17B圖至第17D圖所示,於基板1-201的上方形成第一透明介質層1-207。詳細而言,如第17B圖所示,於基板1-201上形成介電層組1-202,再於介電層組1-202上形成第一遮光層1-204(也就是於基板1-201與第一透明介質層1-207之間形成第一遮光層1-204)以及第一光孔1-204A。然後,如第17C圖所示,於第一遮光層1-204與第一光孔1-204A上形成保護層1-205,再於保護層1-205上形成光學濾波層1-206。接著,如第17D圖所示,於光學濾波層1-206上形成第一透明介質層1-207。然後,於第一透明介質層1-207上或上方形成多個微透鏡1-210,排列成陣列,至此形成第2圖的光學感測器1-200。FIGS. 17A to 17E show schematic cross-sectional views of the steps of the method for manufacturing the optical sensor according to the eighth embodiment of the present invention. The structure of this embodiment is similar to the first embodiment of FIG. 2, except that it further has a lens shading layer 1-211. First, as shown in FIG. 17A, a substrate 1-201 with a plurality of sensing pixels 1-203 is arranged in an array. Next, as shown in FIGS. 17B to 17D, a first transparent dielectric layer 1-207 is formed over the substrate 1-201. In detail, as shown in FIG. 17B, a dielectric layer group 1-202 is formed on the substrate 1-201, and then a first light-shielding layer 1-204 is formed on the dielectric layer group 1-202 (that is, on the substrate 1 -201 and a first transparent dielectric layer 1-207 form a first light-shielding layer 1-204) and a first light hole 1-204A. Then, as shown in FIG. 17C, a protective layer 1-205 is formed on the first light-shielding layer 1-204 and the first light hole 1-204A, and then an optical filter layer 1-206 is formed on the protective layer 1-205. Next, as shown in FIG. 17D, a first transparent dielectric layer 1-207 is formed on the optical filter layer 1-206. Then, a plurality of microlenses 1-210 are formed on or above the first transparent dielectric layer 1-207, arranged in an array, and thus the optical sensor 1-200 of FIG. 2 is formed.

接著,如第17E圖所示,於第一透明介質層1-207上與此些微透鏡1-210之間形成透鏡遮光層1-211。亦即,於此些微透鏡1-210之間的多個間隙1-G中形成透鏡遮光層1-211。Next, as shown in FIG. 17E, a lens shading layer 1-211 is formed on the first transparent dielectric layer 1-207 and between the microlenses 1-210. That is, the lens shading layer 1-211 is formed in the plurality of gaps 1-G between the microlenses 1-210.

值得注意的是,上述製造方法亦可應用於第14圖的偏移微透鏡1-210A而製造出具有偏移微透鏡1-210A的光學感測器1-200。本領域具有通常知識者可以輕易推敲此光學感測器1-200的製造方法,故於此不再詳述。It is worth noting that the above manufacturing method can also be applied to the offset microlens 1-210A of FIG. 14 to manufacture the optical sensor 1-200 with the offset microlens 1-210A. Those who have ordinary knowledge in the art can easily decipher the manufacturing method of the optical sensor 1-200, so it will not be described in detail here.

第18A圖至第18F圖顯示依據本發明第九實施例的光學感測器的製造方法的各步驟的結構剖面示意圖。本實施例的結構類似於第9圖的第四實施例,不同點在於更具有透鏡遮光層1-211。第19A圖至第19F圖顯示依據本發明第十實施例的光學感測器的製造方法的各步驟的結構剖面示意圖。本實施例的結構類似於第13圖的第五實施例,不同點在於更具有第二遮光層1-208、第二透明介質層1-209與透鏡遮光層1-211。18A to 18F show schematic cross-sectional views of the steps of the method for manufacturing the optical sensor according to the ninth embodiment of the present invention. The structure of this embodiment is similar to the fourth embodiment of FIG. 9 except that it further has a lens shading layer 1-211. FIGS. 19A to 19F are schematic cross-sectional views of the steps of the method for manufacturing the optical sensor according to the tenth embodiment of the present invention. The structure of this embodiment is similar to the fifth embodiment of FIG. 13 except for the second light-shielding layer 1-208, the second transparent dielectric layer 1-209, and the lens light-shielding layer 1-211.

以下將通過製造方法的各步驟的結構圖對第17A圖到第17F圖、第18A圖到第18F圖以及第19A圖到第19F圖作綜合說明。Hereinafter, FIGS. 17A to 17F, FIGS. 18A to 18F, and FIGS. 19A to 19F will be comprehensively described through the structural drawings of each step of the manufacturing method.

在第17A/18A/19A圖中,基板1-201可為半導體基板,例如矽基板。此外,在一些實施例中,上述半導體基板亦可為元素半導體(Elemental Semiconductor),包含:鍺(Germanium);化合物半導體(Compound Semiconductor),包含:氮化鎵(Gallium Nitride)、碳化矽(Silicon Carbide)、砷化鎵(Gallium Arsenide)、磷化鎵(Gallium Phosphide)、磷化銦(Indium Phosphide)、砷化銦(Indium Arsenide)及/或銻化銦(Indium Antimonide);合金半導體(Alloy Semiconductor),包含:矽鍺合金(SiGe)、磷砷鎵合金(GaAsP)、砷鋁銦合金(AlInAs)、砷鋁鎵合金(AlGaAs)、砷銦鎵合金(GaInAs)、磷銦鎵合金(GaInP)、及/或磷砷銦鎵合金(GaInAsP)、或上述材料的組合。在其他實施例中,基板1-201也可以是絕緣層上覆半導體(Semiconductor On Insulator)基板,上述絕緣層上覆半導體基板可包含底板、設置於底板上的埋藏氧化層、及設置於埋藏氧化層上的半導體層。此外,基板1-201可為N型或P型導電類型。In FIGS. 17A/18A/19A, the substrate 1-201 may be a semiconductor substrate, such as a silicon substrate. In addition, in some embodiments, the semiconductor substrate may also be an elemental semiconductor (Elemental Semiconductor), including: Germanium (Germanium); a compound semiconductor (Compound Semiconductor), including: gallium nitride (Gallium Nitride), silicon carbide (Silicon Carbide) ), Gallium Arsenide, Gallium Phosphide, Indium Phosphide, Indium Arsenide and/or Indium Antimonide; Alloy Semiconductor , Including: silicon germanium alloy (SiGe), phosphorous arsenic gallium alloy (GaAsP), arsenic aluminum indium alloy (AlInAs), arsenic aluminum gallium alloy (AlGaAs), arsenic indium gallium alloy (GaInAs), phosphorous indium gallium alloy (GaInP), And/or Indium Gallium Phosphate Arsenic Alloy (GaInAsP), or a combination of the above materials. In other embodiments, the substrate 1-201 may also be a Semiconductor On Insulator (Semiconductor On Insulator) substrate, which may include a base plate, a buried oxide layer provided on the base plate, and a buried oxide Semiconductor layer on the layer. In addition, the substrate 1-201 may be an N-type or P-type conductivity type.

在一些實施例中,基板1-201可包含各種隔離部件(未示出),用於定義主動區,並電性隔離基板1-201之中/之上的主動區元件。在一些實施例中,隔離部件包含淺溝槽隔離(Shallow Trench Isolation,STI)部件、局部矽氧化(local oxidation of silicon,LOCOS)部件、其他合適的隔離部件、或上述的組合。In some embodiments, the substrate 1-201 may include various isolation components (not shown) for defining an active area, and electrically isolate the active area elements in/on the substrate 1-201. In some embodiments, the isolation features include Shallow Trench Isolation (STI) features, local oxidation of silicon (LOCOS) features, other suitable isolation features, or a combination of the foregoing.

在一些實施例中,基板1-201可包含各種以如離子布植及/或擴散製程所形成的P型摻雜區及/或N型摻雜區(未示出)。在一些實施例中,摻雜區可形成電晶體、光電二極體(Photodiode)等元件。此外,基板1-201亦可包含各種主動元件、無源元件以及各種導電部件(例如:導電墊、導線或導孔)。In some embodiments, the substrate 1-201 may include various P-type doped regions and/or N-type doped regions (not shown) formed by, for example, ion implantation and/or diffusion processes. In some embodiments, the doped regions may form transistors, photodiodes (Photodiode) and other elements. In addition, the substrate 1-201 may also include various active components, passive components, and various conductive components (eg, conductive pads, wires, or vias).

在基板1-201中形成感測畫素1-203/1-203’的陣列,並且感測畫素1-203/1-203’可與信號處理電路(Signal Processing Circuitry)(未示出)連接。在一些實施例中,感測畫素1-203/1-203’的數量取決於光學感測區的面積1-SR的大小。每個感測畫素1-203/1-203’可包含一或多個光檢測器(Photodector)。在一些實施例中,光檢測器可包含光電二極體,其中光電二極體可包含P型半導體層、本質層(Intrinsic Layer)、以及N型半導體層的三層結構的光電材料(Photoelectric Material),本質層吸收光以產生出激子(Exciton),並且激子會在P型半導體層及N型半導體層的接面分成電子與空穴,進而產生電流信號。在一些實施例中,光檢測器可為CMOS圖像感測器,例如前照式(Front-Side Illumination,FSI)CMOS圖像感測器或背照式(Back-Side Illumination,BSI)CMOS圖像感測器。在一些其他實施例中,光檢測器也可包含電荷耦合元件(Charged Coupling Device,CCD)感測器、主動感測器、被動感測器、其他適合的感測器或上述的組合。在一些實施例中,感測畫素1-203/1-203’可通過光檢測器將接收到的光信號轉換成電子信號,並通過信號處理電路處理上述電子信號。An array of sensing pixels 1-203/1-203' is formed in the substrate 1-201, and the sensing pixels 1-203/1-203' can be connected with a signal processing circuit (Signal Processing Circuitry) (not shown) connection. In some embodiments, the number of sensing pixels 1-203/1-203' depends on the size of the optical sensing area 1-SR. Each sensing pixel 1-203/1-203' may contain one or more photo detectors (Photodector). In some embodiments, the photodetector may include a photodiode, wherein the photodiode may include a P-type semiconductor layer, an intrinsic layer, and an N-type semiconductor layer. ), the intrinsic layer absorbs light to generate excitons, and the excitons are divided into electrons and holes at the junction of the P-type semiconductor layer and the N-type semiconductor layer, thereby generating a current signal. In some embodiments, the light detector may be a CMOS image sensor, such as a front-side illumination (FSI) CMOS image sensor or a back-side illumination (BSI) CMOS image. Like a sensor. In some other embodiments, the photodetector may also include a charge coupled device (Charged Coupling Device, CCD) sensor, an active sensor, a passive sensor, other suitable sensors, or a combination of the foregoing. In some embodiments, the sensing pixels 1-203/1-203' may convert the received optical signal into an electronic signal through a photodetector, and process the electronic signal through a signal processing circuit.

在一些實施例中,感測畫素1-203/1-203’為陣列排列,從而形成感測畫素陣列。然而,在第2圖中所示的剖面圖僅示出感測畫素1-203/1-203’的陣列的其中一列,並位於基板1-201的上表面的下方。值得注意的是,在所有實施例圖中所示出的感測畫素1-203/1-203’的數量與排列方式僅為例示性的,本發明實施例並不以此為限。感測畫素1-203/1-203’可為任意行列數目的陣列或其他的排列方式。In some embodiments, the sensing pixels 1-203/1-203' are arranged in an array, thereby forming an array of sensing pixels. However, the cross-sectional view shown in FIG. 2 shows only one row of the array of sensing pixels 1-203/1-203' and is located below the upper surface of the substrate 1-201. It is worth noting that the number and arrangement of the sensing pixels 1-203/1-203' shown in the figures of all the embodiments are merely exemplary, and the embodiments of the present invention are not limited thereto. The sensing pixels 1-203/1-203' can be an array with any number of rows and columns or other arrangements.

在第17B/18B/19B圖中,介電層組1-202形成於基板1-201與感測畫素1-203/1-203’上方,介電層組1-202主要為積體電路製造製程的後段BEOL金屬連接線及金屬間介電層的組合,由於其為已知技術,在此不贅述,特別注意的是在設計時,在光的入射光路上,不要有任何的金屬以免遮蔽。接著,形成第一遮光層1-204在介電層組1-202上。第一遮光層1-204可包含遮光材料,其對於在1200納米波長範圍以下的光穿透率小於1%以下,但當然不限定於此。In Figure 17B/18B/19B, the dielectric layer group 1-202 is formed above the substrate 1-201 and the sensing pixels 1-203/1-203', and the dielectric layer group 1-202 is mainly an integrated circuit The combination of the BEOL metal connection line and the inter-metal dielectric layer in the later stage of the manufacturing process is not described here because it is a known technology. Special attention is paid to the design when there is no metal on the incident light path to avoid Obscured. Next, a first light-shielding layer 1-204 is formed on the dielectric layer group 1-202. The first light-shielding layer 1-204 may include a light-shielding material, which has a light transmittance of less than 1% for a wavelength range below 1200 nanometers, but of course it is not limited thereto.

在一些實施例中,第一遮光層1-204可包含金屬材料(在本實施例為積體電路製造製程的最後一道金屬),例如鎢(W)、鉻(Cr)、鋁(Al)或鈦(Ti)等。在此實施例中,可通過例如化學氣相沉積(Chemical Vapor Deposition,CVD)、物理氣相沉積製程(Physical Vapor Deposition,PVD)(例如:真空蒸鍍製程(Vacuum Evaporation Process)、濺鍍製程(Sputtering Process)、脈衝鐳射沉積(Pulsed Laser Deposition,PLD))、原子層沉積(Atomic Layer Deposition,ALD)、其他適合的沉積製程、或前述的組合,來毯覆性地形成第一遮光層1-204。在一些實施例中,第一遮光層1-204可包含具有遮光特性的高分子材料,例如環氧樹脂、聚醯亞胺等。在此實施例中,可通過例如旋轉塗布法(Spin-Coating)、化學氣相沉積法(CVD)、其他適當的方法、或上述的組合將第一遮光層1-204形成於介電層組1-202上。通過上述方法所形成的第一遮光層1-204的厚度在約0.3微米(micrometer,µm)至約5微米的範圍,例如可為2微米。在一些實施例中,第一遮光層1-204的選用厚度取決於第一遮光層1-204的材料的遮光能力,例如第一遮光層1-204所包含的遮光材料的遮光能力與其厚度呈負相關。In some embodiments, the first light-shielding layer 1-204 may include a metal material (in this embodiment, the last metal in the manufacturing process of the integrated circuit), such as tungsten (W), chromium (Cr), aluminum (Al), or Titanium (Ti), etc. In this embodiment, for example, chemical vapor deposition (CVD), physical vapor deposition process (Physical Vapor Deposition, PVD) (for example: Vacuum Evaporation Process), sputtering process ( Sputtering Process), Pulsed Laser Deposition (PLD), Atomic Layer Deposition (ALD), other suitable deposition processes, or a combination of the foregoing to blanketly form the first light-shielding layer 1- 204. In some embodiments, the first light-shielding layer 1-204 may include a polymer material having light-shielding properties, such as epoxy resin, polyimide, and the like. In this embodiment, the first light-shielding layer 1-204 may be formed in the dielectric layer group by, for example, spin-coating, chemical vapor deposition (CVD), other suitable methods, or a combination thereof 1-202. The thickness of the first light-shielding layer 1-204 formed by the above method is in the range of about 0.3 micrometer (micrometer, µm) to about 5 micrometers, for example, 2 micrometers. In some embodiments, the selected thickness of the first light-shielding layer 1-204 depends on the light-shielding ability of the material of the first light-shielding layer 1-204, for example, the light-shielding ability of the light-shielding material included in the first light-shielding layer 1-204 is Negative correlation.

接著對第一遮光層1-204執行圖案化製程,以形成具有第一孔徑A1的多個第一光孔1-204A。上述的圖案化製程可包含光刻製程與刻蝕製程。光刻製程可包含例如:光刻膠塗布(例如旋轉塗布)、軟烤、曝光圖案、曝光後烘烤、光刻膠顯影、清洗及乾燥(例如硬烤)、其他適當的製程、或上述的組合。刻蝕製程可包含例如:濕式刻蝕製程、幹式刻蝕製程(例如反應離子刻蝕(Reactive Ion Etching,RIE))、等離子體刻蝕、離子研磨)、其他適合的製程、或上述的組合。通過上述方法所形成的第一孔徑A1在約0.3微米至約50微米的範圍,例如可為約4微米至約5微米。Next, a patterning process is performed on the first light-shielding layer 1-204 to form a plurality of first light holes 1-204A having a first aperture A1. The above patterning process may include a photolithography process and an etching process. The photolithography process may include, for example: photoresist coating (e.g. spin coating), soft baking, exposure pattern, post-exposure baking, photoresist development, cleaning and drying (e.g. hard baking), other suitable processes, or the above combination. The etching process may include, for example, a wet etching process, a dry etching process (such as reactive ion etching (RIE), plasma etching, ion milling), other suitable processes, or the above combination. The first pore size A1 formed by the above method is in the range of about 0.3 micrometers to about 50 micrometers, for example, about 4 micrometers to about 5 micrometers.

值得注意的是,在第5圖中所示出的第一光孔1-204A與感測畫素1-203是以一對一的方式對應設置,然而,在本發明的其他實施例中的第一光孔1-204A與感測畫素1-203亦可以一對多或多對一的方式對應設置。舉例來說,一個第一光孔1-204A可露出兩個以上的感測畫素1-203(未示出),或者一個感測畫素1-203可從兩個以上的第一光孔1-204A露出(未示出)。第5圖僅示出例示性的設置方式,本發明並不以此為限。根據本發明的一些實施例,通過控制圖案化第一遮光層1-204的第一孔徑A1,可調整入射光的視場角的範圍。It is worth noting that the first light hole 1-204A and the sensing pixels 1-203 shown in FIG. 5 are correspondingly arranged in a one-to-one manner. However, in other embodiments of the invention The first light hole 1-204A and the sensing pixels 1-203 can also be correspondingly set in a one-to-many or many-to-one manner. For example, one first light hole 1-204A can expose more than two sensing pixels 1-203 (not shown), or one sensing pixel 1-203 can be from more than two first light holes 1-204A is exposed (not shown). Fig. 5 only shows an exemplary arrangement, and the invention is not limited thereto. According to some embodiments of the present invention, by controlling the first aperture A1 of the patterned first light-shielding layer 1-204, the range of the angle of view of the incident light can be adjusted.

在第17C/18C/19C圖中,一保護層1-205及一光學濾波層1-206形成於第一遮光層1-204及第一光孔1-204A上方。在本實施例中,保護層1-205為積體電路的保護層,其可以為氧化矽或氮化矽材料或兩者的組合。當然此一保護層1-205可以選擇性不要(參見第20圖與第21圖),例如在第一遮光層1-204材料為具有遮光特性的高分子材料的狀況下。光學濾波層1-206可為紅外線濾光層(Infrared Cut Filter,ICF)。可見光(Visible Light)對於此紅外線濾光層具有高穿透率(Transmittance),而紅外光對其則具有高反射率(Reflectivity),可以減少例如來自太陽光的紅外線的干擾。In FIG. 17C/18C/19C, a protective layer 1-205 and an optical filter layer 1-206 are formed over the first light-shielding layer 1-204 and the first light hole 1-204A. In this embodiment, the protective layer 1-205 is a protective layer of an integrated circuit, which may be silicon oxide or silicon nitride material or a combination of both. Of course, this protective layer 1-205 may not be required (see FIG. 20 and FIG. 21), for example, when the material of the first light-shielding layer 1-204 is a polymer material having light-shielding properties. The optical filter layer 1-206 may be an infrared filter layer (Infrared Cut Filter, ICF). Visible light has a high transmittance for this infrared filter layer, and infrared light has a high reflectivity for it, which can reduce the interference of infrared rays from sunlight, for example.

在第17D/19D圖中,形成第一透明介質層1-207於光學濾波層1-206上,第一透明介質層1-207可包含光固化材料(UV-Curable Material)、熱固化材料(Thermosetting Material)、或上述的組合。舉例來說,第一透明介質層1-207可包含例如聚甲基丙烯酸甲酯(Poly (Methyl Methacrylate),PMMA)、聚對苯二甲酸乙二酯(Polyethylene Terephthalate,PET)、聚萘二甲酸乙二醇酯(Polyethylene Naphthalate,PEN) 聚碳酸酯(Polycarbonate,PC)、全氟環丁基(Perfluorocyclobutyl,PFCB)聚合物、聚亞醯胺(Polyimide,PI)、亞克力樹酯、環氧樹脂(Epoxy resins)、聚丙烯(Polypropylene,PP)、聚乙烯(Polyethylene,PE)、聚苯乙烯(Polystyrene,PS)、聚氯乙烯(Polyvinyl Chloride,PVC)、其他適當的材料、或上述的組合。在一些實施例中,可以旋轉塗布法(Spin-Coating)、幹膜(Dry Film)製程、鑄模(Casting)、棒狀塗布(Bar Coating)、刮刀塗布(Blade Coating)、滾筒塗布(Roller Coating)、線棒塗布(Wire Bar Coating)、浸漬塗布(Dip Coating)、化學氣相沉積法(CVD)、其他適合的方法。在一些實施例中,通過上述方法所形成的第一透明介質層1-207的厚度在約1微米至約100微米的範圍,例如可為10至50微米。根據本發明的一些實施例,通過上述製程方法所形成的第一透明介質層1-207具有高良率及良好的品質。並且,通過控制第一透明介質層1-207的厚度可增加或減少光線經過微透鏡1-210後偏移的距離,進而提升感測畫素1-203的陣列所能接收的入射光角度的精準度。In FIG. 17D/19D, a first transparent dielectric layer 1-207 is formed on the optical filter layer 1-206, and the first transparent dielectric layer 1-207 may include a photocurable material (UV-Curable Material) and a thermosetting material ( Thermosetting Material), or a combination of the above. For example, the first transparent dielectric layer 1-207 may include, for example, Poly (Methyl Methacrylate) (PMMA), Polyethylene Terephthalate (PET), Polynaphthalene Dicarboxylic Acid Polyethylene naphthalate (PEN) Polycarbonate (PC), perfluorocyclobutyl (PFCB) polymer, polyimide (Polyimide, PI), acrylic resin, epoxy resin ( Epoxy resins, polypropylene (Polypropylene, PP), polyethylene (Polyethylene, PE), polystyrene (Polystyrene, PS), polyvinyl chloride (Polyvinyl Chloride, PVC), other suitable materials, or combinations thereof. In some embodiments, Spin-Coating, Dry Film process, Casting, Bar Coating, Blade Coating, Roller Coating , Wire Bar Coating, Dip Coating, Chemical Vapor Deposition (CVD), and other suitable methods. In some embodiments, the thickness of the first transparent dielectric layer 1-207 formed by the above method is in the range of about 1 micrometer to about 100 micrometers, for example, 10-50 micrometers. According to some embodiments of the present invention, the first transparent dielectric layer 1-207 formed by the above-mentioned manufacturing method has high yield and good quality. In addition, by controlling the thickness of the first transparent dielectric layer 1-207, the distance that light deflects after passing through the microlens 1-210 can be increased or decreased, thereby increasing the angle of incident light that the array of sensing pixels 1-203 can receive Precision.

微透鏡1-210形成於第一透明介質層1-207上方,兩者可以是同質材料或異質材料(在此為同質),其形成方法通常是通過高溫回焊(Reflow)將一厚膜高分子材料通過內聚力的方式形成半球結構。當然第一透明介質層1-207及微透鏡1-210也可以是介電材料,例如玻璃等,其更可以提高透光性。在這些實施例中,可在光刻製程中乾燥(例如硬烤)的步驟利用表面張力的效果來形成半球狀的微透鏡1-210,並且,可通過控制加熱的溫度來調整所需要的微透鏡1-210的曲率半徑。在一些實施例中,所形成的微透鏡1-210的厚度在約1微米至約50微米之間的範圍。值得注意的是,微透鏡1-210的輪廓並不以半球狀為限,本發明實施例亦可根據所需要的入射光角度來調整微透鏡1-210的輪廓,例如可為非球面狀(aspheric)。The microlens 1-210 is formed above the first transparent dielectric layer 1-207, both of which may be a homogenous material or a heterogeneous material (here homogenous), and the formation method is generally to reflow a thick film by high temperature (Reflow) Molecular materials form hemispherical structures through cohesion. Of course, the first transparent dielectric layer 1-207 and the microlens 1-210 can also be dielectric materials, such as glass, etc., which can further improve the light transmittance. In these embodiments, the step of drying (e.g., hard baking) in the lithography process can utilize the effect of surface tension to form hemispherical microlenses 1-210, and the desired temperature can be adjusted by controlling the heating temperature The radius of curvature of lens 1-210. In some embodiments, the thickness of the formed microlens 1-210 ranges from about 1 micrometer to about 50 micrometers. It is worth noting that the contour of the microlens 1-210 is not limited to a hemispherical shape, and the embodiment of the present invention can also adjust the contour of the microlens 1-210 according to the required incident light angle, for example, it can be aspherical ( aspheric).

在第18D/19D圖中,其為增加一第二遮光層1-208的結構,其材料特性在本實施例相同於第一遮光層1-204,在此不贅述。並且通過光刻技術形成第二光孔1-208A於第二遮光層1-208中,相同於第一光孔1-204A的形成方法,在此不贅述。In FIG. 18D/19D, it is a structure in which a second light-shielding layer 1-208 is added, and its material characteristics in this embodiment are the same as those of the first light-shielding layer 1-204, which will not be repeated here. In addition, the second light hole 1-208A is formed in the second light-shielding layer 1-208 by photolithography technology, which is the same as the forming method of the first light hole 1-204A, and will not be repeated here.

在第18E/19E圖中,形成第二透明介質層1-209於第二遮光層1-208及第二光孔1-208A上方,第二透明介質層1-209的材料與形成方法與第一透明介質層1-207相同,在此不贅述。綜合來說,於微透鏡1-210與第一透明介質層1-207之間形成第二遮光層1-208與第二透明介質層1-209。最後形成微透鏡1-210於第二透明介質層1-209上方,形成方法與材料前面已描述,在此省略。In FIG. 18E/19E, a second transparent dielectric layer 1-209 is formed over the second light-shielding layer 1-208 and the second light hole 1-208A. The material and forming method of the second transparent dielectric layer 1-209 and the first A transparent medium layer 1-207 is the same and will not be repeated here. In summary, a second light shielding layer 1-208 and a second transparent dielectric layer 1-209 are formed between the microlens 1-210 and the first transparent dielectric layer 1-207. Finally, a microlens 1-210 is formed over the second transparent dielectric layer 1-209. The forming method and materials have been described above, and are omitted here.

在第17E/18F/19F圖中,可以根據需求更進一步形成一透鏡遮光層1-211於微透鏡1-210之間的空白處,透鏡遮光層1-211的材料可以相同於第一遮光層1-204/第二遮光層1-208的材料,因此不贅述。In Figure 17E/18F/19F, a lens shading layer 1-211 can be further formed in the space between the microlenses 1-210 according to requirements. The material of the lens shading layer 1-211 can be the same as the first shading layer 1-204/the material of the second light-shielding layer 1-208, so it will not be repeated here.

第20圖顯示依據本發明第八實施例的變化例的光學感測器的結構剖面示意圖。本變化例是省去第17E圖的保護層1-205的結構,相同之處不再贅述。於本變化例中,光學濾波層1-206位於第一遮光層1-204上,並且可以填入第一光孔1-204A中。如此可以減少製造步驟數目,降低製造成本,並減少光學感測器的厚度。FIG. 20 shows a schematic cross-sectional view of the structure of an optical sensor according to a modification of the eighth embodiment of the present invention. In this modification, the structure of the protective layer 1-205 in FIG. 17E is omitted, and the similarities will not be repeated. In this modification, the optical filter layer 1-206 is located on the first light-shielding layer 1-204, and can be filled in the first light hole 1-204A. This can reduce the number of manufacturing steps, reduce manufacturing costs, and reduce the thickness of the optical sensor.

第21圖顯示依據本發明第十實施例的變化例的光學感測器的結構剖面示意圖。本變化例是省去第19F圖的保護層1-205的結構,相同之處不再贅述。於本變化例中,光學濾波層1-206位於介電層組1-202上。如此可以減少製造步驟數目,降低製造成本,並減少光學感測器的厚度。FIG. 21 shows a schematic cross-sectional view of the structure of an optical sensor according to a modification of the tenth embodiment of the present invention. This modification is to omit the structure of the protective layer 1-205 in FIG. 19F, and the similarities will not be repeated. In this modification, the optical filter layer 1-206 is located on the dielectric layer group 1-202. This can reduce the number of manufacturing steps, reduce manufacturing costs, and reduce the thickness of the optical sensor.

綜上所述,本發明的實施例所提供的光學感測系統包含利用顯示器(例如移動裝置的螢幕面板)作為光源的設計。再者,在光學感測系統中,光學感測器所包含的具有不同橫向偏移距離的微透鏡與第一遮光層的第一開孔的配置及/或其他參數(例如第一開孔的孔徑、第一透明介質層的厚度、及/或微透鏡的曲率半徑)的配置,可使得感測畫素接收來自不同入射角範圍的光線。據此,從特定範圍的視場角入射的光線可入射至感測畫素。另外,由於本發明所提供的光學感測系統可接收斜角入射的光,使得光學感測區的面積可小於待測物面積,而實現縮小光學感測器的面積並取得良好的圖像品質的技術效果。In summary, the optical sensing system provided by the embodiments of the present invention includes a design that uses a display (such as a screen panel of a mobile device) as a light source. Furthermore, in the optical sensing system, the configuration and/or other parameters of the first openings of the microlenses with different lateral offset distances and/or the first light-shielding layer included in the optical sensor (such as the The configuration of the aperture, the thickness of the first transparent medium layer, and/or the radius of curvature of the microlens can enable the sensing pixels to receive light from different incident angle ranges. According to this, light incident from a specific range of field angles can be incident on the sensing pixels. In addition, since the optical sensing system provided by the present invention can receive light incident at oblique angles, the area of the optical sensing area can be smaller than the area of the object to be measured, thereby realizing a reduction in the area of the optical sensor and achieving good image quality Technical effect.

綜上所述,本發明的實施例通過符合上述關係式的微透鏡與具有較小尺寸的感測畫素的配置,可達成在不具備額外的遮光層的情況下,使得感測畫素亦能接收來自特定範圍的視場角入射的光線,並可降低光學感測器的厚度。通過將電路設計配置於具有較小尺寸的感測畫素之間,可有效提升光學感測器的集成密度。本發明的實施例所提供的光學感測器可利用顯示器(例如移動裝置的螢幕面板)作為光源的設計。再者,光學感測器所包含的具有不同橫向偏移距離的微透鏡層與感測畫素的配置及/或其他參數(例如感測畫素的尺寸、第一透明介質層的折射率、第一透明介質層的厚度、微透鏡的焦距、微透鏡的直徑)的配置,可使得感測畫素接收來自不同入射角範圍的光線。據此,從特定範圍的視場角入射的光線可入射至感測畫素。In summary, the embodiments of the present invention can achieve the sensing pixels without the additional light-shielding layer through the configuration of the micro lens and the sensing pixels with a smaller size that meet the above relationship Can receive light from a specific range of field angles, and can reduce the thickness of the optical sensor. By arranging the circuit design between sensing pixels with a smaller size, the integration density of the optical sensor can be effectively improved. The optical sensor provided by the embodiments of the present invention may use a display (such as a screen panel of a mobile device) as a light source design. Furthermore, the configuration and/or other parameters of the microlens layer with different lateral offset distances and sensing pixels included in the optical sensor (such as the size of the sensing pixel, the refractive index of the first transparent medium layer, The configuration of the thickness of the first transparent medium layer, the focal length of the microlens, and the diameter of the microlens can enable the sensing pixels to receive light from different incident angle ranges. According to this, light incident from a specific range of field angles can be incident on the sensing pixels.

[第二組實施例][Second set of embodiments]

本發明提供了光學感測器、光學感測系統及其形成方法,特別是一種應用於螢幕下光學式指紋識別系統的光學感測器及光學感測系統。本發明實施例所提供的光學感測器具有虛擬准直(virtual collimators)結構,此虛擬准直結構包含了露出感測畫素(sensor pixel)的第一遮光層、形成在第一遮光層上且覆蓋感測畫素的第一透明介質層、以及形成在第一透明介質層上的微透鏡。此虛擬准直結構利用微透鏡引導入射光穿透第一透明介質層至從第一遮光層露出的感測畫素。本發明所提供的光學感測器的虛擬准直結構的形成方式與傳統製程相比具有成本及難度較低的優點。並且,本發明所提供的包含虛擬准直結構的光學感測器的厚度可小於500微米(micrometers,um),比傳統的光學感測器更加輕薄,因而更易於整合至輕薄的移動電子裝置。The invention provides an optical sensor, an optical sensing system and a forming method thereof, in particular to an optical sensor and an optical sensing system applied to an optical fingerprint recognition system under the screen. The optical sensor provided by the embodiment of the present invention has a virtual collimator structure. The virtual collimator structure includes a first light-shielding layer exposing a sensor pixel and is formed on the first light-shielding layer And the first transparent medium layer covering the sensing pixels and the micro lens formed on the first transparent medium layer. This virtual collimating structure uses micro lenses to guide incident light to penetrate the first transparent medium layer to the sensing pixels exposed from the first light-shielding layer. The formation method of the virtual collimating structure of the optical sensor provided by the present invention has advantages of lower cost and difficulty compared with the traditional manufacturing process. Moreover, the thickness of the optical sensor including the virtual collimation structure provided by the present invention can be less than 500 microns (micrometers, um), which is thinner and lighter than the traditional optical sensor, and thus easier to integrate into a thin and light mobile electronic device.

第22圖是根據本發明的一些實施例,示出光學感測系統2-100感測目標物2-F(例如:手指的指紋)的簡化示意圖。光學感測系統2-100包含蓋板層2-101及在蓋板層2-101下的光學感測器2-200。當目標物2-F接觸蓋板層2-101的上表面時,目標物2-F將光源(未示出)發出的光反射到光學感測器2-200以接收光信號。目標物2-F具有各種輪廓特徵,例如凸部2-F1與凹部2-F2。因此,當目標物2-F接觸蓋板層2-101的上表面,目標物2-F的凸部2-F1與蓋板層2-101的上表面接觸,而目標物2-F的凹部2-F2則不與蓋板層2-101的上表面接觸,亦即在凹部2-F2與蓋板層2-101的上表面間有一間隙。因此,在目標物2-F的凸部2-F1與凹部2-F2下方的感測畫素所接受到的光線(例如光線2-L1及光線2-L2)強度將會不同,從而可借此對目標物2-F的輪廓特徵(例如:指紋圖樣特徵)進行感測與識別。FIG. 22 is a simplified schematic diagram illustrating that the optical sensing system 2-100 senses the target 2-F (for example, the fingerprint of a finger) according to some embodiments of the present invention. The optical sensing system 2-100 includes a cover layer 2-101 and an optical sensor 2-200 under the cover layer 2-101. When the target object 2-F contacts the upper surface of the cover plate layer 2-101, the target object 2-F reflects the light emitted by the light source (not shown) to the optical sensor 2-200 to receive the light signal. The target 2-F has various contour features, such as a convex portion 2-F1 and a concave portion 2-F2. Therefore, when the target 2-F contacts the upper surface of the cover layer 2-101, the convex portion 2-F1 of the target 2-F contacts the upper surface of the cover layer 2-101, and the concave portion of the target 2-F 2-F2 is not in contact with the upper surface of the cover plate layer 2-101, that is, there is a gap between the concave portion 2-F2 and the upper surface of the cover plate layer 2-101. Therefore, the intensity of light (such as light 2-L1 and light 2-L2) received by the sensing pixels below the convex portion 2-F1 and the concave portion 2-F2 of the target 2-F will be different. This senses and recognizes the contour features of the target 2-F (for example, fingerprint pattern features).

第23圖是根據本發明的一些實施例,示出光學感測系統2-100的範例結構感測目標物2-F的示意圖。光學感測系統2-100包含顯示器2-300以及在顯示器2-300的下的光學感測器2-200,其中顯示器2-300可為有機發光二極體(Organic Light-Emitting Diode,OLED)顯示器或微型發光二極體(Micro LED)顯示器。在一些實施例中,可利用光學感測系統2-100中的顯示器2-300作為光源,其發出的光線將照射與顯示器2-300的上表面接觸的目標物2-F,目標物2-F再將此光線反射至設置在顯示器2-300下的光學感測器2-200以對目標物2-F的輪廓特徵(例如:手指的指紋特徵)進行感測與識別。值得注意的是,光學感測系統2-100中的光學感測器2-200也可搭配其他形態的光源,故本發明實施例並不以此為限。FIG. 23 is a schematic diagram illustrating an exemplary structure of the optical sensing system 2-100 to sense the target object 2-F according to some embodiments of the present invention. The optical sensing system 2-100 includes a display 2-300 and an optical sensor 2-200 under the display 2-300, wherein the display 2-300 may be an organic light-emitting diode (OLED) Display or Micro LED display. In some embodiments, the display 2-300 in the optical sensing system 2-100 may be used as a light source, and the light emitted from it will illuminate the target 2-F and the target 2- that are in contact with the upper surface of the display 2-300. F then reflects this light to the optical sensor 2-200 disposed under the display 2-300 to sense and recognize the outline feature of the target 2-F (for example, the fingerprint feature of the finger). It is worth noting that the optical sensors 2-200 in the optical sensing system 2-100 can also be used with other types of light sources, so the embodiments of the present invention are not limited thereto.

根據本發明的一些實施例,在第23圖中所示出的光學感測器2-200包含具有感測畫素陣列2-202的基底2-201、具有多個第一開孔2-205的第一遮光層2-204、第一透明介質層2-206以及微透鏡層2-209。在一些實施例中,設置於基底2-201上的第一遮光層2-204的多個第一開孔2-205露出感測畫素陣列2-202的多個感測畫素2-203。設置於第一遮光層2-204上的第一透明介質層2-206覆蓋了從多個第一開孔2-205中露出的感測畫素2-203。微透鏡層2-209所包含的多個微透鏡2-210對應設置在位於第一透明介質層2-206上。在一些實施例中,這些微透鏡2-210可用來引導從目標物2-F反射而入射至光學感測器2-200的光線穿透第一透明介質層2-206至感測畫素2-203。According to some embodiments of the present invention, the optical sensor 2-200 shown in FIG. 23 includes a substrate 2-201 having a sensing pixel array 2-202, and having a plurality of first openings 2-205 The first light-shielding layer 2-204, the first transparent dielectric layer 2-206, and the microlens layer 2-209. In some embodiments, the plurality of first openings 2-205 of the first light-shielding layer 2-204 provided on the substrate 2-201 exposes the plurality of sensing pixels 2-203 of the sensing pixel array 2-202 . The first transparent dielectric layer 2-206 disposed on the first light-shielding layer 2-204 covers the sensing pixels 2-203 exposed from the plurality of first openings 2-205. The plurality of microlenses 2-210 included in the microlens layer 2-209 are correspondingly disposed on the first transparent medium layer 2-206. In some embodiments, the microlenses 2-210 can be used to guide the light reflected from the target 2-F to enter the optical sensor 2-200 through the first transparent medium layer 2-206 to the sensing pixel 2 -203.

如第23圖所示,光線2-L1、光線2-L2、光線2-L3分別以不同的角度入射至光學感測器2-200,其中光線2-L1及光線2-L3為斜角入射的光,而光線2-L2為垂直入射的光。在一實施例中,光線2-L1入射至微透鏡層2-209的其中一個微透鏡2-210A而被引導至從第一遮光層2-204的其中一個第一開孔2-205A露出的感測畫素2-203A,其中此微透鏡2-210A的中心線2-C1A與此第一開孔2-205A的中心線2-C2A具有第一橫向偏移距離2-S1。在另一實施例中,光線2-L2入射至微透鏡層2-209的其中另一個微透鏡2-210B而被引導至從第一遮光層2-204的其中另一個第一開孔2-205B露出的感測畫素2-203B,其中此微透鏡2-210B的中心線與此第一開孔2-205B的中心線重疊。在又另一實施例中,光線2-L3入射至微透鏡層2-209的其中又另一個微透鏡2-210C而被引導至從第一遮光層2-204的其中又另一個第一開孔2-205C露出的感測畫素2-203C,其中此微透鏡2-210C的中心線2-C1C與此第一開孔2-205C的中心線2-C2C具有第二橫向偏移距離2-S2。As shown in FIG. 23, light 2-L1, light 2-L2, and light 2-L3 respectively enter the optical sensor 2-200 at different angles, where light 2-L1 and light 2-L3 are incident at oblique angles Light, and light 2-L2 is light that is incident perpendicularly. In an embodiment, the light 2-L1 is incident on one of the microlenses 2-210A of the microlens layer 2-209 and is guided to be exposed from one of the first openings 2-205A of the first light-shielding layer 2-204 Sensing pixel 2-203A, wherein the centerline 2-C1A of the microlens 2-210A and the centerline 2-C2A of the first opening 2-205A have a first lateral offset distance 2-S1. In another embodiment, the light 2-L2 is incident on the other microlens 2-210B of the microlens layer 2-209 and guided to the other first opening 2- from the first light shielding layer 2-204 The sensing pixel 2-203B exposed at 205B, wherein the centerline of the microlens 2-210B overlaps the centerline of the first opening 2-205B. In yet another embodiment, the light 2-L3 is incident on one of the microlens layers 2-209 and the other microlens 2-210C to be guided from the other one of the first light shielding layers 2-204 to the first opening The sensing pixel 2-203C exposed by the hole 2-205C, wherein the center line 2-C1C of the microlens 2-210C and the center line 2-C2C of the first opening 2-205C have a second lateral offset distance 2 -S2.

根據本發明的一些實施例,可通過調整微透鏡2-210的中心線2-C1與第一開孔2-205的中心線2-C2的橫向偏移距離以使得感測畫素2-203接收來自不同角度的光線。此外,也可一併調整第一開孔2-205的孔徑A1’、第一透明介質層2-206的厚度T、及/或微透鏡2-210的曲率半徑R,以使得感測畫素2-203接收來自不同的視場角(field of view angle)的光線而實現高收光效率(Light collection efficiency)。再者,在本發明所提供的光學感測器2-200中,可整合具有不同橫向偏移距離的微透鏡2-210與第一開孔2-205的配置及/或其他參數(例如第一開孔2-205的孔徑A1’、第一透明介質層2-206的厚度T、及/或微透鏡2-210的曲率半徑R)的配置。通過本發明所提供的光學感測器2-200中虛擬准直結構的配置,可使得光學感測區2-SR與目標物接觸區2-CR的面積不需要以一比一的方式配置(例如光學感測區2-SR的面積可小於目標物接觸區2-CR的面積),而實現縮小光學感測器2-200的感測面積並取得良好的影像品質的技術效果。According to some embodiments of the present invention, the horizontal offset distance between the center line 2-C1 of the microlens 2-210 and the center line 2-C2 of the first opening 2-205 can be adjusted to make the sensing pixel 2-203 Receive light from different angles. In addition, the aperture A1' of the first opening 2-205, the thickness T of the first transparent dielectric layer 2-206, and/or the radius of curvature R of the microlens 2-210 can also be adjusted together so as to sense pixels 2-203 receives light from different field of view angles to achieve high light collection efficiency. Furthermore, in the optical sensor 2-200 provided by the present invention, the configuration and/or other parameters of the microlens 2-210 and the first opening 2-205 with different lateral offset distances (e.g. An aperture A1' of an opening 2-205, a thickness T of the first transparent dielectric layer 2-206, and/or a radius of curvature R) of the microlens 2-210. Through the configuration of the virtual collimating structure in the optical sensor 2-200 provided by the present invention, the areas of the optical sensing area 2-SR and the target contact area 2-CR need not be configured in a one-to-one manner ( For example, the area of the optical sensing area 2-SR may be smaller than the area of the target contact area 2-CR), thereby achieving the technical effect of reducing the sensing area of the optical sensor 2-200 and achieving good image quality.

第24圖、第25圖、第26A圖、第26B圖是根據本發明的一些實施例,示出光學感測器2-200於製程的各種階段的剖面示意圖。如第24圖所示,在一些實施例中,提供包含感測畫素陣列2-202的基底2-201,並在基底2-201上形成第一遮光層2-204。基底可為半導體基板,例如:矽基板。此外,在一些實施例中,上述半導體基板亦可為元素半導體(elemental semiconductor),包含:鍺(germanium);化合物半導體(compound semiconductor),包含:氮化鎵(gallium nitride)、碳化矽(silicon carbide)、砷化鎵(gallium arsenide)、磷化鎵(gallium phosphide)、磷化銦(indium phosphide)、砷化銦(indium arsenide)及/或銻化銦(indium antimonide);合金半導體(alloy semiconductor),包含:矽鍺合金(SiGe)、磷砷鎵合金(GaAsP)、砷鋁銦合金(AlInAs)、砷鋁鎵合金(AlGaAs)、砷銦鎵合金(GaInAs)、磷銦鎵合金(GaInP)、及/或磷砷銦鎵合金(GaInAsP)、或上述材料的組合。在其他實施例中,基底2-201也可以是絕緣層上覆半導體(semiconductor on insulator)基板,上述絕緣層上覆半導體基板可包含底板、設置於底板上的埋藏氧化層、及設置於埋藏氧化層上的半導體層。此外,基底2-201可為N型或P型導電類型。Figure 24, Figure 25, Figure 26A, and Figure 26B are schematic cross-sectional views of the optical sensor 2-200 at various stages of the manufacturing process according to some embodiments of the present invention. As shown in FIG. 24, in some embodiments, a substrate 2-201 including a sensing pixel array 2-202 is provided, and a first light-shielding layer 2-204 is formed on the substrate 2-201. The substrate may be a semiconductor substrate, such as a silicon substrate. In addition, in some embodiments, the semiconductor substrate may also be an elemental semiconductor (elemental semiconductor), including: germanium; a compound semiconductor (compound semiconductor), including: gallium nitride (gallium nitride), silicon carbide (silicon carbide) ), gallium arsenide, gallium phosphide, indium phosphide, indium arsenide and/or indium antimonide; alloy semiconductor , Including: silicon germanium alloy (SiGe), phosphorous arsenic gallium alloy (GaAsP), arsenic aluminum indium alloy (AlInAs), arsenic aluminum gallium alloy (AlGaAs), arsenic indium gallium alloy (GaInAs), phosphorous indium gallium alloy (GaInP), And/or Indium Gallium Phosphate Arsenic Alloy (GaInAsP), or a combination of the above materials. In other embodiments, the base 2-201 may also be a semiconductor on insulator substrate (semiconductor on insulator) substrate, which may include a bottom plate, a buried oxide layer provided on the bottom plate, and a buried oxide Semiconductor layer on the layer. In addition, the substrate 2-201 may be an N-type or P-type conductivity type.

在一些實施例中,基底2-201可包含各種隔離部件(未示出),用以定義主動區,並電性隔離基底2-201之中/之上的主動區元件。在一些實施例中,隔離部件包含淺溝槽隔離(shallow trench isolation,STI)部件、局部矽氧化(local oxidation of silicon,LOCOS)部件、其他合適的隔離部件、或上述的組合。In some embodiments, the substrate 2-201 may include various isolation components (not shown) to define active regions and electrically isolate the active region elements in/on the substrate 2-201. In some embodiments, the isolation features include shallow trench isolation (STI) features, local oxidation of silicon (LOCOS) features, other suitable isolation features, or a combination of the foregoing.

在一些實施例中,基底2-201可包含各種以如離子布植及/或擴散製程所形成的P型摻雜區及/或N型摻雜區(未示出)。在一些實施例中,摻雜區可形成電晶體、光電二極體(photodiode)等元件。此外,基底2-201亦可包含各種主動元件、無源元件、以及各種導電部件(例如:導電墊、導線、或導孔)。In some embodiments, the substrate 2-201 may include various P-type doped regions and/or N-type doped regions (not shown) formed by, for example, ion implantation and/or diffusion processes. In some embodiments, the doped regions may form transistors, photodiodes, and other elements. In addition, the substrate 2-201 may also include various active components, passive components, and various conductive components (for example: conductive pads, wires, or vias).

參照第24圖,在一些實施例中,基底2-201所包含的感測畫素陣列2-202具有多個感測畫素2-203,並且感測畫素2-203可與信號處理電路(signal processing circuitry)(未示出)連接。在一些實施例中,感測畫素陣列2-202所具有的感測畫素2-203的數量取決於光學感測區2-SR的面積大小。每個感測畫素2-203可包含一或多個光檢測器(photodector)。在一些實施例中,光檢測器可包含光電二極體,其中光電二極體可包含P型半導體層、本質層(intrinsic layer)、以及N型半導體層的三層結構的光電材料(photoelectric material),本質層吸收光以產生出激子(exciton),並且激子會在P型半導體層及N型半導體層的接面分成電子與空穴,進而產生電流信號。在一些實施例中,光檢測器可為互補式金屬氧化物半導體(complimentary metal-oxide-semiconductor,CMOS)影像感測器,例如前照式(front-side illumination,FSI)CMOS影像感測器或背照式(back-side illumination,BSI)CMOS影像感測器。在一些其他實施例中,光檢測器也可包含電荷耦合元件(charged coupling device,CCD)感測器、主動感測器、被動感測器、其他適合的感測器、或上述的組合。在一些實施例中,感測畫素2-203可通過光檢測器將接收到的光信號轉換成電子信號,並通過信號處理電路處理上述電子信號。Referring to FIG. 24, in some embodiments, the sensing pixel array 2-202 included in the substrate 2-201 has a plurality of sensing pixels 2-203, and the sensing pixels 2-203 may be connected to a signal processing circuit (Signal processing circuitry) (not shown) connection. In some embodiments, the number of sensing pixels 2-203 of the sensing pixel array 2-202 depends on the area size of the optical sensing region 2-SR. Each sensing pixel 2-203 may include one or more photo detectors. In some embodiments, the photodetector may include a photodiode, wherein the photodiode may include a three-layer photoelectric material of a P-type semiconductor layer, an intrinsic layer, and an N-type semiconductor layer ), the intrinsic layer absorbs light to produce exciton (exciton), and the exciton will be divided into electrons and holes at the junction of the P-type semiconductor layer and the N-type semiconductor layer, thereby generating a current signal. In some embodiments, the photodetector may be a complementary metal-oxide-semiconductor (CMOS) image sensor, such as a front-side illumination (FSI) CMOS image sensor or Back-side illumination (BSI) CMOS image sensor. In some other embodiments, the photodetector may also include a charged coupled device (CCD) sensor, an active sensor, a passive sensor, other suitable sensors, or a combination of the foregoing. In some embodiments, the sensing pixel 2-203 may convert the received optical signal into an electronic signal through a light detector, and process the electronic signal through a signal processing circuit.

在一些實施例中,感測畫素2-203為陣列排列從而形成感測畫素陣列2-202。然而,在第24圖中所示的剖面圖僅示出感測畫素陣列2-202的其中一列,並位於基底2-201上表面的下方。值得注意的是,在第24圖所示出的感測畫素陣列2-202所包含的感測畫素2-203的數量與排列方式僅為例示性的,本發明實施例並不以此為限。感測畫素2-203可為任意行列數目的陣列或其他的排列方式。In some embodiments, the sensing pixels 2-203 are arranged in an array to form the sensing pixel array 2-202. However, the cross-sectional view shown in FIG. 24 shows only one row of the sensing pixel array 2-202, and is located below the upper surface of the substrate 2-201. It is worth noting that the number and arrangement of the sensing pixels 2-203 included in the sensing pixel array 2-202 shown in FIG. 24 are merely exemplary, and the embodiments of the present invention do not use this Limited. The sensing pixels 2-203 may be an array with any number of rows and columns or other arrangements.

在一些實施例中,如第24圖所示,形成第一遮光層2-204在基底2-201上。第一遮光層2-204可包含遮光材料,其對於在1200納米波長範圍以下的光穿透率小於1%以下。In some embodiments, as shown in FIG. 24, a first light shielding layer 2-204 is formed on the substrate 2-201. The first light-shielding layer 2-204 may include a light-shielding material, which has a light transmittance of less than 1% for a wavelength range below 1200 nanometers.

在一些實施例中,第一遮光層2-204可包含金屬材料,例如鎢(W)、鉻(Cr)、鋁(Al)或鈦(Ti)等。在此實施例中,可通過例如化學氣相沉積(chemical vapor deposition,CVD)、物理氣相沉積製程(physical vapor deposition,PVD)(例如:真空蒸鍍製程(vacuum evaporation process)、濺鍍製程(sputtering process)、脈衝鐳射沉積(pulsed laser deposition,PLD))、原子層沉積(Atomic Layer Deposition,ALD)、其他適合的沉積製程、或前述的組合來毯覆性地形成第一遮光層2-204於基底2-201上。在一些實施例中,第一遮光層2-204可包含具有遮光特性的高分子材料,例如環氧樹脂、聚醯亞胺等。在此實施例中,可通過例如旋轉塗布法(spin-coating)、化學氣相沉積法(CVD)、其他適當的方法、或上述的組合將第一遮光層2-204形成於基底2-201上。通過上述方法所形成的第一遮光層2-204的厚度在約0.3微米(micrometer,µm)至約5微米的範圍,例如可為2微米。在一些實施例中,第一遮光層2-204的選用厚度取決於第一遮光層2-204的材料的遮光能力,例如第一遮光層2-204所包含的遮光材料的遮光能力與其厚度呈負相關。In some embodiments, the first light-shielding layer 2-204 may include a metal material, such as tungsten (W), chromium (Cr), aluminum (Al), titanium (Ti), or the like. In this embodiment, for example, chemical vapor deposition (CVD), physical vapor deposition (PVD) (eg, vacuum evaporation process), sputtering process ( sputtering process), pulsed laser deposition (PLD), atomic layer deposition (ALD), other suitable deposition processes, or a combination of the foregoing to blanketly form the first light-shielding layer 2-204 On the substrate 2-201. In some embodiments, the first light-shielding layer 2-204 may include a polymer material having light-shielding properties, such as epoxy resin, polyimide, and the like. In this embodiment, the first light-shielding layer 2-204 can be formed on the substrate 2-201 by, for example, spin-coating, chemical vapor deposition (CVD), other suitable methods, or a combination thereof on. The thickness of the first light shielding layer 2-204 formed by the above method is in the range of about 0.3 micrometer (micrometer, µm) to about 5 micrometers, and may be, for example, 2 micrometers. In some embodiments, the selected thickness of the first light-shielding layer 2-204 depends on the light-shielding ability of the material of the first light-shielding layer 2-204, for example, the light-shielding ability of the light-shielding material included in the first light-shielding layer 2-204 is Negative correlation.

參照第25圖,根據本發明的一些實施例,可對形成於基底2-201上的第一遮光層2-204執行圖案化製程。上述經過圖案化製程的第一遮光層2-204具有多個第一開孔2-205,其中這些第一開孔2-205具有第一孔徑A1’。在一些實施例中,形成於基底2-201上的第一遮光層2-204的多個第一開孔2-205露出感測畫素陣列2-202的多個感測畫素2-203。在一些實施例中,上述的圖案化製程可包含光刻製程與蝕刻製程。光刻製程可包含例如:光刻膠塗布(例如旋轉塗布)、軟烤、曝光圖案、曝光後烘烤、光刻膠顯影、清洗及乾燥(例如硬烤)、其他適當的製程、或上述的組合。蝕刻製程可包含例如:濕式蝕刻製程、幹式蝕刻製程(例如反應離子蝕刻(RIE)、等離子體蝕刻、離子研磨)、其他適合的製程、或上述的組合。通過上述方法所形成的第一孔徑A1’在約0.3微米至約50微米的範圍,例如可為約4微米至約5微米。Referring to FIG. 25, according to some embodiments of the present invention, a patterning process may be performed on the first light-shielding layer 2-204 formed on the substrate 2-201. The above-mentioned first light-shielding layer 2-204 after the patterning process has a plurality of first openings 2-205, wherein the first openings 2-205 have a first aperture A1'. In some embodiments, the plurality of first openings 2-205 of the first light-shielding layer 2-204 formed on the substrate 2-201 exposes the plurality of sensing pixels 2-203 of the sensing pixel array 2-202 . In some embodiments, the above-mentioned patterning process may include a photolithography process and an etching process. The photolithography process may include, for example: photoresist coating (eg spin coating), soft baking, exposure pattern, post-exposure baking, photoresist development, cleaning and drying (eg hard baking), other suitable processes, or the above combination. The etching process may include, for example, a wet etching process, a dry etching process (such as reactive ion etching (RIE), plasma etching, ion milling), other suitable processes, or a combination of the foregoing. The first pore size A1' formed by the above method is in the range of about 0.3 microns to about 50 microns, and may be, for example, about 4 microns to about 5 microns.

值得注意的是,在第25圖中所示出的第一開孔2-205與感測畫素2-203是以一對一的方式對應設置,然而,在本發明的其他實施例中的第一開孔2-205與感測畫素2-203亦可以一對多或多對一的方式對應設置。舉例來說,一個第一開孔2-205可露出兩個以上的感測畫素2-203,或者一個感測畫素2-203可從兩個以上的第一開孔2-205露出(未示出)。第25圖僅示出例示性的設置方式,本發明並不以此為限。根據本發明的一些實施例,通過控制圖案化第一遮光層2-204的第一孔徑A1’,可調整入射光的視場角的範圍。再者,通過形成第一遮光層2-204於基底2-201上,可避免感測畫素陣列2-202接收到不需要的光線,並可防止入射至光學感測器2-200的光線所產生的串音,進而提升光學感測器2-200的效能。It is worth noting that the first opening 2-205 and the sensing pixels 2-203 shown in FIG. 25 are correspondingly arranged in a one-to-one manner. However, in other embodiments of the invention The first opening 2-205 and the sensing pixel 2-203 can also be correspondingly set in a one-to-many or many-to-one manner. For example, one first opening 2-205 can expose more than two sensing pixels 2-203, or one sensing pixel 2-203 can be exposed from more than two first openings 2-205 ( Not shown). Figure 25 only shows an exemplary arrangement, and the invention is not limited thereto. According to some embodiments of the present invention, by controlling the first aperture A1' of the patterned first light shielding layer 2-204, the range of the angle of view of the incident light can be adjusted. Furthermore, by forming the first light-shielding layer 2-204 on the substrate 2-201, the sensor pixel array 2-202 can be prevented from receiving unnecessary light, and the light incident on the optical sensor 2-200 can be prevented The generated crosstalk further improves the performance of the optical sensor 2-200.

參照第26A圖,根據本發明的一些實施例,可形成第一透明介質層2-206於第一遮光層2-204上並覆蓋從第一遮光層2-204的第一開孔2-205露出的感測畫素陣列2-202。第一透明介質層2-206可包含光固化材料(UV-curable material)、熱固化材料(thermosetting material)、或上述的組合。舉例來說,第一透明介質層2-206可包含例如聚甲基丙烯酸甲酯(poly(methyl methacrylate,PMMA)、聚對苯二甲酸乙二酯(polyethylene terephthalate,PET)、聚萘二甲酸乙二醇酯(polyethylene naphthalate,PEN) 聚碳酸酯(Polycarbonate,PC)、全氟環丁基(perfluorocyclobutyl,PFCB)聚合物、聚亞醯胺(Polyimide,PI)、亞克力樹酯、環氧樹脂(Epoxy resins)、聚丙烯(Polypropylene,PP)、聚乙烯(polyethylene,PE)、聚苯乙烯(Polystyrene,PS)、聚氯乙烯(Polyvinyl chloride,PVC)、其他適當的材料、或上述的組合。在一些實施例中,可以旋轉塗布法(spin-coating)、幹膜(dry film)製程、鑄模(casting)、棒狀塗布(bar coating)、刮刀塗布(blade coating)、滾筒塗布(roller coating)、線棒塗布(wire bar coating)、浸漬塗布(dip coating)、化學氣相沉積法(CVD)、其他適合的方法、或上述的組合在第一遮光層2-204及其露出的感測畫素陣列2-202上形成第一透明介質層2-206。在一些實施例中,通過上述方法所形成的第一透明介質層2-206的厚度T在約1微米至約100微米的範圍,例如可為50微米。根據本發明的一些實施例,通過上述製程方法所形成的第一透明介質層2-206具有高良率及良好的品質。並且,通過控制第一透明介質層2-206的厚度T可增加或減少光線經過微透鏡2-210後偏移的距離,進而提升感測畫素陣列2-202所能接收的入射光角度的精準度。Referring to FIG. 26A, according to some embodiments of the present invention, a first transparent dielectric layer 2-206 may be formed on the first light-shielding layer 2-204 and cover the first opening 2-205 from the first light-shielding layer 2-204 The exposed sensing pixel array 2-202. The first transparent medium layer 2-206 may include a UV-curable material, a thermosetting material, or a combination of the foregoing. For example, the first transparent dielectric layer 2-206 may include, for example, poly (methyl methacrylate (PMMA), polyethylene terephthalate (PET), polyethylene naphthalate Polyethylene naphthalate (PEN) Polycarbonate (PC), perfluorocyclobutyl (PFCB) polymer, polyimide (Polyimide, PI), acrylic resin, epoxy resin (Epoxy resins), polypropylene (Polypropylene, PP), polyethylene (PE), polystyrene (Polystyrene, PS), polyvinyl chloride (Polyvinyl chloride, PVC), other suitable materials, or a combination of the above. In the embodiments, spin-coating, dry film process, casting, bar coating, blade coating, roller coating, and wire coating may be used. Wire bar coating, dip coating, chemical vapor deposition (CVD), other suitable methods, or a combination of the above on the first light-shielding layer 2-204 and its exposed sensing pixel array A first transparent dielectric layer 2-206 is formed on 2-202. In some embodiments, the thickness T of the first transparent dielectric layer 2-206 formed by the above method ranges from about 1 micron to about 100 microns, for example, It is 50 microns. According to some embodiments of the present invention, the first transparent dielectric layer 2-206 formed by the above-mentioned manufacturing method has high yield and good quality. Moreover, by controlling the thickness T of the first transparent dielectric layer 2-206 It can increase or decrease the distance that light deflects after passing through the microlens 2-210, thereby improving the accuracy of the angle of incident light that can be received by the sensing pixel array 2-202.

另一方面,參照第26B圖,根據本發明的其他實施例,亦可先形成第一透明介質子層2-206A於感測畫素陣列2-202上,再將第一遮光層2-204形成於第一透明介質子層2-206A上,其中位於感測畫素陣列2-202上的第一透明介質子層2-206A從第一遮光層2-204的第一開孔2-205部分露出。接著,在第一遮光層2-204的形成之後,將第一透明介質子層2-206B形成於第一遮光層2-204上。通過控制第一透明介質子層2-206A、206B的厚度2-TA 、2-TB 可增加或減少光線經過微透鏡2-210後偏移的距離(例如增加厚度2-TA 、2-TB 可增加光線經過微透鏡2-210後偏移的距離),進而提升感測畫素陣列2-202所能接收的入射光角度的精準度。On the other hand, referring to FIG. 26B, according to other embodiments of the present invention, a first transparent dielectric sub-layer 2-206A may be formed on the sensing pixel array 2-202, and then the first light-shielding layer 2-204 Formed on the first transparent dielectric sub-layer 2-206A, wherein the first transparent dielectric sub-layer 2-206A on the sensing pixel array 2-202 extends from the first opening 2-205 of the first light-shielding layer 2-204 Partly exposed. Next, after the formation of the first light-shielding layer 2-204, the first transparent dielectric sublayer 2-206B is formed on the first light-shielding layer 2-204. By controlling the thickness of the first transparent dielectric sublayer 2-206A, 206B of 2-T A, 2-T B to increase or decrease the distance light through the micro-lens offset 2-210 (e.g., increasing the thickness of 2-T A, 2 -T B can increase the distance the light deflects after passing through the microlens 2-210), thereby improving the accuracy of the angle of incident light that the sensing pixel array 2-202 can receive.

第27A圖至第27F圖是根據本發明的一些實施例,示出光學感測器2-200的剖面示意圖。具體而言,第27A圖至第27F圖示出至少一微透鏡2-210的中心線2-C1與所對應的第一開孔2-205的中心線2-C2重疊的光學感測器2-200的剖面示意圖。如第27A圖所示,在一些實施例中,形成圖案化第二遮光層2-207於第一透明介質層2-206上,其中經圖案化製程的第二遮光層2-207的多個第二開孔2-208是對應於從第一遮光層2-204露出的多個感測畫素2-203。值得注意的是,在第27A圖中所示出的第二開孔2-208與感測畫素2-203是以一對一的方式對應設置,然而,在本發明的其他實施例中的第二開孔2-208與感測畫素2-203亦可以一對多或多對一的方式對應設置。舉例來說,進入一個第二開孔2-208的光線可入射至兩個以上的感測畫素2-203,或者進入兩個以上的第二開孔2-208的光線可入射至同一個感測畫素2-203(未示出)。第27A圖僅示出例示性的設置方式,本發明並不以此為限。FIGS. 27A to 27F are schematic cross-sectional views of the optical sensor 2-200 according to some embodiments of the present invention. Specifically, FIGS. 27A to 27F show an optical sensor 2 in which the center line 2-C1 of at least one microlens 2-210 overlaps the center line 2-C2 of the corresponding first opening 2-205 -200 schematic cross-section. As shown in FIG. 27A, in some embodiments, a patterned second light-shielding layer 2-207 is formed on the first transparent dielectric layer 2-206, in which a plurality of second light-shielding layers 2-207 are subjected to a patterning process The second opening 2-208 corresponds to the plurality of sensing pixels 2-203 exposed from the first light-shielding layer 2-204. It is worth noting that the second openings 2-208 and the sensing pixels 2-203 shown in FIG. 27A are correspondingly arranged in a one-to-one manner. However, in other embodiments of the invention The second opening 2-208 and the sensing pixel 2-203 can also be correspondingly set in a one-to-many or many-to-one manner. For example, light entering one second opening 2-208 may be incident on more than two sensing pixels 2-203, or light entering more than two second openings 2-208 may be incident on the same Pixel 2-203 (not shown) is sensed. FIG. 27A only shows an exemplary arrangement, and the invention is not limited thereto.

再者,圖案化第二遮光層2-207的材料、形成方法、厚度、以及孔徑大抵與第一遮光層2-204相同,故此處不再贅述。根據本發明的一些實施例,通過形成第二遮光層2-207於第一透明介質層2-206上,可避免感測畫素陣列2-202接收到不需要的光線,並可防止入射至光學感測器2-200的光線所產生的串音,進而提升信號雜訊比(Signal-to-noise ratio,S/N)。Furthermore, the material, forming method, thickness, and aperture of the patterned second light-shielding layer 2-207 are approximately the same as those of the first light-shielding layer 2-204, so they will not be repeated here. According to some embodiments of the present invention, by forming the second light-shielding layer 2-207 on the first transparent dielectric layer 2-206, the sensing pixel array 2-202 can be prevented from receiving unnecessary light, and incident light can be prevented The crosstalk generated by the light of the optical sensor 2-200 further improves the signal-to-noise ratio (S/N).

參照第27B圖,在一些實施例中,將微透鏡層2-209所包含的多個微透鏡2-210對應設置於第二遮光層2-207的多個第二開孔2-208中,其中這些微透鏡2-210用以引導入射光穿透第一透明介質層2-206至從第一開孔2-205中露出的感測畫素2-203。在一些實施例中,微透鏡層2-209的材料可包含透明的光固化材料或熱固化材料,其形成方法大抵相同於第一透明介質層2-206的形成方法,故此處不再贅述。在這些實施例中,所形成的微透鏡層2-209可經過圖案化製程來控制微透鏡2-210的曲率半徑R。在其他實施例中,微透鏡層2-209的材料可為光刻膠材料。在此情況下,可通過包含例如:光刻膠塗布(例如旋轉塗布)、軟烤、曝光圖案、曝光後烘烤、光刻膠顯影、清洗及乾燥(例如硬烤)、其他適當的製程、或上述的組合的光刻製程來形成微透鏡層2-209。在這些實施例中,可在光刻製程中乾燥(例如硬烤)的步驟利用表面張力的效果來形成半球狀的微透鏡2-210,並且,可通過控制加熱的溫度來調整所需要的微透鏡2-210的曲率半徑R。在一些實施例中,所形成的微透鏡2-210的厚度在約1微米至約50微米之間的範圍。值得注意的是,微透鏡2-210的輪廓並不以半球狀為限,本發明實施例亦可根據所需要的入射光角度來調整微透鏡2-210的輪廓,例如可為非球面狀(aspheric)。Referring to FIG. 27B, in some embodiments, the plurality of microlenses 2-210 included in the microlens layer 2-209 are correspondingly disposed in the plurality of second openings 2-208 of the second light shielding layer 2-207, The microlenses 2-210 are used to guide the incident light through the first transparent medium layer 2-206 to the sensing pixels 2-203 exposed from the first opening 2-205. In some embodiments, the material of the microlens layer 2-209 may include a transparent photo-curable material or a thermo-curable material, and the forming method thereof is substantially the same as the forming method of the first transparent dielectric layer 2-206, so it will not be repeated here. In these embodiments, the formed microlens layer 2-209 may undergo a patterning process to control the radius of curvature R of the microlens 2-210. In other embodiments, the material of the microlens layer 2-209 may be a photoresist material. In this case, it may include, for example, photoresist coating (eg spin coating), soft baking, exposure pattern, post-exposure baking, photoresist development, cleaning and drying (eg hard baking), other suitable processes, Or the above-mentioned combined photolithography process to form the microlens layer 2-209. In these embodiments, the step of drying (for example, hard baking) in the lithography process can utilize the effect of surface tension to form the hemispherical microlens 2-210, and the required temperature can be adjusted by controlling the heating temperature. The radius of curvature R of the lens 2-210. In some embodiments, the thickness of the formed microlens 2-210 ranges from about 1 micrometer to about 50 micrometers. It is worth noting that the contour of the microlens 2-210 is not limited to a hemispheric shape, and the embodiment of the present invention can also adjust the contour of the microlens 2-210 according to the required incident light angle, for example, it can be aspherical ( aspheric).

參照第27C圖,在其他實施例中,亦可直接將微透鏡層2-209所包含的多個微透鏡2-210設置於第一透明介質層2-206上(即不具有微透鏡2-210之間的遮光層),其中這些微透鏡2-210用以引導入射光穿透第一透明介質層2-206至從第一開孔2-205中露出的感測畫素2-203。在一些實施例中,微透鏡層2-209的材料及其形成方法大抵相同於第27B圖所示之微透鏡層2-209的材料及形成方法,故此處不再贅述。Referring to FIG. 27C, in other embodiments, a plurality of microlenses 2-210 included in the microlens layer 2-209 may be directly disposed on the first transparent dielectric layer 2-206 (that is, without the microlens 2- A light-shielding layer between 210), wherein the microlenses 2-210 are used to guide incident light through the first transparent medium layer 2-206 to the sensing pixels 2-203 exposed from the first opening 2-205. In some embodiments, the material and forming method of the microlens layer 2-209 are substantially the same as the material and forming method of the microlens layer 2-209 shown in FIG. 27B, so details are not described here.

參照第27D圖,其所示之結構與第27C圖所示之結構相似,差異在於第27D圖所示微透鏡層2-209之形成是接續在第26B圖所示之結構。在這些實施例中,微透鏡層2-209的材料及其形成方法大抵相同於第27B圖、第27C圖所示之微透鏡層2-209的材料及形成方法,故此處不再贅述。此外,在另一些實施例中,可在第27D圖的結構另增加一第二遮光層於微透鏡2-210之間(如第27B圖的第二遮光層2-207)。Referring to FIG. 27D, the structure shown is similar to the structure shown in FIG. 27C, except that the formation of the microlens layer 2-209 shown in FIG. 27D is continued from the structure shown in FIG. 26B. In these embodiments, the material and forming method of the microlens layer 2-209 are substantially the same as the material and forming method of the microlens layer 2-209 shown in FIGS. 27B and 27C, so details are not described here. In addition, in other embodiments, a second light-shielding layer may be added between the microlenses 2-210 in the structure of FIG. 27D (such as the second light-shielding layer 2-207 of FIG. 27B).

參照第27E圖,其所示之結構與第27C圖所示之結構相似,差異在於微透鏡2-210與感測畫素2-203可以多對一的方式對應設置。如第27E圖所示,兩個以上的微透鏡2-210可對應於從兩個第一開孔2-205可露出的單一個感測畫素2-203。值得注意的是,本發明實施例所提供的數量配置僅為例示性的,其可依據產品設計調整微透鏡2-210與感測畫素2-203的對應方式,本發明並不以此為限。Referring to FIG. 27E, the structure shown in FIG. 27C is similar to the structure shown in FIG. 27C. The difference is that the microlens 2-210 and the sensing pixel 2-203 can be correspondingly arranged in a one-to-one manner. As shown in FIG. 27E, more than two microlenses 2-210 may correspond to a single sensing pixel 2-203 exposed from two first openings 2-205. It is worth noting that the quantity configurations provided in the embodiments of the present invention are only exemplary, and the corresponding ways of the microlens 2-210 and the sensing pixels 2-203 can be adjusted according to the product design. The present invention does not take this as limit.

參照第27F圖,其為第27B圖的局部放大圖。根據本發明的一些實施例,第27F圖示出利用控制橫向偏移距離(即一個微透鏡2-210的中心線2-C1與所對應的第一開孔2-205的中心線2-C2的橫向偏移距離)、微透鏡2-210的曲率半徑R、第一透明介質層2-206的厚度T、以及第一遮光層2-204的第一開孔2-205的孔徑A1’,調整所允許的光線的入射角範圍。在一些實施例中,如第27F圖所示,通過控制橫向偏移距離等於零(即微透鏡2-210的中心線2-C1與所對應的第一開孔2-205的中心線2-C2重疊)並控制第一透明介質層2-206的厚度T及第一開孔2-205的孔徑A1’,使得感測畫素2-203可接收來自θ±θ1的角度範圍的入射光。可理解的是,雖然此處並未示出第27C、27D、27E圖的局部放大圖,第27C、27D、27E圖所示的實施例(即不具有微透鏡2-210之間的遮光層)用來調整所允許的光線的入射角範圍的機制大抵相同於第27B圖所示的實施例(即具有微透鏡2-210之間的遮光層),故此處不再贅述。Refer to FIG. 27F, which is a partially enlarged view of FIG. 27B. According to some embodiments of the present invention, FIG. 27F illustrates the use of controlling the lateral offset distance (ie, the centerline 2-C1 of a microlens 2-210 and the centerline 2-C2 of the corresponding first opening 2-205 The lateral offset distance), the radius of curvature R of the microlens 2-210, the thickness T of the first transparent dielectric layer 2-206, and the aperture A1' of the first opening 2-205 of the first light-shielding layer 2-204, Adjust the allowable angle of incidence of light rays. In some embodiments, as shown in FIG. 27F, by controlling the lateral offset distance to be equal to zero (ie, the centerline 2-C1 of the microlens 2-210 and the centerline 2-C2 of the corresponding first opening 2-205 Overlap) and control the thickness T of the first transparent dielectric layer 2-206 and the aperture A1' of the first opening 2-205, so that the sensing pixels 2-203 can receive incident light from an angular range of θ±θ1. It is understandable that although the partial enlarged views of FIGS. 27C, 27D, and 27E are not shown here, the embodiment shown in FIGS. 27C, 27D, and 27E (that is, without the light shielding layer between the microlenses 2-210 ) The mechanism used to adjust the allowable range of incident angles of light is much the same as the embodiment shown in FIG. 27B (that is, having a light shielding layer between microlenses 2-210), so it will not be repeated here.

根據本發明的一些實施例,主要角度θ為入射光與感測畫素2-203的上表面所夾的角度,以及容許度±θ1為從主要角度θ以順時針及逆時針方向偏移的角度θ1。舉例來說,當橫向偏移距離等於零,主要角度θ可為90度,並可控制其他參數(例如第一透明介質層2-206的厚度T及第一遮光層2-204的第一開孔2-205的孔徑A1’)使得容許度±θ1為±5度。因此,在此範例中的感測畫素2-203可接收從85度至95度的角度範圍入射的光。在一些實施例中,主要角度θ主要取決於橫向偏移距離,容許度±θ1則主要取決於第一開口的孔徑,而第一透明介質層2-206的厚度T主要可調整感測畫素2-203可接收的入射角的精準度。According to some embodiments of the present invention, the main angle θ is the angle between the incident light and the upper surface of the sensing pixel 2-203, and the tolerance ±θ1 is the clockwise and counterclockwise deviation from the main angle θ Angle θ1. For example, when the lateral offset distance is equal to zero, the main angle θ can be 90 degrees, and other parameters (such as the thickness T of the first transparent dielectric layer 2-206 and the first opening of the first light-shielding layer 2-204 can be controlled Aperture A1' in 2-205) allows the tolerance ±θ1 to be ±5 degrees. Therefore, the sensing pixels 2-203 in this example can receive light incident at an angle ranging from 85 degrees to 95 degrees. In some embodiments, the main angle θ mainly depends on the lateral offset distance, the tolerance ±θ1 mainly depends on the aperture of the first opening, and the thickness T of the first transparent dielectric layer 2-206 mainly adjusts the sensing pixels The accuracy of the incident angle 2-203 can be received.

第28A圖至第28C圖是根據本發明的其他一些實施例,示出光學感測器2-200的剖面示意圖。具體而言,第28A圖至第28C圖示出包含至少一微透鏡2-210的中心線2-C1與所對應的第一開孔2-205的中心線2-C2具有一橫向偏移距離2-S的光學感測器2-200的剖面示意圖。如第28A圖所示,在一些實施例中,形成圖案化第二遮光層2-207於第一透明介質層2-206上,其中經圖案化製程的第二遮光層2-207的多個第二開孔2-208是對應於從第一遮光層2-204露出的多個感測畫素2-203。值得注意的是,第28A圖所示出的實施例與第27A圖所示出的實施例的差異在於第28A圖中的第二開孔2-208與感測畫素2-203是以一對一的方式斜向對應設置。換句話說,微透鏡層2-209的其中一個微透鏡2-210的中心線2-C1與所對應的第一開孔2-205的中心線2-C2具有一橫向偏移距離2-S(搭配參照第28B圖)。然而,在本發明的其他實施例中的第二開孔2-208與感測畫素2-203亦可以一對多或多對一的方式斜向對應設置(未示出)。第28A圖僅示出例示性的設置方式,本發明並不以此為限。FIGS. 28A to 28C are schematic cross-sectional views of the optical sensor 2-200 according to some other embodiments of the present invention. Specifically, FIGS. 28A to 28C show that the centerline 2-C1 including at least one microlens 2-210 and the centerline 2-C2 of the corresponding first opening 2-205 have a lateral offset distance A schematic cross-sectional view of the 2-S optical sensor 2-200. As shown in FIG. 28A, in some embodiments, a patterned second light-shielding layer 2-207 is formed on the first transparent dielectric layer 2-206, wherein a plurality of second light-shielding layers 2-207 in a patterning process are formed The second opening 2-208 corresponds to the plurality of sensing pixels 2-203 exposed from the first light-shielding layer 2-204. It is worth noting that the difference between the embodiment shown in FIG. 28A and the embodiment shown in FIG. 27A is that the second opening 2-208 and the sensing pixel 2-203 in FIG. 28A are Set diagonally to the one-to-one mode. In other words, the centerline 2-C1 of one of the microlenses 2-210 of the microlens layer 2-209 and the centerline 2-C2 of the corresponding first opening 2-205 have a lateral offset distance 2-S (See Figure 28B for collocation). However, in other embodiments of the present invention, the second openings 2-208 and the sensing pixels 2-203 may also be arranged diagonally in a one-to-many or many-to-one manner (not shown). FIG. 28A only shows an exemplary arrangement, and the invention is not limited thereto.

參照第28B圖,在一些實施例中,將微透鏡層2-209所包含的多個微透鏡2-210設置於第二遮光層2-207的多個第二開孔2-208中,以斜向對應於感測畫素2-203。其中這些微透鏡2-210用以引導斜角入射光穿透第一透明介質層2-206而入射至從第一開孔2-205中露出的感測畫素2-203。在一些實施例中,第28B圖所示出的微透鏡層2-209的材料、形成方法、以及輪廓與第27B圖所示出的微透鏡層2-209大抵相同,故此處不再贅述。在其他實施例中,亦可直接將微透鏡層2-209所包含的多個微透鏡2-210設置於第一透明介質層2-206上(即不具有微透鏡2-210之間的遮光層)(未示出),以斜向對應於感測畫素2-203。其中這些微透鏡2-210用以引導斜角入射光穿透第一透明介質層2-206而入射至第一開孔2-205下方的感測畫素2-203。在這些實施例中,微透鏡層2-209的材料及其形成方法大抵相同於第27C圖所示之微透鏡層2-209的材料及形成方法,故此處不再贅述。Referring to FIG. 28B, in some embodiments, the plurality of microlenses 2-210 included in the microlens layer 2-209 are disposed in the plurality of second openings 2-208 of the second light shielding layer 2-207, to The diagonal direction corresponds to the sensing pixel 2-203. The microlenses 2-210 are used to guide oblique incident light to penetrate the first transparent medium layer 2-206 and enter the sensing pixels 2-203 exposed from the first opening 2-205. In some embodiments, the material, forming method, and outline of the microlens layer 2-209 shown in FIG. 28B are substantially the same as those of the microlens layer 2-209 shown in FIG. 27B, so they are not repeated here. In other embodiments, the plurality of microlenses 2-210 included in the microlens layer 2-209 can also be directly disposed on the first transparent dielectric layer 2-206 (ie, there is no light shielding between the microlenses 2-210 Layer) (not shown), corresponding to the sensing pixels 2-203 in an oblique direction. The microlenses 2-210 are used to guide oblique incident light to penetrate the first transparent dielectric layer 2-206 and enter the sensing pixels 2-203 under the first opening 2-205. In these embodiments, the material and forming method of the microlens layer 2-209 are substantially the same as the material and forming method of the microlens layer 2-209 shown in FIG. 27C, so they will not be repeated here.

參照第28C圖,其為第28B圖的局部放大圖。根據本發明的一些實施例,第28C圖示出利用控制橫向偏移距離2-S、微透鏡2-210的曲率半徑R、第一透明介質層2-206的厚度T、以及第一遮光層2-204的第一開孔2-205的孔徑A1’,調整所允許的光線的入射角範圍。在一些實施例中,如第28C圖所示,通過控制橫向偏移距離2-S(即微透鏡層2-209的其中至少一個微透鏡2-210的中心線2-C1與所對應的第一開孔2-205的中心線2-C2的橫向偏移距離)並控制第一透明介質層2-206的厚度T及第一開孔2-205的孔徑A1’,使得感測畫素2-203可接收來自θ’±θ2的角度範圍的入射光。Refer to FIG. 28C, which is a partially enlarged view of FIG. 28B. According to some embodiments of the present invention, FIG. 28C illustrates the use of the control lateral offset distance 2-S, the radius of curvature R of the microlens 2-210, the thickness T of the first transparent dielectric layer 2-206, and the first light-shielding layer The aperture A1' of the first opening 2-205 of 2-204 adjusts the allowable angle of incidence of light. In some embodiments, as shown in FIG. 28C, by controlling the lateral offset distance 2-S (ie, the centerline 2-C1 of at least one microlens 2-210 of the microlens layer 2-209 and the corresponding third A lateral offset distance of the centerline 2-C2 of an opening 2-205) and control the thickness T of the first transparent dielectric layer 2-206 and the aperture A1' of the first opening 2-205, so that the pixel 2 is sensed -203 can receive incident light from the angular range of θ'±θ2.

根據本發明的一些實施例,主要角度θ’為入射光與感測畫素2-203的上表面所夾的角度,以及容許度±θ2為從主要角度θ’以順時針及逆時針方向偏移的角度θ2。舉例來說,可控制橫向偏移距離使得主要角度θ’可為45度,並可控制其他參數(例如第一透明介質層2-206的厚度T及第一遮光層2-204的第一開孔2-205的孔徑A1’)使得容許度±θ2為±5度。因此,在此範例中的感測畫素2-203可接收從40度至50度的角度範圍入射的光。在一些實施例中,主要角度θ’主要取決於橫向偏移距離2-S,容許度±θ2則主要取決於第一開口的孔徑A1’,而第一透明介質層2-206的厚度T主要可調整感測畫素2-203可接收的入射角的精準度。值得注意的是,本發明實施例所提供的角度範圍僅為例示性的,本發明並不以此為限。本發明實施例可視需要而控制結構來調整上述各個參數。According to some embodiments of the present invention, the main angle θ'is the angle between the incident light and the upper surface of the sensing pixel 2-203, and the tolerance ± θ2 is offset from the main angle θ'in clockwise and counterclockwise directions移的角θ2. For example, the lateral offset distance can be controlled so that the main angle θ′ can be 45 degrees, and other parameters (such as the thickness T of the first transparent dielectric layer 2-206 and the first opening of the first light-shielding layer 2-204 can be controlled The hole diameter A1' of the hole 2-205 makes the tolerance ±θ2 ±5 degrees. Therefore, the sensing pixels 2-203 in this example can receive light incident at an angle ranging from 40 degrees to 50 degrees. In some embodiments, the main angle θ′ mainly depends on the lateral offset distance 2-S, the tolerance ±θ2 mainly depends on the aperture A1′ of the first opening, and the thickness T of the first transparent dielectric layer 2-206 mainly The accuracy of the incident angle that the sensing pixels 2-203 can receive can be adjusted. It is worth noting that the angle ranges provided by the embodiments of the present invention are only exemplary, and the present invention is not limited thereto. The embodiments of the present invention may adjust the above parameters according to the control structure as needed.

根據第27A圖至第27F圖及第28A圖至第28C圖所示出的實施例,在本發明所提供的光學感測器2-200中,可整合具有不同橫向偏移距離的微透鏡2-210與第一開孔2-205的配置及/或其他參數(例如第一開孔2-205的孔徑A1’、第一透明介質層2-206的厚度T、及/或微透鏡2-210的曲率半徑R)的配置,例如可將第27B圖、第28B圖所示的結構整合於光學感測器2-200中。通過本發明所提供的光學感測器2-200中結構的配置,可使得光學感測區2-SR與目標物接觸區2-CR的面積不需要以一比一的方式配置(例如光學感測區2-SR的面積可小於目標物接觸區2-CR的面積)(如第23圖所示),而實現縮小光學感測器2-200的面積並取得良好的影像品質的技術效果。可以理解的是多個微透鏡2-210可以具有相同或不同的曲率半徑R,而第一開孔2-205也可以具有相同或不同的孔徑A1’。According to the embodiments shown in FIGS. 27A to 27F and 28A to 28C, in the optical sensor 2-200 provided by the present invention, microlenses 2 with different lateral offset distances can be integrated -210 and the configuration of the first opening 2-205 and/or other parameters (such as the aperture A1' of the first opening 2-205, the thickness T of the first transparent dielectric layer 2-206, and/or the microlens 2- The arrangement of the radius of curvature 210 of 210), for example, the structure shown in FIGS. 27B and 28B can be integrated into the optical sensor 2-200. Through the configuration of the optical sensor 2-200 provided by the present invention, the areas of the optical sensing area 2-SR and the target contact area 2-CR need not be configured in a one-to-one manner (such as optical sensing The area of the measurement area 2-SR may be smaller than the area of the target contact area 2-CR) (as shown in FIG. 23), and the technical effect of reducing the area of the optical sensor 2-200 and achieving good image quality is achieved. It can be understood that the plurality of microlenses 2-210 may have the same or different radius of curvature R, and the first opening 2-205 may also have the same or different aperture A1'.

第29圖至第32圖是根據本發明的一些其他實施例,例如基於在第27B圖、第27C圖、第27D圖、第27E圖、第28B圖中所示的結構,示出包含額外結構的光學感測器2-200的剖面示意圖。參照第29圖,是根據本發明的一些其他實施例,示出順應地覆蓋微透鏡層2-209及第二遮光層2-207的保護層2-800。可理解的是,保護層2-800亦可順應形成於如第27C圖、第27D圖、第27E圖所示的結構上,其中因為微透鏡2-210之間不具有遮光層,因此保護層2-800直接接觸在微透鏡層2-209下方的第一透明介質層2-206(未示出)。在一些實施例中,保護層2-800可由二氧化矽所形成,並可通過等離子體增強化學氣相沉積(plasma-enhanced CVD,PECVD)、遠距等離子體增強化學氣相沉積(remote plasma-enhanced CVD,RPECVD)、其他類似的方法、或上述的組合來沉積二氧化矽於微透鏡層2-209及第二遮光層2-207之上。由二氧化矽所形成的保護層2-800不會影響微透鏡層2-209的引導光線的能力。再者,保護層2-800可有效地保護微透鏡層2-209,以避免微透鏡層2-209在後續的封裝製程過程中遭受破壞。Figures 29 to 32 are some other embodiments according to the present invention, for example based on the structures shown in Figures 27B, 27C, 27D, 27E, and 28B, showing the inclusion of additional structures A schematic cross-sectional view of the optical sensor 2-200. Referring to FIG. 29, according to some other embodiments of the present invention, a protective layer 2-800 that compliantly covers the microlens layer 2-209 and the second light shielding layer 2-207 is shown. It is understandable that the protective layer 2-800 can also be conformally formed on the structure shown in FIG. 27C, FIG. 27D, and FIG. 27E, in which there is no light shielding layer between the microlenses 2-210, so the protective layer 2-800 directly contacts the first transparent dielectric layer 2-206 (not shown) under the microlens layer 2-209. In some embodiments, the protective layer 2-800 may be formed of silicon dioxide, and may be plasma-enhanced CVD (PECVD), remote plasma enhanced chemical vapor deposition (remote plasma- enhanced CVD (RPECVD), other similar methods, or a combination of the above to deposit silicon dioxide on the microlens layer 2-209 and the second light shielding layer 2-207. The protective layer 2-800 formed of silicon dioxide does not affect the ability of the microlens layer 2-209 to guide light. Furthermore, the protective layer 2-800 can effectively protect the microlens layer 2-209 to prevent the microlens layer 2-209 from being damaged during the subsequent packaging process.

參照第30圖,是根據本發明的一些其他實施例,示出設置於第一透明介質層2-206與第二遮光層2-207及/或微透鏡2-210之間的濾光層900。在一些實施例中,可繼續第26A圖中所形成的光學感測器2-200的部分結構來形成第30圖所示出的結構。在其他實施例中,亦可繼續第26B圖中所形成的光學感測器2-200的部分結構來形成如第30圖所示出的濾光層2-900(未示出)。在形成第一透明介質層2-206(或第一透明介質子層2-206A)之後,可在第一透明介質層2-206之上形成濾光層2-900,並且在形成濾光層2-900之後形成第二遮光層2-207及微透鏡層2-209。如前所述,在另一些實施例中,可以不具有第二遮光層2-207。Referring to FIG. 30, according to some other embodiments of the present invention, a filter layer 900 disposed between a first transparent dielectric layer 2-206 and a second light-shielding layer 2-207 and/or microlens 2-210 is shown . In some embodiments, the partial structure of the optical sensor 2-200 formed in FIG. 26A may be continued to form the structure shown in FIG. 30. In other embodiments, the partial structure of the optical sensor 2-200 formed in FIG. 26B may be continued to form the filter layer 2-900 (not shown) as shown in FIG. 30. After forming the first transparent dielectric layer 2-206 (or the first transparent dielectric sublayer 2-206A), a filter layer 2-900 may be formed on the first transparent dielectric layer 2-206, and the filter layer is formed After 2-900, a second light-shielding layer 2-207 and a microlens layer 2-209 are formed. As mentioned above, in other embodiments, the second light shielding layer 2-207 may not be provided.

此外,在一些實施例中,濾光層2-900可為紅外線濾光層(infrared cut filter,IRC)。可見光(visible light)對於此紅外線濾光層具有高穿透率(transmittance),而紅外光對其則具有低穿透率。在一些實施例中,可通過在第一透明介質層2-206與第二遮光層2-207及/或微透鏡2-210之間設置濾光層2-900(例如紅外線濾光層),修正光學感測器2-200的色偏現象並減少紅外線的干擾。In addition, in some embodiments, the filter layer 2-900 may be an infrared cut filter (IRC). Visible light has a high transmittance for this infrared filter layer, and infrared light has a low transmittance for it. In some embodiments, a filter layer 2-900 (such as an infrared filter layer) may be provided between the first transparent dielectric layer 2-206 and the second light-shielding layer 2-207 and/or the microlens 2-210, Correct the color shift phenomenon of the optical sensor 2-200 and reduce the interference of infrared rays.

參照第31A圖,是根據本發明的一些其他實施例,示出設置於第一透明介質層2-206與第二遮光層2-207之間的第二透明介質層2-1001,以及設置於第一透明介質層2-206與第二透明介質層2-1001之間的圖案化第三遮光層2-1002。在一些實施例中,可繼續第26A圖中所形成的光學感測器2-200的部分結構來形成第31A圖所示出的結構。另一方面,參照第31B圖,所示之結構與第31A圖所示之結構相似,差異在第31B圖所示之結構是將微透鏡層2-209所包含的多個微透鏡2-210直接設置於第一透明介質層2-206上(即不具有微透鏡2-210之間的遮光層)。Referring to FIG. 31A, according to some other embodiments of the present invention, a second transparent dielectric layer 2-1100 disposed between a first transparent dielectric layer 2-206 and a second light shielding layer 2-207, and a A patterned third light-shielding layer 2-100 between the first transparent dielectric layer 2-206 and the second transparent dielectric layer 2-1100. In some embodiments, the partial structure of the optical sensor 2-200 formed in FIG. 26A may be continued to form the structure shown in FIG. 31A. On the other hand, referring to FIG. 31B, the structure shown is similar to the structure shown in FIG. 31A, the difference is that the structure shown in FIG. 31B is the multiple microlenses 2-210 included in the microlens layer 2-209 It is directly disposed on the first transparent medium layer 2-206 (that is, it does not have a light shielding layer between the microlenses 2-210).

在形成第一透明介質層2-206之後,可在第一透明介質層2-206之上形成圖案化第三遮光層2-1002。在一些實施例中,圖案化第三遮光層2-1002的材料、形成方法、厚度、以及孔徑大抵相同於上述的圖案化第一遮光層2-204及圖案化第二遮光層2-207,故此處不再贅述。在一些實施例中,第二透明介質層2-1001的材料、形成方法大抵相同於上述的第一透明介質層2-206,故此處不再贅述。第二透明介質層2-1001的厚度T在約1微米至約100微米的範圍,例如可為30微米。After forming the first transparent dielectric layer 2-206, a patterned third light-shielding layer 2-100 can be formed over the first transparent dielectric layer 2-206. In some embodiments, the material, forming method, thickness, and aperture of the patterned third light shielding layer 2-100 are substantially the same as the above-mentioned patterned first light shielding layer 2-204 and patterned second light shielding layer 2-207, So I won't repeat them here. In some embodiments, the material and forming method of the second transparent dielectric layer 2-001 are substantially the same as the above-mentioned first transparent dielectric layer 2-206, so they will not be repeated here. The thickness T of the second transparent dielectric layer 2-1000 is in the range of about 1 micrometer to about 100 micrometers, for example, 30 micrometers.

根據本發明的一些實施例,通過形成第三遮光層2-1002於第一透明介質層2-206上,可避免感測畫素陣列2-202接收到不需要的光線,並可防止入射到光學感測器2-200的光線所產生的串音,進而提升信號雜訊比(S/N)。舉例來說,如第31A、31B圖所示,至少一個第一開孔2-205的中心線2-C2、第三遮光層2-1002中對應的一個第三開孔2-1003的中心線2-C3、以及對應的微透鏡2-210的中心線2-C1為重疊。在第31A、31B圖中,光線2-L1為能由感測畫素2-203所接收的入射光,而光線2-L2為來自於所允許入射至感測畫素2-203的入射角範圍外的光線。因此,光線2-L2將被第三遮光層2-1002吸收或阻擋而無法入射至感測畫素2-203。According to some embodiments of the present invention, by forming the third light shielding layer 2-1002 on the first transparent dielectric layer 2-206, the sensing pixel array 2-202 can be prevented from receiving unnecessary light, and incident light can be prevented The crosstalk generated by the light from the optical sensor 2-200 further improves the signal-to-noise ratio (S/N). For example, as shown in FIGS. 31A and 31B, the centerline 2-C2 of the at least one first opening 2-205 and the centerline of the corresponding third opening 2-1003 in the third light shielding layer 2-1002 The center line 2-C1 of 2-C3 and the corresponding microlens 2-210 overlap. In FIGS. 31A and 31B, the light 2-L1 is incident light that can be received by the sensing pixel 2-203, and the light 2-L2 is the incident angle from the allowed incident on the sensing pixel 2-203 Light outside the range. Therefore, the light 2-L2 will be absorbed or blocked by the third light-shielding layer 2-1002 and cannot enter the sensing pixel 2-203.

參照第32圖,第32圖所示出的結構相似於第31A圖所示出的結構。第32圖與第31A圖之間的差異在於至少一個第一開孔2-205的中心線2-C2、第三遮光層2-1002的一個對應第三開孔2-1003的中心線2-C3、以及對應的微透鏡2-210的中心線2-C1皆不重疊。在第32圖中,光線2-L1為能由感測畫素2-203所接收的入射光,而光線2-L2為來自於所允許入射至感測畫素2-203的入射角範圍外的光線。因此,光線2-L2將被第三遮光層2-1002吸收或阻擋而無法入射至感測畫素2-203。根據本發明的一些實施例,第32圖所示出的結構可有利於感測畫素2-203接收斜角入射的光。再者,通過形成第三遮光層2-1002於第一透明介質層2-206上,可避免感測畫素陣列2-202接收到不需要的光線,並可防止入射至光學感測器2-200的光線所產生的串音,進而提升信號雜訊比(S/N)。Referring to FIG. 32, the structure shown in FIG. 32 is similar to the structure shown in FIG. 31A. The difference between FIG. 32 and FIG. 31A is that the center line 2-C2 of at least one first opening 2-205 and one of the third light-shielding layers 2-100 correspond to the center line 2- of the third opening 2-1003 C3 and the center line 2-C1 of the corresponding microlens 2-210 do not overlap. In Figure 32, the light 2-L1 is incident light that can be received by the sensing pixel 2-203, and the light 2-L2 is from outside the allowable incident angle to the sensing pixel 2-203. Light. Therefore, the light 2-L2 will be absorbed or blocked by the third light-shielding layer 2-1002 and cannot enter the sensing pixel 2-203. According to some embodiments of the present invention, the structure shown in FIG. 32 may facilitate sensing pixels 2-203 to receive light incident at an oblique angle. Furthermore, by forming the third light-shielding layer 2-1002 on the first transparent dielectric layer 2-206, the sensing pixel array 2-202 can be prevented from receiving unnecessary light, and the incident to the optical sensor 2 can be prevented -200 crosstalk produced by the light, thereby improving the signal-to-noise ratio (S/N).

值得注意的是,在第29圖至第32圖中所示出的光學感測器2-200所包含的各種額外結構雖在不同的實施例中描述,但這些額外結構皆可相互搭配並視需要而整合於單一個光學感測器2-200。It is worth noting that although various additional structures included in the optical sensor 2-200 shown in FIGS. 29 to 32 are described in different embodiments, these additional structures can be matched with each other and viewed Need to be integrated into a single optical sensor 2-200.

第33圖是根據本發明的一些實施例,示出包含顯示器2-300的範例結構的光學感測系統2-100的剖面示意圖。在一些實施例中,顯示器2-300可包含有機發光二極體顯示器或微型發光二極體顯示器。值得注意的是,為了簡明地描述本發明的實施例並突顯其特徵,在第33圖中所示出的光學感測器2-200與顯示器2-300的封裝結構將在第34、35圖所示的實施例中詳細描述。如第33圖所示,顯示器2-300包含第一透光材料2-1201、位於第一透光材料2-1201上的薄膜電晶體(thin-film transistor,TFT)層2-1202、位於薄膜電晶體層2-1202上的陰極層2-1203、位於陰極層2-1203上的發光層2-1204、位於發光層2-1204上的陽極層2-1205、位於陽極層2-1205上的第二透光材料2-1206、位於第二透光材料2-1206上的偏光板2-1207、位於偏光板2-1207上的粘著層2-1208、以及位於粘著層2-1208上的透光蓋板2-1209。在一些實施例中,顯示器2-300還包含了光圈2-1210,其設置於陰極層2-1203之中,並且位於薄膜電晶體層2-1202的上方。通過光圈2-1210的設置,可使得從發光層2-1204發出的光線經由目標物2-F反射後,入射至光學感測器2-200,而不會被陰極層2-1203遮蔽。另一方面,也可直接使用透明電極材料所形成的陰極層2-1203,而使得經由目標物2-F反射後的光線入射至光學感測器2-200而不會被遮蔽。當然,以上描述的例如OLED顯示器結構可能隨著技術演進而有材料層的增減或變化,需注意的是,本發明的構思並不因此而有所改變。FIG. 33 is a schematic cross-sectional view of an optical sensing system 2-100 including an exemplary structure of a display 2-300 according to some embodiments of the present invention. In some embodiments, the display 2-300 may include an organic light emitting diode display or a miniature light emitting diode display. It is worth noting that, in order to briefly describe the embodiments of the present invention and highlight its features, the packaging structure of the optical sensor 2-200 and the display 2-300 shown in FIG. 33 will be shown in FIGS. 34 and 35. It is described in detail in the illustrated embodiment. As shown in FIG. 33, the display 2-300 includes a first light-transmitting material 2-201, a thin-film transistor (TFT) layer 2-1202 on the first light-transmitting material 2-201, and a film The cathode layer 2-1203 on the transistor layer 2-1202, the light emitting layer 2-1204 on the cathode layer 2-1203, the anode layer 2-1205 on the light emitting layer 2-1204, and the anode layer 2-1205 on the anode layer 2-1205 The second light-transmitting material 2-1206, the polarizing plate 2-1207 on the second light-transmitting material 2-1206, the adhesive layer 2-1208 on the polarizing plate 2-1207, and the adhesive layer 2-1208的光盖盖2-1209. In some embodiments, the display 2-300 further includes an aperture 2-1210, which is disposed in the cathode layer 2-1203 and above the thin film transistor layer 2-1202. Through the setting of the aperture 2-1210, the light emitted from the light emitting layer 2-1204 can be reflected by the target 2-F and enter the optical sensor 2-200 without being blocked by the cathode layer 2-1203. On the other hand, the cathode layer 2-1203 formed of a transparent electrode material may also be used directly, so that the light reflected by the target 2-F enters the optical sensor 2-200 without being blocked. Of course, the structure of the OLED display described above, for example, may increase or decrease or change the material layer as the technology evolves. It should be noted that the concept of the present invention does not change accordingly.

在一些實施例中,第一透光材料2-1201、第二透光材料2-1206、以及透光蓋板2-1209可包含例如玻璃、石英(quartz)、藍寶石(sapphire)、或透明聚合物等,其允許光線通過。在一些實施例中,陰極層2-1203與陽極層2-1205可為透明的電極材料(例如銦錫氧化物),使得經由目標物2-F反射後入射至光學感測器2-200的光線不會被遮蔽。在一些實施例中,根據顯示器2-300的種類,發光層2-1204可包含有機發光層或微型發光二極體層。在本發明所提供的光學感測系統2-100中,可以顯示器2-300中的發光層2-1204作為光源,其發出的光線將照射與透光蓋板2-1209的上表面接觸的目標物2-F,此光線經目標物2-F反射後會穿過顯示器2-300而入射至光學感測器2-200。In some embodiments, the first light-transmitting material 2-201, the second light-transmitting material 2-1206, and the light-transmitting cover plate 2-1209 may include, for example, glass, quartz, sapphire, or transparent polymer Objects, etc., which allow light to pass through. In some embodiments, the cathode layer 2-1203 and the anode layer 2-1205 may be transparent electrode materials (for example, indium tin oxide) so that they are incident on the optical sensor 2-200 after being reflected by the target 2-F The light will not be blocked. In some embodiments, according to the type of the display 2-300, the light emitting layer 2-1204 may include an organic light emitting layer or a micro light emitting diode layer. In the optical sensing system 2-100 provided by the present invention, the light-emitting layer 2-1204 in the display 2-300 can be used as a light source, and the light emitted from it will illuminate the target that is in contact with the upper surface of the light-transmitting cover 2-1209 Object 2-F, after being reflected by the target object 2-F, the light will pass through the display 2-300 and enter the optical sensor 2-200.

第34圖至第35圖是根據本發明的一些其他實施例,示出包含不同封裝結構的光學感測系統2-100的剖面示意圖。然而,為了簡明地描述本發明的實施例並突顯其特徵,在第34圖至第35圖中並未示出顯示器2-300的具體結構。在一些實施例中,本發明所提供的光學感測系統2-100可通過晶片直接封裝(chip on board,COB)製程來形成。具體而言,參照第34圖,在一些實施例中,光學感測器2-200是接合至電路板2-1303,並通過導線2-1302將光學感測器2-200的基底2-201中的導電墊2-1301連接至電路板2-1303。接著,通過點膠製程塗布粘著材料於電路板2-1303上並環繞光學感測器2-200而形成框架2-1305,並且通過框架2-1305將光學感測器2-200及其下方的電路板2-1303一同粘著至顯示器2-300(例如顯示器2-300的第一透光材料2-1201)的下表面。在一些實施例中,導線2-1302可由鋁(Aluminum)、銅(Copper)、金(Gold)、其他適當的導電材料、上述的合金、或上述的組合所形成。在一些實施例中,形成框架的粘著材料可為光固化材料、熱固化材料、或其他類似的材料。在一些實施例中,電路板2-1303可為柔性電路板(flexible printed circuit,FPC),並且可將此柔性電路板2-1303設置於補強板2-1304(例如為金屬補強板)之上。FIGS. 34 to 35 are schematic cross-sectional views of an optical sensing system 2-100 including different packaging structures according to some other embodiments of the present invention. However, in order to concisely describe the embodiments of the present invention and highlight its features, the specific structure of the display 2-300 is not shown in FIGS. 34 to 35. In some embodiments, the optical sensing system 2-100 provided by the present invention may be formed by a chip on board (COB) process. Specifically, referring to FIG. 34, in some embodiments, the optical sensor 2-200 is bonded to the circuit board 2-1303, and the substrate 2-201 of the optical sensor 2-200 is connected through the wire 2-1302 The conductive pad 2-1301 in is connected to the circuit board 2-1303. Next, the adhesive material is applied on the circuit board 2-1303 by the dispensing process and surrounds the optical sensor 2-200 to form the frame 2-1305, and the optical sensor 2-200 and the underside are formed through the frame 2-1305 The circuit board 2-1303 is adhered to the lower surface of the display 2-300 (for example, the first light-transmitting material 2-201 of the display 2-300). In some embodiments, the wire 2-1302 may be formed of aluminum, copper, gold, other suitable conductive materials, the above alloy, or a combination of the above. In some embodiments, the adhesive material forming the frame may be a photo-curable material, a thermal-curable material, or other similar materials. In some embodiments, the circuit board 2-1303 may be a flexible printed circuit (FPC), and the flexible circuit board 2-1303 may be disposed on the reinforcement board 2-1304 (for example, a metal reinforcement board) .

在其他實施例中,如第35圖所示,本發明實施例亦提供另一種封裝結構。在一些實施例中,在將光學感測器2-200接合至電路板2-1303後,設置框架2-1401(例如塑膠框架)於電路板2-1303上並環繞光學感測器2-200,塗布粘著材料2-1402於框架2-1401內並圍繞光學感測器2-200,並且通過粘著層2-1403將光學感測器2-200及其下方的電路板2-1303粘著至顯示器2-300(例如顯示器2-300的第一透光材料2-1201)的下表面。In other embodiments, as shown in FIG. 35, an embodiment of the present invention also provides another packaging structure. In some embodiments, after the optical sensor 2-200 is bonded to the circuit board 2-1303, a frame 2-401 (such as a plastic frame) is disposed on the circuit board 2-1303 and surrounds the optical sensor 2-200 , Coat the adhesive material 2-1402 in the frame 2-1401 and surround the optical sensor 2-200, and adhere the optical sensor 2-200 and the circuit board 2-1303 underneath through the adhesive layer 2-1403 It reaches the lower surface of the display 2-300 (for example, the first light-transmitting material 2-201 of the display 2-300).

在第34圖、35中所示出的例示性的封裝結構中,顯示器2-300可包含有機發光二極體顯示器或微型發光二極體顯示器。通過本發明的一些實施例所包含的將光學感測器2-200設置於顯示器2-300下的配置,可將顯示器2-300作為光源,其發出的光線將照射與顯示器2-300的上表面接觸的目標物2-F,此光線會經由目標物2-F反射後入射至光學感測器2-200。值得注意的是,光學感測系統2-100中的光學感測器2-200也可搭配其他形態的光源,故本發明實施例並不以此為限。再者,本發明的一些實施例所提供的光學感測系統2-100可通過上述的封裝結構而有效提升可靠度。In the exemplary package structure shown in FIGS. 34 and 35, the display 2-300 may include an organic light emitting diode display or a micro light emitting diode display. According to the configuration of the optical sensor 2-200 disposed under the display 2-300 included in some embodiments of the present invention, the display 2-300 can be used as a light source, and the light emitted by the display 2-300 can be irradiated on the display 2-300. The target 2-F that is in contact with the surface will be reflected by the target 2-F and enter the optical sensor 2-200. It is worth noting that the optical sensors 2-200 in the optical sensing system 2-100 can also be used with other types of light sources, so the embodiments of the present invention are not limited thereto. Furthermore, the optical sensing system 2-100 provided by some embodiments of the present invention can effectively improve the reliability through the package structure described above.

第36圖是根據本發明的一些實施例,示出光學感測系統2-100接收不同角度的入射光2-L1、2-L2、2-L3的示意圖。在一些實施例中,如第36圖所示,當目標物2-F(例如指紋)接觸顯示器2-300的透光蓋板2-1209時,由發光層2-1204所發出的光將被目標物2-F反射而以不同角度入射(例如光線2-L1、2-L2、2-L3)至設置於顯示器2-300下方的光學感測器2-200。其中光線2-L1及光線2-L3為斜角入射的光,而光線2-L2為垂直入射的光。在本發明所提供的光學感測系統2-100中,可整合具有不同橫向偏移距離的微透鏡2-210與第一開孔2-205的配置及/或其他參數(例如第一開孔2-205的孔徑A1’、第一透明介質層2-206的厚度T、及/或微透鏡2-210的曲率半徑R)的配置。通過本發明所提供的光學感測器2-200中結構的配置,可使得光學感測區2-SR與目標物接觸區2-CR的面積不需要以一比一的方式配置(例如光學感測區2-SR的面積可小於目標物接觸區2-CR的面積),而實現縮小光學感測器2-200的面積並取得良好的影像品質的技術效果。並且,光學感測系統2-100所包含的顯示器2-300可提供所需的光源,因此不需要額外的獨立光源。FIG. 36 is a schematic diagram showing that the optical sensing system 2-100 receives incident light 2-L1, 2-L2, 2-L3 at different angles according to some embodiments of the present invention. In some embodiments, as shown in FIG. 36, when the target 2-F (eg, fingerprint) contacts the light-transmitting cover 2-1209 of the display 2-300, the light emitted by the light-emitting layer 2-1204 will be The target 2-F is reflected and enters at different angles (eg, light 2-L1, 2-L2, 2-L3) to the optical sensor 2-200 disposed below the display 2-300. Among them, light 2-L1 and light 2-L3 are light incident at an oblique angle, and light 2-L2 is light incident perpendicularly. In the optical sensing system 2-100 provided by the present invention, the configuration and/or other parameters of the microlens 2-210 and the first opening 2-205 with different lateral offset distances can be integrated (such as the first opening The arrangement of the aperture A1' of 2-205, the thickness T of the first transparent dielectric layer 2-206, and/or the radius of curvature R of the microlens 2-210. Through the configuration of the optical sensor 2-200 provided by the present invention, the areas of the optical sensing area 2-SR and the target contact area 2-CR need not be configured in a one-to-one manner (such as optical sensing The area of the measurement area 2-SR may be smaller than the area of the target contact area 2-CR), and the technical effect of reducing the area of the optical sensor 2-200 and achieving good image quality is achieved. Moreover, the display 2-300 included in the optical sensing system 2-100 can provide the required light source, so no additional independent light source is required.

綜上所述,本發明的實施例所提供的光學感測系統包含利用顯示器(例如移動裝置的螢幕面板)作為光源的設計。再者,在光學感測系統中,光學感測器所包含的具有不同橫向偏移距離的微透鏡層與第一遮光層的第一開孔的配置及/或其他參數(例如第一開孔的孔徑、第一透明介質層的厚度、及/或微透鏡的曲率半徑)的配置,可使得感測畫素接收來自不同入射角範圍的光線。據此,從特定範圍的視場角入射的光線可入射至感測畫素。另外,由於本發明所提供的光學感測系統可接收斜角入射的光,使得光學感測區2-SR的面積可小於目標物接觸區2-CR的面積,而實現縮小光學感測器的面積並取得良好的影像品質的技術效果。In summary, the optical sensing system provided by the embodiments of the present invention includes a design that uses a display (such as a screen panel of a mobile device) as a light source. Furthermore, in the optical sensing system, the configuration and/or other parameters of the first openings of the microlens layer and the first light-shielding layer included in the optical sensor with different lateral offset distances (such as the first opening The configuration of the aperture, the thickness of the first transparent medium layer, and/or the radius of curvature of the microlens) can enable the sensing pixels to receive light from different incident angle ranges. According to this, light incident from a specific range of field angles can be incident on the sensing pixels. In addition, since the optical sensing system provided by the present invention can receive light incident at an oblique angle, the area of the optical sensing area 2-SR can be smaller than the area of the target contact area 2-CR, and the reduction of the optical sensor's Area and achieve the technical effect of good image quality.

第37圖、第38圖是根據本發明的另一些實施例,示出光學感測器2-200’於製程的各種階段的剖面示意圖。第39A圖、第39B圖是根據本發明的另一些實施例,示出光學感測器2-200’的剖面示意圖。第40圖是根據本發明的另一些實施例,示出微透鏡與感測畫素的配置的剖面的局部放大示意圖。光學感測器2-200’ 可類似於上述實施例之光學感測器(例如:光學感測器2-200),而光學感測器2-200’與上述實施例之光學感測器之差異將於後文段落中討論。FIGS. 37 and 38 are schematic cross-sectional views illustrating optical sensors 2-200' at various stages of the manufacturing process according to other embodiments of the present invention. FIGS. 39A and 39B are schematic cross-sectional views of optical sensors 2-200' according to other embodiments of the present invention. FIG. 40 is a partially enlarged schematic diagram showing a cross section of the arrangement of microlenses and sensing pixels according to other embodiments of the present invention. The optical sensor 2-200' may be similar to the optical sensor of the above-mentioned embodiment (for example: the optical sensor 2-200), and the optical sensor 2-200' and the optical sensor of the above-mentioned embodiment The differences will be discussed in the following paragraphs.

參照第37圖,在一些實施例中,基底2-201所包含的感測畫素陣列2-202具有多個感測畫素2-203,並且兩個相鄰的感測畫素2-203之間可設置有電路結構2-1601,例如:記憶裝置或信號處理電路(signal processing circuitry)。在一些實施例中,感測畫素陣列2-202所具有的感測畫素2-203的數量取決於光學感測區2-SR的面積大小。感測畫素2-203的寬度P,取決於光學感測之系統設計需求,可以設計在3微米至10微米的範圍。Referring to FIG. 37, in some embodiments, the sensing pixel array 2-202 included in the substrate 2-201 has a plurality of sensing pixels 2-203, and two adjacent sensing pixels 2-203 A circuit structure 2-1601, such as a memory device or signal processing circuitry, may be provided between them. In some embodiments, the number of sensing pixels 2-203 of the sensing pixel array 2-202 depends on the area size of the optical sensing region 2-SR. The width P of the sensing pixels 2-203 depends on the design requirements of the optical sensing system, and can be designed in the range of 3 microns to 10 microns.

值得注意的是,在第37圖所示出的感測畫素陣列2-202所包含的感測畫素2-203的數量與排列方式與第24圖所示出的數量與排列方式大抵相同,故此處不再贅述。It is worth noting that the number and arrangement of the sensing pixels 2-203 included in the sensing pixel array 2-202 shown in FIG. 37 are substantially the same as those shown in FIG. 24. , So I won’t go into details here.

接著參照第38圖,根據本發明的另一些實施例,可直接形成第一透明介質層2-206於基底2-201上並覆蓋感測畫素陣列2-202。在此實施例中,感測畫素陣列2-202並未被遮光層覆蓋。第一透明介質層2-206之材料及形成方法與第26A圖所示出之第一透明介質層2-206之材料及形成方法大抵相同,故此處不再贅述。根據本發明的另一些實施例,可依據所需的折射率大小來決定第一透明介質層2-206之材料的選擇。在一些實施例中,通過上述方法所形成的第一透明介質層2-206的厚度T在約1微米至約100微米的範圍,例如可為50微米。通過控制第一透明介質層2-206的厚度T可增加或減少光線經過微透鏡2-210後偏移的距離,進而提升感測畫素陣列2-202所能接收的入射光角度的精準度。Referring next to FIG. 38, according to other embodiments of the present invention, a first transparent dielectric layer 2-206 may be directly formed on the substrate 2-201 and cover the sensing pixel array 2-202. In this embodiment, the sensing pixel array 2-202 is not covered by the light shielding layer. The material and forming method of the first transparent dielectric layer 2-206 are substantially the same as the material and forming method of the first transparent dielectric layer 2-206 shown in FIG. 26A, so they will not be repeated here. According to other embodiments of the present invention, the material selection of the first transparent dielectric layer 2-206 can be determined according to the required refractive index. In some embodiments, the thickness T of the first transparent dielectric layer 2-206 formed by the above method is in the range of about 1 micrometer to about 100 micrometers, for example, 50 micrometers. By controlling the thickness T of the first transparent dielectric layer 2-206, the distance by which the light deflects after passing through the microlens 2-210 can be increased or decreased, thereby improving the accuracy of the angle of incident light that the sensing pixel array 2-202 can receive .

接著參照第39A圖,示出包含至少一微透鏡2-210的中心線2-C1與所對應的感測畫素2-203的中心線2-C2重疊的光學感測器2-200’的剖面示意圖。在這些實施例中,將微透鏡層2-209所包含的多個微透鏡2-210對應設置於第二遮光層2-207的多個開孔中,其中這些微透鏡2-210用以引導入射光穿透第一透明介質層2-206至感測畫素2-203。在這些實施例中,所形成的微透鏡層2-209可經過圖案化製程來控制微透鏡2-210的焦距f。在此實施例中,可依據取像解析度來調整微透鏡2-210的直徑D在10微米至50微米的範圍,例如30微米。根據本發明之一些實施例,可調整感測畫素2-203的寬度P與微透鏡2-210的直徑D的比值在0.06至1的範圍,以達成有效提升取像解析度的目的。在一些實施例中,微透鏡層2-209的材料及形成方法大抵相同於第27B圖所繪示之微透鏡層2-209,故此處不再贅述。此外,在一些實施例中,光學感測器2-200’可以不具有第二遮光層2-207。也就是說,微透鏡2-210之間不具有遮光層。Next, referring to FIG. 39A, the optical sensor 2-200′ including the center line 2-C1 of at least one microlens 2-210 and the center line 2-C2 of the corresponding sensing pixel 2-203 overlapped is shown. Sectional schematic. In these embodiments, the microlenses 2-210 included in the microlens layer 2-209 are correspondingly disposed in the openings of the second light shielding layer 2-207, where the microlenses 2-210 are used to guide The projected light penetrates the first transparent medium layer 2-206 to the sensing pixel 2-203. In these embodiments, the formed microlens layer 2-209 may undergo a patterning process to control the focal length f of the microlens 2-210. In this embodiment, the diameter D of the microlens 2-210 can be adjusted in the range of 10 microns to 50 microns, such as 30 microns, according to the imaging resolution. According to some embodiments of the present invention, the ratio of the width P of the sensing pixel 2-203 to the diameter D of the microlens 2-210 can be adjusted in the range of 0.06 to 1, so as to effectively improve the resolution of the image acquisition. In some embodiments, the material and forming method of the microlens layer 2-209 are substantially the same as those of the microlens layer 2-209 shown in FIG. 27B, so they are not repeated here. Furthermore, in some embodiments, the optical sensor 2-200' may not have the second light-shielding layer 2-207. That is, there is no light shielding layer between the microlenses 2-210.

接著參照第39B圖,其所示出的實施例與第39A圖所示出的實施例的差異在於第39B圖中的微透鏡2-210與感測畫素2-203是以一對一的方式斜向對應設置。換句話說,微透鏡層2-209的其中一個微透鏡2-210的中心線2-C1與所對應的感測畫素2-203的中心線2-C2具有一橫向偏移距離2-S。然而,在本發明的其他實施例中的微透鏡2-210與感測畫素2-203亦可以一對多或多對一的方式斜向對應設置(未示出)。第39B圖僅示出例示性的設置方式,本發明並不以此為限。Next, referring to FIG. 39B, the difference between the embodiment shown in FIG. 39A and the embodiment shown in FIG. 39A is that the microlens 2-210 and the sensing pixel 2-203 in FIG. 39B are one-to-one The mode corresponds to the diagonal setting. In other words, the centerline 2-C1 of one of the microlenses 2-210 of the microlens layer 2-209 and the centerline 2-C2 of the corresponding sensing pixel 2-203 have a lateral offset distance 2-S . However, in other embodiments of the present invention, the microlens 2-210 and the sensing pixel 2-203 can also be arranged diagonally in a one-to-many or many-to-one manner (not shown). FIG. 39B only shows an exemplary arrangement, and the invention is not limited thereto.

根據第39A圖至第39B圖所示出的實施例,光學感測器2-200’包含基底2-201,而感測畫素陣列2-202是設置於基底2-201,其中感測畫素陣列2-202包含具有多個感測畫素203。第一透明介質層2-206是位於感測畫素陣列2-202之上方。微透鏡層2-209是位於第一透明介質層2-206之上方且包含多個微透鏡2-210。微透鏡2-210會引導入射光穿透第一透明介質層2-206至感測畫素2-203。在一些實施例中,感測畫素203的寬度P系介於微米至10微米之間,而微透鏡2-210的直徑D系介於10微米至50微米之間。此外,第二遮光層2-207是設置於第一透明介質層2-206的上方,而微透鏡層2-209的多個微透鏡2-210是對應設置於第二遮光層2-207的多個開孔中。如前所述,在另一些實施例中,光學感測器2-200’可以不具有第二遮光層2-207。也就是說,微透鏡2-210之間不具有遮光層。According to the embodiment shown in FIGS. 39A to 39B, the optical sensor 2-200' includes a substrate 2-201, and the sensing pixel array 2-202 is disposed on the substrate 2-201, wherein the sensing image The pixel array 2-202 includes a plurality of sensing pixels 203. The first transparent dielectric layer 2-206 is located above the sensing pixel array 2-202. The microlens layer 2-209 is located above the first transparent medium layer 2-206 and includes a plurality of microlenses 2-210. The micro lens 2-210 guides the incident light to penetrate the first transparent medium layer 2-206 to the sensing pixel 2-203. In some embodiments, the width P of the sensing pixel 203 is between microns and 10 microns, and the diameter D of the microlens 2-210 is between 10 microns and 50 microns. In addition, the second light shielding layer 2-207 is disposed above the first transparent dielectric layer 2-206, and the plurality of microlenses 2-210 of the microlens layer 2-209 are correspondingly disposed on the second light shielding layer 2-207 Multiple openings. As mentioned above, in other embodiments, the optical sensor 2-200' may not have the second light shielding layer 2-207. That is, there is no light shielding layer between the microlenses 2-210.

在本發明所提供的光學感測器2-200’中,可整合具有不同橫向偏移距離的微透鏡2-210與感測畫素2-203的配置及/或其他參數(例如感測畫素2-203的尺寸(例如寬度P)、第一透明介質層2-206的厚度T、及/或微透鏡2-210的焦距f)的配置,例如可將第39A圖、第39B圖所示的結構整合於光學感測器2-200’中。通過本發明所提供的光學感測器2-200’中結構的配置,可使得光學感測區2-SR與目標物接觸區2-CR的面積不需要以一比一的方式配置(例如光學感測區2-SR的面積可小於目標物接觸區2-CR的面積),而實現縮小光學感測器2-200的面積並取得良好的影像品質的技術效果。In the optical sensor 2-200' provided by the present invention, the configuration and/or other parameters of the microlens 2-210 and the sensing pixel 2-203 with different lateral offset distances can be integrated (such as the sensing image The dimensions of the element 2-203 (e.g., width P), the thickness T of the first transparent dielectric layer 2-206, and/or the focal length f of the microlens 2-210 can be configured, for example, as shown in FIGS. 39A and 39B. The structure shown is integrated in the optical sensor 2-200'. Through the configuration of the optical sensor 2-200' provided by the present invention, the areas of the optical sensing area 2-SR and the target contact area 2-CR need not be configured in a one-to-one manner (such as optical The area of the sensing area 2-SR may be smaller than the area of the target contact area 2-CR), and the technical effect of reducing the area of the optical sensor 2-200 and achieving good image quality is achieved.

接著參照第40圖,其為第39A圖的局部放大圖。根據本發明的一些實施例,第40圖示出利用控制微透鏡2-210的中心線2-C1與所對應的感測畫素2-203的中心線2-C2之橫向偏移距離2-S、感測畫素2-203的寬度P、第一透明介質層2-206之折射率n、第一透明介質層2-206之厚度T、微透鏡2-210的焦距f、微透鏡2-210的直徑D,調整所允許的光線的入射角範圍(例如斜角入射的光線)。具體而言,若所述之各項參數與入射光L的入射角θi 及入射光L的折射角θr 符合下列關係式: sinθi = n * sinθr (式一) f =( (D/2)2 +T2 )1/2 (式二) P/2 = f * tanθr (式三),Next, refer to FIG. 40, which is a partially enlarged view of FIG. 39A. According to some embodiments of the present invention, FIG. 40 shows the lateral offset distance 2- of the center line 2-C1 of the control microlens 2-210 and the center line 2-C2 of the corresponding sensing pixel 2-203 S, the width P of the sensing pixel 2-203, the refractive index n of the first transparent dielectric layer 2-206, the thickness T of the first transparent dielectric layer 2-206, the focal length f of the microlens 2-210, the microlens 2 The diameter D of -210 adjusts the range of allowable light incident angle (for example, light incident at an oblique angle). Specifically, if the aforementioned parameters and the incident angle θ i of the incident light L and the refraction angle θ r of the incident light L conform to the following relationship: sin θ i = n * sin θ r (equation 1) f = ((D /2) 2 +T 2 ) 1/2 (Formula 2) P/2 = f * tanθ r (Formula 3),

則可藉由微透鏡2-210引導入射光L穿過第一透明介質層2-206後直接入射至具有符合上述關係式之寬度P的感測畫素2-203,以達成在不具備額外的遮光層的情況下,感測畫素2-203能夠接收來自特定範圍的視場角入射的光線。再者,藉由上述配置可有效降低光學感測器2-200’的厚度。Then, the microlens 2-210 can guide the incident light L to pass through the first transparent medium layer 2-206 and then directly enter the sensing pixel 2-203 having a width P conforming to the above relationship, so as to achieve no additional In the case of a light-shielding layer, the sensing pixels 2-203 can receive light incident from a specific range of field angles. Furthermore, the thickness of the optical sensor 2-200' can be effectively reduced by the above configuration.

值得注意的是,在第29圖、第30圖中所示出的光學感測器2-200所包含的各種額外結構(例如保護層800、濾光層900)亦可應用於光學感測器2-200’中(未示出),並且這些額外結構皆可相互搭配並視需要而整合於單一個光學感測器2-200’中。再者,光學感測器2-200’亦可結合如第33圖所示出的顯示器2-300以及第34圖、第35圖所示出的封裝結構(未示出),此處不再贅述。通過將本發明的上述實施例所包含的光學感測器2-200’設置於顯示器下的配置,可將顯示器作為光源,其發出的光線將照射與顯示器的上表面接近或接觸的目標物,此光線會經由目標物反射後入射至光學感測器2-200’。值得注意的是,光學感測器2-200’也可搭配其他形態的光源,例如,設置在光學感測器2-200’側邊或斜上方的獨立光源(例如,LED光源),故本發明實施例並不以此為限。再者,本發明的一些實施例所提供的光學感測器2-200’與顯示器之結合可通過上述的封裝結構而有效提升可靠度。It is worth noting that the various additional structures included in the optical sensor 2-200 shown in FIGS. 29 and 30 (such as the protective layer 800 and the filter layer 900) can also be applied to the optical sensor 2-200' (not shown), and these additional structures can be matched with each other and integrated into a single optical sensor 2-200' as needed. Furthermore, the optical sensor 2-200' can also be combined with the display 2-300 shown in FIG. 33 and the package structure (not shown) shown in FIG. 34 and FIG. 35, which is not repeated here Repeat. By disposing the optical sensor 2-200' included in the above embodiment of the present invention under the display, the display can be used as a light source, and the light emitted by it will illuminate a target close to or in contact with the upper surface of the display, This light will be reflected by the target and enter the optical sensor 2-200'. It is worth noting that the optical sensor 2-200' can also be used with other types of light sources, for example, an independent light source (for example, an LED light source) disposed on the side or diagonally above the optical sensor 2-200'. The embodiments of the invention are not limited thereto. Furthermore, the combination of the optical sensor 2-200' and the display provided by some embodiments of the present invention can effectively improve the reliability through the above-mentioned packaging structure.

綜上所述,本發明的實施例通過符合上述關係式之微透鏡與具有較小尺寸的感測畫素的配置,可達成在不具備額外的遮光層的情況下,感測畫素亦能夠接收來自特定範圍的視場角入射的光線,並可降低光學感測器的厚度。通過將電路結構配置於具有較小尺寸的感測畫素之間,可有效提升光學感測器的集成密度。本發明的實施例所提供的光學感測器可利用顯示器(例如移動裝置的螢幕面板)作為光源的設計。再者,光學感測器所包含的具有不同橫向偏移距離的微透鏡層與感測畫素的配置及/或其他參數(例如感測畫素的尺寸、第一透明介質層之折射率、第一透明介質層之厚度、微透鏡的焦距、微透鏡的直徑)的配置,可使得感測畫素接收來自不同入射角範圍的光線。據此,從特定範圍的視場角入射的光線可入射至感測畫素。由於本發明所提供的光學感測系統可接收斜角入射的光,使得光學感測區2-SR的面積可小於目標物接觸區2-CR的面積,而實現縮小光學感測器的面積並取得良好的影像品質的技術效果。In summary, the embodiments of the present invention can achieve the sensing pixels can be achieved without the additional light-shielding layer through the configuration of the micro lens and the sensing pixels with a smaller size that meet the above relationship Receiving light incident from a specific range of field angles and reducing the thickness of the optical sensor. By arranging the circuit structure between sensing pixels with a smaller size, the integration density of the optical sensor can be effectively improved. The optical sensor provided by the embodiments of the present invention may use a display (such as a screen panel of a mobile device) as a light source design. Furthermore, the configuration and/or other parameters of the microlens layer with different lateral offset distances and sensing pixels included in the optical sensor (such as the size of the sensing pixel, the refractive index of the first transparent medium layer, The thickness of the first transparent medium layer, the focal length of the microlens, and the diameter of the microlens) can make the sensing pixels receive light from different incident angle ranges. According to this, light incident from a specific range of field angles can be incident on the sensing pixels. Since the optical sensing system provided by the present invention can receive light incident at an oblique angle, the area of the optical sensing area 2-SR can be smaller than the area of the target contact area 2-CR, and the area of the optical sensor can be reduced. Achieve the technical effect of good image quality.

值得注意的是,雖然此處所討論的範例所公開的例示性實施方式(例如第一實施例與第二實施例)涉及應用於移動裝置的指紋感測系統,但本發明所提供的技術也可應用至其他形態的感測器,而不僅止於應用在檢測指紋的感測器裝置。舉例來說,亦可應用於檢測表皮/真皮(epidermis /dermis)指紋影像 、皮下靜脈(subcutaneous veins)影像、以及測量其他生物特徵影像或資訊(例如血氧濃度(blood oxygen level)、心跳(heartbeat)等),並不局限於上述實施例所公開的範圍。It is worth noting that although the exemplary embodiments disclosed in the examples discussed here (such as the first and second embodiments) relate to fingerprint sensing systems applied to mobile devices, the technology provided by the present invention may also It is applied to other forms of sensors, not just sensor devices used to detect fingerprints. For example, it can also be used to detect epidermis/dermis fingerprint images, subcutaneous veins images, and to measure other biometric images or information (such as blood oxygen level (blood oxygen level), heartbeat (heartbeat) ) Etc.), not limited to the scope disclosed in the above embodiment.

以上概述數個實施例,以便在本發明所屬技術領域中技術人員可以更理解本發明實施例的觀點。在本發明所屬技術領域中技術人員應該理解,他們能以本發明實施例為基礎,設計或修改其他製程和結構,以達到與在此介紹的實施例相同的目的及/或優勢。在本發明所屬技術領域中技術人員也應該理解到,此類等效的製程和結構並無悖離本發明的構思與範圍,且他們能在不違背本發明的構思和範圍之下,做各式各樣的改變、取代和替換。Several embodiments are summarized above, so that those skilled in the art to which the present invention pertains can better understand the viewpoints of the embodiments of the present invention. Those skilled in the art of the present invention should understand that they can design or modify other processes and structures based on the embodiments of the present invention to achieve the same purposes and/or advantages as the embodiments described herein. Those skilled in the art to which the present invention belongs should also understand that such equivalent processes and structures do not depart from the concept and scope of the present invention, and they can do various things without departing from the concept and scope of the present invention. Various changes, substitutions and replacements.

1-ANG‧‧‧角度 1-ANG2‧‧‧第二角度 1-CR‧‧‧待測物面積 1-CV1‧‧‧曲線 1-CV2‧‧‧曲線 1-d、H、h‧‧‧距離 1-F‧‧‧目標物 1-G‧‧‧間隙 1-L1‧‧‧正向入射光 1-L1'‧‧‧正向入射光 1-L2‧‧‧斜向入射光 1-L3‧‧‧第二斜向入射光 1-L4‧‧‧第三斜向入射光 1-L5‧‧‧第四斜向入射光 1-OA‧‧‧光軸 1-OAA‧‧‧光軸 1-OAM‧‧‧目標光軸 1-SR‧‧‧面積 1-203、1-203'、1-203M‧‧‧感測畫素 1-200‧‧‧光學感測器 1-201‧‧‧基板 1-202‧‧‧介電層組 1-204‧‧‧第一遮光層 1-204A‧‧‧第一光孔 1-205‧‧‧保護層 1-206‧‧‧光學濾波層 1-207‧‧‧第一透明介質層 1-208‧‧‧第二遮光層 1-208A‧‧‧第二光孔 1-209‧‧‧第二透明介質層 1-210‧‧‧微透鏡 1-210A‧‧‧偏移微透鏡 1-210B‧‧‧底面 1-210M‧‧‧目標微透鏡 1-211‧‧‧透鏡遮光層 1-300‧‧‧顯示器 1-300B ~下表面 1-400‧‧‧框架 1-410‧‧‧容置槽 1-420‧‧‧容置底部 1-500‧‧‧電池 1-600‧‧‧光學感測系統 1-610‧‧‧底座 1-900‧‧‧光學濾波板 1-1300‧‧‧光學感測器模組 1-1301‧‧‧承載硬版 1-1302‧‧‧軟性電路板 1-1303‧‧‧焊線 1-1305‧‧‧框體 1-1306‧‧‧封膠層 A1、A2‧‧‧孔徑 X‧‧‧間距 2-100‧‧‧光學感測系統 2-101‧‧‧蓋板層 2-200、2-200’‧‧‧光學感測器 2-300‧‧‧顯示器 2-201‧‧‧基底 2-202‧‧‧感測畫素陣列 2-203、2-203A、2-203B、2-203C‧‧‧感測畫素 2-204‧‧‧第一遮光層 2-205、2-205A、2-205B、2-205C‧‧‧第一開孔 2-206‧‧‧第一透明介質層 2-206A、2-206B‧‧‧第一透明介質子層 2-207‧‧‧第二遮光層 2-208‧‧‧第二開孔 2-209‧‧‧微透鏡層 2-210、2-210A、2-210B、2-210C‧‧‧微透鏡 2-800‧‧‧保護層 2-900‧‧‧濾光層 2-1001‧‧‧第二透明介質層 2-1002‧‧‧第三遮光層 2-1003‧‧‧第三開孔 2-1201‧‧‧第一透光材料 2-1202‧‧‧薄膜電晶體層 2-1203‧‧‧陰極層 2-1204‧‧‧發光層 2-1205‧‧‧陽極層 2-1206‧‧‧第二透光材料 2-1207‧‧‧偏光板 2-1208‧‧‧粘著層 2-1209‧‧‧透光蓋板 2-1210‧‧‧光圈 2-1301‧‧‧導電墊 2-1302‧‧‧導線 2-1303‧‧‧電路板 2-1304‧‧‧補強板 2-1305、2-1401‧‧‧框架 2-1402‧‧‧粘著材料 2-1403‧‧‧粘著層 2-1601‧‧‧電路結構 2-C、2-C1、2-C2、2-C3、2-C1A、2-C2A、2-C1C、2-C2C‧‧‧中心線 2-CR‧‧‧目標物接觸區 2-F‧‧‧目標物 2-F1‧‧‧凸部 2-F2‧‧‧凹部 2-L1、2-L2、2-L3‧‧‧光線 2-S、2-S1、2-S2‧‧‧橫向偏移距離 2-SR‧‧‧光學感測區 2-TA、2-TB‧‧‧厚度 A1’‧‧‧第一孔徑 A2’‧‧‧第二孔徑 D‧‧‧直徑 f‧‧‧焦距 L‧‧‧入射光 n‧‧‧折射率 P‧‧‧寬度 R‧‧‧曲率半徑 T‧‧‧厚度θ、θ’‧‧‧主要角度 θ1、θ2‧‧‧容許度 θi‧‧‧入射角 θr‧‧‧折射角1-ANG‧‧‧Angle 1-ANG2‧‧‧Second Angle 1-CR‧‧‧ Area of the object to be measured 1-CV1‧‧‧curve 1-CV2‧‧‧curve 1-d, H, h‧‧‧ Distance 1-F‧‧‧Object 1-G‧‧‧Gap 1-L1‧‧‧ Forward incident light 1-L1'‧‧‧Direct incident light 1-L2‧‧‧ Oblique incident light 1-L3 ‧‧‧ Second oblique incident light 1-L4‧‧‧ Third oblique incident light 1-L5‧‧‧ Fourth oblique incident light 1-OA‧‧‧Optical axis 1-OAA‧‧‧Optical axis 1 -OAM‧‧‧Target optical axis 1-SR‧‧‧Area 1-203, 1-203', 1-203M‧‧‧ Sensing pixel 1-200‧‧‧Optical sensor 1-201‧‧‧ Substrate 1-202‧‧‧Dielectric layer group 1-204‧‧‧First light-shielding layer 1-204A‧‧‧First light hole 1-205‧‧‧Protection layer 1-206‧‧‧Optical filter layer 1- 207‧‧‧First transparent dielectric layer 1-208‧‧‧Second light-shielding layer 1-208A‧‧‧Second light hole 1-209‧‧‧Second transparent dielectric layer 1-210‧‧‧Microlens 1- 210A‧‧‧Offset microlens 1-210B‧‧‧Bottom surface 1-210M‧‧‧Target microlens 1-211‧‧‧Lens shading layer 1-300‧‧‧Display 1-300B ~lower surface 1-400‧ ‧‧Frame 1-410‧‧‧Accommodation slot 1-420‧‧‧Accommodation bottom 1-500‧‧‧Battery 1-600‧‧‧Optical sensing system 1-610‧‧‧Base 1-900‧‧ ‧Optical filter board 1-1300‧‧‧Optical sensor module 1-1301‧‧‧Carrying hard version 1-1302‧‧‧Flexible circuit board 1-1303‧‧‧Wire bonding 1-1305‧‧‧Frame 1-1306‧‧‧Sealing layer A1, A2‧‧‧Aperture X‧‧‧Pitch 2-100‧‧‧Optical sensing system 2-101‧‧‧Cover layer 2-200, 2-200'‧‧ ‧Optical sensor 2-300‧‧‧Display 2-201‧‧‧Substrate 2-202‧‧‧Sensor pixel array 2-203, 2-203A, 2-203B, 2-203C‧‧‧ Sensing Pixel 2-204‧‧‧First light-shielding layer 2-205, 2-205A, 2-205B, 2-205C‧‧‧First opening 2-206‧‧‧First transparent dielectric layer 2-206A, 2 -206B‧‧‧First transparent dielectric sublayer 2-207‧‧‧Second light shielding layer 2-208‧‧‧Second opening 2-209‧‧‧Microlens layer 2-210, 2-210A, 2- 210B, 2-210C‧‧‧Microlens 2-800‧‧‧Protection layer 2-900‧‧‧Filter layer 2-1001‧‧‧Second transparent dielectric layer 2-1002‧‧‧ Third shading layer 2- 1003‧‧‧ Third opening 2-1201‧‧‧First light-transmitting material 2-1202‧‧‧Thin film transistor layer 2-1203‧‧‧Negative Polar layer 2-1204‧‧‧Light emitting layer 2-1205‧‧‧Anode layer 2-1206‧‧‧Second translucent material 2-1207‧‧‧Polarizing plate 2-1208‧‧‧Adhesive layer 2-1209‧ ‧‧Translucent cover plate 2-1210‧‧‧Aperture 2-1301‧‧‧Conductive pad 2-1302‧‧‧Wire 2-1303‧‧‧ Circuit board 2-1304‧‧‧Reinforcement plate 2-1305, 2- 1401‧‧‧Frame 2-1402 ‧‧‧ Adhesive material 2-1403 ‧‧‧ Adhesive layer 2-1601 ‧‧‧ Circuit structure 2-C, 2-C1, 2-C2, 2-C3, 2-C1A , 2-C2A, 2-C1C, 2-C2C ‧‧‧ center line 2-CR‧‧‧ target contact area 2-F‧‧‧ target 2-F1‧‧‧ convex part 2-F2‧‧‧ concave part 2-L1,2-L2,2-L3‧‧‧ ray 2-S, 2-S1,2 S2‧‧‧ - 2-SR‧‧‧ laterally offset from the optical sensing region 2-T A, 2- T B ‧‧‧thickness A1'‧‧‧ first aperture A2'‧‧‧second aperture D‧‧‧diameter f‧‧‧ focal length L‧‧‧incident light n‧‧‧refractive index P‧‧‧width R ‧‧‧ Radius of curvature T‧‧‧ Thickness θ, θ'‧‧‧‧ Main angle θ1, θ2‧‧‧ Allowance θ i ‧‧‧ Angle of incidence θ r ‧‧‧ Refraction angle

以下將配合說明書附圖詳述本發明實施例。應注意的是,依據在業界的標準做法,各種特徵並未按照比例繪製且僅用以說明例示。事實上,可能任意地放大或縮小元件的尺寸,以清楚地表現出本發明實施例的特徵。 第1圖顯示依據本發明第一實施例的光學感測系統的剖面示意圖。 第2圖顯示依據本發明第一實施例的光學感測器的剖面示意圖。 第3圖顯示依據本發明第一實施例的光學感測器的特性曲線圖。 第4圖顯示依據本發明第二實施例的光學感測系統的剖面示意圖。 第5圖顯示依據本發明第一實施例的光學感測器的工作狀態的示意圖。 第6圖顯示依據本發明第三實施例的光學感測器的剖面示意圖。 第7圖顯示依據本發明第三實施例的光學感測器的特性曲線圖。 第8圖顯示依據本發明第一實施例的光學感測器的另一工作狀態的示意圖。 第9圖顯示依據本發明第四實施例的光學感測器的剖面示意圖。 第10圖顯示第8圖的光學感測器的特性曲線圖。 第11圖顯示第9圖的光學感測器的特性曲線圖。 第12圖顯示依據本發明第四實施例的光學感測器的工作原理的局部剖面示意圖。 第13圖顯示依據本發明第五實施例的光學感測器的剖面示意圖。 第14圖顯示依據本發明第六實施例的光學感測器的局部剖面示意圖。 第15圖顯示第14圖的光學感測器的特性曲線圖。 第16A圖與第16B圖顯示依據本發明第七實施例的光學感測器的兩個例子的局部剖面示意圖。 第17A圖至第17E圖顯示依據本發明第八實施例的光學感測器的製造方法的各步驟的結構剖面示意圖。 第18A圖至第18F圖顯示依據本發明第九實施例的光學感測器的製造方法的各步驟的結構剖面示意圖。 第19A圖至第19F圖顯示依據本發明第十實施例的光學感測器的製造方法的各步驟的結構剖面示意圖。 第20圖顯示依據本發明第八實施例的變化例的光學感測器的結構剖面示意圖。 第21圖顯示依據本發明第十實施例的變化例的光學感測器的結構剖面示意圖。 第22圖是根據本發明的一些實施例,示出光學感測系統感測目標物的示意圖。 第23圖是根據本發明的一些實施例,示出光學感測系統的範例結構感測目標物的示意圖。 第24圖至第26B圖是根據本發明的一些實施例,示出光學感測器於製程的各種階段的剖面示意圖。 第27A圖至第27F圖是根據本發明的一些實施例,示出光學感測器的剖面示意圖。 第28A圖至第28C圖是根據本發明的其他實施例,示出光學感測器的剖面示意圖。 第29圖至第32圖是根據本發明的一些其他實施例,示出包含額外結構的光學感測器的剖面示意圖。 第33圖是根據本發明的一些實施例,示出包含顯示器的範例結構的光學感測系統的剖面示意圖。 第34圖至第35圖是根據本發明的一些其他實施例,示出包含不同封裝結構的光學感測系統的剖面示意圖。 第36圖是根據本發明的一些實施例,示出光學感測系統接收入射光的示意圖。 第37圖至第38圖是根據本發明的另一些實施例,示出光學感測器於製程的各種階段的剖面示意圖。 第39A圖至第39B圖是根據本發明的另一些實施例,示出微透鏡的配置的剖面示意圖。 第40圖是根據本發明的另一些實施例,示出微透鏡與感測畫素的配置的剖面的局部放大示意圖。The embodiments of the present invention will be described in detail below in conjunction with the accompanying drawings of the specification. It should be noted that according to standard practices in the industry, various features are not drawn to scale and are used for illustration only. In fact, the size of the element may be arbitrarily enlarged or reduced to clearly show the features of the embodiments of the present invention. FIG. 1 shows a schematic cross-sectional view of an optical sensing system according to a first embodiment of the invention. FIG. 2 shows a schematic cross-sectional view of the optical sensor according to the first embodiment of the present invention. FIG. 3 shows the characteristic curve of the optical sensor according to the first embodiment of the present invention. FIG. 4 shows a schematic cross-sectional view of an optical sensing system according to a second embodiment of the invention. FIG. 5 shows a schematic diagram of the working state of the optical sensor according to the first embodiment of the present invention. FIG. 6 shows a schematic cross-sectional view of an optical sensor according to a third embodiment of the invention. FIG. 7 shows the characteristic curve of the optical sensor according to the third embodiment of the present invention. FIG. 8 is a schematic diagram showing another working state of the optical sensor according to the first embodiment of the present invention. FIG. 9 shows a schematic cross-sectional view of an optical sensor according to a fourth embodiment of the invention. Figure 10 shows the characteristic curve of the optical sensor of Figure 8. Figure 11 shows the characteristic curve of the optical sensor of Figure 9. FIG. 12 shows a partial cross-sectional view of the working principle of the optical sensor according to the fourth embodiment of the invention. FIG. 13 shows a schematic cross-sectional view of an optical sensor according to a fifth embodiment of the invention. FIG. 14 shows a schematic partial cross-sectional view of an optical sensor according to a sixth embodiment of the invention. Figure 15 shows the characteristic curve of the optical sensor of Figure 14. 16A and 16B show partial cross-sectional views of two examples of the optical sensor according to the seventh embodiment of the invention. FIGS. 17A to 17E show schematic cross-sectional views of the steps of the method for manufacturing the optical sensor according to the eighth embodiment of the present invention. 18A to 18F show schematic cross-sectional views of the steps of the method for manufacturing the optical sensor according to the ninth embodiment of the present invention. FIGS. 19A to 19F are schematic cross-sectional views of the steps of the method for manufacturing the optical sensor according to the tenth embodiment of the present invention. FIG. 20 shows a schematic cross-sectional view of the structure of an optical sensor according to a modification of the eighth embodiment of the present invention. FIG. 21 shows a schematic cross-sectional view of the structure of an optical sensor according to a modification of the tenth embodiment of the present invention. FIG. 22 is a schematic diagram illustrating that the optical sensing system senses a target according to some embodiments of the present invention. FIG. 23 is a schematic diagram illustrating an exemplary structure of an optical sensing system for sensing an object according to some embodiments of the present invention. 24 to 26B are schematic cross-sectional views showing optical sensors at various stages of the manufacturing process according to some embodiments of the present invention. FIGS. 27A to 27F are schematic cross-sectional views showing optical sensors according to some embodiments of the present invention. 28A to 28C are schematic cross-sectional views of optical sensors according to other embodiments of the present invention. FIGS. 29 to 32 are schematic cross-sectional views of optical sensors including additional structures according to some other embodiments of the present invention. FIG. 33 is a schematic cross-sectional view showing an optical sensing system including an exemplary structure of a display according to some embodiments of the present invention. FIGS. 34 to 35 are schematic cross-sectional views of optical sensing systems including different packaging structures according to some other embodiments of the present invention. FIG. 36 is a schematic diagram showing that the optical sensing system receives incident light according to some embodiments of the present invention. FIGS. 37 to 38 are schematic cross-sectional views showing optical sensors at various stages of the manufacturing process according to other embodiments of the present invention. 39A to 39B are schematic cross-sectional views showing the configuration of microlenses according to other embodiments of the present invention. FIG. 40 is a partially enlarged schematic diagram showing a cross section of the arrangement of microlenses and sensing pixels according to other embodiments of the present invention.

1-d‧‧‧距離 1-d‧‧‧Distance

1-F‧‧‧目標物 1-F‧‧‧Target

1-203‧‧‧感測畫素 1-203‧‧‧sensing pixels

1-200‧‧‧光學感測器 1-200‧‧‧Optical sensor

1-201‧‧‧基板 1-201‧‧‧Substrate

1-202‧‧‧介電層組 1-202‧‧‧Dielectric layer group

1-204‧‧‧第一遮光層 1-204‧‧‧The first shading layer

1-204A‧‧‧第一光孔 1-204A‧‧‧First aperture

1-205‧‧‧保護層 1-205‧‧‧Protection layer

1-206‧‧‧光學濾波層 1-206‧‧‧Optical filter layer

1-207‧‧‧第一透明介質層 1-207‧‧‧First transparent dielectric layer

1-210‧‧‧微透鏡 1-210‧‧‧micro lens

1-300‧‧‧顯示器 1-300‧‧‧Monitor

1-400‧‧‧框架 1-400‧‧‧frame

1-410‧‧‧容置槽 1-410‧‧‧accommodation slot

1-420‧‧‧容置底部 1-420‧‧‧ accommodate bottom

1-500‧‧‧電池 1-500‧‧‧ battery

1-600‧‧‧光學感測系統 1-600‧‧‧Optical sensing system

1-610‧‧‧底座 1-610‧‧‧ Base

1-1300‧‧‧光學感測器模組 1-1300‧‧‧Optical sensor module

1-1301‧‧‧承載硬版 1-1301‧‧‧Bearing hard version

1-1302‧‧‧軟性電路板 1-1302‧‧‧flexible circuit board

1-1303‧‧‧焊線 1-1303‧‧‧bond wire

1-1305‧‧‧框體 1-1305‧‧‧Frame

1-1306‧‧‧封膠層 1-1306‧‧‧Sealing layer

Claims (57)

一種光學感測器,其特徵在於,所述的光學感測器包括: 一基板,具有多個感測畫素,排列成陣列; 一第一透明介質層,位於所述基板的上方;以及 多個微透鏡,排列成陣列,並位於所述第一透明介質層上或上方,其中所述多個微透鏡分別將從外界進入所述多個微透鏡的多個平行的正向入射光,通過所述第一透明介質層而入射於所述多個感測畫素總數的一部分或全部的內部,並將從外界進入所述多個微透鏡的多個平行的斜向入射光入射於所述多個感測畫素總數的一部分或全部的外部,藉此感測一目標物的一圖像,所述目標物產生所述多個平行的正向入射光以及所述多個平行的斜向入射光,所述多個平行的正向入射光平行於所述多個微透鏡的多個光軸,各所述平行的斜向入射光與各所述光軸夾出一個角度。An optical sensor, characterized in that the optical sensor includes: A substrate with multiple sensing pixels arranged in an array; A first transparent dielectric layer above the substrate; and A plurality of microlenses arranged in an array and located on or above the first transparent medium layer, wherein the plurality of microlenses respectively enter a plurality of parallel positive incident light from the outside into the plurality of microlenses, The first transparent medium layer is incident on a part or all of the total number of the sensing pixels, and a plurality of parallel oblique incident lights entering the plurality of microlenses from the outside are incident on the Part or all of the total number of the plurality of sensing pixels, thereby sensing an image of a target object that generates the plurality of parallel normal incident light and the plurality of parallel oblique To the incident light, the plurality of parallel normal incident lights are parallel to the plurality of optical axes of the plurality of microlenses, and each of the parallel oblique incident lights forms an angle with each of the optical axes. 如申請專利範圍第1項所述的光學感測器,其特徵在於,所述角度介於5度到90度之間。The optical sensor according to item 1 of the patent application range, wherein the angle is between 5 degrees and 90 degrees. 如申請專利範圍第1項所述的光學感測器,其特徵在於,所述的光學感測器還包括: 一介電層組,位於所述基板上並覆蓋所述多個感測畫素; 一第一遮光層,位於所述介電層組上,並具有多個第一光孔,所述多個平行的正向入射光通過所述多個第一光孔,所述多個平行的斜向入射光不通過所述多個第一光孔;以及 一光學濾波層,位於所述第一遮光層上,並對所述多個平行的正向入射光與所述多個平行的斜向入射光執行光線波長過濾動作,其中所述第一透明介質層位於所述光學濾波層上,所述多個微透鏡位於所述第一透明介質層上。The optical sensor according to item 1 of the patent application scope, wherein the optical sensor further includes: A dielectric layer group, located on the substrate and covering the plurality of sensing pixels; A first light-shielding layer, located on the dielectric layer group, and having a plurality of first light holes, the plurality of parallel normal incident light passing through the plurality of first light holes, the plurality of parallel Oblique incident light does not pass through the plurality of first light holes; and An optical filter layer, located on the first light-shielding layer, and performing a light wavelength filtering action on the plurality of parallel positive incident light and the plurality of parallel oblique incident light, wherein the first transparent medium A layer is located on the optical filter layer, and the plurality of microlenses are located on the first transparent medium layer. 如申請專利範圍第1項所述的光學感測器,其特徵在於,所述的光學感測器還包括: 一介電層組,位於所述基板上並覆蓋所述多個感測畫素; 一第一遮光層,位於所述介電層組上,並具有多個第一光孔,所述多個平行的正向入射光通過所述多個第一光孔,所述多個平行的斜向入射光不通過所述多個第一光孔;以及 一光學濾波板,位於所述多個微透鏡的上方,並對所述多個平行的正向入射光與所述多個平行的斜向入射光執行光線波長過濾動作,所述多個微透鏡位於所述第一透明介質層上。The optical sensor according to item 1 of the patent application scope, wherein the optical sensor further includes: A dielectric layer group, located on the substrate and covering the plurality of sensing pixels; A first light-shielding layer, located on the dielectric layer group, and having a plurality of first light holes, the plurality of parallel normal incident light passing through the plurality of first light holes, the plurality of parallel Oblique incident light does not pass through the plurality of first light holes; and An optical filter plate is located above the plurality of microlenses, and performs a light wavelength filtering action on the plurality of parallel positive incident lights and the plurality of parallel oblique incident lights, the plurality of microlenses Located on the first transparent medium layer. 如申請專利範圍第1項所述的光學感測器,其特徵在於,所述的光學感測器還包括: 一透鏡遮光層,位於所述第一透明介質層上,以及所述多個微透鏡之間的多個間隙中,以遮蔽從外界進入所述多個間隙中的多個平行的第二斜向入射光免於進入所述第一透明介質層及所述多個感測畫素中。The optical sensor according to item 1 of the patent application scope, wherein the optical sensor further includes: A lens shading layer, located on the first transparent medium layer, and in a plurality of gaps between the plurality of microlenses to shield a plurality of parallel second oblique directions entering the plurality of gaps from the outside Incident light is prevented from entering the first transparent medium layer and the plurality of sensing pixels. 如申請專利範圍第1項所述的光學感測器,其特徵在於,所述的光學感測器還包括: 一介電層組,位於所述基板上並覆蓋所述多個感測畫素; 一第一遮光層,位於所述介電層組上,並具有多個第一光孔,所述多個平行的正向入射光通過所述多個第一光孔,所述多個平行的斜向入射光不通過所述多個第一光孔; 一光學濾波層,位於所述第一遮光層上,並對所述多個平行的正向入射光與所述多個平行的斜向入射光執行光線波長過濾動作,其中所述第一透明介質層位於所述光學濾波層上,所述多個微透鏡位於所述第一透明介質層上;以及 一透鏡遮光層,位於所述第一透明介質層上,以及所述多個微透鏡之間的多個間隙中,以遮蔽從外界進入所述多個間隙中的多個平行的第二斜向入射光免於進入所述第一透明介質層及所述多個感測畫素中。The optical sensor according to item 1 of the patent application scope, wherein the optical sensor further includes: A dielectric layer group, located on the substrate and covering the plurality of sensing pixels; A first light-shielding layer, located on the dielectric layer group, and having a plurality of first light holes, the plurality of parallel normal incident light passing through the plurality of first light holes, the plurality of parallel Oblique incident light does not pass through the plurality of first light holes; An optical filter layer, located on the first light-shielding layer, and performing a light wavelength filtering action on the plurality of parallel positive incident light and the plurality of parallel oblique incident light, wherein the first transparent medium A layer is located on the optical filter layer, and the plurality of microlenses are located on the first transparent medium layer; and A lens shading layer, located on the first transparent medium layer, and in a plurality of gaps between the plurality of microlenses to shield a plurality of parallel second oblique directions entering the plurality of gaps from the outside Incident light is prevented from entering the first transparent medium layer and the plurality of sensing pixels. 如申請專利範圍第1項所述的光學感測器,其特徵在於,所述的光學感測器還包括: 一第二遮光層,位於所述第一透明介質層上,並具有多個第二光孔,所述多個光軸分別通過所述多個第二光孔;以及 一第二透明介質層,位於所述第二遮光層上,所述多個微透鏡位於所述第二透明介質層上,其中定義所述多個微透鏡的其中一個為一目標微透鏡,所述目標微透鏡所具有的所述光軸定義為一目標光軸,所述目標光軸所通過的所述感測畫素定義為一目標感測畫素,與所述目標微透鏡相鄰的所述多個微透鏡定義為相鄰微透鏡,所述第二遮光層遮蔽從外界進入所述相鄰微透鏡的多個平行的第三斜向入射光免於進入所述第一透明介質層及所述目標感測畫素中。The optical sensor according to item 1 of the patent application scope, wherein the optical sensor further includes: A second light-shielding layer, located on the first transparent medium layer, and having a plurality of second light holes, the plurality of optical axes respectively passing through the plurality of second light holes; and A second transparent medium layer on the second light-shielding layer, the plurality of microlenses on the second transparent medium layer, wherein one of the plurality of microlenses is defined as a target microlens, so The optical axis of the target microlens is defined as a target optical axis, and the sensing pixel through which the target optical axis passes is defined as a target sensing pixel adjacent to the target microlens The plurality of microlenses are defined as adjacent microlenses, and the second light-shielding layer shields a plurality of parallel third oblique incident light entering the adjacent microlenses from the outside from entering the first transparent medium layer And the target sensing pixels. 如申請專利範圍第1項所述的光學感測器,其特徵在於,所述的光學感測器還包括: 一介電層組,位於所述基板上並覆蓋所述多個感測畫素; 一第一遮光層,位於所述介電層組上,並具有多個第一光孔,所述多個平行的正向入射光通過所述多個第一光孔,所述多個平行的斜向入射光不通過所述多個第一光孔; 一光學濾波層,位於所述第一遮光層上,並對所述多個平行的正向入射光與所述多個平行的斜向入射光執行光線波長過濾動作,其中所述第一透明介質層位於所述光學濾波層上; 一第二遮光層,位於所述第一透明介質層上,並具有多個第二光孔,所述多個光軸分別通過所述多個第二光孔;以及 一第二透明介質層,位於所述第二遮光層上,所述多個微透鏡位於所述第二透明介質層上,其中定義所述多個微透鏡的其中一個為一目標微透鏡,所述目標微透鏡所具有的所述光軸定義為一目標光軸,所述目標光軸所通過的所述感測畫素定義為一目標感測畫素,與所述目標微透鏡相鄰的所述多個微透鏡定義為相鄰微透鏡,所述第二遮光層遮蔽從外界進入所述相鄰微透鏡的多個平行的第三斜向入射光免於進入所述第一透明介質層及所述目標感測畫素中。The optical sensor according to item 1 of the patent application scope, wherein the optical sensor further includes: A dielectric layer group, located on the substrate and covering the plurality of sensing pixels; A first light-shielding layer, located on the dielectric layer group, and having a plurality of first light holes, the plurality of parallel normal incident light passing through the plurality of first light holes, the plurality of parallel Oblique incident light does not pass through the plurality of first light holes; An optical filter layer, located on the first light-shielding layer, and performing a light wavelength filtering action on the plurality of parallel positive incident light and the plurality of parallel oblique incident light, wherein the first transparent medium The layer is located on the optical filter layer; A second light-shielding layer, located on the first transparent medium layer, and having a plurality of second light holes, the plurality of optical axes respectively passing through the plurality of second light holes; and A second transparent medium layer on the second light-shielding layer, the plurality of microlenses on the second transparent medium layer, wherein one of the plurality of microlenses is defined as a target microlens, so The optical axis of the target microlens is defined as a target optical axis, and the sensing pixel through which the target optical axis passes is defined as a target sensing pixel adjacent to the target microlens The plurality of microlenses are defined as adjacent microlenses, and the second light-shielding layer shields a plurality of parallel third oblique incident light entering the adjacent microlenses from the outside from entering the first transparent medium layer And the target sensing pixels. 如申請專利範圍第1項所述的光學感測器,其特徵在於,所述的光學感測器還包括: 一第一遮光層,位於所述基板的上方,並具有多個第一光孔;以及 一第二遮光層,位於所述第一遮光層的上方,並具有多個第二光孔,其中所述多個微透鏡分別位於所述多個第二光孔的上方,且所述多個光軸分別通過所述多個第二光孔及所述多個第一光孔,其中所述多個微透鏡的間距(pitch)(X)由以下公式表示: X=A1+(H/h)*(A2-A1)±20µm 其中A1表示所述第一光孔的一孔徑,A2表示所述第二光孔的一孔徑,H表示所述微透鏡的一底面與所述第一遮光層之間的距離,h表示所述第二遮光層與所述第一遮光層之間的距離。The optical sensor according to item 1 of the patent application scope, wherein the optical sensor further includes: A first light-shielding layer located above the substrate and having a plurality of first light holes; and A second light shielding layer, located above the first light shielding layer, and having a plurality of second light holes, wherein the plurality of microlenses are respectively located above the plurality of second light holes, and the plurality of The optical axis respectively passes through the plurality of second optical holes and the plurality of first optical holes, wherein the pitch (X) of the plurality of microlenses is expressed by the following formula: X=A1+(H/h)*(A2-A1)±20µm Where A1 represents an aperture of the first light hole, A2 represents an aperture of the second light hole, H represents a distance between a bottom surface of the microlens and the first light-shielding layer, h represents the The distance between the second light shielding layer and the first light shielding layer. 如申請專利範圍第1項所述的光學感測器,其特徵在於,所述多個感測畫素的橫向尺寸被設計成接收到所述多個平行的正向入射光,但不接收到所述多個平行的斜向入射光,而所述光學感測器於所述第一透明介質層與所述多個感測畫素之間不具有任何遮光層來遮蔽所述多個平行的斜向入射光。The optical sensor as described in item 1 of the patent application range, wherein the lateral dimensions of the plurality of sensing pixels are designed to receive the plurality of parallel normal incident light, but not The plurality of parallel oblique incident light, and the optical sensor does not have any light-shielding layer between the first transparent medium layer and the plurality of sensing pixels to shield the plurality of parallel Obliquely incident light. 如申請專利範圍第1項所述的光學感測器,其特徵在於,所述的光學感測器還包括: 一介電層組,位於所述基板上並覆蓋所述多個感測畫素;以及 一光學濾波層,位於所述介電層組上,並對所述多個平行的正向入射光與所述多個平行的斜向入射光執行光線波長過濾動作,其中所述第一透明介質層位於所述光學濾波層上,所述多個微透鏡位於所述第一透明介質層上,其中所述多個感測畫素的橫向尺寸被設計成接收到所述多個平行的正向入射光,但不接收到所述多個平行的斜向入射光,而所述光學感測器於所述第一透明介質層與所述多個感測畫素之間不具有任何遮光層來遮蔽所述多個平行的斜向入射光。The optical sensor according to item 1 of the patent application scope, wherein the optical sensor further includes: A dielectric layer set on the substrate and covering the plurality of sensing pixels; and An optical filter layer, located on the dielectric layer group, and performing a light wavelength filtering action on the plurality of parallel positive incident light and the plurality of parallel oblique incident light, wherein the first transparent medium A layer is located on the optical filter layer, and the plurality of microlenses are located on the first transparent medium layer, wherein the lateral dimensions of the plurality of sensing pixels are designed to receive the plurality of parallel positive directions Incident light, but does not receive the plurality of parallel oblique incident light, and the optical sensor does not have any light-shielding layer between the first transparent medium layer and the plurality of sensing pixels The plurality of parallel oblique incident light is shielded. 如申請專利範圍第1項所述的光學感測器,其特徵在於,所述的光學感測器還包括: 多個偏移微透鏡,排列成陣列,並位於所述第一透明介質層上或上方,其中: 所述多個微透鏡分別將所述多個平行的正向入射光入射於所述多個感測畫素總數的一部分的內部,並將所述多個平行的斜向入射光入射於所述多個感測畫素總數的一部分的外部; 所述多個偏移微透鏡分別將從外界進入所述多個偏移微透鏡的多個平行的第二正向入射光,通過所述第一透明介質層而入射於所述多個感測畫素總數的其餘部分的外部,並將從外界進入所述多個偏移微透鏡的多個平行的第四斜向入射光入射於所述多個感測畫素總數的其餘部分的內部,所述目標物產生所述多個平行的第二正向入射光以及所述多個平行的第四斜向入射光,所述多個平行的第二正向入射光平行於所述多個偏移微透鏡的多個光軸,各所述第四斜向入射光與各所述光軸夾出一個第二角度。The optical sensor according to item 1 of the patent application scope, wherein the optical sensor further includes: A plurality of offset microlenses are arranged in an array and located on or above the first transparent medium layer, wherein: The plurality of micro-lenses respectively incident the plurality of parallel normal incident light into a portion of the total number of the plurality of sensing pixels, and incident the plurality of parallel oblique incident light on the The outside of a part of the total number of sensing pixels; The plurality of offset microlenses respectively enter a plurality of parallel second normal incident lights entering the plurality of offset microlenses from the outside through the first transparent medium layer and are incident on the plurality of sensing Outside the rest of the total number of pixels, and incident a plurality of parallel fourth oblique incident light entering the plurality of offset microlenses from the outside into the inside of the rest of the total number of sensing pixels, The target object generates the plurality of parallel second normal incident light and the plurality of parallel fourth oblique incident light, the plurality of parallel second normal incident light is parallel to the plurality of partial Moving the multiple optical axes of the microlens, each of the fourth obliquely incident light makes a second angle with each of the optical axes. 如申請專利範圍第12項所述的光學感測器,其特徵在於,所述多個偏移微透鏡排列於所述多個微透鏡的週邊。The optical sensor according to item 12 of the patent application range, wherein the plurality of offset microlenses are arranged around the plurality of microlenses. 如申請專利範圍第12項所述的光學感測器,其特徵在於,所述第二角度介於0度與60度之間。The optical sensor according to item 12 of the patent application range, wherein the second angle is between 0 degrees and 60 degrees. 一種光學感測器,其特徵在於,所述的光學感測器包括: 一基板,具有多個感測畫素,排列成陣列; 一第一透明介質層,位於所述基板的上方;以及 多個偏移微透鏡,排列成陣列,並位於所述第一透明介質層上或上方,其中: 所述多個偏移微透鏡分別將從外界進入所述多個偏移微透鏡的多個平行的正向入射光,通過所述第一透明介質層而入射於所述多個感測畫素總數的一部分或全部的外部,並將從外界進入所述多個偏移微透鏡的多個平行的斜向入射光入射於所述多個感測畫素總數的一部分或全部的內部,藉此感測一目標物的一圖像,所述目標物產生所述多個平行的正向入射光以及所述多個平行的斜向入射光,所述多個平行的正向入射光平行於所述多個偏移微透鏡的多個光軸,各所述平行的斜向入射光與各所述光軸夾出一個角度。An optical sensor, characterized in that the optical sensor includes: A substrate with multiple sensing pixels arranged in an array; A first transparent dielectric layer above the substrate; and A plurality of offset microlenses are arranged in an array and located on or above the first transparent medium layer, wherein: The plurality of offset microlenses respectively enter a plurality of parallel positive incident lights entering the plurality of offset microlenses from the outside through the first transparent medium layer and enter the plurality of sensing pixels Part or all of the total number outside, and a plurality of parallel oblique incident lights entering the plurality of offset microlenses from the outside are incident on part or all of the total number of sensing pixels, thereby Sensing an image of an object, the object generates the plurality of parallel normal incident light and the plurality of parallel oblique incident light, the plurality of parallel normal incident light is parallel to the The plurality of optical axes of the plurality of offset microlenses, and each of the parallel obliquely incident light forms an angle with each of the optical axes. 如申請專利範圍第15項所述的光學感測器,其特徵在於,所述的光學感測器還包括: 一介電層組,位於所述基板上並覆蓋所述多個感測畫素; 一第一遮光層,位於所述介電層組上,並具有多個第一光孔,所述多個平行的正向入射光不通過所述多個第一光孔,所述多個平行的斜向入射光通過所述多個第一光孔;以及 一光學濾波層,位於所述第一遮光層上,並對所述多個平行的正向入射光與所述多個平行的斜向入射光執行光線波長過濾動作,其中所述第一透明介質層位於所述光學濾波層上,所述多個偏移微透鏡位於所述第一透明介質層上。The optical sensor according to item 15 of the patent application range, wherein the optical sensor further includes: A dielectric layer group, located on the substrate and covering the plurality of sensing pixels; A first light-shielding layer, located on the dielectric layer group, and having a plurality of first light holes, the plurality of parallel normal incident light does not pass through the plurality of first light holes, the plurality of parallel Obliquely incident light passing through the plurality of first apertures; and An optical filter layer, located on the first light-shielding layer, and performing a light wavelength filtering action on the plurality of parallel positive incident light and the plurality of parallel oblique incident light, wherein the first transparent medium A layer is located on the optical filter layer, and the plurality of offset microlenses are located on the first transparent medium layer. 如申請專利範圍第15項所述的光學感測器,其特徵在於,所述的光學感測器還包括: 一透鏡遮光層,位於所述第一透明介質層上,以及所述多個偏移微透鏡之間的多個間隙中,以遮蔽從外界進入所述多個間隙中的多個平行的第二斜向入射光免於進入所述第一透明介質層及所述多個感測畫素中。The optical sensor according to item 15 of the patent application range, wherein the optical sensor further includes: A lens shading layer, located on the first transparent medium layer, and in a plurality of gaps between the plurality of offset microlenses to shield a plurality of parallel second ones entering the plurality of gaps from the outside Oblique incident light is prevented from entering the first transparent medium layer and the plurality of sensing pixels. 如申請專利範圍第15項所述的光學感測器,其特徵在於,所述的光學感測器還包括: 一介電層組,位於所述基板上並覆蓋所述多個感測畫素; 一第一遮光層,位於所述介電層組上,並具有多個第一光孔,所述多個平行的正向入射光通過所述多個第一光孔,所述多個平行的斜向入射光不通過所述多個第一光孔; 一光學濾波層,位於所述第一遮光層上,並對所述多個平行的正向入射光與所述多個平行的斜向入射光執行光線波長過濾動作,其中所述第一透明介質層位於所述光學濾波層上,所述多個偏移微透鏡位於所述第一透明介質層上;以及 一透鏡遮光層,位於所述第一透明介質層上,以及所述多個偏移微透鏡之間的多個間隙中,以遮蔽從外界進入所述多個間隙中的多個平行的第二斜向入射光免於進入所述第一透明介質層及所述多個感測畫素中。The optical sensor according to item 15 of the patent application range, wherein the optical sensor further includes: A dielectric layer group, located on the substrate and covering the plurality of sensing pixels; A first light-shielding layer, located on the dielectric layer group, and having a plurality of first light holes, the plurality of parallel normal incident light passing through the plurality of first light holes, the plurality of parallel Oblique incident light does not pass through the plurality of first light holes; An optical filter layer, located on the first light-shielding layer, and performing a light wavelength filtering action on the plurality of parallel positive incident light and the plurality of parallel oblique incident light, wherein the first transparent medium A layer is located on the optical filter layer, and the plurality of offset microlenses are located on the first transparent medium layer; and A lens shading layer, located on the first transparent medium layer, and in a plurality of gaps between the plurality of offset microlenses to shield a plurality of parallel second ones entering the plurality of gaps from the outside Oblique incident light is prevented from entering the first transparent medium layer and the plurality of sensing pixels. 如申請專利範圍第15項所述的光學感測器,其特徵在於,所述的光學感測器還包括: 一第二遮光層,位於所述第一透明介質層上,並具有多個第二光孔;以及 一第二透明介質層,位於所述第二遮光層上,所述多個偏移微透鏡位於所述第二透明介質層上,其中定義所述多個偏移微透鏡的其中一個為一目標微透鏡,所述目標微透鏡所具有的所述光軸定義為一目標光軸,所述目標光軸所通過的所述感測畫素定義為一目標感測畫素,與所述目標微透鏡相鄰的所述多個偏移微透鏡定義為相鄰微透鏡,所述第二遮光層遮蔽從外界進入所述相鄰微透鏡的多個平行的第三斜向入射光免於進入所述第一透明介質層及所述目標感測畫素中。The optical sensor according to item 15 of the patent application range, wherein the optical sensor further includes: A second light-shielding layer on the first transparent dielectric layer and having a plurality of second light holes; and A second transparent medium layer on the second light-shielding layer, the plurality of offset microlenses on the second transparent medium layer, wherein one of the plurality of offset microlenses is defined as a target A microlens, the optical axis of the target microlens is defined as a target optical axis, and the sensing pixel passing through the target optical axis is defined as a target sensing pixel and the target microlens The plurality of offset microlenses adjacent to the lens are defined as adjacent microlenses, and the second light shielding layer shields a plurality of parallel third oblique incident light entering the adjacent microlenses from the outside from entering The first transparent medium layer and the target sensing pixels. 如申請專利範圍第15項所述的光學感測器,其特徵在於,所述的光學感測器還包括: 一介電層組,位於所述基板上並覆蓋所述多個感測畫素; 一第一遮光層,位於所述介電層組上,並具有多個第一光孔,所述多個平行的正向入射光不通過所述多個第一光孔,所述多個平行的斜向入射光通過所述多個第一光孔; 一光學濾波層,位於所述第一遮光層上,並對所述多個平行的正向入射光與所述多個平行的斜向入射光執行光線波長過濾動作,其中所述第一透明介質層位於所述光學濾波層上; 一第二遮光層,位於所述第一透明介質層上,並具有多個第二光孔;以及 一第二透明介質層,位於所述第二遮光層上,所述多個偏移微透鏡位於所述第二透明介質層上,其中定義所述多個偏移微透鏡的其中一個為一目標微透鏡,所述目標微透鏡所具有的所述光軸定義為一目標光軸,所述目標光軸所通過的所述感測畫素定義為一目標感測畫素,與所述目標微透鏡相鄰的所述多個偏移微透鏡定義為相鄰微透鏡,所述第二遮光層遮蔽從外界進入所述相鄰微透鏡的多個平行的第三斜向入射光免於進入所述第一透明介質層及所述目標感測畫素中。The optical sensor according to item 15 of the patent application range, wherein the optical sensor further includes: A dielectric layer group, located on the substrate and covering the plurality of sensing pixels; A first light-shielding layer, located on the dielectric layer group, and having a plurality of first light holes, the plurality of parallel normal incident light does not pass through the plurality of first light holes, the plurality of parallel Obliquely incident light passing through the plurality of first light holes; An optical filter layer, located on the first light-shielding layer, and performing a light wavelength filtering action on the plurality of parallel positive incident light and the plurality of parallel oblique incident light, wherein the first transparent medium The layer is located on the optical filter layer; A second light-shielding layer on the first transparent dielectric layer and having a plurality of second light holes; and A second transparent medium layer on the second light-shielding layer, the plurality of offset microlenses on the second transparent medium layer, wherein one of the plurality of offset microlenses is defined as a target A microlens, the optical axis of the target microlens is defined as a target optical axis, and the sensing pixel passing through the target optical axis is defined as a target sensing pixel and the target microlens The plurality of offset microlenses adjacent to the lens are defined as adjacent microlenses, and the second light shielding layer shields a plurality of parallel third oblique incident light entering the adjacent microlenses from the outside from entering The first transparent medium layer and the target sensing pixels. 一種光學感測系統,其特徵在於,所述的光學感測系統包括: 一底座; 一電池,設置於所述底座上; 一框架,設置於所述電池的上方; 一光學感測器,用於感測一目標物的一圖像; 一顯示器,用於顯示資訊,其中所述光學感測器裝設於所述框架或貼合於所述顯示器的一下表面,所述目標物位於所述顯示器上或上方,所述光學感測器通過所述顯示器感測所述目標物的所述圖像,所述電池供電給所述光學感測器與所述顯示器。An optical sensing system, characterized in that the optical sensing system includes: A base A battery, set on the base; A frame provided above the battery; An optical sensor for sensing an image of a target; A display for displaying information, wherein the optical sensor is mounted on the frame or attached to a lower surface of the display, the target is located on or above the display, the optical sensor The image of the target object is sensed by the display, and the battery supplies power to the optical sensor and the display. 如申請專利範圍第21項所述的光學感測系統,其特徵在於,供所述光學感測器安裝的所述框架的一容置底部與所述顯示器之間的一最短距離介於0.1 mm至0.5 mm之間。The optical sensing system according to item 21 of the patent application range, characterized in that a shortest distance between a receiving bottom of the frame for mounting the optical sensor and the display is between 0.1 mm Between 0.5 mm. 如申請專利範圍第21項所述的光學感測系統,其特徵在於,所述光學感測器包括: 一基板,具有多個感測畫素,排列成陣列; 一第一透明介質層,位於所述基板的上方;以及 多個微透鏡,排列成陣列,並位於所述第一透明介質層上或上方,其中所述多個微透鏡分別將從外界進入所述多個微透鏡的多個平行的正向入射光,通過所述第一透明介質層而入射於所述多個感測畫素總數的一部分或全部的內部,並將從外界進入所述多個微透鏡的多個平行的斜向入射光入射於所述多個感測畫素總數的一部分或全部的外部,藉此感測所述目標物的一圖像,所述目標物產生所述多個平行的正向入射光以及所述多個平行的斜向入射光,所述多個平行的正向入射光平行於所述多個微透鏡的多個光軸,各所述平行的斜向入射光與各所述光軸夾出一個角度。The optical sensing system according to item 21 of the patent application range, wherein the optical sensor includes: A substrate with multiple sensing pixels arranged in an array; A first transparent dielectric layer above the substrate; and A plurality of microlenses arranged in an array and located on or above the first transparent medium layer, wherein the plurality of microlenses respectively enter a plurality of parallel positive incident light from the outside into the plurality of microlenses, The first transparent medium layer is incident on a part or all of the total number of the sensing pixels, and a plurality of parallel oblique incident lights entering the plurality of microlenses from the outside are incident on the Part or all of the total number of the plurality of sensing pixels, thereby sensing an image of the target object, the target object generating the plurality of parallel positive incident light and the plurality of parallel Obliquely incident light, the plurality of parallel normal incident lights are parallel to the plurality of optical axes of the plurality of microlenses, and each of the parallel obliquely incident lights forms an angle with each of the optical axes. 如申請專利範圍第21項所述的光學感測系統,其特徵在於,所述光學感測器包括: 一基板,具有多個感測畫素,排列成陣列; 一第一透明介質層,位於所述基板的上方;以及 多個偏移微透鏡,排列成陣列,並位於所述第一透明介質層上或上方,其中: 所述多個偏移微透鏡分別將從外界進入所述多個偏移微透鏡的多個平行的正向入射光,通過所述第一透明介質層而入射於所述多個感測畫素總數的一部分或全部的外部,並將從外界進入所述多個偏移微透鏡的多個平行的斜向入射光入射於所述多個感測畫素總數的一部分或全部的內部,藉此感測所述目標物的所述圖像,所述目標物產生所述多個平行的正向入射光以及所述多個平行的斜向入射光,所述多個平行的正向入射光平行於所述多個偏移微透鏡的多個光軸,各所述平行的斜向入射光與各所述光軸夾出一個角度。The optical sensing system according to item 21 of the patent application range, wherein the optical sensor includes: A substrate with multiple sensing pixels arranged in an array; A first transparent dielectric layer above the substrate; and A plurality of offset microlenses are arranged in an array and located on or above the first transparent medium layer, wherein: The plurality of offset microlenses respectively enter a plurality of parallel positive incident lights entering the plurality of offset microlenses from the outside through the first transparent medium layer and enter the plurality of sensing pixels Part or all of the total number outside, and a plurality of parallel oblique incident lights entering the plurality of offset microlenses from the outside are incident on part or all of the total number of sensing pixels, thereby Sensing the image of the target object, the target object generating the plurality of parallel normal incident light and the plurality of parallel oblique incident light, the plurality of parallel normal incident light being parallel For the plurality of optical axes of the plurality of offset microlenses, each of the parallel obliquely incident light forms an angle with each of the optical axes. 一種光學感測器的製造方法,其特徵在於,所述的光學感測器的製造方法包括以下步驟: 提供一基板,具有多個感測畫素,排列成陣列; 於所述基板的上方形成一第一透明介質層;以及 於所述第一透明介質層上或上方形成多個微透鏡,排列成陣列,其中所述多個微透鏡分別將從外界進入所述多個微透鏡的多個平行的正向入射光,通過所述第一透明介質層而入射於所述多個感測畫素總數的一部分或全部的內部,並將從外界進入所述多個微透鏡的多個平行的斜向入射光入射於所述多個感測畫素總數的一部分或全部的外部,藉此感測一目標物的一圖像,所述目標物產生所述多個平行的正向入射光以及所述多個平行的斜向入射光,所述多個平行的正向入射光平行於所述多個微透鏡的多個光軸,各所述平行的斜向入射光與各所述光軸夾出一個角度。A method for manufacturing an optical sensor, characterized in that the method for manufacturing an optical sensor includes the following steps: Provide a substrate with multiple sensing pixels arranged in an array; Forming a first transparent dielectric layer above the substrate; and A plurality of microlenses are formed on or above the first transparent medium layer, arranged in an array, wherein the plurality of microlenses respectively enter a plurality of parallel positive incident light from the outside into the plurality of microlenses through The first transparent medium layer is incident on a part or all of the total number of the sensing pixels, and a plurality of parallel oblique incident lights entering the plurality of microlenses from the outside are incident on the A part or all of the total number of sensing pixels is external, thereby sensing an image of a target object that generates the plurality of parallel normal incident light and the plurality of parallel oblique directions For incident light, the plurality of parallel normal incident lights are parallel to the plurality of optical axes of the plurality of microlenses, and each of the parallel oblique incident lights forms an angle with each of the optical axes. 如申請專利範圍第25項所述的製造方法,其特徵在於,所述的光學感測器的製造方法還包括以下步驟: 於所述基板與所述第一透明介質層之間形成一第一遮光層,所述第一遮光層具有多個第一光孔,所述多個平行的正向入射光通過所述多個第一光孔,所述多個平行的斜向入射光不通過所述多個第一光孔。The manufacturing method as described in item 25 of the patent application range, wherein the manufacturing method of the optical sensor further includes the following steps: A first light-shielding layer is formed between the substrate and the first transparent dielectric layer, the first light-shielding layer has a plurality of first light holes, and the plurality of parallel normal incident light passes through the plurality of In the first light hole, the plurality of parallel obliquely incident lights do not pass through the plurality of first light holes. 如申請專利範圍第25項所述的製造方法,其特徵在於,所述的光學感測器的製造方法還包括以下步驟: 於所述多個微透鏡與所述第一透明介質層之間形成一第二遮光層與一第二透明介質層,所述第二遮光層具有多個第二光孔,所述第二透明介質層位於所述第二遮光層上,所述多個微透鏡位於所述第二透明介質層上,所述第二遮光層遮蔽相鄰透鏡雜散光免於進入所述多個感測畫素中。The manufacturing method as described in item 25 of the patent application range, wherein the manufacturing method of the optical sensor further includes the following steps: A second light-shielding layer and a second transparent medium layer are formed between the plurality of microlenses and the first transparent medium layer, the second light-shielding layer has a plurality of second light holes, and the second transparent A dielectric layer is located on the second light-shielding layer, and the plurality of microlenses are located on the second transparent dielectric layer. The second light-shielding layer shields stray light from adjacent lenses from entering the plurality of sensing pixels in. 如申請專利範圍第25項所述的製造方法,其特徵在於,所述的光學感測器的製造方法還包括以下步驟: 於所述多個微透鏡之間的多個間隙中形成一透鏡遮光層,以遮蔽相鄰間隙雜散光免於進入所述多個感測畫素中。The manufacturing method as described in item 25 of the patent application range, wherein the manufacturing method of the optical sensor further includes the following steps: A lens shading layer is formed in a plurality of gaps between the plurality of microlenses to shield stray light from adjacent gaps from entering the plurality of sensing pixels. 一種光學感測器的製造方法,其特徵在於,所述的光學感測器的製造方法包括以下步驟: 提供一基板,具有多個感測畫素,排列成陣列; 於所述基板的上方形成一第一透明介質層;以及 於所述第一透明介質層上或上方形成多個偏移微透鏡,排列成陣列,其中所述多個偏移微透鏡分別將從外界進入所述多個偏移微透鏡的多個平行的正向入射光,通過所述第一透明介質層而入射於所述多個感測畫素總數的一部分或全部的外部,並將從外界進入所述多個偏移微透鏡的多個平行的斜向入射光入射於所述多個感測畫素總數的一部分或全部的內部,藉此感測一目標物的一圖像,所述目標物產生所述多個平行的正向入射光以及所述多個平行的斜向入射光,所述多個平行的正向入射光平行於所述多個偏移微透鏡的多個光軸,各所述平行的斜向入射光與各所述光軸夾出一個角度。A method for manufacturing an optical sensor, characterized in that the method for manufacturing an optical sensor includes the following steps: Provide a substrate with multiple sensing pixels arranged in an array; Forming a first transparent dielectric layer above the substrate; and A plurality of offset microlenses are formed on or above the first transparent medium layer, arranged in an array, wherein the plurality of offset microlenses respectively enter the plurality of parallel microlenses of the plurality of offset microlenses from the outside Normally incident light is incident on a part or all of the total number of the sensing pixels through the first transparent medium layer, and will enter the multiple parallel Oblique incident light is incident inside a part or all of the total number of sensing pixels, thereby sensing an image of a target object, the target object generating the plurality of parallel normal incident light and The plurality of parallel obliquely incident light, the plurality of parallel normal incident light are parallel to the plurality of optical axes of the plurality of offset microlenses, each of the parallel obliquely incident light and each of the The optical axis is angled. 如申請專利範圍第29項所述的製造方法,其特徵在於,所述的光學感測器的製造方法還包括以下步驟: 於所述基板與所述第一透明介質層之間形成一第一遮光層,所述第一遮光層具有多個第一光孔,所述多個平行的正向入射光不通過所述多個第一光孔,所述多個平行的斜向入射光通過所述多個第一光孔。The manufacturing method as described in item 29 of the patent application range, wherein the manufacturing method of the optical sensor further includes the following steps: A first light-shielding layer is formed between the substrate and the first transparent dielectric layer, the first light-shielding layer has a plurality of first light holes, and the plurality of parallel normal incident light does not pass through the A first light hole, the plurality of parallel oblique incident light passes through the plurality of first light holes. 如申請專利範圍第29項所述的製造方法,其特徵在於,所述的光學感測器的製造方法還包括以下步驟: 於所述多個偏移微透鏡與所述第一透明介質層之間形成一第二遮光層與一第二透明介質層,所述第二遮光層具有多個第二光孔,所述第二透明介質層位於所述第二遮光層上,所述多個偏移微透鏡位於所述第二透明介質層上,所述第二遮光層遮蔽相鄰透鏡雜散光免於進入所述多個感測畫素中。The manufacturing method as described in item 29 of the patent application range, wherein the manufacturing method of the optical sensor further includes the following steps: A second light-shielding layer and a second transparent medium layer are formed between the plurality of offset microlenses and the first transparent medium layer, the second light-shielding layer has a plurality of second light holes, the first Two transparent medium layers are located on the second light-shielding layer, the plurality of offset microlenses are located on the second transparent medium layer, and the second light-shielding layer shields adjacent lenses from stray light from entering the plurality Sensing pixels. 如申請專利範圍第29項所述的製造方法,其特徵在於,所述的光學感測器的製造方法還包括以下步驟: 於所述多個偏移微透鏡之間的多個間隙中形成一透鏡遮光層,以遮蔽相鄰間隙雜散光免於進入所述多個感測畫素中。The manufacturing method as described in item 29 of the patent application range, wherein the manufacturing method of the optical sensor further includes the following steps: A lens shading layer is formed in a plurality of gaps between the plurality of offset microlenses to shield stray light from adjacent gaps from entering the plurality of sensing pixels. 一種光學感測器,包括: 一基底,包括一感測畫素陣列; 一第一遮光層,位於該感測畫素陣列上方且具有多個第一開孔,其中該些第一開孔露出該感測畫素陣列的多個感測畫素; 一微透鏡層,位於該第一遮光層上方且包括多個微透鏡;以及 一第一透明介質層,位於該感測畫素陣列上方且介於該微透鏡層與該感測畫素陣列之間,其中該第一透明介質層具有一第一厚度; 其中該微透鏡層用以引導一入射光穿透該第一透明介質層至該些第一開孔下方的該些感測畫素。An optical sensor, including: A substrate, including an array of sensing pixels; A first light-shielding layer located above the sensing pixel array and having a plurality of first openings, wherein the first openings expose the sensing pixels of the sensing pixel array; A microlens layer located above the first light-shielding layer and including a plurality of microlenses; and A first transparent medium layer, located above the sensing pixel array and between the microlens layer and the sensing pixel array, wherein the first transparent medium layer has a first thickness; The microlens layer is used to guide an incident light through the first transparent medium layer to the sensing pixels under the first openings. 如申請專利範圍第33項所述的光學感測器,還包括: 一保護層,順應覆蓋該微透鏡層。The optical sensor as described in item 33 of the patent application scope also includes: A protective layer conforms to cover the microlens layer. 如申請專利範圍第33項所述的光學感測器,其中至少一微透鏡的中心線與所對應的至少一第一開孔的中心線具有一偏移距離。The optical sensor of claim 33, wherein the center line of at least one microlens has an offset distance from the center line of the corresponding at least one first opening. 如申請專利範圍第35項所述的光學感測器,其中該偏移距離、該些微透鏡的曲率半徑、該第一厚度、以及該些第一開孔的孔徑是配置用以使該些感測畫素接收一斜角入射的光。The optical sensor of claim 35, wherein the offset distance, the radius of curvature of the microlenses, the first thickness, and the apertures of the first openings are configured to enable the sensors The pixel receives light incident at an oblique angle. 如申請專利範圍第33項所述的光學感測器,其中至少一微透鏡的中心線與所對應的至少一第一開孔的中心線重疊。The optical sensor according to item 33 of the patent application scope, wherein the center line of at least one microlens overlaps with the center line of the corresponding at least one first opening. 如申請專利範圍第33項所述的光學感測器,其中該些第一開孔與該些感測畫素相互以一對一、一對多或多對一對應。The optical sensor as described in Item 33 of the patent application range, wherein the first openings and the sensing pixels correspond to each other in one-to-one, one-to-many, or many-to-one correspondence. 如申請專利範圍第33項所述的光學感測器,其中該些微透鏡與該些感測畫素相互以一對一、一對多或多對一對應。The optical sensor as described in item 33 of the patent application range, wherein the microlenses and the sensing pixels correspond to each other in one-to-one, one-to-many, or many-to-one correspondence. 如申請專利範圍第33項所述的光學感測器,其中該第一遮光層的厚度在約0.3微米至約5微米的範圍,以及該些第一開孔的孔徑在0.3微米至50微米的範圍。The optical sensor as recited in item 33 of the patent application range, wherein the thickness of the first light-shielding layer is in the range of about 0.3 microns to about 5 microns, and the pore diameter of the first openings is in the range of 0.3 microns to 50 microns range. 如申請專利範圍第33項所述的光學感測器,其中該第一透明介質層的該第一厚度在1微米至50微米的範圍。The optical sensor as described in item 33 of the patent application range, wherein the first thickness of the first transparent dielectric layer is in the range of 1 micrometer to 50 micrometers. 如申請專利範圍第33項所述的光學感測器,還包括: 一第二透明介質層,位於該第一遮光層與該微透鏡層之間。The optical sensor as described in item 33 of the patent application scope also includes: A second transparent medium layer is located between the first light-shielding layer and the microlens layer. 如申請專利範圍第33項所述的光學感測器,還包括: 一濾光層,位於該第一透明介質層與該微透鏡層之間。The optical sensor as described in item 33 of the patent application scope also includes: An optical filter layer is located between the first transparent medium layer and the microlens layer. 如申請專利範圍第33項所述的光學感測器,還包括: 一第二遮光層,位於該第一透明介質層上且具有多個第二開孔。The optical sensor as described in item 33 of the patent application scope also includes: A second light-shielding layer is located on the first transparent dielectric layer and has a plurality of second openings. 如申請專利範圍第44項所述的光學感測器,其中該第二遮光層的厚度在約0.3微米至約5微米的範圍,以及該些第二開孔的孔徑在約0.3微米至約50微米的範圍。The optical sensor of claim 44, wherein the thickness of the second light-shielding layer is in the range of about 0.3 microns to about 5 microns, and the pore diameter of the second openings is in the range of about 0.3 microns to about 50 The range of microns. 如申請專利範圍第33項所述的光學感測器,還包括: 一第二透明介質層,位於該第一透明介質層與該微透鏡層之間;以及 一第三遮光層,位於該第一透明介質層與該第二透明介質層之間。The optical sensor as described in item 33 of the patent application scope also includes: A second transparent medium layer between the first transparent medium layer and the microlens layer; and A third light shielding layer is located between the first transparent dielectric layer and the second transparent dielectric layer. 一種光學感測器,包括: 一基底,包括一感測畫素陣列,其中該感測畫素陣列包括多個感測畫素,而每一該感測畫素具有一畫素尺寸; 一第一透明介質層,位於該感測畫素陣列之上方;以及 一微透鏡層,位於該第一透明介質層之上方且包括多個微透鏡,而每一該微透鏡具有一直徑,其中該些微透鏡用以引導一入射光穿透該第一透明介質層至該些感測畫素, 其中該畫素尺寸在3微米至10微米的範圍,而該直徑在10微米至50微米的範圍。An optical sensor, including: A substrate, including a sensing pixel array, wherein the sensing pixel array includes a plurality of sensing pixels, and each of the sensing pixels has a pixel size; A first transparent dielectric layer above the sensing pixel array; and A microlens layer is located above the first transparent medium layer and includes a plurality of microlenses, and each of the microlenses has a diameter, wherein the microlenses are used to guide an incident light to penetrate the first transparent medium layer to These sensing pixels, The pixel size is in the range of 3 microns to 10 microns, and the diameter is in the range of 10 microns to 50 microns. 如申請專利範圍第47項所述的光學感測器,其中該第一透明介質層具有一折射率n,該第一透明介質層具有一厚度T,該些微透鏡具有一焦距f以及一直徑D,且該入射光具有一入射角θi以及一折射角θr; 其中該畫素尺寸P、該折射率n、該厚度T、該焦距f、該直徑D、該入射角θi 、以及該折射角θr 符合下列關係式: sinθi = n * sinθr , f =( (D/2)2 +T2 )1/2 , P/2 = f * tanθrThe optical sensor of claim 47, wherein the first transparent dielectric layer has a refractive index n, the first transparent dielectric layer has a thickness T, and the microlenses have a focal length f and a diameter D , And the incident light has an incident angle θi and a refractive angle θr; wherein the pixel size P, the refractive index n, the thickness T, the focal length f, the diameter D, the incident angle θ i , and the refractive angle θ r conforms to the following relationship: sinθ i = n * sinθ r , f = ((D/2) 2 +T 2 ) 1/2 , P/2 = f * tanθ r . 如申請專利範圍第47項所述的光學感測器,其中該基底還包括一電路結構,位於該些感測畫素中相鄰的兩者之間。An optical sensor as described in item 47 of the patent application range, wherein the substrate further includes a circuit structure between the adjacent two of the sensing pixels. 如申請專利範圍第47項所述的光學感測器,其中至少一微透鏡的中心線與所對應的感測畫素的中心線具有一偏移距離。The optical sensor as described in Item 47 of the patent application range, wherein the center line of at least one microlens has an offset distance from the center line of the corresponding sensing pixel. 如申請專利範圍第47項所述的光學感測器,其中該偏移距離、該畫素尺寸、該折射率、該厚度、該焦距、以及該直徑是配置用以使該些感測畫素接收一斜角入射的光。The optical sensor of claim 47, wherein the offset distance, the pixel size, the refractive index, the thickness, the focal length, and the diameter are configured to enable the sensing pixels Receive light incident at an oblique angle. 如申請專利範圍第47項所述的光學感測器,其中至少一微透鏡的中心線與所對應的感測畫素的中心線重疊。The optical sensor according to item 47 of the patent application scope, wherein the center line of at least one microlens overlaps with the center line of the corresponding sensing pixel. 如申請專利範圍第47項所述的光學感測器,其中該些微透鏡與該些感測畫素相互以一對一、一對多或多對一對應。The optical sensor as described in Item 47 of the patent application range, wherein the microlenses and the sensing pixels correspond to each other in one-to-one, one-to-many, or many-to-one correspondence. 如申請專利範圍第47項所述的光學感測器,其中該第一透明介質層的該第一厚度在1微米至50微米的範圍。The optical sensor as described in item 47 of the patent application range, wherein the first thickness of the first transparent dielectric layer is in the range of 1 micrometer to 50 micrometers. 如申請專利範圍第47項所述的光學感測器,其中該畫素尺寸與該直徑之比值在0.06至1的範圍。An optical sensor as described in item 47 of the patent application range, wherein the ratio of the pixel size to the diameter is in the range of 0.06 to 1. 如申請專利範圍第47項所述的光學感測器,其中位於該第一透明介質層上之該微透鏡層更具有一第二焦距的多個微透鏡,以引導另一入射光穿透該第一透明介質層至該些感測畫素。The optical sensor as described in item 47 of the patent application range, wherein the microlens layer on the first transparent medium layer further has a plurality of microlenses with a second focal length to guide another incident light to penetrate the The first transparent medium layer to the sensing pixels. 如申請專利範圍第47項所述的光學感測器,還包括: 一第二遮光層,位於該第一透明介質層上且具有多個第二開孔,其中該些微透鏡對應設置於該些第二開孔中。The optical sensor as described in item 47 of the patent application scope also includes: A second light-shielding layer is located on the first transparent dielectric layer and has a plurality of second openings, wherein the microlenses are correspondingly disposed in the second openings.
TW108129675A 2018-08-21 2019-08-20 Optical sensor, optical sensing system and method for manufacturing the same TWI765170B (en)

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
US201862720359P 2018-08-21 2018-08-21
US62/720,359 2018-08-21
US201862728989P 2018-09-10 2018-09-10
US62/728,989 2018-09-10
US201862734476P 2018-09-21 2018-09-21
US62/734,476 2018-09-21
TW108101676 2019-01-16
TW108101676 2019-01-16
US201962848768P 2019-05-16 2019-05-16
US62/848,768 2019-05-16

Publications (2)

Publication Number Publication Date
TW202010140A true TW202010140A (en) 2020-03-01
TWI765170B TWI765170B (en) 2022-05-21

Family

ID=70766563

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108129675A TWI765170B (en) 2018-08-21 2019-08-20 Optical sensor, optical sensing system and method for manufacturing the same

Country Status (1)

Country Link
TW (1) TWI765170B (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI714498B (en) * 2020-03-27 2020-12-21 大陸商廣州立景創新科技有限公司 Image-capturing assembly and manufacturing method thereof
CN112530999A (en) * 2020-11-30 2021-03-19 厦门天马微电子有限公司 Display device and manufacturing method thereof
TWI728737B (en) * 2020-03-10 2021-05-21 大陸商嘉善萬順達電子有限公司 Camera module package structure
TWI733551B (en) * 2020-08-10 2021-07-11 錼創顯示科技股份有限公司 Micro led display
CN113591686A (en) * 2020-08-17 2021-11-02 友达光电股份有限公司 sensing device
TWI748643B (en) * 2020-09-10 2021-12-01 鴻海精密工業股份有限公司 Fingerprint identification module, method for making same and electronic device
TWI748791B (en) * 2020-07-31 2021-12-01 友達光電股份有限公司 Photo sensor and manufacturing method thereof
TWI753571B (en) * 2020-04-06 2022-01-21 神盾股份有限公司 In-cell optical biometrics sensor
TWI756779B (en) * 2020-04-06 2022-03-01 神盾股份有限公司 Electronic device
TWI765237B (en) * 2019-09-23 2022-05-21 神盾股份有限公司 Integrated optical fingerprint sensor and method of manufacturing the same
TWI792173B (en) * 2021-02-04 2023-02-11 力晶積成電子製造股份有限公司 Fingerprint sensing system
US11875591B2 (en) 2022-01-28 2024-01-16 Miyabi Technology Co., Ltd. Light guiding member and fingerprint identification module having the same
TWI836620B (en) * 2022-09-22 2024-03-21 群創光電股份有限公司 Electronic device and tiled electronic device thereof
TWI862127B (en) * 2023-09-01 2024-11-11 達方電子股份有限公司 Sensor module with backlight

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6643386B1 (en) * 2000-08-10 2003-11-04 Omnivision Technologies, Inc. Method and apparatus for adding watermarks to images and/or video data streams
JP2010094499A (en) * 2008-09-16 2010-04-30 Hitachi Maxell Ltd Image acquisition apparatus and biometric information acquisition apparatus
CN104714614A (en) * 2009-02-13 2015-06-17 神盾股份有限公司 Electronic equipment with hidden biological information sensor
CN102130138B (en) * 2010-01-12 2013-01-02 中芯国际集成电路制造(上海)有限公司 Image sensor and forming method thereof
JP5852986B2 (en) * 2012-05-16 2016-02-09 富士フイルム株式会社 Radiation-sensitive composition, color filter, and method for producing color filter
TWI545335B (en) * 2013-05-28 2016-08-11 原相科技股份有限公司 Optical apparatus and light sensitive device with micro-lens
CN107437047A (en) * 2016-05-25 2017-12-05 深圳印象认知技术有限公司 Photosensitive pixel, image acquisition device, fingerprint collecting equipment and display device
KR102247284B1 (en) * 2016-08-30 2021-05-03 후지필름 가부시키가이샤 Photosensitive composition, cured film, optical filter, laminate, pattern formation method, solid-state image sensor, image display device, and infrared sensor
CN206470775U (en) * 2016-12-23 2017-09-05 敦捷光电股份有限公司 biometric identification device
TWI782935B (en) * 2017-02-01 2022-11-11 日商富士軟片股份有限公司 Resin composition, resin film, method for producing resin film, optical filter, solid-state imaging device, image display device, and infrared sensor

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI765237B (en) * 2019-09-23 2022-05-21 神盾股份有限公司 Integrated optical fingerprint sensor and method of manufacturing the same
TWI728737B (en) * 2020-03-10 2021-05-21 大陸商嘉善萬順達電子有限公司 Camera module package structure
TWI714498B (en) * 2020-03-27 2020-12-21 大陸商廣州立景創新科技有限公司 Image-capturing assembly and manufacturing method thereof
TWI756779B (en) * 2020-04-06 2022-03-01 神盾股份有限公司 Electronic device
TWI753571B (en) * 2020-04-06 2022-01-21 神盾股份有限公司 In-cell optical biometrics sensor
TWI748791B (en) * 2020-07-31 2021-12-01 友達光電股份有限公司 Photo sensor and manufacturing method thereof
US11588086B2 (en) 2020-08-10 2023-02-21 PlayNitride Display Co., Ltd. Micro-LED display
TWI733551B (en) * 2020-08-10 2021-07-11 錼創顯示科技股份有限公司 Micro led display
CN113591686A (en) * 2020-08-17 2021-11-02 友达光电股份有限公司 sensing device
CN113591686B (en) * 2020-08-17 2023-10-31 友达光电股份有限公司 Sensing device
TWI748643B (en) * 2020-09-10 2021-12-01 鴻海精密工業股份有限公司 Fingerprint identification module, method for making same and electronic device
CN112530999B (en) * 2020-11-30 2022-10-25 厦门天马微电子有限公司 Display device and manufacturing method thereof
CN112530999A (en) * 2020-11-30 2021-03-19 厦门天马微电子有限公司 Display device and manufacturing method thereof
TWI792173B (en) * 2021-02-04 2023-02-11 力晶積成電子製造股份有限公司 Fingerprint sensing system
US11954937B2 (en) 2021-02-04 2024-04-09 Powerchip Semiconductor Manufacturing Corporation Fingerprint sensing system
US11875591B2 (en) 2022-01-28 2024-01-16 Miyabi Technology Co., Ltd. Light guiding member and fingerprint identification module having the same
TWI834174B (en) * 2022-01-28 2024-03-01 科雅光電股份有限公司 Fingerprint identification module and light guide
TWI836620B (en) * 2022-09-22 2024-03-21 群創光電股份有限公司 Electronic device and tiled electronic device thereof
TWI862127B (en) * 2023-09-01 2024-11-11 達方電子股份有限公司 Sensor module with backlight

Also Published As

Publication number Publication date
TWI765170B (en) 2022-05-21

Similar Documents

Publication Publication Date Title
CN211045441U (en) Optical sensing system
TWI765170B (en) Optical sensor, optical sensing system and method for manufacturing the same
US10332929B2 (en) Integrated sensing module and integrated sensing assembly using the same
TWI728752B (en) Integrated optical sensor and method of manufacturing the same
TWI791938B (en) Optical sensor, optical sensing system and manufacturing method of optical sensor
CN111133444B (en) Fingerprint recognition devices and electronic equipment
CN109863509B (en) Photoelectric sensor and preparation method thereof
CN113627227B (en) Optical imaging device
JP7612651B2 (en) Display device, electronic device, and method for manufacturing the same
TW201512693A (en) Optical apparatus and light sensitive device with micro-lens
CN102637711B (en) Photoelectric conversion element, photoelectric conversion device and imaging system using same
TW201340302A (en) Optical device, photoelectric module and manufacturing method thereof
CN111199167B (en) Optical sensing structure and forming method thereof
TW202109355A (en) Optical sensor having offset micro lens group and optical sensing system using the same
TWI686940B (en) Optical sensor structure and method for forming the same
TWI712959B (en) Optical sensor and method for forming the same

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees