TW202003921A - Method for manufacturing sliding parts capable of securely and quickly obtaining a sliding part having an improved adhesion resistance and smoothness - Google Patents
Method for manufacturing sliding parts capable of securely and quickly obtaining a sliding part having an improved adhesion resistance and smoothness Download PDFInfo
- Publication number
- TW202003921A TW202003921A TW108117768A TW108117768A TW202003921A TW 202003921 A TW202003921 A TW 202003921A TW 108117768 A TW108117768 A TW 108117768A TW 108117768 A TW108117768 A TW 108117768A TW 202003921 A TW202003921 A TW 202003921A
- Authority
- TW
- Taiwan
- Prior art keywords
- sliding part
- manufacturing
- sliding parts
- sliding
- metal phase
- Prior art date
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 18
- 238000000034 method Methods 0.000 title claims abstract description 13
- 229910052751 metal Inorganic materials 0.000 claims abstract description 30
- 239000002184 metal Substances 0.000 claims abstract description 30
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 claims abstract description 20
- 229910017604 nitric acid Inorganic materials 0.000 claims abstract description 20
- 238000012986 modification Methods 0.000 claims abstract description 13
- 230000004048 modification Effects 0.000 claims abstract description 13
- 239000011195 cermet Substances 0.000 claims abstract description 9
- 238000004090 dissolution Methods 0.000 claims abstract description 9
- 238000001039 wet etching Methods 0.000 claims abstract description 9
- 239000000956 alloy Substances 0.000 claims description 8
- 229910045601 alloy Inorganic materials 0.000 claims description 8
- 239000000243 solution Substances 0.000 description 18
- 239000010410 layer Substances 0.000 description 14
- 238000005530 etching Methods 0.000 description 13
- 239000002245 particle Substances 0.000 description 9
- 229910052723 transition metal Inorganic materials 0.000 description 9
- 150000003624 transition metals Chemical class 0.000 description 9
- 238000012545 processing Methods 0.000 description 8
- 230000000052 comparative effect Effects 0.000 description 7
- 239000000463 material Substances 0.000 description 6
- 239000002344 surface layer Substances 0.000 description 6
- QZPSXPBJTPJTSZ-UHFFFAOYSA-N aqua regia Chemical compound Cl.O[N+]([O-])=O QZPSXPBJTPJTSZ-UHFFFAOYSA-N 0.000 description 5
- 239000011800 void material Substances 0.000 description 5
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 4
- 239000002131 composite material Substances 0.000 description 4
- 238000000227 grinding Methods 0.000 description 4
- 238000005498 polishing Methods 0.000 description 4
- 239000002994 raw material Substances 0.000 description 4
- 230000002787 reinforcement Effects 0.000 description 4
- 238000005728 strengthening Methods 0.000 description 4
- 238000005299 abrasion Methods 0.000 description 3
- 239000002253 acid Substances 0.000 description 3
- 238000005520 cutting process Methods 0.000 description 3
- 238000009616 inductively coupled plasma Methods 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 3
- 229910052742 iron Inorganic materials 0.000 description 3
- 229910052759 nickel Inorganic materials 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000001312 dry etching Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 150000004767 nitrides Chemical class 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- 230000003746 surface roughness Effects 0.000 description 2
- 229910052721 tungsten Inorganic materials 0.000 description 2
- UONOETXJSWQNOL-UHFFFAOYSA-N tungsten carbide Chemical compound [W+]#[C-] UONOETXJSWQNOL-UHFFFAOYSA-N 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 239000003929 acidic solution Substances 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 238000009760 electrical discharge machining Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- -1 iron group metals Chemical class 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000013077 target material Substances 0.000 description 1
- 239000012085 test solution Substances 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
Images
Landscapes
- ing And Chemical Polishing (AREA)
- Cutting Tools, Boring Holders, And Turrets (AREA)
Abstract
Description
本發明是有關於一種滑動零件的製造方法。The invention relates to a manufacturing method of sliding parts.
包括以陶瓷等為代表的硬質相、及以Ni、Co、Fe等為代表的金屬相的複合合金,由於在室溫及高溫下的耐衝擊性優異,故而應用於模具或切割工具等各種用途的滑動零件。為了提高所述複合合金製的滑動零件的耐磨損性,先前已進行各種探討。例如在專利文獻1中,為了提高超硬合金的耐磨損性或硬度,已揭示一種超硬合金,其是以碳化鎢(tungsten carbide,WC)為主成分,所述超硬合金的特徵在於,表面層實質上僅露出有WC微粒子,或僅露出有鐵族金屬以外的成分及WC微粒,且表面層的WC微粒的平均粒徑大於內部的WC微粒的平均粒徑,及/或表面硬度大於內部的硬度。根據專利文獻1,所述超硬合金可應用於切削工具或耐磨滑動工具,且亦記載:藉由使WC系超硬合金的表面暴露於經激勵的電漿中,而獲得僅WC微粒露出的超硬合金。Composite alloys including hard phases represented by ceramics and metal phases represented by Ni, Co, Fe, etc. are excellent in impact resistance at room temperature and high temperature, so they are used in various applications such as molds or cutting tools Sliding parts. In order to improve the wear resistance of the sliding parts made of the composite alloy, various studies have been conducted previously. For example, in
在專利文獻2中,已揭示一種耐磨損金屬體的製造方法,為了獲得耐磨損性優異的耐磨損金屬體,利用酸來蝕刻超硬合金的表面,使經氣化的銅在超硬合金表面液化而使銅浸漬於鎢粒子的晶界,所述超硬合金是藉由結合相而使碳化鎢粒子結合而成。並且,在專利文獻2中,亦記載如下的製造方法,不僅可應用於模具,而且可應用於磨損成為問題的各種領域內的超硬合金。
[現有技術文獻]
[專利文獻]In
[專利文獻1]日本專利特開平07-11375號公報 [專利文獻2]日本專利特開2010-24519號公報[Patent Document 1] Japanese Patent Laid-Open No. 07-11375 [Patent Document 2] Japanese Patent Laid-Open No. 2010-24519
[發明所欲解決之課題][Problems to be solved by the invention]
在如上所述的滑動零件中,一方面伴隨著更進一步精密化要求或在更苛刻的環境下的使用,維持滑動零件的作業面的平滑性,以使得對被加工材料進行攻擊而不產生磨損粉末,一方面亦重視生產率、安全性的提高或低成本化。另一方面,如專利文獻中所述的對超硬合金的蝕刻的例子少,根據材料與溶液的組合,存在蝕刻的進展變慢的情況。又,當選擇氧化力強的王水等混酸溶液時,蝕刻能力自身雖無問題,但反應不斷進行,使用時容易產生氣體。因此,有對人體的不良影響、保管時容器破裂的危險,必須在操作時非常小心,存在管理成本或處理成本增加的情況。關於所述課題的解決,在專利文獻1或專利文獻2中尚未記載,而留有進一步探討的餘地。因此,本發明的目的在於提供一種滑動零件的製造方法,能夠安全而迅速地獲得兼具良好的耐黏著性及平滑性的滑動零件。
[解決課題之手段]In the sliding parts as described above, on the one hand, along with the requirements of further refinement or use in a more severe environment, the smoothness of the working surface of the sliding parts is maintained, so that the materials to be processed are attacked without abrasion Powder, on the one hand, also pays attention to the improvement of productivity, safety or cost reduction. On the other hand, as described in the patent literature, there are few examples of the etching of cemented carbide, and depending on the combination of the material and the solution, the progress of the etching may be slow. In addition, when a mixed acid solution such as aqua regia with strong oxidizing power is selected, although the etching ability itself is not a problem, the reaction proceeds continuously, and gas is easily generated during use. Therefore, there is a risk of adverse effects on the human body and the container may break during storage, and care must be taken during operation, and there may be cases where management costs or disposal costs increase. Regarding the solution of the above-mentioned problem, it is not described in
本發明是鑒於以上所述的課題而完成。 即,本發明是一種滑動零件的製造方法,其為包括超硬合金或金屬陶瓷(cermet)的滑動零件的製造方法,所述滑動零件的製造方法的特徵在於包括: 表層改質步驟,利用溶液對所述滑動零件的表面進行濕式蝕刻,去除表面附近的金屬相,所述溶液包含質量百分比濃度大於10%且55%以下的硝酸,並且所述滑動零件中所含的金屬相的溶解速度為0.5 mg/min以上。The present invention has been completed in view of the above-mentioned problems. That is, the present invention is a method for manufacturing a sliding part, which is a method for manufacturing a sliding part including cemented carbide or cermet. The method for manufacturing a sliding part is characterized by including: In the surface modification step, the surface of the sliding part is wet-etched with a solution to remove the metal phase near the surface. The solution contains nitric acid with a mass percentage concentration greater than 10% and less than 55%. The dissolution rate of the contained metal phase is above 0.5 mg/min.
較佳為,所述濕式蝕刻時的溶液的溫度為20℃~90℃。 [發明的效果] 根據本發明,能夠安全而迅速地獲得兼具良好的耐黏著性及平滑性的滑動零件。Preferably, the temperature of the solution during the wet etching is 20°C to 90°C. [Effect of invention] According to the present invention, it is possible to safely and quickly obtain a sliding part having both good adhesion resistance and smoothness.
以下對本發明進行詳細說明。但是,本發明並不限定於此處所列舉的實施形態,在不脫離所述發明的技術思想的範圍內可進行適當組合或改良。
本實施形態的滑動零件包含超硬合金或金屬陶瓷,因此具有兼具優異的強度與高延展性及韌性的特徵。
此處,本實施形態的所謂超硬合金,表示包括硬質相及金屬相的複合合金,所述硬質相包括W的碳化物,所述金屬相選自Fe、Ni、Co、Cr且具有作為結合相的作用。又,所謂金屬陶瓷,表示包括硬質相及金屬相的複合合金,所述硬質相選自四族過渡金屬、五族過渡金屬、除W以外的六族過渡金屬、Al及Si中的至少一種的碳化物、氮化物、氧化物、碳氮化物,所述金屬相選自Fe、Ni、Co、Cr且具有作為結合相的作用。較佳的金屬陶瓷組成選自四族過渡金屬、五族過渡金屬、除W以外的六族過渡金屬中的至少一種。再者,本實施形態的所謂滑動零件,表示與對象材料接觸,僅其中一個構件滑動,或相互滑動的零件。作為所述滑動零件的一例,可舉出模具。The present invention will be described in detail below. However, the present invention is not limited to the embodiments listed here, and can be appropriately combined or improved without departing from the technical idea of the invention.
The sliding component of this embodiment includes cemented carbide or cermet, and therefore has the characteristics of having both excellent strength, high ductility, and toughness.
Here, the so-called superhard alloy of the present embodiment means a composite alloy including a hard phase and a metal phase, the hard phase including carbide of W, the metal phase is selected from Fe, Ni, Co, Cr and has Phase. In addition, the cermet refers to a composite alloy including a hard phase and a metal phase selected from at least one of Group IV transition metals, Group V transition metals, Group VI transition metals other than W, Al, and Si Carbides, nitrides, oxides, carbonitrides, the metal phase is selected from Fe, Ni, Co, Cr and has a role as a bonding phase. The preferred cermet composition is at least one selected from
在本實施形態中,進行後述的表層改質步驟之前,亦可進行如下的形狀加工步驟:藉由磨削加工、研磨加工、切削加工及放電加工等而將準備好的滑動零件用原材料的表面調整成表面粗糙度(surface roughness,Ra)≦0.1 μm。藉由利用所述形狀加工步驟使滑動零件用原材料的表面、特別是成為作業面的面變得平滑,可將經由後來的表層改質步驟而形成的滑動零件表面、調整成平滑且形成有適度的凹部的面。較佳的形狀加工步驟後的滑動零件用原材料表面的Ra上限是0.05 μm,更佳的Ra的上限是0.02 μm。Ra的下限並無特別限定,但考慮到量產性,例如可設定為0.001 μm。此處,形狀加工步驟亦可組合多個步驟,且亦可例如在藉由磨削加工而進行粗加工之後,藉由利用研磨的精加工而調整成Ra≦0.1 μm。在此時的研磨中,可使用已有的研磨方法,但為了確實地獲得所期望的表面粗糙度,亦可實施使用金剛石研磨膏(diamond paste)的拋光。In this embodiment, before the surface modification step described later, the following shape processing step may also be performed: the surface of the prepared raw material for sliding parts is prepared by grinding, grinding, cutting, and electrical discharge machining Adjust to surface roughness (Ra)≦0.1 μm. By using the shape processing step to smooth the surface of the raw material for sliding parts, especially the surface that becomes the working surface, the surface of the sliding parts formed by the subsequent surface modification step can be adjusted to be smooth and formed in an appropriate manner Face of the recess. The upper limit of Ra of the surface of the raw material for sliding parts after a preferable shape processing step is 0.05 μm, and the upper limit of Ra is more preferably 0.02 μm. The lower limit of Ra is not particularly limited, but it can be set to 0.001 μm in consideration of mass productivity, for example. Here, the shape processing step may combine a plurality of steps, and may also be adjusted to Ra≦0.1 μm by finishing processing by grinding after rough processing by grinding processing, for example. In the polishing at this time, an existing polishing method can be used, but in order to surely obtain a desired surface roughness, polishing using a diamond paste may also be performed.
在本實施形態的製造方法中,主要特徵是進行如下的表層改質步驟:對準備好的超硬合金或金屬陶瓷的滑動零件用原材料的表面進行蝕刻,去除表面附近的金屬相。藉由應用本實施形態的製造方法,可形成為如下的結構,即,軟質而容易黏著於被加工材料的金屬相實質上不存在於滑動零件的作業面(與被加工材料接觸的面),因此可期待顯著提高耐黏著性而大幅提高模具壽命。在本實施形態中,在所述表層改質步驟中應用濕式蝕刻。作為蝕刻方法,此外亦具有使用放電電漿的乾式蝕刻,但使用電漿的乾式蝕刻與濕式蝕刻相比處理步驟更長,處於難以使實質上僅包含硬質相的區域(以下,亦記作強化層)形成得厚的傾向,故而欠佳。藉由應用濕式蝕刻,可使實質上不存在金屬相而僅形成硬質相的區域形成得厚。再者,在去除金屬相時,亦有可能存在未被完全去除的部分,因此在本實施形態中是設為「實質上不存在金屬相」。若與並非強化層的部分,即,與包含硬質相及金屬相的滑動零件的主要部分(表面以外的部分)相比較,強化層的金屬相的存在量明顯不同,因此容易確定作為實質上不存在金屬相的層的強化層。又,強化層較佳為包含硬質相及空隙、或包含硬質相及填埋空隙的金屬相以外的材料的層。所述空隙既可去除金屬相而構成,亦可仍然為空隙,亦可在所述空隙填充有金屬相以外的材料。當然,亦可殘留一部分空隙。In the manufacturing method of the present embodiment, the main feature is the following surface modification step: etching the surface of the prepared raw material for cemented carbide or cermet sliding parts to remove the metal phase near the surface. By applying the manufacturing method of this embodiment, it is possible to form a structure in which the metal phase which is soft and easily adheres to the material to be processed does not substantially exist on the working surface of the sliding part (the surface in contact with the material to be processed), Therefore, it can be expected to significantly improve the adhesion resistance and greatly increase the life of the mold. In this embodiment, wet etching is applied in the surface modification step. As an etching method, there is also dry etching using discharge plasma, but dry etching using plasma has longer processing steps than wet etching, and is in a region where it is difficult to substantially include only the hard phase (hereinafter, also referred to as The strengthening layer) tends to be thick, so it is not good. By applying wet etching, the region where substantially no metal phase exists and only the hard phase is formed can be formed thick. In addition, when removing the metal phase, there may be a portion that is not completely removed, so in this embodiment, it is assumed that "there is substantially no metal phase." If the amount of the metal phase of the reinforced layer is significantly different from that of the non-reinforced layer, that is, the main part of the sliding part including the hard phase and the metal phase (parts other than the surface), it is easy to determine that it is not substantially There is a strengthening layer of the metal phase layer. In addition, the reinforcement layer is preferably a layer containing materials other than the hard phase and the void, or the hard phase and the metal phase filling the void. The void may be formed by removing the metal phase, or it may still be a void, or the void may be filled with materials other than the metal phase. Of course, some voids may remain.
在本實施形態的表層改質步驟中,蝕刻液是應用包含質量百分比濃度(mass%濃度)為55%以下的硝酸的溶液(以下,亦記作硝酸溶液)。藉由使用已調整至所述濃度的硝酸溶液,可迅速溶解超硬合金或金屬陶瓷的表面的金屬相,能夠迅速形成本發明的滑動零件所需的強化層。當使用王水或濃度大於55%的硝酸溶液時,會因過強的氧化力而使金屬相鈍化,從而處於蝕刻速度下降的傾向。又,王水是混酸,故安全性不佳,難以保管,因此會每次生成必需量,所以處於管理成本等亦增大的傾向。較佳的硝酸濃度的上限是50%,更佳為45%,進而更佳為40%,更進一步更佳為35%。又,若濃度過低,則金屬相的溶解力下降,因此將硝酸濃度的下限規定為大於10%。而且,關於所述下限,較佳為15%,更佳為20%,進而更佳為25%。 本實施形態藉由使用所述硝酸溶液,可將滑動零件中所含的金屬相的溶解速度調整至0.5 mg/min以上(較佳為0.7 mg/min以上,更佳為0.9 mg/min以上,進而更佳為1.1 mg/min以上),處於可在更短時間內在滑動零件表面形成強化層的傾向,從而在更均勻地形成強化層的方面亦有利。再者,本實施形態的硝酸溶液亦可在未達所述溶解速度的範圍內,添加水、乙醇、硝酸以外的酸性溶液等,以調整濃度。 溶解速度的上限無需特別的規定。而且,例如可設為10.0 mg/min、7.0 mg/min、5.0 mg/min、3.0 mg/min等。In the surface layer modification step of this embodiment, the etching solution is a solution containing nitric acid (mass% concentration) of 55% or less (hereinafter, also referred to as nitric acid solution). By using a nitric acid solution adjusted to the above concentration, the metal phase on the surface of the cemented carbide or cermet can be quickly dissolved, and the strengthening layer required for the sliding part of the present invention can be quickly formed. When using aqua regia or a nitric acid solution with a concentration greater than 55%, the metal phase is passivated due to excessive oxidizing power, and the etching rate tends to decrease. In addition, aqua regia is a mixed acid, so its safety is not good, and it is difficult to store it. Therefore, the necessary amount is generated every time, so there is a tendency that the management cost and the like increase. The upper limit of the preferred nitric acid concentration is 50%, more preferably 45%, even more preferably 40%, still more preferably 35%. In addition, if the concentration is too low, the dissolving power of the metal phase decreases, so the lower limit of the nitric acid concentration is set to more than 10%. Furthermore, the lower limit is preferably 15%, more preferably 20%, and still more preferably 25%. In this embodiment, by using the nitric acid solution, the dissolution rate of the metal phase contained in the sliding part can be adjusted to 0.5 mg/min or more (preferably 0.7 mg/min or more, more preferably 0.9 mg/min or more, Furthermore, it is more preferably 1.1 mg/min or more), which tends to form a reinforcement layer on the surface of the sliding part in a shorter time, which is also advantageous in forming the reinforcement layer more uniformly. In addition, the nitric acid solution of this embodiment may add an acidic solution other than water, ethanol, nitric acid, etc. to adjust the concentration in a range that does not reach the above-mentioned dissolution rate. The upper limit of the dissolution rate does not need to be specified. Moreover, for example, 10.0 mg/min, 7.0 mg/min, 5.0 mg/min, 3.0 mg/min, etc. can be set.
在本實施形態的利用濕式蝕刻的表層改質步驟中,硝酸溶液的溫度較佳為20℃~90℃。藉由調整至所述溫度,可抑制水溶液的蒸發或氣泡的過多產生,從而更穩定地進行濕式蝕刻。較佳的溫度的上限為70℃,更佳為50℃,進而更佳為40℃。又,蝕刻處理時間可配合零件的形狀或用途,在0.5 min~30 min之間適當調整。較佳的蝕刻處理時間的上限為15 min,更佳為10 min,進而更佳為8 min,特佳為6 min。較佳的蝕刻處理時間的下限為1 min。In the surface layer modification step by wet etching of this embodiment, the temperature of the nitric acid solution is preferably 20°C to 90°C. By adjusting to the above temperature, the evaporation of the aqueous solution or excessive generation of bubbles can be suppressed, so that the wet etching can be performed more stably. The upper limit of the preferable temperature is 70°C, more preferably 50°C, and still more preferably 40°C. In addition, the etching treatment time can be appropriately adjusted from 0.5 min to 30 min in accordance with the shape or use of the part. The upper limit of the preferred etching treatment time is 15 min, more preferably 10 min, even more preferably 8 min, and particularly preferably 6 min. The lower limit of the preferred etching time is 1 min.
本發明如上所述,藉由對使用超硬合金或金屬陶瓷的零件實施表層改質步驟,而形成包含硬質相的強化層,從而可獲得已大幅提高耐磨損性或耐黏著性的滑動零件。所述強化層較佳為形成至滑動零件的至少自作業面的表面起在深度方向上0.2 μm的範圍為止,所述滑動零件是藉由本實施形態的製造方法而製作。由此,可進一步提高所述耐黏著性。所述強化層更佳為形成至至少自作業面的表面起在深度方向上0.5 μm的範圍為止,進而更佳為形成至1 μm的範圍為止。As described above, by performing a surface modification step on a component using cemented carbide or cermet as described above, a reinforced layer containing a hard phase is formed, thereby obtaining a sliding component that has greatly improved abrasion resistance or adhesion resistance . The reinforcing layer is preferably formed until the sliding part is at least 0.2 μm in the depth direction from the surface of the working surface, and the sliding part is produced by the manufacturing method of the present embodiment. Thereby, the sticking resistance can be further improved. The reinforcement layer is more preferably formed to a range of at least 0.5 μm in the depth direction from the surface of the working surface, and still more preferably formed to a range of 1 μm.
又,在本實施形態中,為了進一步提高耐磨損性或耐黏著性,亦可在表層改質步驟後的滑動零件包覆硬質皮膜。作為硬質皮膜的種類,例如,可包覆如下的硬質皮膜或類金剛石碳(diamond like carbon)皮膜,所述硬質皮膜包含選自四族過渡金屬、五族過渡金屬、六族過渡金屬、Si及Al的碳化物、氮化物、碳氮化物、氧化物、硼化物中的一種以上。所述皮膜可在不破壞表層改質步驟中所獲得的表面形狀的範圍內,調整至所期望的厚度。較佳的皮膜的厚度為2 μm以下,更佳的皮膜的厚度為1 μm以下。 [實施例]In addition, in this embodiment, in order to further improve the abrasion resistance or the adhesion resistance, the sliding parts after the surface layer modification step may be coated with a hard film. As the type of the hard film, for example, a hard film or a diamond-like carbon film may be coated. The hard film includes a transition metal selected from Group IV, a Group V transition metal, a Group VI transition metal, Si and One or more of Al carbide, nitride, carbonitride, oxide, and boride. The film can be adjusted to a desired thickness within a range that does not damage the surface shape obtained in the surface modification step. The thickness of the preferable film is 2 μm or less, and the thickness of the more preferable film is 1 μm or less. [Example]
準備八個超硬合金製的滑動零件(12.7 mm×12.7 mm×4.8 mm),所述超硬合金製的滑動零件選擇WC作為硬質相,選擇Co作為金屬相,Co的相對於WC及Co的合計量的含有比例為11 wt%。此時,滑動零件的表面已藉由拋光而調整至Ra≦0.1 μm。又,分別準備50 ml的表1所示的條件的溶液。在60 wt%濃度的硝酸中使用硝酸1.38(關東化學股份有限公司製,特級,純度60%~61%),10wt%濃度、30wt%濃度硝酸是在純水中混合硝酸1.38而製作。王水是使用鹽酸(關東化學股份有限公司製,特級,純度35%~37%)及硝酸1.38,以混合比例為三份鹽酸、一份硝酸的方式進行調整而製作。使準備好的滑動零件在放入有所述溶液的處理槽內浸漬兩分鐘或五分鐘,進行表面改質處理。此時的溶液的溫度在本發明例、比較例中均為20℃~25℃。然後,利用直線連接浸漬時間兩分鐘的資料與五分鐘的資料,根據直線的傾斜度,評估Co的溶解速度。Co的溶出量是藉由如下的方法來評估:在電漿中噴霧經稀釋的試驗溶液,根據從經激勵的原子、離子釋放的發光束的波長判定含有成分的種類,根據其強度,求出含量,所述電漿是使用電感耦合電漿(Inductively Coupled Plasma,ICP)發光光譜裝置(SII奈米技術(SII Nano Technology)股份有限公司製,SPS3100H)對Ar氣體施加高頻而生成。將分析結果示於圖1。Prepare eight sliding parts made of cemented carbide (12.7 mm×12.7 mm×4.8 mm). The sliding parts made of cemented carbide choose WC as the hard phase and Co as the metal phase. Co’s relative to WC and Co’s The total content is 11 wt%. At this time, the surface of the sliding part has been adjusted to Ra≦0.1 μm by polishing. Separately, 50 ml of solutions under the conditions shown in Table 1 were prepared. Nitric acid 1.38 (made by Kanto Chemical Co., Ltd., special grade, purity 60% to 61%) is used in nitric acid with a concentration of 60 wt%. Nitric acid at a concentration of 10 wt% and 30 wt% is produced by mixing nitric acid 1.38 in pure water. Aqua regia is produced by using hydrochloric acid (made by Kanto Chemical Co., Ltd., special grade, 35% to 37% purity) and nitric acid 1.38, with a mixing ratio of three parts hydrochloric acid and one part nitric acid. The prepared sliding parts are immersed in the treatment tank containing the solution for two or five minutes to perform surface modification treatment. The temperature of the solution at this time is 20°C to 25°C in both the inventive example and the comparative example. Then, the data of two minutes of dipping time and five minutes of data were connected by a straight line, and the dissolution rate of Co was evaluated based on the inclination of the straight line. The amount of Co dissolution was evaluated by spraying a diluted test solution in the plasma, determining the type of the contained component based on the wavelength of the emitted light beam emitted from the excited atoms and ions, and obtaining it based on its intensity Content, the plasma is generated by applying high frequency to Ar gas using an inductively coupled plasma (Inductively Coupled Plasma, ICP) emission spectrometer (SII Nano Technology Co., Ltd., SPS3100H). The analysis results are shown in Figure 1.
[表1]
根據圖1,各個的溶解速度是本發明例1為1.3 mg/min,比較例1為0.3 mg/min,比較例2為0.6 mg/min,比較例3為0.2 mg/min。已確認,在蝕刻液中使用有30 wt%濃度的硝酸的本發明例1的試料,相較於比較例在更短的時間內溶解了大量的Co。特別是當與使用王水的示例即比較例3相比較時,可確認到Co是以大約四倍以上的速度而溶解。由此可確認,本發明例能夠以低成本且在短時間內對滑動零件的表層進行改質。 本發明例1的試料是在所述蝕刻後的表面,將包含硬質相的強化層形成至0.2 μm以上的深度為止。並且,可在所述蝕刻後的表面,例如在2 μm以下之類的厚度的範圍內,包覆各種硬質皮膜。According to FIG. 1, each dissolution rate is 1.3 mg/min in Example 1 of the present invention, 0.3 mg/min in Comparative Example 1, 0.6 mg/min in Comparative Example 2, and 0.2 mg/min in Comparative Example 3. It was confirmed that the sample of Example 1 of the present invention using nitric acid at a concentration of 30 wt% in the etching solution dissolved a large amount of Co in a shorter time than the comparative example. In particular, when compared with Comparative Example 3, which is an example using aqua regia, it can be confirmed that Co dissolves at a rate of about four times or more. From this, it can be confirmed that the example of the present invention can modify the surface layer of the sliding component at a low cost and in a short time. In the sample of Example 1 of the present invention, a strengthening layer containing a hard phase was formed to a depth of 0.2 μm or more on the surface after the etching. In addition, various hard coatings may be coated on the surface after the etching, for example, within a thickness range of 2 μm or less.
無no
圖1是表示本發明例與比較例的Co溶出量的曲線圖。FIG. 1 is a graph showing the amount of Co eluted in the examples of the present invention and the comparative example.
Claims (2)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018100244 | 2018-05-25 | ||
JP2018-100244 | 2018-05-25 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW202003921A true TW202003921A (en) | 2020-01-16 |
TWI834670B TWI834670B (en) | 2024-03-11 |
Family
ID=68767477
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW108117768A TWI834670B (en) | 2018-05-25 | 2019-05-23 | Manufacturing method of sliding parts |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP7287109B2 (en) |
TW (1) | TWI834670B (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7659826B2 (en) | 2022-04-13 | 2025-04-10 | 九州瑞穂株式会社 | Manufacturing method for bonded metal parts |
JP7652427B2 (en) | 2022-04-13 | 2025-03-27 | 九州瑞穂株式会社 | Calculation method for surface depletion depth of metallic bonding phase |
JP7605491B2 (en) | 2022-04-13 | 2024-12-24 | 九州瑞穂株式会社 | A method for selective etching of the metallic bonding phase on the surface of cemented carbide. |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0920590A (en) * | 1995-07-05 | 1997-01-21 | Ngk Spark Plug Co Ltd | Production of cemented carbide base material having diamond film |
US5650059A (en) * | 1995-08-11 | 1997-07-22 | Credo Tool Company | Method of making cemented carbide substrate |
AU2003277912A1 (en) | 2002-09-27 | 2004-04-23 | Cemecon Ag | Coating method and coated element |
CN100543177C (en) * | 2008-01-25 | 2009-09-23 | 南京航空航天大学 | Gradient Pretreatment Process of Depositing CVD Diamond Film on Cemented Carbide Surface |
US9284648B2 (en) * | 2011-04-27 | 2016-03-15 | Medtronic, Inc. | Process and material solution to reduce metal ion release for implantable medical device application |
CN103114275B (en) * | 2013-03-15 | 2015-01-28 | 中国工程物理研究院总体工程研究所 | Preparation method of moving core mark for micronano-diamond composite coating tube stock |
JP2015182168A (en) | 2014-03-24 | 2015-10-22 | アイシン精機株式会社 | Surface treatment method of cutting blade tool and cutting blade tool |
-
2019
- 2019-05-21 JP JP2019094940A patent/JP7287109B2/en active Active
- 2019-05-23 TW TW108117768A patent/TWI834670B/en active
Also Published As
Publication number | Publication date |
---|---|
JP7287109B2 (en) | 2023-06-06 |
JP2019206754A (en) | 2019-12-05 |
TWI834670B (en) | 2024-03-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7264682B2 (en) | Titanium boride coatings on titanium surfaces and associated methods | |
JP4842962B2 (en) | Sintered cemented carbide using vanadium as gradient forming element | |
TWI834670B (en) | Manufacturing method of sliding parts | |
JP2960546B2 (en) | Etching method | |
CN106636834B (en) | Inhibit the method and ultra-fine cemented carbide preparation process that hard alloy crystal grain is grown up | |
JP2009220260A (en) | Coated cutting tool and method for manufacturing the same | |
CN107201515B (en) | A nano-B4C modified anti-friction and wear-resistant laser cladding layer and its preparation method | |
JP2009248238A (en) | Surface-coated cutting tool | |
JP2017001147A (en) | Coated cutting tool | |
JP2015178171A (en) | Surface coated cutting tool excellent in abnormal damage resistance and wear resistance | |
JP6489505B2 (en) | Diamond coated cemented carbide cutting tool with improved cutting edge strength | |
JP6171525B2 (en) | Diamond coated cemented carbide cutting tool with improved cutting edge strength | |
JP6195068B2 (en) | Diamond coated cemented carbide cutting tool with improved cutting edge strength | |
RU2532582C2 (en) | Production of cutting tool with wearproof composite coating | |
JPWO2018097286A1 (en) | Mold and manufacturing method thereof | |
JP2008264988A (en) | Cutting tool manufacturing method | |
JP2008238392A (en) | Cutting tools | |
JP2008222485A (en) | Coated composite sintered body, cutting tool and cutting method | |
JP2000514393A (en) | Sintering method | |
EP4108801A1 (en) | Hard coating film, and member coated with sand-abrasion-resistant hard coating film which includes same | |
JP2011225959A (en) | Method for strengthening surface layer of light metal or alloy thereof | |
JP6930051B2 (en) | Coating tools and coating equipment | |
JP2010228088A (en) | Surface-coated cutting tool | |
WO2022009374A1 (en) | Diamond-coated tool | |
Wang et al. | Advances in binary nitride coatings for cemented carbides |