TW201903964A - Pre-spacer self-aligned slit formation - Google Patents
Pre-spacer self-aligned slit formation Download PDFInfo
- Publication number
- TW201903964A TW201903964A TW107105260A TW107105260A TW201903964A TW 201903964 A TW201903964 A TW 201903964A TW 107105260 A TW107105260 A TW 107105260A TW 107105260 A TW107105260 A TW 107105260A TW 201903964 A TW201903964 A TW 201903964A
- Authority
- TW
- Taiwan
- Prior art keywords
- layer
- mandrel
- section
- metal
- dielectric layer
- Prior art date
Links
- 230000015572 biosynthetic process Effects 0.000 title description 3
- 229910052751 metal Inorganic materials 0.000 claims abstract description 55
- 239000002184 metal Substances 0.000 claims abstract description 55
- 238000000034 method Methods 0.000 claims abstract description 54
- 125000006850 spacer group Chemical group 0.000 claims abstract description 49
- 238000005520 cutting process Methods 0.000 claims description 37
- 238000005530 etching Methods 0.000 claims description 32
- 238000000059 patterning Methods 0.000 claims description 8
- 238000000151 deposition Methods 0.000 claims description 5
- 239000004020 conductor Substances 0.000 claims description 3
- 238000001465 metallisation Methods 0.000 claims description 3
- 230000000873 masking effect Effects 0.000 claims description 2
- 239000000463 material Substances 0.000 description 25
- 230000008569 process Effects 0.000 description 19
- 238000004519 manufacturing process Methods 0.000 description 17
- 239000003989 dielectric material Substances 0.000 description 15
- 238000005229 chemical vapour deposition Methods 0.000 description 7
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 6
- 238000000231 atomic layer deposition Methods 0.000 description 6
- 238000003672 processing method Methods 0.000 description 6
- 235000012431 wafers Nutrition 0.000 description 6
- 238000004140 cleaning Methods 0.000 description 5
- 238000000206 photolithography Methods 0.000 description 5
- 238000001020 plasma etching Methods 0.000 description 5
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 description 4
- 239000010949 copper Substances 0.000 description 4
- 230000000717 retained effect Effects 0.000 description 4
- 239000000758 substrate Substances 0.000 description 4
- 229910004298 SiO 2 Inorganic materials 0.000 description 3
- 239000002243 precursor Substances 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 235000012239 silicon dioxide Nutrition 0.000 description 3
- 239000000377 silicon dioxide Substances 0.000 description 3
- 239000010936 titanium Substances 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 229910017052 cobalt Inorganic materials 0.000 description 2
- 239000010941 cobalt Substances 0.000 description 2
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 239000012467 final product Substances 0.000 description 2
- 238000001459 lithography Methods 0.000 description 2
- HMMGMWAXVFQUOA-UHFFFAOYSA-N octamethylcyclotetrasiloxane Chemical compound C[Si]1(C)O[Si](C)(C)O[Si](C)(C)O[Si](C)(C)O1 HMMGMWAXVFQUOA-UHFFFAOYSA-N 0.000 description 2
- 238000005240 physical vapour deposition Methods 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 229910052707 ruthenium Inorganic materials 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 238000004528 spin coating Methods 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 229910021417 amorphous silicon Inorganic materials 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 238000005137 deposition process Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000007772 electroless plating Methods 0.000 description 1
- 238000009713 electroplating Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 239000013067 intermediate product Substances 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000000615 nonconductor Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000005389 semiconductor device fabrication Methods 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 238000009751 slip forming Methods 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- MZLGASXMSKOWSE-UHFFFAOYSA-N tantalum nitride Chemical compound [Ta]#N MZLGASXMSKOWSE-UHFFFAOYSA-N 0.000 description 1
- 239000013077 target material Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/768—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
- H01L21/76801—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
- H01L21/76802—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics
- H01L21/76816—Aspects relating to the layout of the pattern or to the size of vias or trenches
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/52—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
- H01L23/522—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
- H01L23/528—Layout of the interconnection structure
- H01L23/5283—Cross-sectional geometry
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/768—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/76—Making of isolation regions between components
- H01L21/762—Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/768—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
- H01L21/76801—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
- H01L21/76829—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing characterised by the formation of thin functional dielectric layers, e.g. dielectric etch-stop, barrier, capping or liner layers
- H01L21/76834—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing characterised by the formation of thin functional dielectric layers, e.g. dielectric etch-stop, barrier, capping or liner layers formation of thin insulating films on the sidewalls or on top of conductors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/768—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
- H01L21/76838—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
- H01L21/76877—Filling of holes, grooves or trenches, e.g. vias, with conductive material
- H01L21/76883—Post-treatment or after-treatment of the conductive material
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Geometry (AREA)
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
- Semiconductor Memories (AREA)
Abstract
Description
本發明關於積體電路及半導體裝置製作,並且更具體來說,關於形成自對準切口(self-aligned cut)的方法及形成有自對準切口的結構。 The present invention relates to integrated circuit and semiconductor device fabrication, and more specifically, to a method of forming a self-aligned cut and a structure formed with a self-aligned cut.
後段(back-end-of-line;BEOL)互連結構可用於將前段(front-end-of-line;FEOL)處理期間基材所製作的諸裝置結構彼此連接、以及與晶片的外部環境連接。用於形成BEOL互連結構的自對準圖案化程序關於當作犧牲特徵建立特徵間距的心軸(mandrel)。側壁間隔物具有比目前供光學光刻用的接地規則所允許者更小的厚度,乃形成於與該等心軸的垂直側壁相鄰處。選擇性移除心軸之後,例如透過定向反應性離子蝕刻(reactive ion etch;RIE)程序將側壁間隔物當作蝕刻遮罩用於蝕刻下層硬遮罩。圖案中的未受掩蔽特徵從硬遮罩轉移至介電層,以界定內有BEOL互連件的電線形成的溝槽。 The back-end-of-line (BEOL) interconnect structure can be used to connect the device structures produced by the substrate during the front-end-of-line (FEOL) process to each other and to the external environment of the wafer . The self-aligned patterning process used to form the BEOL interconnect structure is about mandrels that establish feature pitch as sacrificial features. The sidewall spacer has a smaller thickness than that allowed by the current grounding rules for optical lithography, and is formed adjacent to the vertical sidewall of the mandrel. After the mandrel is selectively removed, the sidewall spacer is used as an etching mask for etching the underlying hard mask, for example, through a directional reactive ion etch (RIE) procedure. Unmasked features in the pattern are transferred from the hard mask to the dielectric layer to define trenches formed by wires with BEOL interconnects.
可利用切割遮罩及蝕刻在心軸中形成切口,以便切開該等心軸,並且界定隨後用於形成相鄰電線的間隙,該等電線以尖部對尖部間隔於其尖部處隔開。可將反 映該等切口心軸的圖案轉移至硬遮罩,並且隨後從該硬遮罩轉移至圖案化的介電層。非心軸切口亦可形成於硬遮罩本身中,並且在形成側壁間隔物時遭由介電材料填充。亦將這些非心軸切口轉移至硬遮罩,並且隨後從該硬遮罩轉移至圖案化的介電層。該等心軸及非心軸切口遭由圖案化的介電層的介電材料填充,用以填充該等間隙,並且在該等電線跨該等間隙彼此面向的該等尖部之間提供電隔離。 Cutting masks and etching can be used to make cuts in the mandrel to cut through the mandrels and define gaps that are subsequently used to form adjacent wires that are spaced from their tips with tip-to-tip spacing. The pattern reflecting the notch mandrels can be transferred to the hard mask, and then transferred from the hard mask to the patterned dielectric layer. Non-mandrel cuts can also be formed in the hard mask itself, and are filled with dielectric material when forming the sidewall spacers. These non-mandrel cuts are also transferred to the hard mask, and then transferred from the hard mask to the patterned dielectric layer. The mandrel and non-mandrel cuts are filled with a dielectric material of a patterned dielectric layer to fill the gaps and provide electricity between the tips of the wires facing each other across the gaps isolation.
需要改良型的形成自對準切口的方法及形成有自對準切口的結構。 There is a need for improved methods of forming self-aligned cuts and structures with self-aligned cuts.
在本發明的一具體實施例中,一種方法包括:在金屬硬遮罩層上形成介電層,在該介電層上形成心軸,以及形成穿過該介電層延展至該金屬硬遮罩層的切口。在藉由該介電層中該切口所曝露的該金屬硬遮罩層的區域上形成金屬層的區段。形成該金屬層之後,在該心軸的垂直側壁上形成間隔物。 In a specific embodiment of the invention, a method includes: forming a dielectric layer on a metal hard mask layer, forming a mandrel on the dielectric layer, and forming a metal hard mask extending through the dielectric layer The incision of the cover. A section of the metal layer is formed on the area of the metal hard mask layer exposed by the cut in the dielectric layer. After forming the metal layer, spacers are formed on the vertical side walls of the mandrel.
在本發明的一具體實施例中,一種結構包括具有溝槽及位在該溝槽中的電線的敷金屬階(metallization level)。該電線包括呈平面型的側壁及自該側壁向外突出的突片(tab)。 In a specific embodiment of the invention, a structure includes a metallization level having a trench and an electric wire located in the trench. The electric wire includes a planar side wall and a tab protruding outward from the side wall.
10,14‧‧‧介電層 10,14‧‧‧Dielectric layer
11‧‧‧介電性硬遮罩 11‧‧‧Dielectric hard mask
12‧‧‧硬遮罩層 12‧‧‧hard mask layer
13,15‧‧‧頂端表面 13,15‧‧‧Top surface
16,18,20‧‧‧心軸 16,18,20‧‧‧mandrel
17‧‧‧垂直側壁 17‧‧‧Vertical side wall
22‧‧‧心軸切割遮罩 22‧‧‧Mandrel cutting mask
24,26‧‧‧心軸切口 24,26‧‧‧Spindle incision
28‧‧‧非心軸切割遮罩 28‧‧‧Non-mandrel cutting mask
30,32‧‧‧非心軸切口 30,32‧‧‧non-mandrel notch
34,36,38,40‧‧‧區段 34,36,38,40 ‧‧‧
42‧‧‧遮罩層 42‧‧‧Mask layer
44‧‧‧側壁間隔物 44‧‧‧Side wall spacer
45‧‧‧端部 45‧‧‧End
46‧‧‧溝槽 46‧‧‧Groove
51,53,55,57,59,61,63‧‧‧端部 51,53,55,57,59,61,63 ‧‧‧ end
52,54,56,58,60,62‧‧‧電線 52,54,56,58,60,62 ‧‧‧ wire
64‧‧‧電線或突片 64‧‧‧Wire or tab
65,67‧‧‧側壁 65,67‧‧‧side wall
66‧‧‧突片 66‧‧‧tab
70‧‧‧窄區段 70‧‧‧Narrow section
72‧‧‧寬區段 72‧‧‧wide section
t‧‧‧厚度 t‧‧‧thickness
W1,W2‧‧‧寬度 W1, W2‧‧‧Width
附圖為合併於本說明書的一部分並構成該部分,繪示本發明的各項具體實施例,並且連同上述對本發明的一般性說明、及下文對具體實施例提供的詳細說明, 目的是為了闡釋本發明的具體實施例。 The drawings are incorporated in and constitute a part of this specification, depicting various specific embodiments of the present invention, together with the above general description of the present invention, and the following detailed description of specific embodiments provided for the purpose of explanation Specific embodiments of the invention.
第1圖根據本發明的具體實施例,為一種結構在處理方法的初始製作階段時的俯視圖。 Figure 1 is a top view of a structure at the initial manufacturing stage of a processing method according to a specific embodiment of the present invention.
第1A圖為第1圖的結構大體上沿著第1圖所示線條1A-1A取看的截面圖。 FIG. 1A is a cross-sectional view of the structure of FIG. 1 taken generally along the line 1A-1A shown in FIG. 1.
第2圖至第8圖及第2A圖至第8A圖分別為該結構在該處理方法繼第1圖及第1A圖後的接續製作階段時的俯視圖及截面圖。 FIGS. 2 to 8 and FIGS. 2A to 8A are a plan view and a cross-sectional view of the structure at the subsequent manufacturing stage of the processing method following FIGS. 1 and 1A, respectively.
第9圖根據本發明的具體實施例,為一種結構在繼處理方法的第1圖後的製作階段時的俯視圖。 FIG. 9 is a plan view of a structure at the manufacturing stage following FIG. 1 of the processing method according to a specific embodiment of the present invention.
第9A圖為第9圖的結構大體上沿著第9圖所示線條9A-9A取看的截面圖。 FIG. 9A is a cross-sectional view of the structure of FIG. 9 taken generally along line 9A-9A shown in FIG. 9.
第10圖至第14圖及第10A圖至第14A圖為該結構在該處理方法繼第9圖及第9A圖後的接續製作階段時的各別俯視圖及截面圖。 FIGS. 10 to 14 and FIGS. 10A to 14A are respective plan views and cross-sectional views of the structure at the subsequent manufacturing stage of the processing method following FIGS. 9 and 9A.
請參閱第1圖、第1A圖,並且根據本發明的具體實施例,根據處理方法處理介電層10以形成敷金屬階的互連結構。介電層10可由電氣絕緣的介電材料所組成,諸如由八甲基環四矽氧烷(OMCTS)先驅物生成的富含氫的碳氧化矽(SiCOH)、或另一類型的低k介電材料。介電層10可位於基材上,該基材包括藉由前段(FEOL)處理所製作用以形成積體電路的裝置結構。介電性硬遮罩11位於介電層10的頂端表面上。介電性硬遮罩11可由透過 化學氣相沉積(chemical vapor deposition;CVD)予以沉積的介電材料諸如二氧化矽(SiO2)所組成。 Please refer to FIG. 1 and FIG. 1A, and according to a specific embodiment of the present invention, the dielectric layer 10 is processed according to a processing method to form a metallized interconnect structure. The dielectric layer 10 may be composed of an electrically insulating dielectric material, such as hydrogen-rich silicon oxycarbide (SiCOH) generated from an octamethylcyclotetrasiloxane (OMCTS) precursor, or another type of low-k dielectric Electrical materials. The dielectric layer 10 may be located on a substrate, which includes a device structure made by front-end (FEOL) processing to form an integrated circuit. The dielectric hard mask 11 is located on the top surface of the dielectric layer 10. The dielectric hard mask 11 may be composed of a dielectric material such as silicon dioxide (SiO 2 ) deposited by chemical vapor deposition (CVD).
硬遮罩層12位於介電性硬遮罩11的頂端表面上。硬遮罩層12可由透過物理氣相沉積(physical vapor deposition;PVD)予以沉積的金屬諸如氮化鈦(TiN)所構成。可採用對介電性硬遮罩11的材料具有選擇性的方式,將硬遮罩層12從介電性硬遮罩11移除。在硬遮罩層12上形成介電層14。介電層14可由透過CVD予以沉積的介電材料諸如氮化矽(si3N4)所組成。可採用對硬遮罩層12的材料具有選擇性的方式,將介電層14從硬遮罩層12移除。“選擇性”一詞參照材料移除程序(例如:蝕刻)於本文中使用時,表示目標材料的材料移除率(即蝕刻率)高於經受材料移除程序的至少另一材料的材料移除率(即蝕刻率)。 The hard mask layer 12 is located on the top surface of the dielectric hard mask 11. The hard mask layer 12 may be composed of a metal such as titanium nitride (TiN) deposited by physical vapor deposition (PVD). The hard mask layer 12 can be removed from the dielectric hard mask 11 in a manner that is selective to the material of the dielectric hard mask 11. A dielectric layer 14 is formed on the hard mask layer 12. The dielectric layer 14 may be composed of a dielectric material deposited by CVD such as silicon nitride (si 3 N 4 ). The dielectric layer 14 can be removed from the hard mask layer 12 in a manner that is selective to the material of the hard mask layer 12. The term "selectivity" refers to a material removal procedure (eg, etching) as used herein, which means that the material removal rate (ie, etching rate) of the target material is higher than the material removal rate of at least another material undergoing the material removal procedure Divide rate (ie etch rate).
在介電層14的頂端表面15上形成心軸16、18、20。心軸16、18、20可藉由在介電層14的整個頂端表面15上沉積材料的毯覆層、以及使用光刻堆疊透過光刻及蝕刻將該毯覆層圖案化而並行地形成。舉例而言,側壁影像移轉(sidewall image transfer;SIT)程序或自對準雙圖案化(self-aligned double patterning;SADP)程序可用於將心軸16、18、20圖案化。心軸16、18、20可由透過CVD在低溫下沉積的矽諸如非晶矽所組成。心軸16、18、20具有相對於介電層14的頂端表面15垂直突出的垂直側壁17。 Mandrels 16, 18, 20 are formed on the top end surface 15 of the dielectric layer 14. The mandrels 16, 18, 20 can be formed in parallel by depositing a blanket layer of material on the entire top surface 15 of the dielectric layer 14, and patterning the blanket layer by photolithography and etching using a photolithography stack. For example, a sidewall image transfer (SIT) procedure or a self-aligned double patterning (SADP) procedure can be used to pattern the mandrels 16, 18, 20. The mandrels 16, 18, 20 may be composed of silicon such as amorphous silicon deposited by CVD at a low temperature. The mandrels 16, 18, 20 have vertical side walls 17 that protrude perpendicularly with respect to the top surface 15 of the dielectric layer 14.
請參閱第2圖、第2A圖,其中相似的參考元件符號是指第1圖、第1A圖中相似的特徵,並且在後續製作階段,於介電層14的頂端表面15上形成心軸切割遮罩22並將該心軸切割遮罩圖案化。心軸切割遮罩22可包括藉由旋轉塗布在介電層14的頂端表面15上塗敷的有機平坦化層(organic planarization layer;OPL)材料。可採用光刻方式將心軸切割遮罩22圖案化,以在穿透心軸20的窄心軸切口24、及穿透心軸18的更大心軸切口26的意欲位置界定開口。心軸切口26的形狀可在形成心軸切割遮罩22時使用光學鄰近校正(optical proximity correction;OPC)當作光刻增強技術來最佳化。 Please refer to FIG. 2 and FIG. 2A, where the similar reference symbol refers to the similar features in FIG. 1 and FIG. 1A, and in the subsequent manufacturing stage, a mandrel cut is formed on the top surface 15 of the dielectric layer 14 Mask 22 and pattern the mandrel cut mask. The mandrel cutting mask 22 may include an organic planarization layer (OPL) material coated on the top surface 15 of the dielectric layer 14 by spin coating. The mandrel cutting mask 22 may be patterned using photolithography to define an opening at a desired location of the narrow mandrel cut 24 that penetrates the mandrel 20 and the larger mandrel cut 26 that penetrates the mandrel 18. The shape of the mandrel cutout 26 can be optimized using optical proximity correction (OPC) as a lithography enhancement technique when forming the mandrel cut mask 22.
心軸切口24、26是在心軸18、20中使用諸如反應性離子蝕刻(RIE)將心軸18、20的材料從未遭由心軸切割遮罩22掩蔽的區域移除的程序予以形成。該蝕刻程序亦可移除該等開口位在心軸切割遮罩22中的區域上方介電層14的介電材料,並且在硬遮罩層12的材料上終止。心軸切口24、26移除心軸18、20的各別區段、以及用於形成心軸切口24、26的心軸切割遮罩22中的開口上方硬遮罩層12的曝露區。心軸切口24隨後用於在隨後形成的電線中施作窄尖部對尖部切口,而心軸切口26用於施作更大面積的切口特徵。心軸切口26的寬度可小於或等於心軸18的寬度與隨後形成的間隔物的兩倍寬度的總和。 The mandrel cutouts 24, 26 are formed in the mandrels 18, 20 using procedures such as reactive ion etching (RIE) to remove the material of the mandrels 18, 20 from areas that are not masked by the mandrel cutting mask 22. The etching process can also remove the dielectric material of the dielectric layer 14 with the openings above the area in the mandrel cutting mask 22 and terminate on the material of the hard mask layer 12. The mandrel cuts 24, 26 remove the respective sections of the mandrels 18, 20 and the exposed area of the hard mask layer 12 above the opening in the mandrel cutting mask 22 used to form the mandrel cuts 24, 26. The mandrel cut 24 is then used to make a narrow tip-to-tip cut in the subsequently formed wire, and the mandrel cut 26 is used to make a larger area cut feature. The width of the mandrel cutout 26 may be less than or equal to the sum of the width of the mandrel 18 and twice the width of the subsequently formed spacer.
請參閱第3圖、第3A圖,其中相似的參考元件符號是指第2圖、第2A圖中相似的特徵,並且在後 續製作階段,藉由清潔程序來移除心軸切割遮罩22,並且在介電層14的頂端表面15上形成非心軸切割遮罩28。非心軸切割遮罩28可包括藉由旋轉塗布在介電層14的頂端表面15上塗敷的有機平坦化層(OPL)材料。可採用光刻方式將非心軸切割遮罩28圖案化,以在介電層14中介於心軸16與心軸18之間窄的非心軸切口30、及介電層14中介於心軸18與心軸20之間較寬的非心軸切口32的意欲位置界定開口。非心軸切口30、32可在介電層14中使用諸如反應性離子蝕刻(RIE)將介電層14的材料從未受非心軸切割遮罩28掩蔽的區域移除的蝕刻程序予以形成。非心軸切口30、32移除介電層14的各別區段。非心軸切口30以後用於施作在經形成與切口心軸20連接的諸電線之間具有窄尖部對尖部間隔的切口,而心軸切口26用於在心軸18中施作面積更大的切口。穿過非心軸切口30、32使硬遮罩層12的區域曝露。 Please refer to Figure 3 and Figure 3A, where the similar reference symbol refers to the similar features in Figure 2 and Figure 2A, and in the subsequent manufacturing stage, the mandrel cutting mask 22 is removed by a cleaning process, And a non-mandrel cutting mask 28 is formed on the top end surface 15 of the dielectric layer 14. The non-mandrel cutting mask 28 may include an organic planarization layer (OPL) material coated on the top surface 15 of the dielectric layer 14 by spin coating. The non-mandrel cutting mask 28 can be patterned using photolithography to narrow the non-mandrel cutout 30 between the mandrel 16 and the mandrel 18 in the dielectric layer 14 and between the mandrel in the dielectric layer 14 The intended location of the wider non-mandrel cut 32 between 18 and mandrel 20 defines the opening. The non-mandrel cuts 30, 32 can be formed in the dielectric layer 14 using an etching process such as reactive ion etching (RIE) to remove the material of the dielectric layer 14 from areas not masked by the non-mandrel cutting mask 28 . The non-mandrel cuts 30, 32 remove various sections of the dielectric layer 14. The non-mandrel notch 30 is used later to make a notch with a narrow tip-to-tip spacing between the electric wires formed to be connected to the notched mandrel 20, and the mandrel notch 26 is used to apply a larger Large incision. Passing through the non-mandrel cuts 30, 32 exposes the area of the hard mask layer 12.
請參閱第4圖、第4A圖,其中相似的參考元件符號是指第3圖、第3A圖中相似的特徵,並且在後續製作階段,藉由清潔程序移除非心軸切割遮罩28。硬遮罩層12的頂端表面13上的各別區域上形成遮罩層42的區段34、36、38、40,該等各別區域是於形成心軸切口24、26及非心軸切口30、32時藉由移除介電層14來顯露。在藉由心軸切口24、26所曝露的硬遮罩層12的各別區域上分別形成遮罩層42的區段34、36,而在藉由非心軸切口30、32所曝露的硬遮罩層12的各別區域上分別形成遮罩 層42的區段38、40。先形成遮罩層42,再拉引心軸16、18。 Please refer to FIG. 4 and FIG. 4A, where similar reference symbol refers to similar features in FIG. 3 and FIG. 3A, and in the subsequent manufacturing stage, the non-mandrel cutting mask 28 is removed by a cleaning process. Sections 34, 36, 38, 40 of the mask layer 42 are formed on the respective areas on the top surface 13 of the hard mask layer 12, which are formed into mandrel cuts 24, 26 and non-mandrel cuts At 30 and 32, it is revealed by removing the dielectric layer 14. The sections 34, 36 of the mask layer 42 are formed on the respective areas of the hard mask layer 12 exposed by the mandrel cuts 24, 26, while the hard exposed by the non-mandrel cuts 30, 32 Sections 38 and 40 of the mask layer 42 are formed on the respective regions of the mask layer 12. The mask layer 42 is formed first, and then the mandrels 16 and 18 are pulled.
遮罩層42的區段34、36、38、40具有在心軸切口24、26及非心軸切口30、32的內緣處匹配邊界的外周界。圖案化的介電層14就形成遮罩層42的區段34、36、38、40建立模板。在一具體實施例中,遮罩層42可具有與介電層14的厚度t相比更小或相等的厚度。 The sections 34, 36, 38, 40 of the mask layer 42 have outer perimeters that match the boundaries at the inner edges of the mandrel cuts 24, 26 and the non-mandrel cuts 30, 32. The patterned dielectric layer 14 forms a template for the sections 34, 36, 38, 40 forming the mask layer 42. In a specific embodiment, the mask layer 42 may have a thickness smaller or equal to the thickness t of the dielectric layer 14.
遮罩層42的區段34具有比心軸18的寬度W2更大的寬度W1。類似的是,遮罩層42的區段36具有比心軸20的寬度W2更大的寬度W1。這些寬度差異隨後在藉由蝕刻將硬遮罩層12圖案化時、且接著在隨後使用圖案化的硬遮罩層12蝕刻介電層10時自行彰顯。 The section 34 of the mask layer 42 has a width W1 greater than the width W2 of the mandrel 18. Similarly, the section 36 of the mask layer 42 has a width W1 greater than the width W2 of the mandrel 20. These width differences then manifest themselves when the hard mask layer 12 is patterned by etching, and then when the dielectric layer 10 is subsequently etched using the patterned hard mask layer 12.
可選擇性沉積遮罩層42,使得其材料在硬遮罩層12的表面上集結及形成而產生區段34、36、38、40,但無法在諸如心軸16及介電層14等非金屬物件的頂端表面上集結及形成。藉由處理硬遮罩層12透過對上層介電層14進行圖案化而顯露的表面區,可促進選擇性沉積。遮罩層42可由透過低溫CVD或透過原子層沉積(atomic layer deposition;ALD)予以沉積的金屬所組成。在一具體實施例中,遮罩層42可由使用釕的揮發性金屬先驅物透過CVD或ALD予以形成的釕(Ru)所組成。在一具體實施例中,遮罩層42可由使用鈷的揮發性金屬先驅物透過CVD或ALD予以形成的鈷(Co)所組成。在一具體實施例中,遮罩層42可由透過無電式鍍覆予以形成的銅(Cu)所組成。 The mask layer 42 can be selectively deposited so that its material builds up and forms on the surface of the hard mask layer 12 to produce sections 34, 36, 38, 40, but it cannot be placed on non-manufacturers such as the mandrel 16 and dielectric layer 14 Aggregation and formation on the top surface of metal objects. By treating the surface area exposed by patterning the upper dielectric layer 14 by the hard mask layer 12, selective deposition can be promoted. The mask layer 42 may be composed of a metal deposited by low temperature CVD or by atomic layer deposition (ALD). In a specific embodiment, the mask layer 42 may be composed of ruthenium (Ru) formed by CVD or ALD using volatile metal precursors of ruthenium. In a specific embodiment, the mask layer 42 may be composed of cobalt (Co) formed by CVD or ALD using a volatile metal precursor of cobalt. In a specific embodiment, the mask layer 42 may be composed of copper (Cu) formed by electroless plating.
請參閱第5圖、第5A圖,其中相似的參考元件符號是指第4圖、第4A圖中相似的特徵,並且在後續製作階段,介電層14的頂端表面15上與心軸16、18、20的垂直側壁相鄰的位置、及心軸18在心軸切口24所在處的端部45的位置形成側壁間隔物44。間隔物44是在執行心軸切口24、26及非心軸切口30、32之後才形成。側壁間隔物44可藉由沉積諸如二氧化矽(SiO2)的介電材料所構成的保形層、以及用諸如反應性離子蝕刻(RIE)的異向性蝕刻程序塑形該保形層予以形成。鑒於留下來作為側壁間隔物44的介電材料,該異向性蝕刻程序優先將介電材料從水平表面移除,諸如介電層14、心軸16、18、20、及遮罩層42的區段34、36、38、40的頂端表面。構成側壁間隔物44的材料可經選擇而要採用對介電層14、心軸16、18、20、及遮罩層42的區段34、36、38、40的材料具有選擇性的方式藉由給定蝕刻化學作用予以移除。側壁間隔物44可由透過原子層沉積(ALD)予以沉積的介電材料諸如二氧化矽(SiO2)所構成。 Please refer to FIG. 5 and FIG. 5A, where similar reference element symbols refer to similar features in FIG. 4 and FIG. 4A, and in the subsequent manufacturing stage, the top surface 15 of the dielectric layer 14 and the mandrel 16, The side wall spacers 44 are formed at positions adjacent to the vertical side walls of 18 and 20 and at the end 45 of the mandrel 18 where the mandrel cutout 24 is located. The spacer 44 is formed after the mandrel cuts 24, 26 and the non-mandrel cuts 30, 32 are performed. The sidewall spacer 44 may be formed by depositing a conformal layer composed of a dielectric material such as silicon dioxide (SiO 2 ), and shaping the conformal layer by an anisotropic etching process such as reactive ion etching (RIE) form. In view of the dielectric material left as the sidewall spacer 44, the anisotropic etching process preferentially removes the dielectric material from the horizontal surface, such as the dielectric layer 14, the mandrel 16, 18, 20, and the mask layer 42 Top surface of sections 34, 36, 38, 40. The materials constituting the sidewall spacers 44 can be selected to be selective for the materials of the dielectric layers 14, mandrels 16, 18, 20, and the sections 34, 36, 38, 40 of the mask layer 42 Removed by the given etching chemistry. The sidewall spacer 44 may be composed of a dielectric material such as silicon dioxide (SiO 2 ) deposited by atomic layer deposition (ALD).
側壁間隔物44具有與被蝕刻的保形層的厚度名義上相等的寬度W3。側壁間隔物44完整地或完全地包覆遮罩層42的區段34,使得區段34埋置於間隔物44下方,並且垂直介於間隔物44與硬遮罩層12之間。心軸18的切口端部上側壁間隔物44僅部分包覆遮罩層42的區段36。遮罩層42的區段36的長度是藉由將介電層14中的心軸切口26的對應尺寸減去心軸18的端部45上的間隔 物44的寬度、及一心軸(圖未示)的端部上的空間的寬度來制定,若有的話,該心軸自端部45起跨心軸切口26具有端部。類似的是,側壁間隔物44部分包覆非心軸切口30、32中其各別側緣上方的遮罩層42的區段38、40。 The sidewall spacer 44 has a width W3 that is nominally equal to the thickness of the etched conformal layer. The sidewall spacer 44 completely or completely covers the section 34 of the mask layer 42 so that the section 34 is buried under the spacer 44 and vertically interposed between the spacer 44 and the hard mask layer 12. The upper sidewall spacer 44 of the cut end of the mandrel 18 only partially covers the section 36 of the mask layer 42. The length of the section 36 of the mask layer 42 is obtained by subtracting the width of the spacer 44 on the end 45 of the mandrel 18 from the corresponding size of the mandrel cutout 26 in the dielectric layer 14 and a mandrel (not shown) The width of the space at the end of the shown) is set, if any, the mandrel has an end from the end 45 across the mandrel cut 26. Similarly, the sidewall spacer 44 partially covers the sections 38, 40 of the mask layer 42 above the respective side edges of the non-mandrel cuts 30, 32.
請參閱第6圖、第6A圖,其中相似的參考元件符號是指第5圖、第5A圖中相似的特徵,並且在後續製作階段,利用具有合適的蝕刻化學作用的蝕刻程序,採用對介電層14、遮罩層42的區段34、36、38、40、及側壁間隔物44的材料具有選擇性的方式來移除心軸16、18、20。頂端表面15上拉引心軸16、18、20時所曝露的區域上方顯露介電層14的頂端表面15。 Please refer to Figure 6 and Figure 6A, where the similar reference symbol refers to the similar features in Figure 5 and Figure 5A, and in the subsequent manufacturing stage, using an etching process with appropriate etching chemistry, using The materials of the electrical layer 14, the sections 34, 36, 38, 40 of the mask layer 42, and the sidewall spacers 44 have selective ways to remove the mandrels 16, 18, 20. The top surface 15 exposes the top surface 15 of the dielectric layer 14 above the area exposed when the mandrels 16, 18, 20 are pulled up.
遮罩層42的區段34、36、38、40、及側壁間隔物44包覆該介電層的頂端表面15的區域。遮罩層42的區段34埋置於側壁間隔物44的材料下方,其完全地或完整地填充切口心軸18所致兩個心軸節段的各別端部或尖部之間的切口24。間隔物44部分地但非完整地包覆遮罩層42的其它區段36、38、40。 The sections 34, 36, 38, 40 of the mask layer 42 and the sidewall spacers 44 cover the area of the top surface 15 of the dielectric layer. The section 34 of the mask layer 42 is buried under the material of the side wall spacer 44 which completely or completely fills the incision between the respective ends or tips of the two mandrel segments due to the incision mandrel 18 twenty four. The spacer 44 partially but not completely covers the other sections 36, 38, 40 of the mask layer 42.
請參閱第7圖、第7A圖,其中相似的參考元件符號是指第6圖、第6A圖中相似的特徵,並且在後續製作階段,繼蝕刻程序將心軸16、18、20移除後將介電層14圖案化,該蝕刻程序將側壁間隔物44、及遮罩層42的區段34、36、38、40操作為蝕刻遮罩,敞開介電層14的蝕刻程序可運用一種蝕刻化學作用,其移除介電層14未遭由側壁間隔物44、及遮罩層42的區段34、36、38、 40包覆的材料。蝕刻程序結束後,介電層14的區段垂直位於側壁間隔物44與硬遮罩層12之間。遮罩層42的區段34、36、38、40與硬遮罩層12直接接觸,因為介電層14是在處理方法較早製作階段中形成遮罩層42時進行圖案化。 Please refer to Figure 7 and Figure 7A, where the similar reference symbol refers to the similar features in Figure 6 and Figure 6A, and in the subsequent manufacturing stage, the mandrel 16, 18, 20 is removed after the etching process The dielectric layer 14 is patterned. The etching process operates the sidewall spacers 44 and the sections 34, 36, 38, and 40 of the mask layer 42 as an etching mask. The etching process for opening the dielectric layer 14 may use an etching Chemically, it removes the material of the dielectric layer 14 that is not covered by the sidewall spacers 44 and the sections 34, 36, 38, 40 of the mask layer 42. After the etching process is completed, the section of the dielectric layer 14 is located vertically between the sidewall spacer 44 and the hard mask layer 12. The sections 34, 36, 38, 40 of the mask layer 42 are in direct contact with the hard mask layer 12 because the dielectric layer 14 is patterned when the mask layer 42 is formed in the earlier manufacturing stage of the processing method.
接著,藉由蝕刻程序將側壁間隔物44、及遮罩層42的區段34、36、38、40操作為蝕刻遮罩而將硬遮罩層12圖案化。該蝕刻程序可運用蝕刻化學作用,採用對側壁間隔物44及遮罩層42具有選擇性的方式、以及採用對將硬遮罩層12圖案化時操作為蝕刻終止的介電性硬遮罩11的材料具有選擇性的方式,將硬遮罩層12的材料移除。硬遮罩層12的區段於其在側壁間隔物44所包覆的區域上方蝕刻成細長條狀物期間受到保留及留存。硬遮罩層12的區段同樣地於其在遮罩層42的區段34、36、38、40所包覆的區域上方蝕刻期間受到保留及留存。 Next, the sidewall spacer 44 and the sections 34, 36, 38, and 40 of the mask layer 42 are operated as an etch mask by an etching process to pattern the hard mask layer 12. The etching process may use etching chemistry, a method that is selective to the sidewall spacers 44 and the mask layer 42, and a dielectric hard mask 11 that operates as an etching stop when patterning the hard mask layer 12 The material of the hard mask layer 12 is removed in a selective manner. The sections of the hard mask layer 12 are retained and retained during their etching into elongated strips over the area covered by the sidewall spacer 44. The sections of the hard mask layer 12 are also retained and retained during their etching over the area covered by the sections 34, 36, 38, 40 of the mask layer 42.
隨後,蝕刻介電性硬遮罩11及介電層10以在介電層10中形成溝槽46,但介電層10受硬遮罩層12掩蔽且受保護免於蝕刻移除的那些區域除外。介電層10上的那些受掩蔽區域是基於遮罩層42的區段34、36、38、40、及側壁間隔物44所包覆的互補區域,藉由硬遮罩層12的圖案化予以判定。溝槽46位於未受掩蔽的區域中。 Subsequently, the dielectric hard mask 11 and the dielectric layer 10 are etched to form trenches 46 in the dielectric layer 10, but those areas where the dielectric layer 10 is masked by the hard mask layer 12 and protected from etching removal except. The masked areas on the dielectric layer 10 are based on the complementary areas covered by the sections 34, 36, 38, 40 of the mask layer 42 and the sidewall spacers 44 by the patterning of the hard mask layer 12 determination. The groove 46 is located in an unmasked area.
請參閱第8圖、第8A圖,其中相似的參考元件符號是指第7圖、第7A圖中相似的特徵,並且在後續製作階段,蝕刻介電層10之後,遮罩層42的區段34、 36、38、40、側壁間隔物44、及硬遮罩層12可藉由一或多個蝕刻或清潔程序予以移除。用導體填充介電層10中的溝槽46(第7圖、第7A圖)以形成電線(wires)52、54、56、58、60、62。可先將鈦(Ti)、氮化鈦(TiN)、鉭(Ta)、氮化鉭(TaN)或這些材料的分層組合(例如雙層Ti/TiN)所構成的襯墊(圖未示)塗敷至該等溝槽,再用金屬予以填充。電線52、54、56、58、60、62可由使用沉積程序所形成的低電阻率導體所構成,諸如藉由電鍍或無電式沉積所形成的金屬,如銅(Cu)。 Please refer to FIG. 8 and FIG. 8A, where the similar reference symbol refers to the similar features in FIG. 7 and FIG. 7A, and in the subsequent manufacturing stage, after etching the dielectric layer 10, the section of the mask layer 42 34, 36, 38, 40, sidewall spacers 44, and hard mask layer 12 can be removed by one or more etching or cleaning procedures. The trench 46 (FIG. 7, FIG. 7A) in the dielectric layer 10 is filled with a conductor to form wires 52, 54, 56, 58, 60, 62. A liner composed of titanium (Ti), titanium nitride (TiN), tantalum (Ta), tantalum nitride (TaN), or a layered combination of these materials (such as double-layer Ti / TiN) (not shown) ) Applied to the trenches, and then filled with metal. The wires 52, 54, 56, 58, 60, 62 may be composed of low-resistivity conductors formed using a deposition process, such as metals formed by electroplating or electroless deposition, such as copper (Cu).
電線52、54、56、58、60、62的形狀及幾何形態重現硬遮罩層12中圖案化特徵的形狀及幾何形態,其藉由遮罩層42的區段34、36、38、40的形狀及幾何形態、以及側壁間隔物44的形狀及幾何形態予以制定。電線52、54、56、58、60、62的相鄰對藉由介電層10的電絕緣體的區段彼此分開。蝕刻介電層10時,介電層10的這些區段受硬遮罩層12的條狀物掩蔽,在其藉由遮罩層42的區段34、36、38、40、及側壁間隔物44進行圖案化期間,硬遮罩層12受掩蔽的區域上方保留該等條狀物。 The shapes and geometric shapes of the wires 52, 54, 56, 58, 60, 62 reproduce the shapes and geometric shapes of the patterned features in the hard mask layer 12 through the segments 34, 36, 38 of the mask layer 42, The shape and geometry of 40 and the shape and geometry of sidewall spacer 44 are determined. The adjacent pairs of wires 52, 54, 56, 58, 60, 62 are separated from each other by sections of the electrical insulator of the dielectric layer 10. When the dielectric layer 10 is etched, these sections of the dielectric layer 10 are masked by the strips of the hard mask layer 12 where they pass the sections 34, 36, 38, 40 of the mask layer 42 and the sidewall spacers 44 During patterning, the strips remain above the masked area of the hard mask layer 12.
位於非心軸切口30中的介電層10的介電材料將電線52的端部51與電線54的端部53分開。類似的是,位於心軸切口24中的介電層10的介電材料將電線60的端部59與電線62的端部61分開。在代表性具體實施例中,端部59、61上形成的間隔物44填充介於端部59、61之間的尖部對尖部間隙。代表性具體實施例中將介於電線 58的端部59與電線60的端部61之間的尖部對尖部距離繪示成小於或等於側壁間隔物44的兩倍寬度,使得切口24受間隔物材料完整地填充,並且遮罩層42的區段34受到包覆。然而,介於端部59與端部61之間的尖部對尖部距離可大於側壁間隔物44的兩倍寬度,因為遮罩層42的區段34會跨介於端部59上的側壁間隔物44與端部61上的間隔物44之間的任何開放式間隙將介電層10掩蔽。 The dielectric material of the dielectric layer 10 in the non-mandrel cut 30 separates the end 51 of the wire 52 from the end 53 of the wire 54. Similarly, the dielectric material of the dielectric layer 10 located in the mandrel cutout 24 separates the end 59 of the wire 60 from the end 61 of the wire 62. In a representative embodiment, the spacers 44 formed on the ends 59, 61 fill the tip-to-tip gap between the ends 59, 61. In a representative embodiment, the tip-to-tip distance between the end 59 of the electric wire 58 and the end 61 of the electric wire 60 is plotted to be less than or equal to twice the width of the side wall spacer 44 so that the cutout 24 The spacer material is completely filled, and the section 34 of the mask layer 42 is covered. However, the tip-to-tip distance between the end 59 and the end 61 may be greater than twice the width of the sidewall spacer 44 because the section 34 of the mask layer 42 will span the sidewall on the end 59 Any open gap between the spacer 44 and the spacer 44 on the end 61 masks the dielectric layer 10.
與電線58的端部57相鄰的介電層10的介電材料填充非心軸切口32,其比心軸切口30具有更大的面積。介電層10的介電材料亦填充心軸切口26,其比心軸切口24具有更大的面積,與電線56的端部55相鄰。心軸切口26可大於習知的心軸切口,因為遮罩層42的區段36的長度制定介於電線56的端部55與有端部與電線56的端部55呈尖部對尖部配置的任何相鄰電線(圖未示)之間的尖部對尖部距離。心軸切口26的尺寸不因間隔物44的寬度而受限。 The dielectric material of the dielectric layer 10 adjacent to the end 57 of the wire 58 fills the non-mandrel cut 32, which has a larger area than the mandrel cut 30. The dielectric material of the dielectric layer 10 also fills the mandrel cut 26, which has a larger area than the mandrel cut 24, adjacent to the end 55 of the wire 56. The mandrel notch 26 may be larger than the conventional mandrel notch because the length of the section 36 of the mask layer 42 is defined to be tip-to-tip between the end 55 of the wire 56 and the end 55 having the end and the wire 56 The tip-to-tip distance between any adjacent wires (not shown) configured. The size of the mandrel cutout 26 is not limited by the width of the spacer 44.
在代表性具體實施例中,心軸切口26的寬度可小於心軸18的寬度與隨後形成的間隔物44的兩倍寬度的總和。所以,電線54與58、以及內有形成這些電線54與58的已蝕刻溝槽將會具有彼此朝內突出的各別附加物或突片64、66。電線54可具有呈平面型的垂直側壁65,而突片64從電線54的側壁65向外突出以中斷其平面性。電線58可具有呈平面型的垂直側壁67,而突片66從電線58的側壁67向外突出以中斷其平面性。突片64、66側向 位於側壁65與側壁67之間。突片64、66的置放縮窄填有介電質的心軸切口26。突片64、66的尺寸可隨心軸切口26的尺寸及位置而變。在後者方面,舉例而言,若心軸切口26的位置相對於心軸18的中心線充分離心,則突片64、66其中一者可不存在。 In a representative embodiment, the width of the mandrel cutout 26 may be less than the sum of the width of the mandrel 18 and twice the width of the spacer 44 that is subsequently formed. Therefore, the wires 54 and 58 and the etched grooves forming these wires 54 and 58 will have respective appendages or tabs 64, 66 that protrude inward from each other. The electric wire 54 may have a vertical side wall 65 having a planar shape, and the tab 64 protrudes outward from the side wall 65 of the electric wire 54 to interrupt its planarity. The electric wire 58 may have a vertical side wall 67 having a planar shape, and the tab 66 protrudes outward from the side wall 67 of the electric wire 58 to interrupt its planarity. The tabs 64, 66 are located laterally between the side wall 65 and the side wall 67. The placement of the tabs 64, 66 narrows the mandrel cut 26 filled with dielectric. The size of the tabs 64, 66 may vary with the size and position of the mandrel cutout 26. In the latter aspect, for example, if the position of the mandrel cutout 26 is sufficiently centrifuged with respect to the centerline of the mandrel 18, one of the tabs 64, 66 may not be present.
心軸切口24、26可為自對準,並且其形成可僅關於兩個遮罩,而不需要另外進行虛設移除。在後者方面,心軸切口26可用於虛設移除,並且依賴用於提供心軸切口24的相同遮罩。突片64、66若一者存在或兩者都存在,則可對完整的互連結構提供電阻效益及電容效益。 The mandrel cut-outs 24, 26 may be self-aligned, and their formation may be only about two masks, without the need for additional dummy removal. In the latter aspect, the mandrel cutout 26 can be used for dummy removal and relies on the same mask used to provide the mandrel cutout 24. If one or both of the tabs 64 and 66 are present, the resistance benefit and the capacitance benefit can be provided to the complete interconnect structure.
請參閱第9圖、第9A圖,其中相似的參考元件符號是指第1圖、第1A圖中相似的特徵,並且根據本發明的替代具體實施例,可修改心軸切割遮罩22,使得心軸切割遮罩22中用於形成心軸切口24、26的開口具有雙寬度形狀。具體而言,心軸切割遮罩22中的各開口具有與心軸20的寬度等寬的窄區段70、及所具寬度比窄區段70的寬度更大的寬區段72。心軸切割遮罩22的窄區段70垂直配置於硬遮罩層12與心軸切割遮罩22的寬區段72之間。寬區段72可藉由部分光刻程序來形成,其將寬區段72與窄區段70分開形成。 Please refer to FIG. 9 and FIG. 9A, where similar reference element symbols refer to similar features in FIG. 1 and FIG. 1A, and according to an alternative specific embodiment of the present invention, the mandrel cutting mask 22 may be modified so that The opening for forming the mandrel cutouts 24, 26 in the mandrel cutting mask 22 has a double-width shape. Specifically, each opening in the mandrel cutting mask 22 has a narrow section 70 having the same width as the width of the mandrel 20 and a wide section 72 having a width greater than the width of the narrow section 70. The narrow section 70 of the mandrel cutting mask 22 is vertically arranged between the hard mask layer 12 and the wide section 72 of the mandrel cutting mask 22. The wide section 72 may be formed by a partial lithography process, which separates the wide section 72 and the narrow section 70.
心軸切口24、26是在心軸18、20中使用諸如反應性離子蝕刻(RIE)的蝕刻程序來形成,其將心軸18、20及介電層14的材料從心軸切割遮罩22中開口的窄區段70內側未受心軸切割遮罩22掩蔽的區域選擇性移除。在 這項具體實施例中,縮短心軸切口26以就比心軸切口24所提供的尖部對尖部更寬的尖部對尖部切口繪示該掩蔽。在一替代具體實施例中,與心軸切口24完全一樣的另一心軸切口(圖未示)可在心軸18中形成,並且可與心軸切口24水平對準以提供長切口。 The mandrel cutouts 24, 26 are formed in the mandrels 18, 20 using an etching procedure such as reactive ion etching (RIE), which cuts the materials of the mandrels 18, 20 and the dielectric layer 14 from the mandrel cutting mask 22 The area inside the narrow section 70 of the opening that is not masked by the mandrel cutting mask 22 is selectively removed. In this particular embodiment, the mandrel cut 26 is shortened to illustrate the masking with a tip-to-tip cut that is wider than the tip-to-tip provided by the mandrel cut 24. In an alternative embodiment, another mandrel cutout (not shown) that is exactly the same as the mandrel cutout 24 may be formed in the mandrel 18 and may be horizontally aligned with the mandrel cutout 24 to provide a long cutout.
請參閱第10圖、第10A圖,其中相似的參考元件符號是指第9圖、第9A圖中相似的特徵,並且在後續製作階段,於硬遮罩層12的頂端表面13上透過心軸切口24、26曝露的區域上形成遮罩層42的區段34、36(第9圖、第9A圖)。遮罩層42的區段34、36具有比介電層14的厚度更大或相等的高度,使得區段34、36於介電層14的頂端表面15上面突出。由於心軸切割遮罩22中實施雙寬度開口,遮罩層42的區段34具有與心軸18的寬度相等的寬度。更具體來說,遮罩層42的區段34的寬度受限於心軸切口24的下區段70的寬度(第9圖),而遮罩層42的區段36的寬度受限於心軸切口26的下區段70的寬度(第9圖)。 Please refer to FIG. 10 and FIG. 10A, where the similar reference symbol refers to the similar features in FIG. 9 and FIG. 9A, and in the subsequent manufacturing stage, the top surface 13 of the hard mask layer 12 passes through the mandrel The areas 34 and 36 of the mask layer 42 are formed on the areas exposed by the cuts 24 and 26 (FIGS. 9 and 9A). The sections 34, 36 of the mask layer 42 have a height greater than or equal to the thickness of the dielectric layer 14, so that the sections 34, 36 protrude above the top surface 15 of the dielectric layer 14. Since the double-width opening is implemented in the mandrel-cut mask 22, the section 34 of the mask layer 42 has a width equal to that of the mandrel 18. More specifically, the width of the section 34 of the mask layer 42 is limited by the width of the lower section 70 of the mandrel cutout 24 (Figure 9), and the width of the section 36 of the mask layer 42 is limited by the heart The width of the lower section 70 of the shaft cut 26 (Figure 9).
請參閱第11圖、第11A圖,其中相似的參考元件符號是指第10圖、第10A圖中相似的特徵,並且在後續製作階段,藉由清潔程序來移除心軸切割遮罩22,並且在介電層14的頂端表面15上形成非心軸切割遮罩28。使用非心軸切割遮罩28當作蝕刻遮罩,非心軸切口30、32可在介電層14中使用諸如反應性離子蝕刻(RIE)將介電層14的材料從未受非心軸切割遮罩28掩蔽的區域移除的 蝕刻程序予以形成。在一替代具體實施例中,與非心軸切口30完全一樣的另一非心軸切口(圖未示)可在心軸16與心軸18之間形成,並且可與非心軸切口28水平對準以提供長切口。 Please refer to Figure 11 and Figure 11A, where the similar reference symbol refers to the similar features in Figure 10 and Figure 10A, and in the subsequent manufacturing stage, the mandrel cutting mask 22 is removed by a cleaning process, And a non-mandrel cutting mask 28 is formed on the top end surface 15 of the dielectric layer 14. Using a non-mandrel cutting mask 28 as an etch mask, the non-mandrel cuts 30, 32 can be used in the dielectric layer 14 such as reactive ion etching (RIE) to expose the material of the dielectric layer 14 to the non-mandrel An etching process to remove the area masked by the cutting mask 28 is formed. In an alternative embodiment, another non-mandrel incision (not shown) that is exactly the same as the non-mandrel incision 30 may be formed between the mandrel 16 and the mandrel 18 and may be horizontally aligned with the non-mandrel incision 28 Provide a long cut.
請參閱第12圖、第12A圖,其中相似的參考元件符號是指第11圖、第11A圖中相似的特徵,並且在後續製作階段,於硬遮罩層12的頂端表面13上透過非心軸切割遮罩28中的開口、及心軸切口30、32所曝露的區域上形成遮罩層42的區段38、40。遮罩層42的區段38、40具有與介電層14的厚度相等的厚度。 Please refer to FIG. 12 and FIG. 12A, where the similar reference symbol refers to the similar features in FIG. 11 and FIG. 11A, and in the subsequent manufacturing stage, the top surface 13 of the hard mask layer 12 passes through the non-central Sections 38 and 40 of the mask layer 42 are formed on the openings in the shaft-cut mask 28 and the areas exposed by the mandrel cuts 30 and 32. The sections 38, 40 of the mask layer 42 have a thickness equal to the thickness of the dielectric layer 14.
請參閱第13圖、第13A圖,其中相似的參考元件符號是指第12圖、第12A圖中相似的特徵,並且在後續製作階段,藉由清潔程序移除非心軸切割遮罩28,並且在介電層14的頂端表面15上與心軸16、18、20的垂直側壁17相鄰的位置形成側壁間隔物44。遮罩層42的區段34、36、38、40在其邊緣處僅受側壁間隔物44部分包覆。 Please refer to Figure 13 and Figure 13A, where the similar reference symbol refers to the similar features in Figure 12 and Figure 12A, and in the subsequent manufacturing stage, the non-mandrel cutting mask 28 is removed by a cleaning process. And a side wall spacer 44 is formed on the top surface 15 of the dielectric layer 14 adjacent to the vertical side wall 17 of the mandrel 16, 18, 20. The sections 34, 36, 38, 40 of the mask layer 42 are only partially covered by the sidewall spacers 44 at their edges.
請參閱第14圖、第14A圖,其中相似的參考元件符號是指第13圖、第13A圖中相似的特徵,並且在後續製作階段,該程序如第6圖、第6A圖至第8圖、第8A圖的內容中所述持續進行以形成電線52、54、56、58、60、62。因心軸切口26縮短,而另外形成電線64。介電層10的介電材料填充介於電線64的端部63與電線56的端部55之間的心軸切口26。端部55與端部63之間 的尖部對尖部距離大於使用心軸切口24所形成電線60的端部59與電線62的端部61之間的尖部對尖部間隔,而且還比側壁間隔物44的兩倍寬度更長。 Please refer to Figure 14 and Figure 14A, where the similar reference symbol refers to the similar features in Figure 13 and Figure 13A, and in the subsequent production stage, the procedure is as shown in Figure 6, Figure 6A to Figure 8 As described in the content of FIG. 8A, the electric wires 52, 54, 56, 58, 60, 62 are continuously formed. As the mandrel cutout 26 is shortened, the electric wire 64 is additionally formed. The dielectric material of the dielectric layer 10 fills the mandrel cutout 26 between the end 63 of the wire 64 and the end 55 of the wire 56. The tip-to-tip distance between the end 55 and the end 63 is greater than the tip-to-tip distance between the end 59 of the electric wire 60 and the end 61 of the electric wire 62 formed using the mandrel cutout 24, and is also The double width of the side wall spacer 44 is longer.
本方法如以上所述,用於製作積體電路晶片。產生的積體電路晶片可由製作商以空白晶圓形式(例如:作為具有多個未封裝晶片的單一晶圓)、當作裸晶粒、或以封裝形式來配送。該晶片可與其它晶片、離散電路元件、及/或其它信號處理裝置整合,作為中間產品或最終產品某部分。該最終產品可以是包括積體電路晶片的任何產品,諸如具有中央處理器的電腦產品或智慧手機。 As described above, this method is used to fabricate integrated circuit wafers. The resulting integrated circuit chip can be distributed by the manufacturer as a blank wafer (for example, as a single wafer with multiple unpackaged chips), as a bare die, or in a packaged form. The wafer can be integrated with other wafers, discrete circuit elements, and / or other signal processing devices as part of an intermediate product or final product. The final product may be any product including integrated circuit chips, such as a computer product or smart phone with a central processing unit.
本文中對“垂直”、“水平”、“側向”等用語的參照屬於舉例,並非限制,乃用來建立參考架構。諸如“水平”與“側向”等用語是指平面中與半導體基材的頂端表面平行的方向,與其實際三維空間方位無關。諸如“垂直”與“正交”等用語是指與“水平”及“側向”方向垂直的方向。諸如“上面”及“下面”等用語指出元件或結構彼此的相對位置,及/或與半導體基材的頂端表面相對的位置,與相對高度截然不同。 References to the terms "vertical", "horizontal", and "lateral" in this article are examples, not limitations, but used to establish a reference structure. Terms such as "horizontal" and "lateral" refer to directions in a plane parallel to the top surface of the semiconductor substrate, regardless of their actual three-dimensional spatial orientation. Terms such as "vertical" and "orthogonal" refer to directions perpendicular to the "horizontal" and "lateral" directions. Terms such as "above" and "below" indicate the relative positions of the elements or structures relative to each other, and / or the positions opposed to the top surface of the semiconductor substrate, which are very different from the relative heights.
“連接”或“耦接”至另一元件、或與該另一元件“連接”或“耦接”的特徵可直接連接或耦接至其它元件,或者,轉而可出現一或多個中介元件。如無中介元件,一特徵可“直接連接”或“直接耦接”至另一元件。如有至少一個中介元件,一特徵可“間接連接”或“間接耦接”至另一元件。 Features that are "connected" or "coupled" to another element, or "connected" or "coupled" to another element, may be directly connected or coupled to other elements, or, in turn, one or more intermediaries may appear element. If there is no intervening component, a feature can be "directly connected" or "directly coupled" to another component. If there is at least one intermediary element, a feature can be "indirectly connected" or "indirectly coupled" to another element.
本發明的各項具體實施例的描述已為了說明目的而介紹,但用意不在於窮舉或受限於所揭示的具體實施例。許多修改及變例對所屬技術領域中具有通常知識者將會顯而易見,但不會脫離所述具體實施例的範疇及精神。本文中使用的術語是為了最佳闡釋具體實施例的原理、對市場出現的技術所作的實務應用或技術改良、或讓所屬技術領域中具有通常知識者能夠理解本文中所揭示的具體實施例而選擇。 The description of the specific embodiments of the present invention has been introduced for illustrative purposes, but the intention is not to be exhaustive or limited to the disclosed specific embodiments. Many modifications and variations will be apparent to those of ordinary skill in the art, but will not depart from the scope and spirit of the specific embodiments. The terminology used in this article is to best explain the principles of specific embodiments, practical applications or technological improvements made to technologies appearing in the market, or to enable those with ordinary knowledge in the technical field to understand the specific embodiments disclosed herein. select.
Claims (20)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/490,181 US9966338B1 (en) | 2017-04-18 | 2017-04-18 | Pre-spacer self-aligned cut formation |
US15/490,181 | 2017-04-18 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201903964A true TW201903964A (en) | 2019-01-16 |
TWI684243B TWI684243B (en) | 2020-02-01 |
Family
ID=62045109
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW107105260A TWI684243B (en) | 2017-04-18 | 2018-02-13 | Pre-spacer self-aligned cut formation |
Country Status (4)
Country | Link |
---|---|
US (2) | US9966338B1 (en) |
CN (1) | CN108735661B (en) |
DE (1) | DE102018205693B4 (en) |
TW (1) | TWI684243B (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10593549B2 (en) * | 2017-02-27 | 2020-03-17 | Imec Vzw | Method for defining patterns for conductive paths in a dielectric layer |
TWI766060B (en) * | 2018-07-03 | 2022-06-01 | 聯華電子股份有限公司 | Patterning method |
CN112713087B (en) * | 2019-10-24 | 2024-03-22 | 中芯国际集成电路制造(上海)有限公司 | Semiconductor structure and forming method thereof |
EP3840034B1 (en) * | 2019-12-19 | 2022-06-15 | Imec VZW | Method for producing nanoscaled electrically conductive lines for semiconductor devices |
Family Cites Families (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6030896A (en) * | 1999-04-21 | 2000-02-29 | National Semiconductor Corporation | Self-aligned copper interconnect architecture with enhanced copper diffusion barrier |
AU7565400A (en) * | 1999-09-17 | 2001-04-17 | Telefonaktiebolaget Lm Ericsson (Publ) | A self-aligned method for forming deep trenches in shallow trenches for isolation of semiconductor devices |
JP3790469B2 (en) * | 2001-12-21 | 2006-06-28 | 富士通株式会社 | Semiconductor device |
US6894326B2 (en) * | 2003-06-25 | 2005-05-17 | International Business Machines Corporation | High-density finFET integration scheme |
US7345370B2 (en) * | 2005-01-12 | 2008-03-18 | International Business Machines Corporation | Wiring patterns formed by selective metal plating |
US7759253B2 (en) * | 2006-08-07 | 2010-07-20 | Taiwan Semiconductor Manufacturing Company, Ltd. | Method and material for forming a double exposure lithography pattern |
US7700466B2 (en) * | 2007-07-26 | 2010-04-20 | International Business Machines Corporation | Tunneling effect transistor with self-aligned gate |
US20100078728A1 (en) * | 2008-08-28 | 2010-04-01 | Taiwan Semiconductor Manufacturing Company, Ltd. | Raise s/d for gate-last ild0 gap filling |
CN103489822B (en) * | 2012-06-11 | 2016-12-14 | 中芯国际集成电路制造(上海)有限公司 | A kind of manufacture method of semiconductor device |
US8921225B2 (en) * | 2013-02-13 | 2014-12-30 | Globalfoundries Inc. | Method for off-grid routing structures utilizing self aligned double patterning (SADP) technology |
US9064813B2 (en) * | 2013-04-19 | 2015-06-23 | International Business Machines Corporation | Trench patterning with block first sidewall image transfer |
JP2014229694A (en) * | 2013-05-21 | 2014-12-08 | 株式会社東芝 | Semiconductor device and manufacturing method of the same |
US9466486B2 (en) * | 2013-08-30 | 2016-10-11 | Taiwan Semiconductor Manufacturing Company, Ltd. | Method for integrated circuit patterning |
US9564361B2 (en) * | 2013-09-13 | 2017-02-07 | Qualcomm Incorporated | Reverse self aligned double patterning process for back end of line fabrication of a semiconductor device |
US9209076B2 (en) * | 2013-11-22 | 2015-12-08 | Taiwan Semiconductor Manufacturing Company, Ltd. | Method of double patterning lithography process using plurality of mandrels for integrated circuit applications |
US9054164B1 (en) * | 2013-12-23 | 2015-06-09 | Intel Corporation | Method of forming high density, high shorting margin, and low capacitance interconnects by alternating recessed trenches |
US9305997B1 (en) * | 2014-12-18 | 2016-04-05 | Stmicroelectronics, Inc. | Method for making semiconductor device with stacked analog components in back end of line (BEOL) regions |
KR102318410B1 (en) * | 2015-04-01 | 2021-10-28 | 삼성전자주식회사 | Semiconductor device and method for manufacturing the same |
US9536778B2 (en) * | 2015-04-06 | 2017-01-03 | Globalfoundries Inc. | Self-aligned double patterning process for metal routing |
US9425097B1 (en) * | 2015-04-29 | 2016-08-23 | Globalfoundries Inc. | Cut first alternative for 2D self-aligned via |
US9548243B1 (en) * | 2015-06-30 | 2017-01-17 | International Business Machines Corporation | Self aligned via and pillar cut for at least a self aligned double pitch |
-
2017
- 2017-04-18 US US15/490,181 patent/US9966338B1/en active Active
-
2018
- 2018-02-13 TW TW107105260A patent/TWI684243B/en active
- 2018-02-20 US US15/899,685 patent/US10236256B2/en active Active
- 2018-04-16 DE DE102018205693.5A patent/DE102018205693B4/en active Active
- 2018-04-18 CN CN201810347213.XA patent/CN108735661B/en active Active
Also Published As
Publication number | Publication date |
---|---|
US20180301413A1 (en) | 2018-10-18 |
CN108735661B (en) | 2023-05-05 |
US10236256B2 (en) | 2019-03-19 |
US9966338B1 (en) | 2018-05-08 |
TWI684243B (en) | 2020-02-01 |
DE102018205693B4 (en) | 2019-11-21 |
CN108735661A (en) | 2018-11-02 |
DE102018205693A1 (en) | 2018-10-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI658537B (en) | Non-mandrel cut formation | |
CN101506967B (en) | Semiconductor devices including fine pitch arrays with staggered contacts and methods for designing and fabricating the same | |
TWI734970B (en) | Multiple patterning with mandrel cuts formed using a block mask | |
TWI684244B (en) | Methods of patterning variable width metallization lines | |
TWI727302B (en) | Interconnects with variable space mandrel cuts formed by block patterning | |
US9905424B1 (en) | Self-aligned non-mandrel cut formation for tone inversion | |
TWI684243B (en) | Pre-spacer self-aligned cut formation | |
CN108074911B (en) | Jumping hole structure | |
US20150047891A1 (en) | Integrated Circuit Features with Fine Line Space and Methods for Forming the Same | |
US11114338B2 (en) | Fully aligned via in ground rule region | |
CN108091551B (en) | Self-aligned lithographic patterning | |
US10319626B1 (en) | Interconnects with cuts formed by block patterning | |
TWI668875B (en) | On-chip capacitors with floating islands | |
TWI697075B (en) | Cut-first approach with self-alignment during line patterning | |
TWI885696B (en) | Top via interconnect | |
JP4097702B2 (en) | Integrated circuit multilayer interconnect structure formed by single via etching and double fill process | |
CN108346617A (en) | Method for manufacturing dual damascene structure | |
TWI555122B (en) | Interconnection of semiconductor device and fabrication method thereof | |
TW202441755A (en) | Top via interconnect |