[go: up one dir, main page]

TW201838051A - Surface profile measurement method and surface profile measurement system - Google Patents

Surface profile measurement method and surface profile measurement system Download PDF

Info

Publication number
TW201838051A
TW201838051A TW106110518A TW106110518A TW201838051A TW 201838051 A TW201838051 A TW 201838051A TW 106110518 A TW106110518 A TW 106110518A TW 106110518 A TW106110518 A TW 106110518A TW 201838051 A TW201838051 A TW 201838051A
Authority
TW
Taiwan
Prior art keywords
wafer
white light
tested
light interferometer
moving
Prior art date
Application number
TW106110518A
Other languages
Chinese (zh)
Inventor
周智川
楊沛哲
陳建國
Original Assignee
均豪精密工業股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 均豪精密工業股份有限公司 filed Critical 均豪精密工業股份有限公司
Priority to TW106110518A priority Critical patent/TW201838051A/en
Publication of TW201838051A publication Critical patent/TW201838051A/en

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

A surface profile measurement method for measuring profile of a test wafer. The method includes the following steps: using a surface profile measurement device to scan the surface of the test wafer, so as to obtain a surface data; moving a white light interferometry difference spectrometer to an initial scanning position by using a mobile device according one of the height data of the surface data; controlling the white light interferometry difference spectrometer scan the surface of the test wafer from the initial scanning position.

Description

表面量測方法及表面量測系統  Surface measurement method and surface measurement system  

本發明涉及一種表面量測方法及表面量測系統,特別是一種用以量測晶圓表面的表面量測方法及表面量測系統。 The invention relates to a surface measuring method and a surface measuring system, in particular to a surface measuring method and a surface measuring system for measuring a surface of a wafer.

晶圓翹曲是半導體製程過程中重要的問題之一,造成晶圓翹曲的因素有很多,這些因素所造成的晶圓翹曲會使得晶圓上的元件失效、薄膜剝離或晶圓產生裂痕,嚴重的話甚至會使晶圓產生破裂,因此晶圓翹曲的監控對半導體製程非常重要。現有的主要表面量測系統,多是利用白光干涉儀,直接對晶圓的特定位置進行量測。然,由於晶圓表面缺陷的尺度及白光干涉儀的精度都是非常微小,因此,利用白光干涉儀進行表面量測時,需要耗費大量的時間進行取像作業,從而使得整體的量測時間冗長,而量測效能低的問題。緣此,本發明人乃潛心研究並配合學理的運用,而提出一種設計合理且有效改善上述問題的本發明。 Wafer warpage is one of the important issues in the semiconductor manufacturing process. There are many factors that cause wafer warpage. The wafer warpage caused by these factors can cause component failure on the wafer, film peeling or wafer cracking. If it is serious, it will even cause the wafer to rupture, so the monitoring of wafer warpage is very important for the semiconductor process. The existing major surface measurement systems mostly use a white light interferometer to directly measure the specific position of the wafer. However, since the scale of the surface defects of the wafer and the accuracy of the white light interferometer are very small, it takes a lot of time to perform the image capturing operation when the surface measurement is performed by the white light interferometer, so that the overall measurement time is long. And the problem of low performance is measured. Accordingly, the inventors have diligently studied and cooperated with the application of the theory, and proposed a present invention which is rational in design and effective in improving the above problems.

本發明的主要目的在於提供一種表面量測方法及表面量測系統,用以解決現有技術中,僅利用白光干涉儀進行晶圓表面量測,存在有量測效能低的問題。 The main object of the present invention is to provide a surface measurement method and a surface measurement system for solving the problem of wafer surface measurement using only a white light interferometer in the prior art, and there is a problem that the measurement performance is low.

為了實現上述目的,本發明提供一種表面量測方法,其用以量測一待測晶圓的表面,量測方法包含以下步驟:一表面資訊擷取步驟:利用一表面量測裝置,對待測晶圓進行表面掃描,以取 得待測晶圓的一表面量測資訊,表面量測資訊包含有數個高度資料;一移動至啟始掃描位置步驟:依據其中一個高度資料,利用一移動裝置使一白光干涉儀位於相對應的一啟始掃描位置;其中,白光干涉儀包含有一干涉物鏡及一微致動單元,微致動單元能控制干涉物鏡於一縱向方向移動;一影像擷取步驟:使白光干涉儀於啟始掃描位置,利用微致動單元控制干涉物鏡於縱向方向移動,以進行影像擷取作業;其中,移動裝置的單位移動步距大於微致動單元的單位移動步距,且移動裝置的移動速度大於微致動單元的移動速度。 In order to achieve the above object, the present invention provides a surface measurement method for measuring a surface of a wafer to be tested, and the measurement method comprises the following steps: a surface information acquisition step: using a surface measurement device to measure The wafer is surface scanned to obtain a surface measurement information of the wafer to be tested, and the surface measurement information includes a plurality of height data; and a step of moving to the initial scanning position: according to one of the height data, using a mobile device to make a The white light interferometer is located at a corresponding initial scanning position; wherein the white light interferometer comprises an interference objective lens and a micro actuating unit, the micro actuating unit can control the interference objective lens to move in a longitudinal direction; and an image capturing step: The white light interferometer starts the scanning position, and uses the micro-actuating unit to control the interference objective lens to move in the longitudinal direction to perform image capturing operation; wherein the moving step of the mobile device is greater than the unit moving step of the micro-actuating unit, and The moving speed of the mobile device is greater than the moving speed of the microactuating unit.

為了實現上述目的,本發明又提供一種表面量測系統,其用以對一待測晶圓進行表面量測,所述表面量測系統包含:一承載裝置、一表面量測裝置、一白光干涉儀及一移動裝置。承載裝置用以承載一待測晶圓,承載裝置能使待測晶圓於一平面移動。表面量測裝置設置於承載裝置的一側,表面量測裝置能對待測晶圓進行表面量測,以對應產生一表面量測資訊,表面量測資訊包含有數個高度資料。白光干涉儀包含有一微致動單元及一干涉物鏡,微致動單元能控制干涉物鏡於一縱向方向移動,以對待測晶圓進行影像擷取作業;其中,縱向方向為平面的法線方向。移動裝置能依據各高度資料,控制白光干涉儀沿縱向方向移動,以使白光干涉儀移動至相對應的一啟始掃描位置;其中,移動裝置的單位移動步距大於微致動單元的單位移動步距,且移動裝置的移動速度大於微致動單元的移動速度。其中,白光干涉儀移動至啟始掃描位置時,白光干涉儀能透過微致動單元及干涉物鏡相互配合,以對待測晶圓進行影像擷取。 In order to achieve the above object, the present invention further provides a surface measuring system for performing surface measurement on a wafer to be tested, the surface measuring system comprising: a carrying device, a surface measuring device, and a white light interference Instrument and a mobile device. The carrying device is configured to carry a wafer to be tested, and the carrying device can move the wafer to be tested on a plane. The surface measuring device is disposed on one side of the carrying device, and the surface measuring device can perform surface measurement on the wafer to be tested to generate a surface measuring information, and the surface measuring information includes a plurality of height data. The white light interferometer comprises a micro actuating unit and an interference objective lens. The micro actuating unit can control the interference objective lens to move in a longitudinal direction to perform image capturing operation on the wafer to be tested; wherein the longitudinal direction is a normal direction of the plane. The mobile device can control the white light interferometer to move in the longitudinal direction according to the height data, so that the white light interferometer moves to a corresponding starting scanning position; wherein the unit moving step of the mobile device is greater than the unit moving of the micro actuating unit Step distance, and the moving speed of the mobile device is greater than the moving speed of the micro-actuating unit. Wherein, when the white light interferometer moves to the starting scanning position, the white light interferometer can cooperate with the micro actuating unit and the interference objective lens to perform image capturing on the wafer to be tested.

本發明的有益效果可以在於:透過表面量測裝置及移動裝置的相互配合,可以快速地使白光干涉儀移動至啟始掃描位置,而使白光干涉儀可省去大量的時間找尋所述啟始掃描位置,如此,將可大幅提升白光干涉儀的量測速度,而大幅提升整體量測的效 能。 The beneficial effects of the present invention may be that the white light interferometer can be quickly moved to the starting scanning position by the mutual cooperation of the surface measuring device and the moving device, so that the white light interferometer can save a lot of time to find the starting. The scanning position, in this way, will greatly increase the measurement speed of the white light interferometer, and greatly improve the overall measurement performance.

為使能更進一步瞭解本發明的特徵及技術內容,請參閱以下有關本發明的詳細說明與附圖,然而所附圖式僅提供參考與說明用,並非用來對本發明加以限制者。 For a better understanding of the features and technical aspects of the present invention, reference should be made to the accompanying drawings.

1‧‧‧表面量測系統 1‧‧‧Surface measurement system

10‧‧‧處理裝置 10‧‧‧Processing device

20‧‧‧表面量測裝置 20‧‧‧Surface measuring device

201‧‧‧表面量測資訊 201‧‧‧ Surface measurement information

2011‧‧‧高度資料 2011‧‧‧High data

2012‧‧‧平面座標資料 2012‧‧‧planar coordinates

30‧‧‧承載裝置 30‧‧‧ Carrying device

31‧‧‧承載台 31‧‧‧Loading station

32‧‧‧平面移動單元 32‧‧‧ Planar mobile unit

40‧‧‧移動裝置 40‧‧‧Mobile devices

50‧‧‧白光干涉儀 50‧‧‧White Light Interferometer

51‧‧‧干涉物鏡 51‧‧‧Interference objective

52‧‧‧微致動單元 52‧‧‧Microactuated unit

60‧‧‧固定座 60‧‧‧ fixed seat

70‧‧‧機械手臂裝置 70‧‧‧Machine arm device

80‧‧‧校正裝置 80‧‧‧ calibration device

90‧‧‧輸入裝置 90‧‧‧ Input device

D‧‧‧預定偏移量 D‧‧‧predetermined offset

ISP1、ISP2、ISP3、ISP4‧‧‧啟始掃描位置 ISP1, ISP2, ISP3, ISP4‧‧‧ start scanning position

ISL‧‧‧啟始掃描線 ISL‧‧‧Start scan line

R‧‧‧掃描範圍 R‧‧‧ scan range

P1、P2、P3、P4‧‧‧構件 P1, P2, P3, P4‧‧‧ components

W‧‧‧待測晶圓 W‧‧‧ wafer under test

圖1為本發明的表面量測系統的側視圖。 Figure 1 is a side elevational view of a surface measurement system of the present invention.

圖2為本發明的表面量測系統的俯視圖。 2 is a top plan view of a surface measurement system of the present invention.

圖3為本發明的表面量測系統的方塊示意圖。 3 is a block diagram of a surface measurement system of the present invention.

圖4為本發明的表面量測方法的第一實施例的流程示意圖。 4 is a schematic flow chart of a first embodiment of a surface measurement method according to the present invention.

圖5為本發明的表面量測方法的第二實施例的流程示意圖。 Fig. 5 is a flow chart showing the second embodiment of the surface measuring method of the present invention.

圖6為本發明的表面量測方法及表面量測系統量測晶圓表面的示意圖。 6 is a schematic diagram of a surface measurement method and a surface measurement system for measuring a wafer surface according to the present invention.

圖7~10為本發明的表面量測方法的第二實施例的作動示意圖。 7 to 10 are schematic views showing the operation of the second embodiment of the surface measuring method of the present invention.

以下係藉由特定的具體實例說明本發明之表面量測系統及表面量測方法的實施方式,熟悉此技術之人士可由本說明書所揭示之內容輕易地瞭解本發明之其他優點與功效。本發明亦可藉由其他不同的具體實例加以施行或應用,本說明書中的各項細節亦可基於不同觀點與應用,在不悖離本發明之精神下進行各種修飾與變更。又本發明之圖式僅為簡單說明,並非依實際尺寸描繪,亦即未反應出相關構成之實際尺寸,先予敘明。以下之實施方式係進一步詳細說明本發明之觀點,但並非以任何觀點限制本發明之範疇。 The embodiments of the surface measuring system and the surface measuring method of the present invention are described below by way of specific examples, and those skilled in the art can easily understand other advantages and effects of the present invention from the disclosure of the present specification. The present invention may be embodied or applied in various other specific embodiments, and various modifications and changes may be made without departing from the spirit and scope of the invention. Further, the drawings of the present invention are merely illustrative, and are not depicted in actual dimensions, that is, the actual dimensions of the related structures are not reflected, which will be described first. The following embodiments are intended to describe the present invention in further detail, but are not intended to limit the scope of the invention.

請一併參閱圖1至圖3,其為本發明的表面量測系統的示意圖。本發明的表面量測系統1是用以量測一待測晶圓W的表面。如圖所示,表面量測系統1包含有一處理裝置10、一表面量測裝置20、一承載裝置30、一移動裝置40及一白光干涉儀50。表面量測裝置20、承載裝置30、移動裝置40及白光干涉儀50可以是 設置於於一固定座60,當然不以此為限,各裝置可依據需求固定於特定的位置。處理裝置10電性連接表面量測裝置20、承載裝置30、移動裝置40及白光干涉儀50,且處理裝置10能依序控制表面量測裝置20、承載裝置30、移動裝置40及白光干涉儀50,以對待測晶圓W進行表面量測作業。在實際應用中,所述處理裝置10例如可以是電腦、單晶片處理器等,於此不加以限制。 Please refer to FIG. 1 to FIG. 3 together, which is a schematic diagram of the surface measuring system of the present invention. The surface measuring system 1 of the present invention is for measuring the surface of a wafer W to be tested. As shown, the surface measuring system 1 includes a processing device 10, a surface measuring device 20, a carrying device 30, a moving device 40, and a white light interferometer 50. The surface measuring device 20, the carrying device 30, the moving device 40, and the white light interferometer 50 may be disposed on a fixing base 60. Of course, not limited thereto, each device may be fixed to a specific position according to requirements. The processing device 10 is electrically connected to the surface measuring device 20, the carrying device 30, the moving device 40 and the white light interferometer 50, and the processing device 10 can sequentially control the surface measuring device 20, the carrying device 30, the moving device 40 and the white light interferometer 50, performing surface measurement work on the wafer W to be tested. In a practical application, the processing device 10 can be, for example, a computer, a single-chip processor, etc., and is not limited herein.

進一步來說,表面量測裝置20及白光干涉儀50可以是分別設置於該承載裝置30的兩端,承載裝置30可承載一待測晶圓W。表面量測裝置20能量測待測晶圓W的表面,以對應產生一表面量測資訊201,且表面量測裝置20能將表面量測資訊201傳遞至處理裝置10。具體來說,表面量測資訊201可以是包含有數個高度資料2011及數個相對應的平面座標資料2012;也就是說,各高度資料2011即為Z軸座標值,而各平面座標資料2012即為X、Y軸座標值。 Further, the surface measuring device 20 and the white light interferometer 50 may be respectively disposed at two ends of the carrying device 30, and the carrying device 30 may carry a wafer W to be tested. The surface measuring device 20 measures the surface of the wafer W to be tested to generate a surface measurement information 201, and the surface measuring device 20 can transmit the surface measurement information 201 to the processing device 10. Specifically, the surface measurement information 201 may include a plurality of height data 2011 and a plurality of corresponding plane coordinate data 2012; that is, each height data 2011 is a Z-axis coordinate value, and each plane coordinate data 2012 is It is the coordinate value of the X and Y axes.

承載裝置30可以是包含有一承載台31及一平面移動單元32。承載台31與平面移動單元32相連接。平面移動單元32能受處理裝置10控制,而使該承載台31於一平面中任意移動,以使承載台31於表面量測裝置20與白光干涉儀50之間移動,且平面移動單元32可使待測晶圓W對應於白光干涉儀50移動至特定位置,從而讓白光干涉儀50對待測晶圓W的特定位置進行影像擷取作業;其中,所述平面即為圖中所示的X-Y平面。 The carrying device 30 can include a carrying platform 31 and a planar moving unit 32. The carrier 31 is connected to the plane moving unit 32. The plane moving unit 32 can be controlled by the processing device 10 to arbitrarily move the carrier 31 in a plane to move the carrier 31 between the surface measuring device 20 and the white light interferometer 50, and the plane moving unit 32 can The wafer to be tested W is moved to a specific position corresponding to the white light interferometer 50, so that the white light interferometer 50 performs an image capturing operation on a specific position of the wafer W to be tested; wherein the plane is the XY shown in the figure. flat.

移動裝置40與白光干涉儀50相互連接,而移動裝置40能受處理裝置10控制,以使白光干涉儀50沿一縱向方向(未標號,即為圖中所示的Z軸方向)移動,所述縱向方向即為所述平面(前述平面移動單元32能控制承載台31移動的平面)的法線方向,所述縱向方向即為圖中所示的Z軸方向。處理裝置10則是依據表面量測資訊201中的各高度資料2011,而對應控制移動裝置40,以使白光干涉儀50的一干涉物鏡51位於(移動至)相對應的一啟始掃描位 置。在實際應用中,移動裝置40可以是直接控制整個白光干涉儀50移動,以使干涉物鏡51對應移動至所述啟始掃描位置,或者移動裝置40亦可以是僅控制干涉物鏡51移動,而使其移動至啟始掃描位置;當然,移動裝置40不侷限於上述兩種方式,只要可以使干涉物鏡51位於相對應的啟始掃描位置皆屬於本發明所欲保護的範圍。 The mobile device 40 is interconnected with the white light interferometer 50, and the mobile device 40 can be controlled by the processing device 10 to move the white light interferometer 50 in a longitudinal direction (not numbered, ie, the Z-axis direction shown in the figure). The longitudinal direction is the normal direction of the plane (the plane in which the aforementioned plane moving unit 32 can control the movement of the stage 31), and the longitudinal direction is the Z-axis direction shown in the drawing. The processing device 10 controls the mobile device 40 according to each height data 2011 in the surface measurement information 201 so that an interference objective lens 51 of the white light interferometer 50 is located (moved) to a corresponding initial scanning position. In practical applications, the mobile device 40 may directly control the movement of the entire white light interferometer 50 to move the interference objective lens 51 correspondingly to the initial scanning position, or the mobile device 40 may also only control the movement of the interference objective lens 51. It moves to the initial scanning position; of course, the mobile device 40 is not limited to the above two modes, as long as the interference objective 51 can be located at the corresponding starting scanning position, which is within the scope of the present invention.

所述白光干涉儀50還包含有一微致動單元52(例如是壓電致動器PZT)。白光干涉儀50對待測晶圓W進行影像擷取時,微致動單元52將控制干涉物鏡51沿所述縱向方向移動,並配合影像擷取單元(圖未示)以進行影像擷取作業。值得一提的是,移動裝置40的單位移動步距是大於微致動單元52的單位移動步距(具體可以是差1000倍),且移動裝置40的移動是速度大於微致動單元52的移動速度。 The white light interferometer 50 also includes a micro-actuating unit 52 (e.g., piezoelectric actuator PZT). When the white light interferometer 50 performs image capturing on the wafer W to be tested, the micro-actuating unit 52 moves the control interference objective 51 in the longitudinal direction, and cooperates with an image capturing unit (not shown) to perform an image capturing operation. It is worth mentioning that the unit moving step of the mobile device 40 is greater than the unit moving step of the micro-actuating unit 52 (specifically, the difference may be 1000 times), and the movement of the mobile device 40 is faster than the micro-actuating unit 52. Moving speed.

另外,表面量測裝置20對待測晶圓W的一位置進行量測,以取得該位置對應的高度值的速度,是快於僅利用白光干涉儀50對該位置進行量測,以取得該位置對應的高度值的速度;換言之,表面量測裝置20之量測速度快於白光干涉儀50。具體來說,表面量測裝置20可以是利用條紋反射法,對待測晶圓W進行表面量測作業,如此將可以快速且一次性地取得所述表面量測資訊201。 In addition, the surface measuring device 20 measures a position of the wafer W to obtain a speed corresponding to the height value of the position, and is faster than using only the white light interferometer 50 to measure the position to obtain the position. The speed of the corresponding height value; in other words, the surface measuring device 20 measures faster than the white light interferometer 50. Specifically, the surface measuring device 20 may perform a surface measurement operation on the wafer W to be tested by using a stripe reflection method, so that the surface measurement information 201 can be obtained quickly and once.

換言之,透過量測速度較快而量測精度相對較粗略的表面量測裝置20,先快速地進行待測晶圓W的整體表面高度的掃描,而後再利用掃描所取得的各高度資料2011,使白光干涉儀50可以快速地到達相對應的啟始掃描位置,進而使白光干涉儀50可快速地開始進行影像擷取作業,如此,將可大幅提升整體的量測速度,從而可大幅提升量測的效能。 In other words, through the surface measuring device 20 which has a relatively fast measuring speed and relatively relatively accurate measurement accuracy, the entire surface height of the wafer W to be tested is quickly scanned, and then the height data 2011 obtained by the scanning is used. The white light interferometer 50 can quickly reach the corresponding starting scanning position, so that the white light interferometer 50 can quickly start the image capturing operation, so that the overall measuring speed can be greatly improved, thereby greatly increasing the amount. Measured performance.

相較於僅利用白光干涉儀進行待測晶圓表面量測的現有技術,由於待測晶圓的表面可能因為翹曲或是各種原因,而呈現為凹凸不平的狀態,因此,在現有技術中,白光干涉儀需要非常多 的時間,去到上述啟始掃描位置,而後才可進行影像擷取作業,如此將造成量測效能低落。另外,隨著待測晶圓W上的構件尺度越來越精細,現有的利用條紋反射法進行表面量測的裝置,由於精度不佳,因此,僅利用以條紋反射法進行表面量測的裝置,將無法有效地對待測晶圓W上的構件進行精細的影像擷取作業。 Compared with the prior art that the surface of the wafer to be tested is measured by using only the white light interferometer, since the surface of the wafer to be tested may be in a state of ruggedness due to warpage or various reasons, in the prior art, The white light interferometer requires a lot of time to go to the above-mentioned starting scanning position, and then the image capturing operation can be performed, which will cause the measurement performance to be low. In addition, as the dimensions of the components on the wafer W to be tested become finer and finer, the existing apparatus for surface measurement by the stripe reflection method has a poor precision, and therefore, only the apparatus for performing surface measurement by the stripe reflection method is used. It is impossible to effectively perform fine image capturing operations on the components on the wafer W.

在特殊的應用中,表面量測裝置20及白光干涉儀50可以是設置於同一側,並不侷限於圖中所示的位置;甚至在更好的應用中,利用條紋反射法進行表面量測的表面量測裝置20,其部分構件可以是與白光干涉儀50內部的構件共用,而不侷限於前述的兩個獨立裝置。 In a special application, the surface measuring device 20 and the white light interferometer 50 may be disposed on the same side, and are not limited to the positions shown in the figure; even in a better application, the surface measurement is performed by the stripe reflection method. The surface measuring device 20, some of which may be shared with the components inside the white light interferometer 50, is not limited to the two separate devices previously described.

特別說明的是,在實際應用中,表面量測系統1更可以包含有一機械手臂裝置70(如圖2所示),其用以移載待測晶圓W,以將未被量測的待測晶圓W置放於承載裝置30上,或者是將已量測完成的待測晶圓W由承載裝置30上卸下;且機械手臂裝置70可以是電性連接處理裝置10,而處理裝置10能於待測晶圓W完成量測後,控制機械手臂裝置70移載承載裝置30上的待測晶圓W,從而達到自動化量測的效果。當然,所述機械手臂裝置70及承載裝置30的數量,可依據需求增加,如此,在其中一個承載裝置30與機械手臂裝置70進行待測晶圓W的卸除作業時,另一個承載裝置30與機械手臂裝置70可同時進行另一待測晶圓W的安裝,甚至在同一時間,可以是有另一個待測晶圓W在進行量測作業。 Specifically, in practical applications, the surface measuring system 1 may further include a mechanical arm device 70 (shown in FIG. 2) for transferring the wafer to be tested W to be unmeasured. The test wafer W is placed on the carrier device 30, or the measured wafer W to be tested is removed from the carrier device 30; and the robot arm device 70 can be electrically connected to the processing device 10, and the processing device 10 After the measurement of the wafer to be tested is completed, the robot arm device 70 is controlled to transfer the wafer W to be tested on the carrier device 30, thereby achieving the effect of automatic measurement. Of course, the number of the robot arm device 70 and the carrier device 30 can be increased according to requirements. Thus, when one of the carrier device 30 and the robot arm device 70 performs the unloading operation of the wafer W to be tested, the other carrier device 30 The mounting of the wafer W to be tested can be performed simultaneously with the robot arm device 70, and even at the same time, another wafer to be tested can be subjected to the measurement operation.

值得一提的是,表面量測系統1更包含有一校正裝置(圖未示),其可以是選擇性地設置於承載裝置30上。當校正裝置設置於承載裝置30上時,處理裝置10可以控制表面量測裝置20對其進行表面量測,而後並控制承載裝置30將其運載至白光干涉儀50,以使移動裝置40配合白光干涉儀50對校正裝置進行表面量測。藉此,處理裝置10或是相關人員,可以依據表面量測裝置20 及白光干涉儀50對校正裝置所量測的結果,對應校正表面量測裝置20、承載裝置30、白光干涉儀50及移動裝置40彼此間的相對位置,以使承載裝置30能正確地將待測晶圓W由表面量測裝置20移動至白光干涉儀50的預定位置,且透過校正裝置,可使白光干涉儀50及移動裝置40能準確地依據表面量測資訊201進行相關影像擷取作業。另外,如圖2所示,校正裝置80則可以是用以校正白光干涉儀50本身的量測值。 It is worth mentioning that the surface measuring system 1 further comprises a correcting device (not shown), which may be selectively disposed on the carrying device 30. When the calibration device is disposed on the carrier device 30, the processing device 10 can control the surface measurement device 20 to perform surface measurement thereon, and then control the carrier device 30 to carry it to the white light interferometer 50 to match the mobile device 40 with white light. The interferometer 50 performs surface measurement on the calibration device. Thereby, the processing device 10 or a related person can correspondingly measure the result measured by the calibration device according to the surface measuring device 20 and the white light interferometer 50, corresponding to the calibration surface measuring device 20, the carrying device 30, the white light interferometer 50, and the moving The relative positions of the devices 40 relative to each other, so that the carrying device 30 can correctly move the wafer to be tested W from the surface measuring device 20 to a predetermined position of the white light interferometer 50, and through the correcting device, the white light interferometer 50 and The mobile device 40 can accurately perform related image capturing operations based on the surface measurement information 201. In addition, as shown in FIG. 2, the correcting means 80 may be used to correct the measured value of the white light interferometer 50 itself.

在具體的實施中,表面量測系統1更可以包含有一輸入裝置90,其電性連接處理裝置10,輸入裝置90用以提供使用者輸入一量測資訊(圖未示),該量測資訊包含數個晶圓量測位置資料(圖未示)。藉此,處理裝置10即可依據該些晶圓量測位置資料,控制承載裝置30及移動裝置40,以使白光干涉儀50於待測晶圓W相對應的位置進行影像擷取。更具體來說,使用者可以將待測晶圓W實際容易發生翹曲的位置,透過輸入裝置90輸入為該些晶圓量測位置資料,而使白光干涉儀50針對所輸入的容易發生翹曲的位置進行表面量測。 In a specific implementation, the surface measuring system 1 further includes an input device 90 electrically connected to the processing device 10, and the input device 90 is configured to provide a user to input a measurement information (not shown), the measurement information. Contains several wafer measurement location data (not shown). Thereby, the processing device 10 can control the carrying device 30 and the moving device 40 according to the wafer measurement position data, so that the white light interferometer 50 performs image capturing at a position corresponding to the wafer W to be tested. More specifically, the user can input the position of the wafer to be tested W that is actually prone to warpage, and input the position information of the wafer through the input device 90, so that the white light interferometer 50 is prone to the input. The position of the song is measured on the surface.

請一併參閱圖4及圖5,其為本發明的用以量測晶圓的表面型態的表面量測方法的兩個實施例的示意圖;於以下說明中,各裝置及構件具體的設置位置、連動關係,可以參酌前述實施例,以下將不再贅述;但以下實施例所界定的方法步驟,不侷限於利用前述實施例的該些裝置及構件,任何可達成相同功效及目的的裝置及構件皆為本實施例的變化應用範圍。 Please refer to FIG. 4 and FIG. 5 together, which are schematic diagrams of two embodiments of a surface measuring method for measuring a surface type of a wafer according to the present invention; in the following description, specific settings of each device and component The position and the linkage relationship may be referred to the foregoing embodiments, and will not be described below. However, the method steps defined in the following embodiments are not limited to the use of the devices and components of the foregoing embodiments, and any device that can achieve the same function and purpose. And the components are all variations of the application scope of the embodiment.

如圖4所示,其為表面量測方法的第一實施例,其包含有以下步驟:一表面資訊擷取步驟S11:利用表面量測裝置20,對待測晶圓W進行表面掃描,以取得該待測晶圓W的表面量測資訊201;其中,表面量測資訊201包含有數個高度資料2011;一移動至啟始掃描位置步驟S12:依據其中一個高度資料 2011(即Z軸座標值),利用移動裝置40使白光干涉儀50移動,以使白光干涉儀50的干涉物鏡51位於相對應的一啟始掃描位置(也就是,使干涉物鏡51對應位於該Z軸座標值的位置);其中,白光干涉儀50內部具有一微致動單元52,其用以在白光干涉儀50進行量測時,控制干涉物鏡51沿一縱向方向進行移動,而所述移動裝置40並非用以在白光干涉儀50進行影像擷取作業時,控制干涉物鏡51進行移動的構件;其中,於此步驟中所述的高度資料2011可以是包含有使用者設定(或是相關的處理裝置所設定)的一預定偏移量D(如圖6所示);在實際實施中,移動裝置40可以是用以控制白光干涉儀50沿Z軸(該縱向方向)移動,而透過承載裝置30控制待測晶圓W於X-Y平面移動,或者移動裝置40可以是控制白光干涉儀50於X、Y、Z軸移動;一影像擷取步驟S13:使白光干涉儀50於啟始掃描位置,利用微致動單元52控制干涉物鏡51於縱向方向移動,以進行影像擷取作業。 As shown in FIG. 4, it is a first embodiment of the surface measuring method, which comprises the following steps: a surface information capturing step S11: performing surface scanning on the wafer W to be tested by using the surface measuring device 20 to obtain The surface measurement information 201 of the wafer W to be tested; wherein the surface measurement information 201 includes a plurality of height data 2011; a movement to the initial scanning position step S12: according to one of the height data 2011 (ie, the Z-axis coordinate value) The white light interferometer 50 is moved by the moving device 40 such that the interference objective lens 51 of the white light interferometer 50 is located at a corresponding initial scanning position (that is, the interference objective lens 51 corresponds to the position of the Z-axis coordinate value); The white light interferometer 50 has a micro-actuating unit 52 therein for controlling the interference objective lens 51 to move in a longitudinal direction when the white light interferometer 50 performs measurement, and the moving device 40 is not used for white light. When the interferometer 50 performs an image capturing operation, the member that controls the interference objective lens 51 to move is controlled; wherein the height data 2011 described in this step may include a user setting (or an associated processing device) a predetermined offset amount D (as shown in FIG. 6); in an actual implementation, the mobile device 40 may be configured to control the white light interferometer 50 to move along the Z axis (the longitudinal direction) while transmitting through the carrier device 30. Controlling the wafer W to be tested to move in the XY plane, or the moving device 40 may control the white light interferometer 50 to move in the X, Y, and Z axes; an image capturing step S13: causing the white light interferometer 50 to start the scanning position, utilizing The micro-actuating unit 52 controls the interference objective lens 51 to move in the longitudinal direction to perform an image capturing operation.

在具體的實施中,表面量測裝置20、移動裝置40及白光干涉儀50可以是彼此電性連接,而彼此間可以透過有線或無線的方式,進行所述表面量測資訊201及相關控制訊號的傳遞。當然,亦可以是表面量測裝置20、移動裝置40及白光干涉儀50,皆連接至處理裝置10,而透過處理裝置10進行相關資訊及訊號的傳遞。特別說明的是,上述移動至啟始掃描位置步驟S12及影像擷取步驟S13是針對待測晶圓W上的單一個位置進行表面狀態量測,於實際應用中,上述移動至啟始掃描位置步驟S12及影像擷取步驟S13,可以是依據使用者需求,重複執行數次;舉例來說,使用者可以是預定量測待測晶圓W上的N個位置的表面狀態,而上述移動至啟始掃描位置步驟S12及影像擷取步驟S13將對應重 複執行N次。 In a specific implementation, the surface measuring device 20, the mobile device 40, and the white light interferometer 50 may be electrically connected to each other, and the surface measurement information 201 and related control signals may be performed by wire or wirelessly. Pass. Of course, the surface measuring device 20, the mobile device 40, and the white light interferometer 50 may be connected to the processing device 10, and the related information and signals may be transmitted through the processing device 10. Specifically, the moving to the initial scanning position step S12 and the image capturing step S13 are for performing surface state measurement on a single position on the wafer W to be tested. In practical applications, the moving to the starting scanning position is performed. Step S12 and the image capturing step S13 may be repeated several times according to the user's needs; for example, the user may preset the surface state of the N positions on the wafer W to be tested, and the above moves to The start scan position step S12 and the image capture step S13 are performed repeatedly for N times.

如圖5至圖10所示,其為表面量測方法的第二實施例,其包含有以下步驟:一表面資訊擷取步驟S21:利用表面量測裝置20,對待測晶圓W進行表面掃描,以取得待測晶圓的表面量測資訊201,表面量測資訊201包含有數個高度資料2011;具體來說,如圖6所示,將表面量測裝置20所取得的該些高度資料2011(Z軸座標值)與一預定偏移量D,經過演算可以取得圖中所繪示的啟始掃描線ISL;其中,預定偏移量D可以是使用者依據待測晶圓W上的構件P1、P2、P3、P4的高度來設定,或者可以是處理裝置10依據表面量測資訊201決定;也就是說,預定偏移量D可以是人工設定或是電腦自動設定,於此不加以限制。特別說明的是,所述啟始掃描線ISL是基於待測晶圓W表面的形貌及預定偏移量D,配合白光干涉儀50之掃描方向及掃描距離所決定,因此,當白光干涉儀50向下掃描時,啟始掃描線ISL基本上是位於待測晶圓W的上方;一晶圓載運步驟S22:控制承載待測晶圓W的承載裝置30,以使待測晶圓W由表面量測裝置20移動至預定位置;其中,所述預定位置即為白光干涉儀50對待測晶圓W進行表面量測的位置;具體來說,如圖6所示,當表面檢測系統1欲對待測晶圓W上的構件P1進行影像擷取作業時,處理裝置10將會依據該構件P1的平面座標資料2012(可以是使用者選訂,控制承載裝置30移動,而使該構件P1大致位於白光干涉儀50的下方(即白光干涉儀50可進行影像擷取的位置);一移動至啟始掃描位置步驟S23:依據(步驟23中的平面座標資料2012所對應的)其中一個高度資料2011,利用移動裝 置40(帶動白光干涉儀50沿縱向方向移動)使白光干涉儀50(的干涉物鏡51)位於相對應的一啟始掃描位置;其中,白光干涉儀50內部具有一微致動單元52,其用以在白光干涉儀50進行影像擷取作業時,控制干涉物鏡51進行移動,而所述移動裝置40並非用以在白光干涉儀50進行掃描及影像擷取時,控制干涉物鏡51進行移動的構件。具體來說,請一併參閱圖6至圖8,當處理裝置10(如圖3所示),控制承載裝置30於X-Y平面移動,以移動至白光干涉儀50的下方時,處理裝置10將會依據其中一個高度資料2011(Z軸座標值)及一預定偏移量D控制白光干涉儀50移動至對應於構件P1的一啟始掃描位置ISP1;也就是說,處理裝置10將會依據所述的平面座標資料2012(可以是處理裝置10自行決定,或是使用者選訂的X、Y軸座標值),查找表面量測資訊201中,相對應的高度資料2011(Z軸座標值),並依據白光干涉儀50的掃描方向及掃描距離,而選擇性地疊加(或是減去)預定偏移量D,從而得到所述啟始掃描位置ISP1的Z軸座標值,藉此使白光干涉儀50對應移動至所述啟始掃描位置ISP1。在實際應用中,表面量測裝置20所輸出的各個高度資料2011可以是直接包含有所述預定偏移量D;或者,各個高度資料2011也可以是不包含有所述預定偏移量D,而後處理裝置10或是移動裝置40再依據使用者自訂或是處理裝置10自行計算所得的預定偏移量D,對各高度資料2011進行計算,以取得所述啟始掃描位ISP1。一影像擷取步驟S24:使白光干涉儀50於啟始掃描位置,利用微致動單元52控制干涉物鏡51於縱向方向移動,以進行影像擷取作業。具體來說,請一併參閱圖6至圖9,處理裝置10(如圖3所示)控制移動裝置40,而使白光干涉儀50移動至啟始掃描位置ISP1後,處理裝置10將使白光干涉 儀50的微致動單元52作動,而帶動干涉物鏡51縱向移動,以使該白光干涉儀50進行影像擷取作業;其中,圖6中所繪示的虛線框R,即對應為微致動單元52控制干涉物鏡51作動,以使白光干涉儀50對待測晶圓W進行影像擷取的縱向掃描範圍。 As shown in FIG. 5 to FIG. 10 , it is a second embodiment of the surface measuring method, which comprises the following steps: a surface information capturing step S21: performing surface scanning on the wafer W to be tested by using the surface measuring device 20 To obtain the surface measurement information 201 of the wafer to be tested, the surface measurement information 201 includes a plurality of height data 2011; specifically, as shown in FIG. 6, the height data obtained by the surface measuring device 20 is 2011. (Z-axis coordinate value) and a predetermined offset D, after calculation, the starting scan line ISL can be obtained; wherein the predetermined offset D can be a component of the user according to the wafer W to be tested. The heights of P1, P2, P3, and P4 are set, or the processing device 10 may be determined according to the surface measurement information 201; that is, the predetermined offset D may be manually set or automatically set by a computer, and is not limited thereto. . Specifically, the starting scan line ISL is determined based on the topography of the surface of the wafer W to be tested and a predetermined offset amount D, which is determined by the scanning direction and the scanning distance of the white light interferometer 50. Therefore, when the white light interferometer is used When the 50 scans downward, the start scan line ISL is basically located above the wafer W to be tested; a wafer carrying step S22: controlling the carrier device 30 carrying the wafer W to be tested, so that the wafer W to be tested is The surface measuring device 20 is moved to a predetermined position; wherein the predetermined position is a position at which the white light interferometer 50 performs surface measurement on the wafer W to be tested; specifically, as shown in FIG. When the image capturing operation is performed on the member P1 on the wafer W to be tested, the processing device 10 will be based on the plane coordinate data 2012 of the member P1 (which may be user-selected, and the carrier device 30 is controlled to move, so that the member P1 is substantially Located below the white light interferometer 50 (ie, the position at which the white light interferometer 50 can perform image capture); a move to the start scan position step S23: according to one of the height data (corresponding to the plane coordinate data 2012 in step 23) 2011, using mobile equipment Setting 40 (moving the white light interferometer 50 in the longitudinal direction) causes the (interference objective lens 51) of the white light interferometer 50 to be located at a corresponding initial scanning position; wherein the white light interferometer 50 has a micro-actuating unit 52 therein, For controlling the image capturing operation of the white light interferometer 50, the interference objective lens 51 is controlled to move, and the moving device 40 is not used to control the movement of the interference objective lens 51 when the white light interferometer 50 performs scanning and image capturing. Specifically, please refer to FIG. 6 to FIG. 8. When the processing device 10 (shown in FIG. 3) moves the control carrier 30 in the XY plane to move below the white light interferometer 50, the processing device 10 will control the white light interferometer 50 to move to a starting scanning position ISP1 corresponding to the component P1 according to one of the height data 2011 (Z-axis coordinate value) and a predetermined offset D; that is, the processing device 10 will According to the plane coordinate data 2012 (which may be determined by the processing device 10 or the X and Y coordinate values selected by the user), the corresponding height data 2011 (Z-axis coordinate) in the surface measurement information 201 is searched. Value) and based on The scanning direction and the scanning distance of the optical interferometer 50 are selectively superimposed (or subtracted) by a predetermined offset amount D, thereby obtaining a Z-axis coordinate value of the initial scanning position ISP1, thereby causing the white light interferometer 50 Correspondingly, moving to the initial scanning position ISP1. In practical applications, each height data 2011 output by the surface measuring device 20 may directly include the predetermined offset amount D; or, each height data 2011 may also be The predetermined offset amount D is not included, and the post-processing device 10 or the mobile device 40 calculates the height data 2011 according to the user customization or the predetermined offset amount D calculated by the processing device 10 to The start scan bit ISP1 is obtained. An image capturing step S24: the white light interferometer 50 is caused to start the scanning position, and the micro-actuating unit 52 is used to control the interference objective lens 51 to move in the longitudinal direction to perform an image capturing operation. Specifically, please refer to FIG. 6 to FIG. 9, the processing device 10 (shown in FIG. 3) controls the mobile device 40, and after the white light interferometer 50 is moved to the initial scanning position ISP1, the processing device 10 will make white light. The micro-actuating unit 52 of the interferometer 50 is actuated to drive the interference objective lens 51 to move longitudinally, so that the white light interferometer 50 performs an image capturing operation; wherein the dotted frame R shown in FIG. The moving unit 52 controls the interference objective 51 to be actuated to cause the white light interferometer 50 to perform a longitudinal scanning range of image capture of the wafer W to be measured.

一位置移動步驟S25:控制承載裝置30,以使待測晶圓W由預定位置移動至另一預定位置;具體來說,承載裝置30將依據不同的平面座標資料2012,承載該待測晶圓W移動,而使待測晶圓W的不同位置,對應位於白光干涉儀50能進行影像擷取作業的位置。其中,移動至啟始掃描位置步驟、影像擷取步驟及位置移動步驟將重複執行一預定次數,預定次數小於該些高度資料的數量。具體來說,如圖6、圖9及圖10所示,表面檢測系統1如欲對待測晶圓W上的四個構件P1、P2、P3、P4的位置進行掃描及影像擷取作業,則處理裝置10在白光干涉儀50於啟始掃描位置ISP1,完成影像擷取步驟S24後,將會執行位置移動步驟S25,以依據構件P2所對應的平面座標值,控制承載裝置30將待測晶圓W移動至白光干涉儀50的下方,而後再次執行移動至啟始掃描位置步驟S23,以使白光干涉儀50移動至啟始掃描位置ISP2,以再次進行影像擷取步驟S24。同理,構件P3、P4之量測依循上述相同的步驟。 a position moving step S25: controlling the carrying device 30 to move the wafer to be tested W from a predetermined position to another predetermined position; specifically, the carrying device 30 will carry the wafer to be tested according to different plane coordinate data 2012 The W moves to make the different positions of the wafer W to be tested corresponding to the position at which the white light interferometer 50 can perform the image capturing operation. The step of moving to the starting scanning position, the image capturing step and the position moving step are repeated for a predetermined number of times, the predetermined number of times being less than the number of the height data. Specifically, as shown in FIG. 6, FIG. 9, and FIG. 10, the surface detecting system 1 performs scanning and image capturing operations on the positions of the four members P1, P2, P3, and P4 on the wafer W to be tested. After the white light interferometer 50 starts the image capturing step S24, the white light interferometer 50 performs the image capturing step S24 to control the carrying device 30 to be measured according to the plane coordinate value corresponding to the component P2. The circle W moves to the lower side of the white light interferometer 50, and then moves to the start scanning position step S23 again to move the white light interferometer 50 to the start scanning position ISP2 to perform the image capturing step S24 again. Similarly, the measurement of the components P3 and P4 follows the same steps as above.

其中,晶圓運載步驟S22例如可以是透過前述承載裝置30,以使待測晶圓能於表面量測裝置20與白光干涉儀50之間移動。位置移動步驟同樣也可以是透過承載裝置30,將待測晶圓W移動至下一個預定量測的位置,以使白光干涉儀進行量測。於實際應用中,所述承載裝置30可以是X-Y軸的線性移動裝置、機械手臂等,於此不加以限制。 The wafer carrying step S22 can be, for example, transmitted through the carrying device 30 to enable the wafer to be tested to move between the surface measuring device 20 and the white light interferometer 50. The position shifting step may also be performed by moving the wafer W to be tested to the next predetermined measurement position through the carrier device 30 to cause the white light interferometer to measure. In practical applications, the carrying device 30 may be a linear moving device of the X-Y axis, a robot arm, etc., and is not limited herein.

綜合上述,請參閱圖6,本發明的表面量測系統及表面量測方 法,是先透過表面量測裝置20取得圖中所繪示的數個啟始掃描位置ISP1、ISP2、ISP3、ISP4,而後透過承載裝置30及移動裝置40的配合,使白光干涉儀50到達啟始掃描位置(ISP1、ISP2、ISP3、ISP4)後,再利用微致動單元52帶動干涉物鏡51縱向移動,使白光干涉儀50進行影像擷取作業。由於該些啟始掃描位置(ISP1、ISP2、ISP3、ISP4),是由表面量測裝置20量測該待測晶圓W的表面形貌後,予以演算(選擇性地疊加或減去預定偏移量D)所取得,因此,白光干涉儀50到達啟始掃描位置(ISP1、ISP2、ISP3、ISP4)後,即可利用微致動單元52帶動干涉物鏡51縱向移動,使白光干涉儀50對該位置之待測晶圓W進行相關的影像擷取作業。 Referring to FIG. 6 , the surface measurement system and the surface measurement method of the present invention first obtain a plurality of initial scanning positions ISP1, ISP2, ISP3, and ISP4 as shown in the figure through the surface measuring device 20. Then, after the white light interferometer 50 reaches the starting scanning position (ISP1, ISP2, ISP3, ISP4) through the cooperation of the carrying device 30 and the moving device 40, the micro-actuating unit 52 is used to drive the longitudinal movement of the interference objective lens 51 to interfere with the white light. The instrument 50 performs an image capturing operation. Since the starting scanning positions (ISP1, ISP2, ISP3, ISP4) are measured by the surface measuring device 20, the surface topography of the wafer W to be tested is calculated (selectively superimposing or subtracting the predetermined partial deviation) The displacement D) is obtained. Therefore, after the white light interferometer 50 reaches the initial scanning position (ISP1, ISP2, ISP3, ISP4), the micro-actuating unit 52 can be used to drive the longitudinal movement of the interference objective lens 51, so that the white light interferometer 50 pairs The wafer to be tested at this position performs an associated image capturing operation.

現有直接利用白光干涉儀進行影像掃描的晶圓表面量測系統,相較於本發明存在有以下問題:由於使用者在控制白光干涉儀對待測晶圓的特定位置,在進行影像擷取作業前,使用者並不知道待測晶圓的表面形貌,因此,在現有的技術中,相關使用者必需依據過往經驗,設定白光干涉儀於相同的一預定Z軸高度,開始對不同的位置進行影像擷取作業。如此,白光干涉儀將耗費許多時間(微致動單元的單位移動步距非常的小),才可到達本發明所述的啟始掃描位置,從而才可進行影像掃描及擷取作業(基於白光干涉儀的光學特性,白光干涉儀必需先移動至正確的掃描位置後,才可有效地利用微致動單元進行影像擷取)。在極端的情況下,當使用者所設定之Z軸高度,無法匹配待測晶圓不同位置點的翹曲值時,將會造成白光干涉儀耗費許多時間進行掃描後,仍無法找到啟始掃描位置,而使用者必需再次調整初始的Z軸高度,以使白光干涉儀再從新進行掃描。 The wafer surface measuring system that directly scans images by using a white light interferometer has the following problems compared with the present invention: since the user controls the specific position of the white light interferometer to be tested, before performing the image capturing operation The user does not know the surface topography of the wafer to be tested. Therefore, in the prior art, the relevant user must set the white light interferometer to the same predetermined Z-axis height according to the past experience, and start to perform different positions. Image capture operation. In this way, the white light interferometer will take a lot of time (the unit moving step of the microactuating unit is very small) to reach the starting scanning position of the present invention, so that image scanning and capturing operations can be performed (based on white light). The optical characteristics of the interferometer, the white light interferometer must be moved to the correct scanning position before the micro-actuator unit can be used effectively for image capture). In extreme cases, when the Z-axis height set by the user cannot match the warpage value of the different points of the wafer to be tested, the white light interferometer will take a lot of time to scan and still cannot find the start scan. Position, and the user must adjust the initial Z-axis height again to allow the white light interferometer to scan again.

以上所述僅為本發明的較佳可行實施例,非因此侷限本發明的專利範圍,故舉凡運用本發明說明書及圖式內容所做的等效技術變化,均包含於本發明的保護範圍內。 The above description is only a preferred embodiment of the present invention, and is not intended to limit the scope of the present invention. Therefore, equivalent technical changes made by using the present specification and the contents of the drawings are included in the protection scope of the present invention. .

Claims (10)

一種表面量測方法,其用以量測一待測晶圓的表面,該量測方法包含以下步驟:一表面資訊擷取步驟:利用一表面量測裝置,對該待測晶圓進行表面掃描,以取得該待測晶圓的一表面量測資訊,該表面量測資訊包含有數個高度資料;一移動至啟始掃描位置步驟:依據其中一個高度資料利用一移動裝置使一白光干涉儀位於一啟始掃描位置;其中,該白光干涉儀包含有一干涉物鏡及一微致動單元,該微致動單元能控制該干涉物鏡於一縱向方向移動;以及一影像擷取步驟:使該白光干涉儀於該啟始掃描位置,利用該微致動單元控制該干涉物鏡於該縱向方向移動,以使該白光干涉儀對該待測晶圓進行影像擷取作業;其中,該移動裝置的單位移動步距大於該微致動單元的單位移動步距,且該移動裝置的移動速度大於該微致動單元的移動速度。  A surface measuring method for measuring a surface of a wafer to be tested, the measuring method comprising the following steps: a surface information capturing step: performing surface scanning on the wafer to be tested by using a surface measuring device Obtaining a surface measurement information of the wafer to be tested, the surface measurement information includes a plurality of height data; and moving to the initial scanning position step: using a mobile device to position a white light interferometer according to one of the height data Initiating a scanning position; wherein the white light interferometer comprises an interference objective lens and a micro-actuating unit capable of controlling the interference objective lens to move in a longitudinal direction; and an image capturing step of: interfering the white light The micro-actuating unit controls the interference objective lens to move in the longitudinal direction, so that the white light interferometer performs an image capturing operation on the wafer to be tested; wherein the mobile device moves in a unit The step size is greater than a unit moving step of the microactuating unit, and the moving speed of the moving device is greater than the moving speed of the micro actuating unit.   如請求項1所述的表面量測方法,其中,於該移動至啟始掃描位置步驟中,該移動裝置是控制該白光干涉儀於該縱向方向移動,而使該干涉物鏡位於該啟始掃描位置;其中,該表面量測裝置對該待測晶圓的一位置進行量檢測,以取得該位置對應的高度值的速度,快於僅利用該白光干涉儀對該位置進行量檢測以取得該位置對應的高度值的速度;於該移動至啟始掃描位置步驟中,除了依據其中一個該高度資料,還依據一預定偏移量,而利用該移動裝置使該白光干涉儀位於該啟始掃描位置。  The surface measuring method according to claim 1, wherein in the moving to the starting scanning position step, the moving device controls the white light interferometer to move in the longitudinal direction, so that the interference objective lens is located in the initial scanning Position, wherein the surface measuring device performs a quantity detection on a position of the wafer to be tested to obtain a height value corresponding to the position, and is faster than using the white light interferometer to detect the position to obtain the a speed corresponding to the height value of the position; in the step of moving to the initial scanning position, the white light interferometer is located at the initial scanning by the mobile device according to a predetermined offset according to one of the height data position.   如請求項1所述的表面量測方法,其中,該表面資訊擷取步驟與該移動至啟始掃描位置步驟之間更包含有一晶圓載運 步驟:控制承載該待測晶圓的一承載裝置,以使該待測晶圓由鄰近該表面量測裝置的位置移動至鄰近於該白光干涉儀的一預定位置;其中,該承載裝置能使該待測晶圓於一平面移動,該縱向方向為該平面的法線方向。  The surface measuring method of claim 1, wherein the surface information capturing step and the moving to the starting scanning position step further comprise a wafer carrying step of: controlling a carrying device carrying the wafer to be tested. So that the wafer to be tested is moved from a position adjacent to the surface measuring device to a predetermined position adjacent to the white light interferometer; wherein the carrying device enables the wafer to be tested to move in a plane, the longitudinal direction Is the normal direction of the plane.   如請求項3所述的表面量測方法,其中,於該影像擷取步驟後更包含有一位置移動步驟:控制該承載裝置,以使該待測晶圓由該預定位置移動至另一預定位置;其中,該移動至啟始掃描位置步驟、該影像擷取步驟及該位置移動步驟將重複執行一預定次數。  The surface measuring method of claim 3, further comprising a position moving step after the image capturing step: controlling the carrying device to move the wafer to be tested from the predetermined position to another predetermined position The step of moving to the start of scanning position, the step of capturing the image, and the step of moving the position are repeated for a predetermined number of times.   一種表面量測系統,其用以對一待測晶圓進行表面量測,所述表面量測系統包含:一承載裝置,其用以承載一待測晶圓,該承載裝置能使該待測晶圓於一平面移動;一表面量測裝置,其設置於該承載裝置的一側,該表面量測裝置能對該待測晶圓進行表面量測,以對應產生一表面量測資訊,該表面量測資訊包含有數個高度資料;一白光干涉儀,其設置於該承載裝置的另一側,該白光干涉儀包含有一微致動單元及一干涉物鏡,該微致動單元能控制該干涉物鏡於一縱向方向移動,以對該待測晶圓進行影像擷取作業;其中,該縱向方向為該平面的法線方向;以及一移動裝置,其能依據各該高度資料控制該白光干涉儀沿該縱向方向移動,以使該白光干涉儀位於相對應的一啟始掃描位置;其中,該移動裝置的單位移動步距大於該微致動單元的單位移動步距,且該移動裝置的移動速度大於該微致動單元的移動速度;其中,該白光干涉儀位於該啟始掃描位置時,該白光干涉儀 能透過該微致動單元及該干涉物鏡相互配合,以對該待測晶圓進行影像擷取。  A surface measurement system for surface measurement of a wafer to be tested, the surface measurement system comprising: a carrier device for carrying a wafer to be tested, the carrier device enabling the device to be tested The wafer is moved on a plane; a surface measuring device is disposed on one side of the carrying device, and the surface measuring device can perform surface measurement on the wafer to be tested to generate a surface measurement information, The surface measurement information includes a plurality of height data; a white light interferometer is disposed on the other side of the carrying device, the white light interferometer includes a micro actuating unit and an interference objective lens, and the micro actuating unit can control the interference Moving the objective lens in a longitudinal direction to perform an image capturing operation on the wafer to be tested; wherein the longitudinal direction is a normal direction of the plane; and a moving device capable of controlling the white light interferometer according to each height data Moving in the longitudinal direction such that the white light interferometer is located at a corresponding initial scanning position; wherein the unit moving step of the mobile device is greater than a unit moving step of the micro actuating unit, and The moving speed of the mobile device is greater than the moving speed of the micro-actuating unit; wherein, when the white light interferometer is located at the initial scanning position, the white light interferometer can cooperate with the micro-actuating unit and the interference objective to The wafer to be tested is imaged.   如請求項5所述的表面量測系統,其中,該表面量測系統更包含有一處理裝置,該處理裝置電性連接該表面量測裝置、該承載裝置、該移動裝置及該白光干涉儀,該處理裝置能依據該表面量測資訊所包含的該些高度資料及相對應的平面座標資料,控制該承載裝置及該移動裝置,而使該白光干涉儀能對該待測晶圓移動相對應的位置進行影像擷取。  The surface measuring system of claim 5, wherein the surface measuring system further comprises a processing device electrically connected to the surface measuring device, the carrying device, the moving device and the white light interferometer, The processing device can control the carrying device and the mobile device according to the height data and the corresponding planar coordinate data included in the surface measurement information, so that the white light interferometer can correspond to the movement of the wafer to be tested The location is for image capture.   如請求項5所述的表面量測系統,其中,該表面量檢測系統更包含有一校正裝置,其用以校正該表面量測裝置、該承載裝置、該白光干涉儀及該移動裝置彼此間的相對位置。  The surface measuring system of claim 5, wherein the surface amount detecting system further comprises a correcting device for correcting the surface measuring device, the carrying device, the white light interferometer and the mobile device relative position.   如請求項5所述的表面量測系統,其中,該表面量測裝置是利用條紋反射法對該待測晶圓進行表面量測;該移動裝置能依據各該高度資料及一預定偏移量,對應控制該白光干涉儀沿該縱向方向移動。  The surface measuring system of claim 5, wherein the surface measuring device performs surface measurement on the wafer to be tested by using a stripe reflection method; the moving device can according to each height data and a predetermined offset Correspondingly, the white light interferometer is moved in the longitudinal direction.   如請求項5所述的表面量測系統,其中,該表面量測系統更包含有一輸入裝置,其電性連接該處理裝置,該輸入裝置用以提供使用者輸入一量測資訊,該量測資訊包含有數個晶圓量測位置資料;該處理裝置能依據該些晶圓量測位置資料,控制該承載裝置及該移動裝置,以使該白光干涉儀於該待測晶圓相對應的位置進行影像擷取作業。  The surface measuring system of claim 5, wherein the surface measuring system further comprises an input device electrically connected to the processing device, wherein the input device is configured to provide a user to input a measurement information, the measurement The information includes a plurality of wafer measurement location data; the processing device can control the carrier device and the mobile device according to the wafer measurement location data, so that the white light interferometer corresponds to the wafer to be tested. Perform image capture operations.   如請求項5所述的表面量測系統,其中,該表面量測系統更包含有一機械手臂裝置,其電性連接該處理裝置,而該處理裝置能控制該機械手臂,取放設置於該承載裝置上的待測晶圓。  The surface measuring system of claim 5, wherein the surface measuring system further comprises a mechanical arm device electrically connected to the processing device, and the processing device can control the mechanical arm, and the pick and place is disposed on the bearing The wafer to be tested on the device.  
TW106110518A 2017-03-29 2017-03-29 Surface profile measurement method and surface profile measurement system TW201838051A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW106110518A TW201838051A (en) 2017-03-29 2017-03-29 Surface profile measurement method and surface profile measurement system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW106110518A TW201838051A (en) 2017-03-29 2017-03-29 Surface profile measurement method and surface profile measurement system

Publications (1)

Publication Number Publication Date
TW201838051A true TW201838051A (en) 2018-10-16

Family

ID=64797038

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106110518A TW201838051A (en) 2017-03-29 2017-03-29 Surface profile measurement method and surface profile measurement system

Country Status (1)

Country Link
TW (1) TW201838051A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI846838B (en) * 2019-03-08 2024-07-01 美商科磊股份有限公司 Dynamic amelioration of misregistration measurement

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI846838B (en) * 2019-03-08 2024-07-01 美商科磊股份有限公司 Dynamic amelioration of misregistration measurement

Similar Documents

Publication Publication Date Title
CN105157606B (en) Contactless complicated optical surface profile high precision three-dimensional measurement method and measurement apparatus
US11454494B2 (en) Testing apparatus and testing method
TWI464817B (en) An alignment method, a needle position detecting device, and a probe device
US9250071B2 (en) Measurement apparatus and correction method of the same
US20130194569A1 (en) Substrate inspection method
US7905031B1 (en) Process for measuring a part
TWI579123B (en) Robot correction system and method thereof
CN105241399A (en) Method of measuring dynamic flatness of precision positioning platform
CN105424721B (en) A kind of metal strain meter defect automatic checkout system
CN108662992B (en) Surface measurement method and surface measurement system
TW201925720A (en) Laser triangulation sensor system and method for wafer inspection
CN111146105B (en) A device and method for defect inspection
KR101183101B1 (en) Method of die bonding for flip chip
KR102170610B1 (en) Position correction method, inspection apparatus, and probe card
CN205333535U (en) Metal strainometer defect automatic check out system
TW201838051A (en) Surface profile measurement method and surface profile measurement system
CN111443320A (en) Probe self-calibration system and method therefor
JP2004063877A (en) Wafer-positioning correction method
JP3248136B1 (en) Probe method and probe device
CN210270067U (en) Wafer test equipment
JP2002057196A (en) Method and device for probe
TWI623761B (en) Wafer spot measuring device and wafer spot measuring method
CN112748286B (en) Semiconductor inspection method, semiconductor inspection system, and readable storage medium
JP2009294155A (en) Arm offset acquisition method
TWI708069B (en) Probe self-correction system and method thereof