TW202005669A - The structural molecule of peptide derivative for PSMA-targeted radiotherapy diagnosis and treatment - Google Patents
The structural molecule of peptide derivative for PSMA-targeted radiotherapy diagnosis and treatment Download PDFInfo
- Publication number
- TW202005669A TW202005669A TW107124433A TW107124433A TW202005669A TW 202005669 A TW202005669 A TW 202005669A TW 107124433 A TW107124433 A TW 107124433A TW 107124433 A TW107124433 A TW 107124433A TW 202005669 A TW202005669 A TW 202005669A
- Authority
- TW
- Taiwan
- Prior art keywords
- psma
- diagnosis
- intermediate product
- treatment
- peptide derivative
- Prior art date
Links
Images
Landscapes
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
Abstract
Description
本創作是有關液體容器之端蓋結構,尤指一種針對PSMA具有專一性結合放射性,且具有較長生物體內半衰期之胜肽衍生物。This creation is about the end cap structure of a liquid container, especially a peptide derivative with specific binding radioactivity for PSMA and a longer half-life in vivo.
依據世界衛生組織 (WHO) 國際癌症研究機構 (IARC) GLOBOCAN 2012統計全球發生、死亡及患病率資料指出,前列腺癌在不分性別常見癌症中排名第四位,在男性常見癌症中排名第二位,全世界約有110萬男性被診斷患有前列腺癌。According to the World Health Organization (WHO) International Cancer Research Agency (IARC) GLOBOCAN 2012 statistics on global incidence, death and prevalence data, prostate cancer ranks fourth among common cancers regardless of gender, and ranks second among common cancers among men About 1.1 million men worldwide have been diagnosed with prostate cancer.
臨床上對前列腺癌(PCa)的無創診斷方法有直腸指檢、直腸超音波、PSA檢測、CT、MRI、放射性核素骨造影等影像學檢查手段,上述方法分別存在不同的缺點。茲分述如下:The clinical non-invasive diagnosis methods for prostate cancer (PCa) include digital rectal examination, rectal ultrasound, PSA detection, CT, MRI, radionuclide angiography and other imaging examination methods. The above methods have different disadvantages. Here are the points:
傳統針對前列腺癌之造影診斷,主要依靠直腸超音波、CT、MRI,像這些診斷方法,針對前列腺癌皆無專一性。例如臨床可以經直腸超音波(transrectal ultrasound,TURS)引導下前列腺系統性穿刺活組織檢查前列腺癌(prostate cancer, PCa)。但目前常用的TURS六點系統穿刺法假陰性率約為30%,且有嚴重的併發症。The traditional imaging diagnosis of prostate cancer mainly relies on rectal ultrasound, CT, and MRI. Like these diagnostic methods, there is no specificity for prostate cancer. For example, in the clinic, transrectal ultrasound (TURS) guided prostate systemic biopsy for prostate cancer (prostate cancer, PCa) can be performed. However, the commonly used false negative rate of the TURS six-point system puncture method is about 30%, and there are serious complications.
CT檢查不能區分癌組織和良性增生組織,因此不能明確是否存在前列腺癌(PCa)。MRI軟組織解析度較高,在前列腺病變的診斷中優於CT和超音波,可有效鑑別前列腺癌 ( PCa ) 和前列腺增生。但前列腺癌 ( PCa ) 易發生淋巴結轉移及遠端骨轉移,降低了MRI在前列腺癌 ( PCa ) 診斷、分期中的應用價值。Tc-99m-MDP骨造影可比X線檢查,可以提前3~6個月發現骨轉移灶,有助於判斷前列腺癌 ( PCa ) 準確的臨床分期,但其靈敏度較高但特異性較差。臨床上約50%的前列腺癌 ( PCa ) 骨轉移患者在確診後30~35個月內死亡。因此,目前傳統的影像學和切片法已難以滿足臨床對前列腺癌 ( PCa ) 早期診斷及準確分期的要求。CT examination cannot distinguish between cancerous tissue and benign hyperplastic tissue, so it is not clear whether there is prostate cancer (PCa). MRI soft tissue has a higher resolution and is superior to CT and ultrasound in the diagnosis of prostate lesions, and can effectively distinguish between prostate cancer (PCa) and benign prostatic hyperplasia. However, prostate cancer (PCa) is prone to lymph node metastasis and distal bone metastasis, which reduces the value of MRI in the diagnosis and staging of prostate cancer (PCa). Tc-99m-MDP angiography is comparable to X-ray examination. It can detect
血液PSA指數檢查;係以血液PSA指數作為前列腺癌(PCa)的腫瘤biomarker,目前普遍用於診斷前列腺癌(PCa)之敏感指標。但血液PSA指數在4~10 μg/L時,難以確診前列腺癌(PCa)。且血液PSA指數無法反應臨床病理切片特徵,並無特異性,無法有效區分腫瘤局部病灶或遠處轉移。Blood PSA index test; the blood PSA index is used as a tumor biomarker for prostate cancer (PCa) and is currently commonly used as a sensitive indicator for the diagnosis of prostate cancer (PCa). However, when the blood PSA index is 4-10 μg/L, it is difficult to diagnose prostate cancer (PCa). And the blood PSA index can not reflect the characteristics of clinicopathological slices, there is no specificity, and it cannot effectively distinguish local tumors or distant metastases.
而核子醫學分子造影的主要技術內容如下:The main technical contents of nuclear medicine molecular imaging are as follows:
(A) F-18-NaF骨造影;臨床研究指出,Tc-99m-MDP骨造影對前列腺癌 ( PCa ) 骨轉移檢測的靈敏度為50.8%,特異性為82%。與之相比,F-18-NaF PET/CT造影的靈敏度為93%,特異性為54%,且其具有更高的空間解析度,並能進行CT解剖定位及三維成像,有望成為早期發現前列腺癌 ( PCa ) 骨轉移的臨床影像學檢查方法。F-18-NaF雖能發現更多的轉移灶,但其並不能改變臨床治療方案。(A) F-18-NaF angiography; clinical studies indicate that Tc-99m-MDP angiography has a sensitivity of 50.8% and a specificity of 82% for the detection of prostate cancer (PCa) bone metastases. In contrast, F-18-NaF PET/CT imaging has a sensitivity of 93% and a specificity of 54%, and it has a higher spatial resolution, and can perform CT anatomical positioning and three-dimensional imaging, which is expected to become an early discovery. Prostate cancer (PCa) clinical imaging examination method for bone metastasis. Although F-18-NaF can find more metastases, it does not change the clinical treatment plan.
(B) F-18-FDG造影;F-18-FDG PET/CT可為前列腺癌 ( PCa ) 的早期診斷、分期、方案優化、預後評估等提供有效的臨床資料。但與正常細胞相似,前列腺癌 ( PCa ) Glut表達水準較低,難以區分良性病變,且F-18-FDG主要經泌尿系統排泄,會對前列腺癌 ( PCa ) 診斷產生干擾,導致F-18-FDG對前列腺癌 ( PCa ) 檢出率低,診斷價值有限。(B) F-18-FDG angiography; F-18-FDG PET/CT can provide effective clinical data for early diagnosis, staging, protocol optimization, and prognostic evaluation of prostate cancer (PCa). But similar to normal cells, prostate cancer (PCa) Glut expression level is low, it is difficult to distinguish benign lesions, and F-18-FDG is mainly excreted through the urinary system, which will interfere with the diagnosis of prostate cancer (PCa), resulting in F-18- FDG has a low detection rate of prostate cancer (PCa) and limited diagnostic value.
(C) C-11-Choline造影;與F-18-NaF相比,C-11-Choline前列腺癌 ( PCa ) 造影優勢明顯。C-11-Choline能在腫瘤細胞內濃聚,並在腫瘤細胞內被磷酸化後滯留在細胞中。Sutinen等的C-11-CholinePET研究表明雖然膀胱部位也有造影劑濃聚,但濃聚度較低,前列腺可憑藉其位置和形態確定。Picchio等對100例前列腺癌 ( PCa ) 患者的回顧性研究證實,C-11-Choline PET的前列腺癌 ( PCa ) 診斷能力優於F-18-FDG,其造影陽性率為47%,而F-18-NaF僅為27%。N-[F-18]氟甲基Choline(F-18-fluoro-methylcholine, F-18-FECH)的靈敏度為84.7%,特異性為91.1%,顯示C-11/F-18-FECH對前列腺腫瘤診斷的靈敏度與特異性均明顯優於Tc-99m-MDP與F-18-NaF。Yamaguchi (Eur J Nucl Med Mol Imaging.2005) 等學者對C-11-CholinePET與MRI定位原發前列腺癌 (PCa) 的靈敏度進行比較發現,C-11-CholinePET靈敏度接近100% ,而MRI僅為60%。但C-11-Choline造影無法有效鑒別前列腺癌 ( PCa ) 原發灶。 F-18-FACBC(anti-1-amino-3-F-18-fluorocyclobutane-1-carboxylic acid)造影;F-18-FACBC是L-型氨基酸轉運載體1和丙氨酸、絲氨酸和半胱氨酸轉運體的基質,幾乎不通過腎排泄,因而骨盆可清晰顯影,可用於前列腺癌 ( PCa ) 的檢測。Schuster等報導了近百例疑似復發性前列腺癌 ( PCa ) 患者F-18-FACBC PET/CT檢查結果,其原發前列腺癌( PCa ) 陽性檢出率為74%,轉移性腫瘤的陽性檢出率為96%。F-18-FACBC造影可檢出F-18-FDG無法檢出的淋巴結轉移,效果明顯優於單獨使用CT或PET。Schuster等回顧598例F-18-FACBC多中心聯合研究造影表明,該探針體內代謝較快,注射後30 min造影較好。目前F-18-FACBC已在大陸進行Ⅲ期臨床試驗(NCT01666808)階段。(C) C-11-Choline angiography; compared with F-18-NaF, C-11-Choline prostate cancer (PCa) has obvious advantages in angiography. C-11-Choline can accumulate in tumor cells and be phosphorylated in tumor cells and stay in the cells. Sutinen et al's C-11-CholinePET study showed that although there is also a concentration of contrast agent in the bladder, the concentration is low, and the prostate can be determined by its location and morphology. Picchio et al's retrospective study of 100 patients with prostate cancer (PCa) confirmed that the diagnostic ability of C-11-Choline PET for prostate cancer (PCa) is better than F-18-FDG, and the positive rate of angiography is 47%, while F- 18-NaF is only 27%. N-[F-18] fluoromethyl Choline (F-18-fluoro-methylcholine, F-18-FECH) has a sensitivity of 84.7% and a specificity of 91.1%, showing that C-11/F-18-FECH has an effect on the prostate The sensitivity and specificity of tumor diagnosis are significantly better than Tc-99m-MDP and F-18-NaF. Yamaguchi (Eur J Nucl Med Mol Imaging. 2005) and other scholars compared the sensitivity of C-11-CholinePET and MRI to locate primary prostate cancer (PCa) and found that the sensitivity of C-11-CholinePET is close to 100%, while the MRI is only 60 %. However, C-11-Choline angiography cannot effectively identify the primary tumor of prostate cancer (PCa). F-18-FACBC (anti-1-amino-3-F-18-fluorocyclobutane-1-carboxylic acid) contrast; F-18-FACBC is an L-type
(D) 16β-[F-18]氟代-5-雙氫睾酮(16β-F-18-fluoro-5-dihydrotestosterone,F-18-DHT)雄激素受體造影;在前列腺組織中,DHT是主要雄激素,其濃度是睾酮的5倍,且與雄激素受體親和力是睾酮的10倍。F-18-DHT具有較高的前列腺與軟組織放射性比值,有望應用於前列腺癌 ( PCa ) 的診斷、分期、預後及激素治療效果評估。1項7例前列腺癌 ( PCa ) 患者的F-18-DHT與F-18-FDG比較研究結果顯示,F-18-DHT體內代謝較快,且病灶部位攝取隨著時間延長而增加。一般檢出的59個病灶中, F-18-DHT發現了其中46個病灶(檢出率78%),而F-18-FDG檢出了57個病灶(檢出率97%)。研究者又進行了F-18-DHT與F-18-FDG在進展期前列腺癌 ( PCa ) 臨床診斷效能的對比研究(NCT00588185),利用計算手段分析雄激素受體表達與F-18-DHT攝取的關係,進一步確認了其在前列腺腫瘤早期診斷等臨床應用的可行性。該課題組2014年啟動了以F-18-DHT為分子探針,利用PET及MR同時進行前列腺癌 ( PCa ) 診療的研究,推動F-18-DHT探針在前列腺腫瘤激素診療中的臨床應用。(D) 16β-[F-18]fluoro-5-dihydrotestosterone (16β-F-18-fluoro-5-dihydrotestosterone, F-18-DHT) androgen receptor imaging; in prostate tissue, DHT is The main androgen, its concentration is 5 times that of testosterone, and its affinity with androgen receptor is 10 times that of testosterone. F-18-DHT has a high ratio of prostate to soft tissue radioactivity, and is expected to be used in the diagnosis, staging, prognosis, and evaluation of hormone therapy for prostate cancer (PCa). A comparison study of F-18-DHT and F-18-FDG in 7 patients with prostate cancer (PCa) showed that F-18-DHT is metabolized faster in the body, and the uptake of the lesion site increases with time. Of the 59 lesions detected in general, F-18-DHT found 46 of them (detection rate 78%), while F-18-FDG detected 57 lesions (
(E) 以前列腺特異性膜抗原(prostatic specific membrane antigen,PSMA)為靶點的新型分子探針;隨著分子生物學研究水準的深化,PSMA受體成為前列腺癌 ( PCa ) 的分子造影與靶向治療的理想靶點。根據藥物[包括單克隆抗體(簡稱單抗)、多肽、小分子]與PSMA作用位點的不同,PSMA靶向抗體分為胞內域抗體(如7EI1、PM2J004.5)和胞外域抗體(如J591、J415、PEQ226.6)等。上述包含F-18-FDG在內之診方法,部分個案無法對前列腺癌進行判斷,特別在轉移的案例上。目前研究發現,前列腺癌細胞表面會高度表現prostate specific membrane antigen (PSMA),因此只要針對anti-PSMA,即可開發出相關適用的放射性核醫藥物。目前已經開發出種類之抗體或胜肽(J591、PSMA-11等),可以用Ga-68標誌進行診斷。但臨床進展已經走向PRRT (peptide receptor radionuclide therapy) 概念,希望診療同步。(E) New molecular probes targeting prostate specific membrane antigen (PSMA); with the deepening of molecular biology research, PSMA receptors have become the molecular imaging and target of prostate cancer (PCa) The ideal target for treatment. According to the different action sites of drugs [including monoclonal antibodies (abbreviated as monoclonal antibodies), peptides, and small molecules] and PSMA, PSMA targeting antibodies are divided into intracellular domain antibodies (such as 7EI1, PM2J004.5) and extracellular domain antibodies (such as J591, J415, PEQ226.6) etc. In the above diagnosis methods including F-18-FDG, some cases cannot judge prostate cancer, especially in metastatic cases. Current research has found that prostate cancer cell surface highly expresses prostate specific membrane antigen (PSMA), so as long as it targets anti-PSMA, relevant radioactive nuclear medicines can be developed. At present, a variety of antibodies or peptides (J591, PSMA-11, etc.) have been developed and can be diagnosed with the Ga-68 marker. However, clinical progress has moved toward the concept of PRRT (peptide receptor radionuclide therapy), hoping to synchronize diagnosis and treatment.
目前在PSMA基礎上有相當多種類被開發,主要都是用於診斷使用,只有其中後續改良之PSMA-617,可以進行Lu-177之標誌,進行治療。目前該藥物已經進入臨床三期 (預計於2020年完成),證明已經可以達到有效治療的效果。但由於該藥物半衰期為10.8小時,病人在整體療程,大約需要4次,會耗費較多時間與金錢。At present, there are quite a few types developed on the basis of PSMA, which are mainly used for diagnosis. Only the PSMA-617, which is subsequently improved, can be treated with the Lu-177 mark. At present, the drug has entered clinical phase three (expected to be completed in 2020), proving that it can already achieve effective treatment. However, because the half-life of the drug is 10.8 hours, the patient needs about 4 times in the whole course of treatment, which will consume more time and money.
先前技術美國公開公告US 2016/0228587 A1揭露一種功能性連接基,使前列腺癌抑制藥劑可與螯合劑結合,並與放射性核種螯合,作為前列腺癌之標誌追踪及診斷,但此種藥物半衰期短,需要多次療程。本發明與前述先前技術差異為使用伊文思藍或伊文思藍修飾此US 2016/0228587 A1揭露之化合物,使其增加化合物與血液白蛋白結合之功能,有效降低化合物進入活體後迅速經由腎臟排除之缺點,且降低藥物用量75%以上。另外,先前技術中國公開CN 104650217 A專利申請案揭露利用伊文思藍或伊文思藍衍生物修飾Exendin-4,作為治療糖尿病II型及心肌梗塞之用,雖與本發明相同使用伊文思藍或伊文思藍修飾化合物,但CN 104650217 A專利申請案揭露修飾後之化合物型態與功能完全不同。本發明係提供一種連接基可與螯合劑及截斷的伊文思藍結合,該螯合劑可標誌放射性核種Ga-67、Ga-68、In-111、Lu-177、Cu-64、Y-90,用以進行人類前列腺癌腫瘤模式影像分析評估。本發明所提供之PSMA-7165衍生物與 PSMA 受體具有高度的結合性,係以上述PSMA-617作為基礎進行改良,利用連接基加入截斷的伊文思藍,增加體內半衰期,以延長其在血液中之停留時間,可達到單一次注射即可完成療程之目標。Prior art U.S. Published Bulletin US 2016/0228587 A1 discloses a functional linker that enables a prostate cancer inhibitor to bind to a chelating agent and chelate with a radioactive nucleus to serve as a marker for prostate cancer tracking and diagnosis, but this drug has a short half-life , Multiple treatment sessions are required. The difference between the present invention and the foregoing prior art is to use Evans blue or Evans blue to modify the compound disclosed in US 2016/0228587 A1, so as to increase the compound's function of binding to blood albumin, and effectively reduce the compound's rapid elimination by the kidney after entering the living body. Disadvantages, and reduce the dosage of drugs by more than 75%. In addition, the prior art Chinese published CN 104650217 A patent application discloses the use of Evans blue or Evans blue derivatives to modify Exendin-4 for the treatment of diabetes type II and myocardial infarction, although Evans blue or Iraq is used in the same way as the present invention Vanceline modified the compound, but CN 104650217 A patent application discloses that the modified compound has completely different types and functions. The present invention provides a linking group that can be combined with a chelating agent and truncated Evans blue, the chelating agent can mark the radioactive nuclear species Ga-67, Ga-68, In-111, Lu-177, Cu-64, Y-90, Used for image analysis and evaluation of human prostate cancer tumor model. The PSMA-7165 derivative provided by the present invention has a high degree of binding to the PSMA receptor. It is improved on the basis of the above PSMA-617, and the truncated Evans blue is added by using a linker to increase the half-life in the body to prolong its blood circulation. The duration of stay can reach the goal of completing the course of treatment with a single injection.
本發明之主要目的在於提供一種PSMA靶向放射性診療之胜肽衍生物,其係以 PSMA-617為主體,合成一種具有放射性標記功能的 PSMA-7165診斷示蹤劑,利用該PSMA-7165衍生物與 PSMA 受體具有高度的結合性,且 PSMA 受體會表現在前列腺癌 ( PCa ) 上,可供作為前列腺癌 ( PCa ) 標靶性診斷或治療藥物載體,且以PSMA-617作為基礎進行改良,加入Evans Blue,以延長其在血液中之停留時間,增加體內半衰期,可達到單一次注射即完成治療之目標,藉以降低病患時間與金錢的負擔。The main object of the present invention is to provide a peptide derivative of PSMA targeted radiotherapy and diagnosis, which is based on PSMA-617 and synthesizes a PSMA-7165 diagnostic tracer with radiolabeling function, and uses the PSMA-7165 derivative It has a high degree of binding to the PSMA receptor, and the PSMA receptor will be expressed in prostate cancer (PCa), which can be used as a target diagnostic or therapeutic drug carrier for prostate cancer (PCa), and is improved based on PSMA-617. Evans Blue is added to prolong its stay in the blood and increase the half-life in the body, which can achieve the goal of completing the treatment with a single injection, thereby reducing the burden of patients' time and money.
本發明之另一目的在於提供一種PSMA靶向放射性診療之胜肽衍生物,其PSMA-7165標誌方便與時間縮短,不須經其它管柱進行標誌後純化,標誌效率即可達95%以上,從腫瘤動物實驗數據可知其與腫瘤結合性高,在前列腺癌 ( PCa ) 動物模式 (PSMA+) 上僅需2~4小時即可看見明顯的腫瘤蓄積影像,至72小時仍維持高度蓄積量。Another object of the present invention is to provide a peptide derivative of PSMA targeted radioactive diagnosis and treatment. The PSMA-7165 label is convenient and shortens time. The label efficiency does not need to be purified by other columns after labeling, and the label efficiency can reach more than 95%. From the experimental data of tumor animals, it can be seen that it has a high degree of binding to tumors. In the prostate cancer (PCa) animal model (PSMA+), it takes only 2 to 4 hours to see obvious tumor accumulation images, and it still maintains a high accumulation amount until 72 hours.
本發明之又一目的在於提供一種PSMA靶向放射性診療之胜肽衍生物,其PSMA-7165胜肽衍生物標誌後產品可以放射性針劑模式注射給藥,亦可以凍晶組合方式給藥,除增加運送的便利性與後端使用的選擇性,更增加藥物市場的推廣性。Another object of the present invention is to provide a peptide derivative for PSMA targeted radiotherapy diagnosis and treatment. The product marked with PSMA-7165 peptide derivative can be administered by injection in the form of radioactive injection, or by combination of frozen crystals, in addition to increase The convenience of delivery and the selectivity of back-end use increase the promotion of the pharmaceutical market.
為使本發明的上述目的、功效及特徵可獲致更具體的瞭解,茲依下列附圖說明如下:In order to make the above objects, effects and features of the present invention more specific, the following drawings are as follows:
請參第1圖所示 ,可知本發明 PSMA-7165之化學結構;在一個可行的實施例中,該PSMA-7165之化學合成係可經由以下Scheme 1、2、3所揭示的內容實施。 Please refer to FIG. 1 for the chemical structure of the PSMA-7165 of the present invention; in a feasible embodiment, the chemical synthesis of the PSMA-7165 can be implemented through the contents disclosed in
途徑 1:使化合物1(Boc麩胺酸)在二氯甲烷冰浴10分鐘,加入三光氣反應在0℃中攪拌6小時,得到中間產物2(異氰酸酯)。使化合物3(離胺酸衍生物)與2-氯三苯甲基樹脂在二氯甲烷中常溫反應2小時,得到中間產物4。將中間產物2與中間產物4於室溫攪拌16小時進行偶合獲得中間產物5。以中間產物5、四 (三苯基膦) 鈀與嗎啉在二氯甲烷中常溫攪拌3小時,去除烯丙氧保護基得到中間產物6。將芴醯氯-3-(2-萘)-L–離胺酸、HBTU、DIPEA及中間產物6室溫攪拌16小時獲得中間產物7。以傳明酸衍生物、HBTU、DIPEA及中間產物7室溫攪拌16小時得到中間產物8。再以N-Succinimidyl-S-acetylthiopropionate (STPA) 及磷酸氫鈉在二甲基亞碸中與中間產物8室溫攪拌10小時獲得中間產物9。將中間產物9與羥胺反應去除乙醯基後加上三氟乙酸獲得第一半成品 (sulfhydryl-modified PSMA-617,PSMA-7165中間體)。 Route 1: Compound 1 (Boc glutamic acid) was ice-bathed in dichloromethane for 10 minutes, triphosgene was added to react and stirred at 0°C for 6 hours to obtain intermediate product 2 (isocyanate). Compound 3 (an amine acid derivative) and 2-chlorotrityl resin were reacted in dichloromethane at room temperature for 2 hours to obtain
途徑 2:將化合物11(鄰二甲基聯苯胺)與二碳酸二叔丁酯在二氯甲烷室溫反應5小時,利用二碳酸二叔丁酯為限量試劑,可得到中間產物12(Boc-聯苯甲胺),再與亞硝酸鈉與鹽酸下反應,形成重氮鹽類中間產物 13,以1-氨基-8-奈酚-2,4-二磺酸鈉及碳酸氫鈉溶於水中,緩慢加入中間產物13於溶液中反應12小時獲得中間產物14,接著以中間產物14加入三氟乙酸去除boc保護基後,加上Boc-Lys-Fmoc及HATU室溫攪拌6小時,獲得中間產物15,該中間產物15加入哌啶常溫攪拌4小時,獲得中間產物16。將NOTA、HATU、DIPEA在DMF中預攪拌15分鐘後,加入中間產物16常溫反應至隔夜,獲得中間產物17。將中間產物17加入三氟乙酸與DMF溶劑中常溫攪拌2小時,獲得第二半成品 (DOTA-EB-Lys,PSMA-7165中間體)。 Route 2: Compound 11 (o-dimethylbenzidine) and di-tert-butyl dicarbonate were reacted in dichloromethane at room temperature for 5 hours. Using di-tert-butyl dicarbonate as the limiting reagent, intermediate product 12 (Boc- Benzylamine), and then reacted with sodium nitrite and hydrochloric acid to form diazonium salt intermediate product 13, dissolved in water with 1-amino-8-naphthol-2,4-disulfonic acid sodium and sodium bicarbonate , Slowly add intermediate product 13 and react in the solution for 12 hours to obtain intermediate product 14, then add trifluoroacetic acid as intermediate product 14 to remove the boc protecting group, add Boc-Lys-Fmoc and HATU at room temperature and stir for 6 hours to obtain intermediate product 15. The intermediate product 15 was added to piperidine and stirred at room temperature for 4 hours to obtain intermediate product 16. After pre-stirring NOTA, HATU and DIPEA in DMF for 15 minutes, intermediate product 16 was added and reacted at room temperature until overnight to obtain intermediate product 17. The intermediate product 17 was added to trifluoroacetic acid and DMF solvent and stirred at room temperature for 2 hours to obtain a second semi-finished product (DOTA-EB-Lys, PSMA-7165 intermediate).
途徑 3:將第二半成品(DOTA-EB-Lys)與二氧環戊酯衍生物常溫攪拌,獲得中間產物19,最後將中間產物19與第一半成品(PSMA617-SH)在PBS緩衝溶液及DMF室溫攪拌2小時,得到PSMA-7165,其化學構造式(如第1、19圖所示)如下: 其中n為阿拉伯數字1,m為阿拉伯數字1,p為阿拉伯數字1,R1為金屬螯合基DOTA,R2為化學結構萘分子(naphthalene),即為PSMA-7165。Route 3: Stir the second semi-finished product (DOTA-EB-Lys) and the dioxolyl ester derivative at room temperature to obtain the intermediate product 19, and finally mix the intermediate product 19 and the first semi-finished product (PSMA617-SH) in PBS buffer solution and DMF Stir at room temperature for 2 hours to obtain PSMA-7165. Its chemical structural formula (as shown in Figures 1 and 19) is as follows: Among them, n is
請參第2至4b圖所示 ,可知本發明 PSMA-7165之Ga-68放射性標誌的製備方法包括:「製備定量之PSMA-7165」S11步驟、「加入反應緩衝液」S12步驟、「加入Ga-68射源」S13步驟、「恆溫反應」S14步驟、「品質控管」S15步驟、「成品產出」S16步驟等;其中該「製備定量之PSMA-7165」S11步驟,係由PSMA-7165以DMSO配製成20mg/mL,以10µg分裝於微量離心管,置於-20℃保存。標誌時再取出含10µg PSMA-7165的1.5mL微量離心管。Please refer to Figures 2 to 4b, it can be seen that the preparation method of the Ga-68 radioactive marker of the PSMA-7165 of the present invention includes: "Preparation of quantitative PSMA-7165" S11 step, "Add reaction buffer" S12 step, "Add Ga -68 shot source" S13 step, "constant temperature reaction" S14 step, "quality control" S15 step, "finished product output" S16 step, etc.; wherein the "preparation of quantitative PSMA-7165" S11 step is made by PSMA-7165 Prepare 20mg/mL in DMSO, divide into 10μg in microcentrifuge tubes, and store at -20℃. When marking, take out a 1.5mL microcentrifuge tube containing 10µg PSMA-7165.
「加入反應緩衝液」S12步驟,係在S11步驟含有10µg PSMA-7165的1.5mL微量離心管加入1、1.5或3 M醋酸鈉緩衝溶液,其pH值分別為6.0、6.0或7.0,並讓終反應溶液酸鹼值分別為4.0、5.0及6.0。"Add reaction buffer" step S12, in step S11, add a 1.5 mL microcentrifuge tube containing 10 µg PSMA-7165 to 1, 1.5 or 3 M sodium acetate buffer solution, the pH value is 6.0, 6.0 or 7.0, and let the final The pH values of the reaction solution were 4.0, 5.0 and 6.0, respectively.
「加入Ga-68射源」S13步驟,係將S12步驟的混合液經由超音波震盪1~2min後,再加入Ga-68射源(起始活度約為1.3mCi),完全混合均勻後終反應體積為165.5µL。"Add Ga-68 source" step S13 is to oscillate the mixture of step S12 for 1~2min through ultrasonic wave, then add Ga-68 source (the initial activity is about 1.3mCi), and mix thoroughly and finally The reaction volume is 165.5 µL.
「恆溫反應」S14步驟,係放入95℃精準恆溫控制器中反應15、20或30分鐘,於加熱過程中同時震盪轉速為500rpm。Step S14 of "Constant temperature reaction" is to put it in a 95°C precision thermostat for 15, 20 or 30 minutes, and shake at 500 rpm during heating.
「品質控管」S15步驟,係待完全冷卻後,取適量樣品進行放射性薄層分析 (radio-ITLC),其分析用展開液為0.1M檸檬酸,在此分析系統中,原點處為標上放射性的Ga-68-PSMA-7165,溶液移動端為未反應之Ga-68。"Quality control" step S15, after completely cooling, take an appropriate amount of sample for radio-ITLC analysis, the development solution for analysis is 0.1M citric acid, in this analysis system, the origin is the standard On the radioactive Ga-68-PSMA-7165, the mobile end of the solution is unreacted Ga-68.
「成品產出」S16步驟,係在不同條件中,以1.5M醋酸鈉緩衝液 (pH 5.0) 經標誌15分鐘後標誌效率即可達95%,反應時間增加至20或30分鐘,標誌效率可達100%,其標誌數據如第3至4b圖所示。"Product output" step S16, under different conditions, with 1.5M sodium acetate buffer (pH 5.0) after 15 minutes of marking, the marking efficiency can reach 95%, and the reaction time is increased to 20 or 30 minutes, the marking efficiency can be Up to 100%, the logo data is shown in Figures 3 to 4b.
請參第5至7圖所示 ,可知本發明 PSMA-7165之Ga-67放射性標誌的製備方法包括:「製備定量之PSMA-7165」S21步驟、「加入反應緩衝液」S22步驟、「加入Ga-67射源」S23步驟、「恆溫反應」S24步驟、「品質控管」S25步驟、「成品產出」S26步驟等;其中該「製備定量之PSMA-7165」S21步驟,係由PSMA-7165以DMSO配製成20mg/mL,以20µg分裝於微量離心管,置於-20℃保存。標誌時再取出含20µg PSMA-7165的1.5mL微量離心管。Please refer to Figs. 5-7, it can be seen that the preparation method of the Ga-67 radioactive marker of the PSMA-7165 of the present invention includes: "Preparation of quantitative PSMA-7165" S21 step, "Add reaction buffer" S22 step, "Add Ga -67 ray source" S23 step, "constant temperature reaction" S24 step, "quality control" S25 step, "finished product output" S26 step, etc.; wherein the "preparation of quantitative PSMA-7165" step S21 is made by PSMA-7165 Prepare 20mg/mL with DMSO, divide it into microcentrifuge tubes at 20µg, and store at -20℃. When marking, take out a 1.5mL microcentrifuge tube containing 20µg PSMA-7165.
「加入反應緩衝液」S22步驟,係加入0.4 M醋酸鈉緩衝溶液,其pH值為6.0。"Add reaction buffer" step S22, add 0.4 M sodium acetate buffer solution, the pH value is 6.0.
「加入Ga-67射源」S23步驟,係將S22步驟的混合液經由超音波震盪1~2min後,再加入Ga-67射源(起始活度約為~3mCi),完全混合均勻後終反應體積為150µL。"Add Ga-67 source" step S23, after the shock of the mixture of step S22 is oscillated by ultrasound for 1~2min, then add Ga-67 source (the initial activity is about ~3mCi), complete mixing and then finally The reaction volume is 150µL.
「恆溫反應」S24步驟,係放入95℃精準恆溫控制器中反應15、20或30分鐘,於加熱過程中同時震盪轉速為500rpm。Step S24 of "Constant temperature reaction" is to put it in a 95°C precise constant temperature controller for 15, 20 or 30 minutes, and shake at 500 rpm during heating.
「品質控管」S25步驟,係待完全冷卻後,取適量樣品進行放射性薄層分析 (radio-ITLC),其分析用展開液為0.1M檸檬酸,在此分析系統中,原點處為標上放射性的Ga-67-PSMA-7165,溶液移動端為未反應之Ga-67。"Quality Control" step S25, after completely cooling, take a proper amount of sample for radio-ITLC analysis, the development solution for analysis is 0.1M citric acid, in this analysis system, the origin is the standard On the radioactive Ga-67-PSMA-7165, the mobile end of the solution is unreacted Ga-67.
「成品產出」S26步驟,係以0.4M醋酸鈉緩衝溶液 (pH 6.0) 經標誌15分鐘後標誌效率即可達100%,其標誌數據如第6至7圖所示。Step S26 of "Finished Product Output" is to use 0.4M sodium acetate buffer solution (pH 6.0) after marking for 15 minutes to achieve 100% marking efficiency. The marking data is shown in Figures 6 to 7.
請參第8至10圖所示 ,可知本發明PSMA-7165之In-111放射性標誌的製備方法包括:「製備定量之PSMA-7165」S31步驟、「加入反應緩衝液」S32步驟、「加入In-111射源」S33步驟、「恆溫反應」S34步驟、「品質控管」S35步驟、「成品產出」S36步驟等;其中該「製備定量之PSMA-7165」S31步驟,係由PSMA-7165以DMSO配製成20mg/mL,以20µg分裝於微量離心管,置於-20℃保存。標誌時再取出含20µgPSMA-7165的1.5mL微量離心管。Please refer to Figures 8 to 10, it can be seen that the preparation method of the PSMA-7165 In-111 radioactive marker of the present invention includes: "Preparation of quantitative PSMA-7165" S31 step, "Add reaction buffer" S32 step, "Add In -111 shot source" S33 step, "constant temperature reaction" S34 step, "quality control" S35 step, "finished product output" S36 step, etc.; wherein the "preparation of quantitative PSMA-7165" step S31, by PSMA-7165 Prepare 20mg/mL with DMSO, divide it into microcentrifuge tubes at 20µg, and store at -20℃. When marking, take out a 1.5mL microcentrifuge tube containing 20µg PSMA-7165.
「加入反應緩衝液」S32步驟,係加入1M醋酸鈉緩衝溶液,其pH值分別為6.0。"Add reaction buffer" S32 step is to add 1M sodium acetate buffer solution, the pH value is 6.0.
「加入In-111射源」S33步驟,係將S32步驟的混合液經由超音波震盪1~2min後,再加入In-111射源(起始活度約為~5.7mCi),完全混合均勻後終反應體積為300µL。"Adding In-111 source" step S33 is to oscillate the mixture of step S32 through ultrasound for 1~2min, and then add In-111 source (the initial activity is about ~5.7mCi), after complete mixing The final reaction volume is 300 µL.
「恆溫反應」S34步驟,係放入95℃精準恆溫控制器中反應5、10、15或20分鐘,於加熱過程中同時震盪轉速為500rpm。Step S34 of "Constant temperature reaction" is to put it in a 95°C precise constant temperature controller for 5, 10, 15 or 20 minutes, and shake at 500 rpm during the heating process.
「品質控管」S35步驟,係待完全冷卻後,取適量樣品進行放射性薄層分析 (radio-ITLC),其分析用展開液為0.1M檸檬酸與0.1M 檸檬酸鈉以2比8體積比配置,在此分析系統中,原點處為標上放射性的In-111-PSMA-7165,溶液移動端為未反應之In-111。"Quality Control" step S35, after completely cooling, take an appropriate amount of sample for radio-ITLC analysis. The developing solution for analysis is 0.1M citric acid and 0.1M sodium citrate in a ratio of 2 to 8 by volume Configuration, in this analysis system, the origin is marked with radioactive In-111-PSMA-7165, and the mobile end of the solution is unreacted In-111.
「成品產出」S36步驟,係以1M醋酸鈉緩衝溶液 (pH 6.0) 經標誌10分鐘後標誌效率即可達97%,其標誌數據如第9~10圖所示。Step S36 of "finished product output" is to use 1M sodium acetate buffer solution (pH 6.0) after 10 minutes of marking to achieve a marking efficiency of 97%. The marking data is shown in Figures 9-10.
請參第11圖所示 ,可知本發明在In-111-PSMA-7165之活體外細胞結合活性測試中,將表現PSMA的LNCaP細胞與不表現PSMA的PC3細胞以7x105 個細胞與不同胜肽濃度的In-111-PSMA-7165經45分鐘於37℃培養,接著再以冰的PBS緩衝液清洗未與細胞結合的In-111-PSMA-7165,離心後收集沉澱的細胞,將細胞以γ-counter計讀放射性計讀值,在不同胜肽濃度2.5nM、25nM或250nM有表現PSMA的LNCaP細胞株均有較高計讀值 (CPM)。Please refer to FIG. 11, it can be seen that in the in vitro cell binding activity test of In-111-PSMA-7165, the present invention combines LNCaP cells expressing PSMA and PC3 cells expressing PSMA with 7 ×10 5 cells and different peptides. The concentration of In-111-PSMA-7165 was incubated at 37°C for 45 minutes, and then washed with iced PBS buffer to remove the In-111-PSMA-7165 that was not bound to the cells. After centrifugation, the precipitated cells were collected. -Counter readings of radiometer readings. LNCaP cell lines that exhibit PSMA at different peptide concentrations of 2.5nM, 25nM or 250nM all have higher readings (CPM).
請參第12圖所示 ,可知本發明PSMA-7165標誌In-111後在LNCaP (PSMA+) 及PC3 (PSMA-) 前列腺腫瘤老鼠造影試驗中,經時48小時藥物分布狀況。將表現PSMA的LNCaP人類前列腺癌細胞以4x106 接種於SCID老鼠的右 前肢或將不表現PSMA的PC-3人類前列腺癌細胞以2x106 接種於BALB/c裸鼠的後肢。動物待接種約3週後,將PSMA-7165以放射性同位素In-111標誌,接著以放射性薄層分析法確認藥物的標誌效率為100%。以注射水將標誌成品調劑成每支注射針約500µCi/100µL,以尾靜脈注射給予In-111-PSMA-7165經時1、4、24及48小時後進行nanoSPECT/CT造影。Please refer to FIG. 12, and it can be known that the PSMA-7165 logo In-111 of the present invention is distributed in 48 hours after the LNCaP (PSMA+) and PC3 (PSMA-) prostate tumor mouse angiography test. LNCaP human prostate cancer cells expressing PSMA were inoculated into the right forelimb of SCID mice at 4× 10 6 or PC-3 human prostate cancer cells not expressing PSMA were inoculated into the hind limbs of BALB/c nude mice at 2×10 6 . After the animals were inoculated for about 3 weeks, PSMA-7165 was labeled with the radioisotope In-111, and then the radioactive thin layer analysis method was used to confirm that the drug's labeling efficiency was 100%. The marked product was adjusted to approximately 500µCi/100µL per injection with injection water, and In-111-PSMA-7165 was given via tail vein injection for nanoSPECT/CT imaging after 1, 4, 24, and 48 hours.
該NanoSPECT/CT造影及影像半定量步驟包括:(1)將已知活度的In-111-PSMA-7165藥物以尾靜脈注射打入LNCaP腫瘤小鼠體內。(2) 製備固定活度的假體作為參考物質,連同腫瘤小鼠一起固定於NanoSPECT/CT儀的床架上,造影過程中腫瘤小鼠使用動物用藥愛寧麻醉劑 (Attane,寶齡富錦生技公司) 進行活體麻醉。(3)依據試驗設計於不同的時間點執行NanoSPECT/CT造影,過程中使用Mediso公司開發之Nucline (V.2.00)軟體以SPECT:60 sec/frame、Energy Window 245±10% keV&171±10% keV進行造影,並利用Scivis公司開發之HiSPECT (V.1.43049) 影像重建軟體進行影像重建。(4)重建後的影像使用Mediso公司開發之InVivoScope (V.1.44) 影像分析軟體進行SPECT及CT影像的初步檢視及產製影像檔。(5)使用PMOD Technologies公司開發之PMod (V.3.4) 影像分析軟體進行影像半定量分析:利用各時間點已知活度的參考物質所得之SPECT計數值,來推導出SPECT計數值和實際活度間的線性比例公式,再利用圈選各目標器官所得SPECT 計數值,以內插或外插線性公式的方式求得各目標器官之活度/體積。假定每1 mL的針劑為1 g,且鼠體內圈選區域每1 cm3為1 g,由於已知給藥針劑的活度體積和實驗鼠的重量,可推導出每一克藥物在各器官中的生物體分佈比 (%ID/g) 。The NanoSPECT/CT contrast and image semi-quantitative steps include: (1) Injecting In-111-PSMA-7165 drug with known activity into LNCaP tumor mice via tail vein injection. (2) Prepare a fixed activity prosthesis as a reference substance and fix it to the bed of NanoSPECT/CT instrument together with tumor mice. During the imaging process, tumor mice use the animal drug Aining (Attane, Baoling Fujinsheng) Technology company) to perform in vivo anesthesia. (3) NanoSPECT/CT imaging is performed at different time points according to the test design. During the process, Nucline (V.2.00) software developed by Mediso is used with SPECT: 60 sec/frame, Energy Window 245±10% keV&171±10% keV Perform imaging and use HiSPECT (V.1.43049) image reconstruction software developed by Scivis to reconstruct the image. (4) The reconstructed image uses the InVivoScope (V.1.44) image analysis software developed by Mediso to perform the preliminary inspection of SPECT and CT images and the production of image files. (5) Use PMod (V.3.4) image analysis software developed by PMOD Technologies to perform semi-quantitative image analysis: use the SPECT count value obtained from the reference substance with known activity at each time point to derive the SPECT count value and actual activity The linear ratio formula between degrees, and then use the SPECT count value obtained by circled each target organ to obtain the activity/volume of each target organ by interpolating or extrapolating the linear formula. Assuming 1 g per 1 mL of injection, and 1 g per 1 cm3 of the circled area in the mouse, due to the known activity volume of the administered injection and the weight of the experimental rat, it can be deduced that each gram of drug in each organ Biological distribution ratio (%ID/g).
請參第13至15b圖所示 ,可知本發明 DOTA-EB之Ga-67放射性標誌的製備方法包括:「製備定量之DOTA-EB」S41步驟、「加入反應緩衝液」S42步驟、「加入Ga-67射源」S43步驟、「恆溫反應」S44步驟、「品質控管」S45步驟、「成品產出」S46步驟等;其中該「製備定量之DOTA-EB」S41步驟,係由DOTA-EB以DMSO配製成20mg/mL,以20µg分裝於微量離心管,置於-20℃保存。標誌時再取出20µg DOTA-EB的1.5mL微量離心管。Please refer to Figures 13 to 15b, it can be seen that the preparation method of the Ga-67 radioactive marker of DOTA-EB of the present invention includes: "Preparation of quantitative DOTA-EB" S41 step, "Add reaction buffer" S42 step, "Add Ga -67 ray source" S43 step, "constant temperature reaction" S44 step, "quality control" S45 step, "finished product output" S46 step, etc.; wherein the "preparation of quantitative DOTA-EB" step S41, by DOTA-EB Prepare 20mg/mL with DMSO, divide it into microcentrifuge tubes at 20µg, and store at -20℃. At the time of marking, take out another 20μg DOTA-EB 1.5mL microcentrifuge tube.
「加入反應緩衝液」S42步驟,係加入1、1.5、3M醋酸鈉溶液反應緩衝溶液,其pH值分別為6.0、6.0或7.0,讓終反應溶液酸鹼值分別為4.0、5.0及6.0。"Add reaction buffer" S42 step is to add 1, 1.5, 3M sodium acetate solution reaction buffer solution, the pH value of which is 6.0, 6.0 or 7.0, so that the final reaction solution pH value is 4.0, 5.0 and 6.0.
「加入Ga-67射源」S43步驟,係將S42步驟的混合液經由超音波震盪1~2min後,再加入Ga-67射源(起始活度約為3mCi),完全混合均勻後終反應體積為150µL。"Adding Ga-67 source" step S43 is to oscillate the mixture of step S42 through ultrasonic for 1~2min, and then add Ga-67 source (initial activity is about 3mCi), complete mixing and final reaction The volume is 150µL.
「恆溫反應」S44步驟,係放入95℃精準恆溫控制器中反應15、20、或30分鐘,於加熱過程中同時震盪轉速為500rpm。Step S44 of "Constant temperature reaction" is to put it in a 95°C precise constant temperature controller for 15, 20, or 30 minutes, and shake at 500 rpm while heating.
「品質控管」S45步驟,係待完全冷卻後,取適量樣品進行放射性薄層分析 (radio-ITLC),其分析用展開液為10%甲醇(Methanol,MeOH),在此分析系統中,原點處為未反應之Ga-67,溶液移動端為標上放射性的Ga-67-DOTA-EB。"Quality Control" step S45, after completely cooling, take an appropriate amount of sample for radio-ITLC analysis, the development solution for analysis is 10% methanol (Methanol, MeOH). In this analysis system, the original The point is unreacted Ga-67, and the mobile end of the solution is Ga-67-DOTA-EB marked with radioactivity.
「成品產出」S46步驟,係在不同條件中,以1M醋酸鈉溶液 (pH 4.0) 或1.5M醋酸鈉溶液 (pH 5.0)經標誌15分鐘後標誌效率即可達95%以上,若反應時間增加至20或30分鐘,標誌效率仍是95%以上,其標誌數據如第14至15b圖所示。"Product output" step S46, under different conditions, with 1M sodium acetate solution (pH 4.0) or 1.5M sodium acetate solution (pH 5.0) after 15 minutes mark, the mark efficiency can reach more than 95%, if the reaction time Increasing to 20 or 30 minutes, the marking efficiency is still above 95%, and the marking data is shown in Figures 14 to 15b.
請參第16至18圖所示 ,可知本發明 DOTA-EB之In-111放射性標誌的製備方法包括:「製備定量之DOTA-EB」S51步驟、「加入反應緩衝液」S52步驟、「加入In-111射源」S53步驟、「恆溫反應」S54步驟、「品質控管」S55步驟、「成品產出」S56步驟等;其中該「製備定量之DOTA-EB」S51步驟,係由DOTA-EB以DMSO配製成20mg/mL,以20µg分裝於微量離心管,置於-20℃保存。標誌時再取出20µg DOTA-EB的1.5mL微量離心管。。Please refer to Figures 16 to 18, it can be seen that the preparation method of the DOTA-EB In-111 radioactive marker of the present invention includes: "Preparation of quantitative DOTA-EB" S51 step, "Add reaction buffer" S52 step, "Add In -111 shot source" S53 step, "constant temperature reaction" S54 step, "quality control" S55 step, "finished product output" S56 step, etc.; wherein the "preparation of quantitative DOTA-EB" step S51, by DOTA-EB Prepare 20mg/mL with DMSO, divide it into microcentrifuge tubes at 20µg, and store at -20℃. At the time of marking, take out another 20μg DOTA-EB 1.5mL microcentrifuge tube. .
「加入反應緩衝液」S52步驟,係加入1、2或3 M醋酸鈉溶液,其pH值分別為6.0、6.0或7.0,讓終反應溶液酸鹼值分別為6.0、6.0及7.0。"Add reaction buffer" step S52 is to add 1, 2 or 3 M sodium acetate solution, the pH value of which is 6.0, 6.0 or 7.0 respectively, so that the pH value of the final reaction solution is 6.0, 6.0 and 7.0 respectively.
「加入In-111射源」S53步驟,係將S52步驟的混合液經由超音波震盪1~2min後,再加入In-111射源(起始活度約為1或5mCi),完全混合均勻後終反應體積為300µL。"Adding In-111 source" step S53 is to oscillate the mixture of step S52 for 1~2min through ultrasonic wave, then add In-111 source (the initial activity is about 1 or 5mCi), and mix thoroughly The final reaction volume is 300 µL.
「恆溫反應」S54步驟,係放入95℃精準恆溫控制器中反應10分鐘,於加熱過程中同時震盪轉速為500rpm。Step S54 of "Constant temperature reaction" is to place it in a 95°C precise constant temperature controller for 10 minutes, and shake at 500 rpm during heating.
「品質控管」S55步驟,係待完全冷卻後,取適量樣品進行放射性薄層分析 (radio-ITLC),其分析用展開液為0.1M檸檬酸與0.1M檸檬酸鈉以2比8體積比配置,在此分析系統中,In-111-DOTA-EB位於原點處,未反應之In-111位於展開液端。"Quality Control" step S55, after completely cooling, take an appropriate amount of sample for radio-ITLC analysis, and the developing solution for analysis is 0.1M citric acid and 0.1M sodium citrate in a ratio of 2 to 8 by volume Configuration, in this analysis system, In-111-DOTA-EB is located at the origin, and unreacted In-111 is located at the developing liquid end.
「成品產出」S56步驟,係在不同條件中, 經標誌10分鐘反應標誌效率均可達90%以上,其標誌數據如第17至18圖所示。Step S56 of "finished product output" is under different conditions. After 10 minutes of marking, the efficiency of the marking can reach more than 90%. The marking data is shown in Figures 17 to 18.
綜合以上所述,本發明PSMA靶向放射性診療之胜肽衍生物確可達成延長體內半衰期、針對PSMA具專一性結合放射性之功效,實為一具新穎性及進步性之發明,爰依法提出申請發明專利;惟上述說明之內容,僅為本發明之較佳實施例說明,舉凡依本發明之技術手段與範疇所延伸之變化、修飾、改變或等效置換者,亦皆應落入本發明之專利申請範圍內。Based on the above, the peptide derivative of the PSMA targeted radioactive diagnosis and treatment of the present invention can indeed achieve the effect of prolonging the half-life in vivo and specifically binding radioactivity for PSMA, which is actually a novel and progressive invention. Invention patent; but the above description is only for the description of the preferred embodiments of the present invention. Any changes, modifications, changes or equivalent replacements that extend according to the technical means and scope of the present invention should also fall into the present invention. Within the scope of the patent application.
1‧‧‧化合物(Boc麩胺酸)2、4、5、6、7、8、9、12、13、14、15、16、17、19‧‧‧中間產物3‧‧‧化合物(離胺酸衍生物)11‧‧‧化合物(鄰二甲基聯苯胺)S11、S21、S31‧‧‧製備定量之PSMA-7165S12、S22、S32、S42、S52‧‧‧加入反應緩衝液S13‧‧‧加入Ga-68射源S14、S24、S34、S44、S54‧‧‧恆溫反應S15、S25、S35、S45、S55‧‧‧品質控管S16、S26、S36、S46、S56成品產出S23、S43‧‧‧加入Ga-67射源S33、S53‧‧‧加入In-111射源S41、S51‧‧‧製備定量之DOTA-EB1‧‧‧ Compound (Boc glutamic acid) 2, 4, 5, 6, 7, 8, 9, 12, 13, 14, 15, 16, 17, 19‧‧‧‧
第1圖係本發明PSMA-7165之化學結構與功能解說(包含分子量)。 第2圖係本發明Ga-68-PSMA-7165之標誌流程圖。 第3圖係本發明Ga-68-PSMA-7165標誌效率及標誌效率分析表 第4a、4b圖係本發明Ga-68-PSMA-7165之Radio-ITLC分析結果。 第5圖係本發明Ga-67-PSMA-7165之標誌流程圖。 第6圖係本發明Ga-67-PSMA-7165標誌效率及標誌效率分析表。 第7圖係本發明Ga-67-PSMA-7165之Radio-ITLC分析結果。 第8圖係本發明In-111-PSMA-7165之標誌流程圖。 第9圖係本發明In-111-PSMA-7165標誌效率及標誌效率分析表。 第10圖係本發明In-111-PSMA-7165之Radio-ITLC分析結果。 第11圖係本發明In-111-PSMA-7165與LNCaP (PSMA+) 或PC3 (PSMA-) 前列腺癌細胞結合試驗。 第12圖係本發明In-111-PSMA-7165在LNCaP人類前列腺癌腫瘤動物模式之NanoSPECT/CT造影圖。 第13圖係Ga-67-DOTA-EB之標誌流程圖。 第14圖係Ga-67-DOTA-EB標誌效率及標誌效率分析表。 第15a、15b圖係Ga-67-DOTA-EB之Radio-ITLC分析結果。 第16圖係In-111-DOTA-EB之標誌流程圖。 第17圖係In-111-DOTA-EB標誌效率及標誌效率分析表。 第18圖係In-111-DOTA-EB之Radio-ITLC分析結果。 第19圖係本發明PSMA-7165之化學構造式。Figure 1 is an explanation of the chemical structure and function (including molecular weight) of PSMA-7165 of the present invention. Figure 2 is a flow chart of the logo of the Ga-68-PSMA-7165 of the present invention. Figure 3 is the Ga-68-PSMA-7165 marker efficiency and marker efficiency analysis table of the present invention. Figures 4a and 4b are the Radio-ITLC analysis results of the Ga-68-PSMA-7165 of the present invention. Figure 5 is a flow chart of the Ga-67-PSMA-7165 logo of the present invention. Figure 6 is the Ga-67-PSMA-7165 logo efficiency and logo efficiency analysis table of the present invention. Figure 7 is the result of Radio-ITLC analysis of Ga-67-PSMA-7165 of the present invention. Figure 8 is a flow chart of the logo of the present invention In-111-PSMA-7165. Figure 9 is the In-111-PSMA-7165 logo efficiency and logo efficiency analysis table of the present invention. Figure 10 is the result of Radio-ITLC analysis of In-111-PSMA-7165 of the present invention. Figure 11 is a test of the binding of In-111-PSMA-7165 of the present invention to LNCaP (PSMA+) or PC3 (PSMA-) prostate cancer cells. FIG. 12 is a NanoSPECT/CT contrast image of In-111-PSMA-7165 of the present invention in an animal model of LNCaP human prostate cancer tumor. Figure 13 is the flow chart of the Ga-67-DOTA-EB logo. Figure 14 is the Ga-67-DOTA-EB logo efficiency and logo efficiency analysis table. Figures 15a and 15b are the results of Radio-ITLC analysis of Ga-67-DOTA-EB. Figure 16 is a flow chart of the In-111-DOTA-EB logo. Figure 17 is the In-111-DOTA-EB logo efficiency and logo efficiency analysis table. Figure 18 is the result of Radio-ITLC analysis of In-111-DOTA-EB. Figure 19 is the chemical structure of PSMA-7165 of the present invention.
Claims (20)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW107124433A TW202005669A (en) | 2018-07-16 | 2018-07-16 | The structural molecule of peptide derivative for PSMA-targeted radiotherapy diagnosis and treatment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW107124433A TW202005669A (en) | 2018-07-16 | 2018-07-16 | The structural molecule of peptide derivative for PSMA-targeted radiotherapy diagnosis and treatment |
Publications (1)
Publication Number | Publication Date |
---|---|
TW202005669A true TW202005669A (en) | 2020-02-01 |
Family
ID=70412742
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW107124433A TW202005669A (en) | 2018-07-16 | 2018-07-16 | The structural molecule of peptide derivative for PSMA-targeted radiotherapy diagnosis and treatment |
Country Status (1)
Country | Link |
---|---|
TW (1) | TW202005669A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112574280A (en) * | 2020-12-21 | 2021-03-30 | 北京大学第一医院 | Double-enzyme system probe and application thereof |
CN113004371A (en) * | 2021-03-01 | 2021-06-22 | 上海蓝纳成生物技术有限公司 | Prostate specific membrane antigen targeting compound with long circulation half-life period and preparation method and application thereof |
TWI739444B (en) * | 2020-05-26 | 2021-09-11 | 行政院原子能委員會核能研究所 | Kits and methods for preparing radiopharmaceuticals |
CN113582975A (en) * | 2021-07-03 | 2021-11-02 | 上海蓝纳成生物技术有限公司 | Truncated Evans blue modified fibroblast activation protein inhibitor and preparation method and application thereof |
CN115947775A (en) * | 2023-03-13 | 2023-04-11 | 北京先通国际医药科技股份有限公司 | Method for preparing compound (I), compound (I) and application thereof |
RU2832300C2 (en) * | 2021-03-01 | 2024-12-23 | Яньтай Ланьначэн Битехнолоджи Ко., Лтд. | Compound having targeted effect on prostate-specific membrane antigen, method for production thereof and use thereof |
-
2018
- 2018-07-16 TW TW107124433A patent/TW202005669A/en unknown
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI739444B (en) * | 2020-05-26 | 2021-09-11 | 行政院原子能委員會核能研究所 | Kits and methods for preparing radiopharmaceuticals |
CN112574280A (en) * | 2020-12-21 | 2021-03-30 | 北京大学第一医院 | Double-enzyme system probe and application thereof |
CN112574280B (en) * | 2020-12-21 | 2022-05-17 | 北京大学第一医院 | A dual-enzyme system probe and its application |
CN113004371A (en) * | 2021-03-01 | 2021-06-22 | 上海蓝纳成生物技术有限公司 | Prostate specific membrane antigen targeting compound with long circulation half-life period and preparation method and application thereof |
WO2022183993A1 (en) * | 2021-03-01 | 2022-09-09 | 烟台蓝纳成生物技术有限公司 | Compound targeting prostate specific membrane antigen, and preparation method therefor and use thereof |
US11957767B2 (en) | 2021-03-01 | 2024-04-16 | Yantai Lannacheng Biotechnology Co., Ltd. | Compound targeting prostate specific membrane antigen, and preparation method and application thereof |
RU2832300C2 (en) * | 2021-03-01 | 2024-12-23 | Яньтай Ланьначэн Битехнолоджи Ко., Лтд. | Compound having targeted effect on prostate-specific membrane antigen, method for production thereof and use thereof |
CN113582975A (en) * | 2021-07-03 | 2021-11-02 | 上海蓝纳成生物技术有限公司 | Truncated Evans blue modified fibroblast activation protein inhibitor and preparation method and application thereof |
CN115947775A (en) * | 2023-03-13 | 2023-04-11 | 北京先通国际医药科技股份有限公司 | Method for preparing compound (I), compound (I) and application thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20220202966A1 (en) | Positron emitting radionuclide labeled peptides for human upar pet imaging | |
McConathy et al. | Non-natural amino acids for tumor imaging using positron emission tomography and single photon emission computed tomography | |
TW202005669A (en) | The structural molecule of peptide derivative for PSMA-targeted radiotherapy diagnosis and treatment | |
Xu et al. | 99mTc-labeling and evaluation of a HYNIC modified small-molecular inhibitor of prostate-specific membrane antigen | |
US20200078478A1 (en) | Structural molecule of peptide derivative for PSMA-targeting radiotherapy diagnosis and treatment | |
CN111592584B (en) | HER2 affinity body and diagnostic radionuclide marker and preparation method and application thereof | |
US11850291B2 (en) | PSMA targeted radiotherapy medicine and preparation method thereof | |
CN113583089B (en) | Tumor PD-L1 targeted PET imaging agent, labeling precursor, preparation method and application thereof | |
Kumar et al. | Evaluating Ga-68 peptide conjugates for targeting VPAC receptors: stability and pharmacokinetics | |
Noor et al. | Imaging somatostatin positive tumors with Tyr3-octreotate/octreotide conjugated to desferrioxamine B squaramide radiolabeled with either zirconium-89 or gallium-68 | |
Lawrentschuk et al. | Positron emission tomography (PET), immuno‐PET and radioimmunotherapy in renal cell carcinoma: a developing diagnostic and therapeutic relationship | |
Ye et al. | Radiosynthesis and biological evaluation of 18F-labeled bispecific heterodimer targeted dual gastrin-releasing peptide receptor and prostate-specific membrane antigen for prostate cancer imaging | |
TWI803688B (en) | Psma targeted radiotherapy medicine and preparation method thereof | |
RU2796106C1 (en) | Radiopharmaceutical for the diagnosis of prostate cancer by positron emission tomography and method for its production | |
Lo et al. | Imaging and biodistribution of radiolabeled SP90 peptide in BT-483 tumor bearing mice | |
TW201927343A (en) | Radiolabeled progastrin in cancer diagnosis | |
Lu et al. | Development and preliminary evaluation of an integrin α2β1-targeted PET probe as a supplement and alternative of PSMA imaging for prostate cancer | |
Liolios et al. | Co-administration of succinylated gelatine with a 99mTc-bombesin analogue, effects on pharmacokinetics and tumor uptake | |
Chen et al. | A preliminary study of a 68 Ga-labeled PET probe for HER2 imaging | |
CN119462839A (en) | A compound and radionuclide probe targeting GPC3 and its application | |
CN114149489A (en) | A radiolabeled compound targeting TIGIT and its preparation method and application | |
CN118108800A (en) | Double-target probe of PSMA and GPC3, preparation method and application | |
CN116763946A (en) | Cyclic peptide radiopharmaceuticals for targeting PD-L1 and preparation method and application thereof | |
Huang et al. | Pet Imaging of Edb-Fn in Breast Cancer Xenografts Using 89zr-Labeled Ed-B Antibody | |
Ambrosetti et al. | Functional Imaging and Peptide Receptor Radionuclide Therapy |