TW201911607A - Light emitting device and method of manufacturing same - Google Patents
Light emitting device and method of manufacturing same Download PDFInfo
- Publication number
- TW201911607A TW201911607A TW106125634A TW106125634A TW201911607A TW 201911607 A TW201911607 A TW 201911607A TW 106125634 A TW106125634 A TW 106125634A TW 106125634 A TW106125634 A TW 106125634A TW 201911607 A TW201911607 A TW 201911607A
- Authority
- TW
- Taiwan
- Prior art keywords
- light
- wavelength conversion
- emitting device
- layer
- light emitting
- Prior art date
Links
- 238000004519 manufacturing process Methods 0.000 title description 10
- 238000006243 chemical reaction Methods 0.000 claims abstract description 136
- 239000002245 particle Substances 0.000 claims description 39
- 230000003287 optical effect Effects 0.000 claims description 14
- 239000000463 material Substances 0.000 abstract description 31
- 239000010410 layer Substances 0.000 description 173
- 239000000758 substrate Substances 0.000 description 33
- 239000000853 adhesive Substances 0.000 description 19
- 230000001070 adhesive effect Effects 0.000 description 19
- 239000012790 adhesive layer Substances 0.000 description 19
- 239000004065 semiconductor Substances 0.000 description 15
- 238000000034 method Methods 0.000 description 14
- 238000000926 separation method Methods 0.000 description 12
- 229910001128 Sn alloy Inorganic materials 0.000 description 9
- 229910052791 calcium Inorganic materials 0.000 description 8
- 239000011575 calcium Substances 0.000 description 8
- 238000002844 melting Methods 0.000 description 8
- 230000008569 process Effects 0.000 description 8
- 229920005989 resin Polymers 0.000 description 8
- 239000011347 resin Substances 0.000 description 8
- 229910052712 strontium Inorganic materials 0.000 description 8
- 229910052751 metal Inorganic materials 0.000 description 7
- 239000002184 metal Substances 0.000 description 7
- 229910052788 barium Inorganic materials 0.000 description 6
- 229920002050 silicone resin Polymers 0.000 description 6
- 239000002356 single layer Substances 0.000 description 6
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 5
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 5
- 238000000605 extraction Methods 0.000 description 5
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 5
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 4
- 229910001245 Sb alloy Inorganic materials 0.000 description 4
- -1 aliphatic siloxane Chemical class 0.000 description 4
- 230000008018 melting Effects 0.000 description 4
- 239000002140 antimony alloy Substances 0.000 description 3
- GVFOJDIFWSDNOY-UHFFFAOYSA-N antimony tin Chemical compound [Sn].[Sb] GVFOJDIFWSDNOY-UHFFFAOYSA-N 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 239000003086 colorant Substances 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 229910052594 sapphire Inorganic materials 0.000 description 3
- 239000010980 sapphire Substances 0.000 description 3
- SKJCKYVIQGBWTN-UHFFFAOYSA-N (4-hydroxyphenyl) methanesulfonate Chemical compound CS(=O)(=O)OC1=CC=C(O)C=C1 SKJCKYVIQGBWTN-UHFFFAOYSA-N 0.000 description 2
- PFNQVRZLDWYSCW-UHFFFAOYSA-N (fluoren-9-ylideneamino) n-naphthalen-1-ylcarbamate Chemical compound C12=CC=CC=C2C2=CC=CC=C2C1=NOC(=O)NC1=CC=CC2=CC=CC=C12 PFNQVRZLDWYSCW-UHFFFAOYSA-N 0.000 description 2
- WUPHOULIZUERAE-UHFFFAOYSA-N 3-(oxolan-2-yl)propanoic acid Chemical compound OC(=O)CCC1CCCO1 WUPHOULIZUERAE-UHFFFAOYSA-N 0.000 description 2
- MARUHZGHZWCEQU-UHFFFAOYSA-N 5-phenyl-2h-tetrazole Chemical compound C1=CC=CC=C1C1=NNN=N1 MARUHZGHZWCEQU-UHFFFAOYSA-N 0.000 description 2
- 229910001316 Ag alloy Inorganic materials 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- 229910052684 Cerium Inorganic materials 0.000 description 2
- 229910000881 Cu alloy Inorganic materials 0.000 description 2
- 239000005083 Zinc sulfide Substances 0.000 description 2
- PQIJHIWFHSVPMH-UHFFFAOYSA-N [Cu].[Ag].[Sn] Chemical compound [Cu].[Ag].[Sn] PQIJHIWFHSVPMH-UHFFFAOYSA-N 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 125000003118 aryl group Chemical group 0.000 description 2
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Chemical compound [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 239000007767 bonding agent Substances 0.000 description 2
- 229910052980 cadmium sulfide Inorganic materials 0.000 description 2
- ZZEMEJKDTZOXOI-UHFFFAOYSA-N digallium;selenium(2-) Chemical compound [Ga+3].[Ga+3].[Se-2].[Se-2].[Se-2] ZZEMEJKDTZOXOI-UHFFFAOYSA-N 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000003822 epoxy resin Substances 0.000 description 2
- 229910052733 gallium Inorganic materials 0.000 description 2
- 239000003292 glue Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000010030 laminating Methods 0.000 description 2
- 229910052748 manganese Inorganic materials 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 2
- 229920000647 polyepoxide Polymers 0.000 description 2
- 239000002096 quantum dot Substances 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- OCGWQDWYSQAFTO-UHFFFAOYSA-N tellanylidenelead Chemical compound [Pb]=[Te] OCGWQDWYSQAFTO-UHFFFAOYSA-N 0.000 description 2
- 238000001029 thermal curing Methods 0.000 description 2
- 229920001187 thermosetting polymer Polymers 0.000 description 2
- 229910000969 tin-silver-copper Inorganic materials 0.000 description 2
- 239000011787 zinc oxide Substances 0.000 description 2
- 229910052984 zinc sulfide Inorganic materials 0.000 description 2
- PIGFYZPCRLYGLF-UHFFFAOYSA-N Aluminum nitride Chemical compound [Al]#N PIGFYZPCRLYGLF-UHFFFAOYSA-N 0.000 description 1
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910005542 GaSb Inorganic materials 0.000 description 1
- 229910052688 Gadolinium Inorganic materials 0.000 description 1
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 description 1
- GPXJNWSHGFTCBW-UHFFFAOYSA-N Indium phosphide Chemical compound [In]#P GPXJNWSHGFTCBW-UHFFFAOYSA-N 0.000 description 1
- 229910052765 Lutetium Inorganic materials 0.000 description 1
- 229910017639 MgSi Inorganic materials 0.000 description 1
- 229910000978 Pb alloy Inorganic materials 0.000 description 1
- 229910002665 PbTe Inorganic materials 0.000 description 1
- NPAQUWKUZAIRJE-UHFFFAOYSA-N S=[Se].[Zn].[Cd] Chemical compound S=[Se].[Zn].[Cd] NPAQUWKUZAIRJE-UHFFFAOYSA-N 0.000 description 1
- 229910004283 SiO 4 Inorganic materials 0.000 description 1
- 229910052771 Terbium Inorganic materials 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- URRHWTYOQNLUKY-UHFFFAOYSA-N [AlH3].[P] Chemical compound [AlH3].[P] URRHWTYOQNLUKY-UHFFFAOYSA-N 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- MDPILPRLPQYEEN-UHFFFAOYSA-N aluminium arsenide Chemical compound [As]#[Al] MDPILPRLPQYEEN-UHFFFAOYSA-N 0.000 description 1
- MRPWWVMHWSDJEH-UHFFFAOYSA-N antimony telluride Chemical compound [SbH3+3].[SbH3+3].[TeH2-2].[TeH2-2].[TeH2-2] MRPWWVMHWSDJEH-UHFFFAOYSA-N 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- AQCDIIAORKRFCD-UHFFFAOYSA-N cadmium selenide Chemical compound [Cd]=[Se] AQCDIIAORKRFCD-UHFFFAOYSA-N 0.000 description 1
- LYQFWZFBNBDLEO-UHFFFAOYSA-M caesium bromide Chemical compound [Br-].[Cs+] LYQFWZFBNBDLEO-UHFFFAOYSA-M 0.000 description 1
- AIYUHDOJVYHVIT-UHFFFAOYSA-M caesium chloride Chemical compound [Cl-].[Cs+] AIYUHDOJVYHVIT-UHFFFAOYSA-M 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- BAIJPYVIZDTNKE-UHFFFAOYSA-K cesium lead(2+) triiodide Chemical compound [I-].[I-].[I-].[Cs+].[Pb++] BAIJPYVIZDTNKE-UHFFFAOYSA-K 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- LCUOIYYHNRBAFS-UHFFFAOYSA-N copper;sulfanylideneindium Chemical compound [Cu].[In]=S LCUOIYYHNRBAFS-UHFFFAOYSA-N 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000010494 dissociation reaction Methods 0.000 description 1
- 230000005593 dissociations Effects 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- VTGARNNDLOTBET-UHFFFAOYSA-N gallium antimonide Chemical compound [Sb]#[Ga] VTGARNNDLOTBET-UHFFFAOYSA-N 0.000 description 1
- HZXMRANICFIONG-UHFFFAOYSA-N gallium phosphide Chemical compound [Ga]#P HZXMRANICFIONG-UHFFFAOYSA-N 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- WPYVAWXEWQSOGY-UHFFFAOYSA-N indium antimonide Chemical compound [Sb]#[In] WPYVAWXEWQSOGY-UHFFFAOYSA-N 0.000 description 1
- RPQDHPTXJYYUPQ-UHFFFAOYSA-N indium arsenide Chemical compound [In]#[As] RPQDHPTXJYYUPQ-UHFFFAOYSA-N 0.000 description 1
- XCAUINMIESBTBL-UHFFFAOYSA-N lead(ii) sulfide Chemical compound [Pb]=S XCAUINMIESBTBL-UHFFFAOYSA-N 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 239000002159 nanocrystal Substances 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 238000000016 photochemical curing Methods 0.000 description 1
- 238000005424 photoluminescence Methods 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- GGYFMLJDMAMTAB-UHFFFAOYSA-N selanylidenelead Chemical compound [Pb]=[Se] GGYFMLJDMAMTAB-UHFFFAOYSA-N 0.000 description 1
- 229910000679 solder Inorganic materials 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229910052714 tellurium Inorganic materials 0.000 description 1
- PORWMNRCUJJQNO-UHFFFAOYSA-N tellurium atom Chemical compound [Te] PORWMNRCUJJQNO-UHFFFAOYSA-N 0.000 description 1
- 230000008646 thermal stress Effects 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
- NWJUKFMMXJODIL-UHFFFAOYSA-N zinc cadmium(2+) selenium(2-) Chemical compound [Zn+2].[Se-2].[Se-2].[Cd+2] NWJUKFMMXJODIL-UHFFFAOYSA-N 0.000 description 1
- DRDVZXDWVBGGMH-UHFFFAOYSA-N zinc;sulfide Chemical compound [S-2].[Zn+2] DRDVZXDWVBGGMH-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/85—Packages
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/85—Packages
- H10H20/851—Wavelength conversion means
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/85—Packages
- H10H20/855—Optical field-shaping means, e.g. lenses
- H10H20/856—Reflecting means
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/01—Manufacture or treatment
- H10H20/036—Manufacture or treatment of packages
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/01—Manufacture or treatment
- H10H20/036—Manufacture or treatment of packages
- H10H20/0361—Manufacture or treatment of packages of wavelength conversion means
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/01—Manufacture or treatment
- H10H20/036—Manufacture or treatment of packages
- H10H20/0363—Manufacture or treatment of packages of optical field-shaping means
Landscapes
- Led Device Packages (AREA)
Abstract
Description
本發明係關於一種發光裝置及其製造方法,尤關於一種包含波長轉換層以及反射圍欄之發光裝置及其製造方法。The present invention relates to a light-emitting device and a method for manufacturing the same, and more particularly, to a light-emitting device including a wavelength conversion layer and a reflection fence and a method for manufacturing the same.
發光二極體(Light-Emitting Diode;LED)具有低耗電量、低發熱量、操作壽命長、耐撞擊、體積小以及反應速度快等特性,因此廣泛應用於各種需要使用發光元件的領域,例如,車輛、家電、及照明燈具等。Light-Emitting Diode (LED) has the characteristics of low power consumption, low heat generation, long operating life, impact resistance, small size, and fast response speed, so it is widely used in various fields that require the use of light-emitting elements. For example, vehicles, home appliances, and lighting fixtures.
LED是一種單色光(monochromatic light),若要作為白光的發光裝置則需混合其他顏色的光。混合其他顏色的光有數種方式可採用,舉例來說,可於LED上覆蓋一層波長轉換層,例如螢光粉層,來達到此目的。螢光粉是一種光致發光的物質,它可以吸收LED所發出的第一光線後發出不同頻譜之第二光線。在第一光線未被完全消耗的情況下,未被消耗的第一光線與第二光線互相混合後,可形成另一種顏色的混合光,例如白光。LED is a kind of monochromatic light. If it is to be a white light emitting device, it is necessary to mix other colors of light. There are several ways to mix other colors of light. For example, a wavelength conversion layer such as a phosphor layer can be covered on the LED to achieve this purpose. Phosphor is a kind of photoluminescence substance. It can absorb the first light emitted by the LED and emit a second light with a different spectrum. When the first light is not completely consumed, the first light and the second light that are not consumed are mixed with each other to form a mixed light of another color, for example, white light.
LED白光發光裝置在不同應用對發光角度的需求也有所不同,但一般LED白光發光裝置的發光角度並不一定能符合所需的應用。LED white light emitting devices have different requirements for the light emitting angle in different applications, but the light emitting angle of general LED white light emitting devices may not necessarily meet the required application.
本發明係揭露一種發光裝置,包含一發光元件、一波長轉換層以及一反射圍欄。發光元件包含一上表面、一下表面以及位於上表面及下表面之間之一側面。波長轉換層包含波長轉換材料,且包含覆蓋第一上表面的第二上表面。反射圍欄環繞發光元件之側面,且直接接觸波長轉換層,並與第二上表面之間有一段差。其中,發光裝置之發光角度介於110度至118度之間。The invention discloses a light-emitting device including a light-emitting element, a wavelength conversion layer and a reflection fence. The light emitting element includes an upper surface, a lower surface, and a side surface between the upper surface and the lower surface. The wavelength conversion layer includes a wavelength conversion material and includes a second upper surface covering the first upper surface. The reflection fence surrounds the side of the light emitting element, and directly contacts the wavelength conversion layer, and there is a gap between the reflection fence and the second upper surface. The light emitting device has a light emitting angle between 110 degrees and 118 degrees.
本發明係揭露一種發光裝置的形成方法。形成複數個發光元件於一載板上。覆蓋一波長轉換膜於此些發光元件上。移除部分的波長轉換膜以形成複數個波長轉換層。覆蓋一反射層於此些波長轉換層之上。移除部分的反射層以形成一反射框架並露出此些波長轉換層,其中至少一個波長轉換層與反射框架之間形成一段差。分離部分的該反射框架以形成多個反射圍欄。The invention discloses a method for forming a light emitting device. A plurality of light emitting elements are formed on a carrier board. A light-emitting element is covered with a wavelength conversion film. A portion of the wavelength conversion film is removed to form a plurality of wavelength conversion layers. A reflective layer is covered over the wavelength conversion layers. A part of the reflective layer is removed to form a reflective frame and the wavelength conversion layers are exposed. At least one wavelength conversion layer forms a gap with the reflective frame. The reflecting frame is separated to form a plurality of reflecting fences.
第1A圖為根據本發明一實施例所揭露之一發光裝置100的剖面圖。發光裝置100包含一發光元件120、一波長轉換層140及一反射圍欄160。在此實施例中,發光裝置100還包含一反射層150(第一反射層)以及一導電部180。在另一實施例中,發光裝置100則不包含反射層150以及導電部180。波長轉換層140覆蓋發光元件120之部分表面。此外,反射圍欄160環繞波長轉換層140。具體而言,參閱第1B圖,反射圍欄160同時環繞發光元件120及波長轉換層140。參閱第1A圖,發光裝置100包含一頂表面102、一底表面104及多個側面106,側面106位於頂面102及底面104之間。FIG. 1A is a cross-sectional view of a light emitting device 100 according to an embodiment of the invention. The light-emitting device 100 includes a light-emitting element 120, a wavelength conversion layer 140, and a reflection fence 160. In this embodiment, the light emitting device 100 further includes a reflective layer 150 (first reflective layer) and a conductive portion 180. In another embodiment, the light emitting device 100 does not include the reflective layer 150 and the conductive portion 180. The wavelength conversion layer 140 covers a part of the surface of the light emitting element 120. In addition, a reflection fence 160 surrounds the wavelength conversion layer 140. Specifically, referring to FIG. 1B, the reflection fence 160 surrounds the light emitting element 120 and the wavelength conversion layer 140 at the same time. Referring to FIG. 1A, the light emitting device 100 includes a top surface 102, a bottom surface 104, and a plurality of side surfaces 106. The side surfaces 106 are located between the top surface 102 and the bottom surface 104.
在一實施例中,發光元件120包含一承載基板122、一發光層124以及接觸電極126。其中,發光層124之一側朝向承載基板122,另一側朝向接觸電極126。此外,發光元件120包含一上表面121、一下表面123及多個側面125,側面125位於頂面121及底面123之間。承載基板122可用以承載或支撐發光層124。此外,發光層124發出的光線可穿過承載基板122。進一步說明,承載基板122遠離發光層124的一面,也是發光元件120之上表面121,即為發光元件120之出光面。在一實施例中,承載基板122為成長基板(growth substrate),例如可以是藍寶石(sapphire)基板,作為發光層124磊晶成長時之基板。在另一實施例中,承載基板122並非成長基板,在製造發光裝置100之製程中成長基板被移除或置換為其他基板(例如,不同材料、不同結構、或不同形狀的基板)。In one embodiment, the light-emitting element 120 includes a carrier substrate 122, a light-emitting layer 124, and a contact electrode 126. One side of the light-emitting layer 124 faces the carrier substrate 122 and the other side faces the contact electrode 126. In addition, the light emitting element 120 includes an upper surface 121, a lower surface 123, and a plurality of side surfaces 125. The side surfaces 125 are located between the top surface 121 and the bottom surface 123. The carrier substrate 122 can be used to carry or support the light emitting layer 124. In addition, light emitted from the light emitting layer 124 can pass through the carrier substrate 122. Furthermore, the side of the carrier substrate 122 far from the light-emitting layer 124 is also the upper surface 121 of the light-emitting element 120, that is, the light-emitting surface of the light-emitting element 120. In one embodiment, the carrier substrate 122 is a growth substrate. For example, the carrier substrate 122 may be a sapphire substrate as a substrate when the light emitting layer 124 is epitaxially grown. In another embodiment, the carrier substrate 122 is not a growth substrate, and the growth substrate is removed or replaced with other substrates (for example, substrates of different materials, different structures, or different shapes) during the manufacturing process of the light-emitting device 100.
在一實施例中,發光層124包含第一半導體層、活化層以及第二半導體層(未顯示)。第一半導體層可為n-型半導體層,第二半導體層可為p-型半導體層。在一實施例中,接觸電極126包含兩接觸電極126a及126b位在發光元件120之同一側,作為發光元件120與外界電性連結之介面。其中,下表面123包含兩接觸電極126a及126b之表面,因此於第1A圖中,下表面123是指發光層124的部分底面以及接觸電極126a及126b之表面。接觸電極126a及126b會分別與第一半導體層及第二半導體層電連接。此外,接觸電極126a及126b可以突出於(低於)波長轉換層140的底面(如圖所示)、或與底面大約齊平(圖未示)、或僅其中之一突出底面(圖未示)。側面125包含承載基板122及發光層124之側面。側面125也可為發光元件120之出光面。在一實施例中,發光元件120有四個側面125,相對的側面125彼此大致上互相平行,亦即,由上視圖觀之,發光元件120為正方形、長方形或平行四邊形。上表面121與下表面123之一部分也大致互相平行。在一實施例中,發光元件120為覆晶式發光二極體晶粒(flip chip LED die)。In one embodiment, the light emitting layer 124 includes a first semiconductor layer, an activation layer, and a second semiconductor layer (not shown). The first semiconductor layer may be an n-type semiconductor layer, and the second semiconductor layer may be a p-type semiconductor layer. In one embodiment, the contact electrode 126 includes two contact electrodes 126a and 126b located on the same side of the light emitting element 120 as an interface for electrically connecting the light emitting element 120 to the outside. The lower surface 123 includes the surfaces of the two contact electrodes 126a and 126b. Therefore, in FIG. 1A, the lower surface 123 refers to a part of the bottom surface of the light emitting layer 124 and the surfaces of the contact electrodes 126a and 126b. The contact electrodes 126a and 126b are electrically connected to the first semiconductor layer and the second semiconductor layer, respectively. In addition, the contact electrodes 126a and 126b may protrude (below) the bottom surface of the wavelength conversion layer 140 (as shown in the figure), be approximately flush with the bottom surface (not shown), or only one of them protrudes from the bottom surface (not shown) ). The side surface 125 includes a side surface of the carrier substrate 122 and the light emitting layer 124. The side surface 125 may also be a light emitting surface of the light emitting element 120. In one embodiment, the light-emitting element 120 has four side surfaces 125, and the opposite side surfaces 125 are substantially parallel to each other, that is, the light-emitting element 120 is square, rectangular, or parallelogram as viewed from a top view. A portion of the upper surface 121 and the lower surface 123 is also substantially parallel to each other. In one embodiment, the light-emitting element 120 is a flip chip LED die.
發光元件120可為一發光二極體晶粒(LED die),例如但不限為藍光發光二極體晶粒或紫外(UV)光發光二極體晶粒。在一實施例中,發光元件120為藍光發光二極體晶粒,可經由電源提供一電力而發出第一光線,第一光線的主波長(dominant wavelength)或峰值波長(peak wavelength)介於430 nm至490 nm之間。於另一實施例中,發光元件120為紫光發光二極體晶粒,第一光線的主波長(dominant wavelength)或峰值波長(peak wavelength)介於400 nm至 430 nm之間。於另一實施例中,發光元件120為紫外光發光二極體晶粒,第一光線的峰值波長(peak wavelength)介於315 nm至 400 nm之間或是介於280 nm至 315 nm之間。The light emitting element 120 may be a light emitting diode die (LED die), such as but not limited to a blue light emitting diode die or an ultraviolet (UV) light emitting diode die. In one embodiment, the light-emitting element 120 is a blue light-emitting diode die, and can provide a first light through a power source, and the first light has a dominant wavelength or a peak wavelength of 430. nm to 490 nm. In another embodiment, the light-emitting element 120 is a violet light-emitting diode crystal grain, and the dominant wavelength or peak wavelength of the first light is between 400 nm and 430 nm. In another embodiment, the light-emitting element 120 is an ultraviolet light-emitting diode grain, and the peak wavelength of the first light is between 315 nm and 400 nm or between 280 nm and 315 nm. .
波長轉換層140可包含一黏合劑142以及多個分散於黏合劑142中的波長轉換粒子144,其中波長轉換粒子144可吸收發光元件120發出的第一光線,並將其部分或全部轉換成與第一光線波長或頻譜相異之第二光線。第二光線發出的顏色例如是綠光、黃綠光、黃光、琥珀光、橘紅光或紅光。在一實施例中,波長轉換粒子144吸收第一光線(例如,藍光或UV光)後被激發出來的第二光線為黃光,其主波長或峰值波長介於530 nm至590 nm之間。另一實施例中,波長轉換粒子144吸收第一光線(例如,藍光或UV光)後被激發出來的第二光線為綠光,其主波長或峰值波長介於515 nm至575 nm之間。其他實施例中,波長轉換粒子144吸收第一光線(例如,藍光或UV光)後被激發出來的第二光線為紅光,其主波長或峰值波長介於600 nm至660 nm之間。The wavelength conversion layer 140 may include an adhesive 142 and a plurality of wavelength conversion particles 144 dispersed in the adhesive 142, wherein the wavelength conversion particles 144 can absorb the first light emitted by the light emitting element 120 and convert part or all of the first light into The first light has a second light having a different wavelength or spectrum. The color emitted by the second light is, for example, green light, yellow-green light, yellow light, amber light, orange-red light, or red light. In one embodiment, the second light which is excited by the wavelength conversion particles 144 after absorbing the first light (for example, blue light or UV light) is yellow light, and its main wavelength or peak wavelength is between 530 nm and 590 nm. In another embodiment, the second light which is excited by the wavelength conversion particles 144 after absorbing the first light (for example, blue light or UV light) is green light, and its main wavelength or peak wavelength is between 515 nm and 575 nm. In other embodiments, the second light which is excited by the wavelength conversion particles 144 after absorbing the first light (for example, blue light or UV light) is red light, and its main wavelength or peak wavelength is between 600 nm and 660 nm.
波長轉換層140可包含單一種類或多種的波長轉換粒子144。在一實施例中,波長轉換層140包含可發出黃光之單一種類或多種的波長轉換顆粒。另一實施例中,波長轉換層140包含可發出綠光及紅光之多種波長轉換顆粒。如此,除了發出綠光的第二光線外,還包含發出紅光的第三光線,並可與未被吸收的第一光線產生一混合光。在另一實施例中,第一光線完全或幾乎完全被波長轉換層140中的波長轉換顆粒吸收。在本文中,「幾乎完全」係指混合光中位於第一光線峰值波長的光強度小於或等於在第二光線及/或第三光線峰值波長光強度的3%。波長轉換層140還可以是多層結構所組成(圖未示)。在一實施例中,波長轉換層140包含一層含有波長轉換粒子144以及另一層光擴散層(圖未示)。包含多種波長轉換顆粒之波長轉換層140可以是單層結構或多層結構。單層結構是指多種波長轉換顆粒均勻或不均勻地分布在單一層中。多層結構是指單一種類的波長轉換顆粒大體上僅分布在單一層之中,不同種類之波長轉換顆粒間具有較明顯之可區別介面。在一實施例中,波長轉換層140包含一短波長的波長轉換層,以及一長波長的波長轉換層。此處所述短波長的波長轉換層是指含有放射波峰相對較短的波長轉換顆粒,例如:波峰在510 nm至 590 nm之間。長波長的波長轉換層則是指含有放射波峰相對較長的波長轉換顆粒,例如:波峰在600 nm至 660 nm之間。在一實施例中,長波長的波長轉換層相對於短波長的波長轉換層更靠近發光元件120。The wavelength conversion layer 140 may include a single type or a plurality of wavelength conversion particles 144. In one embodiment, the wavelength conversion layer 140 includes a single type or a plurality of wavelength conversion particles that emit yellow light. In another embodiment, the wavelength conversion layer 140 includes a plurality of wavelength conversion particles that can emit green light and red light. In this way, in addition to the second light that emits green light, it also includes the third light that emits red light, and can produce a mixed light with the first light that is not absorbed. In another embodiment, the first light is completely or almost completely absorbed by the wavelength conversion particles in the wavelength conversion layer 140. In this context, "almost completely" means that the intensity of light at the peak wavelength of the first ray in the mixed light is less than or equal to 3% of the intensity of the peak wavelength of the second ray and / or the third ray. The wavelength conversion layer 140 may also be composed of a multilayer structure (not shown). In one embodiment, the wavelength conversion layer 140 includes a layer containing wavelength conversion particles 144 and another layer of light diffusion (not shown). The wavelength conversion layer 140 including a plurality of wavelength conversion particles may have a single-layer structure or a multilayer structure. The single-layer structure means that a plurality of wavelength conversion particles are uniformly or unevenly distributed in a single layer. The multilayer structure means that a single type of wavelength conversion particle is generally distributed only in a single layer, and different types of wavelength conversion particles have a more clearly distinguishable interface. In one embodiment, the wavelength conversion layer 140 includes a short wavelength wavelength conversion layer and a long wavelength wavelength conversion layer. The short-wavelength wavelength conversion layer herein refers to wavelength conversion particles containing relatively short emission peaks, for example, the peaks are between 510 nm and 590 nm. The long wavelength wavelength conversion layer refers to wavelength conversion particles containing relatively long emission peaks, for example, the peaks are between 600 nm and 660 nm. In one embodiment, the long wavelength conversion layer is closer to the light emitting element 120 than the short wavelength conversion layer.
黏合劑142可將波長轉換顆粒144分散於空間中,且可固定波長轉換粒子144彼此間的相對位置。一般而言,波長轉換粒子144的濃度(或重量百分比)越高,可將更多來自發光元件100的光線轉換成另一種光線(轉換比例越高)。但波長轉換粒子144的濃度若太高則表示黏合劑142含量太少,可能無法有效固定波長轉換粒子144。在一實施例中,波長轉換粒子144於波長轉換層140中的重量百分比在70%以下。在另一實施例中,波長轉換粒子144於波長轉換層140中的重量百分比在20%~60%。波長轉換粒子144在上述的重量百分比範圍中可得到較佳的轉換比例及散射效果,且可被有效地被固定在空間中的位置。在一實施例中,透過發光元件100發出的光線與被波長轉換粒子144轉換的另一光線混光後可產白光,發光裝置100中白光的色溫可透過發光元件100發出的光線以及波長轉換粒子144射出的另一光線的比例調整。在一實施例中,發光裝置100的色溫在1900K到6000K之間。此外,為了讓激發波長轉換粒子144的第一光線以及波長轉換粒子144發射的第二光線能有較高的出光效率,黏合劑142以具有對第一光線及第二光線有較高的穿透率者為佳,例如穿透率大於80%、90%、95%或99%。The adhesive 142 can disperse the wavelength conversion particles 144 in space, and can fix the relative positions of the wavelength conversion particles 144 to each other. In general, the higher the concentration (or weight percentage) of the wavelength conversion particles 144, the more light from the light emitting element 100 can be converted into another light (the higher the conversion ratio). However, if the concentration of the wavelength conversion particles 144 is too high, it means that the content of the adhesive 142 is too small, and the wavelength conversion particles 144 may not be effectively fixed. In one embodiment, the weight percentage of the wavelength conversion particles 144 in the wavelength conversion layer 140 is less than 70%. In another embodiment, the weight percentage of the wavelength conversion particles 144 in the wavelength conversion layer 140 is 20% to 60%. The wavelength conversion particles 144 can obtain better conversion ratio and scattering effect in the above-mentioned weight percentage range, and can be effectively fixed in position in space. In an embodiment, the light emitted through the light emitting element 100 is mixed with another light converted by the wavelength conversion particles 144 to produce white light. The color temperature of the white light in the light emitting device 100 can be transmitted through the light emitted by the light emitting element 100 and the wavelength conversion particles. Adjust the proportion of the other light emitted by 144. In one embodiment, the color temperature of the light-emitting device 100 is between 1900K and 6000K. In addition, in order for the first light that excites the wavelength-converting particles 144 and the second light emitted by the wavelength-converting particles 144 to have a high light extraction efficiency, the adhesive 142 has a higher penetration of the first light and the second light. The rate is better, for example, the transmission rate is greater than 80%, 90%, 95%, or 99%.
黏合劑142的材料可為熱固化樹脂,熱固化樹脂可為環氧樹脂或矽氧樹脂。在一實施例中,黏合劑142為矽氧樹脂,矽氧樹脂的組成可根據所需的物理性質或光學性質的需求做調整。一實施例中,黏合劑142含有脂肪族的矽氧樹脂,例如,甲基矽氧烷化合物,並具有較大的延展性,較可以承受發光元件110產生的熱應力。另一實施例中,黏合劑142含有芳香族的矽氧樹脂,例如,苯基矽氧烷化合物,相對於甲基矽氧烷化合物具有較大的折射率,可以提高發光元件110的光萃取效率。黏合劑142的折射率與發光元件120出光面之材料的折射率相差越小,出光的角度越大,光萃取(light extraction)的效率可更加提升。在一實施例中,發光元件120出光面之材料為藍寶石(sapphire) ,其折射率約為1.77,黏合劑142之材料為含有芳香族的矽樹脂,其折射率則大於1.50。The material of the adhesive 142 may be a thermosetting resin, and the thermosetting resin may be an epoxy resin or a silicone resin. In one embodiment, the adhesive 142 is a silicone resin, and the composition of the silicone resin can be adjusted according to the required physical or optical properties. In one embodiment, the adhesive 142 contains an aliphatic siloxane resin, such as a methylsiloxane compound, and has a large ductility, and can withstand the thermal stress generated by the light emitting device 110. In another embodiment, the adhesive 142 contains an aromatic silicone resin, for example, a phenylsiloxane compound, which has a larger refractive index than a methylsiloxane compound, and can improve the light extraction efficiency of the light emitting device 110. . The smaller the difference between the refractive index of the adhesive 142 and the refractive index of the material of the light emitting surface of the light-emitting element 120 is, the larger the light emitting angle is, and the efficiency of light extraction can be further improved. In one embodiment, the material of the light emitting surface of the light-emitting element 120 is sapphire, and its refractive index is about 1.77. The material of the adhesive 142 is an aromatic silicone resin, and its refractive index is greater than 1.50.
波長轉換粒子144的材料可包含無機的螢光粉(phosphor)、有機分子螢光色素(organic fluorescent colorant)、半導體材料(semiconductor)、或上述材料的組合。半導體材料包含奈米尺寸結晶體(nano crystal)的半導體材料,例如量子點(quantum-dot)發光材料。在一實施例中,波長轉換粒子144的材料為螢光粉,其可選自於由Y3 Al5 O12 :Ce、Gd3 Ga5 O12 :Ce、Lu3 Al5 O12 :Ce、(Lu、Y)3 Al5 O12 :Ce、Tb3 Al5 O12 :Ce、SrS:Eu、SrGa2 S4 :Eu、(Sr、Ca、Ba)(Al、Ga)2 S4 :Eu、(Ca、Sr)S:(Eu、Mn)、(Ca、Sr)S:Ce、(Sr、Ba、Ca)2 Si5 N8 :Eu、(Sr、Ba、Ca)(Al、Ga)Si N3 :Eu、SrLiAl3 N4 : Eu2+ 、CaAlSi ON:Eu、(Ba、Sr、Ca)2 SiO4 :Eu、(Ca、Sr、Ba)8 MgSi4 O16 (F, Cl, Br)2 :Eu、(Ca、Sr、Ba)Si2 O2 N2 :Eu、K2 SiF6 :Mn、K2 TiF6 :Mn、及K2 SnF6 :Mn 所組成之群組。半導體材料可包含II-VI族半導體化合物、III-V族半導體化合物、IV-VI族半導體化合物、或上述材料的組合。量子點發光材料可包含主要發光的核心區(core)以及包覆核心區的殼(shell),核心區的材料可選自於由硫化鋅(ZnS)、硒化鋅(ZnSe)、碲化鋅(ZnTe)、氧化鋅(ZnO)、硫化鎘(CdS)、硒化鎘(CdSe)、碲化鎘(CdTe)、氯化銫鉛(CsPbCl3 )、溴化銫鉛(CsPbBr3 )、碘化銫鉛(CsPbI3 )、氮化鎵(GaN)、磷化鎵(GaP)、硒化鎵(GaSe)、銻化鎵(GaSb)、砷化鎵(GaAs)、氮化鋁(AlN)、磷化鋁(AlP)、砷化鋁(AlAs)、磷化銦(InP)、砷化銦(InAs)、碲(Te)、硫化鉛(PbS)、銻化銦(InSb)、碲化鉛(PbTe)、硒化鉛(PbSe)、碲化銻(SbTe) 、硒化鋅鎘(ZnCdSe)、硫化鋅鎘硒(ZnCdSeS)、及硫化銅銦(CuInS)所組成之群組。The material of the wavelength conversion particles 144 may include an inorganic phosphor, an organic molecular fluorescent colorant, a semiconductor material, or a combination thereof. The semiconductor material includes a semiconductor material of a nano crystal, such as a quantum-dot light-emitting material. In one embodiment, the material of the wavelength conversion particles 144 is a phosphor, which may be selected from the group consisting of Y 3 Al 5 O 12 : Ce, Gd 3 Ga 5 O 12 : Ce, Lu 3 Al 5 O 12 : Ce, (Lu, Y) 3 Al 5 O 12 : Ce, Tb 3 Al 5 O 12 : Ce, SrS: Eu, SrGa 2 S 4 : Eu, (Sr, Ca, Ba) (Al, Ga) 2 S 4 : Eu , (Ca, Sr) S: (Eu, Mn), (Ca, Sr) S: Ce, (Sr, Ba, Ca) 2 Si 5 N 8 : Eu, (Sr, Ba, Ca) (Al, Ga) si N 3: Eu, SrLiAl 3 N 4: Eu 2+, CaAlSi ON: Eu, (Ba, Sr, Ca) 2 SiO 4: Eu, (Ca, Sr, Ba) 8 MgSi 4 O 16 (F, Cl, Br) 2 : Eu, (Ca, Sr, Ba) Si 2 O 2 N 2 : Eu, K 2 SiF 6 : Mn, K 2 TiF 6 : Mn, and K 2 SnF 6 : Mn. The semiconductor material may include a group II-VI semiconductor compound, a group III-V semiconductor compound, a group IV-VI semiconductor compound, or a combination thereof. The quantum dot light emitting material may include a core region that mainly emits light and a shell covering the core region. The material of the core region may be selected from the group consisting of zinc sulfide (ZnS), zinc selenide (ZnSe), and zinc telluride (ZnTe), zinc oxide (ZnO), cadmium sulfide (CdS), cadmium selenide (CdSe), cadmium telluride (CdTe), lead cesium chloride (CsPbCl 3 ), lead cesium bromide (CsPbBr 3 ), iodide cesium lead (CsPbI 3), gallium nitride (GaN), gallium phosphide (GaP), gallium selenide (GaSe), gallium antimonide (GaSb), gallium arsenide (GaAs), aluminum nitride (AlN), phosphorus Aluminum (AlP), aluminum arsenide (AlAs), indium phosphide (InP), indium arsenide (InAs), tellurium (Te), lead sulfide (PbS), indium antimonide (InSb), lead telluride (PbTe ), Lead selenide (PbSe), antimony telluride (SbTe), zinc cadmium selenide (ZnCdSe), zinc cadmium selenium sulfide (ZnCdSeS), and copper indium sulfide (CuInS).
波長轉換層140可覆蓋發光元件120的一或多個出光面。在一實施例中,發光元件120之出光面包含上表面121及側面125,波長轉換層140同時覆蓋發光元件120之上表面121及側面125。此外,在一實施例中,波長轉換層140與發光元件120之上表面121及數個側面125直接接觸。在另一實施例中,波長轉換層140僅覆蓋發光元件120之上表面121(未圖示)。The wavelength conversion layer 140 may cover one or more light emitting surfaces of the light emitting element 120. In one embodiment, the light emitting surface of the light emitting element 120 includes an upper surface 121 and a side surface 125, and the wavelength conversion layer 140 covers the upper surface 121 and the side surface 125 of the light emitting element 120 at the same time. In addition, in one embodiment, the wavelength conversion layer 140 is in direct contact with the upper surface 121 and the side surfaces 125 of the light emitting element 120. In another embodiment, the wavelength conversion layer 140 covers only the upper surface 121 (not shown) of the light emitting element 120.
反射圍欄160圍繞發光元件120以及波長轉換層140,如此反射圍欄160可反射發光元件120發出的第一光線以及波長轉換層140轉換的第二光線再從發光裝置100的頂表面102出光。於一實施例中,反射圍欄160環繞發光元件120的側表面125以及波長轉換層140的側表面並露出發光元件120的上表面121以及波長轉換層140的上表面141。於一實施例中,反射圍欄160與波長轉換層140之間有一段差,反射圍欄160高於波長轉換層140。如此,波長轉換層140的上表面141出光的部分光線可被反射圍欄160反射,可提高發光裝置100 與光學元件連接時的光取出率 。具體說明,參閱第2圖,發光裝置220作為一光源,發出一光線L1,並透過一光學元件240後出光L2。當所有光線L1都在角度θ1 以內,表示光線L1皆可被光學元件240所利用。換句話說,光源的etendue小於系統的etendue。若光線L1在較大的角度θ2 以內,就會有有部分光源無法被光學元件240所利用。透過本發明中反射圍欄160高出於波長轉換層140的設計,可使得更多的光線L1落入角度θ1 以內,因此可提高光取出率。參閱第1A圖,於一實施例中,反射圍欄160的頂面162高於波長轉換層140的上表面141(即段差之高度h)在5微米(μm)至100微米之間,發光裝置100的發光角度在110度至118度之間。發光角度是指相對於最大光強度一半時所對應的角度。於另一實施例中,段差h在5微米(μm)至50微米之間。當段差h小於5微米時,發光角度約在120〬。因此,段差之高度在5微米至100微米之間的發光裝置100相對於段差之高度小於5微米的發光裝置100(比較例),兩者的發光角度差異在2度至10度之間。當段差h大於100微米時,發光裝置100在搭配光學元件時(可參閱第5圖),反射圍欄160與光學元件會很接近,因此反射圍欄160會有干涉光學元件的風險。於一實施例中,段差之高度h、波長轉換層140的高度以及反射層150的厚度相加,約為發光裝置100的整體厚度H,其中,h與H的比值(h/H)在0.01至0.4之間。於另一實施例中,h與H的比值(h/H)在0.015至0.2之間。於上述h/H比值範圍內,一方面可提升反射圍欄160的反射效果,另一方面也可滿足發光裝置100內波長轉換層140所需的高度。The reflection fence 160 surrounds the light-emitting element 120 and the wavelength conversion layer 140. In this way, the reflection fence 160 can reflect the first light emitted by the light-emitting element 120 and the second light converted by the wavelength conversion layer 140 and then emit light from the top surface 102 of the light-emitting device 100. In one embodiment, the reflection fence 160 surrounds the side surface 125 of the light emitting element 120 and the side surface of the wavelength conversion layer 140 and exposes the upper surface 121 of the light emitting element 120 and the upper surface 141 of the wavelength conversion layer 140. In one embodiment, there is a gap between the reflection fence 160 and the wavelength conversion layer 140, and the reflection fence 160 is higher than the wavelength conversion layer 140. In this way, a part of the light emitted from the upper surface 141 of the wavelength conversion layer 140 can be reflected by the reflection fence 160, which can improve the light extraction rate when the light emitting device 100 is connected to the optical element. Specifically, referring to FIG. 2, the light-emitting device 220 functions as a light source, emits a light ray L1, and passes through an optical element 240 to emit light L2. When all the light rays L1 are within the angle θ 1 , it means that the light rays L1 can be used by the optical element 240. In other words, the etendue of the light source is smaller than the etendue of the system. If the light ray L1 is within a larger angle θ 2 , some light sources cannot be used by the optical element 240. Through the present invention, a high reflection fence 160 designed for the wavelength conversion layer 140, so that more light L1 can fall within the angle θ 1, the light extraction efficiency can be improved. Referring to FIG. 1A, in an embodiment, the top surface 162 of the reflection fence 160 is higher than the upper surface 141 of the wavelength conversion layer 140 (ie, the height h of the step) is between 5 micrometers (μm) and 100 micrometers. The light emitting device 100 The light emitting angle is between 110 degrees and 118 degrees. The light emission angle refers to an angle corresponding to half of the maximum light intensity. In another embodiment, the step difference h is between 5 micrometers (μm) and 50 micrometers. When the step difference h is less than 5 micrometers, the light emission angle is about 120 °. Therefore, the light emitting device 100 having a height difference between 5 μm and 100 μm is different from the light emitting device 100 having a height difference of less than 5 μm (comparative example), and the light emission angle between the two is between 2 degrees and 10 degrees. When the step difference h is greater than 100 micrometers, when the light-emitting device 100 is matched with an optical element (refer to FIG. 5), the reflection fence 160 and the optical element are very close, so the reflection fence 160 may interfere with the optical element. In one embodiment, the height h of the step difference, the height of the wavelength conversion layer 140, and the thickness of the reflective layer 150 are added to approximately the entire thickness H of the light emitting device 100, where the ratio of h to H (h / H) is 0.01. To 0.4. In another embodiment, the ratio of h to H (h / H) is between 0.015 and 0.2. Within the aforementioned h / H ratio range, on the one hand, the reflection effect of the reflection fence 160 can be improved, and on the other hand, the height required for the wavelength conversion layer 140 in the light emitting device 100 can also be satisfied.
於一實施例中,反射圍欄160中包含樹脂以及分散於樹脂內的反射粒子,例如:氧化鈦(titanium oxide)、氧化鋅、氧化鋁、硫酸鋇或碳酸鈣。於一實施例中,反射粒子為氧化鈦,氧化鈦相對於反射圍欄160的重量百分比不小於60%,於另一實施例中,氧化鈦相對於反射圍欄160的重量百分比在20%至60%之間。於一實施例中,反射圍欄160之厚度T在20微米(μm)至200微米之間。In one embodiment, the reflective fence 160 includes a resin and reflective particles dispersed in the resin, such as titanium oxide, zinc oxide, aluminum oxide, barium sulfate, or calcium carbonate. In one embodiment, the reflective particles are titanium oxide, and the weight percentage of titanium oxide relative to the reflective fence 160 is not less than 60%. In another embodiment, the weight percentage of titanium oxide relative to the reflective fence 160 is 20% to 60%. between. In one embodiment, the thickness T of the reflective fence 160 is between 20 micrometers (μm) and 200 micrometers.
反射層150形成在發光元件120、波長轉換層140以及反射圍欄160的底面。在一實施例中,反射層150直接接觸發光元件120(如圖所示)。在另一實施中,反射層150則未直接接觸發光元件120(圖未示)。反射層150形成多個通孔以露出接觸電極126a及126b。在一實施例中,反射層150可反射發光裝置100發出的光,因此發光裝置100的發光效率可以被提升。在一實施例中,反射層150包含黏合劑(圖未示)以及分散於黏合劑中之反射粒子(圖未示)。黏合劑的材料可以是矽氧樹脂或環氧樹脂。反射粒子的材料包含氧化鈦、氧化鋁或氧化鋅。此外,圍繞導電部180的反射層150也可降低導電部182、184間短路的風險。The reflection layer 150 is formed on the bottom surfaces of the light-emitting element 120, the wavelength conversion layer 140, and the reflection fence 160. In one embodiment, the reflective layer 150 directly contacts the light emitting element 120 (as shown in the figure). In another implementation, the reflective layer 150 does not directly contact the light emitting element 120 (not shown). The reflective layer 150 forms a plurality of through holes to expose the contact electrodes 126a and 126b. In one embodiment, the reflective layer 150 can reflect the light emitted by the light emitting device 100, so the light emitting efficiency of the light emitting device 100 can be improved. In one embodiment, the reflective layer 150 includes a binder (not shown) and reflective particles (not shown) dispersed in the binder. The material of the adhesive may be a silicone resin or an epoxy resin. The material of the reflective particles includes titanium oxide, aluminum oxide, or zinc oxide. In addition, the reflective layer 150 surrounding the conductive portion 180 can also reduce the risk of a short circuit between the conductive portions 182 and 184.
導電部180分別填入通孔中,並被反射層150所圍繞。導電部180可作為發光元件120之接觸電極126a及126b與電路板(圖未示)的物理及電性連結之用。導電部180與導電墊126a及126b之接合強度越高,越不容易產生脫落(peeling)的問題。導電部180之材料可使用較低熔點的導電金屬材料。在一實施例中,導電部180之材料的熔點(或液化點)的溫度以不高於280℃尤佳。在另一實施例中,導電部180之材料包含純錫或錫合金。錫合金的種類例如:錫銀合金(Sn/Ag alloy)、錫銀銅合金(Sn/Ag/Cu alloy)、錫銅合金(Sn/Cu alloy)、錫鉛合金(Sn/Pb alloy)或錫銻合金(Sn/Sb alloy)。導電部180可以是單層或多層結構。在一實施例中,導電部180為單層結構,材料為錫合金。在又一實施例中,導電部180為多層結構,靠近或直接接觸接觸電極126a及126b的金屬具有較高的熔點;遠離或未直接接觸接觸電極126a及126b的金屬具有較低的熔點。在一實施例中,高熔點的金屬為錫銻合金(第一種錫合金),低熔點的金屬為錫銀銅合金(第二種錫合金)。在另一實施例中,高熔點的金屬為銅,低熔點的金屬為錫合金(包括但不限於錫銻合金、錫銀銅合金)。The conductive portions 180 are respectively filled in the through holes and surrounded by the reflective layer 150. The conductive portion 180 can be used as a physical and electrical connection between the contact electrodes 126a and 126b of the light-emitting element 120 and a circuit board (not shown). The higher the bonding strength between the conductive portion 180 and the conductive pads 126a and 126b, the less likely it is that peeling will occur. As the material of the conductive portion 180, a conductive metal material with a lower melting point can be used. In one embodiment, the temperature of the melting point (or liquefaction point) of the material of the conductive portion 180 is preferably not higher than 280 ° C. In another embodiment, the material of the conductive portion 180 includes pure tin or a tin alloy. Types of tin alloys: Sn / Ag alloy, Sn / Ag / Cu alloy, Sn / Cu alloy, Sn / Pb alloy, or tin Antimony alloy (Sn / Sb alloy). The conductive portion 180 may have a single-layer or multi-layer structure. In one embodiment, the conductive portion 180 has a single-layer structure and a material is a tin alloy. In yet another embodiment, the conductive portion 180 has a multi-layered structure. Metals that are close to or in direct contact with the contact electrodes 126a and 126b have higher melting points; metals that are far from or that do not directly contact the contact electrodes 126a and 126b have lower melting points. In one embodiment, the high-melting metal is a tin-antimony alloy (a first tin alloy), and the low-melting metal is a tin-silver-copper alloy (a second tin alloy). In another embodiment, the high-melting metal is copper, and the low-melting metal is a tin alloy (including but not limited to tin-antimony alloy, tin-silver-copper alloy).
第3A圖第3F圖及第3H圖至第3K圖係顯示依據本發明一實施例之發光裝置的製造流程圖。參照第3A圖,提供一暫時性基板312、一黏膠層314形成在暫時性基板312之上、以及發光元件120a、120b、120c位於黏膠層314上,其中,發光元件的數量在此僅為例示,並不限於三個,可多於或少於三個。在一實施例中,暫時性基板312為玻璃、藍寶石基板、金屬或塑膠材料,可做為支撐之用。 黏膠層314可作為發光元件120a、120b、120c暫時的固定之用。在一實施例中,黏膠層314為一熱固化膠(thermal curing adhesive), 於此步驟,黏膠層314尚未被完全固化而仍具有黏性。在另一實施例中,黏膠層314可為光固化膠(photo curing adhesive)。FIG. 3A, FIG. 3F, and FIG. 3H to FIG. 3K are flowcharts of manufacturing a light emitting device according to an embodiment of the present invention. Referring to FIG. 3A, a temporary substrate 312, an adhesive layer 314 is formed on the temporary substrate 312, and light emitting elements 120a, 120b, and 120c are located on the adhesive layer 314. The number of light emitting elements is only here. As an example, it is not limited to three, and may be more or less than three. In one embodiment, the temporary substrate 312 is a glass, sapphire substrate, metal or plastic material, which can be used as a support. The adhesive layer 314 can be used for temporary fixing of the light-emitting elements 120a, 120b, and 120c. In one embodiment, the adhesive layer 314 is a thermal curing adhesive. At this step, the adhesive layer 314 is not completely cured but still has adhesiveness. In another embodiment, the adhesive layer 314 may be a photo curing adhesive.
參照第3B圖,將一波長轉換膜140’形成於黏膠層314上,並同時覆蓋發光元件120a、120b、120c。波長轉換膜140’是將多個波長轉換顆粒與黏合劑混合後,形成於發光元件120a、120b、120c以及暫時性基板312上。形成方式包含:直接塗佈、模具成型方式或預先形成片狀結構。直接塗佈的方式可以是點膠或噴塗。片狀結構的尺寸可依照需求進行調整,例如,片狀結構包含數個彼此分離的波長轉換片,此數個彼此分離的波長轉換片可以批次或依序覆蓋數個發光元件,亦即一個波長轉換膜140’僅覆蓋一個或部分的發光元件(例如,暫時性基板312上發光元件總數的1/50、1/100、或1/200以下)。又例如,片狀結構是一捲帶(tape),可以連續且一次性地覆蓋數個發光元件,亦即一個波長轉換片同時覆蓋暫時性基板上的多數個或所有發光元件(例如,暫時性基板上發光元件總數的1/50、1/100、1/200以上)。Referring to FIG. 3B, a wavelength conversion film 140 'is formed on the adhesive layer 314 and covers the light emitting elements 120a, 120b, and 120c at the same time. The wavelength conversion film 140 'is formed on the light emitting elements 120a, 120b, 120c and the temporary substrate 312 after mixing a plurality of wavelength conversion particles with an adhesive. Forming methods include: direct coating, mold forming, or pre-formed sheet structures. Direct coating can be by dispensing or spraying. The size of the sheet structure can be adjusted according to requirements. For example, the sheet structure includes several wavelength conversion sheets separated from each other. The several wavelength conversion sheets separated from each other can cover several light emitting elements in batches or sequentially, that is, one The wavelength conversion film 140 'covers only one or a part of the light emitting elements (for example, 1/50, 1/100, or 1/200 or less of the total number of light emitting elements on the temporary substrate 312). As another example, the sheet structure is a tape, which can cover several light emitting elements continuously and at once, that is, a wavelength conversion sheet covers most or all light emitting elements on a temporary substrate at the same time (for example, temporarily 1/50, 1/100, 1/200 or more of the total number of light emitting elements on the substrate).
參照第3C圖,透過分離的製程,將波長轉換膜140’分割成多個波長轉換層140a、140b、140c。此分離的製程可以為第一次分離。在分離的製程之前,可先固化波長轉換膜140’。在一實施例中,以加熱方式固化波長轉換膜140’ 。在另一實施例中,可使用其他型態的能量固化波長轉換膜140’ ,例如:輻射。分離的製程包含以切割工具331切割波長轉換膜140’以及部分或全部的黏膠層314並形成切割道 。Referring to FIG. 3C, the wavelength conversion film 140 'is divided into a plurality of wavelength conversion layers 140a, 140b, and 140c through a separate process. This separation process can be the first separation. Prior to the separation process, the wavelength conversion film 140 'may be cured. In one embodiment, the wavelength conversion film 140 'is cured by heating. In another embodiment, other types of energy can be used to cure the wavelength conversion film 140 ', such as radiation. The separate process includes cutting the wavelength conversion film 140 'and a part or all of the adhesive layer 314 with a cutting tool 331 to form a cutting track.
參照第3D圖,形成一反射層160’(第二反射層)於多個波長轉換層140a、140b、140c以及暫時性基板312之上。在一實施例中,反射層160’會包覆波長轉換層140a、140b、140c之所有的上表面及側壁。此外,反射層160’與黏膠層314的表面直接接觸。反射層160’形成方式可透過貼合(laminating)或模具成形法(molding)。在一實施例中,反射粒子已預先與接合劑混合後預成形為一片狀結構,將此片狀結構加熱且施加壓力使得反射層160’包覆波長轉換層140a、140b、140c的上表面以及填入發光元件120a、120b、120c之間的凹陷處或切割道。此階段的反射層160’尚屬於半固化的狀態,或是稱作B階段(B-stage)的膠材。在一實施例中,可透過加熱方式固化反射層160’。加熱後的反射層160’轉變為完全固化的的狀態,或是稱作C階段(C-stage)的反射層160’。在其他實施例中,反射層160’的形成方式包含塗佈或貼合一膜材。在一實施例中,反射粒子與接合劑混合後可直接塗佈至波長轉換層140a、140b、140c之上形成反射層160’ 。在另一實施例中,可以使用其他型態的能量固化反射層160’,例如:UV光。Referring to FIG. 3D, a reflective layer 160 '(second reflective layer) is formed on the plurality of wavelength conversion layers 140a, 140b, 140c and the temporary substrate 312. In one embodiment, the reflective layer 160 'covers all the upper surfaces and sidewalls of the wavelength conversion layers 140a, 140b, 140c. In addition, the reflective layer 160 'is in direct contact with the surface of the adhesive layer 314. The reflective layer 160 'can be formed by laminating or molding. In one embodiment, the reflective particles have been pre-formed into a sheet structure after being mixed with the bonding agent in advance. The sheet structure is heated and pressure is applied so that the reflective layer 160 'covers the upper surfaces of the wavelength conversion layers 140a, 140b, and 140c. And filling in the recesses or cutting lines between the light emitting elements 120a, 120b, 120c. The reflective layer 160 'at this stage is still in a semi-cured state, or is called a B-stage adhesive. In one embodiment, the reflective layer 160 'can be cured by heating. The heated reflective layer 160 'is converted to a fully cured state, or is called a C-stage reflective layer 160'. In other embodiments, the reflective layer 160 'is formed by coating or laminating a film material. In one embodiment, the reflective particles and the bonding agent are mixed and then directly coated on the wavelength conversion layers 140a, 140b, 140c to form a reflective layer 160 '. In another embodiment, other types of energy can be used to cure the reflective layer 160 ', such as UV light.
參照第3E圖及第3F圖,移除波長轉換層140a、140b、140c上方之部分反射層160’以形成反射框架160’’。波長轉換層140a、140b、140c會從反射層160’中露出,且反射框架160’’與波長轉換層140a、140b、140c會產生段差的結構。在一實施例中,參照第1A圖,段差h介於5微米(μm)至50微米之間。在一實施例中,移除反射層160’的方式是透過一滾輪370,將波長轉換層140a、140b、140c上表面上以及其周遭之部分反射層160’黏附到滾輪370上。具體而言,由於反射層160’與波長轉換層140a、140b、140c的接著力小於反射層160’本身的斷裂強度,且反射層160’本身的斷裂強度小於滾輪370對反射層160’的黏著力。因此,透過一框架390定義反射框架160’’所需高度,框架390之高度會略高於波長轉換層140a、140b、140c之高度,當滾輪370滾過反射層160’時會帶走波長轉換層140a、140b、140c上表面上之部分反射層160’,因此反射框架160’’與波長轉換層140a、140b、140c之間會產生段差的結構。Referring to FIGS. 3E and 3F, a part of the reflective layer 160 'above the wavelength conversion layers 140a, 140b, and 140c is removed to form a reflective frame 160' '. The wavelength conversion layers 140a, 140b, and 140c are exposed from the reflection layer 160 ', and the reflection frame 160' 'and the wavelength conversion layers 140a, 140b, and 140c have a stepped structure. In an embodiment, referring to FIG. 1A, the step difference h is between 5 micrometers (μm) and 50 micrometers. In one embodiment, the reflection layer 160 'is removed by adhering a part of the reflection layer 160' on the upper surface of the wavelength conversion layers 140a, 140b, 140c and the surroundings to the roller 370 through a roller 370. Specifically, since the adhesive force of the reflective layer 160 'and the wavelength conversion layers 140a, 140b, and 140c is smaller than the breaking strength of the reflective layer 160' itself, and the breaking strength of the reflective layer 160 'itself is less than the adhesion of the roller 370 to the reflective layer 160' force. Therefore, a frame 390 is used to define the required height of the reflection frame 160 ". The height of the frame 390 will be slightly higher than the height of the wavelength conversion layers 140a, 140b, 140c. When the roller 370 rolls over the reflection layer 160 ', the wavelength conversion will be taken away. Part of the reflective layer 160 'on the upper surface of the layers 140a, 140b, 140c, so a stepped structure will be generated between the reflective frame 160 "and the wavelength conversion layers 140a, 140b, 140c.
參照第3H圖,移除暫時性基板312以及黏膠層314,並於移除暫時性基板312以及黏膠層314之前先轉移到另一暫時基板352及另一黏膠層354。暫時基板352與暫時性基板312的材質可以相同或相似。黏膠層354與黏膠層314的材質也可以相同或相似,例如熱解離膠或熱固化膠。Referring to FIG. 3H, the temporary substrate 312 and the adhesive layer 314 are removed, and transferred to another temporary substrate 352 and another adhesive layer 354 before the temporary substrate 312 and the adhesive layer 314 are removed. The materials of the temporary substrate 352 and the temporary substrate 312 may be the same or similar. The materials of the adhesive layer 354 and the adhesive layer 314 may also be the same or similar, such as a thermal dissociation glue or a thermal curing glue.
參照第3I圖,形成多個導電部180a、180b、180c分別對應接觸電極126a、126b、126c之上。在一實施例中,導電部180a、180b、180c的材料為焊料,可以透過回焊(reflow)方式形成在接觸電極126a、126b、126c上。在一實施例中,回焊溫度在160℃至260℃之間。Referring to FIG. 3I, a plurality of conductive portions 180a, 180b, and 180c are formed on the contact electrodes 126a, 126b, and 126c, respectively. In one embodiment, the material of the conductive portions 180a, 180b, and 180c is solder, and can be formed on the contact electrodes 126a, 126b, and 126c by reflow. In one embodiment, the reflow temperature is between 160 ° C and 260 ° C.
參照第3J圖,形成反射層150’及150’’(第一反射層)於發光層124之表面(圖中為上表面)與反射框架160’’之表面(圖中為上表面)以及覆蓋接觸電極126a、126b、126c及導電部180a、180b、180c。之後,移除反射層150’’以露出導電部180a、180b、180c。Referring to FIG. 3J, reflective layers 150 'and 150' '(first reflective layers) are formed on the surface of the light-emitting layer 124 (the upper surface in the figure) and the surface of the reflective frame 160' '(the upper surface in the figure) and covering The contact electrodes 126a, 126b, and 126c and the conductive portions 180a, 180b, and 180c. After that, the reflective layer 150 '' is removed to expose the conductive portions 180a, 180b, 180c.
參照第3K圖,透過分離製程,將反射框架160’’分割成多個反射圍欄160a、160b、160c以及將反射層150’ 分割成多個反射層150。此分離的製程可以為第二次分離。分離的製程包含以切割工具333切割反射框架160’’ 、反射層150’以及部分或全部的黏膠層354並形成切割道 。於此步驟後可形成發光裝置100a、100b、100c。Referring to FIG. 3K, the reflection frame 160 '' is divided into a plurality of reflection fences 160a, 160b, 160c and the reflection layer 150 'is divided into a plurality of reflection layers 150 through a separation process. This separation process can be a second separation. The separate process includes cutting the reflective frame 160 '', the reflective layer 150 ', and some or all of the adhesive layer 354 with a cutting tool 333 to form a cutting track. After this step, light emitting devices 100a, 100b, and 100c can be formed.
第3A圖至第3G圖係顯示依據本發明一另實施例之發光裝置的製造流程圖。與上述實施例不同之處在於本實施例並無反射層150以及導電部180a、180b、180c。FIG. 3A to FIG. 3G are flowcharts of manufacturing a light emitting device according to another embodiment of the present invention. The difference from the above embodiment is that the embodiment does not include the reflective layer 150 and the conductive portions 180a, 180b, and 180c.
在移除波長轉換層140a、140b、140c上表面之部分反射層160’以形成反射框架160’’ (第3E圖及第3F圖)之後,參照第3G圖,透過分離的製程,將反射框架160’’分割成多個反射圍欄160a、160b、160c。此分離的製程可以為第二次分離。分離的製程包含以切割工具332切割反射框架160’’以及部分或全部的黏膠層314並形成切割道 。After removing a part of the reflective layer 160 'on the upper surface of the wavelength conversion layers 140a, 140b, and 140c to form a reflective frame 160' '(FIGS. 3E and 3F), referring to FIG. 3G, the reflective frame is separated through a separate process. 160 "is divided into multiple reflective fences 160a, 160b, 160c. This separation process can be a second separation. The separate process includes cutting the reflective frame 160 '' and a part or all of the adhesive layer 314 with a cutting tool 332 to form a cutting track.
第3A圖至第3B圖以及第4A圖至第4F圖係顯示依據本發明另一實施例之發光裝置的製造流程圖。將一波長轉換層140’形成於黏膠層314上,並同時覆蓋發光元件120a、120b、120c(第3B圖)之後。在一實施例中,參照第4A圖,覆蓋一暫時層430’於波長轉換層140’之上。暫時層430’的目的之一是為了後續形成反射框架160’’與波長轉換層140a、140b、140c間的段差。暫時層430’的材料可以是光固化樹脂或熱固化樹脂。在一實施例中,暫時層430’是光固化樹脂所形成的膜層,透過照射特定波長的光線後所形成,例如:紫外光。FIG. 3A to FIG. 3B and FIGS. 4A to 4F are flowcharts of manufacturing a light emitting device according to another embodiment of the present invention. A wavelength conversion layer 140 'is formed on the adhesive layer 314 and simultaneously covers the light emitting elements 120a, 120b, and 120c (FIG. 3B). In an embodiment, referring to FIG. 4A, a temporary layer 430 'is covered on the wavelength conversion layer 140'. One of the purposes of the temporary layer 430 'is to form a step between the reflection frame 160' 'and the wavelength conversion layers 140a, 140b, and 140c in the subsequent steps. The material of the temporary layer 430 'may be a photo-curable resin or a thermo-curable resin. In one embodiment, the temporary layer 430 'is a film layer formed of a photo-curable resin, and is formed after being irradiated with light having a specific wavelength, such as ultraviolet light.
參照第4B圖,透過分離的製程,將波長轉換層140’分割成多個波長轉換層140a、140b、140c,並將暫時層430’ 分割成多個暫時層430a、430b、430c。此分離的製程可以為第一次分離。多個暫時層430a、430b、430c各自對應於多個波長轉換層140a、140b、140c之上。Referring to FIG. 4B, the wavelength conversion layer 140 'is divided into a plurality of wavelength conversion layers 140a, 140b, and 140c through a separate process, and the temporary layer 430' is divided into a plurality of temporary layers 430a, 430b, and 430c. This separation process can be the first separation. The plurality of temporary layers 430a, 430b, and 430c each correspond to the plurality of wavelength conversion layers 140a, 140b, and 140c.
參照第4C圖,形成一反射層460’(第一反射層)於多個波長轉換層(140a、140b、140c)、多個暫時層(430a、430b、430c)以及暫時性基板312及黏膠層314之上。反射層460’的作用及形成的方法可參閱第3D圖及相關的段落。Referring to FIG. 4C, a reflective layer 460 '(first reflective layer) is formed on a plurality of wavelength conversion layers (140a, 140b, 140c), a plurality of temporary layers (430a, 430b, 430c), and a temporary substrate 312 and adhesive Above layer 314. For the function and method of forming the reflective layer 460 ', please refer to FIG. 3D and related paragraphs.
參照第4D圖,移除暫時層430a、430b、430c上部分反射層460’以形成反射框架460’’。在一實施例中,反射框架460’’的上表面可以透過機械式的磨平、濕式去膠法或兩者的組合,讓反射框架460’’的上表面與暫時層430a、430b、430c的。Referring to FIG. 4D, a part of the reflective layer 460 'on the temporary layers 430a, 430b, and 430c is removed to form a reflective frame 460' '. In an embodiment, the upper surface of the reflective frame 460 "may be mechanically ground, wet-bonded, or a combination of the two, so that the upper surface of the reflective frame 460" and the temporary layers 430a, 430b, 430c of.
參照第4E圖,移除暫時層430a、430b、430c以露出波長轉換層140a、140b、140c。此步驟可形成波長轉換層140a、140b、140c與反射框架460’’之間的段差結構。Referring to FIG. 4E, the temporary layers 430a, 430b, and 430c are removed to expose the wavelength conversion layers 140a, 140b, and 140c. This step can form a step structure between the wavelength conversion layers 140a, 140b, 140c and the reflection frame 460 ''.
參照第4F圖,透過分離的製程,將反射框架460’’分割成多個反射圍欄460a、460b、460c。此分離的製程可以為第二次分離。分離的製程包含以切割工具切割反射框架460’’以及部分或全部的黏膠層354並形成切割道 。於此步驟後可形成發光裝置400a、400b、400c。Referring to FIG. 4F, the reflection frame 460 '' is divided into a plurality of reflection fences 460a, 460b, and 460c through a separate process. This separation process can be a second separation. The separate process includes cutting the reflective frame 460 '' and a part or all of the adhesive layer 354 with a cutting tool to form a cutting track. After this step, the light emitting devices 400a, 400b, and 400c can be formed.
第5圖係顯示依據本發明一實施例之發光模組500。發光模組500包含第一發光裝置520a、第二發光裝置520b、一承載板540以及一光學元件560。第一發光裝置520a以及第二發光裝置520b分別形成在承載板540上,此外,光學元件560覆蓋第一發光裝置520a以及第二發光裝置520b。在一實施例中,第一發光裝置520a包含第一發光元件522a、第一波長轉換層524a以及第一反射圍欄526a。第二發光裝置520b包含第二發光元件522b、第二波長轉換層524b以及第二反射圍欄526a。在此實施例中,第一發光裝置520a與第二發光裝置520b可以發出不同色溫的光線。在一實施例中,透過第一波長轉換層524a與第二波長轉換層524b分別具有不同波長轉換層,因此第一發光裝置520a與第二發光裝置520b色溫的不同。不同波長轉換層可指不同的波長轉換材料、相同的波長轉換材料但濃度不同或相同的波長轉換材料但配比不同。在一實施例中,第一發光裝置520a的色溫在1800K至3000K之間,而第二發光裝置520b的色溫在4000K至7000K之間。在一實施例中,第一發光裝置520a以及第二發光裝置520b的色溫差大於2000K以上,如此發光模組500可更明顯的發出兩種不同色溫的光線。發光模組500可應用於電子產品中的閃光燈上,透過不同色溫的光源設計,在不同環境可提供更細緻的白平衡處理,因此可更貼近真實的影像。FIG. 5 shows a light emitting module 500 according to an embodiment of the present invention. The light-emitting module 500 includes a first light-emitting device 520a, a second light-emitting device 520b, a carrying plate 540, and an optical element 560. The first light emitting device 520a and the second light emitting device 520b are formed on the carrier plate 540, respectively, and the optical element 560 covers the first light emitting device 520a and the second light emitting device 520b. In one embodiment, the first light emitting device 520a includes a first light emitting element 522a, a first wavelength conversion layer 524a, and a first reflection fence 526a. The second light emitting device 520b includes a second light emitting element 522b, a second wavelength conversion layer 524b, and a second reflection fence 526a. In this embodiment, the first light emitting device 520a and the second light emitting device 520b can emit light with different color temperatures. In one embodiment, the first wavelength conversion layer 524a and the second wavelength conversion layer 524b have different wavelength conversion layers, so the color temperatures of the first light emitting device 520a and the second light emitting device 520b are different. Different wavelength conversion layers may refer to different wavelength conversion materials, the same wavelength conversion material but different concentrations or the same wavelength conversion material but different ratios. In one embodiment, the color temperature of the first light emitting device 520a is between 1800K and 3000K, and the color temperature of the second light emitting device 520b is between 4000K and 7000K. In one embodiment, the color temperature difference between the first light-emitting device 520a and the second light-emitting device 520b is greater than 2000K, so that the light-emitting module 500 can emit light with two different color temperatures. The light emitting module 500 can be applied to the flash in electronic products. Through the design of light sources with different color temperatures, it can provide more detailed white balance processing in different environments, so it can be closer to the real image.
在一實施例中,承載板540為一電路板,具有電路層542a及542b分別與第一發光裝置520a以及第二發光裝置520b電性連接。在一實施例中,光學元件560為一菲涅耳透鏡(Fresnel lens)。菲涅耳透鏡中具有兩組的同心圓紋路各自面對第一發光裝置520a以及第二發光裝置520b。如此,第一發光裝置520a以及第二發光裝置520b透過菲涅耳透鏡可以近似或等同平行光方式發光。In one embodiment, the carrier board 540 is a circuit board and has circuit layers 542a and 542b electrically connected to the first light emitting device 520a and the second light emitting device 520b, respectively. In one embodiment, the optical element 560 is a Fresnel lens. The Fresnel lens has two sets of concentric circular lines that face the first light emitting device 520a and the second light emitting device 520b, respectively. In this way, the first light-emitting device 520a and the second light-emitting device 520b can emit light through a Fresnel lens in an approximately or equivalent parallel light manner.
第6A圖及第6B圖分別係顯示本發明另一實施例之一種發光裝置600的剖面圖及上視圖。發光裝置600包含一發光元件620、一波長轉換層640、一反射圍欄660、一反射層650以及一導電部680。與第1圖的不同之處,反射圍欄660具有斜面。在一實施例中,斜面是位於反射圍欄660的內表面,即面對發光元件620的表面。具體而言,反射圍欄660的內表面、一波長轉換層640的上表面、發光元件620的底面以及反射層650的頂面可圍成一個倒梯形的結構。反射圍欄660具有斜面的發光裝置600,可改變發光裝置600內光線的行進方向進而縮小發光角度。發光元件620、波長轉換層640、反射圍欄660、反射層650以及導電部680的具體結構、作用及形成的方法可以參考第1圖及相應之段落。6A and 6B are a cross-sectional view and a top view, respectively, of a light-emitting device 600 according to another embodiment of the present invention. The light emitting device 600 includes a light emitting element 620, a wavelength conversion layer 640, a reflection fence 660, a reflection layer 650, and a conductive portion 680. The difference from FIG. 1 is that the reflection fence 660 has an inclined surface. In one embodiment, the inclined surface is located on the inner surface of the reflective fence 660, that is, the surface facing the light emitting element 620. Specifically, the inner surface of the reflection fence 660, the upper surface of a wavelength conversion layer 640, the bottom surface of the light-emitting element 620, and the top surface of the reflection layer 650 may form an inverted trapezoidal structure. The reflection fence 660 has a light emitting device 600 with an inclined surface, which can change the traveling direction of the light in the light emitting device 600 and reduce the light emitting angle. For specific structures, functions, and formation methods of the light emitting element 620, the wavelength conversion layer 640, the reflection fence 660, the reflection layer 650, and the conductive portion 680, reference may be made to FIG. 1 and corresponding paragraphs.
以上所述之實施例僅係為說明本發明之技術思想及特點,其目的在使熟習此項技藝之人士能夠瞭解本發明之內容並據以實施,當不能以之限定本發明之專利範圍,即大凡依本發明所揭示之精神所作之均等變化或修飾,仍應涵蓋在本發明之專利範圍內。The above-mentioned embodiments are only for explaining the technical ideas and characteristics of the present invention. The purpose is to enable those skilled in the art to understand the contents of the present invention and implement them accordingly. When the scope of the patent of the present invention cannot be limited, That is, any equivalent changes or modifications made in accordance with the spirit disclosed in the present invention should still be covered by the patent scope of the present invention.
100、100a、100b、100c、220、520a、520b、600‧‧‧發光裝置100, 100a, 100b, 100c, 220, 520a, 520b, 600‧‧‧ light-emitting devices
102‧‧‧頂表面102‧‧‧Top surface
104‧‧‧底表面104‧‧‧ bottom surface
106‧‧‧側面106‧‧‧ side
120、120a、120b、120c、522a、522b、620‧‧‧發光元件120, 120a, 120b, 120c, 522a, 522b, 620‧‧‧ light-emitting elements
121‧‧‧上表面121‧‧‧ Top surface
122‧‧‧承載基板122‧‧‧ Carrier substrate
123‧‧‧下表面123‧‧‧ lower surface
124‧‧‧發光層124‧‧‧Light-emitting layer
125‧‧‧側面125‧‧‧ side
126、126a、126b、126c‧‧‧接觸電極126, 126a, 126b, 126c ‧‧‧ contact electrode
140、140a、140b、140c、524a、524b、640‧‧‧波長轉換層140, 140a, 140b, 140c, 524a, 524b, 640‧‧‧ wavelength conversion layer
140’‧‧‧波長轉換膜140’‧‧‧wavelength conversion film
141‧‧‧上表面141‧‧‧upper surface
142‧‧‧黏合劑142‧‧‧Adhesive
144‧‧‧波長轉換粒子144‧‧‧wavelength conversion particle
150、160’、460’、526a、526b、650‧‧‧反射層150, 160 ’, 460’, 526a, 526b, 650‧‧‧ reflective layer
160、160a、160b、160c、460a、460b、460c、526a、526b、660‧‧‧反射圍欄160, 160a, 160b, 160c, 460a, 460b, 460c, 526a, 526b, 660‧‧‧ reflection fence
160’’、460’’‧‧‧反射框架160 ’’, 460 ’’ ‧‧‧ reflection frame
162‧‧‧頂面162‧‧‧Top
180、180a、180b、180c、182、184、680‧‧‧導電部180, 180a, 180b, 180c, 182, 184, 680‧‧‧ conductive section
240、560‧‧‧光學元件240, 560‧‧‧optical components
312、352‧‧‧暫時性基板312, 352‧‧‧Temporary substrate
314、354‧‧‧黏膠層314, 354‧‧‧ adhesive layer
331、332、332、534‧‧‧切割工具331, 332, 332, 534‧‧‧ cutting tools
370‧‧‧滾輪370‧‧‧roller
390‧‧‧框架390‧‧‧Frame
430’、430a、430b、430c‧‧‧暫時層430 ’, 430a, 430b, 430c‧‧‧Temporary layers
500‧‧‧發光模組500‧‧‧light emitting module
540‧‧‧載板540‧‧‧ carrier board
542a、542b‧‧‧電路層542a, 542b‧‧‧Circuit layer
h‧‧‧段差高度h‧‧‧step difference height
H‧‧‧整體厚度H‧‧‧Overall thickness
T‧‧‧厚度T‧‧‧thickness
第1A圖係顯示本發明一實施例之一種發光裝置的剖面圖。FIG. 1A is a cross-sectional view showing a light emitting device according to an embodiment of the present invention.
第1B圖係顯示第1A圖中發光裝置的上視圖。FIG. 1B is a top view of the light emitting device in FIG. 1A.
第2圖係顯示依據本發明一實施例之發光裝置的發光角度。FIG. 2 shows a light emitting angle of a light emitting device according to an embodiment of the present invention.
第3A圖至第3F圖及第3H圖至第3K圖係顯示依據本發明一實施例之發光裝置的製造流程圖。FIG. 3A to FIG. 3F and FIG. 3H to FIG. 3K are flowcharts of manufacturing a light emitting device according to an embodiment of the present invention.
第3A圖至第3G圖係顯示依據本發明一另實施例之發光裝置的製造流程圖。FIG. 3A to FIG. 3G are flowcharts of manufacturing a light emitting device according to another embodiment of the present invention.
第3A圖至第3B圖及第4A圖至第4F圖係顯示依據本發明另一實施例之發光裝置的製造流程圖。FIG. 3A to FIG. 3B and FIGS. 4A to 4F are flowcharts of manufacturing a light emitting device according to another embodiment of the present invention.
第5圖係顯示依據本發明一實施例之發光模組。FIG. 5 shows a light emitting module according to an embodiment of the present invention.
第6A圖係顯示本發明另一實施例之一種發光裝置的剖面圖。FIG. 6A is a cross-sectional view showing a light emitting device according to another embodiment of the present invention.
第6B圖係顯示第6A圖中發光裝置的上視圖。Fig. 6B is a top view showing the light emitting device in Fig. 6A.
無no
無no
Claims (10)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW106125634A TWI757315B (en) | 2017-07-28 | 2017-07-28 | Light-emitting device and manufacturing method thereof |
CN201810228417.1A CN109309153B (en) | 2017-07-28 | 2018-03-20 | Light-emitting device and method of manufacturing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW106125634A TWI757315B (en) | 2017-07-28 | 2017-07-28 | Light-emitting device and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201911607A true TW201911607A (en) | 2019-03-16 |
TWI757315B TWI757315B (en) | 2022-03-11 |
Family
ID=65225847
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW106125634A TWI757315B (en) | 2017-07-28 | 2017-07-28 | Light-emitting device and manufacturing method thereof |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN109309153B (en) |
TW (1) | TWI757315B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI742720B (en) * | 2020-06-12 | 2021-10-11 | 友達光電股份有限公司 | Display apparatus and manufacturing method thereof |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7244771B2 (en) * | 2020-04-02 | 2023-03-23 | 日亜化学工業株式会社 | Manufacturing method of planar light source |
CN112993133B (en) * | 2020-10-22 | 2022-07-22 | 重庆康佳光电技术研究院有限公司 | Display device and manufacturing method thereof |
CN114005913B (en) * | 2021-10-22 | 2023-08-04 | 义乌清越光电技术研究院有限公司 | a light-emitting structure |
CN115188875B (en) * | 2022-09-13 | 2023-07-04 | 泉州三安半导体科技有限公司 | Light-emitting device and light-emitting element |
Family Cites Families (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3910171B2 (en) * | 2003-02-18 | 2007-04-25 | シャープ株式会社 | Semiconductor light emitting device, method for manufacturing the same, and electronic imaging device |
KR100691143B1 (en) * | 2003-04-30 | 2007-03-09 | 삼성전기주식회사 | Light Emitting Diode with Multilayer Fluorescent Layer |
EP3264542B1 (en) * | 2006-03-10 | 2019-06-05 | Nichia Corporation | Light-emitting device |
CN101740688B (en) * | 2007-03-22 | 2012-06-13 | 沈育浓 | Light source package |
CN101271884B (en) * | 2007-03-22 | 2011-04-20 | 沈育浓 | Light source package |
CN201663179U (en) * | 2010-02-23 | 2010-12-01 | 必奇股份有限公司 | LED seat structure without bending feet |
JP5566785B2 (en) * | 2010-06-22 | 2014-08-06 | 日東電工株式会社 | Composite sheet |
US9082946B2 (en) * | 2011-03-07 | 2015-07-14 | Koninklijke Philips N.V. | Light emitting module, a lamp, a luminaire and a display device |
CN103227168A (en) * | 2012-01-31 | 2013-07-31 | 台宙晶体科技股份有限公司 | Chip direct packaging architecture compatible with different wavelength LEDs |
EP2637224B1 (en) * | 2012-03-09 | 2019-04-03 | Panasonic Intellectual Property Management Co., Ltd. | Light emitting device, illumination apparatus and system using same |
CN102800794A (en) * | 2012-08-17 | 2012-11-28 | 南通脉锐光电科技有限公司 | Optical wavelength conversion device and application thereof in white light emitting device |
TWM450829U (en) * | 2012-10-16 | 2013-04-11 | Helio Optoelectronics Corp | LED package body structure with Fresnel lens |
KR102146595B1 (en) * | 2013-01-10 | 2020-08-31 | 루미리즈 홀딩 비.브이. | Led with shaped growth substrate for side emission |
JP2014165225A (en) * | 2013-02-21 | 2014-09-08 | Toshiba Lighting & Technology Corp | Light-emitting module and illuminating device |
JP6094254B2 (en) * | 2013-02-21 | 2017-03-15 | 東芝ライテック株式会社 | Light emitting module and lighting device |
CN104752597B (en) * | 2013-12-30 | 2018-09-07 | 展晶科技(深圳)有限公司 | Light-emitting diode encapsulation structure and its packaging method |
CN106415864B (en) * | 2014-01-29 | 2019-06-14 | 亮锐控股有限公司 | Shallow reflector cup for phosphor-converted LEDs filled with encapsulant |
CN203883044U (en) * | 2014-04-30 | 2014-10-15 | 广东恒润光电有限公司 | Novel surface mounted technology type LED |
CN203932108U (en) * | 2014-05-29 | 2014-11-05 | 博罗承创精密工业有限公司 | The emitting led support of a kind of wide-angle |
US20160013379A1 (en) * | 2014-07-11 | 2016-01-14 | Lumenmax Optoelectronics Co., Ltd. | Emitting device of wide-angle led |
US9252337B1 (en) * | 2014-12-22 | 2016-02-02 | Bridgelux, Inc. | Composite substrate for light emitting diodes |
CN105742454A (en) * | 2014-12-24 | 2016-07-06 | 晶元光电股份有限公司 | Light emitting element and method for manufacturing same |
TWI677113B (en) * | 2014-12-24 | 2019-11-11 | 晶元光電股份有限公司 | Light-emitting device and manufacturing method thereof |
CN105006511A (en) * | 2015-07-29 | 2015-10-28 | 广州市鸿利光电股份有限公司 | LED package method |
CN111211206A (en) * | 2015-09-18 | 2020-05-29 | 新世纪光电股份有限公司 | Light emitting device and method for manufacturing the same |
CN106816520A (en) * | 2015-11-30 | 2017-06-09 | 隆达电子股份有限公司 | Wavelength conversion material and application thereof |
TWI674684B (en) * | 2015-12-30 | 2019-10-11 | 晶元光電股份有限公司 | Light-emitting device and manufacturing method thereof |
CN205452351U (en) * | 2015-12-30 | 2016-08-10 | 东莞市翔光光电科技有限公司 | Ultra -thin -type LED (light emitting diode) support with heat -radiation bottom |
CN205282504U (en) * | 2016-01-05 | 2016-06-01 | 厦门光莆电子股份有限公司 | A patch type white light LED package body |
CN105629569B (en) * | 2016-01-11 | 2018-11-20 | 苏州奥浦迪克光电技术有限公司 | CSP encapsulates LED light emission device |
CN106531857A (en) * | 2016-12-28 | 2017-03-22 | 芜湖聚飞光电科技有限公司 | Chip scale LED packaging structure and packaging technology |
-
2017
- 2017-07-28 TW TW106125634A patent/TWI757315B/en active
-
2018
- 2018-03-20 CN CN201810228417.1A patent/CN109309153B/en active Active
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI742720B (en) * | 2020-06-12 | 2021-10-11 | 友達光電股份有限公司 | Display apparatus and manufacturing method thereof |
Also Published As
Publication number | Publication date |
---|---|
CN109309153B (en) | 2022-06-21 |
TWI757315B (en) | 2022-03-11 |
CN109309153A (en) | 2019-02-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11038089B2 (en) | Light emitting device | |
TWI721005B (en) | Light-emitting device and manufacturing method thereof | |
CN109309153B (en) | Light-emitting device and method of manufacturing the same | |
JP6515940B2 (en) | Light emitting device and method of manufacturing the same | |
US11430925B2 (en) | Light-emitting device having package structure with quantum dot material and manufacturing method thereof | |
JP2018029179A5 (en) | ||
TWI712187B (en) | Light-emitting device and manufacturing method thereof | |
US10522721B2 (en) | Light-emitting device and manufacturing method thereof | |
TWI743410B (en) | Light-emitting device and manufacturing method thereof | |
US20200098950A1 (en) | Phosphor converter structures for thin film packages and method of manufacture | |
JP2020167240A (en) | Quantum dot light emitting device and quantum dot backlight unit | |
TW202018966A (en) | Light-emitting device and manufacturing method thereof | |
CN107768507A (en) | Light emitting device and method for manufacturing the same | |
JP6658829B2 (en) | Light emitting device manufacturing method | |
US10026873B2 (en) | Method of manufacturing light emitting device | |
CN111883635B (en) | Light emitting device and its manufacturing method | |
TW202329486A (en) | Light-emitting device and manufacturing method thereof | |
TW202414860A (en) | Light-emitting device and manufacturing method thereof |