[go: up one dir, main page]

TW201931043A - Maximum power point tracking system of renewable energy and method thereof applicable to solar photovoltaic system, wind power generation system or wind-solar hybrid power generation system - Google Patents

Maximum power point tracking system of renewable energy and method thereof applicable to solar photovoltaic system, wind power generation system or wind-solar hybrid power generation system Download PDF

Info

Publication number
TW201931043A
TW201931043A TW107101040A TW107101040A TW201931043A TW 201931043 A TW201931043 A TW 201931043A TW 107101040 A TW107101040 A TW 107101040A TW 107101040 A TW107101040 A TW 107101040A TW 201931043 A TW201931043 A TW 201931043A
Authority
TW
Taiwan
Prior art keywords
voltage
supercapacitor
buck
power
maximum power
Prior art date
Application number
TW107101040A
Other languages
Chinese (zh)
Other versions
TWI688849B (en
Inventor
孫實鈞
孫民興
張榮錡
孫睿希
Original Assignee
孫民興
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 孫民興 filed Critical 孫民興
Priority to TW107101040A priority Critical patent/TWI688849B/en
Publication of TW201931043A publication Critical patent/TW201931043A/en
Application granted granted Critical
Publication of TWI688849B publication Critical patent/TWI688849B/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Landscapes

  • Dc-Dc Converters (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Control Of Electrical Variables (AREA)

Abstract

The invention relates to a maximum power point tracking system of renewable energy and a method thereof, in particular to a solar photovoltaic system, a wind power generation system or a wind-solar hybrid power generation system, and a method thereof. The key point is to contain a power type supercapacitor, and using a dynamic balance method to solely detect voltage to know a change status of system energy. Through the control by a microcontroller, a DC/DC buck-boost converter is adjusted to achieve maximum power point tracking, so that the renewable energy system can obtain the maximum electrical power. The maximum power point tracking system of renewable energy and the method thereof according to the present invention propose fifteen kinds of application methods in solar photovoltaic systems, wind power generation systems or wind-solar hybrid power generation systems, and thus obtain an optimal price/performance system under different conditions.

Description

再生能源之最大功率追蹤系統及其方法 Renewable energy maximum power tracking system and method thereof

本發明係關於一種再生能源之最大功率追蹤系統及其方法,尤其是指應用於太陽能光電系統、風力發電系統或風光互補發電最大功率追蹤系統及其方法。 The invention relates to a maximum power tracking system for a renewable energy source and a method thereof, in particular to a solar energy photovoltaic system, a wind power generation system or a wind power hybrid power generation maximum power tracking system and a method thereof.

隨著全球暖化日趨嚴重,節能減碳日益受到注目,再生能源的高效能利用,已成為刻不容緩的課題。再生能源是指風力、太陽能、水力、生物質能、氫能、地熱、海洋溫差、海浪與潮汐的利用。其中大部分再生能源大多有地域限制,只有太陽能及風能是最普遍而可小型化的能源。由使用的觀點來看,太陽能及風力有:①安全可靠,無污染、②無CO2等溫室氣體產生、③所需能量隨處可得,無需消耗燃料、④維護簡便,使用壽命長;建設週期短,規模大小彈性、⑤可獨立分佈式電力,無需架設輸電線路、⑥偏遠地區能源代價低、⑦方便與建築物相結合等優點。 As global warming becomes more and more serious, energy conservation and carbon reduction are attracting more and more attention, and the efficient use of renewable energy has become an urgent task. Renewable energy refers to the use of wind, solar energy, hydropower, biomass energy, hydrogen energy, geothermal heat, ocean temperature difference, ocean waves and tides. Most of these renewable energy sources are geographically restricted, and only solar energy and wind energy are the most common and miniaturizable energy sources. From the point of view of use, solar energy and wind power are: 1 safe and reliable, no pollution, 2 no CO2 and other greenhouse gases, 3 required energy everywhere, no need to consume fuel, 4 easy maintenance, long service life; short construction period , size and flexibility, 5 independent distributed power, no need to set up transmission lines, 6 low energy costs in remote areas, 7 convenient combination with buildings.

太陽能及風能發電的利用大概可分成並網、離網兩種,並網是將太陽能及風力所發的電力併入常規的電網中,而離網則是太陽能及風力電力系統獨立於電網外,自行獨立操作。然而設置土地面積需求大,並網系統往往設置於偏遠地區,靠著千里的電網高壓輸電線路輸送電力。而離網系統不需電網配合且體積相對小,可就近供應電力,不需架設昂貴的輸電線路,成了分佈式供電的最佳選擇。因而離網系統的太陽能及風力發 電系統,將愈顯重要。 The utilization of solar and wind power generation can be divided into two types: grid-connected and off-grid. The grid is to integrate the power generated by solar energy and wind power into the conventional power grid, while the off-grid is the solar and wind power system independent of the grid. , operate independently. However, the demand for land area is large, and the grid-connected system is often installed in remote areas, relying on thousands of miles of power grid high-voltage transmission lines to deliver electricity. The off-grid system does not need the grid to cooperate and the volume is relatively small, the power can be supplied nearby, and it is not necessary to set up expensive transmission lines, which is the best choice for distributed power supply. Therefore, the solar and wind power of the off-grid system Electrical systems will become even more important.

再生能源是一種非理想、穩定性的再生能源,太陽能會隨著日照環境、角度與溫度,其產生的電力而有顯著的不同。而風力發電則因扇葉承受風力的強弱,電力大小變化甚巨。亦即表示太陽能與風能發電是變動性的再生能源,每個時間點能量的生成可能不同,必須輔以最大功率追蹤,才能獲取太陽能電池或風力發電機所轉換最大的電能。一般來說,再生能源的電能是以電壓、電流與時間方式呈現,是以系統常以此變數操作太陽能或風力發電的最大功率追蹤與取得。 Renewable energy is a kind of non-ideal and stable renewable energy. Solar energy will be significantly different from the electricity generated by the sunshine environment, angle and temperature. In wind power generation, the size of the power varies greatly due to the strength of the fan blades. That is to say, solar energy and wind power generation are variably renewable energy sources. The energy generation may be different at each time point. It must be supplemented by maximum power tracking to obtain the maximum energy converted by solar cells or wind turbines. In general, the energy of renewable energy is presented in terms of voltage, current and time. It is the maximum power tracking and acquisition of solar or wind power generated by the system.

習知之最大功率追蹤技術包括①電壓迴授法、②功率迴授法、③擾動觀察法、④增量電導法、⑤直線近似法、⑥實際量測法等六種。其中商業上最常使用是「擾動觀察法」,其結構如圖一所示。結構簡單且量測參數較少,已普遍應用於太陽能最大功率系統中。 The conventional maximum power tracking technology includes six kinds of voltage feedback method, two power feedback method, three disturbance observation method, four incremental conductance method, five straight line approximation method, and six actual measurement method. The most commonly used in business is the "perturbation observation method", and its structure is shown in Figure 1. The structure is simple and the measurement parameters are few, and it has been widely used in the solar maximum power system.

以太陽能應用為例,其基本架構是藉著週期性的增加或減少負載(6)的大小,以改變太陽能板的端電壓,量測電壓偵測(1)電路及電流偵測(2)並追蹤演算(3)其輸出功率。觀察比較兩者的差異,再決定下一個週期增加或減少負載(6)大小。輸出功率如果變大,則將負載(6)作相同趨勢的調整變動;反之,輸出功率變小,則在下一個週期改變負載(6)變動方向。如此反覆的振盪擾動與觀察比較之,將可趨近太陽能電池的最大功率點。 Taking solar energy applications as an example, the basic structure is to periodically increase or decrease the load (6) to change the terminal voltage of the solar panel, measure the voltage detection (1) circuit and current detection (2) and Tracking calculus (3) its output power. Observe and compare the difference between the two, and then decide to increase or decrease the load (6) size in the next cycle. If the output power becomes larger, the load (6) is adjusted to change in the same trend; conversely, when the output power becomes smaller, the load (6) changes direction is changed in the next cycle. Such repeated oscillation disturbances will be comparable to observations and will approach the maximum power point of the solar cell.

在離網太陽能發電所使用的「擾動觀察」最大功率追蹤法是藉由控制DC/DC升降壓轉換器(5)的工作週期(Duty Ratio)之D值,改變輸出端的負載(6)來回振盪擾動太陽能板的輸出電壓,追蹤並達到太陽能電池的最大功率點。當到達最大功率點附近,振盪擾動並不停止,繼續在其左右 振盪。當日照強度、周圍環境與溫度改變時,太陽能系統操作的最大功率點立即改變,振盪擾動也立即響應,新的最大功率點追蹤再次運作。 The "disturbance observation" maximum power tracking method used in off-grid solar power generation is to change the load of the output end (6) to oscillate back and forth by controlling the D value of the duty cycle of the DC/DC buck-boost converter (5). Disturbs the output voltage of the solar panel, tracking and reaching the maximum power point of the solar cell. When the maximum power point is reached, the oscillation disturbance does not stop and continues around it. oscillation. When the sunshine intensity, ambient environment and temperature change, the maximum power point of the solar system operation changes immediately, the oscillation disturbance also responds immediately, and the new maximum power point tracking works again.

在此之DC/DC轉換器是由電感與電容電路加上二極體與電子開闢組成,可使用升壓式、降壓式與升降壓式之DC/DC升降壓轉換器(5),配合PWM(4)提供脈衝訊號。藉由控制開關比例時間,調整輸出端的負載(6),追蹤最大功率點。 The DC/DC converter here consists of an inductor and a capacitor circuit plus a diode and an electronic development. A boost, buck and buck-boost DC/DC buck-boost converter (5) can be used. PWM (4) provides a pulse signal. By controlling the switching proportional time, the load at the output (6) is adjusted to track the maximum power point.

如美國專利第5327071號,其揭示利用一個DC/DC直流/直流轉換器來追蹤太陽能的最大功率點。而美國專利第5932994號,其揭示利用一個DC/DC直流/直流轉換器的工作週期(Duty Ratio)之D值,追蹤太陽能的最大功率點。如中華民國發明專利第I328730號,利用主動式電阻的能量轉換器的太陽能最大功率追蹤方法。 For example, U.S. Patent No. 5,327,071 discloses the use of a DC/DC DC/DC converter to track the maximum power point of solar energy. U.S. Patent No. 5,932,994 discloses the use of the D value of the duty cycle of a DC/DC DC/DC converter to track the maximum power point of the solar energy. For example, the Republic of China invention patent No. I328730, the solar maximum power tracking method using an active resistance energy converter.

然而上述專利,必須偵測電壓(或設定電阻)與電流,經乘積器獲得功率,再行比對前後操作功率,獲取功率消長。進而判斷調整方向,追蹤最大功率點。為解決繁複計算方式,簡化追蹤程序及降低元件數量。特提出一種超級電容最大功率追蹤方法解決上述缺失。 However, in the above patent, it is necessary to detect the voltage (or set resistance) and the current, obtain the power through the multiplier, and compare the power before and after the operation to obtain the power consumption. Then determine the direction of adjustment and track the maximum power point. To solve complex calculations, simplify the tracking process and reduce the number of components. A supercapacitor maximum power tracking method is proposed to solve the above-mentioned missing.

而超級電容是介於電池與電容之間優秀的儲能與瞬間功率的新元件,使用於太陽能裝置可增加能量效率、循環壽命、免維修與延長運作時間等優點。美國專利2004/0183982所述及的太陽能充電系統,就是採用超級電容作為儲能器,以DC/DC轉換器調節控制,追蹤最大功率點。 The supercapacitor is a new component between the battery and the capacitor with excellent energy storage and instantaneous power. The solar device can increase energy efficiency, cycle life, maintenance-free and extended operation time. The solar charging system described in U.S. Patent No. 2004/0183982 uses a supercapacitor as an energy storage device to adjust the control with a DC/DC converter to track the maximum power point.

本發明是中華民國專利第200827974號的改良完善之後續專利,第200827974號專利揭示一種太陽能系統最大功率追蹤系統與方法。但其方法僅使用於太陽能系統,且使用邏輯電路,以硬體控制系統,無法達 到最高能量效率。是以本發明特提出使用微控制器取代邏輯電路,以軟體控制系統。並且揭示15種在不同狀態下再生能源系統(太陽能發電、風力發電系統與風光互補)的超級電容最大功率追蹤系統。 The present invention is a modified and improved follow-up patent of the Republic of China Patent No. 200827974, and the patent No. 200827974 discloses a solar power system maximum power tracking system and method. But the method is only used in solar systems, and using logic circuits to control the system with hardware To the highest energy efficiency. It is a preferred aspect of the present invention to use a microcontroller instead of a logic circuit to control the system. It also reveals 15 supercapacitor maximum power tracking systems for renewable energy systems (solar power generation, wind power generation systems and wind and solar) in different states.

本發明主要目的是使用一種超級電容最大功率追蹤方法以及系統,針對太陽能發電與風力發電系統,提出各種不同的應用電路方式。俾能使太陽能發電與風力發電系統能量效率獲得大幅度提昇。 The main purpose of the present invention is to use a supercapacitor maximum power tracking method and system, and propose various application circuit modes for solar power generation and wind power generation systems.俾 can greatly improve the energy efficiency of solar power generation and wind power generation systems.

本發明之再生能源之最大功率追蹤方法,我們稱之為「全域超級電容最大功率追蹤法」。可適用於各種再生能源及不穩定能源,尤其是在太陽能發電與風力發電系統方面,甚至可用於環境能源擷取系統的各種應用。 The maximum power tracking method of the renewable energy of the present invention is called "the global supercapacitor maximum power tracking method". It can be applied to various renewable energy sources and unstable energy sources, especially in solar power generation and wind power generation systems, and even in various applications of environmental energy extraction systems.

再生能源之最大功率追蹤方法(全域超級電容最大功率追蹤法)主要是置入一種功率(瞬間功率釋放)型的超級電容器,以動態平衡方式,藉由改變電子開關與升降壓轉換器的工作週期(Duty Ratio)之D值。觀察超級電容器電壓變化情形,決定下一次電子開關與升降壓轉換器的工作週期。並由微控制器下達指令,調整D值方向與大小。震盪來回追蹤系統的最大功率。此方法只需監控超級電容器的電壓值,不需監測電流去計算出此瞬間太陽能發電與風力發電系統的輸出功率。 The maximum power tracking method for renewable energy (global supercapacitor maximum power tracking method) is mainly to put a kind of power (instantaneous power release) type supercapacitor, in dynamic balance mode, by changing the duty cycle of electronic switch and buck-boost converter D value of (Duty Ratio). Observe the voltage change of the supercapacitor and determine the duty cycle of the next electronic switch and buck-boost converter. The instruction is issued by the microcontroller to adjust the direction and size of the D value. The shock back and forth tracks the maximum power of the system. This method only needs to monitor the voltage value of the supercapacitor, and does not need to monitor the current to calculate the output power of the solar power generation and the wind power generation system at this moment.

再生能源之最大功率追蹤系統,主要包含:一太陽能板、風力發電機:系統的發電源;一整流器: 將風力發電機所發之交流電整流為直流電;一瞬間功率釋放型電容器:為動態平衡儲能器,接受太陽能板與風力發電機經整流的直流電,再將此電能經微控制器所控制的電子開關及升降壓控制器,充電至電池或(第二)儲能超級電容器;一電子開關:控制電流進入的開關,由微控制器控制其工作週期(D值)一升降壓控制器:根據微控制器控指令,調整電流進出之電壓轉換;一電池及儲能超級電容:作為系統的儲能元件;一電壓偵測電路:扮演超級電容器與電池的電壓偵測,並將此電壓傳至微控制器作為判斷及指令依據;一微控制器:接收超級電容器與電池的電壓偵測,比較、判斷、運算、下達指令,控制系統的各個電子開關、升降壓控制器、超級電容器與電池的充電控制與保護機制。 The largest power tracking system for renewable energy, mainly includes: a solar panel, wind turbine: the power supply of the system; a rectifier: The alternating current generated by the wind power generator is rectified into direct current; the instantaneous power release type capacitor is a dynamic balance energy storage device that receives the rectified direct current of the solar panel and the wind power generator, and then passes the electric energy to the electronic device controlled by the microcontroller. Switch and buck-boost controller, charging to battery or (second) energy storage supercapacitor; an electronic switch: controlling the current into the switch, controlled by the microcontroller its duty cycle (D value) a buck-boost controller: according to micro The controller controls the command to adjust the voltage conversion of the current in and out; a battery and the energy storage super capacitor: as the energy storage component of the system; a voltage detection circuit: plays the voltage detection of the super capacitor and the battery, and transmits the voltage to the micro The controller serves as the basis for judgment and command; a microcontroller: receives the voltage detection, comparison, judgment, calculation, and command of the supercapacitor and the battery, and controls the charging of each electronic switch, the buck-boost controller, the supercapacitor, and the battery of the control system. Control and protection mechanisms.

本發明利用全域超級電容最大功率追蹤機制因應不同使用需求及成本考量,提出應用於太陽能發電與風力發電系統的15種電路系統。包含太陽能發電系統、風力發電系統及風光互補型發電系統。 The invention utilizes the global supercapacitor maximum power tracking mechanism to propose 15 kinds of circuit systems applied to solar power generation and wind power generation systems according to different usage requirements and cost considerations. It includes solar power generation systems, wind power generation systems, and wind and solar hybrid power generation systems.

(1)‧‧‧電壓偵測 (1)‧‧‧Voltage detection

(2)‧‧‧電流偵測 (2)‧‧‧ Current detection

(3)‧‧‧追蹤演算 (3) ‧‧‧Tracking calculations

(4)‧‧‧PWM (4)‧‧‧PWM

(5)‧‧‧DC/DC升降壓轉換器 (5)‧‧‧DC/DC buck-boost converter

(6)‧‧‧負載 (6) ‧ ‧ load

(7)‧‧‧電子開關 (7)‧‧‧Electronic switch

(99)‧‧‧整流電路 (99)‧‧‧Rectifier circuit

(100)‧‧‧第一電子控制開關 (100)‧‧‧First electronically controlled switch

(101)‧‧‧超級電容 (101)‧‧‧Supercapacitors

(102)‧‧‧電壓偵測電路 (102)‧‧‧Voltage detection circuit

(103)‧‧‧微控制器 (103)‧‧‧Microcontrollers

(104)‧‧‧DC/DC升降壓轉換器 (104)‧‧‧DC/DC buck-boost converter

(105)‧‧‧第二電子控制開關 (105)‧‧‧Second electronically controlled switch

(106)‧‧‧放電控制電路 (106)‧‧‧Discharge control circuit

(107)‧‧‧負載 (107)‧‧‧ Load

(108)‧‧‧電池 (108)‧‧‧Battery

(109)‧‧‧第二DC/DC升降壓轉換器 (109)‧‧‧Second DC/DC buck-boost converter

(110)‧‧‧升降壓控制器 (110)‧‧‧ Lifting pressure controller

(111)‧‧‧電壓偵測電路 (111)‧‧‧Voltage detection circuit

(112)‧‧‧電壓偵測電路 (112)‧‧‧Voltage detection circuit

(113)‧‧‧第二超級電容器 (113)‧‧‧Second supercapacitor

(114)‧‧‧升降壓控制器 (114)‧‧‧ Lifting and lowering controller

第一圖係商業使用習知之擾動觀察最大功率追蹤法 The first picture is the commercial use of the perturbation observation maximum power tracking method

第二圖係本發明之超級電容最大功率追蹤法 The second figure is the supercapacitor maximum power tracking method of the present invention.

第三圖係本發明之實施例一之方塊示意圖 The third figure is a block diagram of the first embodiment of the present invention.

第四圖係本發明之實施例二之方塊示意圖 The fourth figure is a block diagram of the second embodiment of the present invention.

第五圖係本發明之實施例三之方塊示意圖 The fifth figure is a block diagram of the third embodiment of the present invention.

第六圖係本發明之實施例四之方塊示意圖 Figure 6 is a block diagram of Embodiment 4 of the present invention.

第七圖係本發明之實施例五之方塊示意圖 Figure 7 is a block diagram of Embodiment 5 of the present invention.

第八圖係本發明之實施例六之方塊示意圖 Figure 8 is a block diagram of the sixth embodiment of the present invention.

第九圖係本發明之實施例七之方塊示意圖 Figure 9 is a block diagram of Embodiment 7 of the present invention.

第十圖係本發明之實施例八之方塊示意圖 Figure 11 is a block diagram of Embodiment 8 of the present invention.

第十一圖係本發明之實施例九之方塊示意圖 11 is a block diagram of Embodiment 9 of the present invention

第十二圖係本發明之實施例十之方塊示意圖 Figure 12 is a block diagram of Embodiment 10 of the present invention.

第十三圖係本發明之實施例十一之方塊示意圖 Figure 13 is a block diagram of an eleventh embodiment of the present invention.

第十四圖係本發明之實施例十二之方塊示意圖 Figure 14 is a block diagram of Embodiment 12 of the present invention.

第十五圖係本發明之實施例十三之方塊示意圖 The fifteenth figure is a block diagram of the thirteenth embodiment of the present invention

第十六圖係本發明之實施例十四之方塊示意圖 Figure 16 is a block diagram showing the fourteenth embodiment of the present invention.

第十七圖係本發明之實施例十五之方塊示意圖 Figure 17 is a block diagram showing the fifteenth embodiment of the present invention.

以下藉由第二圖說明本發明之「再生能源之最大功率追蹤系統及其方法」內容,俾使更進一步揭露本發明。 Hereinafter, the contents of the "renewable energy maximum power tracking system and method thereof" of the present invention will be described with reference to the second drawing, and the present invention will be further disclosed.

太陽能板所生成的電能,經電子開關(7),進入超級電容(101)。而此時電壓偵測電路(102),偵測該超級電容(101)的電壓,並將此資料傳至微控制器(103)。該微控制器(103)判斷比較一定時間的電壓,下達對DC/DC升降壓轉換器(104)調整工作週期D值的指令,達成全域超級電容最大功率追蹤,供應給負載(107)。 The electrical energy generated by the solar panel enters the supercapacitor (101) via the electronic switch (7). At this time, the voltage detecting circuit (102) detects the voltage of the super capacitor (101) and transmits the data to the microcontroller (103). The microcontroller (103) determines the voltage for a certain period of time, and issues an instruction to adjust the duty cycle D value of the DC/DC buck-boost converter (104) to achieve global supercapacitor maximum power tracking and supply to the load (107).

而本發明其方法不需量測其電流(I值),僅需偵測其電壓(V值)即可判斷追蹤結果,進而調整其工作週期,有別於目前商用「擾動觀察」最大功率追蹤法。 However, the method of the present invention does not need to measure the current (I value), and only needs to detect the voltage (V value) to determine the tracking result, thereby adjusting the duty cycle, which is different from the current commercial "disturbance observation" maximum power tracking. law.

以太陽能獨立發電系統為例,本發明係將超級電容器置入太陽能板及該DC/DC升降壓轉換器(104)之間,作為能量(電能)的暫存容器,電能由太陽能板生成,進入超級電容器,而後輸出該DC/DC升降壓轉換器(104)。此進出電能在穩態下(steady state)可視超級電容器無淨電能為零,即無電能蓄積於超級電容器,太陽能板所產生的能量都由流入該DC/DC升降壓轉換器(104),呈現動態平衡狀況。 Taking a solar independent power generation system as an example, the present invention places a supercapacitor between a solar panel and the DC/DC buck-boost converter (104) as a temporary storage container for energy (electric energy), and the electric energy is generated by the solar panel and enters The supercapacitor then outputs the DC/DC buck-boost converter (104). The in-and-out electric energy in the steady state can be regarded as zero power of the supercapacitor, that is, no electric energy is accumulated in the supercapacitor, and the energy generated by the solar panel flows into the DC/DC buck-boost converter (104). Dynamic balance.

太陽能系統能量(電能)W=P×t(P:功率,t:時間)∴W=I×V×t(I:電流,V:電壓)以1second討論,當t=1sec,則W=P=I×V Solar system energy (electric energy) W = P × t (P: power, t: time) ∴ W = I × V × t (I: current, V: voltage) is discussed in 1 second, when t = 1 sec, then W = P =I×V

任一時刻,流入超級電容的能量=流出超級電容的能量,也就是太陽能板流入超級電容的能量應該是超級電容流入該DC/DC升降壓轉換器(104)的能量。W:太陽能板產生的能量=流入超級電容的能量=流出超級電容的能量=流入該DC/DC升降壓轉換器(104)的能量。 At any one time, the energy flowing into the supercapacitor = the energy flowing out of the supercapacitor, that is, the energy that the solar panel flows into the supercapacitor should be the energy that the supercapacitor flows into the DC/DC buck-boost converter (104). W: Energy generated by the solar panel = energy flowing into the supercapacitor = energy flowing out of the supercapacitor = energy flowing into the DC/DC buck-boost converter (104).

所以以往擾動觀察之太陽能最大功率追蹤法偵測太陽能板 產生的功率,現亦可偵測超級電容的能量或功率。而超級電容的能量是與其電容量相關:W=1/2C×V2(W:超級電容的能量,C:超級電容的電容量,V為超級電容的電壓)。 Therefore, the solar power maximum tracking method for detecting solar panels in the past disturbance observation The generated power can now also detect the energy or power of the supercapacitor. The energy of the supercapacitor is related to its capacitance: W = 1/2C × V2 (W: energy of the supercapacitor, C: the capacitance of the supercapacitor, and V is the voltage of the supercapacitor).

超級電容的電容量C值是定值,所以超級電容的能量可由超級電容的電壓呈現,只要有超級電容的電壓即可知超級電容能量,也可知太陽能板產生的功率。所以本方法只偵測超級電容的電壓簡單又有效率。 The capacitance C value of the super capacitor is a fixed value, so the energy of the super capacitor can be represented by the voltage of the super capacitor. As long as the voltage of the super capacitor is available, the super capacitor energy can be known, and the power generated by the solar panel can also be known. Therefore, this method only detects the voltage of the super capacitor is simple and efficient.

當t為極短時間時,超級電容的電壓差即可判斷太陽能能量變化情形,亦即太陽光變強或變弱,造成進出系統電能變化。進而調整該DC/DC升降壓轉換器(104)的工作週期,達成最大功率追蹤之目的。 When t is extremely short, the voltage difference of the supercapacitor can determine the change of solar energy, that is, the sunlight becomes stronger or weaker, causing the electric energy to enter and exit the system. Furthermore, the duty cycle of the DC/DC buck-boost converter (104) is adjusted to achieve maximum power tracking.

令t=t1時,量測超級電容的電壓為Vc1;當t=t2時,測量超級電容的電壓則為Vc2;而時間間隔dt=t2-t1,dV=Vc2-Vc1;其中dV值亦即超級電容的電壓變化情形,相當於進出超級電容的電能變化情形,也就是系統能量變化情形。依此可判斷、調整該DC/DC升降壓轉換器(104)的工作週期D值,進而達成最大功率追蹤之目的。 Let t=t1 measure the voltage of the supercapacitor as Vc1; when t=t2, measure the voltage of the supercapacitor as Vc2; and the time interval dt=t2-t1, dV=Vc2-Vc1; where dV is the value The voltage change of the supercapacitor is equivalent to the change of the electric energy entering and leaving the supercapacitor, that is, the change of the system energy. According to this, the duty cycle D value of the DC/DC buck-boost converter (104) can be judged and adjusted, thereby achieving the goal of maximum power tracking.

其操作流程如下:A.首先偵測超級電容電壓Vc值,當Vc值大於設定值時,啟動最大功率系統;B.改變DC/DC轉換器工作週期D值;C.再量測新的Vc值;D.如果新的Vc值大於原Vc值,則將再調整DC/DC轉換器工作週期D值,其變化趨勢方向朝原變化方向;如果新的Vc值小於原Vc值,則將再調整DC/DC轉換器工作週期D值,其變化趨勢方向朝反變化方向;E.將新的Vc值設定成Vc; F.再次重覆上述步驟。 The operation flow is as follows: A. Firstly, the super capacitor voltage Vc value is detected, when the Vc value is greater than the set value, the maximum power system is started; B. the DC/DC converter duty cycle D value is changed; C. the new Vc is measured again. Value; D. If the new Vc value is greater than the original Vc value, the DC/DC converter duty cycle D value will be adjusted, and the trend direction will change toward the original direction; if the new Vc value is smaller than the original Vc value, it will be adjusted again. DC / DC converter duty cycle D value, its trend direction is in the direction of reverse change; E. The new Vc value is set to Vc; F. Repeat the above steps again.

以下針對「再生能源之最大功率追蹤系統及其方法」提出十五種相關實施例。 Fifteen related embodiments are set forth below for "Renewable Energy Maximum Power Tracking System and Method Therefor".

實施例一 Embodiment 1

針對太陽能系統,使用「再生能源之最大功率追蹤系統及其方法」,其中超級電容更兼作為儲能之用。如第三圖所示: For solar energy systems, the "maximum power tracking system and method for renewable energy" is used, in which supercapacitors are used as energy storage. As shown in the third figure:

本實施例實施方法主要係將太陽能板所生成的電能,經第一電子控制開關(100)進入超級電容(101)。而此時電壓偵測電路(102)偵測該超級電容(101)的電壓,並將此資料傳至微控制器(103)。該微控制器(103)判斷比較一定時間(從幾毫秒到幾分鐘)的電壓,下達對DC/DC升降壓轉換器(104)調整工作週期D值的指令,達成全域超級電容最大功率追蹤。爾後透過該微控制器(103)控制第二電子控制開關(105),將最大功率追蹤的電能通過放電控制電路(106)供應給負載(107)。 The implementation method of this embodiment mainly involves inputting the electric energy generated by the solar panel into the super capacitor (101) via the first electronic control switch (100). At this time, the voltage detecting circuit (102) detects the voltage of the super capacitor (101) and transmits the data to the microcontroller (103). The microcontroller (103) determines the voltage for a certain period of time (from a few milliseconds to a few minutes), and issues an instruction to adjust the duty cycle D value of the DC/DC buck-boost converter (104) to achieve global supercapacitor maximum power tracking. The second electronically controlled switch (105) is then controlled by the microcontroller (103) to supply the maximum power tracked electrical energy to the load (107) via the discharge control circuit (106).

實施例二 Embodiment 2

針對風力發電系統,使用「再生能源之最大功率追蹤系統及其方法」,其中超級電容更兼作為儲能之用。如第四圖所示: For wind power generation systems, the "maximum power tracking system and method for renewable energy" is used, in which supercapacitors are used as energy storage. As shown in the fourth picture:

本實施例實施方法主要係將風力發電機所生成的交流電能,使用整流電路(99)調整為直流電。經第一電子控制開關(100)進入超級電容(101)。而此時電壓偵測電路(102)偵測該超級電容(101)的電壓,並將此資料傳至微控制器(103)。該微控制器(103)判斷比較一定時間(從幾毫秒到幾分鐘)的電壓,下達對DC/DC升降壓轉換器(104)調整工作週期D值的指令,達成全域超級電容最大功率追蹤。爾後透過該微控制器(103)控制第二電子控 制開關(105),將最大功率追蹤的電能通過放電控制電路(106)供應給負載(107)。 The implementation method of this embodiment mainly adjusts the AC power generated by the wind power generator to DC power by using a rectifier circuit (99). The super capacitor (101) enters via the first electronically controlled switch (100). At this time, the voltage detecting circuit (102) detects the voltage of the super capacitor (101) and transmits the data to the microcontroller (103). The microcontroller (103) determines the voltage for a certain period of time (from a few milliseconds to a few minutes), and issues an instruction to adjust the duty cycle D value of the DC/DC buck-boost converter (104) to achieve global supercapacitor maximum power tracking. Then control the second electronic control through the microcontroller (103) The switch (105) supplies the maximum power tracked electrical energy to the load (107) through the discharge control circuit (106).

實施例三 Embodiment 3

針對太陽能系統,使用「再生能源之最大功率追蹤系統及其方法」,其中電池作為儲能之用。如第五圖所示: For solar energy systems, the "maximum power tracking system for renewable energy and its method" is used, in which the battery is used for energy storage. As shown in the fifth picture:

本實施例實施方法主要係將太陽能板所生成的電能,經第一電子控制開關(100)進入超級電容(101)。而此時電壓偵測電路(102)偵測該超級電容(101)的電壓,並將此資料傳至微控制器(103)。該微控制器(103)判斷比較一定時間(從幾毫秒到幾分鐘)的電壓,下達對DC/DC升降壓轉換器(104)調整工作週期D值的指令,達成全域超級電容最大功率追蹤。爾後透過該微控制器(103)控制第二電子控制開關(105),充電至電池(108),將最大功率追蹤的電能通過放電(保護)控制電路(106)供應給負載(107)。 The implementation method of this embodiment mainly involves inputting the electric energy generated by the solar panel into the super capacitor (101) via the first electronic control switch (100). At this time, the voltage detecting circuit (102) detects the voltage of the super capacitor (101) and transmits the data to the microcontroller (103). The microcontroller (103) determines the voltage for a certain period of time (from a few milliseconds to a few minutes), and issues an instruction to adjust the duty cycle D value of the DC/DC buck-boost converter (104) to achieve global supercapacitor maximum power tracking. The second electronically controlled switch (105) is then controlled by the microcontroller (103), charged to the battery (108), and the maximum power tracked electrical energy is supplied to the load (107) via a discharge (protection) control circuit (106).

實驗例 Experimental example

利用實施例三的「再生能源之最大功率追蹤系統及其方法」,比較此發明例的系統與商用太陽能PWM脈衝式充電系統充電效率。在兩個70W太陽能板中,使用實施例三的全域超級電容系統與商用太陽能PWM脈衝式充電系統各自架設兩離網太陽能系統,共用相同一顆12V鉛酸儲能電池,以確保兩系統在相同電位之電壓。進而比較兩系統充電電流,計算能量效率增益情形。實驗結果,取100組數據,如表一所示,全域超級電容太陽能系統能量比商用太陽能PWM脈衝式充電系統充電效率增益36%。 The charging efficiency of the system of this invention example and the commercial solar PWM pulse charging system is compared by the "maximum power tracking system of renewable energy and its method" of the third embodiment. In the two 70W solar panels, the global supercapacitor system of the third embodiment and the commercial solar PWM pulse charging system are respectively used to set up two off-grid solar systems, sharing the same 12V lead-acid energy storage battery to ensure that the two systems are the same. The voltage of the potential. Then compare the two system charging currents and calculate the energy efficiency gain situation. The experimental results, taking 100 sets of data, as shown in Table 1, the global supercapacitor solar system energy is 36% higher than the commercial solar PWM pulse charging system charging efficiency gain.

表一:最大功率追蹤系統與商用PWM脈衝式充電系統充電效率實驗結果: Table 1: Experimental results of charging efficiency of maximum power tracking system and commercial PWM pulse charging system:

實例例四 Example 4

針對太陽能系統,使用「再生能源之最大功率追蹤系統及其方法」,其中系統設置有兩個DC/DC升降壓轉換器,分別負責強日照與低日照之該DC/DC升降壓轉換器的工作週期調整。如第六圖所示: For the solar energy system, the "maximum power tracking system and method for renewable energy" is used, in which the system is provided with two DC/DC buck-boost converters, which are responsible for the work of the DC/DC buck-boost converter with strong sunshine and low sunshine respectively. Cycle adjustment. As shown in the sixth figure:

本實施例實施方法主要係將太陽能板所生成的電能,經第一電子控制開關(100)進入超級電容(101)。而此時電壓偵測電路(102)偵測該超級電容(101)的電壓,並將此資料傳至微控制器(103)。該微控制器(103)判斷比較一定時間(從幾毫秒到幾分鐘)的電壓,利用該第一電子控制開關(100)切換,下達對DC/DC升降壓轉換器(104)或第二DC/DC升降壓轉換器(109)調整工作週期D值的指令,達成全域超級電容最大功率追蹤。其中該DC/DC升降壓轉換器(104)與該第二DC/DC升降壓轉換器(109)分別負責強日照與低日照該DC/DC升降壓轉換器的工作週期調整,爾後透過該微控制器(103)控制第二電子控制開關(105),將最大功率追蹤的電能充電到電池(108)。再經放電(保護)控制電路(106)供應負載(107)電力。 The implementation method of this embodiment mainly involves inputting the electric energy generated by the solar panel into the super capacitor (101) via the first electronic control switch (100). At this time, the voltage detecting circuit (102) detects the voltage of the super capacitor (101) and transmits the data to the microcontroller (103). The microcontroller (103) determines a voltage that is compared for a certain period of time (from a few milliseconds to a few minutes), is switched by the first electronically controlled switch (100), and is issued to the DC/DC buck-boost converter (104) or the second DC. The /DC buck-boost converter (109) adjusts the duty cycle D value to achieve maximum power tracking of the global supercapacitor. The DC/DC buck-boost converter (104) and the second DC/DC buck-boost converter (109) are respectively responsible for adjusting the duty cycle of the DC/DC buck-boost converter with strong sunlight and low sunshine, respectively, and then transmitting the micro-transmission The controller (103) controls the second electronically controlled switch (105) to charge the maximum power tracked electrical energy to the battery (108). The load (107) power is then supplied via a discharge (protection) control circuit (106).

實施例五 Embodiment 5

針對太陽能系統,使用「再生能源之最大功率追蹤系統及其方法」,系統設置有兩個DC/DC升降壓轉換器,分別負責強日照與低日照該DC/DC升降壓轉換器的工作週期調整。太陽能系統所取得電力,除了可充電到電池,亦可聯同電池供應電力給負載使用。如第七圖所示: For the solar energy system, the "maximum power tracking system and method for renewable energy" is used. The system is equipped with two DC/DC buck-boost converters, which are responsible for the duty cycle adjustment of the DC/DC buck-boost converter for strong sunlight and low sunshine respectively. . The power obtained by the solar system, in addition to being rechargeable to the battery, can be used in conjunction with the battery to supply power to the load. As shown in the seventh picture:

本實施例實施方法主要係將太陽能板所生成的電能,經第一電子控制開關(100)進入超級電容(101)。而此時電壓偵測電路(102)偵測該超級電容(101)的電壓,並將此資料傳至微控制器(103)。該微控制器(103)判斷 比較一定時間(從幾毫秒到幾分鐘)的電壓,利用該第一電子控制開關(100)切換,下達對DC/DC升降壓轉換器(104)或第二DC/DC升降壓轉換器(109)調整工作週期D值的指令,達成全域超級電容最大功率追蹤。爾後透過該微控制器(103)控制第二電子控制開關(105),將最大功率追蹤的電能充電到電池(108)。亦可由該第二電子控制開關(105)直接到放電(保護)控制電路(106),聯合該電池(108)一起供應負載(107)電力。 The implementation method of this embodiment mainly involves inputting the electric energy generated by the solar panel into the super capacitor (101) via the first electronic control switch (100). At this time, the voltage detecting circuit (102) detects the voltage of the super capacitor (101) and transmits the data to the microcontroller (103). The microcontroller (103) judges Comparing the voltage for a certain period of time (from a few milliseconds to a few minutes), switching with the first electronically controlled switch (100), and issuing a DC/DC buck-boost converter (104) or a second DC/DC buck-boost converter (109) The instruction to adjust the D value of the duty cycle to achieve maximum power tracking of the global supercapacitor. The second electronically controlled switch (105) is then controlled by the microcontroller (103) to charge the maximum power tracked electrical energy to the battery (108). The second electronically controlled switch (105) may also be directed to the discharge (protection) control circuit (106) to collectively supply the load (107) power together with the battery (108).

實施例六 Embodiment 6

針對太陽能系統,使用「再生能源之最大功率追蹤系統及其方法」,在第一電子控制開關與超級電容之間,加入一個升降壓控制器以降低超級電容較高的電壓的需求。如第八圖所示: For the solar energy system, using the "renewable energy maximum power tracking system and its method", a buck-boost controller is added between the first electronically controlled switch and the super capacitor to reduce the high voltage requirement of the super capacitor. As shown in the eighth figure:

本實施例實施方法主要係將太陽能板所生成的電能,經第一電子控制開關(100)接入升降壓控制器(110)再進入超級電容(101)。而此時電壓偵測電路(102)偵測該超級電容(101)的電壓,並將此資料傳至微控制器(103)。該微控制器(103)決定該升降壓控制器(110)並判斷、比較一定時間(從幾毫秒到幾分鐘)的電壓,利用該第一電子控制開關(100)切換,下達對DC/DC升降壓轉換器(104)控制指令,調整工作週期D值,達成全域超級電容最大功率追蹤。爾後根據電池電壓偵測電路(111),透過該微控制器(103)控制第二電子控制開關(105),將最大功率追蹤的電能充電到電池(108)。再經放電(保護)控制電路(106)供應負載(107)電力。 The implementation method of this embodiment mainly connects the electric energy generated by the solar panel to the buck-boost controller (110) via the first electronic control switch (100) and then enters the super capacitor (101). At this time, the voltage detecting circuit (102) detects the voltage of the super capacitor (101) and transmits the data to the microcontroller (103). The microcontroller (103) determines the buck-boost controller (110) and determines and compares the voltage for a certain period of time (from a few milliseconds to a few minutes), and switches the first electronically controlled switch (100) to release the DC/DC. The buck-boost converter (104) controls the command and adjusts the duty cycle D value to achieve maximum power tracking of the global supercapacitor. Then, according to the battery voltage detecting circuit (111), the second electronic control switch (105) is controlled by the microcontroller (103) to charge the maximum power tracking electric energy to the battery (108). The load (107) power is then supplied via a discharge (protection) control circuit (106).

實施例七 Example 7

針對太陽能系統,使用「再生能源之最大功率追蹤系統及其方法」,在第一電子控制開關與超級電容之間,加入一個升降壓控制器以降低超級電 容較高的電壓的需求。太陽能系統所取得電力,除了可充電到電池,亦可聯同電池供應電力給負載使用。如第九圖所示: For the solar system, use the "renewable energy maximum power tracking system and its method", add a buck-boost controller between the first electronically controlled switch and the super capacitor to reduce the super power The need for higher voltages. The power obtained by the solar system, in addition to being rechargeable to the battery, can be used in conjunction with the battery to supply power to the load. As shown in the ninth figure:

本實施例實施方法主要係將太陽能板所生成的電能,經第一電子控制開關(100)接入升降壓控制器(110)再進入超級電容(101)。而此時電壓偵測電路(102)偵測該超級電容(101)的電壓,並將此資料傳至微控制器(103)。該微控制器(103)決定該升降壓控制器(110)並判斷、比較一定時間(從幾毫秒到幾分鐘)的電壓,利用該第一電子控制開關(100)切換,下達對DC/DC升降壓轉換器(104)控制指令,調整工作週期D值,達成全域超級電容最大功率追蹤。爾後根據電池電壓偵測電路(111),透過該微控制器(103)控制第二電子控制開關(105),將最大功率追蹤的電能充電到電池(108)。亦可由該第二電子控制開關(105)直接到放電(保護)控制電路(106),聯合該電池(108)一起供應負載(107)電力。 The implementation method of this embodiment mainly connects the electric energy generated by the solar panel to the buck-boost controller (110) via the first electronic control switch (100) and then enters the super capacitor (101). At this time, the voltage detecting circuit (102) detects the voltage of the super capacitor (101) and transmits the data to the microcontroller (103). The microcontroller (103) determines the buck-boost controller (110) and determines and compares the voltage for a certain period of time (from a few milliseconds to a few minutes), and switches the first electronically controlled switch (100) to release the DC/DC. The buck-boost converter (104) controls the command and adjusts the duty cycle D value to achieve maximum power tracking of the global supercapacitor. Then, according to the battery voltage detecting circuit (111), the second electronic control switch (105) is controlled by the microcontroller (103) to charge the maximum power tracking electric energy to the battery (108). The second electronically controlled switch (105) may also be directed to the discharge (protection) control circuit (106) to collectively supply the load (107) power together with the battery (108).

實施例八 Example eight

針對風力發電系統,使用「再生能源之最大功率追蹤系統及其方法」,將作為全域最大功率追蹤能量暫存的超級電容電力,先行充電到第二超級電容,最後充入電池供應負載之用。由於第二超級電容的置入,可在風力變化快速下,穩定整個風力發電系統。如第十圖所示: For the wind power generation system, the "maximum power tracking system and method for renewable energy" is used to supercharge the supercapacitor power, which is the maximum power tracking energy of the whole region, to the second super capacitor, and finally to charge the battery supply load. Due to the insertion of the second supercapacitor, the entire wind power generation system can be stabilized under rapid wind changes. As shown in the tenth figure:

本實施例實施方法主要係將風力發電機所生成的電能,使用整流電路(99)調整為直流電。經第一電子控制開關(100)進入超級電容(101)。而此時電壓偵測電路(102)偵測該超級電容(101)的電壓,並將此資料傳至微控制器(103)。該微控制器(103)判斷比較一定時間(從幾毫秒到幾分鐘)的電壓,下達對DC/DC升降壓轉換器(104)調整工作週期D值的指令,達 成全域超級電容最大功率追蹤。然後透過電壓偵測電路(112)量測第二超級電容器(113),在該微控制器(103)控制下,將電力充電到該第二超級電容器(113)。爾後也在該微控制器(103)控制下,該第二超級電容器(113)電能經第二電子控制開關(105)及升降壓控制器(114)進入電池(108)儲存。最終通過放電(保護)控制電路(106)供應負載(107)電力。 The implementation method of this embodiment mainly adjusts the electric energy generated by the wind power generator to a direct current using a rectifying circuit (99). The super capacitor (101) enters via the first electronically controlled switch (100). At this time, the voltage detecting circuit (102) detects the voltage of the super capacitor (101) and transmits the data to the microcontroller (103). The microcontroller (103) determines the voltage for a certain period of time (from a few milliseconds to a few minutes), and issues an instruction to adjust the duty cycle D value of the DC/DC buck-boost converter (104). The maximum power tracking of the global supercapacitor. The second supercapacitor (113) is then measured by a voltage detection circuit (112), and under the control of the microcontroller (103), power is charged to the second supercapacitor (113). The second supercapacitor (113) power is also stored in the battery (108) via the second electronically controlled switch (105) and the buck-boost controller (114) under the control of the microcontroller (103). The load (107) power is ultimately supplied through a discharge (protection) control circuit (106).

實施例九 Example nine

針對風力發電系統,使用「再生能源之最大功率追蹤系統及其方法」,將作為全域最大功率追蹤能量暫存的超級電容電力,先行充電到第二超級電容,最後充入電池供應負載之用。風力發電系統所取得電力,除了可充電到電池,亦可聯同電池供應電力給負載使用。由於第二超級電容的置入,可在風力變化快速下,穩定整個風力發電系統。如第十一圖所示: For the wind power generation system, the "maximum power tracking system and method for renewable energy" is used to supercharge the supercapacitor power, which is the maximum power tracking energy of the whole region, to the second super capacitor, and finally to charge the battery supply load. The power generated by the wind power system, in addition to being rechargeable to the battery, can be used in conjunction with the battery to supply power to the load. Due to the insertion of the second supercapacitor, the entire wind power generation system can be stabilized under rapid wind changes. As shown in Figure 11:

本實施例實施方法主要係將風力發電所生成的電能,使用整流電路(99)調整為直流電。經第一電子控制開關(100)進入超級電容(101)。而此時電壓偵測電路(102)偵測該超級電容(101)的電壓,並將此資料傳至微控制器(103)。該微控制器(103)判斷比較一定時間的電壓,下達對DC/DC升降壓轉換器(104)調整工作週期D值的指令,達成全域超級電容最大功率追蹤。然後透過電壓偵測電路(112)量測第二超級電容器(113),在該微控制器(103)控制下,將電力充電到該第二超級電容器(113)。爾後也在該微控制器(103)控制下,該第二超級電容器(113)電能經第二電子控制開關(105)及升降壓控制器(114)進入電池(108)儲存。最終通過放電(保護)控制電路(106)供應負載(107)電力。亦可由第二電子控制開關(105)直接到放電控制電路(106),聯合該電池(108)一起供應該負載(107)電力。 The implementation method of this embodiment mainly adjusts the electric energy generated by the wind power generation into a direct current using a rectifying circuit (99). The super capacitor (101) enters via the first electronically controlled switch (100). At this time, the voltage detecting circuit (102) detects the voltage of the super capacitor (101) and transmits the data to the microcontroller (103). The microcontroller (103) determines the voltage for a certain period of time, and issues an instruction to adjust the duty cycle D value of the DC/DC buck-boost converter (104) to achieve global supercapacitor maximum power tracking. The second supercapacitor (113) is then measured by a voltage detection circuit (112), and under the control of the microcontroller (103), power is charged to the second supercapacitor (113). The second supercapacitor (113) power is also stored in the battery (108) via the second electronically controlled switch (105) and the buck-boost controller (114) under the control of the microcontroller (103). The load (107) power is ultimately supplied through a discharge (protection) control circuit (106). The load (107) can also be supplied directly by the second electronically controlled switch (105) to the discharge control circuit (106) in conjunction with the battery (108).

實施例十 Example ten

針對風力發電系統,使用「再生能源之最大功率追蹤系統及其方法」,在第一電子控制開關與超級電容之間,加入一個升降壓控制器以降低超級電容較高的電壓的需求。如第十二圖所示: For the wind power generation system, using the "renewable energy maximum power tracking system and its method", a buck-boost controller is added between the first electronic control switch and the super capacitor to reduce the high voltage requirement of the super capacitor. As shown in Figure 12:

本實施例實施方法主要係將風力發電機所生成的電能,使用整流電路(99)調整為直流電。經第一電子控制開關(100)接入升降壓控制器(110)再進入超級電容(101)。而此時電壓偵測電路(102)偵測該超級電容(101)的電壓,並將此資料傳至微控制器(103)。該微控制器(103)控制該升降壓控制器(110)並判斷比較一定時間(從幾毫秒到幾分鐘)的電壓,下達對DC/DC升降壓轉換器(104)調整工作週期D值的指令,達成全域超級電容最大功率追蹤。然後透過電壓偵測電路(112)量測第二超級電容電壓(113),在微控制器(103)控制下,將電力充電到第二超級電容器(113)。爾後也在該微控制器(103)控制下,該第二超級電容器(113)電能經第二電子控制開關(105)及升降壓控制器(114)進入電池(108)儲存。最終通過放電(保護)控制電路(106)供應負載(107)電力。 The implementation method of this embodiment mainly adjusts the electric energy generated by the wind power generator to a direct current using a rectifying circuit (99). The first electronically controlled switch (100) is connected to the buck-boost controller (110) and then enters the supercapacitor (101). At this time, the voltage detecting circuit (102) detects the voltage of the super capacitor (101) and transmits the data to the microcontroller (103). The microcontroller (103) controls the buck-boost controller (110) and determines a voltage that is compared for a certain period of time (from a few milliseconds to a few minutes), and the D-value of the duty cycle is adjusted for the DC/DC buck-boost converter (104). Command to achieve maximum power tracking of the global supercapacitor. The second supercapacitor voltage (113) is then measured by a voltage detection circuit (112), and the power is charged to the second supercapacitor (113) under the control of the microcontroller (103). The second supercapacitor (113) power is also stored in the battery (108) via the second electronically controlled switch (105) and the buck-boost controller (114) under the control of the microcontroller (103). The load (107) power is ultimately supplied through a discharge (protection) control circuit (106).

實施例十一 Embodiment 11

針對風力發電系統,使用「再生能源之最大功率追蹤系統及其方法」,在第一電子控制開關與超級電容之間,加入一個升降壓控制器以降低超級電容較高的電壓的需求。風力發電系統所取得電力,除可充電到電池,亦可聯同電池供應電力給負載使用。如第十三圖所示: For the wind power generation system, using the "renewable energy maximum power tracking system and its method", a buck-boost controller is added between the first electronic control switch and the super capacitor to reduce the high voltage requirement of the super capacitor. The power obtained by the wind power system, in addition to being rechargeable to the battery, can be used in conjunction with the battery to supply power to the load. As shown in the thirteenth picture:

本實施例實施方法主要係將風力發電機所生成的電能,使用整流電路(99)調整為直流電。經第一電子控制開關(100)接入升降壓控制器 (110)再進入超級電容(101)。而此時電壓偵測電路(102)偵測該超級電容(101)的電壓,並將此資料傳至微控制器(103)。該微控制器(103)控制該升降壓控制器(110)並判斷比較一定時間(從幾毫秒到幾分鐘)的電壓,下達對DC/DC升降壓轉換器(104)調整工作週期D值的指令,達成全域超級電容最大功率追蹤。然後透過電壓偵測電路(112)量測第二超級電容器(113),在該微控制器(103)控制下,將電力充電到該第二超級電容器(113)。爾後也在該微控制器(103)控制下,該第二超級電容器(113)電能經第二電子控制開關(105)及升降壓控制器(114)進入電池(108)儲存。最終通過放電(保護)控制電路(106)供應負載(107)電力。亦可由該第二電子控制開關(105)直接到該放電(保護)控制電路(106),聯合該電池(108)一起供應該負載(107)電力。 The implementation method of this embodiment mainly adjusts the electric energy generated by the wind power generator to a direct current using a rectifying circuit (99). Connected to the buck-boost controller via the first electronically controlled switch (100) (110) Re-enter the super capacitor (101). At this time, the voltage detecting circuit (102) detects the voltage of the super capacitor (101) and transmits the data to the microcontroller (103). The microcontroller (103) controls the buck-boost controller (110) and determines a voltage that is compared for a certain period of time (from a few milliseconds to a few minutes), and the D-value of the duty cycle is adjusted for the DC/DC buck-boost converter (104). Command to achieve maximum power tracking of the global supercapacitor. The second supercapacitor (113) is then measured by a voltage detection circuit (112), and under the control of the microcontroller (103), power is charged to the second supercapacitor (113). The second supercapacitor (113) power is also stored in the battery (108) via the second electronically controlled switch (105) and the buck-boost controller (114) under the control of the microcontroller (103). The load (107) power is ultimately supplied through a discharge (protection) control circuit (106). The second electronically controlled switch (105) may also be directed to the discharge (protection) control circuit (106) to supply the load (107) power in conjunction with the battery (108).

實施例十二 Example twelve

針對太陽能與風力發電兩種結合的風光互補系統,將風力發電機所發的電整流成直流電,結合太陽能的電力,使用「再生能源之最大功率追蹤系統及其方法」。將作為全域最大功率追蹤能量暫存的超級電容電力,先行充電到第二超級電容,最後充入電池供應負載之用。由於第二超級電容的置入,可在天候變化快速下,穩定整個風力發電系統。如第十四圖所示: For the wind-solar complementary system combining solar energy and wind power generation, the electric power generated by the wind power generator is rectified into direct current electricity, and combined with the solar power, the "maximum power tracking system and method for renewable energy" is used. The supercapacitor power, which is temporarily stored as the global maximum power tracking energy, is first charged to the second super capacitor, and finally charged into the battery supply load. Due to the placement of the second supercapacitor, the entire wind power generation system can be stabilized with rapid changes in weather. As shown in Figure 14:

本實施例實施方法主要係將風力發電機所生成的電能,使用整流電路(99)調整為直流電。結合太陽能板的電力經第一電子控制開關(100),內含為風力與太陽能電子開關,進入超級電容(101)。而此時電壓偵測電路(102)偵測該超級電容(101)的電壓,並將此資料傳至微控制器(103)。該微控制器(103)判斷比較一定時間(從幾毫秒到幾分鐘)的電壓,下達對DC/DC升降壓轉換器(104)調整工作週期D值的指令,達成全域超級電容最 大功率追蹤。然後透過電壓偵測電路(112)量測第二超級電容器(113),在該微控制器(103)控制下,將電力充電到該第二超級電容器(113)。爾後也在該微控制器(103)控制下,該第二超級電容器(113)電能經第二電子控制開關(105)及升降壓控制器(114)進入電池(108)儲存。最終通過放電(保護)控制電路(106)供應負載(107)電力。 The implementation method of this embodiment mainly adjusts the electric energy generated by the wind power generator to a direct current using a rectifying circuit (99). The power combined with the solar panel passes through the first electronically controlled switch (100), which is a wind and solar electronic switch that enters the supercapacitor (101). At this time, the voltage detecting circuit (102) detects the voltage of the super capacitor (101) and transmits the data to the microcontroller (103). The microcontroller (103) determines the voltage for a certain period of time (from a few milliseconds to a few minutes), and issues a command for adjusting the duty cycle D value of the DC/DC buck-boost converter (104) to achieve the global supercapacitor. High power tracking. The second supercapacitor (113) is then measured by a voltage detection circuit (112), and under the control of the microcontroller (103), power is charged to the second supercapacitor (113). The second supercapacitor (113) power is also stored in the battery (108) via the second electronically controlled switch (105) and the buck-boost controller (114) under the control of the microcontroller (103). The load (107) power is ultimately supplied through a discharge (protection) control circuit (106).

實施例十三 Example thirteen

針對太陽能與風力發電兩種結合的風光互補系統,將風力發電機所發的電整流成直流電,結合太陽能的電力,使用「再生能源之最大功率追蹤系統及其方法」。將作為全域最大功率追蹤能量暫存的超級電容電力,先行充電到第二超級電容,最後充入電池供應負載之用。風光互補系統所取得電力,除可充電到電池,亦可聯同電池供應電力給負載使用。由於第二超級電容的置入,可在天候變化快速下,穩定整個風力發電系統。如第十五圖所示: For the wind-solar complementary system combining solar energy and wind power generation, the electric power generated by the wind power generator is rectified into direct current electricity, and combined with the solar power, the "maximum power tracking system and method for renewable energy" is used. The supercapacitor power, which is temporarily stored as the global maximum power tracking energy, is first charged to the second super capacitor, and finally charged into the battery supply load. The power obtained by the wind-solar complementary system, in addition to being rechargeable to the battery, can also be used in conjunction with the battery to supply power to the load. Due to the placement of the second supercapacitor, the entire wind power generation system can be stabilized with rapid changes in weather. As shown in the fifteenth figure:

本實施例實施方法主要係將風力發電機所生成的電能,使用整流電路(99)調整為直流電。結合太陽能板的電力經第一電子控制開關(100),內含為風力與太陽能電子開關,進入超級電容(101)。而此時電壓偵測電路(102)偵測該超級電容(101)的電壓,並將此資料傳至微控制器(103)。該微控制器(103)判斷比較一定時間(從幾毫秒到幾分鐘)的電壓,下達對DC/DC升降壓轉換器(104)調整工作週期D值的指令,達成全域超級電容最大功率追蹤。然後透過電壓偵測電路(112)量測第二超級電容器(113),在該微控制器(103)控制下,將電力充電到該第二超級電容器(113)。爾後也在該微控制器(103)控制下,該第二超級電容器(113)電能經第二電子控制開關 (105)及升降壓控制器(114)進入電池(108)儲存。最終通過放電(保護)控制電路(106)供應負載(107)電力。亦可由該第二電子控制開關(105)直接到該放電(保護)控制電路(106),聯合該電池(108)一起供應該負載(107)電力。 The implementation method of this embodiment mainly adjusts the electric energy generated by the wind power generator to a direct current using a rectifying circuit (99). The power combined with the solar panel passes through the first electronically controlled switch (100), which is a wind and solar electronic switch that enters the supercapacitor (101). At this time, the voltage detecting circuit (102) detects the voltage of the super capacitor (101) and transmits the data to the microcontroller (103). The microcontroller (103) determines the voltage for a certain period of time (from a few milliseconds to a few minutes), and issues an instruction to adjust the duty cycle D value of the DC/DC buck-boost converter (104) to achieve global supercapacitor maximum power tracking. The second supercapacitor (113) is then measured by a voltage detection circuit (112), and under the control of the microcontroller (103), power is charged to the second supercapacitor (113). The second supercapacitor (113) is also powered by the second electronically controlled switch under the control of the microcontroller (103). (105) and the buck-boost controller (114) enters the battery (108) for storage. The load (107) power is ultimately supplied through a discharge (protection) control circuit (106). The second electronically controlled switch (105) may also be directed to the discharge (protection) control circuit (106) to supply the load (107) power in conjunction with the battery (108).

實施例十四 Embodiment 14

針對太陽能與風力發電兩種結合的風光互補系統,使用「再生能源之最大功率追蹤系統及其方法」。在第一電子控制開關與超級電容之間,加入一個升降壓控制器以降低超級電容較高的電壓的需求。如第十六圖所示: For the wind-solar complementary system combining solar energy and wind power, the "maximum power tracking system and method for renewable energy" is used. Between the first electronically controlled switch and the supercapacitor, a buck-boost controller is added to reduce the need for a higher voltage of the supercapacitor. As shown in Figure 16:

本實施例實施方法主要係將風力發電機所生成的電能,使用整流電路(99)調整為直流電。結合太陽能板的電力經第一電子控制開關(100),內含為風力與太陽能電子控制開關,接入升降壓控制器(110)再進入超級電容(101)。而此時電壓偵測電路(102)偵測該超級電容(101)的電壓,並將此資料傳至微控制器(103)。該微控制器(103)判斷比較一定時間的電壓,下達對DC/DC升降壓轉換器(104)調整工作週期D值的指令,達成全域超級電容最大功率追蹤。然後透過電壓偵測電路(112)量測第二超級電容器(113),在該微控制器(103)控制下,將電力充電到該第二超級電容器(113)。爾後也在該微控制器(103)控制下,該第二超級電容器(113)電能經第二電子控制開關(105)及升降壓控制器(114)進入電池(108)儲存。最終通過放電(保護)控制電路(106)供應負載(107)電力。 The implementation method of this embodiment mainly adjusts the electric energy generated by the wind power generator to a direct current using a rectifying circuit (99). The power combined with the solar panel passes through the first electronically controlled switch (100), which is a wind and solar electronic control switch, which is connected to the buck-boost controller (110) and then enters the supercapacitor (101). At this time, the voltage detecting circuit (102) detects the voltage of the super capacitor (101) and transmits the data to the microcontroller (103). The microcontroller (103) determines the voltage for a certain period of time, and issues an instruction to adjust the duty cycle D value of the DC/DC buck-boost converter (104) to achieve global supercapacitor maximum power tracking. The second supercapacitor (113) is then measured by a voltage detection circuit (112), and under the control of the microcontroller (103), power is charged to the second supercapacitor (113). The second supercapacitor (113) power is also stored in the battery (108) via the second electronically controlled switch (105) and the buck-boost controller (114) under the control of the microcontroller (103). The load (107) power is ultimately supplied through a discharge (protection) control circuit (106).

實施例十五 Example fifteen

針對太陽能與風力發電兩種結合的風光互補系統,使用「再生能源之最大功率追蹤系統及其方法」。在第一電子控制開關與超級電容之間,加入一個升降壓控制器以降低超級電容較高的電壓的需求。風光互補系統所取 得電力,除可充電到電池,亦可聯同電池供應電力給負載使用。如第十七圖所示: For the wind-solar complementary system combining solar energy and wind power, the "maximum power tracking system and method for renewable energy" is used. Between the first electronically controlled switch and the supercapacitor, a buck-boost controller is added to reduce the need for a higher voltage of the supercapacitor. Wind and solar complementary system In addition to being rechargeable, the battery can be powered by a battery to supply power to the load. As shown in Figure 17:

本實施例實施方法主要係將風力發電機所生成的電能,使用整流電路(99)調整為直流電。結合太陽能板的電力經第一電子控制開關(100),接入升降壓控制器(110)再進入超級電容(101)。而此時電壓偵測電路(102)偵測該超級電容(101)的電壓,並將此資料傳至微控制器(103)。該微控制器(103)判斷比較一定時間的電壓,下達對DC/DC升降壓轉換器(104)調整工作週期D值的指令,達成全域超級電容最大功率追蹤。然後透過電壓偵測電路(112)量測第二超級電容器(113),在該微控制器(103)控制下,將電力充電到該第二超級電容器(113)。爾後也在該微控制器(103)控制下,該第二超級電容器(113)電能經第二電子控制開關(105)及升降壓控制器(114)進入電池(108)儲存。最終通過放電(保護)控制電路(106),供應負載(107)電力。亦可由該第二電子控制開關(105)直接到該放電(保護)控制電路(106),聯合該電池(108)一起供應該負載(107)電力。 The implementation method of this embodiment mainly adjusts the electric energy generated by the wind power generator to a direct current using a rectifying circuit (99). The power combined with the solar panel is passed through the first electronically controlled switch (100), connected to the buck-boost controller (110) and then into the supercapacitor (101). At this time, the voltage detecting circuit (102) detects the voltage of the super capacitor (101) and transmits the data to the microcontroller (103). The microcontroller (103) determines the voltage for a certain period of time, and issues an instruction to adjust the duty cycle D value of the DC/DC buck-boost converter (104) to achieve global supercapacitor maximum power tracking. The second supercapacitor (113) is then measured by a voltage detection circuit (112), and under the control of the microcontroller (103), power is charged to the second supercapacitor (113). The second supercapacitor (113) power is also stored in the battery (108) via the second electronically controlled switch (105) and the buck-boost controller (114) under the control of the microcontroller (103). Finally, the load (107) is supplied with power through a discharge (protection) control circuit (106). The second electronically controlled switch (105) may also be directed to the discharge (protection) control circuit (106) to supply the load (107) power in conjunction with the battery (108).

Claims (20)

一種再生能源之最大功率追蹤方法,主要是加入超級電容器,以動態平衡方式,藉由改變一DC/DC升降壓轉換器的工作週期,量測超級電容器電壓,經微控制器決定下次該DC/DC升降壓轉換器的工作週期大小與方向,只需監控超級電容器的電壓,不需偵測電流,比較再生能源系統的輸出功率,震盪來回追蹤最大功率。 A maximum power tracking method for regenerative energy, mainly adding a supercapacitor, in a dynamic balancing manner, by changing the duty cycle of a DC/DC buck-boost converter, measuring the supercapacitor voltage, and determining the next DC by the microcontroller The duty cycle and direction of the /DC buck-boost converter only need to monitor the voltage of the supercapacitor, do not need to detect the current, compare the output power of the regenerative energy system, and oscillate back and forth to track the maximum power. 如申請專利範圍第1項所述之再生能源之最大功率追蹤方法,包括下列步驟:A.偵測超級電容器電壓;B.當超級電容器的電壓大於設定時,啟動再生能源最大功率追蹤系統;C.調整該DC/DC升降壓轉換器的工作週期;D.再次量測超級電容器的電壓;E.比較新工作週期的超級電容器電壓與原工作週期的超級電容器電壓;F.如果新超級電容器電壓大於原超級電容器電壓,微控制器將調整該DC/DC升降壓轉換器工作週期,其變化趨勢則朝原變化方向;G.如果新超級電容器電壓小於原超級電容器電壓,微控制器將調整該DC/DC升降壓轉換器工作週期,其變化趨勢則朝相反變化方向;H.依序重覆上述步驟。 The maximum power tracking method for renewable energy as described in claim 1 includes the following steps: A. detecting the supercapacitor voltage; B. starting the regenerative energy maximum power tracking system when the supercapacitor voltage is greater than the set; C Adjust the duty cycle of the DC/DC buck-boost converter; D. measure the voltage of the supercapacitor again; E. compare the supercapacitor voltage of the new duty cycle with the supercapacitor voltage of the original duty cycle; F. if the new supercapacitor voltage Larger than the original supercapacitor voltage, the microcontroller will adjust the duty cycle of the DC/DC buck-boost converter, and its trend will change toward the original direction; G. If the new supercapacitor voltage is less than the original supercapacitor voltage, the microcontroller will adjust the DC The duty cycle of the /DC buck-boost converter changes in the opposite direction; H. Repeat the above steps in sequence. 如申請專利範圍第1項所述之再生能源之最大功率追蹤方法,係將再生能源以動態平衡方式進出超級電容器,量測超級電容器電壓,微控制器根據電壓的變化調整該DC/DC升降壓轉換器工作週期變化大小趨勢,藉以追蹤系統最大功率。 For example, the maximum power tracking method for renewable energy as described in claim 1 is to regenerative energy enter and exit the supercapacitor in a dynamic equilibrium manner, measure the supercapacitor voltage, and the microcontroller adjusts the DC/DC buck-boost according to the change of the voltage. The converter's duty cycle changes in magnitude to track the maximum power of the system. 如申請專利範圍第1項所述之再生能源之最大功率追蹤方法,其中該超級電容器係選自各種高容量之能量型與功率型超級電容器,如金屬氧化 物超級電容器,尤其是指氧化釕超級電容器、碳材料超級電容器、奈米碳管超級電容器、石墨烯超級電容器,高分子材料超級電容器、鋰離子超級電容器與不對稱電極超級電容器等,而該DC/DC升降壓轉換器包含升降壓、升壓、降壓該DC/DC升降壓轉換器或類似。 The maximum power tracking method for renewable energy as described in claim 1, wherein the supercapacitor is selected from various high-capacity energy-type and power-type supercapacitors, such as metal oxide. Supercapacitors, especially yttrium oxide supercapacitors, carbon supercapacitors, carbon nanotube supercapacitors, graphene supercapacitors, polymer supercapacitors, lithium ion supercapacitors and asymmetric electrode supercapacitors, etc. The /DC buck-boost converter includes buck-boost, boost, buck, DC/DC buck-boost converter or the like. 一種再生能源之最大功率追蹤系統,包括一第一電子控制開關與一超級電容相互電性連接,且設一DC/DC升降壓轉換器與該第一電子控制開關電係連接,該第一電子控制開關並與一微控制器電性連接,該超級電容與該第一電子控制開關之連接路徑並電性連接一電壓偵測電路,以供將再生能源生成的電能,經該第一電子控制開關,進入該超級電容,其中該超級電容兼作為儲能之用,並由該電壓偵測電路偵測該超級電容的電壓,傳至該微控制器,判斷比較一定時間的電壓,以調整該DC/DC升降壓轉換器工作週期,達成該超級電容最大功率追蹤,並將此電能經放電控制電路,供應給負載。 A maximum power tracking system for regenerative energy, comprising: a first electronic control switch and a super capacitor electrically connected to each other, and a DC/DC buck-boost converter is electrically connected to the first electronic control switch, the first electronic The control switch is electrically connected to a microcontroller, and the connection path between the super capacitor and the first electronic control switch is electrically connected to a voltage detecting circuit for controlling the electrical energy generated by the renewable energy source through the first electronic control The switch enters the super capacitor, wherein the super capacitor functions as an energy storage device, and the voltage detecting circuit detects the voltage of the super capacitor and transmits the voltage to the microcontroller to determine a voltage for a certain time to adjust the The duty cycle of the DC/DC buck-boost converter achieves maximum power tracking of the supercapacitor and supplies the electric energy to the load through the discharge control circuit. 如申請專利範圍第5項所述之再生能源之最大功率追蹤系統,其中該再生能源包括太陽能板、風力發電機、風光互補發電系統所產生。 The maximum power tracking system for renewable energy as described in claim 5, wherein the renewable energy source comprises a solar panel, a wind power generator, and a wind-solar hybrid power generation system. 如申請專利範圍第5項所述之再生能源之最大功率追蹤系統,其中更包括一第二電子控制開關與該DC/DC升降壓轉換器以及該微控制器電性連接。 The maximum power tracking system for renewable energy as described in claim 5, further comprising a second electronic control switch electrically connected to the DC/DC buck-boost converter and the microcontroller. 如申請專利範圍第7項所述之再生能源之最大功率追蹤系統,其中更包括一放電控制電路與該第二電子控制開關電性連接。 The maximum power tracking system for renewable energy as described in claim 7 , further comprising a discharge control circuit electrically connected to the second electronic control switch. 一種再生能源之最大功率追蹤系統,其中系統設置有兩個DC/DC升降壓轉換器,分別負責強日照與低日照該DC/DC升降壓轉換器的工作週期調整,係將再生能源生成的電能,經第一電子控制開關,進入超級電容,而電壓偵測電路偵測超級電容的電壓,並傳至微控制器,判斷比較一定 時間的電壓,利用第一電子控制開關切換,調整該兩個DC/DC升降壓轉換器工作週期,達成全域超級電容最大功率追蹤,爾後透過第二電子控制開關,將電能充電到電池,再經放電控制電路,供應負載電力。 A maximum power tracking system for renewable energy, wherein the system is provided with two DC/DC buck-boost converters, which are respectively responsible for the duty cycle adjustment of the strong sunshine and low sunshine DC/DC buck-boost converter, which is the electrical energy generated by the renewable energy source. The first electronically controlled switch enters the super capacitor, and the voltage detection circuit detects the voltage of the super capacitor and transmits it to the microcontroller, and the comparison is certain The voltage of time, using the first electronic control switch to switch, adjust the working cycle of the two DC/DC buck-boost converters, achieve the maximum power tracking of the global supercapacitor, and then charge the electric energy to the battery through the second electronic control switch, and then A discharge control circuit that supplies load power. 如申請專利範圍第9項所述之再生能源之最大功率追蹤系統,包括:一再生能源:太陽能板、風力發電機、風光互補發電系統等;一超級電容:為動態平衡暫存器;一第一與第二電子控制開關;一第一與第二DC/DC升降壓轉換器:調整再生能源系統輸出電壓及電力(電流);一電壓偵測:偵測超級電容電壓;一微控制器:根據電壓偵測電路量測的電壓,判斷、控制與調整該DC/DC升降壓轉換器的工作週期,並控制電子開關的開啟與關閉;一放電控制電路;一電池:系統儲能器;一負載。 The maximum power tracking system for renewable energy as described in claim 9 includes: a renewable energy source: solar panels, wind turbines, wind and solar hybrid power generation systems, etc.; a super capacitor: a dynamic balance register; a first and a second electronic control switch; a first and a second DC/DC buck-boost converter: adjusting the output voltage and power (current) of the regenerative energy system; a voltage detection: detecting the supercapacitor voltage; a microcontroller: Judging, controlling and adjusting the duty cycle of the DC/DC buck-boost converter according to the voltage measured by the voltage detecting circuit, and controlling the opening and closing of the electronic switch; a discharge control circuit; a battery: a system energy storage device; load. 如申請專利範圍第9項所述之再生能源之最大功率追蹤系統,其中全域超級電容最大功率追蹤電力,經過第二電子控制開關直接經放電控制電路,供應負載電力,亦可聯合電池一起供應負載電力。 For example, the maximum power tracking system of the renewable energy source described in claim 9 wherein the global supercapacitor maximum power tracking power is directly supplied to the load control power through the second electronic control switch through the discharge control circuit, and may also be supplied with the battery together with the load. electric power. 一種再生能源之最大功率追蹤系統,在第一電子控制開關與超級電容之 間,加入一個升降壓控制器以降低超級電容較高的電壓的需求,係將再生能源生成的電能,經第一電子控制開關,升降壓控制器進入超級電容,偵測超級電容的電壓,傳至微控制器,判斷比較一定時間的電壓,調整DC/DC升降壓轉換器工作週期,達成全域超級電容最大功率追蹤,爾後偵測超級電池電壓再透過微控制器控制第二電子控制開關,充電至電池,再將此電能經放電控制電路,供應給負載。 A maximum power tracking system for renewable energy, in the first electronically controlled switch and super capacitor In addition, a buck-boost controller is added to reduce the high voltage requirement of the supercapacitor. The electric energy generated by the regenerative energy is passed through the first electronically controlled switch, and the buck-boost controller enters the supercapacitor to detect the voltage of the supercapacitor. To the microcontroller, determine the voltage for a certain period of time, adjust the duty cycle of the DC/DC buck-boost converter, achieve the maximum power tracking of the global supercapacitor, and then detect the super battery voltage and then control the second electronic control switch through the microcontroller to charge To the battery, this power is supplied to the load through the discharge control circuit. 如申請專利範圍第12項所述之再生能源之最大功率追蹤系統,包括:一再生能源:太陽能板、風力發電機、風光互補發電系統等;一整流器:為風力發電機交流發電整流成直流電力;一超級電容:為動態平衡暫存器;一第一與第二電子控制開關;一升降壓控制器;一第一與第二DC/DC升降壓轉換器:調整再生能源系統輸出電壓及電力(電流);一電壓偵測電路:偵測超級電容器與電池電壓;一微控制器:根據電壓偵測電路量測的電壓,判斷、控制與調整該DC/DC升降壓轉換器的工作週期,並控制電子開關的開啟與關閉;一放電控制電路;一電池: 系統儲能器;一負載。 The maximum power tracking system for renewable energy as described in claim 12 includes: a renewable energy source: solar panels, wind turbines, wind-solar hybrid power generation systems, etc.; a rectifier: rectification of wind power generators into DC power A super capacitor: a dynamic balance register; a first and second electronic control switch; a buck-boost controller; a first and a second DC/DC buck-boost converter: adjusting the output voltage and power of the regenerative energy system (current); a voltage detection circuit: detecting supercapacitor and battery voltage; a microcontroller: judging, controlling and adjusting the duty cycle of the DC/DC buck-boost converter according to the voltage measured by the voltage detection circuit, And control the opening and closing of the electronic switch; a discharge control circuit; a battery: System energy storage; a load. 如申請專利範圍第12項所述之再生能源之最大功率追蹤系統,其中全域超級電容最大功率追蹤電力,經過第二電子控制開關直接經放電控制電路,供應負載電力,亦可聯合電池一起供應負載電力。 For example, the maximum power tracking system of the renewable energy source described in claim 12, wherein the global supercapacitor maximum power tracking power is directly supplied to the load control power through the second electronic control switch through the discharge control circuit, and may also be supplied with the battery together with the load. electric power. 一種再生能源之最大功率追蹤系統,置入第二超級電容器,可在風力變化快速下,穩定整個風力發電系統,係將風力發電生成的電能,整流為直流電,經第一電子控制開關,進入超級電容,而電壓偵測電路偵測超級電容的電壓,並傳至微控制器,判斷比較一定時間的電壓,調整DC/DC升降壓轉換器工作週期,達成全域超級電容最大功率追蹤,然後透過電壓偵測電路量測第二超級電容電壓,將電力充電到第二超級電容,爾後經第二電子控制開關及升降壓控制器,進入電池儲存,最終通過放電控制電路,供應負載電力。 A maximum power tracking system for regenerative energy, which is placed in a second supercapacitor, can stabilize the entire wind power generation system under rapid wind changes, and rectifies the electric energy generated by the wind power generation into direct current, and enters the super through the first electronic control switch. Capacitance, and the voltage detection circuit detects the voltage of the super capacitor and transmits it to the microcontroller to determine the voltage for a certain period of time, adjust the duty cycle of the DC/DC buck-boost converter, achieve the maximum power tracking of the global supercapacitor, and then pass the voltage. The detecting circuit measures the second super capacitor voltage, charges the electric power to the second super capacitor, and then enters the battery storage through the second electronic control switch and the buck-boost controller, and finally supplies the load power through the discharge control circuit. 如申請專利範圍第15項所述之再生能源之最大功率追蹤系統,包括:一再生能源:風力發電機、風光互補發電;一整流器:為風力發電機交流發電整流成直流電力;一第一超級電容:為動態平衡暫存器;一第二超級電容:為系統第二儲能器;一第一與第二電子控制開關;一升降壓控制器: 為第二超級電容升降壓充電到電池;一第一與第二DC/DC升降壓轉換器:調整再生能源系統輸出電壓及電力(電流);一電壓偵測電路:偵測超級電容器與電池電壓;一微控制器:根據電壓偵測電路量測的電壓,判斷、控制與調整該DC/DC升降壓轉換器的工作週期,並控制電子開關的開啟與關閉;一放電控制電路;一電池:系統儲能器;一負載。 The maximum power tracking system for renewable energy as described in claim 15 includes: a renewable energy source: wind power generator, wind and solar hybrid power generation; a rectifier: for wind power generator AC power rectification into DC power; a first super Capacitor: is a dynamic balance register; a second super capacitor: a second energy storage device of the system; a first and second electronic control switch; a buck-boost controller: Charging the second super capacitor to the battery; a first and second DC/DC buck-boost converter: adjusting the output voltage and power (current) of the regenerative energy system; a voltage detecting circuit: detecting the supercapacitor and the battery voltage a microcontroller: judging, controlling and adjusting the duty cycle of the DC/DC buck-boost converter according to the voltage measured by the voltage detecting circuit, and controlling the opening and closing of the electronic switch; a discharge control circuit; a battery: System energy storage; a load. 如申請專利範圍第15項所述之再生能源之最大功率追蹤系統,其中全域超級電容最大功率追蹤電力,經過第二電子控制開關直接經放電控制電路,供應負載電力,亦可聯合電池一起供應負載電力。 For example, the maximum power tracking system of the renewable energy source described in claim 15 wherein the global supercapacitor maximum power tracking power is directly supplied to the load control power through the second electronic control switch through the discharge control circuit, and may also be supplied with the battery together with the load. electric power. 一種再生能源之最大功率追蹤系統,在第一電子控制開關與超級電容之間,加入一個升降壓控制器以降低超級電容較高的電壓的需求,也置入第二超級電容器,可在風力變化快速下,穩定整個風力發電系統,係將風力發電機所生成的電能,使用整流電路,經第一電子控制開關,接入升降壓控制器,再進入超級電容,而電壓偵測電路偵測超級電容的電壓,傳至微控制器,微控判斷比較一定時間的電壓,調整DC/DC升降壓轉換器的工作週期,達成全域超級電容最大功率追蹤,再透過電壓偵測電路量測第二超級電容電壓,將電力充電到第二超級電容,爾後第二超級電容電能經第二電子控制開關及升降壓控制器,進入電池儲存,最 終經放電控制電路供應負載電力。 A maximum power tracking system for regenerative energy, adding a buck-boost controller between the first electronically controlled switch and the supercapacitor to reduce the need for a higher voltage of the supercapacitor, and also placing a second supercapacitor, which can be changed in the wind Quickly, stabilize the entire wind power generation system, using the electric energy generated by the wind turbine, using a rectifying circuit, connecting the buck-boost controller through the first electronic control switch, and then entering the super capacitor, and the voltage detecting circuit detects the super The voltage of the capacitor is transmitted to the microcontroller. The micro-control determines the voltage for a certain period of time, adjusts the duty cycle of the DC/DC buck-boost converter, achieves the maximum power tracking of the global supercapacitor, and then measures the second super through the voltage detection circuit. Capacitor voltage, charging power to the second super capacitor, and then the second super capacitor power is passed through the second electronic control switch and the buck-boost controller to enter the battery storage, most The final discharge control circuit supplies the load power. 如申請專利範圍第18項所述之再生能源之最大功率追蹤系統,包括:一再生能源:風力發電機、風光互補發電;一整流器:為風力發電機交流發電整流成直流電力;一第一超級電容:為動態平衡暫存器;一第二超級電容:為系統第二儲能器;一第一與第二電子控制開關;一升降壓控制器:為第二超級電容升降壓充電到電池;一第一與第二DC/DC升降壓轉換器:調整再生能源系統輸出電壓及電力(電流);一電壓偵測電路:偵測超級電容器與電池電壓;一微控制器:根據電壓偵測電路量測的電壓,判斷、控制與調整該DC/DC升降壓轉換器的工作週期,並控制電子開關的開啟與關閉;一放電控制電路;一電池:系統儲能器;一負載。 For example, the maximum power tracking system for renewable energy as described in claim 18 includes: a renewable energy source: wind power generator, wind and solar hybrid power generation; a rectifier: for wind power generator AC power rectification into DC power; a first super Capacitor: a dynamic balance register; a second super capacitor: a second energy storage device of the system; a first and second electronic control switch; and a buck-boost controller: charging and discharging the second super capacitor to the battery; a first and second DC/DC buck-boost converter: adjusting the output voltage and power (current) of the regenerative energy system; a voltage detecting circuit: detecting the supercapacitor and the battery voltage; and a microcontroller: according to the voltage detecting circuit Measuring the voltage, judging, controlling and adjusting the duty cycle of the DC/DC buck-boost converter, and controlling the opening and closing of the electronic switch; a discharge control circuit; a battery: a system accumulator; a load. 如申請專利範圍第18項所述之再生能源之最大功率追蹤系統,其中全域超級電容最大功率追蹤電力,經過第二電子控制開關直接經放電控制電路,供應負載電力,亦可聯合電池一起供應負載電力。 For example, the maximum power tracking system of the renewable energy source described in claim 18, wherein the global supercapacitor maximum power tracking power is directly supplied to the load power through the second electronic control switch through the discharge control circuit, and may also be supplied with the battery together with the load. electric power.
TW107101040A 2018-01-11 2018-01-11 Maximum power tracking system and method of renewable energy TWI688849B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW107101040A TWI688849B (en) 2018-01-11 2018-01-11 Maximum power tracking system and method of renewable energy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW107101040A TWI688849B (en) 2018-01-11 2018-01-11 Maximum power tracking system and method of renewable energy

Publications (2)

Publication Number Publication Date
TW201931043A true TW201931043A (en) 2019-08-01
TWI688849B TWI688849B (en) 2020-03-21

Family

ID=68315670

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107101040A TWI688849B (en) 2018-01-11 2018-01-11 Maximum power tracking system and method of renewable energy

Country Status (1)

Country Link
TW (1) TWI688849B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI766719B (en) * 2021-06-09 2022-06-01 龍華科技大學 Method to prevent maximum power error tracking
CN115508629A (en) * 2021-06-23 2022-12-23 北京金风科创风电设备有限公司 Super capacitor detection device and method, medium and computer equipment
TWI827067B (en) * 2022-05-25 2023-12-21 四季洋圃生物機電股份有限公司 Solar energy efficiency improvement system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100205229B1 (en) * 1996-05-15 1999-07-01 윤종용 Solar cell power supply
FR2832870B1 (en) * 2001-08-14 2006-08-04 Somfy IMPROVEMENT FOR PHOTOVOLTAIC TYPE CHARGER
TWI328730B (en) * 2006-06-16 2010-08-11 Ablerex Electronics Co Ltd Maximum power point tracking method and tracker thereof for a solar power system
TW200827974A (en) * 2006-12-18 2008-07-01 Ming-Hsin Sun Power tracking system of solar energy system and the method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI766719B (en) * 2021-06-09 2022-06-01 龍華科技大學 Method to prevent maximum power error tracking
CN115508629A (en) * 2021-06-23 2022-12-23 北京金风科创风电设备有限公司 Super capacitor detection device and method, medium and computer equipment
TWI827067B (en) * 2022-05-25 2023-12-21 四季洋圃生物機電股份有限公司 Solar energy efficiency improvement system

Also Published As

Publication number Publication date
TWI688849B (en) 2020-03-21

Similar Documents

Publication Publication Date Title
Ahmed et al. Power fluctuations suppression of stand-alone hybrid generation combining solar photovoltaic/wind turbine and fuel cell systems
CN100463332C (en) Maximum power tracking method of solar power system and solar power device
CN102638195B (en) A kind of solar power generation system control method
CN106505615A (en) A power supply system for electric vehicle charging station based on independent microgrid
CN102163871B (en) Multi-power supply system and method
CN203068894U (en) Photovoltaic refrigerator with maximum power point tracing
TW200827974A (en) Power tracking system of solar energy system and the method thereof
CN105896603B (en) A kind of wind-solar-storage joint electricity generation system and method
CN105186660A (en) Off-grid type wind power hydrogen production conversion system
CN203761297U (en) Multipath direct current input bidirectional energy storage current transformer
Kollimalla et al. A new control strategy for interfacing battery supercapacitor storage systems for PV system
CN201663566U (en) Wind and solar hybrid generation device with high output index
CN102118063B (en) Solar energy power storage system and method
CN103606942A (en) Mixed-liquid-flow energy-storage system with reactive compensation function
TWI688849B (en) Maximum power tracking system and method of renewable energy
CN101852182A (en) High-output-index wind-light complementing power generation device
CN201708564U (en) Off-network type wind and light-combined generating system based on optimum generated energy matching
CN201898365U (en) Energy supply system for multiple power supplies
CN205657620U (en) Complementary power supply system that stores up of portable scene
Nayar Control and interfacing of bi-directional inverters for off-grid and weak grid photovoltaic power systems
Nie et al. Direct drive wave energy converters integrated with a composite energy storage system
CN204190669U (en) A kind of wind and solar hybrid generating system
Honghai et al. Research of super capacitor energy storage system based on DG connected to power grid
CN104539223A (en) Domestic solar and wind energy power supply system
Jiancheng et al. An effective hybrid energy storage system based on battery-EDLC for distributed generation systems