[go: up one dir, main page]

TW201900212A - Method for treating immune-related adverse events in cancer therapy using soluble CD24 - Google Patents

Method for treating immune-related adverse events in cancer therapy using soluble CD24 Download PDF

Info

Publication number
TW201900212A
TW201900212A TW107117213A TW107117213A TW201900212A TW 201900212 A TW201900212 A TW 201900212A TW 107117213 A TW107117213 A TW 107117213A TW 107117213 A TW107117213 A TW 107117213A TW 201900212 A TW201900212 A TW 201900212A
Authority
TW
Taiwan
Prior art keywords
hours
protein
irae
cancer therapy
cd24fc
Prior art date
Application number
TW107117213A
Other languages
Chinese (zh)
Inventor
陽 劉
盼 鄭
馬汀 戴芬波特
Original Assignee
美商昂科免疫公司
美國國家兒童醫學中心
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商昂科免疫公司, 美國國家兒童醫學中心 filed Critical 美商昂科免疫公司
Publication of TW201900212A publication Critical patent/TW201900212A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/705Receptors; Cell surface antigens; Cell surface determinants
    • C07K14/70596Molecules with a "CD"-designation not provided for elsewhere
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/177Receptors; Cell surface antigens; Cell surface determinants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/12Antidiarrhoeals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/16Drugs for disorders of the alimentary tract or the digestive system for liver or gallbladder disorders, e.g. hepatoprotective agents, cholagogues, litholytics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/06Immunosuppressants, e.g. drugs for graft rejection
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • A61P7/06Antianaemics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/505Medicinal preparations containing antigens or antibodies comprising antibodies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2803Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily
    • C07K16/2818Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily against CD28 or CD152
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/20Immunoglobulins specific features characterized by taxonomic origin
    • C07K2317/21Immunoglobulins specific features characterized by taxonomic origin from primates, e.g. man
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/40Immunoglobulins specific features characterized by post-translational modification
    • C07K2317/41Glycosylation, sialylation, or fucosylation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/52Constant or Fc region; Isotype
    • C07K2317/524CH2 domain
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/52Constant or Fc region; Isotype
    • C07K2317/526CH3 domain
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/52Constant or Fc region; Isotype
    • C07K2317/528CH4 domain
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/52Constant or Fc region; Isotype
    • C07K2317/53Hinge
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/90Immunoglobulins specific features characterized by (pharmaco)kinetic aspects or by stability of the immunoglobulin
    • C07K2317/94Stability, e.g. half-life, pH, temperature or enzyme-resistance
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/30Non-immunoglobulin-derived peptide or protein having an immunoglobulin constant or Fc region, or a fragment thereof, attached thereto

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Immunology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Zoology (AREA)
  • Cell Biology (AREA)
  • Diabetes (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Toxicology (AREA)
  • Epidemiology (AREA)
  • Hematology (AREA)
  • Transplantation (AREA)
  • Oncology (AREA)
  • Endocrinology (AREA)
  • Obesity (AREA)
  • Pulmonology (AREA)
  • Virology (AREA)
  • Communicable Diseases (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Emergency Medicine (AREA)
  • Cardiology (AREA)
  • Peptides Or Proteins (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

The present invention relates to the use of a CD24 protein for treating immune-related adverse events (irAEs) associated with cancer immunotherapy.

Description

使用可溶性CD24治療癌症療法中之免疫相關不良事件的方法Method for treating immune-related adverse events in cancer therapy using soluble CD24

本發明係關於CD24蛋白質用於治療與癌症免疫療法相關之免疫相關不良事件(irAEs)的用途。The present invention relates to the use of CD24 protein for the treatment of immune-related adverse events (irAEs) associated with cancer immunotherapy.

免疫系統具有識別及消除實驗模型系統及患者之癌症的能力。因此,癌症免疫療法正作為癌症療法之最有前景之領域之一出現。主動的癌症免疫療法涉及擴增天然免疫反應的藥劑(包括針對PD-1、PD-L1或CTLA-4的抗體);調節腫瘤微環境的小分子;或使用活體外刺激腫瘤浸潤性淋巴球(TILs)、活化天然殺手(NK)細胞或經基因工程改造之T細胞(經嵌合抗原受體[CARs]及T細胞受體[TCR]修飾的T細胞)的授受性細胞轉移(ACT)。或者,直接靶向腫瘤的其他癌症免疫療法能間接地引起免疫系統活化(包括靶向癌症之抗體,諸如實體癌症情況下之抗Her-2抗體、B細胞惡性疾病情況下之抗CD20抗體,或神經母細胞瘤情況下之抗GM2抗體)。針對PD-1、PD-L1及CTLA-4之抗體以及靶向腫瘤之抗體已展現治療實體腫瘤及血液學腫瘤的實質益處。諸如CAR T細胞之授受性細胞免疫療法已展現令人印象深刻之針對血液學腫瘤(諸如白血病)的作用,但對實體腫瘤僅具有限作用。雖然CAR-T免疫療法已更多地靶向血液科惡性疾病,但使用基因經修飾之TCR的T細胞免疫療法已更多地靶向實體腫瘤。The immune system has the ability to identify and eliminate experimental model systems and patients' cancers. Therefore, cancer immunotherapy is emerging as one of the most promising areas of cancer therapy. Active cancer immunotherapy involves agents that amplify the natural immune response (including antibodies against PD-1, PD-L1, or CTLA-4); small molecules that regulate the tumor microenvironment; or the use of in vitro stimulation of tumor infiltrating lymphocytes ( TILs), activated natural killer (NK) cells, or genetically engineered T cells (T-cells modified with chimeric antigen receptors [CARs] and T cell receptors [TCR]) and acceptor cell transfer (ACT). Alternatively, other cancer immunotherapies that directly target tumors can indirectly activate the immune system (including antibodies that target cancer, such as anti-Her-2 antibodies in the case of solid cancer, anti-CD20 antibodies in the case of malignant B-cell disease, or Anti-GM2 antibody in the case of neuroblastoma). Antibodies against PD-1, PD-L1, and CTLA-4 and tumor-targeting antibodies have shown substantial benefits in the treatment of solid tumors and hematological tumors. Receptive cell immunotherapy, such as CAR T cells, has shown impressive effects against hematological tumors, such as leukemia, but has only limited effects on solid tumors. Although CAR-T immunotherapy has more targeted hematological malignancies, T-cell immunotherapy using genetically modified TCR has more targeted solid tumors.

腫瘤藉由產生高耐受性及免疫抑制性腫瘤微環境(TMEs)來躲避免疫排除作用。因此,免疫腫瘤學之一重要目標為瞭解腫瘤所利用的可變耐受機制,以便排除允許腫瘤浸潤、活化的此等機制,從而允許免疫系統摧毀腫瘤細胞。儘管其有治療前景,然而免疫療法之全身遞送亦可突破自身耐受性。此又引起多種器官系統產生輕度至重度發炎反應,且在一些情況下產生危及生命的自體免疫,通常稱為免疫相關不良事件(irAEs)。由於免疫治療方法以愈來愈有效的組合擴展以針對更多的癌症適應症,因此控制非特異性irAEs成為此等下一代癌症免疫療法之關鍵目標。Tumors avoid immune elimination by creating highly tolerated and immunosuppressive tumor microenvironments (TMEs). Therefore, one of the important goals of immuno-oncology is to understand the variable tolerance mechanisms utilized by tumors in order to exclude such mechanisms that allow tumor infiltration and activation, thereby allowing the immune system to destroy tumor cells. Despite its therapeutic promise, systemic delivery of immunotherapy can also break through self-tolerance. This in turn causes mild to severe inflammatory reactions in a variety of organ systems and, in some cases, life-threatening autoimmunity, commonly referred to as immune-related adverse events (irAEs). As immunotherapeutic methods are being expanded with more and more effective combinations to address more cancer indications, controlling non-specific irAEs has become a key goal for these next-generation cancer immunotherapies.

用針對PD-1、PD-L1及CTLA-4之抗體治療已表明為增強臨床前模型之抗腫瘤免疫力的強大工具。使用針對CTLA4之抗體的單一療法促進不同來源之可移植腫瘤的排斥反應。基於有前景的臨床前腫瘤模型研究,已探究針對CTLA4之抗體在不同人類惡性疾病中的臨床潛力。雖然抗CTLA4(伊匹單抗(Ipilimumab),作為Yervoy市售,揭示於美國專利 第6,984,720號)已展現出治療黑色素瘤的功效,但CTLA4之治療及靶向與自體免疫樣毒性相關。抗PD-1及抗PD-L1抗體展示顯著較高的臨床反應及顯著較低的irAE。然而,重度自體免疫不良事件仍發生於約15-20%的癌症患者中。另外,抗CTLA4 mAbs,諸如伊匹單抗及曲美單抗(Tremelimumab),與具有優良治療效果之抗PD-1/PD-L1抗體以組合療法使用。但改善的治療效果甚至與更高的3級及4級器官毒性率相關。已報導多個身體部位出現irAEs情形,包括胃腸道、皮膚、腎臟、胰臟、肝臟以及中樞及周邊神經系統。irAEs之發生率及嚴重程度與針對檢查點阻斷之總體患者反應及生存期相關,表明抗腫瘤與自體免疫反應均對抗檢查點免疫療法敏感。此類irAEs可以廣泛地歸類為「自體免疫毒性」或所謂的「中靶、非腫瘤毒性」,其由當所靶向的腫瘤相關抗原在非惡性組織表現時,對宿主組織產生的抗原特異性攻擊所引起。在靶向MAGE-A3的經基因工程改造之T細胞輸注之後,自體免疫毒性已引起致命毒性。Treatment with antibodies against PD-1, PD-L1 and CTLA-4 has been shown to be a powerful tool to enhance the anti-tumor immunity of preclinical models. Monotherapy using antibodies against CTLA4 promotes rejection of transplantable tumors of different origin. Based on promising preclinical tumor model studies, the clinical potential of antibodies against CTLA4 in different human malignant diseases has been explored. Although anti-CTLA4 (Ipilimumab, commercially available as Yervoy and disclosed in US Patent No. 6,984,720) has shown efficacy in treating melanoma, the treatment and targeting of CTLA4 is associated with autoimmune-like toxicity. Anti-PD-1 and anti-PD-L1 antibodies display significantly higher clinical response and significantly lower irAE. However, severe autoimmune adverse events still occur in about 15-20% of cancer patients. In addition, anti-CTLA4 mAbs, such as Ipilimumab and Tremelimumab, are used in combination therapy with anti-PD-1 / PD-L1 antibodies that have excellent therapeutic effects. However, the improved treatment effect is even associated with higher grade 3 and 4 organ toxicity rates. IrAEs have been reported in a number of body parts, including the gastrointestinal tract, skin, kidney, pancreas, liver, and central and peripheral nervous systems. The incidence and severity of irAEs correlates with overall patient response and survival for checkpoint blockades, suggesting that both antitumor and autoimmune responses are sensitive to checkpoint immunotherapy. Such irAEs can be broadly classified as "autoimmune toxicity" or the so-called "medium target, non-tumor toxicity", which is caused by the antigen produced on the host tissue when the targeted tumor-associated antigen is expressed in non-malignant tissue. Caused by specific attacks. Following genetically engineered T-cell infusion targeting MAGE-A3, autoimmune toxicity has caused lethal toxicity.

經基因工程改造之T細胞療法,諸如CAR-T,亦與限制其用途之irAEs相關,但在此,不良事件更通常為細胞介素相關毒性。CAR-T細胞引起活體內T細胞擴增,此能引起細胞介素之毒性水準之釋放,此全身發炎反應個別地稱為細胞介素風暴或細胞介素釋放症候群(CRS)。輸注反應亦為抗體及Fc融合蛋白治療劑之共同現象,且與以下範圍內之症狀相關:輕度噁心及發熱,直至危及生命的多重器官衰竭。積極支援照護為經歷CAR T細胞毒性之所有患者必需的,其中低血壓之早期干預及並行感染之治療為必不可少的。然而,藥理學管理因免疫抑制療法消除CAR T細胞抗惡性疾病活性的風險而複雜化且是為何不使用預防性免疫抑制術的主要原因。托西利單抗(tocilizumab)阻斷介白素-6受體仍為CRS之主要藥理學療法,但投藥之適應症因治療中心而異。Genetically engineered T-cell therapies, such as CAR-T, are also associated with irAEs that limit their use, but here, adverse events are more often cytokine-related toxicity. CAR-T cells cause the expansion of T cells in vivo, which can cause the release of cytotoxic levels. This systemic inflammatory response is individually referred to as the interleukin storm or the interleukin release syndrome (CRS). Infusion reactions are also a common phenomenon of antibodies and Fc fusion protein therapeutics, and are associated with symptoms in the following ranges: mild nausea and fever, to life-threatening multiple organ failure. Active support for care is necessary for all patients experiencing CAR T cell toxicity, of which early intervention for hypotension and treatment of concurrent infections are essential. However, pharmacological management is complicated by immunosuppressive therapies that eliminate the risk of CAR T cell anti-malignant disease activity and is the main reason why prophylactic immunosuppression is not used. Tocilizumab to block interleukin-6 receptor is still the main pharmacological therapy for CRS, but the indications for administration vary depending on the treatment center.

CRS亦已伴隨其他形式之癌症療法發生,其與惡性細胞快速溶解相關,導致急性過敏反應或稱為腫瘤溶解症候群(TLS)之現象。由於細胞溶解能引起細胞內組分釋放,稱為危險(損傷)相關分子模式(DAMPs),因此若未適當控制,則其能引起炎症且為自體免疫疾病創造條件。然而,傳統免疫抑制劑可能因癌症療法中之不良事件而存在問題,原因在於所有形式之癌症療法咸信直接地或間接地需要抗癌免疫反應。CRS has also been accompanied by other forms of cancer therapy, which are related to the rapid lysis of malignant cells, leading to an acute allergic reaction or a phenomenon known as tumor lysis syndrome (TLS). Because cytolysis can cause the release of intracellular components, called dangerous (damage) related molecular patterns (DAMPs), if not properly controlled, it can cause inflammation and create conditions for autoimmune diseases. However, traditional immunosuppressants can be problematic due to adverse events in cancer therapy, as all forms of cancer therapy believe that anti-cancer immune responses are directly or indirectly required.

因此,醫學上存在著一個未滿足之很大需求是在保持癌症免疫力的同時治療irAEs。Therefore, there is a large unmet need in medicine to treat irAEs while maintaining cancer immunity.

本文提供一種藉由向有需要的個體投與CD24蛋白質來治療、緩解、最小化或預防與癌症免疫療法相關之免疫相關不良事件(irAEs)的方法。irAE可能是腹瀉或另一種胃腸病症、純紅血球發育不全、小紅血球性貧血、狼瘡、自體免疫腎炎、自體免疫肝炎、肺炎、心肌炎、心包炎、內分泌病變、艾迪森氏病(Addison's disease)、休格連氏症候群(Sjogren's syndrome)或I型糖尿病。CD24蛋白質可以包含成熟人類CD24或其變異體。成熟人類CD24之序列可以包含SEQ ID NO: 1或2中所闡述之胺基酸序列。CD24蛋白質可以包含人類CD24之任何或所有胞外域。CD24蛋白質之序列可以包含信號序列,所述信號序列具有SEQ ID NO: 4中所闡述之胺基酸序列,以允許自表現所述蛋白質之細胞分泌。信號肽序列可能為其他跨膜或所分泌蛋白質上所發現的序列,或此項技術中已知之現有信號肽經修飾的序列。CD24蛋白質可以具有可溶性且/或可以經糖基化。CD24蛋白質可以使用真核蛋白質表現系統產生,所述系統可以包含中國倉鼠卵巢細胞系中所含的載體或複製缺乏型逆轉錄病毒載體。複製缺乏型逆轉錄病毒載體可以穩定地整合至真核細胞之基因組中。This article provides a method of treating, alleviating, minimizing or preventing immune-related adverse events (irAEs) associated with cancer immunotherapy by administering CD24 protein to individuals in need. irAE may be diarrhea or another gastrointestinal disorder, pure red blood cell hypoplasia, small red blood cell anemia, lupus, autoimmune nephritis, autoimmune hepatitis, pneumonia, myocarditis, pericarditis, endocrine disease, Addison's disease ), Sjogren's syndrome or type I diabetes. The CD24 protein may comprise mature human CD24 or a variant thereof. The sequence of mature human CD24 may comprise the amino acid sequence set forth in SEQ ID NO: 1 or 2. The CD24 protein may contain any or all of the extracellular domains of human CD24. The sequence of the CD24 protein may comprise a signal sequence having the amino acid sequence set forth in SEQ ID NO: 4 to allow secretion from a cell expressing the protein. The signal peptide sequence may be a sequence found on other transmembrane or secreted proteins, or modified sequences of existing signal peptides known in the art. The CD24 protein may be soluble and / or may be glycosylated. The CD24 protein can be produced using a eukaryotic protein expression system, which can include a vector contained in a Chinese hamster ovary cell line or a replication-deficient retrovirus vector. Replication-deficient retroviral vectors can be stably integrated into the genome of eukaryotic cells.

CD24蛋白質可以包含蛋白質標籤,所述蛋白質標籤可以在CD24蛋白質之N或C末端融合。蛋白質可以包含哺乳動物免疫球蛋白(Ig)之一部分,所述部分可為人類Ig蛋白質之Fc區。人類Ig蛋白質可以包含人類Ig蛋白質之鉸鏈區及CH2及CH3域,且人類Ig蛋白質可為IgG1、IgG2、IgG3、IgG4或IgA。Fc區亦可包含IgM之鉸鏈區及CH2、CH3及CH4域。CD24蛋白質可以包含SEQ ID NO: 5、6、8、9、11或12中所闡述之胺基酸序列。The CD24 protein can include a protein tag that can be fused at the N- or C-terminus of the CD24 protein. The protein may comprise a portion of a mammalian immunoglobulin (Ig), which may be the Fc region of a human Ig protein. The human Ig protein may include a hinge region and CH2 and CH3 domains of the human Ig protein, and the human Ig protein may be IgG1, IgG2, IgG3, IgG4, or IgA. The Fc region may also include the hinge region of IgM and the CH2, CH3, and CH4 domains. The CD24 protein may comprise an amino acid sequence set forth in SEQ ID NO: 5, 6, 8, 9, 11, or 12.

癌症免疫療法可為抗CTLA4抗體,所述抗體可為伊匹單抗。抗CTLA4抗體可以與另一種療法組合投與。癌症療法亦可為抗PD-1抗體,其可以與另一種療法組合投與。癌症療法亦可為抗PD-L1抗體,其可以與另一種療法組合投與。癌症療法亦可為嵌合抗原T細胞、經T細胞受體修飾的T細胞,或活化天然殺手細胞。癌症療法亦可為輻射療法、化學療法,或涉及靶向癌細胞之抗體的癌症療法。The cancer immunotherapy may be an anti-CTLA4 antibody, and the antibody may be ipilimumab. Anti-CTLA4 antibodies can be administered in combination with another therapy. Cancer therapy can also be an anti-PD-1 antibody, which can be administered in combination with another therapy. Cancer therapy can also be an anti-PD-L1 antibody, which can be administered in combination with another therapy. Cancer therapy can also be chimeric antigen T cells, T cells modified with T cell receptors, or activated natural killer cells. Cancer therapy can also be radiation therapy, chemotherapy, or cancer therapy involving antibodies that target cancer cells.

本文中亦描述一種藉由向有需要的個體投與CD24蛋白質來治療、減輕或預防個體之移植物抗宿主疾病(GvHD)的方法,所述個體在同種異體造血幹細胞移植(HSCT)之後可能接受、已接受或正接受活化天然殺手(aNK)細胞。Also described herein is a method of treating, reducing or preventing GvHD by administering CD24 protein to an individual in need, who may receive an allogeneic hematopoietic stem cell transplant (HSCT) Have received or are receiving activated natural killer (aNK) cells.

本文中進一步描述一種藉由向有需要的個體投與CD24來預防或治療在癌症治療期間發生之與塊狀腫瘤溶解相關之irAEs的方法。癌症療法可為輻射療法、化學療法,或使癌細胞被直接殺死之抗癌抗體。Further described herein is a method of preventing or treating irAEs associated with massive tumor lysis that occurs during cancer treatment by administering CD24 to individuals in need. Cancer therapy can be radiation therapy, chemotherapy, or anti-cancer antibodies that allow cancer cells to be killed directly.

本發明人已驚人地發現,CD24之可溶形式高度有效地治療免疫相關不良事件(irAEs)。所述效果可以經由DAMPs介導。模式識別涉及由病原體相關分子模式與組織損傷相關分子模式(分別稱為PAMPs及DAMPs)觸發的發炎反應。本發明人已意識到,近期研究已表明宿主對DAMPs之反應加劇可能在發炎及自體免疫疾病之發病機制中起部分作用。發現DAMPs在動物模型中促進發炎細胞介素及自體免疫疾病產生,且因此發現DAMPs抑制劑(諸如HMGB1及HSP90)改善類風濕性關節炎(RA)(4-6)。TLRs、RAGE-R、DNGR(由Clec9A編碼)及巨噬細胞誘導C型凝集素(Mincle)已表明為負責介導由多種DAMPs起始之發炎的受體(2, 7-14)。The inventors have surprisingly discovered that the soluble form of CD24 is highly effective in treating immune-related adverse events (irAEs). The effect can be mediated via DAMPs. Pattern recognition involves inflammatory responses triggered by pathogen-associated molecular patterns and tissue damage-related molecular patterns (referred to as PAMPs and DAMPs, respectively). The inventors have realized that recent studies have shown that an increased host response to DAMPs may play a part in the pathogenesis of inflammation and autoimmune diseases. DAMPs were found to promote the production of inflammatory cytokines and autoimmune diseases in animal models, and therefore DAMPs inhibitors such as HMGB1 and HSP90 were found to improve rheumatoid arthritis (RA) (4-6). TLRs, RAGE-R, DNGR (encoded by Clec9A), and macrophage-induced type C lectin (Mincle) have been shown to be receptors responsible for mediating inflammation initiated by various DAMPs (2, 7-14).

本發明人的近期著作表明CD24-唾液酸結合免疫球蛋白樣凝集素G相互作用使針對DAMPs的先天免疫力有別於針對PAMPs的先天免疫力(15,16)。唾液酸結合免疫球蛋白樣凝集素蛋白質為識別多種含唾液酸結構的膜相關免疫球蛋白(Ig)超家族成員。大部分唾液酸結合免疫球蛋白樣凝集素具有細胞內免疫酪胺酸抑制基元(ITIM),所述基元與SHP-1、SHP-2及Cbl-b結合以控制發炎反應之關鍵調節因子。本發明人已報導CD24為唾液酸結合免疫球蛋白樣凝集素(小鼠中之唾液酸結合免疫球蛋白樣凝集素G及人體中之唾液酸結合免疫球蛋白樣凝集素10)的第一天然配位體(15)。唾液酸結合免疫球蛋白樣凝集素G與唾液酸化CD24發生相互作用以經由SHP-1/2信號傳導機制抑制TLR介導之針對DAMPs(諸如HMGB1)的宿主反應(15)。Recent works by the inventors show that the CD24-sialic acid-binding immunoglobulin-like lectin G interaction makes innate immunity against DAMPs different from innate immunity against PAMPs (15, 16). Sialic acid-binding immunoglobulin-like lectin proteins are members of a variety of membrane-associated immunoglobulin (Ig) superfamilies that recognize sialic acid-containing structures. Most sialic acid-binding immunoglobulin-like lectins have an intracellular immune tyrosine inhibitory motif (ITIM) that binds to SHP-1, SHP-2, and Cbl-b, a key regulator of the inflammatory response . The present inventors have reported that CD24 is the first natural of sialic acid-binding immunoglobulin-like lectin (sialic acid-binding immunoglobulin-like lectin G in mice and sialic acid-binding immunoglobulin-like lectin 10 in humans) Ligand (15). Sialic acid-binding immunoglobulin-like lectin G interacts with sialylated CD24 to inhibit TLR-mediated host responses to DAMPs (such as HMGB1) via the SHP-1 / 2 signaling mechanism (15).

人類CD24為GPI錨定之小分子,其由CD24基因中240個鹼基對之開放閱讀框架編碼(28)。在80個胺基酸中,最前面的26個構成信號肽,而最後23個充當裂解信號以實現GPI尾連接。因此,成熟人類CD24分子僅具有31個胺基酸。31個胺基酸之一具有人類群體間之多態性。開放閱讀框架之核苷酸170處發生的C向T轉換引起丙胺酸(a)被纈胺酸(v)取代。由於此殘基位於距裂解位點最近之N末端,且由於置換無保守性,因此此兩種對偶基因可以不同效率表現於細胞表面上。的確,cDNA轉染研究證明,CD24v 對偶基因更有效率地表現於細胞表面上(28)。據此,CD24v/v PBL表現更高量的CD24,尤其在T細胞上。Human CD24 is a small molecule anchored by GPI, which is encoded by an open reading frame of 240 base pairs in the CD24 gene (28). Of the 80 amino acids, the first 26 constitute the signal peptide, while the last 23 serve as cleavage signals to achieve GPI tail ligation. Therefore, mature human CD24 molecules have only 31 amino acids. One of the 31 amino acids has polymorphisms among human populations. The C-to-T conversion at nucleotide 170 of the open reading frame causes alanine (a) to be replaced by valine (v). Since this residue is located at the N-terminus nearest to the cleavage site, and because the substitution is not conservative, the two dual genes can be expressed on the cell surface with different efficiency. Indeed, cDNA transfection studies have demonstrated that the CD24 v dual gene appears more efficiently on the cell surface (28). Based on this, CD24 v / v PBL showed higher amounts of CD24, especially on T cells.

本發明人已證明CD24負向調節針對細胞DAMPs的宿主反應,所述細胞DAMPs作為組織或器官損傷的結果而釋放,且至少兩種重疊機制可以解釋此活性。首先,CD24結合至若干DAMPs,包括HSP70、HSP90、HMGB1及核仁素(nucleolin),且抑制針對此等DAMPs之宿主反應。為此,假定CD24可以截留發炎刺激以防止與其受體TLR或RAGE發生相互作用。其次,使用乙醯胺苯酚(acetaminophen)誘導之肝臟壞死及確保發炎之小鼠模型,本發明人證明CD24經由與其受體唾液酸結合免疫球蛋白樣凝集素G發生的相互作用向針對組織損傷的宿主反應提供強大的負向調節作用。為獲得此活性,CD24可以結合唾液酸結合免疫球蛋白樣凝集素G且由唾液酸結合免疫球蛋白樣凝集素G刺激信號傳導,其中唾液酸結合免疫球蛋白樣凝集素G結合之SHP1觸發負向調節。兩種機制均可以協同作用,因為任一基因發生靶向突變之小鼠產生強得多的發炎反應。實際上,由CD24-/-或唾液酸結合免疫球蛋白樣凝集素G-/-小鼠之骨髓培養而得的DC當用HMGB1、HSP70或HSP90刺激時產生更高量的發炎細胞介素。據本發明人所知,CD24為能夠制止DAMPs觸發發炎的唯一抑制性DAMP受體,且特異性靶向針對組織損傷之宿主發炎反應的藥物目前不可獲得。另外,本發明人已使用RA、MS及GvHD之小鼠模型證明外源可溶性CD24蛋白質能夠緩解DAMP介導之自體免疫疾病。1. 定義 . The inventors have demonstrated that CD24 negatively regulates the host response to cellular DAMPs that are released as a result of tissue or organ damage, and at least two overlapping mechanisms can explain this activity. First, CD24 binds to several DAMPs, including HSP70, HSP90, HMGB1, and nucleolin, and inhibits the host response to these DAMPs. For this reason, it is assumed that CD24 can retain inflammatory stimuli to prevent interaction with its receptor TLR or RAGE. Secondly, using a mouse model of acetaminophen-induced liver necrosis and ensuring inflammation, the inventors have demonstrated that CD24 is responsible for tissue damage through interactions with its receptor, sialic acid-binding immunoglobulin-like lectin G. The host response provides powerful negative regulation. To obtain this activity, CD24 can bind to sialic acid-binding immunoglobulin-like lectin G and stimulate signal transduction by sialic acid-binding immunoglobulin-like lectin G, in which sialic acid-binding immunoglobulin-like lectin G binds to SHP1 to trigger negative向 调整。 To adjust. Both mechanisms work synergistically, as mice with targeted mutations in either gene produce a much stronger inflammatory response. In fact, DCs obtained from bone marrow culture of CD24-/-or sialic acid-binding immunoglobulin-like lectin G-/-mice produce higher amounts of inflammatory cytokines when stimulated with HMGB1, HSP70 or HSP90. To the inventors' knowledge, CD24 is the only inhibitory DAMP receptor capable of stopping DAMPs from triggering inflammation, and drugs that specifically target the host's inflammatory response to tissue damage are currently unavailable. In addition, the inventors have used mouse models of RA, MS, and GvHD to demonstrate that exogenous soluble CD24 protein can alleviate DAMP-mediated autoimmune diseases. 1. Definitions.

本文所用之術語僅出於描述特定實施例之目的且不希望具有限制性。除非上下文另有明確規定,否則如說明書及隨附申請專利範圍中所用,單數形式「一(a/an)」及「所述(the)」包括複數個指示物。The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting. Unless the context clearly indicates otherwise, as used in the description and the scope of the accompanying patent application, the singular forms "a / an" and "the" include plural referents.

對於本文中數值範圍之敍述而言,明確涵蓋其間每個具有相同精確度的中間數值。舉例而言,範圍6-9除涵蓋6及9之外亦涵蓋數值7及8,且範圍6.0-7.0明確涵蓋數值6.0、6.1、6.2、6.3、6.4、6.5、6.6、6.7、6.8、6.9及7.0。For the purposes of this description of numerical ranges, each intermediate value with the same accuracy is expressly covered. For example, the range 6-9 covers the values 7 and 8 in addition to 6 and 9, and the range 6.0-7.0 explicitly covers the values 6.0, 6.1, 6.2, 6.3, 6.4, 6.5, 6.6, 6.7, 6.8, 6.9, and 7.0.

「肽」或「多肽」為連接之胺基酸序列且可為天然的、合成的,或天然與合成之修飾或組合。A "peptide" or "polypeptide" is a linked amino acid sequence and may be natural, synthetic, or a modification or combination of natural and synthetic.

「基本上一致」可以意謂第一與第二胺基酸序列在1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、30、31、32、33、34、35、36、37、38、39、40、41、42、43、44、45、46、47、48、49、50、55、60、65、70、75、80、85、90、95、100、110、120、130、140、150、160、170、180、190、200、210、220、230、240、250、260、270、280、290或300個胺基酸之區域上至少60%、65%、70%、75%、80%、85%、90%、95%、96%、97%、98%或99%一致。"Substantially identical" may mean that the first and second amino acid sequences are at 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200, 210, 220, 230, 240, 250, 260, 270, 280, 290 or 300 amino acids in at least 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% are consistent.

當提及防止動物患病時,「治療(Treatment或treating)」意謂預防、抑制、抑止或完全消除疾病。預防疾病涉及在疾病發作之前向動物投與本發明組合物。抑制疾病涉及在疾病誘發之後,但在其臨床顯現之前,向動物投與本發明組合物。抑制疾病涉及在疾病臨床顯現之前向動物投與本發明組合物。When referring to preventing disease in an animal, "treatment or treating" means preventing, suppressing, suppressing or completely eliminating the disease. Preventing disease involves administering a composition of the invention to an animal before the onset of the disease. Inhibiting a disease involves administering a composition of the invention to an animal after its induction, but before its clinical manifestation. Inhibiting a disease involves administering a composition of the invention to an animal prior to the clinical manifestation of the disease.

「變異體」可以意謂胺基酸序列因胺基酸之插入、缺失或保守性取代而不同、但保持至少一種生物活性的肽或多肽。「生物活性」的代表性實例包括結合至鐸樣受體(toll-like receptor)及被特異性抗體結合的能力。變異體亦可意謂胺基酸序列與保持至少一種生物活性之參考蛋白質之胺基酸序列基本上一致的蛋白質。胺基酸保守取代(亦即,胺基酸被具有類似特性(例如帶電區域之親水性程度及分佈)之不同胺基酸置換)在此項技術中公認為典型地涉及微小變化。如此項技術中所理解,此等微小變化能部分地藉由考慮胺基酸之親水指數而鑑別。Kyte等人, 《分子生物學雜誌(J. Mol. Biol.)》157:105-132 (1982)。胺基酸之親水指數係基於其疏水性及電荷之考慮。此項技術中已知具有類似親水指數之胺基酸可經取代且仍保持蛋白質功能。在一個態樣中,親水指數為±2之胺基酸經取代。胺基酸之親水性亦可用於展現使蛋白質保持生物功能之取代。在肽之情形下考慮胺基酸之親水性允許計算彼肽之最大局域平均親水性,此為已報導與抗原性及免疫原性充分關聯的一種適用量度。美國專利第4,554,101號,其以引用的方式完全併入本文中。如此項技術中所理解,具有相似親水值之胺基酸的取代可產生保持生物活性(例如免疫原性)之肽。可以使用親水值在彼此±2內的胺基酸進行取代。胺基酸之疏水指數與親水值均受彼胺基酸之特定側鏈影響。根據彼觀測結果,應理解,與生物功能相容之胺基酸取代取決於胺基酸之相對相似度,特定而言,彼等胺基酸之側鏈的相對相似度,如疏水性、親水性、電荷、尺寸及其他特性所展現。2. CD24 A "variant" may mean a peptide or polypeptide that differs in amino acid sequence due to amino acid insertions, deletions, or conservative substitutions, but retains at least one biological activity. Representative examples of "biological activity" include the ability to bind to toll-like receptors and to be bound by specific antibodies. A variant may also mean a protein whose amino acid sequence is substantially identical to the amino acid sequence of a reference protein that maintains at least one biological activity. Conservative substitutions of amino acids (ie, replacement of amino acids by different amino acids having similar properties, such as the degree of hydrophilicity and distribution of charged regions) are generally recognized in the art as involving typically small changes. As understood in the art, these minor changes can be identified in part by considering the hydrophilic index of amino acids. Kyte et al., J. Mol. Biol. 157: 105-132 (1982). The hydrophilic index of amino acids is based on their hydrophobicity and charge considerations. It is known in the art that amino acids with similar hydrophilic indices can be substituted and still retain protein function. In one aspect, an amino acid having a hydrophilic index of ± 2 is substituted. The hydrophilic nature of amino acids can also be used to demonstrate substitutions that allow proteins to maintain biological functions. Considering the hydrophilicity of amino acids in the case of peptides allows calculation of the maximum local average hydrophilicity of that peptide, which is a suitable measure that has been reported to be sufficiently correlated with antigenicity and immunogenicity. US Patent No. 4,554,101, which is fully incorporated herein by reference. As understood in the art, substitution of amino acids with similar hydrophilic values can produce peptides that retain biological activity (eg, immunogenicity). Substitutions can be made with amino acids having hydrophilic values within ± 2 of each other. The hydrophobic index and hydrophilic value of amino acids are both affected by the specific side chains of the amino acids. According to his observations, it should be understood that amino acid substitution compatible with biological functions depends on the relative similarity of amino acids. In particular, the relative similarity of the side chains of their amino acids, such as hydrophobicity, hydrophilicity, etc. Performance, charge, size and other characteristics. CD24

本文中提供一種CD24蛋白質,其可以包含成熟CD24或其變異體。成熟CD24對應於CD24之胞外域(ECD)。成熟CD24可以來自人類或另一種哺乳動物。如上文所述,成熟人類CD24蛋白質具有31個胺基酸長度且在其C末端具有可變的丙胺酸(A)或纈胺酸(V)殘基: SETTTGTSSNSSQSTSNSGLAPNPTNATTK(V/A)(SEQ ID NO: 1)Provided herein is a CD24 protein, which may comprise mature CD24 or a variant thereof. Mature CD24 corresponds to the extracellular domain (ECD) of CD24. Mature CD24 can be from a human or another mammal. As described above, the mature human CD24 protein has 31 amino acid lengths and has variable alanine (A) or valine (V) residues at its C-terminus: SETTTGTSSNSSQSTSNSGLAPNPTNATTK (V / A) (SEQ ID NO : 1)

C末端纈胺酸或丙胺酸可能具有免疫原性且可以自CD24蛋白質省去,從而可以降低其免疫原性。因此,CD24蛋白質可以包含缺乏C末端胺基酸之人類CD24胺基酸序列: SETTTGTSSNSSQSTSNSGLAPNPTNATTK(SEQ ID NO: 2)C-terminal valine or alanine may be immunogenic and can be omitted from the CD24 protein, thereby reducing its immunogenicity. Therefore, the CD24 protein may contain a human CD24 amino acid sequence lacking a C-terminal amino acid: SETTTGTSSNSSQSTSNSGLAPNPTNATTK (SEQ ID NO: 2)

儘管來自小鼠及人類之成熟CD24蛋白質之胺基酸序列存在相當大的序列變化,但其為功能等效物,因為人類CD24Fc已表明在小鼠中具有活性。人類CD24 ECD之胺基酸序列展示與小鼠蛋白質存在一些序列保守性(39%一致性;基因庫寄存編號NP_033976)。然而,不令人驚訝的是,由於CD24 ECD長度僅為27-31個胺基酸(視物種而定),因此一致性百分比不會更高,並且結合至其一些受體(諸如唾液酸結合免疫球蛋白樣凝集素10/G)受到其唾液酸及/或醣蛋白之半乳糖糖類的介導。人類唾液酸結合免疫球蛋白樣凝集素-10(基因庫寄存編號AF310233)之胞外域與其鼠類同源物唾液酸結合免疫球蛋白樣凝集素-G(基因庫寄存編號NP_766488)受體蛋白質之間的胺基酸序列一致性為63%(圖2)。由於小鼠與人類CD24之間的序列保守主要存在於C末端及大量糖基化位點,因此使用CD24蛋白質時可以耐受成熟CD24蛋白質之顯著變異,尤其是彼等變異不影響C末端之保守殘基或不影響小鼠或人類CD24之糖基化位點。因此,CD24蛋白質可以包含成熟鼠類CD24之胺基酸序列: NQTSVAPFPGNQNISASPNPTNATTRG(SEQ ID NO: 3)。Despite considerable sequence changes in the amino acid sequence of mature CD24 protein from mice and humans, it is a functional equivalent because human CD24Fc has been shown to be active in mice. The amino acid sequence of human CD24 ECD showed some sequence conservation with mouse proteins (39% identity; gene bank accession number NP_033976). Not surprisingly, however, since the CD24 ECD is only 27-31 amino acids (depending on the species), the percent identity will not be higher, and it binds to some of its receptors, such as sialic acid binding Immunoglobulin-like lectin (10 / G) is mediated by its sialic acid and / or galactose sugars of glycoproteins. The extracellular domain of human sialic acid-binding immunoglobulin-like lectin-10 (Gene Bank Accession No. AF310233) and its murine homolog sialic acid-binding immunoglobulin-like lectin-G (Gene Bank Accession No. NP_766488) receptor protein The amino acid sequence identity was 63% (Figure 2). Because the sequence conservation between mouse and human CD24 mainly exists at the C-terminus and a large number of glycosylation sites, CD24 protein can tolerate significant variations of mature CD24 protein, especially their mutations do not affect the conservation of C-terminus. The residues did not affect the glycosylation site of mouse or human CD24. Therefore, the CD24 protein may contain the amino acid sequence of mature murine CD24: NQTSVAPFPGNQNISASPNPTNATTRG (SEQ ID NO: 3).

人類CD24 ECD之胺基酸序列展示與食蟹獼猴蛋白質存在之序列保守性(52%一致性;UniProt寄存編號UniProtKB-I7GKK1)大於小鼠。同樣,鑒於以下情形,此不會令人驚訝:由於ECD在此等物種中僅具有29-31個胺基酸長度,因此一致性百分比不會更高,且糖殘基之作用為結合至其受體。獼猴唾液酸結合免疫球蛋白樣凝集素-10受體之胺基酸序列尚未測定,但人類與恆河猴唾液酸結合免疫球蛋白樣凝集素-10(基因庫寄存編號XP_001116352)蛋白質之間的胺基酸序列一致性為89%。因此,CD24蛋白質亦可包含成熟獼猴(或恆河猴)CD24之胺基酸序列: TVTTSAPLSSNSPQNTSTTPNPANTTTKA(SEQ ID NO: 10)The amino acid sequence of human CD24 ECD showed sequence conservation (52% identity; UniProt Registration Number UniProtKB-I7GKK1) with the presence of cynomolgus monkey protein, which is greater than that of mice. Again, this is not surprising given the fact that since ECD has only 29-31 amino acid lengths in these species, the percent identity will not be higher, and the role of sugar residues is to bind to them Receptor. The amino acid sequence of cynomolgus sialic acid-binding immunoglobulin-like lectin-10 receptor has not been determined, but between humans and rhesus sialic acid-binding immunoglobulin-like lectin-10 (Gene Bank Accession No. XP_001116352) protein The amino acid sequence identity was 89%. Therefore, the CD24 protein may also contain the amino acid sequence of mature cynomolgus monkey (or rhesus) CD24: TVTTSAPLSSNSPQNTSTTPNPANTTTKA (SEQ ID NO: 10)

CD24蛋白質可具有可溶性。CD24蛋白質可以進一步包含N末端信號肽,以允許自表現所述蛋白質之細胞分泌。信號肽序列可以包含胺基酸序列MGRAMVARLGLGLLLLALLLPTQIYS(SEQ ID NO: 4)。或者,信號序列可為其他跨膜或所分泌蛋白質上所發現的彼等信號序列或此項技術中已知之現有信號肽經修飾的彼等信號序列中之任一者。a. 融合物 The CD24 protein may be soluble. The CD24 protein may further comprise an N-terminal signal peptide to allow secretion from cells expressing the protein. The signal peptide sequence may include the amino acid sequence MGRAMVARLGLGLLLLLLALLLPTQIYS (SEQ ID NO: 4). Alternatively, the signal sequence may be any one of other signal sequences found on other transmembrane or secreted proteins or modified on existing signal peptides known in the art. a. fusion

CD24蛋白質可以在其N或C末端與蛋白質標籤融合,所述蛋白質標籤可以包含可來自人類或小鼠或另一物種之哺乳動物Ig蛋白質的一部分。所述部分可以包含Ig蛋白質之Fc區。Fc區可以包含Ig蛋白質之鉸鏈區、CH2、CH3及CH4域中的至少一者。Ig蛋白質可為人類IgG1、IgG2、IgG3、IgG4或IgA,且Fc區可以包含Ig之鉸鏈區及CH2及CH3域。Fc區可以包含人類免疫球蛋白G1(IgG1)同型(SEQ ID NO: 7)。Ig蛋白質亦可為IgM,且Fc區可以包含IgM之鉸鏈區及CH2、CH3及CH4域。蛋白質標籤可為有助於蛋白質純化的親和標籤,及/或增強功能性蛋白溶解性及回收率的溶解性增強標籤。蛋白質標籤亦可提高CD24蛋白質之價數。蛋白質標籤亦可包含GST、His、FLAG、Myc、MBP、NusA、硫氧還蛋白(TRX)、小泛素樣調節劑(SUMO)、泛素(Ub)、白蛋白或駱駝科Ig。用於製備融合蛋白且純化融合蛋白的方法在此項技術中已熟知。The CD24 protein can be fused at its N- or C-terminus to a protein tag, which can include a portion of a mammalian Ig protein that can be from human or mouse or another species. The portion may comprise an Fc region of the Ig protein. The Fc region may include at least one of a hinge region, a CH2, a CH3, and a CH4 domain of the Ig protein. The Ig protein can be human IgG1, IgG2, IgG3, IgG4, or IgA, and the Fc region can include the hinge region of Ig and the CH2 and CH3 domains. The Fc region may contain the human immunoglobulin G1 (IgG1) isotype (SEQ ID NO: 7). The Ig protein can also be IgM, and the Fc region can include the hinge region of IgM and the CH2, CH3, and CH4 domains. The protein tag may be an affinity tag that facilitates protein purification, and / or a solubility enhancing tag that enhances the solubility and recovery of functional proteins. Protein tags can also increase the value of CD24 protein. The protein tag may also include GST, His, FLAG, Myc, MBP, NusA, thioredoxin (TRX), small ubiquitin-like modulator (SUMO), ubiquitin (Ub), albumin, or camelid Ig. Methods for preparing and purifying fusion proteins are well known in the art.

根據臨床前研究,為了構築實例中所鑑別的融合蛋白CD24Fc,已使用30個胺基酸之原生CD24分子的截斷形式,其缺乏位於GPI信號裂解位點之前的最後多態胺基酸(亦即,具有SEQ ID NO: 2的成熟CD24蛋白質)。使成熟人類CD24序列融合至人類IgG1 Fc域(SEQ ID NO: 7)。全長CD24Fc融合蛋白提供於SEQ ID NO: 5(圖1),且細胞分泌之CD24Fc融合蛋白的經處理形式(亦即,缺乏分裂的信號序列)提供於SEQ ID NO: 6。成熟CD24之經處理多態變異體(亦即,具有SEQ ID NO:1之成熟CD24蛋白質) 與IgG1 Fc的融合物可以包含SEQ ID NO: 11或12。b. 產生 According to preclinical studies, in order to construct the fusion protein CD24Fc identified in the example, a truncated form of 30 native amino acids of CD24 has been used, which lacks the last polymorphic amino acid (ie, the GPI signal cleavage site) , Mature CD24 protein with SEQ ID NO: 2). The mature human CD24 sequence was fused to the human IgG1 Fc domain (SEQ ID NO: 7). The full-length CD24Fc fusion protein is provided in SEQ ID NO: 5 (FIG. 1), and a processed form of the CD24Fc fusion protein secreted by the cell (ie, a signal sequence lacking division) is provided in SEQ ID NO: 6. A fusion of a processed polymorphic variant of mature CD24 (ie, the mature CD24 protein with SEQ ID NO: 1) and an IgG1 Fc may comprise SEQ ID NO: 11 or 12. b. produce

CD24蛋白質可以在很大程度上糖基化,且可以涉及CD24功能,諸如免疫細胞之共刺激及與損傷相關分子模式分子(DAMP)之相互作用。CD24蛋白質可使用真核表現系統製備。表現系統可能需要載體在哺乳動物細胞(諸如中國倉鼠卵巢(CHO)細胞)中表現。所述系統亦可為病毒載體,諸如可以用於感染真核細胞的複製缺乏型逆轉錄病毒載體。CD24蛋白質亦可由穩定細胞系產生,所述細胞系經由已整合至細胞基因組中之載體或載體的一部分表現CD24蛋白質。穩定細胞系可以經由所整合之複製缺乏型逆轉錄病毒載體表現CD24蛋白質。表現系統可為GPEx™。c. 醫藥組合物 CD24 proteins can be largely glycosylated and can be involved in CD24 functions, such as co-stimulation of immune cells and interaction with damage-associated molecular model molecules (DAMP). CD24 proteins can be prepared using a eukaryotic expression system. The performance system may require the vector to be expressed in mammalian cells, such as Chinese Hamster Ovary (CHO) cells. The system can also be a viral vector, such as a replication-deficient retroviral vector that can be used to infect eukaryotic cells. The CD24 protein can also be produced by a stable cell line that expresses the CD24 protein via a vector or part of a vector that has been integrated into the cell's genome. Stable cell lines can express CD24 protein via an integrated replication-deficient retroviral vector. The performance system can be GPEx ™. c. pharmaceutical composition

CD24蛋白質可以包含於醫藥組合物中,所述醫藥組合物可以包含醫藥學上可接受之量的CD24蛋白質。醫藥組合物可以包含醫藥學上可接受之載劑。醫藥組合物可以包含使CD24蛋白質在延長的期間保持穩定的溶劑。所述溶劑可為PBS,PBS可以使CD24蛋白質在-20℃(-15至-25℃)保持穩定至少66個月。溶劑能夠容納CD24蛋白質與另一種藥物之組合。The CD24 protein may be included in a pharmaceutical composition, which may include a CD24 protein in a pharmaceutically acceptable amount. The pharmaceutical composition may include a pharmaceutically acceptable carrier. The pharmaceutical composition may include a solvent that stabilizes the CD24 protein for an extended period of time. The solvent may be PBS, which can stabilize the CD24 protein at -20 ° C (-15 to -25 ° C) for at least 66 months. The solvent is able to hold the CD24 protein in combination with another drug.

醫藥組合物可以經調配用於非經腸投藥,包括(但不限於)注射或連續輸注。注射用的調配物可呈油性或水性媒劑中之懸浮液、溶液或乳液形式,且可以含有包括(但不限於)懸浮劑、穩定劑及分散劑之調配劑。所述組合物亦可以粉末形式提供,以便用包括(但不限於)無菌無熱原質水的適合媒劑復原。The pharmaceutical composition can be formulated for parenteral administration, including (but not limited to) injection or continuous infusion. Formulations for injection may be in the form of suspensions, solutions or emulsions in oily or aqueous vehicles, and may contain formulations including, but not limited to, suspending, stabilizing and dispersing agents. The composition may also be provided in powder form for reconstitution with a suitable vehicle including, but not limited to, sterile pyrogen-free water.

醫藥組合物亦可調配為儲槽式製劑,其可以藉由植入或藉由肌肉內注射投與。所述組合物可以用適合的聚合物或疏水性物質(例如存在於可接受之油中的乳液)、離子交換樹脂或微溶性衍生物(例如微溶性鹽)調配。皮下注射用的調配物對於如狼瘡之適應症及其相關表現及併發症可為特別相關的。d. 劑量 The pharmaceutical composition can also be formulated as a reservoir formulation, which can be administered by implantation or by intramuscular injection. The composition can be formulated with a suitable polymer or hydrophobic substance (such as an emulsion in an acceptable oil), an ion exchange resin, or a sparingly soluble derivative (eg, a sparingly soluble salt). Subcutaneous injection formulations may be particularly relevant for indications such as lupus and its related manifestations and complications. d. dosage

CD24蛋白質劑量最終可以經由確定具有可接受之毒性及臨床功效之劑量的臨床試驗來確定。初始臨床劑量可以經由嚙齒動物及非人類靈長類動物的藥物動力學及毒性研究來估算。CD24蛋白質劑量可為0.01 mg/kg至1000 mg/kg,且可為1至500 mg/kg,此視所期望的效果及投藥途徑而定。CD24蛋白質可藉由靜脈內輸注或皮下、壁內(亦即,空腔或器官之壁內)或腹膜內注射投與,且劑量可為10-1000 mg、10-500 mg、10-240 mg、10-120 mg,或10、30、60、120或240 mg,其中個體為人類。3. 治療方法 a. 免疫相關不良事件 The CD24 protein dosage can ultimately be determined through clinical trials to determine dosages with acceptable toxicity and clinical efficacy. The initial clinical dose can be estimated from pharmacokinetic and toxicity studies in rodents and non-human primates. The CD24 protein dosage may be from 0.01 mg / kg to 1000 mg / kg, and may be from 1 to 500 mg / kg, depending on the desired effect and the route of administration. CD24 protein can be administered by intravenous infusion or subcutaneous, intramural (i.e., cavity or organ wall) or intraperitoneal injection, and the dose can be 10-1000 mg, 10-500 mg, 10-240 mg , 10-120 mg, or 10, 30, 60, 120, or 240 mg, of which the individual is a human. 3. Treatment a. Immune-related adverse events

本文中提供一種藉由向有需要的個體投與CD24蛋白質來緩解、減少、最小化或治療irAEs的方法。irAEs可能與癌症療法相關,且個體可能為癌症患者。癌症療法可為癌症免疫療法。CD24蛋白質可以投與出現與癌症療法相關之irAEs或處於其風險下的個體。癌症療法起始之前或irAEs臨床徵象顯現之前,可以在預防上使用CD24蛋白質防止irAEs。起始癌症療法且診斷臨床症狀之後,亦可在治療上投與CD24蛋白質以治療irAEs。irAE可為腹瀉或另一種胃腸病症、純紅血球發育不全、小紅血球性貧血、狼瘡、自體免疫腎炎、自體免疫肝炎、肺炎、心肌炎、心包炎、內分泌病變、艾迪森氏病、性腺低能症、休格連氏症候群或I型糖尿病。Provided herein is a method for alleviating, reducing, minimizing or treating irAEs by administering CD24 protein to individuals in need. irAEs may be related to cancer therapy, and individuals may be cancer patients. Cancer therapy may be cancer immunotherapy. The CD24 protein can be administered to individuals who are at or at risk of irAEs associated with cancer therapy. CD24 protein can be used prophylactically to prevent irAEs before cancer therapy begins or before clinical signs of irAEs become apparent. After initiating cancer therapy and diagnosing clinical symptoms, CD24 protein can also be therapeutically administered to treat irAEs. irAE can be diarrhea or another gastrointestinal disorder, pure red blood cell hypoplasia, microcytic anemia, lupus, autoimmune nephritis, autoimmune hepatitis, pneumonia, myocarditis, pericarditis, endocrine disease, Addison's disease, hypogonadism Disease, Hugh's syndrome, or type I diabetes.

癌症療法可為主動免疫療法。主動免疫療法之實例包括抗CTLA4、抗PD-1、抗PD-L1、抗TNF、針對另一種TNF受體家族成員之抗體、抗LAG3、抗TIM3,及調節腫瘤微環境之小或大分子抑制劑。特定而言,癌症療法可為抗CTLA4免疫療法,且CD24蛋白質可以與抗CTLA4免疫療法組合或在抗CTLA4免疫療法之背景下投與個體。抗CTLA4抗體之實例包括伊匹單抗(Yervoy)及曲米利單抗(Tremilimumab)。Cancer therapy can be active immunotherapy. Examples of active immunotherapy include anti-CTLA4, anti-PD-1, anti-PD-L1, anti-TNF, antibodies against another TNF receptor family member, anti-LAG3, anti-TIM3, and small or macromolecular inhibition of the tumor microenvironment Agent. In particular, the cancer therapy may be an anti-CTLA4 immunotherapy, and the CD24 protein may be combined with an anti-CTLA4 immunotherapy or administered to an individual in the context of an anti-CTLA4 immunotherapy. Examples of anti-CTLA4 antibodies include Yervoy and Tremilimumab.

在另一個實施例中,癌症療法可為抗PD-1/PD-L1免疫療法,其可為抗PD-1抗體或抗PD-L1抗體。抗PD-1抗體之實例包括納武單抗(nivolumab)(Opdivo-Bristol Myers Squibb)及派立珠單抗(Pembrolizumab)(Keytruda, MK-3475, Merck)。抗PD-L1抗體之實例包括阿特唑單抗(Atezolizumab)(Tecentriq, Roche)、阿維魯單抗(Avelumab)(Merck KGaA及Pfizer)及德瓦魯單抗(durvalumab)(Imfinzi, Astra-Zeneca)。In another embodiment, the cancer therapy may be an anti-PD-1 / PD-L1 immunotherapy, which may be an anti-PD-1 antibody or an anti-PD-L1 antibody. Examples of anti-PD-1 antibodies include nivolumab (Opdivo-Bristol Myers Squibb) and Pembrolizumab (Keytruda, MK-3475, Merck). Examples of anti-PD-L1 antibodies include Atezolizumab (Tecentriq, Roche), Avelumab (Merck KGaA and Pfizer), and durvalumab (Imfinzi, Astra- Zeneca).

在又另一個實施例中,癌症療法可為包含抗CTLA-4及抗PD-1單株抗體(mAbs)的組合療法。抗CTLA-4與抗PD-1組合療法已作為最強且耐久的癌症免疫療法顯現。然而,與組合療法相關的自體免疫不良效應非常嚴重,其中大於50%的黑色素瘤患者出現3級及4級器官毒性。因此,癌症免疫療法之主要挑戰為如何減少組合療法之不良效應而不影響治療功效。在組合療法之兩種組分中,抗CTLA-4 mAb展現顯著更多的免疫療法相關不良效應(irAE)。In yet another embodiment, the cancer therapy may be a combination therapy comprising anti-CTLA-4 and anti-PD-1 monoclonal antibodies (mAbs). The combination of anti-CTLA-4 and anti-PD-1 has emerged as the strongest and most durable cancer immunotherapy. However, the autoimmune effects associated with combination therapy are very serious, with more than 50% of melanoma patients experiencing grade 3 and 4 organ toxicity. Therefore, the main challenge of cancer immunotherapy is how to reduce the adverse effects of combination therapies without affecting the therapeutic efficacy. Among the two components of the combination therapy, anti-CTLA-4 mAb exhibited significantly more immunotherapy-related adverse effects (irAE).

癌症療法可為授受性細胞轉移(ACT),其使用活體外刺激之腫瘤浸潤性淋巴球(TILs)或經基因工程改造的T細胞(經嵌合抗原受體[CARs]或T細胞受體[TCR]修飾的T細胞)。特定而言,藉由促使正常細胞及癌細胞快速死亡,諸如CAR-T細胞之癌症療法能促使損傷相關分子模式(DAMPs)釋放且因此引起細胞介素釋放症候群,其亦可引起廣泛的器官功能障礙。因此,CD24蛋白質可以用於減少或中和DAMPs之效應且緩解、最小化或治療所引起的細胞介素風暴。CAR-T細胞若其靶向亦在非腫瘤細胞及組織上受到表現的腫瘤相關抗原,則會損傷正常細胞。CAR-T療法可以用於治療血液科腫瘤,諸如急性淋巴母細胞性白血病(ALL)、B細胞急性淋巴母細胞性白血病、成人骨髓性白血病(AML)、彌漫性大B細胞淋巴瘤(DLBCL)、非霍奇金氏淋巴瘤(non-Hodgkin Lymphoma,NHL)、慢性淋巴球性白血病(CLL)、原發縱隔B細胞淋巴瘤(PMBCL)、套細胞淋巴瘤(MCL)及多發性骨髓瘤(MM)。CAR-T療法之實例包括靶向B細胞表面抗原CD19(諸如JCAR017及JCAR014[Juno Therapeutics])、CTL019(替沙津魯-T(tisagenlecleucel-T)[Novartis]及KTE-C19[西卡思羅(axicabtagene ciloleucel),Kite Pharma]),及CD22(JCAR014[Juno Therapeutics])之彼等療法。CAR-T療法之其他實例包括靶向L1-CAM(JCAR023[Juno Therapeutics])、ROR-1(JCAR024[Juno Therapeutics])及MUC16(JCAR020[Juno Therapeutics])之彼等療法。以經TCR修飾之T細胞為標靶之實例包括靶向MAGE-A3之實例,諸如KITE-718(Kite Pharma);靶向威爾姆斯腫瘤抗原1(Wilms tumor antigen 1,WT-1)之實例,諸如JTCR016(Juno Therapeutics);及NY-ESO-1。Cancer therapies can be adaptive cell transfer (ACT), which uses tumor infiltrating lymphocytes (TILs) stimulated in vitro or genetically engineered T cells (chimeric antigen receptors [CARs] or T cell receptors [ TCR] modified T cells). In particular, by promoting the rapid death of normal cells and cancer cells, cancer therapies such as CAR-T cells can promote the release of damage-associated molecular patterns (DAMPs) and thus cause the cytokine release syndrome, which can also cause extensive organ function obstacle. Therefore, the CD24 protein can be used to reduce or neutralize the effects of DAMPs and to alleviate, minimize or treat the interleukin storm caused. CAR-T cells can damage normal cells if they target tumor-associated antigens that are also expressed on non-tumor cells and tissues. CAR-T therapy can be used to treat hematological tumors such as acute lymphoblastic leukemia (ALL), B-cell acute lymphoblastic leukemia, adult myeloid leukemia (AML), and diffuse large B-cell lymphoma (DLBCL) , Non-Hodgkin Lymphoma (NHL), chronic lymphocytic leukemia (CLL), primary mediastinal B-cell lymphoma (PMBCL), mantle cell lymphoma (MCL), and multiple myeloma ( MM). Examples of CAR-T therapies include targeting B-cell surface antigens CD19 (such as JCAR017 and JCAR014 [Juno Therapeutics]), CTL019 (tisagenlecleucel-T) [Novartis], and KTE-C19 [Cicero ( axicabtagene ciloleucel), Kite Pharma]), and CD22 (JCAR014 [Juno Therapeutics]). Other examples of CAR-T therapy include targeted therapies for L1-CAM (JCAR023 [Juno Therapeutics]), ROR-1 (JCAR024 [Juno Therapeutics]), and MUC16 (JCAR020 [Juno Therapeutics]). Examples that target TCR-modified T cells include examples that target MAGE-A3, such as KITE-718 (Kite Pharma); targets that target Wilms tumor antigen 1 (WT-1) Examples, such as JTCR016 (Juno Therapeutics); and NY-ESO-1.

癌症療法可為涉及癌細胞被快速殺死的療法,諸如輻射及化學療法。所引起的腫瘤溶解能引起DAMPs釋放,從而起始發炎級聯反應。此類適應症會特別順應於CD24蛋白質之預防性治療。b. 移植物抗宿主疾病 Cancer therapies can be therapies that involve the rapid killing of cancer cells, such as radiation and chemotherapy. The resulting tumor lysis can cause the release of DAMPs, which initiates the inflammatory cascade. Such indications would be particularly suited to preventive treatment of CD24 protein. b. graft versus host disease

本文亦提供一種藉由向有需要的個體投與CD24蛋白質來減輕或治療個體之移植物抗宿主疾病(GvHD)的方法,所述個體在同種異體造血幹細胞移植(HSCT)之後可能已接受或正接受活化天然殺手(aNK)細胞。NK細胞能夠增強移植且在同種異體HSCT之後介導移植物抗白血病,但HSCT之後由天然復原之NK細胞所介導之移植物抗白血病的效能受到限制。臨床前研究證明,NK細胞之活化使活化受體表現上調且增強殺死能力(Shah等人,2015)。接著在臨床試驗中對此加以測試,所述臨床試驗在將HLA匹配之T細胞耗乏非清髓性周邊血液幹細胞移植於具有超高風險實體腫瘤之兒童及青年成人之後,對供者來源之活化NK細胞(aNK-DLI)的授受性轉移進行了研究。aNK-DLI展現強效殺死能力且顯示高量之活化受體表現。然而,9位移植體接受者中有5位在aNK-DLI之後,經歷了急性移植物抗宿主疾病(GVHD),其中3位個體中觀測到4級GVHD。相對於匹配之供者同胞接受者,GVHD在匹配之不相關供者中更常見,且與較高的供者CD3嵌合特質相關。鑒於T細胞劑量低於GVHD在此背景下所需之臨限值,因此推斷出aNK-DLI導致所觀測到之急性GVHD,此可能藉由增強潛在的T細胞同種異體反應性而達成。c. 投藥 This article also provides a method for reducing or treating GvHD in a subject by administering CD24 protein to a subject in need, who may have received or is undergoing allogeneic hematopoietic stem cell transplantation (HSCT) Receive activated natural killer (aNK) cells. NK cells can enhance transplantation and mediate graft anti-leukemia after allogeneic HSCT, but the efficacy of graft-mediated leukemic anti-leukemia after HSCT is naturally limited. Preclinical studies have demonstrated that activation of NK cells up-regulates the expression of activated receptors and enhances killing capacity (Shah et al., 2015). This was then tested in a clinical trial that transplanted donor-derived donor-derived T cells after depleting non-myeloablative peripheral blood stem cells to children and young adults with high-risk solid tumors. The permissive metastasis of activated NK cells (aNK-DLI) has been studied. aNK-DLI exhibits potent killing ability and shows high levels of activated receptor performance. However, 5 of the 9 graft recipients experienced acute graft-versus-host disease (GVHD) after aNK-DLI, with Grade 4 GVHD observed in 3 individuals. GVHD was more common among matched unrelated donors than matched donor sibling recipients, and was associated with higher donor CD3 chimeric traits. Given that T-cell doses are below the threshold required for GVHD in this context, it is inferred that aNK-DLI causes the observed acute GVHD, which may be achieved by enhancing the potential T-cell allograft reactivity. c. administration

醫藥組合物之投藥途徑可為非經腸。非經腸投藥包括(但不限於)靜脈內、動脈內、腹膜內、皮下、肌肉內、鞘內、關節內及直接注射。醫藥組合物可以投與人類患者、貓、犬或大型動物。組合物可以每天投與1、2、3、4、5、6、7、8、9、10、11或12次。d. 組合療法 The administration route of the pharmaceutical composition may be parenteral. Parenteral administration includes, but is not limited to, intravenous, intraarterial, intraperitoneal, subcutaneous, intramuscular, intrathecal, intraarticular, and direct injection. The pharmaceutical composition can be administered to a human patient, cat, dog, or large animal. The composition can be administered 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 or 12 times per day. d. Combination therapy

CD24蛋白質可以與另一種藥劑組合使用以進一步減少、緩解或治療細胞介素釋放症候群(CRS)。細胞介素釋放症候群與循環量升高之若干細胞介素(包括介白素(IL)-6及IFN-γ)相關。因此,在使用或不使用皮質類固醇的情況下,其他藥劑可為托西利單抗(Actemra)、抗IL-6受體抗體,或另一種細胞介素靶向劑,其可以用於免疫抑制可以用於逆轉症候群,尤其在接受CAR-T之患者中。CRS管理中所用的其他藥劑可為思圖昔單抗(siltuximab)(抗IL-6,Sylvant)、依那西普(TNFα抑制劑,Enbrel)、英利昔單抗(infliximab)(抗TNFα,Remicade),或阿那白滯素(anakinra)(介白素1受體拮抗劑,Kineret)。CD24蛋白質可以用於靶向及緩解自受損組織釋放且起始發炎級聯反應之DAMPs的效應,而組合療法可以靶向效應子細胞介素分子,從而提供雙管齊下的互補方式來緩解、減少或治療CRS。The CD24 protein can be used in combination with another agent to further reduce, alleviate or treat the interleukin release syndrome (CRS). Interleukin release syndrome is associated with increased levels of circulating interleukins, including interleukin (IL) -6 and IFN-γ. Therefore, with or without corticosteroids, other agents may be tocilizumab (Actemra), anti-IL-6 receptor antibodies, or another cytokines targeting agent, which can be used for immunosuppression can Used to reverse symptoms, especially in patients receiving CAR-T. Other agents used in CRS management can be siltuximab (anti-IL-6, Sylvant), etanercept (TNFα inhibitor, Enbrel), infliximab (anti-TNFα, Remicade ), Or anakinra (interleukin-1 receptor antagonist, Kineret). CD24 protein can be used to target and alleviate the effects of DAMPs released from damaged tissues and initiate an inflammatory cascade, while combination therapy can target effector interleukin molecules, thereby providing a two-pronged complementary approach to alleviate, reduce or Treatment of CRS.

CD24蛋白質可以與其他療法同時或有節奏地投與。如本文所用,術語「同時」意謂CD24蛋白質與另一療法在彼此48小時內投與,較佳為24小時,更佳為12小時,然而更佳為6小時,且最佳為3小時或小於3小時。如本文所用,術語「有節奏地」意謂所述藥劑與另一療法在不同時間且以特定頻率(相對於重複投藥)投與。CD24 protein can be administered simultaneously or rhythmically with other therapies. As used herein, the term "simultaneously" means that the CD24 protein and another therapy are administered within 48 hours of each other, preferably 24 hours, more preferably 12 hours, yet more preferably 6 hours, and most preferably 3 hours or Less than 3 hours. As used herein, the term "rhythmically" means that the agent is administered with another therapy at a different time and at a specific frequency (as opposed to repeated administration).

CD24蛋白質可以在另一種療法之前的任何時點投與,包括約120小時、118小時、116小時、114小時、112小時、110小時、108小時、106小時、104小時、102小時、100小時、98小時、96小時、94小時、92小時、90小時、88小時、86小時、84小時、82小時、80小時、78小時、76小時、74小時、72小時、70小時、68小時、66小時、64小時、62小時、60小時、58小時、56小時、54小時、52小時、50小時、48小時、46小時、44小時、42小時、40小時、38小時、36小時、34小時、32小時、30小時、28小時、26小時、24小時、22小時、20小時、18小時、16小時、14小時、12小時、10小時、8小時、6小時、4小時、3小時、2小時、1小時、55分鐘、50分鐘、45分鐘、40分鐘、35分鐘、30分鐘、25分鐘、20分鐘、15分鐘、10分鐘、9分鐘、8分鐘、7分鐘、6分鐘、5分鐘、4分鐘、3分鐘、2分鐘及1分鐘。CD24蛋白質可以在CD24蛋白質之第二療法之前的任何時點投與,包括約120小時、118小時、116小時、114小時、112小時、110小時、108小時、106小時、104小時、102小時、100小時、98小時、96小時、94小時、92小時、90小時、88小時、86小時、84小時、82小時、80小時、78小時、76小時、74小時、72小時、70小時、68小時、66小時、64小時、62小時、60小時、58小時、56小時、54小時、52小時、50小時、48小時、46小時、44小時、42小時、40小時、38小時、36小時、34小時、32小時、30小時、28小時、26小時、24小時、22小時、20小時、18小時、16小時、14小時、12小時、10小時、8小時、6小時、4小時、3小時、2小時、1小時、55分鐘、50分鐘、45分鐘、40分鐘、35分鐘、30分鐘、25分鐘、20分鐘、15分鐘、10分鐘、9分鐘、8分鐘、7分鐘、6分鐘、5分鐘、4分鐘、3分鐘、2分鐘及1分鐘。CD24 protein can be administered at any point before another therapy, including about 120 hours, 118 hours, 116 hours, 114 hours, 112 hours, 110 hours, 108 hours, 106 hours, 104 hours, 102 hours, 100 hours, 98 Hours, 96 hours, 94 hours, 92 hours, 90 hours, 88 hours, 86 hours, 84 hours, 82 hours, 80 hours, 78 hours, 76 hours, 74 hours, 72 hours, 70 hours, 68 hours, 66 hours, 64 hours, 62 hours, 60 hours, 58 hours, 56 hours, 54 hours, 52 hours, 50 hours, 48 hours, 46 hours, 44 hours, 42 hours, 40 hours, 38 hours, 36 hours, 34 hours, 32 hours , 30 hours, 28 hours, 26 hours, 24 hours, 22 hours, 20 hours, 18 hours, 16 hours, 14 hours, 12 hours, 10 hours, 8 hours, 6 hours, 4 hours, 3 hours, 2 hours, 1 Hours, 55 minutes, 50 minutes, 45 minutes, 40 minutes, 35 minutes, 30 minutes, 25 minutes, 20 minutes, 15 minutes, 10 minutes, 9 minutes, 8 minutes, 7 minutes, 6 minutes, 5 minutes, 4 minutes, 3 minutes, 2 minutes and 1 minute. The CD24 protein can be administered at any time before the second therapy of the CD24 protein, including about 120 hours, 118 hours, 116 hours, 114 hours, 112 hours, 110 hours, 108 hours, 106 hours, 104 hours, 102 hours, 100 Hours, 98 hours, 96 hours, 94 hours, 92 hours, 90 hours, 88 hours, 86 hours, 84 hours, 82 hours, 80 hours, 78 hours, 76 hours, 74 hours, 72 hours, 70 hours, 68 hours, 66 hours, 64 hours, 62 hours, 60 hours, 58 hours, 56 hours, 54 hours, 52 hours, 50 hours, 48 hours, 46 hours, 44 hours, 42 hours, 40 hours, 38 hours, 36 hours, 34 hours , 32 hours, 30 hours, 28 hours, 26 hours, 24 hours, 22 hours, 20 hours, 18 hours, 16 hours, 14 hours, 12 hours, 10 hours, 8 hours, 6 hours, 4 hours, 3 hours, 2 Hours, 1 hour, 55 minutes, 50 minutes, 45 minutes, 40 minutes, 35 minutes, 30 minutes, 25 minutes, 20 minutes, 15 minutes, 10 minutes, 9 minutes, 8 minutes, 7 minutes, 6 minutes, 5 minutes, 4 minutes, 3 minutes, 2 minutes, and 1 minute.

CD24蛋白質可以在另一種療法之後的任何時點投與,包括約1分鐘、2分鐘、3分鐘、4分鐘、5分鐘、6分鐘、7分鐘、8分鐘、9分鐘、10分鐘、15分鐘、20分鐘、25分鐘、30分鐘、35分鐘、40分鐘、45分鐘、50分鐘、55分鐘、1小時、2小時、3小時、4小時、6小時、8小時、10小時、12小時、14小時、16小時、18小時、20小時、22小時、24小時、26小時、28小時、30小時、32小時、34小時、36小時、38小時、40小時、42小時、44小時、46小時、48小時、50小時、52小時、54小時、56小時、58小時、60小時、62小時、64小時、66小時、68小時、70小時、72小時、74小時、76小時、78小時、80小時、82小時、84小時、86小時、88小時、90小時、92小時、94小時、96小時、98小時、100小時、102小時、104小時、106小時、108小時、110小時、112小時、114小時、116小時、118小時及120小時。CD24蛋白質可以在先前CD24療法之後的任何時點投與,包括約120小時、118小時、116小時、114小時、112小時、110小時、108小時、106小時、104小時、102小時、100小時、98小時、96小時、94小時、92小時、90小時、88小時、86小時、84小時、82小時、80小時、78小時、76小時、74小時、72小時、70小時、68小時、66小時、64小時、62小時、60小時、58小時、56小時、54小時、52小時、50小時、48小時、46小時、44小時、42小時、40小時、38小時、36小時、34小時、32小時、30小時、28小時、26小時、24小時、22小時、20小時、18小時、16小時、14小時、12小時、10小時、8小時、6小時、4小時、3小時、2小時、1小時、55分鐘、50分鐘、45分鐘、40分鐘、35分鐘、30分鐘、25分鐘、20分鐘、15分鐘、10分鐘、9分鐘、8分鐘、7分鐘、6分鐘、5分鐘、4分鐘、3分鐘、2分鐘及1分鐘。實例 1 CD24 在小鼠中之藥物動力學 CD24 protein can be administered at any time after another therapy, including about 1 minute, 2 minutes, 3 minutes, 4 minutes, 5 minutes, 6 minutes, 7 minutes, 8 minutes, 9 minutes, 10 minutes, 15 minutes, 20 Minutes, 25 minutes, 30 minutes, 35 minutes, 40 minutes, 45 minutes, 50 minutes, 55 minutes, 1 hour, 2 hours, 3 hours, 4 hours, 6 hours, 8 hours, 10 hours, 12 hours, 14 hours, 16 hours, 18 hours, 20 hours, 22 hours, 24 hours, 26 hours, 28 hours, 30 hours, 32 hours, 34 hours, 36 hours, 38 hours, 40 hours, 42 hours, 44 hours, 46 hours, 48 hours , 50 hours, 52 hours, 54 hours, 56 hours, 58 hours, 60 hours, 62 hours, 64 hours, 66 hours, 68 hours, 70 hours, 72 hours, 74 hours, 76 hours, 78 hours, 80 hours, 82 Hours, 84 hours, 86 hours, 88 hours, 90 hours, 92 hours, 94 hours, 96 hours, 98 hours, 100 hours, 102 hours, 104 hours, 106 hours, 108 hours, 110 hours, 112 hours, 114 hours, 116 hours, 118 hours and 120 hours. CD24 protein can be administered at any point after the previous CD24 therapy, including approximately 120 hours, 118 hours, 116 hours, 114 hours, 112 hours, 110 hours, 108 hours, 106 hours, 104 hours, 102 hours, 100 hours, 98 Hours, 96 hours, 94 hours, 92 hours, 90 hours, 88 hours, 86 hours, 84 hours, 82 hours, 80 hours, 78 hours, 76 hours, 74 hours, 72 hours, 70 hours, 68 hours, 66 hours, 64 hours, 62 hours, 60 hours, 58 hours, 56 hours, 54 hours, 52 hours, 50 hours, 48 hours, 46 hours, 44 hours, 42 hours, 40 hours, 38 hours, 36 hours, 34 hours, 32 hours , 30 hours, 28 hours, 26 hours, 24 hours, 22 hours, 20 hours, 18 hours, 16 hours, 14 hours, 12 hours, 10 hours, 8 hours, 6 hours, 4 hours, 3 hours, 2 hours, 1 Hours, 55 minutes, 50 minutes, 45 minutes, 40 minutes, 35 minutes, 30 minutes, 25 minutes, 20 minutes, 15 minutes, 10 minutes, 9 minutes, 8 minutes, 7 minutes, 6 minutes, 5 minutes, 4 minutes, 3 minutes, 2 minutes and 1 minute. Example 1 Pharmacokinetics of CD24 in mice

將1 mg CD24Fc(CD24Fc)注射至未處理C57BL/6小鼠中且在不同時間點(5分鐘、1小時、4小時、24小時、48小時、7天、14天及21天)收集3隻小鼠在每個時間點的血液樣品。將血清1:100稀釋且使用夾心ELISA、使用純化抗人類CD24(3.3 μg/ml)作為捕獲抗體及過氧化酶結合之山羊抗人類IgG Fc(5 μg/ml)作為偵測抗體來偵測CD24Fc含量。如圖3A中所示, CD24Fc之衰減曲線揭露蛋白質出現典型雙相衰減。第一生物分佈相具有12.4小時之半衰期。第二相依循自中樞隔室發生一級消除之模型。第二相之半衰期為9.54天,其類似於活體內抗體半衰期。此等資料表明融合蛋白在血流中非常穩定。在皮下注射融合蛋白之另一研究中,觀測到幾乎相同之9.52天半衰期(圖3B)。更重要的是,雖然CD24Fc在血液中耗費約48小時達到峰值含量,但如藉由AUC所量測,任一注射途徑所引起之融合蛋白在血液中的總量基本上相同。因此,自治療視角看,不同的注射途徑不應影響藥物之治療效果。此觀察結果大大簡化了用於靈長類動物毒性及臨床試驗之實驗設計。實例 2 CD24- 唾液酸結合免疫球蛋白樣凝集素 10 在針對組織損傷的宿主反應中相互作用 1 mg of CD24Fc (CD24Fc) was injected into untreated C57BL / 6 mice and 3 mice were collected at different time points (5 minutes, 1 hour, 4 hours, 24 hours, 48 hours, 7 days, 14 days, and 21 days) Blood samples from mice at each time point. CD24Fc was detected by diluting serum 1: 100 and using sandwich ELISA, using purified anti-human CD24 (3.3 μg / ml) as capture antibody and peroxidase-bound goat anti-human IgG Fc (5 μg / ml) as detection antibody. content. As shown in Figure 3A, the decay curve of CD24Fc revealed that the protein exhibited typical biphasic decay. The first biodistribution phase has a half-life of 12.4 hours. The second phase follows a model of primary elimination from the central compartment. The half-life of the second phase is 9.54 days, which is similar to the half-life of antibodies in vivo. These data indicate that the fusion protein is very stable in the bloodstream. In another study where the fusion protein was injected subcutaneously, an almost identical half-life of 9.52 days was observed (Figure 3B). More importantly, although it took about 48 hours for the CD24Fc to reach its peak level in the blood, the total amount of fusion protein caused by any injection route was substantially the same as measured by AUC. Therefore, from the perspective of treatment, different injection routes should not affect the therapeutic effect of the drug. This observation greatly simplifies experimental design for primate toxicity and clinical trials. Example 2 CD24- sialic acid-binding immunoglobulin-like lectin 10 interacts in host response to tissue damage

近二十年前,Matzinger提出什麼通俗地稱為危險理論。本質上,她辯稱免疫系統在其感測到宿主存在危險時開啟。雖然危險性質不能及時明確界定,但已確定壞死與細胞內組分(諸如HMGB1及熱休克蛋白質,稱為DAMP,即危險相關分子模式)之釋放相關。發現DAMP促進發炎細胞介素產生及自體免疫疾病。在動物模型中,發現HMGB1及HSP90之抑制劑改善RA。DAMP之參與提高了可以探究針對DAMP之宿主反應之負向調節用於RA療法的前景。Nearly two decades ago, Matzinger proposed what is popularly called the danger theory. In essence, she argues that the immune system turns on when it senses danger to the host. Although the dangerous nature cannot be clearly defined in time, it has been determined that necrosis is related to the release of intracellular components such as HMGB1 and heat shock proteins, called DAMP, which is a risk-associated molecular pattern. DAMP was found to promote the production of inflammatory interleukins and autoimmune diseases. In animal models, inhibitors of HMGB1 and HSP90 were found to improve RA. The involvement of DAMP raises the prospect of exploring the negative regulation of host response to DAMP for RA therapy.

使用乙醯胺苯酚誘發之肝臟壞死及確保發炎,觀測到CD24經由與唾液酸結合免疫球蛋白樣凝集素G相互作用向針對組織損傷之宿主反應提供強大的負向調節。CD24為GPI錨定分子,其廣泛地表現於造血細胞及其他組織幹細胞中。對人類之多種自體免疫疾病(包括多發性硬化症、全身紅斑狼瘡、RA及巨細胞關節炎)進行的遺傳分析表明,CD24多態性與自體免疫疾病風險之間存在顯著的關聯。唾液酸結合免疫球蛋白樣凝集素G為I-凝集素家族成員,此根據其識別含唾液酸結構之能力界定。唾液酸結合免疫球蛋白樣凝集素G識別CD24上的含唾液酸結構且負向調節樹突狀細胞產生發炎細胞介素。人類唾液酸結合免疫球蛋白樣凝集素10及小鼠唾液酸結合免疫球蛋白樣凝集素G就其與CD24相互作用的能力而言,在功能上為等效的。然而,不清楚小鼠與人類同源物之間是否存在一對一相關性。雖然機制仍待充分闡明,但唾液酸結合免疫球蛋白樣凝集G結合的SHP1可能涉及負向調節。最近《科學(Science)》中所報導的此等資料產生了一種新模型,其中CD24-唾液酸結合免疫球蛋白樣凝集素G/10相互作用可能在區分病原體結合之分子模式(PAMP)與DAMP方面起關鍵作用(圖4)。Liver necrosis induced by acetaminophen and ensuring inflammation, CD24 was observed to provide strong negative regulation of host responses to tissue damage via interaction with sialic acid-binding immunoglobulin-like lectin G. CD24 is a GPI anchor molecule, which is widely expressed in hematopoietic cells and other tissue stem cells. Genetic analysis of various autoimmune diseases in humans, including multiple sclerosis, systemic lupus erythematosus, RA, and giant cell arthritis, has revealed a significant association between CD24 polymorphisms and the risk of autoimmune diseases. Sialic acid-binding immunoglobulin-like lectin G is a member of the I-lectin family, which is defined by its ability to recognize sialic acid-containing structures. Sialic acid-binding immunoglobulin-like lectin G recognizes sialic acid-containing structures on CD24 and negatively regulates dendritic cells to produce inflammatory interleukins. Human sialic acid-binding immunoglobulin-like lectin 10 and mouse sialic acid-binding immunoglobulin-like lectin G are functionally equivalent in terms of their ability to interact with CD24. However, it is unclear whether there is a one-to-one correlation between mice and human homologs. Although the mechanism remains to be fully elucidated, sialic acid-binding immunoglobulin-like agglutination G-bound SHP1 may be involved in negative regulation. This recent data, reported in Science, has produced a new model in which the CD24-sialic acid-binding immunoglobulin-like lectin G / 10 interaction may distinguish between molecular patterns of pathogen binding (PAMP) and DAMP Play a key role (Figure 4).

至少兩種重疊機制可以解釋CD24之功能。首先,藉由結合至多種DAMP,CD24可以截留發炎刺激以防止其與TLR或RAGE發生相互作用。此觀點受到如下觀測結果的支持:CD24與若干DAMP分子(包括HSP70、90、HMGB1及核仁素)結合。其次,或許在與DAMP結合之後,CD24可以刺激唾液酸結合免疫球蛋白樣凝集素G之信號傳導。兩種機制均可以協同作用,因為任一基因發生靶向突變之小鼠產生強得多的發炎反應。實際上,由CD24-/-或唾液酸結合免疫球蛋白樣凝集素G-/-小鼠之骨髓培養而得的DC當用HMGB1、HSP70或HSP90刺激時產生高得多的發炎細胞介素。相比之下,發現在其針對PAMP(諸如LPS及PolyI:C)之反應方面無效果。此等資料不僅提供先天免疫系統區分病原體與組織損傷的機制,而且表明CD24及唾液酸結合免疫球蛋白樣凝集素G為與組織損傷相關之疾病的潛在治療標靶。實例 3 CD24 GvHD 預防 At least two overlapping mechanisms can explain the function of CD24. First, by binding to multiple DAMPs, CD24 can retain inflammatory stimuli to prevent them from interacting with TLR or RAGE. This view is supported by the observation that CD24 binds to several DAMP molecules, including HSP70, 90, HMGB1, and nucleolin. Second, perhaps after binding to DAMP, CD24 can stimulate sialic acid-binding immunoglobulin-like lectin G signaling. Both mechanisms work synergistically, as mice with targeted mutations in either gene produce a much stronger inflammatory response. In fact, DCs derived from bone marrow culture of CD24-/-or sialic acid-binding immunoglobulin-like lectin G-/-mice produce much higher inflammatory cytokines when stimulated with HMGB1, HSP70 or HSP90. In contrast, no effect was found in its response to PAMP, such as LPS and PolyI: C. These data not only provide a mechanism by which the innate immune system distinguishes pathogens from tissue damage, but also suggest that CD24 and sialic acid-binding immunoglobulin-like lectin G are potential therapeutic targets for diseases associated with tissue damage. Example 3 CD24 and GvHD prevention

CD24Fc與HMGB1、唾液酸結合免疫球蛋白樣凝集素10相互作用且誘導唾液酸結合免疫球蛋白樣凝集素G與SHP-1之間結合。CD24Fc interacts with HMGB1, sialic acid-binding immunoglobulin-like lectin 10 and induces binding between sialic acid-binding immunoglobulin-like lectin G and SHP-1.

為了量測CD24Fc與唾液酸結合免疫球蛋白樣凝集素10之間的相互作用,我們將CD24Fc固著至CHIP上且使用Biacore量測不同濃度之唾液酸結合免疫球蛋白樣凝集素-10Fc的結合情況。如圖5A中所示,CD24Fc以1.6x10-7 M之Kd結合唾液酸結合免疫球蛋白樣凝集素10。其親和力比對照Fc高100倍。CD24Fc與HMGB1之間的相互作用藉由使用CD24Fc結合之蛋白質G珠粒的吸引實驗、隨後藉由使用抗IgG或抗HMGB1的西方墨點法證實。此等資料表明CD24Fc(而非Fc)結合至HMGB1且此結合具有陽離子依賴性(圖5B)。為了確定CD24Fc是否為唾液酸結合免疫球蛋白樣凝集素G(人類唾液酸結合免疫球蛋白樣凝集素10之小鼠對應物)之促效劑,我們用CD24Fc、對照Fc或媒劑(PBS)對照刺激CD24-/-脾細胞30分鐘。接著使唾液酸結合免疫球蛋白樣凝集素G發生免疫沈澱且用抗磷酸化酪胺酸或抗SHP-1探測。如圖5C中所示,CD24Fc誘導唾液酸結合免疫球蛋白樣凝集素G發生實質磷酸化且誘導SHP-1(後天與先天免疫力的公認抑制劑)結合。 CD24Fc之試管內功效研究.To measure the interaction between CD24Fc and sialic acid-binding immunoglobulin-like lectin 10, we fixed CD24Fc to CHIP and used Biacore to measure the binding of sialic acid-binding immunoglobulin-like lectin-10Fc at different concentrations. Happening. As shown in Figure 5A, CD24Fc binds sialic acid-binding immunoglobulin-like lectin 10 with a Kd of 1.6x10 -7 M. Its affinity is 100 times higher than the control Fc. The interaction between CD24Fc and HMGB1 was confirmed by a suction experiment using CD24Fc-bound protein G beads, followed by Western blotting using anti-IgG or anti-HMGB1. These data indicate that CD24Fc (but not Fc) binds to HMGB1 and that this binding is cationic dependent (Figure 5B). To determine whether CD24Fc is an agonist of sialic acid-binding immunoglobulin-like lectin G (human counterpart of human sialic acid-binding immunoglobulin-like lectin 10), we use CD24Fc, control Fc, or vehicle (PBS) Controls stimulated CD24-/-splenocytes for 30 minutes. Sialic acid-binding immunoglobulin-like lectin G was then immunoprecipitated and detected with anti-phosphorylated tyrosine or anti-SHP-1. As shown in Figure 5C, CD24Fc induces substantial phosphorylation of sialic acid-binding immunoglobulin-like lectin G and induces binding of SHP-1, a recognized inhibitor of innate immunity the day after tomorrow. Study of in vitro efficacy of CD24Fc.

為了研究CD24Fc對人類T細胞產生發炎細胞介素的影響,人類PBML中的成熟T細胞在不同濃度之CD24Fc或人類IgG1 Fc存在下用抗CD3抗體(OKT3)(常用的T細胞受體促效劑)活化。四天後,收集上清液且藉由酶聯免疫吸附分析(ELISA)量測IFN-γ及TNF-α之產生以證實活化。圖6中之結果 證明相較於對照IgG Fc對照物,來自兩個不同製造批次的CD24Fc使活化人類PBML的IFN-γ及TNF-α產生顯著減少。另外,當添加CD24Fc時,細胞介素產生以劑量依賴性方式受到抑制。因此,CD24Fc能在試管內抑制抗CD3誘導的人類PBML活化。此研究不僅表明CD24Fc之作用機制可能經由T細胞活化之抑制,而且為藥物效能及穩定性測試確立了可靠的生物分析。To study the effect of CD24Fc on the production of inflammatory cytokines by human T cells, mature T cells in human PBML were treated with anti-CD3 antibody (OKT3) (common T cell receptor agonist) in the presence of different concentrations of CD24Fc or human IgG1 Fc )activation. After four days, the supernatant was collected and the production of IFN-γ and TNF-α was measured by enzyme-linked immunosorbent assay (ELISA) to confirm activation. The results in Figure 6 demonstrate that CD24Fc from two different manufacturing batches significantly reduced the production of IFN-γ and TNF-α in activated human PBML compared to the control IgG Fc control. In addition, when CD24Fc was added, cytokine production was inhibited in a dose-dependent manner. Therefore, CD24Fc can inhibit anti-CD3-induced human PBML activation in vitro. This study not only indicates that the mechanism of action of CD24Fc may be inhibited by T cell activation, but also establishes a reliable biological analysis for drug potency and stability testing.

為了確定CD24Fc是否調節人類細胞系產生發炎細胞介素,我們首先使用RNAi使人類急性單核球性白血病THP1細胞系中的CD24靜默,且接著藉由PMA處理其而誘導分化成巨噬細胞。如圖7A中所示,CD24靜默使TNFα、IL-1β及IL-6之產生大幅度增加。此等資料表明內源人類CD24在限制發炎細胞介素產生方面起主要作用。重要的是,CD24Fc恢復抑制CD24靜默細胞系中之TNFα(圖7B)以及IL-1β及IL-6。此等資料不僅表明CD24在人類細胞發炎反應中之相關性,而且為評估CD24Fc生物活性提供了簡單分析。To determine whether CD24Fc regulates the production of inflammatory cytokines in human cell lines, we first silenced CD24 in the human acute mononuclear leukemia THP1 cell line using RNAi, and then induced differentiation into macrophages by treating it with PMA. As shown in FIG. 7A, CD24 silence significantly increased the production of TNFα, IL-1β, and IL-6. These data indicate that endogenous human CD24 plays a major role in limiting the production of inflammatory interleukins. Importantly, CD24Fc recovery inhibited TNFα (Figure 7B) and IL-1β and IL-6 in CD24 silent cell lines. These data not only indicate the relevance of CD24 in the inflammatory response of human cells, but also provide a simple analysis for assessing the biological activity of CD24Fc.

綜合而言,此等資料表明CD24Fc能夠抑制後天及先天刺激所觸發的細胞介素產生。然而,由於藥物在藉由固有效應子減少細胞介素產生方面有效得多,因此我們認為其預防功能之主要機制為在移植早期防止組織損傷觸發發炎。 CsA與CD24Fc之間在人類化小鼠GvHD模型中之治療效果的比較Taken together, these data indicate that CD24Fc can inhibit cytokine production triggered by acquired and innate stimuli. However, because the drug is much more effective at reducing interleukin production by inherent effectors, we believe that the main mechanism of its preventive function is to prevent tissue damage from triggering inflammation early in the transplant. Comparison of therapeutic effects between CsA and CD24Fc in humanized mouse GvHD models

GvHD已知為同種異體BM移植之主要併發症。然而,所有人類化動物模型中之GvHD誘導依賴於大量人類PBMC之移植。一些此等人類化動物模型不會出現人類中所見之全身GvHD。因此,使用含有一百五十萬人類BM細胞的新生NOD/SCID IL2rγ剔除式(NSG)小鼠開發人類化全身GvHD動物模型。結果表明小鼠出現具有100%外顯率之異種GvHD且所有小鼠早在移植之後的第14天便呈現高人類嵌合特質,7天後顯著增加至近兩倍(資料未示出)。視所用供者(資料未示出)而定,在移植1-2月內,總死亡率為100%。此外,人類T細胞滲入多個靶器官,包括肺、肝臟、皮膚及腸。據本發明人所知,此為人類急性GVHD發病機制之最佳模型,但因所述疾病之嚴重度及快速發作而在治療上具有更大挑戰性。GvHD is known as a major complication of allogeneic BM transplantation. However, GvHD induction in all humanized animal models is dependent on transplantation of a large number of human PBMCs. Some of these humanized animal models do not exhibit the whole-body GvHD seen in humans. Therefore, neonatal NOD / SCID IL2rγ knockout (NSG) mice containing 1.5 million human BM cells were used to develop a humanized whole body GvHD animal model. The results showed that mice exhibited a heterogeneous GvHD with a 100% penetrance and that all mice exhibited high human chimeric traits as early as 14 days after transplantation, which significantly increased to nearly two times after 7 days (data not shown). Depending on the donor used (data not shown), the total mortality rate is 100% within 1-2 months of transplantation. In addition, human T cells infiltrate multiple target organs, including lungs, liver, skin, and intestines. According to the inventors' knowledge, this is the best model for the pathogenesis of acute GVHD in humans, but it is more challenging to treat due to the severity and rapid onset of the disease.

兩個實驗中所用的供者產生了異常快速且嚴重的GVHD。為了比較環孢靈A(cyclosporine A,CsA)及CD24Fc之治療功效,NSG小鼠在移植一週後用CsA之每天最大可耐受劑量(0.3與1 mg/kg之間,歷時長達4週,此視小鼠年齡而定)治療或用CD24Fc之每週2-4次劑量(5 mg/kg)治療。如圖8中所示,第二週開始,觀測到媒劑組中開始快速發生GVHD相關死亡。CD24Fc顯著延長接受者小鼠之生存期(P=0.015),而CsA卻不能顯著延長生存期(P=0.097)。此等資料表明CD24Fc具有優於CsA的治療功效。實例 4 CD24 在人體中的藥物動力學 The donors used in both experiments produced abnormally fast and severe GVHD. In order to compare the therapeutic efficacy of cyclosporine A (CsA) and CD24Fc, the maximum tolerable daily dose of CsA (between 0.3 and 1 mg / kg, for up to 4 weeks) in NSG mice after one week of transplantation, This depends on the age of the mice) or with CD24Fc at a dose of 2-4 times (5 mg / kg) per week. As shown in Figure 8, beginning in the second week, rapid onset of GVHD-related deaths in the vehicle group was observed. CD24Fc significantly prolonged the survival of recipient mice (P = 0.015), while CsA did not significantly prolong the survival (P = 0.097). These data indicate that CD24Fc has a therapeutic effect superior to CsA. Example 4 Pharmacokinetics of CD24 in Humans

此實例展示CD24蛋白質在人體中之藥物動力學分析。此來源於I期、隨機分組、雙盲、安慰劑對照、單次遞增劑量研究,以評估CD24Fc在健康男性及女性成年個體中之安全、耐受性及PK。此研究中招募了總共40位個體,分5組,每組8位個體。每組8位個體中有六位接受研究藥物且2位個體接受安慰劑(0.9%氯化鈉生理鹽水)。第一組給與10 mg。後續幾組接受30 mg、60 mg、120 mg及240 mg CD24Fc或匹配安慰劑且間隔至少3週給藥,以便審查先前每組之安全及耐受性資料。僅當安全及耐受性已得到充分證明時才允許向新一組個體投與下一個較高劑量。This example demonstrates the pharmacokinetic analysis of CD24 protein in humans. This was derived from a Phase I, randomized, double-blind, placebo-controlled, single escalating dose study to assess the safety, tolerability, and PK of CD24Fc in healthy male and female adult individuals. A total of 40 individuals were recruited in this study in 5 groups of 8 individuals. Six of the eight individuals in each group received study medication and two individuals received a placebo (0.9% sodium chloride saline). The first group was given 10 mg. Subsequent groups received 30 mg, 60 mg, 120 mg, and 240 mg CD24Fc or matched placebo and were administered at least 3 weeks apart in order to review safety and tolerability data for each previous group. The next higher dose is allowed to be administered to a new group of individuals only if safety and tolerability have been fully demonstrated.

第1天,每組中初始2位個體1位是研究藥物接受者且1位是安慰劑接受者。第7天之後(各子組之間最少相隔24小時),向第3至第5位個體及第6至第8位個體給藥。同一子組中之每位個體相隔至少1小時給藥。必要時,其餘個體延遲給藥,對給藥後期間可能出現之涉及彼組之第一或第二子組的任何重大安全問題審查後再定。前一組之後至少3週,向後一組給藥。 篩檢期:On day 1, one of the initial two individuals in each group was a study drug recipient and one was a placebo recipient. After day 7 (minimum 24 hours between each subgroup), 3rd to 5th individuals and 6th to 8th individuals were administered. Each individual in the same subgroup was administered at least 1 hour apart. If necessary, the rest of the individuals will postpone dosing and review any significant safety issues that may arise in the first or second subgroup of that group during the post-dose period. The latter group was administered at least 3 weeks after the previous group. Screening period:

主動治療期開始之前至多21天進行篩檢問診(第1次問診)。個體在提供知情同意書之後,進行合格篩檢程序。 治療期:Screening visits (first visit) up to 21 days before the start of the active treatment period. Subjects provided an informed consent before undergoing an eligible screening procedure. Treatment period:

個體在第1天獲准進入臨床藥理單元(Clinical Pharmacology Unit,CPU)(第2次問診),且隨機化治療期始於最短10小時隔夜禁食之後的第1天。個體隨機分配CD24Fc或安慰劑單次劑量治療。個體被禁閉直至第4日晨。 隨訪:Subjects were admitted to the Clinical Pharmacology Unit (CPU) on day 1 (second visit), and the randomized treatment period began on day 1 after a minimum of 10 hours of overnight fasting. Individuals were randomly assigned a single dose of CD24Fc or placebo. The subject was detained until the morning of day 4. Follow-up:

所有個體在第7天、第14天、第21天、第28天及第42天(±1天)返回至CPU接受隨訪問診(第3次問診、第4次問診、第5次問診、第6次問診及第7次問診)。第7次問診為所有個體之最後一次問診。All individuals returned to the CPU for follow-up visits on the 7th, 14th, 21st, 28th, and 42th days (± 1) (3rd, 4th, 5th, and 4th visits) 6 visits and 7 visits). The seventh interview was the last interview of all individuals.

治療持續時間:每位個體之總研究持續時間為至多63天。第1天投與單次劑量。Duration of treatment: The total study duration for each individual was up to 63 days. A single dose was administered on the first day.

個體數目: 計劃:40位個體 篩檢:224位個體 隨機:40位個體 完成:39位個體 中斷:1位個體Number of individuals: Plan: 40 individuals Screening: 224 individuals Random: 40 individuals Complete: 39 individuals Interruption: 1 individual

診斷及主要納入標準:此研究用的群體為年齡在18歲與55歲之間(包括18歲及55歲)的健康男性及女性,其身體質量指數在18 kg/m2 與30 kg/m2 之間(包括18 kg/m2 及30 kg/m2 )。 研究藥品及比較資訊:Diagnosis and main inclusion criteria: The population used in this study was healthy men and women between 18 and 55 years old (including 18 and 55 years old), with a body mass index of 18 kg / m 2 and 30 kg / m Between 2 (including 18 kg / m 2 and 30 kg / m 2 ). Research Drugs and Comparative Information:

CD24Fc:經由靜脈內輸注投與之10 mg、30 mg、60 mg、120 mg或240 mg單次劑量;批號:09MM-036。CD24Fc為完全人類化融合蛋白,其由人類CD24之成熟序列及人類免疫球蛋白G1之可結晶片段區域(IgG1Fc)組成。CD24Fc作為無菌、透明、無色、無防腐劑水溶液供應用於靜脈內投與。CD24Fc調配為單次劑量注射溶液,其濃度為10 mg/mL且pH為7.2。各CD24Fc小瓶含有160 mg CD24Fc、5.3 mg氯化鈉、32.6 mg磷酸氫二鈉七水合物及140 mg磷酸二氫鈉單水合物於16 mL ± 0.2 mL CD24Fc中。CD24Fc在具有氯丁基橡膠塞及易拉鋁密封蓋的透明硼矽酸鹽玻璃小瓶中供應。CD24Fc: A single dose of 10 mg, 30 mg, 60 mg, 120 mg, or 240 mg administered by intravenous infusion; batch number: 09MM-036. CD24Fc is a fully humanized fusion protein, which consists of the mature sequence of human CD24 and the crystallizable fragment region of human immunoglobulin G1 (IgG1Fc). CD24Fc is supplied as a sterile, transparent, colorless, preservative-free aqueous solution for intravenous administration. CD24Fc is formulated as a single-dose injection solution with a concentration of 10 mg / mL and a pH of 7.2. Each CD24Fc vial contains 160 mg of CD24Fc, 5.3 mg of sodium chloride, 32.6 mg of disodium hydrogen phosphate heptahydrate, and 140 mg of sodium dihydrogen phosphate monohydrate in 16 mL ± 0.2 mL of CD24Fc. CD24Fc is supplied in a clear borosilicate glass vial with a chlorobutyl rubber stopper and an easy-to-close aluminum closure.

經由靜脈內輸注投與的匹配安慰劑(0.9%氯化鈉生理鹽水);批號:P296855、P311852、P300715、P315952。Matching placebo (0.9% sodium chloride saline) administered via intravenous infusion; batch numbers: P296855, P311852, P300715, P315952.

治療意願(ITT)群體由接受至少1次劑量之研究藥物的所有個體組成。ITT群體為用於個體資訊及安全評估的主要分析群體。The willingness to treat (ITT) group consists of all individuals who received at least one dose of the study drug. The ITT group is the main analysis group used for individual information and security assessment.

臨床實驗室評估(化學、血液學及尿分析)係依據治療及問診來概述。亦概述相對於基線的變化。生命體徵(血壓、心率、呼吸速率及溫度)係依據治療及時間點概述。亦概述相對於基線的變化。列舉所有體檢資料。概述心電圖參數及相對於基線的變化。列舉總體解釋。 血漿CD24Fc濃度Clinical laboratory assessments (chemical, hematological, and urinalysis) are summarized based on treatment and consultation. Changes from baseline are also outlined. Vital signs (blood pressure, heart rate, breathing rate, and temperature) are outlined based on treatment and time point. Changes from baseline are also outlined. List all medical information. Overview of ECG parameters and changes from baseline. List general explanations. Plasma CD24Fc concentration

如圖9中所示,CD24Fc之平均血漿濃度相對於CD24Fc之投與劑量按比例增加。對於除120 mg外之所有劑量組而言,CD24Fc在給藥後1小時達到最大平均血漿濃度。對於120 mg群組而言,CD24Fc在給藥後2小時達到最大平均血漿濃度。截至第42天(984個小時),所有群組之CD24Fc平均血漿濃度已降低至最大平均血漿濃度之2%與4%之間。As shown in Figure 9, the average plasma concentration of CD24Fc increased proportionally relative to the administered dose of CD24Fc. For all dose groups except 120 mg, CD24Fc reached its maximum mean plasma concentration 1 hour after administration. For the 120 mg cohort, CD24Fc reached its maximum mean plasma concentration 2 hours after dosing. As of day 42 (984 hours), the average plasma concentration of CD24Fc in all groups had decreased to between 2% and 4% of the maximum average plasma concentration.

表1概括了PK可評估群體經治療之血漿CD24Fc PK參數。 表1 PK可評估群體經治療之血漿CD24Fc藥物動力學參數概述 血漿CD24Fc劑量比例分析Table 1 summarizes the treated plasma CD24Fc PK parameters of the PK evaluable population. Table 1.Summary of pharmacokinetic parameters of plasma CD24Fc in the PK evaluable population Analysis of Plasma CD24Fc Dose Ratio

圖10展示PK可評估群體之CD24Fc Cmax 相對於劑量的劑量比例圖。圖11展示PK可評估群體之CD24Fc AUC0-42d 相對於劑量的劑量比例圖。圖12展示PK可評估群體之CD24Fc AUC0-inf 相對於劑量的劑量比例圖。表2展示劑量比例之冪分析。 表2 劑量比例之冪分析:血漿CD24Fc藥物動力學參數 - PK可評估群體 Figure 10 shows a dose ratio plot of CD24Fc Cmax versus dose for a PK evaluable population. Figure 11 shows a dose ratio plot of CD24Fc AUC 0-42d versus dose in a PK evaluable population. Figure 12 shows a dose ratio plot of CD24Fc AUC 0-inf versus dose in a PK evaluable population. Table 2 shows the power of dose ratio analysis. Table 2 Power Analysis of Dose Ratio: Plasma CD24Fc Pharmacokinetic Parameters-PK Evaluable Population

Cmax 斜率估算值為1.172,90% CI為1.105至1.240。AUC0-42d 斜率估算值為1.088,90% CI為1.027至1.148。AUC0-inf 斜率估算值為1.087,90% CI為1.026至1.1。 藥物動力學結論The C max slope is estimated at 1.172 and the 90% CI is 1.105 to 1.240. The AUC 0-42d slope is estimated to be 1.088 and the 90% CI is 1.027 to 1.148. The AUC 0-inf slope is estimated to be 1.087 and the 90% CI is 1.026 to 1.1. Pharmacokinetic conclusions

在小鼠、猴及人類中,血漿CD24Fc之Cmax 及AUCs相對於所投與劑量按比例增加。血漿CD24Fc在1.01與1.34小時之間達到Tmax 。血漿CD24Fc之t½ 範圍在280.83與327.10小時之間。參考文獻 1. Munoz LE, Janko C, Schulze C, Schorn C, Sarter K, Schett G, Herrmann M. 自體免疫及慢性發炎 - SLE發病機制中的兩個清除相關步驟(Autoimmunity and chronic inflammation - two clearance-related steps in the etiopathogenesis of SLE.),《自體免疫評論(Autoimmun Rev.)》2010;10(1):38-42. Epub 2010/09/08. doi: 10.1016/j.autrev.2010.08.015. PubMed PMID: 20817127. 2. Urbonaviciute V, Furnrohr BG, Meister S, Munoz L, Heyder P, De Marchis F, Bianchi ME, Kirschning C, Wagner H, Manfredi AA, Kalden JR, Schett G, Rovere-Querini P, Herrmann M, Voll RE. HMGB1-核小體複合物誘導發炎及免疫反應:牽涉SLE發病機制(Induction of inflammatory and immune responses by HMGB1-nucleosome complexes: implications for the pathogenesis of SLE.),《實驗醫學雜誌(J Exp Med.)》2008;205(13):3007-18. PubMed PMID: 19064698. 3. Wen Z, Xu L, Chen X, Xu W, Yin Z, Gao X, Xiong S. 含DNA免疫複合物誘導自體抗體需要具有TLR2/微RNA-155路徑之HMGB1(Autoantibody induction by DNA-containing immune complexes requires HMGB1 with the TLR2/microRNA-155 pathway.),《免疫學雜誌(Journal of Immunology.)》 2013;190(11):5411-22. Epub 2013/04/26. doi: 10.4049/jimmunol.1203301. PubMed PMID: 23616573. 4. Andersson U, Harris HE. HMGB1在風濕病發病機制中的作用(The role of HMGB1 in the pathogenesis of rheumatic disease.) 《生物化學與生物物理學報(Biochim Biophys Acta.)》1799(1-2):141-8. PubMed PMID: 20123076. 5. Ostberg T, Kawane K, Nagata S, Yang H, Chavan S, Klevenvall L, Bianchi M, Harris HE, Andersson U, Palmblad K. 在自發關節炎模型中保護性靶向HMGB1(Protective targeting of HMGB1 in a spontaneous arthritis model.),《關節炎與風濕病(Arthritis Rheum.)》 2010;62:2963-72. PubMed PMID: 20533288. 6. Rice JW, Veal JM, Fadden RP, Barabasz AF, Partridge JM, Barta TE, Dubois LG, Huang KH, Mabbett SR, Silinski MA, Steed PM, Hall SE. Hsp90之小分子抑制劑強有力地影響發炎疾病路徑且在類風濕性關節炎模型中展現活性(Small molecule inhibitors of Hsp90 potently affect inflammatory disease pathways and exhibit activity in models of rheumatoid arthritis.),《關節炎與風濕病(Arthritis Rheum.)》 2008;58(12):3765-75. PubMed PMID: 19035474. 7. Ahrens S, Zelenay S, Sancho D, Hanc P, Kjaer S, Feest C, Fletcher G, Durkin C, Postigo A, Skehel M, Batista F, Thompson B, Way M, Reis e Sousa C, Schulz O. F-肌動蛋白為進化保守性損傷相關分子模式,其由DNGR-1(死亡細胞之受體)識別(F-actin is an evolutionarily conserved damage-associated molecular pattern recognized by DNGR-1, a receptor for dead cells.),《免疫(Immunity)》 2012;36(4):635-45. Epub 2012/04/10. doi: S1074-7613(12)00126-4 [pii] 10.1016/j.immuni.2012.03.008. PubMed PMID: 22483800. 8. Yamasaki S, Ishikawa E, Sakuma M, Hara H, Ogata K, Saito T. 巨噬細胞誘導C型凝集素為感測受損細胞的ITAM偶合活化受體(Mincle is an ITAM-coupled activating receptor that senses damaged cells.),《自然免疫學(Nat Immunol.)》 2008;9(10):1179-88. Epub 2008/09/09. doi: ni.1651 [pii] 10.1038/ni.1651. PubMed PMID: 18776906. 9. Cavassani KA, Ishii M, Wen H, Schaller MA, Lincoln PM, Lukacs NW, Hogaboam CM, Kunkel SL. TLR3為急性發炎事件期間組織壞死之內源感測器(TLR3 is an endogenous sensor of tissue necrosis during acute inflammatory events.),《實驗醫學雜誌(Journal of Experimental Medicine)》, 2008;205(11):2609-21. PubMed PMID: 18838547. 10. Ivanov S, Dragoi AM, Wang X, Dallacosta C, Louten J, Musco G, Sitia G, Yap GS, Wan Y, Biron CA, Bianchi ME, Wang H, Chu WM. HMGB1在TLR9介導之針對CpG-DNA之發炎反應中的新穎作用(A novel role for HMGB1 in TLR9-mediated inflammatory responses to CpG-DNA.),《血液(Blood.)》 2007;110(6):1970-81. Epub 2007/06/06. doi: blood-2006-09-044776 [pii]10.1182/blood-2006-09-044776. PubMed PMID: 17548579; PMCID: 1976374. 11. Sims GP, Rowe DC, Rietdijk ST, Herbst R, Coyle AJ. 炎症及癌症中之HMGB1及RAGE(HMGB1 and RAGE in inflammation and cancer),《免疫學年鑒(Annu Rev Immunol.)》28:367-88. PubMed PMID: 20192808. 12. van Beijnum JR, Buurman WA, Griffioen AW. 鐸樣受體(TLR)及晚期糖基化終點產物(RAGE)信號傳導路徑之受體經由高遷移率基團B1(HMGB1)彙聚及擴增(Convergence and amplification of toll-like receptor (TLR) and receptor for advanced glycation end products (RAGE) signaling pathways via high mobility group B1 (HMGB1)),《血管生成(Angiogenesis)》 2008;11(1):91-9. PubMed PMID: 18264787. 13. Warger T, Hilf N, Rechtsteiner G, Haselmayer P, Carrick DM, Jonuleit H, von Landenberg P, Rammensee HG, Nicchitta CV, Radsak MP, Schild H. TLR2及TLR4配位體與Gp96之N端域的相互作用放大了先天及後天免疫反應(Interaction of TLR2 and TLR4 ligands with the N-terminal domain of Gp96 amplifies innate and adaptive immune responses),《生物化學雜誌(The Journal of biological chemistry)》 2006;281(32):22545-53. PubMed PMID: 16754684. 14. Zhang Q, Raoof M, Chen Y, Sumi Y, Sursal T, Junger W, Brohi K, Itagaki K, Hauser CJ. 循環粒線體DAMPs引起針對損傷的發炎反應(Circulating mitochondrial DAMPs cause inflammatory responses to injury),《自然(Nature)》 2010;464(7285):104-7. Epub 2010/03/06. doi: nature08780 [pii] 10.1038/nature08780. PubMed PMID: 20203610; PMCID: 2843437. 15. Chen GY, Tang J, Zheng P, Liu Y. CD24及唾液酸結合免疫球蛋白樣凝集素-10選擇性地抑制組織損傷誘導之免疫反應(CD24 and Siglec-10 selectively repress tissue damage-induced immune responses),《科學(Science)》 2009;323(5922):1722-5. doi: 10.1126/science.1168988. PubMed PMID: 19264983; PMCID: PMC2765686. 16. Chen GY, Chen X, King S, Cavassani KA, Cheng J, Zheng X, Cao H, Yu H, Qu J, Fang D, Wu W, Bai XF, Liu JQ, Woodiga SA, Chen C, Sun L, Hogaboam CM, Kunkel SL, Zheng P, Liu Y. 藉由抑制唾液酸酶介導CD24-唾液酸結合免疫球蛋白樣凝集G相互作用中斷而改善敗血症(Amelioration of sepsis by inhibiting sialidase-mediated disruption of the CD24-SiglecG interaction),《自然生物技術(Nat Biotechnol.)》 2011;29(5):428-35. doi: 10.1038/nbt.1846. PubMed PMID: 21478876; PMCID: PMC4090080. 17. Chen W, Han C, Xie B, Hu X, Yu Q, Shi L, Wang Q, Li D, Wang J, Zheng P, Liu Y, Cao X. RNA病毒誘導唾液酸結合免疫球蛋白樣凝集素-G係藉由促進RIG-I降解來抑制先天免疫反應(Induction of Siglec-G by RNA viruses inhibits the innate immune response by promoting RIG-I degradation),《細胞(Cell)》 2013;152(3):467-78. Epub 2013/02/05. doi: 10.1016/j.cell.2013.01.011. PubMed PMID: 23374343. 18. Goris A, Maranian M, Walton A, Yeo TW, Ban M, Gray J, Dubois B, Compston A, Sawcer S. CD24 Ala/Val多態性及多發性硬化症(CD24 Ala/Val polymorphism and multiple sclerosis), 神經免疫學雜誌(Journal of neuroimmunology), 2006. PubMed PMID: 16631259. 19. Otaegui D, Saenz A, Camano P, Blazquez L, Goicoechea M, Ruiz-Martinez J, Olaskoaga J, Emparanza JA, Lopez de Munain A. CD24 V/V為與西班牙人口中出現多發性硬化症之風險相關的對偶基因(CD24 V/V is an allele associated with the risk of developing multiple sclerosis in the Spanish population),《多發性硬化症(Multiple sclerosis)》(英國Houndmills, Basingstoke) 2006;12(4):511-4. Epub 2006/08/12. PubMed PMID: 16900767. 20. Wang L, Lin S, Rammohan K, Liu Z, Liu J, Liu R-H, Guinther N, Zhou Q, Wang T, Zheng X, Birmingham DJ, Rovin BH, Herbert LA, Wu Y, Lynn DJ, Cooke G, Yu CY, Zheng P, Liu Y. CD24中之二核苷酸缺失賦予針對自體免疫疾病之預防作用(A di-nucleotide deletion in CD24 confers protection against autoimmune diseases),《Plos遺傳學(Plos Genetics)》 2007;3:e49. 21. Zhou Q, Rammohan K, Lin S, Robinson N, Li O, Liu X, Bai XF, Yin L, Scarberry B, Du P, You M, Guan K, Zheng P, Liu Y. CD24為多發性硬化症之風險及進展的基因修飾劑(CD24 is a genetic modifier for risk and progression of multiple sclerosis),《美國國家科學院院刊(Proc Natl Acad Sci U S A.)》 2003;100(25):15041-6. doi: 10.1073/pnas.2533866100. PubMed PMID: 14657362; PMCID: PMC299898. 22. Sanchez E, Abelson AK, Sabio JM, Gonzalez-Gay MA, Ortego-Centeno N, Jimenez-Alonso J, de Ramon E, Sanchez-Roman J, Lopez-Nevot MA, Gunnarsson I, Svenungsson E, Sturfelt G, Truedsson L, Jonsen A, Gonzalez-Escribano MF, Witte T, Alarcon-Riquelme ME, Martin J. CD24基因多態性與全身紅斑狼瘡易感性的關係(Association of a CD24 gene polymorphism with susceptibility to systemic lupus erythematosus),《關節炎與風濕病(Arthritis Rheum.)》 2007;56(9):3080-6. Epub 2007/09/01. doi: 10.1002/art.22871. PubMed PMID: 17763438. 23. Sanchez E, Fernandez-Gutierrez B, Gonzalez-Gay MA, Balsa A, Garcia A, Rodriguez L, Pascual-Salcedo D, Gonzalez-Escribano MF, Martin J. 研究CD24基因多態性在類風濕性關節炎中的作用(Investigating the role of CD24 gene polymorphisms in rheumatoid arthritis),《風濕病年鑒(Annals of the rheumatic diseases)》 2008;67(8):1197-8. Epub 2008/07/16. doi: 10.1136/ard.2007.084475. PubMed PMID: 18621973. 24. Rueda B, Miranda-Filloy JA, Martin J, Gonzalez-Gay MA. CD24基因多態性與經切片檢查證實之巨大細胞動脈炎易感性的關係(Association of CD24 gene polymorphisms with susceptibility to biopsy-proven giant cell arteritis),《風濕病學雜誌(The Journal of rheumatology)》 2008;35(5):850-4. Epub 2008/04/03. PubMed PMID: 18381780. 25. Lee YH, Bae SC. 功能CD24多態性與自體免疫疾病易感性之間的關係:綜合分析(Association between functional CD24 polymorphisms and susceptibility to autoimmune diseases: A meta-analysis),《細胞分子生物學(Cell Mol Biol)》(Noisy-le-grand) 2015;61(8):97-104. Epub 2016/01/01. PubMed PMID: 26718436. 26. Bokers S, Urbat A, Daniel C, Amann K, Smith KG, Espeli M, Nitschke L. 唾液酸結合免疫球蛋白樣凝集素-G缺乏在MRL/lpr小鼠中引起更嚴重的膠原蛋白誘導性關節炎及較早發作之狼瘡樣症狀(Siglec-G deficiency leads to more severe collagen-induced arthritis and earlier onset of lupus-like symptoms in MRL/lpr mice),《免疫學雜誌(Journal of immunology)》(Baltimore, Md : 1950). 2014;192(7):2994-3002. Epub 2014/03/07. doi: 10.4049/jimmunol.1303367. PubMed PMID: 24600033. 27. Wigren M, Nilsson J, Kaplan MJ. 全身性紅斑狼瘡及動脈粥樣硬化之病原性免疫:共同機制及可能的干預標靶(Pathogenic immunity in systemic lupus erythematosus and atherosclerosis: common mechanisms and possible targets for intervention),《內科醫學雜誌(Journal of internal medicine)》 2015;278(5):494-506. Epub 2015/02/28. doi: 10.1111/joim.12357. PubMed PMID: 25720452; PMCID: PMC4550575. 28. Kay R, Rosten PM, Humphries RK. CD24(一種調節B細胞活化反應的信號轉導子)為具有糖基磷脂醯肌醇膜錨之極短肽(CD24, a signal transducer modulating B cell activation responses, is a very short peptide with a glycosyl phosphatidylinositol membrane anchor),《免疫學雜誌(Journal of immunology)》(Baltimore, Md : 1950). 1991;147(4):1412-6. Epub 1991/08/15. PubMed PMID: 1831224. 29. Perry D, Sang A, Yin Y, Zheng YY, Morel L. 鼠類全身性紅斑狼瘡模型(Murine models of systemic lupus erythematosus),《生物醫學及生物技術雜誌(Journal of biomedicine & biotechnology)》 2011;2011:271694. Epub 2011/03/16. doi: 10.1155/2011/271694. PubMed PMID: 21403825; PMCID: PMC3042628. 30. Ge Y, Jiang C, Sung SS, Bagavant H, Dai C, Wang H, Kannapell CC, Cathro HP, Gaskin F, Fu SM. Cgnz1對偶基因賦予腎臟損傷抵抗力,從而預防免疫複合物介導急性狼瘡性絲球體腎炎之進展(Cgnz1 allele confers kidney resistance to damage preventing progression of immune complex-mediated acute lupus glomerulonephritis),《實驗醫學雜誌(J Exp Med.)》 2013;210(11):2387-401. Epub 2013/10/09. doi: 10.1084/jem.20130731. PubMed PMID: 24101379; PMCID: PMC3804943.In mice, monkeys, and humans, the Cmax and AUCs of plasma CD24Fc increase proportionally to the dose administered. Plasma CD24Fc reached T max between 1.01 and 1.34 hours. T ½ Plasma CD24Fc the range between 280.83 and 327.10 hours. References 1. Munoz LE, Janko C, Schulze C, Schorn C, Sarter K, Schett G, Herrmann M. Autoimmunity and chronic inflammation-Two clearance-related steps in the pathogenesis of SLE (Autoimmunity and chronic inflammation-two clearance -related steps in the etiopathogenesis of SLE.), "Autoimmun Rev."2010; 10 (1): 38-42. Epub 2010/09/08. doi: 10.1016 / j.autrev.2010.08. 015. PubMed PMID: 20817127. 2. Urbonaviciute V, Furnrohr BG, Meister S, Munoz L, Heyder P, De Marchis F, Bianchi ME, Kirschning C, Wagner H, Manfredi AA, Kalden JR, Schett G, Rovere-Querini P , Herrmann M, Voll RE. HMGB1-nucleosome complex-induced inflammation and immune response: Induction of inflammatory and immune responses by HMGB1-nucleosome complexes: implications for the pathogenesis of SLE., Journal of Experimental Medicine (J Exp Med.) 2008; 205 (13): 3007-18. PubMed PMID: 19064698. 3. Wen Z, Xu L, Chen X, Xu W, Yin Z, Gao X, Xiong S. DNA-containing immune complex Autologous antibody needs to have TLR2 / microRNA-155 HMGB1 (Autoantibody induction by DNA-containing immune complexes requires HMGB1 with the TLR2 / microRNA-155 pathway.), Journal of Immunology. 2013; 190 (11): 5411-22. Epub 2013 / 04/26. Doi: 10.4049 / jimmunol.1203301. PubMed PMID: 23616573. 4. Andersson U, Harris HE. The role of HMGB1 in the pathogenesis of rheumatic disease. Biochemistry Journal of Biochim Biophys Acta. 1799 (1-2): 141-8. PubMed PMID: 20123076. 5. Ostberg T, Kawane K, Nagata S, Yang H, Chavan S, Klevenvall L, Bianchi M, Harris HE, Andersson U, Palmblad K. Protective targeting of HMGB1 in a spontaneous arthritis model., Arthritis Rheum. 2010; 62: 2963 -72. PubMed PMID: 20533288. 6. Small molecules of Rice JW, Veal JM, Fadden RP, Barabasz AF, Partridge JM, Barta TE, Dubois LG, Huang KH, Mabbett SR, Silinski MA, Steed PM, Hall SE. Hsp90 Strong inhibitor Small molecule inhibitors of Hsp90 potently affect inflammatory disease pathways and exhibit activity in models of rheumatoid arthritis., "Arthritis Rheum." 》 2008; 58 (12): 3765-75. PubMed PMID: 19035474. 7. Ahrens S, Zelenay S, Sancho D, Hanc P, Kjaer S, Feest C, Fletcher G, Durkin C, Postigo A, Skehel M, Batista F, Thompson B, Way M, Reis e Sousa C, Schulz O. F-actin is an evolutionarily conserved damage-associated molecular pattern that is recognized by DNGR-1 (the receptor for dead cells) (F-actin is an evolutionarily conserved damage-associated molecular pattern recognized by DNGR-1, a receptor for dead cells.), Immunity 2012; 36 (4): 635-45. Epub 2012/04/10. doi: S1074-7613 ( 12) 00126-4 [pii] 10.1016 / j.immuni.2012.03.008. PubMed PMID: 22483800. 8. Yamasaki S, Ishikawa E, Sakuma M, Hara H, Ogata K, Saito T. Macrophages induce type C agglutination Activates ITAM coupling activation in sensed damaged cells (Mincle is an ITAM-coupled activating receptor that senses damaged cells.), Nat Immunol. 2008; 9 (10): 1179-88. Epub 2008/09/09. Doi: ni.1651 [ pii] 10.1038 / ni.1651. PubMed PMID: 18776906. 9. Cavassani KA, Ishii M, Wen H, Schaller MA, Lincoln PM, Lukacs NW, Hogaboam CM, Kunkel SL. TLR3 is an endogenous source of tissue necrosis during acute inflammation events Sensor (TLR3 is an endogenous sensor of tissue necrosis during acute inflammatory events.), Journal of Experimental Medicine, 2008; 205 (11): 2609-21. PubMed PMID: 18838547. 10. Ivanov S, Dragoi AM, Wang X, Dallacosta C, Louten J, Musco G, Sitia G, Yap GS, Wan Y, Biron CA, Bianchi ME, Wang H, Chu WM. HMGB1 Inflammation of CpG-DNA Mediated by TLR9 A novel role for HMGB1 in TLR9-mediated inflammatory responses to CpG-DNA., "Blood."2007; 110 (6): 1970-81. Epub 2007/06/06. Doi : blood-2006-09-044776 [pii] 10.1182 / blood-2006-09-044776. PubMed PMID: 17548579; P MCID: 1976374. 11. Sims GP, Rowe DC, Rietdijk ST, Herbst R, Coyle AJ. HMGB1 and RAGE in inflammation and cancer (HMGB1 and RAGE in inflammation and cancer), "Annu Rev Immunol." 28: 367-88. PubMed PMID: 20192808. 12. van Beijnum JR, Buurman WA, Griffioen AW. Tudor-like receptors (TLR) and receptors for late glycosylation end products (RAGE) signaling pathways via high mobility Convergence and amplification of toll-like receptor (TLR) and receptor for advanced glycation end products (RAGE) signaling pathways via high mobility group B1 (HMGB1)), "Angiogenesis" 》 2008; 11 (1): 91-9. PubMed PMID: 18264787. 13. Warger T, Hilf N, Rechtsteiner G, Haselmayer P, Carrick DM, Jonuleit H, von Landenberg P, Rammensee HG, Nicchitta CV, Radsak MP, Interaction of Schild H. TLR2 and TLR4 ligands with the N-terminal domain of Gp96 amplifies innate and acquired immune responses (Interaction of TLR2 and TLR4 ligands with the N-terminal domain of Gp96 amplifies innate and ada ptive immune responses), The Journal of biological chemistry 2006; 281 (32): 22545-53. PubMed PMID: 16754684. 14. Zhang Q, Raoof M, Chen Y, Sumi Y, Sursal T, Junger W, Brohi K, Itagaki K, Hauser CJ. Circulating mitochondrial DAMPs cause inflammatory responses to injury, Nature 2010; 464 (7285): 104-7 Epub 2010/03/06. Doi: nature08780 [pii] 10.1038 / nature08780. PubMed PMID: 20203610; PMCID: 2843437. 15. Chen GY, Tang J, Zheng P, Liu Y. CD24 and sialic acid-binding immunoglobulin-like Lectin-10 selectively suppresses tissue damage-induced immune responses (CD24 and Siglec-10, repress tissue damage-induced immune responses), Science 2009; 323 (5922): 1722-5. Doi: 10.1126 /science.1168988. PubMed PMID: 19264983; PMCID: PMC2765686. 16. Chen GY, Chen X, King S, Cavassani KA, Cheng J, Zheng X, Cao H, Yu H, Qu J, Fang D, Wu W, Bai XF, Liu JQ, Woodiga SA, Chen C, Sun L, Hogaboam CM, Kunkel SL, Zheng P, Liu Y. Amelioration of sepsis by inhibiting sialidase-mediated disruption of the CD24- by inhibiting sialidase-mediated CD24-sialic acid-binding immunoglobulin-like agglutination SiglecG interaction), "Nat Biotechnol."2011; 29 (5): 428-35. Doi: 10.1038 / nbt.1846. PubMed PMID: 21478876; PMCID: PMC4090080. 17. Chen W, Han C, Xie B, Hu X, Yu Q, Shi L, Wang Q, Li D, Wang J, Zheng P, Liu Y, Cao X. RNA virus induces sialic acid-binding immunoglobulin-like lectin-G system by promoting RIG- I degradation to inhibit the innate immune response (Induction of Siglec-G by RNA viruses inhibits the innate immune response by promoting RIG-I degradation), Cell 2013; 152 (3): 467-78. Epub 2013/02 / 05. Doi: 10.1016 / j.cell.2013.01.011. PubMed PMID: 23374343. 18. Goris A, Maranian M, Walton A, Yeo TW, Ban M, Gray J, Dubois B, Compston A, Sawcer S. CD24 Ala / Val polymorphism and multiple sclerosis (CD24 Ala / Val polymorphism and multiple sclerosis), Journal of neuroimmunology, 2006. PubMed PMID: 16631259. 19. Otaegui D, Saenz A, Camano P, Blazquez L, Goicoechea M, Ruiz-Martinez J, Olaskoaga J, Emparanza JA, Lopez de Munain A. CD24 V / V is an allele associated with the risk of developing multiple sclerosis in the Spanish population (CD24 V / V is an allele associated with the risk of developing multiple sclerosis in the Spanish population), "Multiple sclerosis ) "(Houndmills, Basingstoke, UK) 2006; 12 (4): 511-4. Epub 2006/08/12. PubMed PMID: 16900767. 20. Wang L, Lin S, Rammohan K, Liu Z, Liu J, Liu RH , Guinther N, Zhou Q, Wang T, Zheng X, Birmingham DJ, Rovin BH, Herbert LA, Wu Y, Lynn DJ, Cooke G, Yu CY, Zheng P, Liu Y. The dinucleotide deletion in CD24 conferred targeting A di-nucleotide deletion in CD24 confers protection against autoimmune diseases, Plos Genetics 2007; 3: e49. 21. Zhou Q, Rammohan K, Lin S, Robinson N , Li O, Liu X, Bai XF, Yin L, Scarberry B, Du P, You M, Guan K, Zheng P, Liu Y. CD24 is a genetic modifier for risk and progression of multiple sclerosis, Proc Natl Acad Sci US A. 2003; 100 (25): 15041-6. Doi: 10.1073 / pnas.2533866100. PubMed PMID: 14657362; PMCID: PMC299898. 22. Sanchez E, Abelson AK, Sabio JM, Gonzalez-Gay MA, Ortego-Centeno N, Jimenez-Alonso J, de Ramon E, Sanchez-Roman J, Lopez-Nevot MA, Gunnarsson I, Svenungsson E, Sturfelt G, Truedsson L, Jonsen A, Gonzalez -Escribano MF, Witte T, Alarcon-Riquelme ME, Martin J. Association of a CD24 gene polymorphism with susceptibility to systemic lupus erythematosus, "Arthritis and Rheumatism Arthritis Rheum.) 2007; 56 (9): 3080-6. Epub 2007/09/01. Doi: 10.1002 / art.22871. PubMed PMID: 17763438. 23. Sanchez E, Fernandez-Gutierrez B, Gonzalez-Gay MA , Balsa A, Garcia A, Rodriguez L, Pa scual-Salcedo D, Gonzalez-Escribano MF, Martin J. Investigating the role of CD24 gene polymorphisms in rheumatoid arthritis (Investigating the role of CD24 gene polymorphisms in rheumatoid arthritis), Annals of the rheumatic diseases)》 2008; 67 (8): 1197-8. Epub 2008/07/16. doi: 10.1136 / ard.2007.084475. PubMed PMID: 18621973. 24. Rueda B, Miranda-Filloy JA, Martin J, Gonzalez-Gay MA. Association of CD24 gene polymorphisms with susceptibility to biopsy-proven giant cell arteritis. The Journal of rheumatology. 2008; 35 (5): 850-4. Epub 2008/04/03. PubMed PMID: 18381780. 25. Lee YH, Bae SC. Relationship between functional CD24 polymorphisms and susceptibility to autoimmune diseases: a comprehensive analysis (Association between functional CD24 polymorphisms and susceptibility to autoimmune diseases: A meta-analysis), Cell Mol Biol (Noisy-le-grand) 2015; 61 (8) : 97-104. Epub 2016/01/01. PubMed PMID: 26718436. 26. Bokers S, Urbat A, Daniel C, Amann K, Smith KG, Espeli M, Nitschke L. Sialic acid-binding immunoglobulin-like lectin- G deficiency causes more severe collagen-induced arthritis and earlier onset of lupus-like symptoms in MRL / lpr mice / lpr mice), Journal of immunology (Baltimore, Md: 1950). 2014; 192 (7): 2994-3002. Epub 2014/03/07. doi: 10.4049 / jimmunol.1303367. PubMed PMID: 24600033. 27. Wigren M, Nilsson J, Kaplan MJ. Pathogenic immunity in systemic lupus erythematosus and atherosclerosis: common mechanisms and common targets possible targets for intervention), Journal of internal medicine 2015; 278 (5): 494-506. Epub 2015/02/28. doi: 10.1111 / joim.12357. PubMed PMID: 25720452; PMCID: PMC4550575. 28. Kay R, Rosten PM, Humphries RK. CD24 (a signal transducer that regulates B cell activation) is a very short peptide (CD24, a signal transducer modulating B cell) activation responses, is a very short peptide with a glycosyl phosphatidylinositol membrane anchor, "Journal of immunology" (Baltimore, Md: 1950). 1991; 147 (4): 1412-6. Epub 1991/08 / 15. PubMed PMID: 1831224. 29. Perry D, Sang A, Yin Y, Zheng YY, Morel L. Murine models of systemic lupus erythematosus, Journal of Biomedicine and Biotechnology biomedicine & biotechnology) 2011; 2011: 271694. Epub 2011/03/16. doi: 10.1155 / 2011/271694. PubMed PMID: 21403825; PMCID: PMC3042628. 30. Ge Y, Jiang C, Sung SS, Bagavant H, Dai C, Wang H, Kannapell CC, Cathro HP, Gaskin F, Fu SM. Cgnz1 dual genes confer resistance to kidney damage, thereby preventing immune complexes from mediating the progression of acute lupus filamentous nephritis (Cgnz1 allele confer s kidney resistance to damage preventing progression of immune complex-mediated acute lupus glomerulonephritis), J Exp Med. 2013; 210 (11): 2387-401. Epub 2013/10/09. doi: 10.1084 / jem.20130731. PubMed PMID: 24101379; PMCID: PMC3804943.

圖1A展示全長CD24融合蛋白CD24Fc(在本文中亦稱為CD24Ig)(SEQ ID NO: 5)之胺基酸組成。加下劃線的26個胺基酸為CD24(SEQ ID NO: 4)之信號肽,其在自表現所述蛋白質之細胞分泌期間分裂且因此缺失於所述蛋白質之經處理形式(SEQ ID NO: 6)中。所述序列之粗體部分為融合蛋白(SEQ ID NO: 2)中所用之成熟CD24蛋白質的胞外域。為了避免免疫原性,通常存在於成熟CD24蛋白質中之最後一個胺基酸(A或V)已缺失於構築體中。未加下劃線的非粗體字母為IgG1 Fc之序列,其包括鉸鏈區及CH1及CH2域(SEQ ID NO: 7)。圖1B展示CD24V Fc之序列(SEQ ID NO: 8),其中成熟人類CD24蛋白質(粗體)為SEQ ID NO: 1之纈胺酸多態性變異體。圖1C展示CD24A Fc之序列(SEQ ID NO: 9),其中成熟人類CD24蛋白質(粗體)為SEQ ID NO: 1之丙胺酸多態性變異體。圖1B及1C中之融合蛋白的不同部分如圖1A加以標記且變異型纈胺酸/丙胺酸胺基酸加雙下劃線。 圖2展示來自小鼠之成熟CD24蛋白質(SEQ ID NO: 3)與來自人類之成熟CD24蛋白質(SEQ ID NO: 2)之間的胺基酸變化。潛在的O-糖基化位點加粗,且N-糖基化位點加下劃線。 圖3. 對CD24IgG1(CD24Fc)之藥物動力學進行的WinNonlin隔室模型化分析。空心圓表示3隻小鼠之平均值,且線條為預測藥物動力學曲線。圖3A. 靜脈內注射1 mg CD24IgG1。圖3B. 皮下注射1 mg CD24IgG1(CD24Fc)。圖3C. 血液中之抗體總量的比較,如藉由曲線下面積(AUC)、半衰期及最大血液濃度所量測。應注意,總體而言,皮下注射之AUC及Cmax 為靜脈內注射之約80%,但差異無統計顯著性。 圖4. 區別PAMP與DAMP之間的CD24-唾液酸結合免疫球蛋白樣凝集素(10)(CD24-Siglec G(10))相互作用。圖4A. 宿主對PAMP的反應不受CD24-唾液酸結合免疫球蛋白樣凝集素G(10)相互作用的影響。圖4B. CD24-唾液酸結合免疫球蛋白樣凝集素G(10)相互作用抑制宿主對DAMP的反應,此可能經由與唾液酸結合免疫球蛋白樣凝集素G/10結合的SHP-1達成。 圖5. CD24 Fc結合至唾液酸結合免疫球蛋白樣凝集素10及HMGB1且活化唾液酸結合免疫球蛋白樣凝集素G(人類唾液酸結合免疫球蛋白樣凝集素10之小鼠同源物)。圖5A. 對CD24-Fc-唾液酸結合免疫球蛋白樣凝集素10相互作用進行的親和量測。圖5B. CD24-Fc以陽離子依賴性方式與HMGB-1發生特異性相互作用。在陽離子螯合劑EDTA之存在或不存在下,將CD24-Fc與HMGB1一起在0.1 mM CaCl2 及MgCl2 中培育。CD24Fc被蛋白質G珠粒吸引,且藉由西方墨點法測定HMGB1、CD24Fc或對照Fc的量。圖5C. CD24-Fc藉由誘導酪胺酸磷酸化(中間圖)且與SHP-1結合(上圖)來活化小鼠唾液酸結合免疫球蛋白樣凝集素G。唾液酸結合免疫球蛋白樣凝集素G之量展示於下圖中。CD24-/- 脾細胞用1 µg/ml CD24-Fc、對照Fc或媒劑(PBS)對照物刺激30分鐘。接著使唾液酸結合免疫球蛋白樣凝集素G發生免疫沈澱且用抗磷酸化酪胺酸或抗SHP-1探測。 圖6. CD24Fc抑制抗CD3活化人類T細胞產生TNF-α及IFN-γ。人類PBML在CD24Fc存在或不存在下用抗CD3刺激4天,且藉由ELISA量測細胞培養物之上清液中所釋放之IFN-γ及TNF-α的量。所示資料為三重複實驗之平均值。誤差條,SEM。 圖7. CD24抑制人類巨噬細胞產生發炎細胞介素。圖7A. CD24之ShRNA靜默引起TNF-α、IL-1β及IL-6自發產生。THP1細胞經編碼混雜的或兩個獨立的CD24 shRNA分子的慢病毒載體轉導。經轉導之細胞藉由與PMA(15 ng/ml)一起培養4天而分化成巨噬細胞。洗掉PMA及未黏附細胞之後,將細胞另培養24小時以便藉由細胞介素珠粒陣列量測發炎細胞介素。圖7B. 如同圖7A,但在最後24小時向巨噬細胞中添加指定濃度之CD24Fc或對照IgG Fc。圖4A中所示的資料 為三次獨立實驗的平均值及標準差(S.D.),而圖4B代表至少3個獨立實驗。 圖8. 對CD24Fc及CsA之治療功效進行的卡普蘭-邁耶(Kaplan-Meier)生存期分析,來自兩個獨立實驗的概述資料。 圖9展示人類個體中之PK可評估群體經治療之平均血漿CD24Fc濃度(±SD)的曲線圖。PK=藥物動力學;SD=標準差。 圖10展示PK可評估群體之CD24Fc Cmax 相對於劑量的劑量比例圖。 圖11展示PK可評估群體之CD24Fc AUC0-42d 相對於劑量的劑量比例圖。 圖12展示PK可評估群體之CD24Fc AUC0-inf 相對於劑量的劑量比例圖。Figure 1A shows the amino acid composition of the full-length CD24 fusion protein CD24Fc (also referred to herein as CD24Ig) (SEQ ID NO: 5). The underlined 26 amino acids are signal peptides of CD24 (SEQ ID NO: 4), which divide during secretion from cells expressing the protein and are therefore deleted from the processed form of the protein (SEQ ID NO: 6 )in. The bold portion of the sequence is the extracellular domain of the mature CD24 protein used in the fusion protein (SEQ ID NO: 2). To avoid immunogenicity, the last amino acid (A or V) normally present in mature CD24 proteins has been deleted from the construct. The un-underlined non-bold letters are the sequence of IgG1 Fc, which includes the hinge region and the CH1 and CH2 domains (SEQ ID NO: 7). FIG. 1B shows the sequence of CD24 V Fc (SEQ ID NO: 8), wherein the mature human CD24 protein (bold) is a valine polymorphic variant of SEQ ID NO: 1. Figure 1C shows the sequence of CD24 A Fc (SEQ ID NO: 9), where the mature human CD24 protein (bold) is an alanine polymorphic variant of SEQ ID NO: 1. The different parts of the fusion protein in Figures 1B and 1C are labeled as in Figure 1A and the variant valine / alanine amino acid is double underlined. Figure 2 shows amino acid changes between a mature CD24 protein (SEQ ID NO: 3) from a mouse and a mature CD24 protein (SEQ ID NO: 2) from a human. Potential O-glycosylation sites are bold and N-glycosylation sites are underlined. Figure 3. WinNonlin compartment modelling analysis of the pharmacokinetics of CD24IgG1 (CD24Fc). Open circles represent the average of 3 mice, and the lines are predicted pharmacokinetic curves. Figure 3A. Intravenous injection of 1 mg CD24IgG1. Figure 3B. Subcutaneous injection of 1 mg of CD24IgG1 (CD24Fc). Figure 3C. Comparison of total antibodies in blood, as measured by area under the curve (AUC), half-life, and maximum blood concentration. It should be noted that, in general, the AUC and Cmax for subcutaneous injections are about 80% of the intravenous injections, but the differences are not statistically significant. Figure 4. Distinguishing CD24-sialic acid-binding immunoglobulin-like lectin (10) (CD24-Siglec G (10)) interactions between PAMP and DAMP. Figure 4A. Host response to PAMP is not affected by CD24-sialic acid binding immunoglobulin-like lectin G (10) interactions. Figure 4B. CD24-sialic acid-binding immunoglobulin-like lectin G (10) interaction inhibits the host's response to DAMP, which may be achieved via SHP-1 which binds to sialic acid-binding immunoglobulin-like lectin G / 10. Figure 5. CD24 Fc binds to sialic acid-binding immunoglobulin-like lectin 10 and HMGB1 and activates sialic acid-binding immunoglobulin-like lectin G (human homolog of human sialic acid-binding immunoglobulin-like lectin 10) . Figure 5A. Affinity measurement for CD24-Fc-sialic acid binding immunoglobulin-like lectin 10 interaction. Figure 5B. CD24-Fc interacts specifically with HMGB-1 in a cation-dependent manner. CD24-Fc was incubated with HMGB1 in 0.1 mM CaCl 2 and MgCl 2 in the presence or absence of the cationic chelator EDTA. CD24Fc was attracted by protein G beads, and the amount of HMGB1, CD24Fc or control Fc was determined by Western blot method. Figure 5C. CD24-Fc activates mouse sialic acid-binding immunoglobulin-like lectin G by inducing tyrosine phosphorylation (middle panel) and binding to SHP-1 (top panel). The amount of sialic acid-binding immunoglobulin-like lectin G is shown in the figure below. CD24 -/- splenocytes were stimulated with 1 µg / ml CD24-Fc, control Fc or vehicle (PBS) control for 30 minutes. Sialic acid-binding immunoglobulin-like lectin G was then immunoprecipitated and detected with anti-phosphorylated tyrosine or anti-SHP-1. Figure 6. CD24Fc inhibits the production of TNF-α and IFN-γ by anti-CD3 activated human T cells. Human PBML was stimulated with anti-CD3 in the presence or absence of CD24Fc for 4 days, and the amount of IFN-γ and TNF-α released from the cell culture supernatant was measured by ELISA. The data shown are the average of triplicate experiments. Error bars, SEM. Figure 7. CD24 inhibits the production of inflammatory cytokines by human macrophages. Figure 7A. ShRNA silencing of CD24 causes spontaneous production of TNF-α, IL-1β, and IL-6. THP1 cells are transduced with a lentiviral vector encoding promiscuous or two independent CD24 shRNA molecules. Transduced cells were differentiated into macrophages by culturing with PMA (15 ng / ml) for 4 days. After washing off the PMA and non-adherent cells, the cells were cultured for another 24 hours to measure the inflammatory cytokines by the cytokinin bead array. Figure 7B. As in Figure 7A, but with the specified concentration of CD24Fc or control IgG Fc added to the macrophages during the last 24 hours. The data shown in Figure 4A are the mean and standard deviation (SD) of three independent experiments, and Figure 4B represents at least 3 independent experiments. Figure 8. Kaplan-Meier survival analysis of the therapeutic efficacy of CD24Fc and CsA. Summary data from two independent experiments. Figure 9 shows a graph of the treated mean plasma CD24Fc concentration (± SD) of a PK-evaluable population in a human individual. PK = pharmacokinetics; SD = standard deviation. Figure 10 shows a dose ratio plot of CD24Fc Cmax versus dose for a PK evaluable population. Figure 11 shows a dose ratio plot of CD24Fc AUC 0-42d versus dose in a PK evaluable population. Figure 12 shows a dose ratio plot of CD24Fc AUC 0-inf versus dose in a PK evaluable population.

Claims (40)

一種治療與癌症療法相關之免疫相關不良事件(irAEs)的方法,包含向有需要的個體投與CD24蛋白質。A method of treating immune-related adverse events (irAEs) associated with cancer therapy, comprising administering CD24 protein to an individual in need. 如申請專利範圍第1項之方法,其中所述癌症療法為抗CTLA4抗體。The method of claim 1, wherein the cancer therapy is an anti-CTLA4 antibody. 如申請專利範圍第2項之方法,其中所述抗CTLA4抗體為伊匹單抗(Ipilimumab)。The method according to item 2 of the patent application, wherein the anti-CTLA4 antibody is Ipilimumab. 如申請專利範圍第2項之方法,其中所述抗CTLA4抗體與另一療法組合投與。The method of claim 2 in which the anti-CTLA4 antibody is administered in combination with another therapy. 如申請專利範圍第1項之方法,其中所述癌症療法為抗PD-1抗體。The method of claim 1, wherein the cancer therapy is an anti-PD-1 antibody. 如申請專利範圍第5項之方法,其中所述抗PD-1抗體與另一療法組合投與。The method of claim 5 in which the anti-PD-1 antibody is administered in combination with another therapy. 如申請專利範圍第1項之方法,其中所述癌症療法為抗PD-L1抗體。The method of claim 1, wherein the cancer therapy is an anti-PD-L1 antibody. 如申請專利範圍第7項之方法,其中所述抗PD-L1抗體與另一療法組合投與。The method of claim 7 in which the anti-PD-L1 antibody is administered in combination with another therapy. 如申請專利範圍第1項之方法,其中所述癌症療法為嵌合抗原受體T細胞。The method of claim 1, wherein the cancer therapy is a chimeric antigen receptor T cell. 如申請專利範圍第1項之方法,其中所述癌症療法為經T細胞受體(TCR)修飾的T細胞。The method of claim 1, wherein the cancer therapy is a T cell modified by a T cell receptor (TCR). 如申請專利範圍第1項之方法,其中所述癌症療法為活化天然殺手細胞。The method of claim 1, wherein the cancer therapy is activating natural killer cells. 如申請專利範圍第1項之方法,其中所述癌症療法為輻射療法。The method of claim 1, wherein the cancer therapy is radiation therapy. 如申請專利範圍第1項之方法,其中該癌症療法為化學療法。The method of claim 1, wherein the cancer therapy is chemotherapy. 如申請專利範圍第1項之方法,其中所述癌症療法涉及靶向癌細胞之抗體。The method of claim 1, wherein the cancer therapy involves an antibody that targets cancer cells. 如申請專利範圍第1項之方法,其中所述CD24蛋白質包含成熟人類CD24或其變異體。The method of claim 1, wherein the CD24 protein comprises mature human CD24 or a variant thereof. 如申請專利範圍第15項之方法,其中所述成熟人類CD24包含SEQ ID NO: 1或2中所闡述之胺基酸序列。The method of claim 15, wherein the mature human CD24 comprises the amino acid sequence set forth in SEQ ID NO: 1 or 2. 如申請專利範圍第1項之方法,其中所述CD24蛋白質為可溶的。The method of claim 1, wherein the CD24 protein is soluble. 如申請專利範圍第1項之方法,其中所述CD24蛋白質經糖基化。The method of claim 1, wherein the CD24 protein is glycosylated. 如申請專利範圍第15項之方法,其中所述CD24蛋白質進一步包含蛋白質標籤,其中所述蛋白質標籤在所述CD24蛋白質之N末端或C末端融合。The method of claim 15, wherein the CD24 protein further comprises a protein tag, wherein the protein tag is fused at the N-terminus or C-terminus of the CD24 protein. 如申請專利範圍第19項之方法,其中所述蛋白質標籤包含哺乳動物免疫球蛋白(Ig)的一部分。The method of claim 19, wherein the protein tag comprises a portion of mammalian immunoglobulin (Ig). 如申請專利範圍第20項之方法,其中所述Ig部分為人類Ig蛋白質之Fc區。The method of claim 20, wherein the Ig portion is an Fc region of a human Ig protein. 如申請專利範圍第21項之方法,其中所述Fc區包含所述人類Ig蛋白質之鉸鏈區及CH2及CH3域,且其中所述Ig選自由IgG1、IgG2、IgG3、IgG4及IgA組成之群。The method of claim 21, wherein the Fc region comprises a hinge region and CH2 and CH3 domains of the human Ig protein, and wherein the Ig is selected from the group consisting of IgG1, IgG2, IgG3, IgG4, and IgA. 如申請專利範圍第21項之方法,其中所述Fc區包含IgM之鉸鏈區及CH2、CH3及CH4域。For example, the method of claim 21, wherein the Fc region comprises a hinge region of IgM and CH2, CH3, and CH4 domains. 如申請專利範圍第22項之方法,其中所述CD24蛋白質之序列包含SEQ ID NO: 6、11或12中所闡述之胺基酸序列。The method of claim 22, wherein the sequence of the CD24 protein comprises the amino acid sequence set forth in SEQ ID NO: 6, 11, or 12. 如申請專利範圍第1項之方法,其中所述CD24蛋白質係使用真核蛋白質表現系統產生。The method of claim 1, wherein the CD24 protein is produced using a eukaryotic protein expression system. 如申請專利範圍第25項之方法,其中所述表現系統包含中國倉鼠卵巢細胞系中所含的載體或複製缺乏型逆轉錄病毒載體。The method of claim 25, wherein the expression system comprises a vector or a replication-deficient retroviral vector contained in a Chinese hamster ovary cell line. 如申請專利範圍第26項之方法,其中所述複製缺乏型逆轉錄病毒載體穩定整合至真核細胞之基因組中。The method of claim 26, wherein the replication-deficient retroviral vector is stably integrated into the genome of a eukaryotic cell. 如申請專利範圍第1項之方法,其中所述irAE為腹瀉或另一種胃腸病症。The method of claim 1, wherein the irAE is diarrhea or another gastrointestinal disorder. 如申請專利範圍第1項之方法,其中所述irAE為純紅血球發育不全。For example, the method of claim 1, wherein the irAE is pure red blood cell hypoplasia. 如申請專利範圍第1項之方法,其中所述irAE為小紅血球性貧血。The method according to item 1 of the patent application, wherein the irAE is microerythrocytic anemia. 如申請專利範圍第1項之方法,其中所述irAE為狼瘡。The method of claim 1, wherein the irAE is lupus. 如申請專利範圍第1項之方法,其中所述irAE為自體免疫腎炎。According to the method of claim 1, wherein the irAE is autoimmune nephritis. 如申請專利範圍第1項之方法,其中所述irAE為自體免疫肝炎。According to the method of claim 1, wherein the irAE is autoimmune hepatitis. 如申請專利範圍第1項之方法,其中所述irAE為肺炎。The method according to item 1 of the patent application, wherein the irAE is pneumonia. 如申請專利範圍第1項之方法,其中所述irAE為心臟病,諸如心肌炎及心包炎。The method of claim 1, wherein the irAE is heart disease, such as myocarditis and pericarditis. 如申請專利範圍第1項之方法,其中所述irAE為內分泌病變。According to the method of claim 1, wherein the irAE is an endocrine lesion. 如申請專利範圍第1項之方法,其中所述irAE為艾迪森氏病(Addison's disease)。The method of claim 1, wherein the irAE is Addison's disease. 如申請專利範圍第1項之方法,其中所述irAE為性腺低能症。For example, the method of claim 1, wherein the irAE is hypogonadism. 如申請專利範圍第1項之方法,其中所述irAE為休格連氏症候群(Sjogren's syndrome)。For example, the method of claim 1, wherein the irAE is Sjogren's syndrome. 如申請專利範圍第1項之方法,其中所述irAE為I型糖尿病。For example, the method of claim 1, wherein the irAE is type I diabetes.
TW107117213A 2017-05-22 2018-05-21 Method for treating immune-related adverse events in cancer therapy using soluble CD24 TW201900212A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201762509498P 2017-05-22 2017-05-22
US62/509,498 2017-05-22

Publications (1)

Publication Number Publication Date
TW201900212A true TW201900212A (en) 2019-01-01

Family

ID=64396936

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107117213A TW201900212A (en) 2017-05-22 2018-05-21 Method for treating immune-related adverse events in cancer therapy using soluble CD24

Country Status (8)

Country Link
US (1) US11547741B2 (en)
EP (1) EP3630158B1 (en)
JP (1) JP2020520985A (en)
KR (1) KR20200034958A (en)
CN (1) CN110799206A (en)
CA (1) CA3064556A1 (en)
TW (1) TW201900212A (en)
WO (1) WO2018217659A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3921339A4 (en) * 2019-02-06 2022-11-09 Oncoimmune Inc. TARGETING CD24-SIGLEC INTERACTIONS TO TREAT PEOPLE WITH PREDIABETES OR DIABETES
CA3128505A1 (en) * 2019-02-06 2020-08-13 Oncoimmune, Inc. Targeting cd24-siglec interactions for the treatment and prevention of nonalcoholic steatohepatitis
TW202143996A (en) * 2020-02-10 2021-12-01 美商昂科免疫公司 Methods of use of soluble cd24 for treating viral pneumonia
EP4103218A4 (en) * 2020-02-10 2024-05-01 Oncoimmune Inc. Methods of use of soluble cd24 for treating sars-cov-2 infection
US20210324339A1 (en) * 2020-04-16 2021-10-21 Ichilov Tech Ltd. Cell-derived particles presenting heterologous cd24 and use thereof in therapy
US20210322483A1 (en) * 2020-04-16 2021-10-21 Ichilov Tech Ltd. Cell-derived particles presenting heterologous cd24 and use thereof in therapy
CN116509997A (en) * 2022-01-20 2023-08-01 上海至成生物科技有限公司 CD24 vaccine
KR20250007516A (en) * 2022-04-20 2025-01-14 온코씨4, 아이앤씨. Mutant CD24 protein and its use for preventing and treating cancer

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5541087A (en) * 1994-09-14 1996-07-30 Fuji Immunopharmaceuticals Corporation Expression and export technology of proteins as immunofusins
US20030106084A1 (en) * 2000-03-29 2003-06-05 Yang Liu Methods of blocking tissue destruction by autoreactive T cells
GB0612443D0 (en) * 2006-06-22 2006-08-02 Ares Trading Sa Protein
US8163281B2 (en) * 2009-03-04 2012-04-24 The Regents Of The University Of Michigan Treatment of drug-related side effect and tissue damage by targeting the CD24-HMGB1-Siglec10 axis
NO2563385T3 (en) * 2010-04-28 2017-12-30
TWI681969B (en) * 2014-01-23 2020-01-11 美商再生元醫藥公司 Human antibodies to pd-1
CA2966988A1 (en) * 2014-11-06 2016-05-12 Children's Research Institute, Children's National Medical Center Immunotherapeutics for cancer and autoimmune diseases
DE102015215896A1 (en) * 2015-08-20 2017-02-23 Schaeffler Technologies AG & Co. KG Coupling device for hybrid drive
US10799558B2 (en) * 2016-02-02 2020-10-13 Oncoimmune, Inc. Use of CD24 proteins for treating leptin-deficient conditions

Also Published As

Publication number Publication date
KR20200034958A (en) 2020-04-01
WO2018217659A1 (en) 2018-11-29
CN110799206A (en) 2020-02-14
EP3630158B1 (en) 2022-07-13
JP2020520985A (en) 2020-07-16
EP3630158A4 (en) 2021-01-13
US11547741B2 (en) 2023-01-10
EP3630158A1 (en) 2020-04-08
US20200197485A1 (en) 2020-06-25
CA3064556A1 (en) 2018-11-29

Similar Documents

Publication Publication Date Title
US11547741B2 (en) Methods of use of soluble CD24 for treating immune related adverse events in cancer therapies
RU2769352C2 (en) Antibodies and polypeptides against cd127
US10703817B2 (en) System for delivery into XCR1 positive cell and uses thereof
RU2559532C2 (en) Antagonists of alk1 receptor and ligands and their application
CZ2002579A3 (en) Pharmaceutical preparation containing polypeptide BAFF-R
TW200539890A (en) Methods of modulating immune responses by modulating tim-1, tim-2 and tim-4 function
US11911441B2 (en) Methods of use of CD24 for the prevention and treatment of leukemia relapse
US20210046154A1 (en) Methods of use of soluble cd24 for treating acquired immune deficiency syndrome (hiv/aids)
US20180298104A1 (en) Methods and pharmaceutical compositions for the treatment of th17 mediated diseases
US20230210952A1 (en) Method of treating a solid tumor with a combination of an il-7 protein and car-bearing immune cells
CN114616247B (en) OX40/PD-L1 bispecific antibodies
US20250099542A1 (en) Method of treating a tumor with a combination of il-7 protein and vegf antagonist
KR20250017256A (en) Highly effective adoptive T cell therapy
WO2024186639A2 (en) Butyrophilin a2 and related isoforms for the treatment of autoimmunity and inflammation
Pardee Cancer immunotherapy targeting T cell costimulatory molecules