TW201834341A - Control system of a balanced micro-pulsed ionizer blower - Google Patents
Control system of a balanced micro-pulsed ionizer blower Download PDFInfo
- Publication number
- TW201834341A TW201834341A TW106141335A TW106141335A TW201834341A TW 201834341 A TW201834341 A TW 201834341A TW 106141335 A TW106141335 A TW 106141335A TW 106141335 A TW106141335 A TW 106141335A TW 201834341 A TW201834341 A TW 201834341A
- Authority
- TW
- Taiwan
- Prior art keywords
- ionization
- remote
- positive
- negative
- pulse
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01T—SPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
- H01T23/00—Apparatus for generating ions to be introduced into non-enclosed gases, e.g. into the atmosphere
Landscapes
- Elimination Of Static Electricity (AREA)
- Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
Abstract
Description
本發明的實施例大致關於離子化鼓風機。Embodiments of the present invention relate generally to ionizing blowers.
靜電荷中和器被設計為移除或最小化靜電電荷的積聚。靜電荷中和器藉由產生空氣離子及向帶電的目標供應彼等離子來移除靜電荷。The electrostatic charge neutralizer is designed to remove or minimize the accumulation of electrostatic charges. An electrostatic charge neutralizer removes electrostatic charges by generating air ions and supplying them to a charged target.
靜電荷中和器的一個特定範疇是離子化鼓風機。離子化鼓風機一般產生具有電暈電極的空氣離子,且使用風扇(或多個風扇)以朝向關注的目標引導空氣離子。One particular category of electrostatic charge neutralizers is the ionizing blower. Ionization blowers typically generate air ions with a corona electrode and use a fan (or multiple fans) to direct the air ions towards the target of interest.
監測或控制鼓風機的執行的行為利用兩種量度。The behavior of monitoring or controlling the execution of a blower uses two measures.
第一種量度是平衡。理想的平衡發生在正空氣離子的數量等於負空氣離子的數量時。在電荷板監測器上,理想的讀數是零。實際上,靜電中和器被控制在零周圍的小範圍內。例如,靜電中和器的平衡可被指定為大約±0.2伏特。The first measure is balance. The ideal equilibrium occurs when the number of positive air ions is equal to the number of negative air ions. On a charge plate monitor, the ideal reading is zero. In fact, the electrostatic neutralizer is controlled in a small range around zero. For example, the balance of an electrostatic neutralizer can be specified as approximately ± 0.2 volts.
第二種量度是空氣離子電流。較高的空氣離子電流是有用的,因為可在較短的時段中將靜電荷放電。較高的空氣離子電流與低的放電時間相關聯,該等放電時間是以電荷板監測器量測的。The second measure is air ion current. Higher air ion currents are useful because electrostatic charges can be discharged in a shorter period of time. Higher air ion currents are associated with lower discharge times, which are measured with a charge plate monitor.
在本發明的一個實施例中,提供了一種自動平衡雙極電暈放電中所產生的經離子化的氣流的方法。該方法包括以下步驟:提供空氣移動設備及控制系統,該空氣移動設備具有連接到微脈衝式AC電源的至少一個離子發射器及參考電極,該控制系統具有至少一個離子平衡監測器及電暈放電調整控制件;產生可變極性群組的短持續時間離子化微脈衝,其中所述微脈衝絕大多數在兩個極性的電壓的幅度及持續時間上是不對稱的且具有超過電暈臨界值的數值的至少一個極性的離子化脈衝。In one embodiment of the present invention, a method for automatically balancing the ionized gas flow generated in a bipolar corona discharge is provided. The method includes the steps of providing an air moving device having at least one ion emitter and a reference electrode connected to a micro-pulse AC power source, and a control system having at least one ion balance monitor and a corona discharge. Adjustment control; generating short-duration ionized micropulses of a variable polarity group, wherein most of the micropulses are asymmetric in the amplitude and duration of the voltage of the two polarities and have a value exceeding the corona threshold The value of at least one polarity ionization pulse.
在本發明的另一實施例中,提供了一種用於一自動平衡的離子化鼓風機的裝置。該裝置包括:空氣移動設備以及至少一個離子發射器及參考電極,該至少一個離子發射器及參考電極兩者連接到高電壓源;及離子平衡監測器;其中所述高電壓源的變壓器、所述離子發射器及參考電極被佈置成用於AC電流電路的閉合環路,且所述環路藉由高位值的檢視電阻器連接到接地。In another embodiment of the present invention, an apparatus for an auto-balanced ionization blower is provided. The device includes: an air moving device and at least one ion emitter and a reference electrode, the at least one ion emitter and the reference electrode are both connected to a high voltage source; and an ion balance monitor; wherein the transformer of the high voltage source, the The ion emitter and the reference electrode are arranged as a closed loop for an AC current circuit, and the loop is connected to ground through a high-valued viewing resistor.
在以下的詳細說明中,為了解釋的目的而闡述了許多特定細節以提供本發明的各種實施例的徹底了解。本領域中的技術人員將認識到的是,本發明的該等各種實施例僅為說明性的,且不是要以任何方式作為限制。已受益於本文中的揭示內容的此類技術人員將輕易想到本發明的其他實施例。In the following detailed description, for the purposes of explanation, numerous specific details are set forth in order to provide a thorough understanding of various embodiments of the invention. Those skilled in the art will recognize that the various embodiments of the present invention are illustrative only and are not intended to be limiting in any way. Those skilled in the art who have benefited from the disclosure herein will readily think of other embodiments of the invention.
本發明的實施例可施用於例如被配置為離子化棒、鼓風機或線內(in-line)離子化設備的許多類型的空氣氣體離子化器。Embodiments of the present invention can be applied to many types of air gas ionizers configured, for example, as an ionization rod, a blower, or an in-line ionization device.
範圍廣泛的離子化鼓風機需要將高度高效的空氣離子化與短的放電時間及嚴格的離子平衡控制結合在一起。圖1A是依據本發明的一實施例的離子化鼓風機100的總圖的方塊圖,而圖1B是圖1A的鼓風機100沿著線A-A的橫截面圖。高效的空氣離子化是藉由產生成在發射點102的陣列(亦即發射點陣列102)及兩個參考電極104、105(示作上參考電極104及下參考電極105)之間的雙極電暈放電來達成的。發射點102被安裝在保護格柵106(亦即通氣道106)上,該保護格柵亦相等地幫助使經離子化的空氣流加速。A wide range of ionization blowers need to combine highly efficient air ionization with short discharge times and strict ion balance control. FIG. 1A is a block diagram of a general view of an ionizing blower 100 according to an embodiment of the present invention, and FIG. 1B is a cross-sectional view of the blower 100 of FIG. 1A along line A-A. Efficient air ionization is achieved by generating a bipole between an array of emission points 102 (ie, emission point array 102) and two reference electrodes 104, 105 (shown as upper reference electrode 104 and lower reference electrode 105). Corona discharge is achieved. The emission point 102 is mounted on a protective grille 106 (ie, the air passage 106), which also helps to accelerate the ionized air flow.
風扇103(圖1A)是提供在發射點陣列102(離子發射器102)及兩個參考電極104、105之間的空間130中的高可變空氣流125的空氣移動設備。通氣道106在電暈放電的空間130中集中及分佈空氣流125。產生正及負離子的電暈在電極102、104及105之間移動。空氣流125能夠僅攜帶及承載由電暈放電所產生的正及負離子的相對小部分。The fan 103 (FIG. 1A) is an air moving device that provides a highly variable air flow 125 in the space 130 between the emission point array 102 (the ion emitter 102) and the two reference electrodes 104, 105. The air passage 106 concentrates and distributes the air flow 125 in the corona discharge space 130. The corona, which generates positive and negative ions, moves between the electrodes 102, 104, and 105. The air stream 125 can carry and carry only a relatively small portion of the positive and negative ions generated by the corona discharge.
依據本發明的一個實施例,空氣125被逼出通氣道(106)出口131且空氣125經過空氣離子化感測器101。感測器101的設計的一個實施例的細節被示於圖1C中。風扇(示為圖1B中的區塊126)提供空氣125流。空氣離子化電壓感測器101具有拉伸在通氣道106的整個寬度上的百葉窗型的薄介電板109。百葉窗板109引導來自通氣道106及上電極104的經離子化的空氣流125b(經離子化的氣流125b)的一部分125a(或樣本125a)(亦參照圖2A),使得感測器101可感測及收集經離子化空氣流125b的部分125a中的離子電荷中的某些部分。經收集的離子電荷接著產生控制訊號250(圖2)以供由用於平衡離子化鼓風機100中的離子的演算法300(圖3)使用。板109的頂側132具有充當敏感電極108的窄的金屬條,而底側133具有較寬的接地平坦電極110。此電極110一般是被屏蔽的,使得將空氣離子化感測器101與發射點陣列102的高電場屏蔽開。電極108收集造成電壓/訊號135的離子電荷中的某些部分(圖2A),該電壓/訊號與經離子化空氣流125b中的離子平衡成比例。來自感測器101的電壓/訊號135由控制系統107(在圖2中示為系統200)用來監測及調整經離子化空氣流125b中的離子平衡。此訊號135亦由訊號250所表示,該訊號250如下文將論述地被輸入到取樣保持電路205中。亦可在本發明的其他實施例中使用離子平衡感測器的其他配置(例如呈現沉浸在離子流中的導電格柵或金屬網的形式)。According to an embodiment of the present invention, the air 125 is forced out of the outlet 131 of the air passage (106) and the air 125 passes through the air ionization sensor 101. Details of one embodiment of the design of the sensor 101 are shown in FIG. 1C. A fan (shown as block 126 in Figure 1B) provides a flow of air 125. The air ionization voltage sensor 101 has a louver-shaped thin dielectric plate 109 stretched over the entire width of the air passage 106. The louver plate 109 guides a part 125a (or a sample 125a) of the ionized air flow 125b (the ionized air flow 125b) from the air passage 106 and the upper electrode 104 (also refer to FIG. 2A), so that the sensor 101 can sense Some portion of the ionic charge in the portion 125a of the ionized air stream 125b is detected and collected. The collected ion charge then generates a control signal 250 (FIG. 2) for use by an algorithm 300 (FIG. 3) for balancing ions in the ionization blower 100. The top side 132 of the plate 109 has a narrow metal strip serving as the sensitive electrode 108, while the bottom side 133 has a wider ground flat electrode 110. This electrode 110 is generally shielded so as to shield the air ionization sensor 101 from the high electric field of the emission point array 102. Electrode 108 collects some of the ionic charge (Figure 2A) that causes a voltage / signal 135 that is proportional to the ion balance in the ionized air stream 125b. The voltage / signal 135 from the sensor 101 is used by the control system 107 (shown as system 200 in Figure 2) to monitor and adjust the ion balance in the ionized air stream 125b. This signal 135 is also represented by a signal 250, which is input to the sample-and-hold circuit 205 as discussed below. Other configurations of the ion balance sensor (such as in the form of a conductive grid or a metal mesh immersed in an ion stream) can also be used in other embodiments of the invention.
依據本發明的另一實施例,離子電流感測器204被用來監測經離子化流的平衡。因此,本發明的一個實施例提供系統200(圖2),該系統包括用於監測經離子化空氣流平衡的離子化返回電流感測器204。在本發明的另一實施例中,系統200包括用於監測經離子化空氣流平衡的空氣離子化電壓感測器101。According to another embodiment of the present invention, the ion current sensor 204 is used to monitor the balance of the ionized flow. Accordingly, one embodiment of the present invention provides a system 200 (FIG. 2) that includes an ionized return current sensor 204 for monitoring the balance of ionized air flow. In another embodiment of the present invention, the system 200 includes an air ionization voltage sensor 101 for monitoring the equilibrium of the ionized air flow.
在本發明的又一實施例中,系統200包括雙感測器,該等雙感測器包括空氣離子化電壓感測器101及離子化電流返回感測器204,其中兩個感測器101及204被配置為用於監測經離子化空氣流平衡。In yet another embodiment of the present invention, the system 200 includes dual sensors. The dual sensors include an air ionization voltage sensor 101 and an ionization current return sensor 204. Two of the sensors 101 And 204 are configured to monitor the ionized air flow balance.
在某些實例中,離子化電壓感測器101及/或離子化電流返回感測器204為直接連接到控制系統107的遠端感測器。在某些其他實例中,離子化電壓感測器101及/或離子化電流返回感測器204被實施為具有射頻(RF)通訊、藍芽及/或任何其他用於通訊的無線方法的遠端無線感測器。遠端感測器指的是離子化鼓風機100外部的感測器。示例性離子化鼓風機100可從離子化鼓風機100的控制系統107處的有線及/或無線的遠端離子化電壓感測器101及/或離子化電流返回感測器204接收有源(例如被供電的)及/或無源(例如非被供電的)的反饋訊號。In some examples, the ionization voltage sensor 101 and / or the ionization current return sensor 204 are remote sensors directly connected to the control system 107. In certain other examples, the ionized voltage sensor 101 and / or the ionized current return sensor 204 is implemented as a remote device with radio frequency (RF) communication, Bluetooth, and / or any other wireless method for communication Wireless sensor. The remote sensor refers to a sensor external to the ionization blower 100. The exemplary ionization blower 100 may receive an active (eg, by a wired and / or wireless remote ionization voltage sensor 101 and / or ionization current return sensor 204 at the control system 107 of the ionization blower 100) Powered) and / or passive (eg not powered) feedback signals.
因為離子化鼓風機100可用在將多個或甚至大數量(例如數十個、數百個或以上)的離子化鼓風機100及無線離子化電壓感測器101及/或離子化電流返回感測器204用在離子化電壓感測器101及/或離子化電流返回感測器204的無線通訊範圍內的應用或環境中,在某些實例中,離子化電壓感測器101及/或離子化電流返回感測器204是可個別定址的且具有獨一的識別碼以允許將感測器101、204與個別的離子化鼓風機100特定地配對。Because the ionization blower 100 can be used to return multiple or even large numbers (for example, tens, hundreds, or more) of the ionization blower 100 and the wireless ionization voltage sensor 101 and / or the ionization current return sensor. 204 is used in applications or environments within the wireless communication range of the ionized voltage sensor 101 and / or the ionized current return sensor 204. In some examples, the ionized voltage sensor 101 and / or ionized The current return sensor 204 is individually addressable and has a unique identification code to allow the sensors 101, 204 to be specifically paired with individual ionizing blowers 100.
在離子化電壓感測器101及/或離子化電流返回感測器204為遠端感測器的實例中,示例性控制系統107包括通訊電路以從離子化電壓感測器101及/或離子化電流返回感測器204接收有線及/或無線通訊。In an example where the ionized voltage sensor 101 and / or the ionized current return sensor 204 are remote sensors, the exemplary control system 107 includes a communication circuit to remove the ionized voltage sensor 101 and / or ions from The return current sensor 204 receives wired and / or wireless communications.
離子化電流返回感測器204包括電容器C2及電容器C1以及電阻器R1及R2。電容器C2提供繞過電流偵測電路的通往接地的AC電流路徑。電阻器R2將離子電流轉換成電壓(Ii*R2),且電阻器R1及R2以及電容器C2形成低通濾波器以過濾出由微脈衝所產生的感應電流。從感測器204流動的返回電流210示為I2。The ionization current return sensor 204 includes a capacitor C2 and a capacitor C1 and resistors R1 and R2. Capacitor C2 provides an AC current path to ground that bypasses the current detection circuit. The resistor R2 converts the ion current into a voltage (Ii * R2), and the resistors R1 and R2 and the capacitor C2 form a low-pass filter to filter out the induced current generated by the micropulse. The return current 210 flowing from the sensor 204 is shown as I2.
流向發射點102的電流254是電流總和∑(Ii(+),Ii(-),I2,Ic1,Ic2),其中電流Ic1及Ic2分別是流過電容器C1及C2的電流。The current 254 flowing to the emission point 102 is the sum of currents Σ (Ii (+), Ii (-), I2, Ic1, Ic2), where the currents Ic1 and Ic2 are the currents flowing through the capacitors C1 and C2, respectively.
圖2A繪示在發射器102及參考電極104、105之間流動的離子電流220。來自通氣道106的空氣流125將該兩個離子電流220的一部分轉換到經離子化的空氣流125b中,該經離子化的空氣流向鼓風機100外面的電荷中和目標移動。目標在圖1B中大致示作區塊127,該區塊可相對於離子化鼓風機100放置在不同位置中。FIG. 2A illustrates an ion current 220 flowing between the emitter 102 and the reference electrodes 104 and 105. The air stream 125 from the air passage 106 converts a part of the two ion currents 220 into the ionized air stream 125b, which moves toward the charge neutralization target outside the blower 100. The target is shown generally as block 127 in FIG. 1B, which can be placed in different positions relative to the ionizing blower 100.
圖2B圖示依據本發明的一實施例的離子化鼓風機100中的系統200的電氣方塊圖。系統200包括離子電流感測器204、微脈衝高電壓電源230(微脈衝式AC電源230)(其由脈衝驅動器202及高電壓(HV)變壓器203所形成)及離子化鼓風機的控制系統201。在一實施例中,控制系統201是微控制器201。微控制器201從電壓偏壓256接收電力,該電壓偏壓可例如處於約3.3 DC電壓且在線路257處接地。FIG. 2B illustrates an electrical block diagram of a system 200 in an ionizing blower 100 according to an embodiment of the present invention. The system 200 includes an ion current sensor 204, a micro-pulse high-voltage power source 230 (micro-pulse AC power source 230) (which is formed by a pulse driver 202 and a high-voltage (HV) transformer 203), and a control system 201 for an ionization blower. In one embodiment, the control system 201 is a microcontroller 201. The microcontroller 201 receives power from a voltage bias 256, which may be, for example, at a voltage of about 3.3 DC and grounded at line 257.
可以可選地將電力轉換器209用在系統200中以提供由系統200所使用的各種電壓(例如-12 VDC、12 VDC或3.3 VDC)。電力轉換器209可將電壓源值258(例如24 VDC)轉換成用於偏壓微控制器201的各種電壓256。The power converter 209 may optionally be used in the system 200 to provide various voltages (eg, -12 VDC, 12 VDC, or 3.3 VDC) used by the system 200. The power converter 209 may convert a voltage source value 258 (eg, 24 VDC) into various voltages 256 for biasing the microcontroller 201.
微脈衝高電壓電源230具有由微控制器201所控制的脈衝驅動器202。脈衝驅動器202連接到升壓脈衝變壓器203。變壓器203產生短持續時間的脈衝(在微秒的範圍中),該等脈衝具有有著足以產生電暈放電的幅度的正及負極性。變壓器203的副線圈相對於接地是浮動的。變壓器203的高電壓終端250連接到發射點陣列102,而變壓器203的低電壓終端251連接到參考電極104、105。The micro-pulse high-voltage power supply 230 has a pulse driver 202 controlled by a microcontroller 201. The pulse driver 202 is connected to a boost pulse transformer 203. Transformer 203 generates short duration pulses (in the range of microseconds), which pulses have positive and negative polarity with a magnitude sufficient to generate a corona discharge. The secondary coil of the transformer 203 is floating with respect to the ground. The high-voltage terminal 250 of the transformer 203 is connected to the emission point array 102, and the low-voltage terminal 251 of the transformer 203 is connected to the reference electrodes 104, 105.
短持續時間的高電壓AC脈衝(由高電壓電源230所產生)造成在電極102及104、105之間流動的顯著的電容電流或位移電流Ic1及Ic2。例如,電流Ic1在電極(發射點)102及上參考電極104之間流動,而電流Ic2在電極102及下參考電極105之間流動。標示為Ii(+)及Ii(-)的相對小的正及負離子電暈電流離開此離子產生系統200到鼓風機100外面的環境中且向目標移動。Short-duration high-voltage AC pulses (generated by the high-voltage power supply 230) cause significant capacitive or displacement currents Ic1 and Ic2 to flow between the electrodes 102, 104, and 105. For example, a current Ic1 flows between the electrode (emission point) 102 and the upper reference electrode 104, and a current Ic2 flows between the electrode 102 and the lower reference electrode 105. The relatively small positive and negative ion corona currents labeled Ii (+) and Ii (-) leave this ion generation system 200 into the environment outside the blower 100 and move toward the target.
為了分離電容電流及離子電流,離子產生系統200被佈置在用於標示為Ic1及Ic2的高頻AC電容電流的閉環電路中作為變壓器203的副線圈,且電暈電極102、104及105相對於接地是實質浮動的且離子電流Ii(+)及Ii(-)具有通往接地的返回路徑(且傳送到接地)。AC電流相較於傳送到接地的該等AC電流而言具有用來在此環路裡面循環的顯著較低的電阻。In order to separate the capacitor current and the ion current, the ion generating system 200 is arranged in a closed-loop circuit for high-frequency AC capacitor currents labeled Ic1 and Ic2 as a secondary coil of the transformer 203, and the corona electrodes 102, 104, and 105 are opposite to The ground is substantially floating and the ionic currents Ii (+) and Ii (-) have a return path to the ground (and are transmitted to the ground). The AC current has a significantly lower resistance than these AC currents delivered to ground to circulate inside this loop.
系統200包括離子平衡監測器,該離子平衡監測器藉由在脈衝式AC電壓源230、所述離子發射器102及參考電極104或105之間佈置閉環電流路徑來從脈衝式AC電流提供分離離子對流電流(separation ions convection current)。System 200 includes an ion balance monitor that provides separated ions from a pulsed AC current by arranging a closed-loop current path between a pulsed AC voltage source 230, the ion emitter 102, and a reference electrode 104 or 105 Convection current (separation ions convection current).
此外,是在微脈衝之間的時段期間在系統200中執行離子平衡監測。此外,是藉由將正及負對流電流的差分訊號積分來執行離子平衡監測。In addition, ion balance monitoring is performed in the system 200 during periods between micropulses. In addition, ion balance monitoring is performed by integrating the differential signals of positive and negative convection currents.
高電壓源230的變壓器203、離子發射器102及參考電極104或105被佈置在用於AC電流電路的閉合環路中且該閉合環路藉由高位值的檢視電阻器(viewing resistor)R2連接到接地。The transformer 203, the ion emitter 102, and the reference electrode 104 or 105 of the high-voltage source 230 are arranged in a closed loop for an AC current circuit, and the closed loop is connected by a high-value viewing resistor R2 To ground.
電荷守恆定律規定的是,在AC電壓源230的輸出(透過變壓器203)是浮動的時候,離子電流等於正Ii(+)離子電流及負Ii(-)離子電流的總和。該等電流Ii(+)及Ii(-)必須返回通過系統200中的返回電流感測器204的電路系統。各個極性的離子電流量為:The law of conservation of charge stipulates that when the output of the AC voltage source 230 (through the transformer 203) is floating, the ion current is equal to the sum of the positive Ii (+) ion current and the negative Ii (-) ion current. The currents Ii (+) and Ii (-) must be returned to the circuit system of the return current sensor 204 in the system 200. The amount of ionic current for each polarity is:
Ii(+)=Q(+)*N(+)*U及 Ii(-)=Q(-)*N(-)*UIi (+) = Q (+) * N (+) * U and Ii (-) = Q (-) * N (-) * U
其中A是正或負離子的電荷,N是離子濃度,而U是空氣流量。若正Ii(+)電流及負Ii(-)電流的絕對值是相同的,則將達到離子平衡。本領域中習知的是,空氣離子的兩個極性承載著大約相同的電荷量(等於一個電子)。因此,離子平衡的另一條件是兩個極性的離子的濃度相等。相較於對離子電流改變敏感的返回電流感測器204(離子平衡監測器204),空氣離子化電壓感測器101(離子平衡監測器101)對於離子濃度上的變化是更敏感的。因此,空氣離子化電壓感測器(電容感測器)101的反應速度一般較離子化返回電流感測器204的反應為快。Where A is the charge of positive or negative ions, N is the ion concentration, and U is the air flow. If the absolute values of the positive Ii (+) current and the negative Ii (-) current are the same, the ion equilibrium will be reached. It is known in the art that the two polarities of air ions carry approximately the same amount of charge (equal to one electron). Therefore, another condition for ion balance is that the concentrations of the ions of the two polarities are equal. Compared to the return current sensor 204 (ion balance monitor 204), which is sensitive to changes in ion current, the air ionization voltage sensor 101 (ion balance monitor 101) is more sensitive to changes in ion concentration. Therefore, the reaction speed of the air ionization voltage sensor (capacitive sensor) 101 is generally faster than that of the ionization return current sensor 204.
由感測器101所偵測到的較大的正離子數量使得感測器101產生輸入到取樣保持電路205中(且由該取樣保持電路所處理)的正輸出電壓。由感測器101所偵測到的較大的負離子數量使得感測器101產生輸入到取樣保持電路205中(且由該取樣保持電路所處理)的負輸出電壓。相較之下,如上文所類似地描述的,正Ii(+)及負Ii(-)的絕對值由感測器204使用以輸出訊號250以供輸入到取樣保持電路205中以判定及達到離子化鼓風機100中的離子平衡。The larger number of positive ions detected by the sensor 101 causes the sensor 101 to generate a positive output voltage that is input to the sample-and-hold circuit 205 (and is processed by the sample-and-hold circuit). The larger number of negative ions detected by the sensor 101 causes the sensor 101 to generate a negative output voltage that is input to the sample-and-hold circuit 205 (and is processed by the sample-and-hold circuit). In contrast, as described similarly above, the absolute values of positive Ii (+) and negative Ii (-) are used by the sensor 204 to output a signal 250 for input into the sample-and-hold circuit 205 to determine and reach Ion balance in the ionization blower 100.
在微脈衝列之間的時間處,取樣訊號215將關閉開關216,使得放大器218連接到電容器C3,該電容器接著基於且回應於輸入訊號250而充電到一定值。At the time between the micropulse trains, the sampling signal 215 will turn off the switch 216, so that the amplifier 218 is connected to the capacitor C3, which is then charged to a certain value based on and in response to the input signal 250.
隨著氣流飄浮的離子電流的特徵是非常低的頻率,且可藉由通過高百萬歐姆數的電阻電路系統R1及R2到接地來監測。為了最小化電容的及寄生的高頻電流的影響,感測器204具有有著C1及C2的兩個旁路電容路徑。The ion current floating with the airflow is characterized by a very low frequency and can be monitored by passing through the high-million ohm resistor circuit systems R1 and R2 to ground. To minimize the effects of capacitive and parasitic high-frequency currents, the sensor 204 has two bypass capacitor paths with C1 and C2.
電流Ii(+)及Ii(-)上的差異被感測器204持續地量測。經由電阻電路系統R1、R2的造成的電流產生電壓/訊號,該電壓/訊號與離開鼓風機的氣流的在時間上積分的/平均的離子平衡成比例。此造成的電流被示為電流214,該電流由總和∑(Ii(+),Ii(-))表示。The difference between the currents Ii (+) and Ii (-) is continuously measured by the sensor 204. The resulting current via the resistor circuits R1, R2 generates a voltage / signal that is proportional to the time-integrated / average ion balance of the airflow leaving the blower. The resulting current is shown as current 214, which is represented by the sum Σ (Ii (+), Ii (-)).
離子平衡監測是藉由量測電流感測器204的電壓輸出、或藉由量測電壓感測器101的輸出、或藉由量測來自空氣離子化感測器101及204的電壓來達成的。為了明確起見,電流感測器204的電壓輸出及電壓感測器101的電壓輸出各個在圖2中由相同的訊號250來示出。此訊號250被施用於透過取樣訊號215由微控制器201所控制的取樣保持電路205(取樣電路205)的輸入,該取樣訊號開啟開關216以觸發訊號250上的取樣保持操作。Ion balance monitoring is achieved by measuring the voltage output of the current sensor 204, or by measuring the output of the voltage sensor 101, or by measuring the voltage from the air ionization sensors 101 and 204 . For the sake of clarity, the voltage output of the current sensor 204 and the voltage output of the voltage sensor 101 are each shown by the same signal 250 in FIG. 2. This signal 250 is applied to the input of the sample-and-hold circuit 205 (sampling circuit 205) controlled by the microcontroller 201 through the sample signal 215. The sample signal turns on the switch 216 to trigger the sample-and-hold operation on the signal 250.
在用於電暈系統的某些情況或實施例中,可比較來自感測器101及204兩者的診斷訊號。該等診斷訊號被作為訊號250輸入到取樣保持電路205中。In some cases or embodiments for a corona system, diagnostic signals from both sensors 101 and 204 may be compared. These diagnostic signals are input to the sample-and-hold circuit 205 as a signal 250.
訊號250接著在被施用於位在微控制器201裡面的類比轉數位轉換器(ADC)的輸入之前被低通濾波器206調整及被放大器207放大。取樣保持電路205取樣脈衝時間之間的訊號250以最小化經恢復訊號250中的雜訊。電容C3保持取樣時間之間的最後一個訊號值。放大器207將訊號250放大到對於微控制器201而言更可用的位準,且來自放大器207的此經放大的訊號被示作平衡訊號252。The signal 250 is then adjusted by the low-pass filter 206 and amplified by the amplifier 207 before being applied to the input of an analog-to-digital converter (ADC) located in the microcontroller 201. The sample-and-hold circuit 205 samples the signal 250 between pulse times to minimize noise in the recovered signal 250. Capacitor C3 holds the last signal value between sampling times. The amplifier 207 amplifies the signal 250 to a more usable level for the microcontroller 201, and this amplified signal from the amplifier 207 is shown as a balanced signal 252.
微控制器201將平衡訊號252與設定點訊號253進行比較,該設定點訊號是由平衡調整電位計208所產生的參考訊號。設定點訊號253是可由電位計208調整的可變訊號。The microcontroller 201 compares the balance signal 252 with a setpoint signal 253, which is a reference signal generated by the balance adjustment potentiometer 208. The setpoint signal 253 is a variable signal that can be adjusted by the potentiometer 208.
可調整設定點訊號253以補償不同的離子化鼓風機100環境。例如,離子化鼓風機100的輸出131(圖1B)附近的參考位準(接地)可約為零,而離子化目標附近的參考位準可不為零。例如,若離子化目標的位置具有強力的接地電位值,則可能在該位置處損失更多負離子。因此,設定點訊號253可被調整為使得補償離子化目標的位置處的參考位準的非零值。可在此情況下減少設定點訊號253,使得微控制器201可驅動脈衝驅動器202以控制HV變壓器230產生HV輸出254,該HV輸出在發射點102處產生更多正離子(由於較低的設定點值253被用於比較以供觸發更多的正離子產生),以便補償離子化目標的位置處的負離子的損失。The setpoint signal 253 can be adjusted to compensate for different ionizing blower 100 environments. For example, the reference level (ground) near the output 131 (FIG. 1B) of the ionization blower 100 may be about zero, and the reference level near the ionization target may not be zero. For example, if the location of the ionization target has a strong ground potential value, more negative ions may be lost at that location. Therefore, the setpoint signal 253 can be adjusted so that the non-zero value of the reference level at the position of the ionization target is compensated. The setpoint signal 253 can be reduced in this case so that the microcontroller 201 can drive the pulse driver 202 to control the HV transformer 230 to produce an HV output 254, which generates more positive ions at the emission point 102 (due to a lower setting The point value 253 is used for comparison to trigger the production of more positive ions) to compensate for the loss of negative ions at the location of the ionization target.
現參照圖2及8。在本發明的一實施例中,離子化鼓風機100可基於以下步驟中的至少一者或更多者來在離子化鼓風機100中達到離子平衡:(1)藉由增加及/或減少正脈衝寬度值及/或負脈衝寬度值;(2)藉由增加及/或減少正脈衝之間的時間及/或負脈衝之間的時間;及/或(3)藉由增加及/或減少正脈衝及/或負脈衝的數量,如下文所述。微控制器201輸出正脈衝輸出815及負脈衝輸出816(圖2及8),該等輸出被驅動到脈衝驅動器202中且控制該脈衝驅動器。回應於輸出815及816,變壓器230產生離子化波形814(HV輸出814),該波形被施用於發射點102以便基於離子化波形814來產生一定量的正離子及一定量的負離子。Reference is now made to FIGS. 2 and 8. In an embodiment of the present invention, the ionization blower 100 may achieve ion balance in the ionization blower 100 based on at least one or more of the following steps: (1) by increasing and / or decreasing the positive pulse width Values and / or negative pulse width values; (2) by increasing and / or decreasing the time between positive pulses and / or the time between negative pulses; and / or (3) by increasing and / or decreasing the positive pulses And / or the number of negative pulses, as described below. The microcontroller 201 outputs a positive pulse output 815 and a negative pulse output 816 (FIGS. 2 and 8), and these outputs are driven into a pulse driver 202 and control the pulse driver. In response to the outputs 815 and 816, the transformer 230 generates an ionization waveform 814 (HV output 814), which is applied to the emission point 102 to generate a certain amount of positive ions and a certain amount of negative ions based on the ionization waveform 814.
作為一實例,若感測器101及/或感測器204偵測到離子化鼓風機100中的離子不平衡,其中鼓風機100中的正離子量超過負離子量,則進入微控制器201的平衡訊號252將指示此離子不平衡。微控制器201將加長負脈衝804的負脈衝寬度(持續時間)811。因為寬度811加長了,負微脈衝802的幅度增加了。正微脈衝801及負微脈衝802為被驅動到發射點102的高電壓輸出。增加的負微脈衝802幅度將增加從發射點102所產生的負離子。離子化波形814已產生了短持續時間的離子化微脈衝801及802的可變極性群組。微脈衝801及802絕大多數在兩個極性電壓的幅度及持續時間上是不對稱的,且具有超過電暈臨界值的數值的至少一個極性的離子化脈衝。As an example, if the sensor 101 and / or the sensor 204 detects an imbalance in the ionization blower 100, and the amount of positive ions in the blower 100 exceeds the amount of negative ions, it enters the balance signal of the microcontroller 201 252 will indicate that this ion is unbalanced. The microcontroller 201 will lengthen the negative pulse width (duration) 811 of the negative pulse 804. As the width 811 becomes longer, the amplitude of the negative micropulse 802 increases. The positive micropulse 801 and the negative micropulse 802 are high-voltage outputs driven to the emission point 102. The increased amplitude of the negative micropulses 802 will increase the negative ions generated from the emission point 102. The ionization waveform 814 has produced a variable-polarity group of ionization micropulses 801 and 802 of short duration. The majority of the micropulses 801 and 802 are asymmetric in amplitude and duration of the two polar voltages, and have at least one polarity ionization pulse with a value exceeding a corona threshold.
一旦對於負脈衝寬度811達到了最大的脈衝寬度,若鼓風機100中的正離子量仍然超過負離子量,則微控制器201將縮短正脈衝803的正脈衝寬度(持續時間)810。因為寬度810縮短了,正微脈衝801的幅度減少了。減少的正微脈衝801幅度將減少從發射點102所產生的正離子。Once the maximum pulse width is reached for the negative pulse width 811, if the amount of positive ions in the blower 100 still exceeds the amount of negative ions, the microcontroller 201 will shorten the positive pulse width (duration) 810 of the positive pulse 803. Because the width 810 is shortened, the amplitude of the positive micropulse 801 is reduced. The reduced positive micropulse 801 amplitude will reduce the positive ions generated from the emission point 102.
替代性或附加性地,若鼓風機100中的正離子量超過負離子量,則微控制器201將藉由加長負重複率(Rep-Rate)813(負脈衝804之間的時間區間)來加長負脈衝804之間的時間。因為負重複率813加長了,負微脈衝802之間的時間亦增加了。其結果是,加長的或較長的負重複率813將增加負微脈衝802之間的時間,此舉將反過來增加從發射點102產生負離子的時間量。Alternatively or additionally, if the amount of positive ions in the blower 100 exceeds the amount of negative ions, the microcontroller 201 will lengthen the negative by increasing the negative repeat rate (Rep-Rate) 813 (the time interval between negative pulses 804). Time between pulses 804. Because the negative repetition rate 813 is lengthened, the time between the negative micropulses 802 is also increased. As a result, a longer or longer negative repetition rate 813 will increase the time between the negative micropulses 802, which in turn will increase the amount of time that negative ions are generated from the emission point 102.
一旦已針對負重複率達到最小的負重複率,若鼓風機100中的正離子量仍超過負離子量,則微控制器201將藉由縮短正重複率812(正脈衝803之間的時間區間)來縮短正脈衝803之間的時間。因為正重複率812縮短了,正微脈衝801之間的時間亦減少了。其結果是,縮短的或較短的正重複率811將減少正微脈衝803之間的時間,此舉將反過來減少從發射點102產生正離子的時間量。Once the minimum negative repetition rate has been reached for the negative repetition rate, if the amount of positive ions in the blower 100 still exceeds the amount of negative ions, the microcontroller 201 will reduce the positive repetition rate 812 (the time interval between positive pulses 803) to The time between the positive pulses 803 is shortened. Because the positive repetition rate 812 is shortened, the time between the positive micropulses 801 is also reduced. As a result, a shortened or shorter positive repetition rate 811 will reduce the time between the positive micropulses 803, which in turn will reduce the amount of time that positive ions are generated from the emission point 102.
替代性或附加性地,若鼓風機100中的正離子量超過負離子量,則微控制器201將增加負脈衝輸出816中的負脈衝804的數量。微控制器201具有負脈衝計數器,可增加該負脈衝計數器以便增加負脈衝輸出816中的負脈衝804的數量。因為負脈衝804的數量增加了,負脈衝輸出816中的負脈衝列增加了,且此舉增加了HV輸出中的負微脈衝802的數量,該HV輸出是施用於發射點102的離子化波形814。Alternatively or additionally, if the amount of positive ions in the blower 100 exceeds the amount of negative ions, the microcontroller 201 will increase the number of negative pulses 804 in the negative pulse output 816. The microcontroller 201 has a negative pulse counter, which can be increased to increase the number of negative pulses 804 in the negative pulse output 816. Because the number of negative pulses 804 increases, the number of negative pulse trains in the negative pulse output 816 increases, and this increases the number of negative micropulses 802 in the HV output, which is an ionized waveform applied to the emission point 102 814.
一旦已將最大負脈衝量添加到負脈衝輸出816,若鼓風機100中的正離子量仍然超過負離子量,則微控制器201將減少正脈衝輸出815中的正脈衝803的數量。微控制器201具有正脈衝計數器,可減少該正脈衝計數器以便減少正脈衝輸出815中的正脈衝803的數量。因為正脈衝803的數量減少了,正脈衝輸出815中的正脈衝列減少了,且此舉減少了HV輸出中的正微脈衝801的數量,該HV輸出是施用於發射點102的離子化波形814。Once the maximum negative pulse amount has been added to the negative pulse output 816, if the amount of positive ions in the blower 100 still exceeds the amount of negative ions, the microcontroller 201 will reduce the number of positive pulses 803 in the positive pulse output 815. The microcontroller 201 has a positive pulse counter, which can be reduced to reduce the number of positive pulses 803 in the positive pulse output 815. Because the number of positive pulses 803 is reduced, the number of positive pulses in the positive pulse output 815 is reduced, and this reduces the number of positive micropulses 801 in the HV output, which is an ionized waveform applied to the emission point 102 814.
以下實例針對在鼓風機100中的負離子量超過正離子量時達成該鼓風機中的離子平衡。The following example is directed to achieving the ion balance in the blower 100 when the amount of negative ions in the blower 100 exceeds the amount of positive ions.
若感測器101及/或感測器204偵測到離子化鼓風機101中的離子不平衡,其中鼓風機101中的負離子量超過正離子量,則進入微控制器201的平衡訊號252將指示此離子不平衡。微控制器201將加長正脈衝803的正脈衝寬度812。因為寬度810加長了,正微脈衝801的幅度增加了。增加的正微脈衝801幅度將增加從發射點102所產生的正離子。If the sensor 101 and / or the sensor 204 detects an imbalance in the ionization blower 101, where the amount of negative ions in the blower 101 exceeds the amount of positive ions, the balance signal 252 entering the microcontroller 201 will indicate this Ions are not balanced. The microcontroller 201 will lengthen the positive pulse width 812 of the positive pulse 803. As the width 810 becomes longer, the amplitude of the positive micropulse 801 increases. The increased amplitude of the positive micropulses 801 will increase the positive ions generated from the emission point 102.
一旦對於正脈衝寬度812達到了最大的脈衝寬度,若鼓風機100中的負離子量仍然超過正離子量,則微控制器201將縮短負脈衝804的負脈衝寬度811。因為寬度811縮短了,負微脈衝802的幅度減少了。減少的負微脈衝802幅度將減少從發射點102所產生的負離子。Once the maximum pulse width is reached for the positive pulse width 812, if the amount of negative ions in the blower 100 still exceeds the amount of positive ions, the microcontroller 201 will shorten the negative pulse width 811 of the negative pulse 804. Because the width 811 is shortened, the amplitude of the negative micropulse 802 is reduced. The reduced amplitude of the negative micropulses 802 will reduce the negative ions generated from the emission point 102.
替代性或附加性地,若鼓風機100中的負離子量超過正離子量,則微控制器201將藉由加長正重複率812來加長正脈衝803之間的時間。因為正重複率812加長了,正微脈衝801之間的時間亦增加了。其結果是,加長的或較長的正重複率812將增加正微脈衝801之間的時間,此舉將反過來增加從發射點102產生正離子的時間量。Alternatively or additionally, if the amount of negative ions in the blower 100 exceeds the amount of positive ions, the microcontroller 201 will lengthen the time between the positive pulses 803 by increasing the positive repetition rate 812. Because the positive repetition rate 812 is lengthened, the time between the positive micropulses 801 is also increased. As a result, a longer or longer positive repetition rate 812 will increase the time between the positive micropulses 801, which in turn will increase the amount of time that positive ions are generated from the emission point 102.
一旦已針對正重複率812達到最小的正重複率,若鼓風機100中的負離子量仍超過正離子量,則微控制器201將藉由加長負重複率813來加長負脈衝804之間的時間。因為負重複率813加長了,負微脈衝802之間的時間亦增加了。其結果是,加長的或較長的負重複率813將增加負微脈衝802之間的時間,此舉將反過來減少從發射點102產生負離子的時間量。Once the minimum positive repetition rate has been reached for the positive repetition rate 812, if the amount of negative ions in the blower 100 still exceeds the amount of positive ions, the microcontroller 201 will lengthen the time between the negative pulses 804 by increasing the negative repetition rate 813. Because the negative repetition rate 813 is lengthened, the time between the negative micropulses 802 is also increased. As a result, a longer or longer negative repetition rate 813 will increase the time between the negative micropulses 802, which in turn will reduce the amount of time that negative ions are generated from the emission point 102.
替代性或附加性地,若鼓風機100中的負離子量超過正離子量,則微控制器201將增加正脈衝輸出815中的正脈衝803的數量。微控制器201具有正脈衝計數器,可增加該正脈衝計數器以便增加正脈衝輸出815中的正脈衝803的數量。因為正脈衝803的數量增加了,正脈衝輸出815中的正脈衝列加長了,且HV輸出中的正微脈衝801的數量增加了,該HV輸出是施用於發射點102的離子化波形814。Alternatively or additionally, if the amount of negative ions in the blower 100 exceeds the amount of positive ions, the microcontroller 201 will increase the number of positive pulses 803 in the positive pulse output 815. The microcontroller 201 has a positive pulse counter, which can be increased to increase the number of positive pulses 803 in the positive pulse output 815. Because the number of positive pulses 803 increases, the number of positive pulse trains in the positive pulse output 815 increases, and the number of positive micro pulses 801 in the HV output increases. The HV output is an ionized waveform 814 applied to the emission point 102.
一旦已將最大正脈衝量添加到正脈衝輸出815,若鼓風機100中的負離子量仍然超過正離子量,則微控制器201將減少負脈衝輸出816中的負脈衝804的數量。微控制器201具有負脈衝計數器,可減少該負脈衝計數器以便減少負脈衝輸出816中的負脈衝804的數量。因為負脈衝804的數量減少了,負脈衝輸出816中的負脈衝列縮短了,且HV輸出中的負微脈衝802的數量減少了,該HV輸出是施用於發射點102的離子化波形814。Once the maximum positive pulse amount has been added to the positive pulse output 815, if the negative ion amount in the blower 100 still exceeds the positive ion amount, the microcontroller 201 will reduce the number of negative pulses 804 in the negative pulse output 816. The microcontroller 201 has a negative pulse counter, which can be reduced to reduce the number of negative pulses 804 in the negative pulse output 816. Because the number of negative pulses 804 is reduced, the number of negative pulse trains in the negative pulse output 816 is shortened, and the number of negative micropulses 802 in the HV output is reduced.
若離子不平衡(其反映在平衡電流值252中)並不與設定點253明顯不同,則離子不平衡上的小調整可能是足夠的,且微控制器201可調整脈衝寬度811及/或810以達成離子平衡。If the ion imbalance (which is reflected in the balance current value 252) is not significantly different from the set point 253, a small adjustment on the ion imbalance may be sufficient, and the microcontroller 201 can adjust the pulse width 811 and / or 810 To achieve ion balance.
若離子不平衡(其反映在平衡電流值252中)與設定點253中度地不同,則離子不平衡上的中度調整可能是足夠的,且微控制器201可調整重複率813及812以達成離子平衡。If the ion imbalance (which is reflected in the equilibrium current value 252) is moderately different from the set point 253, a moderate adjustment on the ion imbalance may be sufficient, and the microcontroller 201 may adjust the repetition rates 813 and 812 to Achieve ion balance.
若離子不平衡(其反映在平衡電流值252中)與設定點253明顯不同,則離子不平衡上的大調整可能是足夠的,且微控制器201可分別將正脈衝及/或負脈衝添加到輸出815及816中。If the ion imbalance (which is reflected in the equilibrium current value 252) is significantly different from the set point 253, a large adjustment in the ion imbalance may be sufficient, and the microcontroller 201 may add positive and / or negative pulses, respectively To outputs 815 and 816.
在本發明的又另一實施例中,圖8中的至少一個極性的微脈衝的持續時間(脈衝寬度)至少比微脈衝之間的時間區間短約100倍。In yet another embodiment of the present invention, the duration (pulse width) of the micropulses of at least one polarity in FIG. 8 is at least about 100 times shorter than the time interval between the micropulses.
在本發明的又另一實施例中,圖8中的微脈衝被佈置成一個接一個的群組/脈衝列,且其中一個極性的脈衝列包括約2及16個之間的正離子化脈衝,且負脈衝列包括約2及16個之間的正離子化脈衝,其中正脈衝列及負脈衝列之間的時間區間大約等於連序的脈衝的時期的2倍。In yet another embodiment of the present invention, the micropulses in FIG. 8 are arranged in groups / pulse trains one after the other, and the pulse trains of one polarity include between about 2 and 16 positive ionization pulses The negative pulse train includes between about 2 and 16 positive ionization pulses, where the time interval between the positive pulse train and the negative pulse train is approximately equal to twice the period of consecutive pulses.
圖3中的流程圖示出依據本發明的一實施例的系統200的反饋演算法300。藉由使用反饋演算法300來提供離子平衡控制的功能運行在離子化循環的結束時。此演算法例如是由圖2中的系統200所執行的。在方塊301中,平衡控制反饋演算法起動。The flowchart in FIG. 3 illustrates a feedback algorithm 300 of a system 200 according to an embodiment of the invention. The function of providing ion balance control by using the feedback algorithm 300 operates at the end of the ionization cycle. This algorithm is executed, for example, by the system 200 in FIG. 2. In block 301, a balance control feedback algorithm is initiated.
在方塊302、303、304及305中,執行負脈衝寬度的控制值的計算。在方塊302中,藉由從量測到的離子平衡(BalanceMeasurement)減去所需的離子平衡(SetPoint )來計算誤差值(Error)。在方塊303中,將誤差值乘以環路增益。在方塊304中,將控制值的計算限於最小或最大值,使得控制值被限制且將不超出範圍。在方塊305中,將控制值添加到最後一個負脈衝寬度值。In blocks 302, 303, 304, and 305, the calculation of the control value of the negative pulse width is performed. In block 302, an error value is calculated by subtracting the required ion balance (SetPoint) from the measured ion balance (BalanceMeasurement). In block 303, the error value is multiplied by the loop gain. In block 304, the calculation of the control value is limited to the minimum or maximum value such that the control value is limited and will not exceed the range. In block 305, the control value is added to the last negative pulse width value.
在方塊306、307、308及309中,將脈衝寬度增量或減量。在方塊306中,將負脈衝寬度與最大值(MAX)進行比較。若負脈衝寬度等於MAX,則在方塊307中,將正脈衝寬度減量且演算法300繼續進行到方塊310。若負脈衝寬度不等於MAX,則演算法300繼續進行到方塊308。In blocks 306, 307, 308, and 309, the pulse width is increased or decreased. In block 306, the negative pulse width is compared to a maximum value (MAX). If the negative pulse width is equal to MAX, then in block 307, the positive pulse width is decremented and the algorithm 300 proceeds to block 310. If the negative pulse width is not equal to MAX, the algorithm 300 proceeds to block 308.
在方塊308中,將負脈衝寬度與最小值(MIN)進行比較。若負脈衝寬度等於MIN,則在方塊309中,將正脈衝寬度減量且演算法300繼續進行到方塊310。若負脈衝寬度不等於MIN,則演算法300繼續進行到方塊310。在負脈衝寬度命中其控制限值時,正脈衝寬度上的改變將以一種方式偏移平衡使得超調(over shoot)平衡設定點,而強迫負脈衝到其限值。In block 308, the negative pulse width is compared to a minimum value (MIN). If the negative pulse width is equal to MIN, then in block 309, the positive pulse width is decremented and the algorithm 300 proceeds to block 310. If the negative pulse width is not equal to MIN, the algorithm 300 proceeds to block 310. When a negative pulse width hits its control limit, a change in the positive pulse width will offset the balance in a way that overshoot balances the setpoint and forces the negative pulse to its limit.
在方塊310、311、312及313中,在脈衝寬度限值被符合時將脈衝重複率(Rep-Rate)增量或減量。在方塊310中,將正脈衝寬度與MAX進行比較且將負脈衝寬度與MIN進行比較。若正脈衝寬度等於MAX且負脈衝寬度等於MIN,則在方塊311中,則交替地,將正脈衝重複率(Rep-Rate)增量或將負脈衝重複率減量。演算法300繼續進行到方塊314。若正脈衝寬度不等於MAX且負脈衝寬度不等於MIN,則演算法300繼續進行到方塊312。In blocks 310, 311, 312, and 313, the pulse repetition rate (Rep-Rate) is incremented or decremented when the pulse width limit is met. In block 310, the positive pulse width is compared to MAX and the negative pulse width is compared to MIN. If the positive pulse width is equal to MAX and the negative pulse width is equal to MIN, then in block 311, the positive pulse repetition rate (Rep-Rate) is incremented or the negative pulse repetition rate is decremented alternately. The algorithm 300 proceeds to block 314. If the positive pulse width is not equal to MAX and the negative pulse width is not equal to MIN, the algorithm 300 proceeds to block 312.
在方塊312中,將正脈衝寬度與MIN進行比較且將負脈衝寬度與MAX進行比較。若正脈衝寬度等於MIN且負脈衝寬度等於MAX,則在方塊313中,則交替地,將正脈衝重複率(Rep-Rate)減量或將負脈衝重複率增量。演算法300繼續進行到方塊314。若正脈衝寬度不等於MIN且負脈衝寬度不等於MAX,則演算法300繼續進行到方塊314。In block 312, the positive pulse width is compared to MIN and the negative pulse width is compared to MAX. If the positive pulse width is equal to MIN and the negative pulse width is equal to MAX, then in block 313, the positive pulse repetition rate (Rep-Rate) is decremented or the negative pulse repetition rate is incremented alternately. The algorithm 300 proceeds to block 314. If the positive pulse width is not equal to MIN and the negative pulse width is not equal to MAX, the algorithm 300 proceeds to block 314.
在平衡靠近設定點時使用正及負脈衝寬度控制。隨著發射點老化或隨著環境的趨使,正及負脈衝寬度控制將不具有該範圍且將「命中」其控制限值(正者在其最大值而負者在其最小值(反之亦然))。在此情況發生時,演算法改變正或負重複率,而有效地增加或減少正或負離子產生的工作時間量且將平衡朝向設定點偏移。Use positive and negative pulse width control when the balance is close to the set point. As the emission point ages or as the environment tends, positive and negative pulse width control will not have this range and will "hit" its control limit (positive is at its maximum and negative is at its minimum (and vice versa) ))). When this happens, the algorithm changes the positive or negative repetition rate, effectively increasing or decreasing the amount of working time generated by positive or negative ions and shifting the balance towards the set point.
在方塊314、315、316及317中,在脈衝寬度限值被符合時將脈衝重複率(Rep-Rate)增量或減量。在方塊314中,將正脈衝重複率與最小脈衝重複率值(MIN-Rep-Rate)進行比較,且將負脈衝重複率與最大脈衝重複率值(MAX-Rep-Rate)進行比較。若正脈衝重複率等於MIN-Rep-Rate且負脈衝重複率等於MAX-Rep-Rate,則在方塊315中,經由停止時間計數值(offtime count)將一個負脈衝偏移成正脈衝,且演算法300接著繼續進行到方塊318,在方塊318期間,平衡控制反饋演算法300結束。停止時間計數值是離子化波形停止之時。停止時間是負與正以及正與負的脈衝群組(或脈衝列)之間的時間,且於本文界定為一計數值,該計數值等於具有正或負重複率的脈衝持續期間。In blocks 314, 315, 316, and 317, the pulse repetition rate (Rep-Rate) is incremented or decremented when the pulse width limit is met. In block 314, the positive pulse repetition rate is compared with a minimum pulse repetition rate value (MIN-Rep-Rate), and the negative pulse repetition rate is compared with a maximum pulse repetition rate value (MAX-Rep-Rate). If the positive pulse repetition rate is equal to MIN-Rep-Rate and the negative pulse repetition rate is equal to MAX-Rep-Rate, then in block 315, a negative pulse is shifted into a positive pulse via the offtime count, and the algorithm is 300 then proceeds to block 318, during which the balance control feedback algorithm 300 ends. The stop time count value is when the ionization waveform stops. The stop time is the time between negative and positive and positive and negative pulse groups (or pulse trains), and is defined herein as a count value that is equal to the duration of a pulse with a positive or negative repetition rate.
若正脈衝重複率不等於MIN-Rep-Rate且負脈衝重複率不等於MAX-Rep-Rate,則演算法300繼續進行到方塊316。If the positive pulse repetition rate is not equal to MIN-Rep-Rate and the negative pulse repetition rate is not equal to MAX-Rep-Rate, the algorithm 300 proceeds to block 316.
在方塊316中,將正脈衝重複率與MAX-Rep-Rate進行比較,且將負脈衝重複率與MIN-Rep-Rate進行比較。若正脈衝重複率等於MAX-Rep-Rate且負脈衝重複率等於MIN-Rep-Rate,則在方塊317中,經由停止時間計數值將一個正脈衝偏移成負脈衝,且演算法300接著繼續進行到方塊318,在方塊318期間,平衡控制反饋演算法300結束。若正脈衝重複率不等於MAX-Rep-Rate且負脈衝重複率不等於MIN-Rep-Rate,則演算法300繼續進行到方塊318,在方塊318期間,演算法300結束。In block 316, the positive pulse repetition rate is compared to the MAX-Rep-Rate, and the negative pulse repetition rate is compared to the MIN-Rep-Rate. If the positive pulse repetition rate is equal to MAX-Rep-Rate and the negative pulse repetition rate is equal to MIN-Rep-Rate, then in block 317, a positive pulse is shifted to a negative pulse via the stop time count value, and the algorithm 300 then continues Proceeding to block 318, during which the balance control feedback algorithm 300 ends. If the positive pulse repetition rate is not equal to MAX-Rep-Rate and the negative pulse repetition rate is not equal to MIN-Rep-Rate, the algorithm 300 continues to block 318, during which the algorithm 300 ends.
在重複率控制命中限值時,演算法觸發下一個調整控制位準。When the repetition rate control hits the limit, the algorithm triggers the next adjustment control level.
將微脈衝從正脈衝群組偏移到停止時間脈衝群組到負脈衝群組的行為以負方向偏移平衡。相反地,將微脈衝從負脈衝群組偏移到停止時間脈衝群組到正脈衝群組的行為以正方向偏移平衡。使用停止時間的群組減少了效果,且因此提供了更精細的控制。The behavior of shifting micropulses from a positive pulse group to a stop time pulse group to a negative pulse group is balanced with a negative direction shift. Conversely, the behavior of shifting micropulses from a negative pulse group to a stop time pulse group to a positive pulse group is balanced with a positive direction shift. Groups using stop times reduce the effect and therefore provide finer control.
圖4中的流程圖圖示微脈衝產生器控制的演算法400。驅動脈衝及高電壓輸出的波形繪示在圖8的圖解中。此演算法400例如是由圖2中的系統200所執行的。在方塊401中,Timer1的中斷服務常式起動。用於微脈衝產生器的演算法400例如每0.1毫秒運行一次。The flowchart in FIG. 4 illustrates a micropulse generator control algorithm 400. The waveforms of the drive pulse and high-voltage output are shown in the diagram of FIG. 8. This algorithm 400 is, for example, executed by the system 200 in FIG. 2. In block 401, an interrupt service routine for Timer1 is initiated. The algorithm 400 for a micro-pulse generator runs, for example, every 0.1 milliseconds.
在方塊402中,將微脈衝重複率計數器減量。此計數器是Timer1的重複率分割計數器(divider counter)。Timer1是主環路定時器且脈衝控制定時器以0.1 ms運行。Timer1開啟HVPS輸出,因此使微脈衝起動,其中Timer0關閉HVPS而結束微脈衝。因此,Timer1設定重複率且觸發類比轉數位的轉換,Timer0設定微脈衝寬度。In block 402, the micropulse repetition rate counter is decremented. This counter is a divider counter for the repetition rate of Timer1. Timer1 is the main loop timer and the pulse control timer runs at 0.1 ms. Timer1 turns on the HVPS output, so the micropulse starts, and Timer0 turns off the HVPS and ends the micropulse. Therefore, Timer1 sets the repetition rate and triggers analog-to-digital conversion, and Timer0 sets the micropulse width.
在方塊403中,執行微脈衝重複率計數器是否等於2的比較。換言之,執行測試以判定重複率分割計數值是否從下個微脈衝的開始起算是2。方塊403中的步驟將把ADC(微控制器201中的)與就在下個微脈衝傳輸之前的時間同步。若微脈衝重複率計數器等於2,則取樣保持電路205被設定為取樣模式,如方塊404中所示。在方塊405中,微控制器201中的ACD讀取來自取樣保持電路205的感測器輸入訊號。In block 403, a comparison is performed as to whether the micropulse repetition rate counter is equal to two. In other words, a test is performed to determine whether the repetition rate division count value is 2 from the start of the next micropulse. The steps in block 403 will synchronize the ADC (in microcontroller 201) with the time just before the next micropulse transmission. If the micropulse repetition rate counter is equal to 2, the sample-and-hold circuit 205 is set to the sampling mode, as shown in block 404. In block 405, the ACD in the microcontroller 201 reads the sensor input signal from the sample-and-hold circuit 205.
若微脈衝重複率計數器不等於2,則演算法400繼續進行到方塊406。If the micropulse repetition rate counter is not equal to two, the algorithm 400 proceeds to block 406.
方塊404及405起動且執行類比轉數位的轉換以容許微控制器201量測從取樣保持電路205所接收的類比輸入。Blocks 404 and 405 are activated and perform analog-to-digital conversion to allow the microcontroller 201 to measure the analog input received from the sample-and-hold circuit 205.
在啟用取樣保持電路205時(一般是在下個微脈衝發生在方塊403處之前的約0.2毫秒處,其中微脈衝803及804分別具有脈衝寬度810及811),訊號250(圖2)接著在被施用於位在微控制器201裡面的類比轉數位轉換器(ACD)的輸入之前被低通濾波器206調整且被放大器207放大。就在取樣保持電路205啟用(方塊404)取樣保持操作之後,以訊號通知ACD開始轉換(方塊405)。造成的平衡訊號取樣速率一般約為1.0毫秒,且與微脈衝重複率(rep-rate)同步。然而,實際的取樣速率隨著重複率812、813(圖8)變化而變化(如方塊310、311、312、313中所示),但將總是保持與微脈衝重複率812、813同步。When the sample-and-hold circuit 205 is enabled (generally about 0.2 milliseconds before the next micropulse occurs at block 403, where micropulses 803 and 804 have pulse widths 810 and 811, respectively), the signal 250 (Figure 2) is then The input applied to the analog-to-digital converter (ACD) located in the microcontroller 201 is adjusted by the low-pass filter 206 and amplified by the amplifier 207. Just after the sample-and-hold circuit 205 is enabled (block 404), the sample-and-hold operation is signaled to the ACD to begin conversion (block 405). The resulting balanced signal sampling rate is generally about 1.0 milliseconds, and is synchronized with the micro-pulse repetition rate (rep-rate). However, the actual sampling rate varies with the repetition rates 812, 813 (Figure 8) (as shown in blocks 310, 311, 312, 313), but will always remain synchronized with the micropulse repetition rates 812, 813.
依據此實施例,在下個微脈衝之前進行訊號取樣的方法允許系統200忽略雜訊及電流驟增(電容耦接)且有利地避免使離子平衡量測不可靠。According to this embodiment, the method of signal sampling before the next micropulse allows the system 200 to ignore noise and current surges (capacitive coupling) and advantageously avoid making the ion balance measurement unreliable.
在方塊406中,執行測試以判定Timer1的重複率分割計數器是否準備好開始下個微脈衝。執行微脈衝重複率計數器是否等於零的比較。若微脈衝重複率計數器不等於零,則演算法400繼續進行到方塊412。若微脈衝重複率計數器等於零,則演算法400繼續進行到方塊417。In block 406, a test is performed to determine if Timer1's repetition rate split counter is ready to start the next micropulse. Performs a comparison of whether the micropulse repetition rate counter is equal to zero. If the micropulse repetition rate counter is not equal to zero, the algorithm 400 proceeds to block 412. If the micropulse repetition rate counter is equal to zero, the algorithm 400 proceeds to block 417.
在方塊417中,從資料暫存器重新載入微脈衝重複率計數器。此舉將重新載入用於起動下個脈衝(微脈衝)的時間區間。演算法400接著繼續進行到方塊408。In block 417, the micropulse repetition rate counter is reloaded from the data register. This will reload the time interval used to start the next pulse (micropulse). Algorithm 400 then proceeds to block 408.
方塊408、409及410提供以下步驟:判定新的脈衝階段是否被起動或持續目前的脈衝階段。Blocks 408, 409, and 410 provide the following steps: determine whether a new pulse phase is started or continues the current pulse phase.
在方塊408中,執行微脈衝計數器是否等於零(0)的比較。In block 408, a comparison is performed whether the micropulse counter is equal to zero (0).
若是,則演算法400繼續進行到方塊410,該方塊呼叫下個脈衝階段,且演算法400繼續進行到方塊411。If so, the algorithm 400 continues to block 410, the block calls the next pulse phase, and the algorithm 400 continues to block 411.
若否,則演算法400繼續進行到方塊409,該方塊呼叫以持續目前的脈衝階段。If not, the algorithm 400 proceeds to block 409, which calls to continue the current pulse phase.
在方塊411中,起動Timer0(微脈衝寬度計數器)。Timer0控制微脈衝寬度,如下文參照方塊414-417所論述的。In block 411, Timer0 (micropulse width counter) is started. Timer0 controls the micropulse width, as discussed below with reference to blocks 414-417.
在方塊412中,啟用所有系統中斷(system interrupt)。在方塊413中,Timer1的中斷服務常式結束。In block 412, all system interrupts are enabled. At block 413, the interrupt service routine for Timer1 ends.
在Timer0的時間到期時,基於方塊414-417來控制實際的微脈衝寬度。在方塊414中,Timer0的中斷服務常式起動。在方塊415中,將正微脈衝驅動設定為關閉(亦即關閉正微脈衝)。在方塊416中,將負微脈衝驅動設定為關閉(亦即關閉負微脈衝)。在方塊417中,Timer0的中斷服務常式結束。When the time of Timer0 expires, the actual micropulse width is controlled based on blocks 414-417. At block 414, an interrupt service routine for Timer0 is initiated. In block 415, the positive micropulse drive is set to off (ie, the positive micropulse is turned off). In block 416, the negative micropulse drive is set to off (ie, the negative micropulse is turned off). At block 417, the interrupt service routine for Timer0 ends.
亦如圖400中的部分450中所示,對於微脈衝驅動訊號452,Timer0的持續時間等於微脈衝驅動訊號452的微脈衝寬度454。微脈衝寬度454在脈衝上升邊緣456(其在Timer0起動時觸發)處開始且在脈衝下降邊緣458(其在Timer0結束時觸發)處結束。As also shown in part 450 in FIG. 400, for the micropulse driving signal 452, the duration of Timer0 is equal to the micropulse width 454 of the micropulse driving signal 452. The micro-pulse width 454 starts at a pulse rising edge 456 (which is triggered when Timer0 starts) and ends at a pulse falling edge 458 (which is triggered when Timer0 ends).
平均化離子平衡感測器輸入的方法700的細節示於圖7中的流程圖中。方塊701-706描述取樣保持電路205的操作及對來自取樣保持電路205的資料進行ADC轉換的操作。在ADC轉換701結束時,約0.1毫秒後,停用取樣保持區塊205,而防止雜訊及電流驟增使平衡量測不可靠。將造成的量測結果703及取樣計數器705添加到先前的原始量測總和704值及保存,等待進一步的處理。方塊707-716是用於平均化感測器101及/或204的量測結果的平均化常式,且獲取離子平衡量測平均值,接著使用有限脈衝回應計算來結合該平衡量測平均值以將平衡量測平均值與先前的量測結果714結合而產生平衡控制環路中所使用的最終平衡量測結果。方塊714中的計算從先前系列的感測器輸入量測結果計算加權平均值。在方塊715中,呼叫事件常式以基於方塊714中的計算來調整離子產生。Details of a method 700 of averaging ion balance sensor inputs are shown in the flowchart in FIG. 7. Blocks 701-706 describe the operation of the sample-and-hold circuit 205 and the operation of ADC conversion of the data from the sample-and-hold circuit 205. At the end of the ADC conversion 701, the sample-and-hold block 205 is disabled after about 0.1 milliseconds, and the noise and current surge are prevented from making the balance measurement unreliable. The resulting measurement result 703 and the sampling counter 705 are added to the previous original measurement sum 704 value and saved, waiting for further processing. Blocks 707-716 are averaging routines used to average the measurement results of sensors 101 and / or 204, and obtain the average value of the ion balance measurement, and then use the finite impulse response calculation to combine the average value of the balance measurement The final balance measurement result used in the balance control loop is generated by combining the average of the balance measurement with the previous measurement result 714. The calculation in block 714 calculates a weighted average from the previous series of sensor input measurements. In block 715, the call event routine adjusts ion generation based on the calculation in block 714.
圖5A、5B及圖6中的流程圖繪示在形成負及正極性脈衝列的期間的系統操作。離子化循環531包括一系列的正脈衝502、602,之後是停止時間區間503、603,之後是一系列的負脈衝517、604,之後是停止時間區間518、605。在經指定的離子化循環數量已發生708時,計算離子平衡量測平均值709,且清除原始量測總和710及取樣計數器值710、711。The flowcharts in FIGS. 5A, 5B, and 6 illustrate system operation during the formation of negative and positive pulse trains. The ionization cycle 531 includes a series of positive pulses 502, 602, followed by stop time intervals 503, 603, followed by a series of negative pulses 517, 604, followed by stop time intervals 518, 605. When the specified number of ionization cycles has occurred 708, the average value of the ion balance measurement 709 is calculated, and the original measurement sum 710 and the sampling counter values 710 and 711 are cleared.
現參照圖5A、5B及6。該等圖式為分別依據本發明的一實施例的在形成負脈衝列及正脈衝列的期間的系統操作的流程圖。在方塊501中,用於負脈衝列的下個脈衝階段的常式起動。方塊502-515描述用於產生負系列脈衝以及脈衝持續時間的停止時間的步驟。方塊517-532描述用於產生正系列脈衝以及脈衝持續時間的停止時間的步驟。方塊601-613描述用於產生下個脈衝階段或是否持續目前的脈衝階段的步驟。5A, 5B and 6. The drawings are flowcharts of system operations during the formation of a negative pulse train and a positive pulse train, respectively, according to an embodiment of the present invention. In block 501, a normal start for the next pulse phase of the negative pulse train. Blocks 502-515 describe steps for generating a negative series of pulses and a stop time for the pulse duration. Blocks 517-532 describe steps for generating a positive series of pulses and a stop time for the duration of the pulses. Blocks 601-613 describe steps for generating the next pulse phase or whether to continue the current pulse phase.
接著使用有限脈衝回應計算來結合平衡量測平均值以將平衡量測平均值與先前的量測結果714結合,而產生平衡控制環路中所使用的最終平衡量測結果。The finite impulse response calculation is then used to combine the balance measurement average to combine the balance measurement average with the previous measurement result 714 to produce the final balance measurement result used in the balance control loop.
平衡控制環路301將平衡量測結果與設定值302進行比較而產生誤差值。誤差訊號被乘以環路增益303、被檢查是否超過/低於範圍304且被添加到目前的負脈衝寬度值。The balance control loop 301 compares the balance measurement result with the set value 302 to generate an error value. The error signal is multiplied by the loop gain 303, checked for over / under range 304, and added to the current negative pulse width value.
在微脈衝HV供應系統202、203中,驅動微脈衝的脈衝寬度改變了造成的高電壓(HV)波814、801、802的峰值幅度。在此情況下,改變負脈衝幅度以使離子平衡上的改變生效。若誤差訊號值大於零,則調高負脈衝寬度,因此使得增加負HV脈衝的幅度,而使平衡以負方向改變。相反地,若平衡是負的,則調低負脈衝寬度,因此使平衡以正方向改變。In the micro-pulse HV supply systems 202, 203, the pulse width of the driving micro-pulses changes the peak amplitude of the high-voltage (HV) waves 814, 801, 802 caused. In this case, the amplitude of the negative pulse is changed for the change in ion balance to take effect. If the error signal value is greater than zero, the negative pulse width is increased, so that the amplitude of the negative HV pulse is increased, and the balance is changed in the negative direction. Conversely, if the balance is negative, the negative pulse width is turned down, so the balance is changed in the positive direction.
在持續調整負脈衝寬度期間且在條件允許時,負脈衝寬度可能命中其控制限值。在此情況下,為了正失衡將正脈衝寬度調低307或為了負失衡將正脈衝寬度調高309,直到負脈衝寬度可再次恢復控制為止。此使用負及正脈衝寬度來進行控制的方法產生了大約10V的平均平衡控制調整範圍,其中穩定性小於3V。During the continuous adjustment of the negative pulse width and when conditions permit, the negative pulse width may hit its control limit. In this case, decrease the positive pulse width by 307 for positive imbalance or increase the positive pulse width by 309 for negative imbalance until the negative pulse width can resume control again. This method of controlling using negative and positive pulse widths produces an average balance control adjustment range of about 10V, with stability less than 3V.
依據大失衡條件下的另一實施例(例如在離子化鼓風機起動時、在大量的污染物積聚時或在發射器隨著它們老化而腐蝕時),負脈衝寬度及正脈衝寬度將達到它們的控制限值310、312。在此情況下,調整正脈衝重複率311及調整負脈衝重複率313以使平衡達到正脈衝寬度及負脈衝寬度再次是在它們各別的控制範圍內的點。因此,對於大的正失衡條件,將負脈衝重複率增加313,而造成平衡上的負偏移。若條件仍存在,則將正脈衝重複率減少313,而亦造成平衡上的負偏移。此改變正/負重複率313的交替法持續直到負脈衝寬度及正脈衝寬度再次是在它們的控制範圍內為止。同樣地,對於大的負失衡條件,將正脈衝重複率增加311且交替地將負脈衝重複率減少311,而造成平衡上的正偏移。此舉如之前一樣持續,直到負脈衝寬度及正脈衝寬度再次是在它們的控制範圍內為止。According to another embodiment under large imbalance conditions (such as when the ionizing blower starts, when a large amount of pollutants accumulates, or when the emitter corrodes as they age), the negative and positive pulse widths will reach their Control limits 310, 312. In this case, adjusting the positive pulse repetition rate 311 and the negative pulse repetition rate 313 so that the balance reaches a positive pulse width and a negative pulse width is again a point within their respective control ranges. Therefore, for large positive imbalance conditions, the negative pulse repetition rate is increased by 313, causing a negative shift in balance. If the condition persists, the positive pulse repetition rate is reduced by 313, which also causes a negative shift in balance. This alternating method of changing the positive / negative repetition rate 313 continues until the negative pulse width and the positive pulse width are again within their control range. Similarly, for large negative imbalance conditions, the positive pulse repetition rate is increased by 311 and the negative pulse repetition rate is alternately decreased by 311, resulting in a positive shift in balance. This continues as before, until the negative and positive pulse widths are again within their control range.
在極度失衡的條件存在的情況下,負/正脈衝寬度及正/負重複率調整兩者可能已命中它們各別的控制限值310、312、314、316,接著將改變正脈衝計數值及負脈衝計數值以使平衡達到正/負重複率再次是在它們各別的控制範圍內的點。因此,對於極度的正失衡條件,正脈衝計數值將減少317且停止時間脈衝計數值317將增加一個脈衝數,而造成平衡上的負改變。In the presence of extreme imbalance conditions, both the negative / positive pulse width and positive / negative repetition rate adjustments may have hit their respective control limits 310, 312, 314, and 316. The positive pulse count value and Negative pulse counts to bring the balance to a positive / negative repetition rate are again points within their respective control ranges. Therefore, for extreme positive imbalance conditions, the positive pulse count value will decrease by 317 and the stop time pulse count value will increase by one pulse number, causing a negative change in balance.
若條件仍然存在,則停止時間脈衝計數值將減少317且負脈衝計數值將增加317一個脈衝數,而造成平衡上的進一步負改變。此將一個脈衝從負封包/列偏移到正封包/列的行為持續直到正/負重複率再次是在它們的控制範圍內為止。同樣地,對於極度的負失衡條件,將一次一個脈衝地將一個脈衝從正脈衝315封包/列通過停止時間脈衝計數值偏移到負脈衝封包315,而造成平衡上的正改變直到正/負重複率再次是在它們的控制範圍內為止。If the condition still exists, the stop time pulse count value will decrease by 317 and the negative pulse count value will increase by 317 one pulse number, causing a further negative change in balance. This behavior of shifting a pulse from a negative packet / column to a positive packet / column continues until the positive / negative repetition rate is again within their control range. Similarly, for extreme negative imbalance conditions, one pulse at a time will shift one pulse from the positive pulse 315 packets / column through the stop time pulse count value to the negative pulse packet 315, causing a positive change in balance until positive / negative The repetition rate is again within their control range.
在平行程序中,將平衡量測結果將與設定點進行比較。若平衡量測結果被判定是在其被指定的範圍(相對應於在距離子化器1呎處所量測到的±15V的平均CPM(電荷板監測器)讀數)外面,則離子化器的控制系統將觸發平衡警示。In a parallel program, the balance measurement result is compared with the set point. If the balance measurement result is determined to be outside its specified range (corresponding to an average CPM (Charge Plate Monitor) reading of ± 15V measured at 1 foot from the protonizer), the ionizer's The control system will trigger a balance alert.
在圖9中的是用於提供反饋常式的方法,若離子不平衡存在則該反饋常式致動離子平衡警示。方塊901-909執行量測,將該等量測與臨界值進行比較以判定是否致動平衡警示。方塊910-916判定是否致動平衡警示。In FIG. 9 is a method for providing a feedback routine that activates an ion balance alert if an ion imbalance exists. Blocks 901-909 perform measurements that are compared to threshold values to determine if a balance alert is activated. Blocks 910-916 determine whether a balance alert is activated.
在每5秒一次的定時區間中,估算平衡量測結果903,在超出此範圍時將「1」左偏移到警示暫存器中904,否則將「0」左偏移到警示暫存器中902。在警示暫存器包含255的值(全部都是「1」)時,在警示中宣告平衡量測結果。同樣地,若警示暫存器包含0的值(全部都是「0」),則不在警示中宣告平衡量測結果。忽略警示暫存器中非255或0的任何值且警示的狀態不變。此舉過濾了警示通知且防止偶發性的通知。作為副產物,通知延遲允許平衡控制系統有充足的時間從外部的刺激中恢復。In the time interval every 5 seconds, estimate the balance measurement result 903. When it exceeds this range, shift "1" to the left of the warning register 904, otherwise shift "0" to the left of the warning register In 902. When the alert register contains a value of 255 (all "1"), the balance measurement result is announced in the alert. Similarly, if the alert register contains a value of 0 (all "0"), the balance measurement result is not declared in the alert. Any value other than 255 or 0 in the alert register is ignored and the status of the alert is unchanged. This filters out alert notifications and prevents sporadic notifications. As a by-product, the notification delay allows the balance control system sufficient time to recover from external stimuli.
在各個ADC轉換循環結束時運行的另一平衡程序中,約每一毫秒監測平衡控制系統一次(圖9B)。此常式910對正及負脈衝計數值檢查限制條件911、912。如上所述,在失衡條件存在且正/負脈衝寬度及正/負重複率是處於它們各別的限值時,調整正及負脈衝計數值。然而,在不能使平衡回到規格且正/負脈衝計數值已達到它們的調整限值的情況911、912下,藉由將警示暫存器設定到全部是「1」的值913、設定警示旗標914及設定兩個警示狀態位元915來強制執行警示狀態。In another balancing program running at the end of each ADC conversion cycle, the balancing control system is monitored approximately every millisecond (Figure 9B). This routine 910 checks the limit conditions 911 and 912 for the positive and negative pulse count values. As described above, when an imbalance condition exists and the positive / negative pulse width and the positive / negative repetition rate are at their respective limits, the positive and negative pulse count values are adjusted. However, when the balance cannot be returned to the specifications and the positive / negative pulse count value has reached their adjustment limits, in the case of 911 and 912, the alarm register is set to a value of 913 which is all "1". A flag 914 and two alert status bits 915 are set to enforce the alert status.
上文所論述的自動平衡控制的方法及技術不限於一種類型的離子化鼓風機。可將該等方法及技術用在具有各種發射電極的不同模型的離子化鼓風機中。自動化系統的其他應用包括具有微脈衝高電壓電源的離子化棒的模型。The methods and techniques of automatic balance control discussed above are not limited to one type of ionizing blower. These methods and techniques can be used in ionizing blowers with different models of various emitting electrodes. Other applications for automation systems include models of ionizing rods with micropulsed high-voltage power supplies.
所說明的發明實施例的以上說明(包括摘要中所述者)不是要是窮舉的或將本發明限於所揭露的準確形式。如相關領域的技術人員將認識到的,儘管為了說明的目的在本文中描述了本發明的特定實施例及實例,各種等效的更改在本發明的範圍內是可能的。The above description of the illustrated invention embodiments (including those described in the Abstract) is not intended to be exhaustive or to limit the invention to the precise forms disclosed. As those skilled in the relevant art will recognize, although specific embodiments and examples of the invention are described herein for purposes of illustration, various equivalent modifications are possible within the scope of the invention.
可鍳於以上的詳細說明對本發明作出該等更改。以下請求項中所使用的用語不應被解釋為將本發明限於說明書及請求項中所揭露的特定實施例。反而,要完全藉由以下請求項來判定本發明的範圍,要依據已建立的請求項解譯原則來解釋該等請求項。These changes can be made to the invention based on the above detailed description. The terms used in the following claims should not be construed to limit the invention to the specific embodiments disclosed in the description and the claims. Instead, the scope of the present invention should be determined solely by the following claims, and these claims should be interpreted according to the established claim interpretation principles.
100‧‧‧離子化鼓風機100‧‧‧ ionized blower
101‧‧‧空氣離子化感測器101‧‧‧air ionization sensor
102‧‧‧發射點陣列/發射點102‧‧‧ launch point array / launch point
103‧‧‧風扇103‧‧‧fan
104‧‧‧參考電極104‧‧‧Reference electrode
105‧‧‧參考電極105‧‧‧Reference electrode
106‧‧‧保護格柵/通氣道106‧‧‧ Protective grille / ventilation
107‧‧‧控制系統107‧‧‧Control System
108‧‧‧敏感電極108‧‧‧Sensitive electrode
109‧‧‧百葉窗型的薄介電板109‧‧‧Thin Dielectric Plate
110‧‧‧接地平坦電極110‧‧‧ ground flat electrode
125‧‧‧空氣流125‧‧‧air flow
125a‧‧‧樣本125a‧‧‧Sample
125b‧‧‧經離子化空氣流125b‧‧‧Ionized air stream
127‧‧‧區塊127‧‧‧block
130‧‧‧空間130‧‧‧ space
131‧‧‧出口131‧‧‧Export
132‧‧‧頂側132‧‧‧Top side
133‧‧‧底側133‧‧‧ bottom side
135‧‧‧電壓/訊號135‧‧‧Voltage / Signal
200‧‧‧系統200‧‧‧ system
201‧‧‧控制系統/微控制器201‧‧‧Control System / Microcontroller
202‧‧‧脈衝驅動器202‧‧‧Pulse driver
203‧‧‧變壓器203‧‧‧Transformer
204‧‧‧返回電流感測器204‧‧‧Return Current Sensor
205‧‧‧取樣保持電路205‧‧‧Sample and Hold Circuit
206‧‧‧低通濾波器206‧‧‧Low-pass filter
207‧‧‧放大器207‧‧‧amplifier
208‧‧‧平衡調整電位計208‧‧‧Balance adjustment potentiometer
209‧‧‧電力轉換器209‧‧‧Power Converter
210‧‧‧返回電流210‧‧‧Return current
214‧‧‧電流214‧‧‧Current
215‧‧‧取樣訊號215‧‧‧Sampling signal
216‧‧‧開關216‧‧‧Switch
218‧‧‧放大器218‧‧‧amplifier
220‧‧‧離子電流220‧‧‧ ion current
230‧‧‧HV變壓器230‧‧‧HV transformer
250‧‧‧高電壓終端250‧‧‧High Voltage Terminal
251‧‧‧低電壓終端251‧‧‧Low-voltage terminal
252‧‧‧平衡訊號252‧‧‧ balanced signal
253‧‧‧設定點訊號253‧‧‧Set point signal
254‧‧‧HV輸出254‧‧‧HV output
256‧‧‧電壓偏壓256‧‧‧voltage bias
257‧‧‧線路257‧‧‧ route
258‧‧‧電壓源值258‧‧‧Voltage source value
300‧‧‧反饋演算法300‧‧‧Feedback Algorithm
301‧‧‧方塊301‧‧‧box
302‧‧‧方塊302‧‧‧block
303‧‧‧方塊303‧‧‧block
304‧‧‧方塊304‧‧‧box
305‧‧‧方塊305‧‧‧box
306‧‧‧方塊306‧‧‧block
307‧‧‧方塊307‧‧‧box
308‧‧‧方塊308‧‧‧box
309‧‧‧方塊309‧‧‧block
310‧‧‧方塊310‧‧‧block
311‧‧‧方塊311‧‧‧block
312‧‧‧方塊312‧‧‧block
313‧‧‧方塊313‧‧‧box
314‧‧‧方塊314‧‧‧block
315‧‧‧方塊315‧‧‧block
316‧‧‧方塊316‧‧‧block
317‧‧‧方塊317‧‧‧block
318‧‧‧方塊318‧‧‧block
400‧‧‧微脈衝產生器控制的演算法400‧‧‧Micro-pulse generator control algorithm
401‧‧‧方塊401‧‧‧box
402‧‧‧方塊402‧‧‧block
403‧‧‧方塊403‧‧‧box
404‧‧‧方塊404‧‧‧box
405‧‧‧方塊405‧‧‧box
406‧‧‧方塊406‧‧‧box
407‧‧‧方塊407‧‧‧block
408‧‧‧方塊408‧‧‧block
409‧‧‧方塊409‧‧‧box
410‧‧‧方塊410‧‧‧block
411‧‧‧方塊411‧‧‧box
412‧‧‧方塊412‧‧‧box
413‧‧‧方塊413‧‧‧box
414‧‧‧方塊414‧‧‧block
415‧‧‧方塊415‧‧‧box
416‧‧‧方塊416‧‧‧box
417‧‧‧方塊417‧‧‧box
450‧‧‧部分450‧‧‧part
452‧‧‧微脈衝驅動訊號452‧‧‧Micro-pulse driving signal
454‧‧‧微脈衝寬度454‧‧‧micropulse width
456‧‧‧脈衝上升邊緣456‧‧‧pulse rising edge
458‧‧‧脈衝下降邊緣458‧‧‧pulse falling edge
501‧‧‧方塊501‧‧‧box
502‧‧‧方塊502‧‧‧box
503‧‧‧方塊503‧‧‧block
504‧‧‧方塊504‧‧‧block
505‧‧‧方塊505‧‧‧box
506‧‧‧方塊506‧‧‧box
507‧‧‧方塊507‧‧‧box
508‧‧‧方塊508‧‧‧box
509‧‧‧方塊509‧‧‧box
510‧‧‧方塊510‧‧‧box
511‧‧‧方塊511‧‧‧box
512‧‧‧方塊512‧‧‧box
513‧‧‧方塊513‧‧‧box
514‧‧‧方塊514‧‧‧box
515‧‧‧方塊515‧‧‧box
516‧‧‧方塊516‧‧‧box
517‧‧‧方塊517‧‧‧box
518‧‧‧方塊518‧‧‧box
519‧‧‧方塊519‧‧‧box
520‧‧‧方塊520‧‧‧box
521‧‧‧方塊521‧‧‧box
522‧‧‧方塊522‧‧‧box
523‧‧‧方塊523‧‧‧box
524‧‧‧方塊524‧‧‧box
525‧‧‧方塊525‧‧‧box
526‧‧‧方塊526‧‧‧box
527‧‧‧方塊527‧‧‧box
528‧‧‧方塊528‧‧‧box
529‧‧‧方塊529‧‧‧box
530‧‧‧方塊530‧‧‧box
531‧‧‧方塊531‧‧‧box
532‧‧‧方塊532‧‧‧box
601‧‧‧方塊601‧‧‧box
602‧‧‧方塊602‧‧‧box
603‧‧‧方塊603‧‧‧box
604‧‧‧方塊604‧‧‧box
605‧‧‧方塊605‧‧‧box
607‧‧‧方塊607‧‧‧box
608‧‧‧方塊608‧‧‧box
609‧‧‧方塊609‧‧‧box
610‧‧‧方塊610‧‧‧block
611‧‧‧方塊611‧‧‧box
612‧‧‧方塊612‧‧‧box
613‧‧‧方塊613‧‧‧box
700‧‧‧方法700‧‧‧ Method
701‧‧‧方塊701‧‧‧box
702‧‧‧方塊702‧‧‧box
703‧‧‧方塊703‧‧‧block
704‧‧‧方塊704‧‧‧box
705‧‧‧方塊705‧‧‧box
706‧‧‧方塊706‧‧‧block
707‧‧‧方塊707‧‧‧box
708‧‧‧方塊708‧‧‧block
709‧‧‧方塊709‧‧‧box
710‧‧‧方塊710‧‧‧block
711‧‧‧方塊711‧‧‧block
712‧‧‧方塊712‧‧‧block
713‧‧‧方塊713‧‧‧box
714‧‧‧方塊714‧‧‧box
715‧‧‧方塊715‧‧‧box
716‧‧‧方塊716‧‧‧block
801‧‧‧正微脈衝801‧‧‧Positive micropulse
802‧‧‧負微脈衝802‧‧‧Negative micropulse
803‧‧‧正脈衝803‧‧‧positive pulse
804‧‧‧負脈衝804‧‧‧Negative pulse
810‧‧‧正脈衝寬度(持續時間)810‧‧‧Positive pulse width (duration)
811‧‧‧負脈衝寬度(持續時間)811‧‧‧Negative pulse width (duration)
812‧‧‧正重複率812‧‧‧Positive repeat rate
813‧‧‧負重複率813‧‧‧Negative repetition rate
814‧‧‧離子化波形814‧‧‧Ionization waveform
815‧‧‧正脈衝輸出815‧‧‧positive pulse output
816‧‧‧負脈衝輸出816‧‧‧Negative pulse output
901‧‧‧方塊901‧‧‧box
902‧‧‧方塊902‧‧‧box
903‧‧‧方塊903‧‧‧box
904‧‧‧方塊904‧‧‧box
905‧‧‧方塊905‧‧‧box
906‧‧‧方塊906‧‧‧box
907‧‧‧方塊907‧‧‧box
908‧‧‧方塊908‧‧‧box
909‧‧‧方塊909‧‧‧box
910‧‧‧方塊910‧‧‧block
911‧‧‧方塊911‧‧‧box
912‧‧‧方塊912‧‧‧box
913‧‧‧方塊913‧‧‧box
914‧‧‧方塊914‧‧‧box
915‧‧‧方塊915‧‧‧box
916‧‧‧方塊916‧‧‧box
將參照以下圖式來詳細描述此揭示案被提出作為實例的各種實施例,其中類似的元件符號指類似的元件,且其中:Various embodiments in which this disclosure is proposed as an example will be described in detail with reference to the following drawings, wherein like element symbols refer to like elements, and wherein
圖1A是依據本發明的一實施例的離子化鼓風機的總圖的方塊圖。FIG. 1A is a block diagram of a general view of an ionizing blower according to an embodiment of the present invention.
圖1B是圖1A的鼓風機的橫截面圖。FIG. 1B is a cross-sectional view of the blower of FIG. 1A.
圖1C是依據本發明的一實施例的包括在離子化鼓風機中的感測器的方塊圖。FIG. 1C is a block diagram of a sensor included in an ionizing blower according to an embodiment of the present invention.
圖2A是依據本發明的一實施例的圖1A的離子化鼓風機的方塊圖及來自該鼓風機的經離子化的空氣流。2A is a block diagram of the ionized blower of FIG. 1A and an ionized air flow from the blower according to an embodiment of the present invention.
圖2B是依據本發明的一實施例的離子化鼓風機中的系統的電氣方塊圖。2B is an electrical block diagram of a system in an ionizing blower according to an embodiment of the present invention.
圖3是依據本發明的一實施例的反饋演算法300的流程圖。FIG. 3 is a flowchart of a feedback algorithm 300 according to an embodiment of the present invention.
圖4是依據本發明的一實施例的微脈衝產生器控制的微脈衝產生器演算法的流程圖。4 is a flowchart of a micro-pulse generator algorithm controlled by a micro-pulse generator according to an embodiment of the present invention.
圖5A是依據本發明的一實施例的在形成負脈衝列期間的系統操作的流程圖。FIG. 5A is a flowchart of system operation during formation of a negative pulse train according to an embodiment of the present invention.
圖5B是依據本發明的一實施例的在形成正脈衝列期間的系統操作的流程圖。FIG. 5B is a flowchart of system operation during the formation of a positive pulse train according to an embodiment of the present invention.
圖6是依據本發明的一實施例的在目前脈衝階段期間的系統操作的流程圖。FIG. 6 is a flowchart of system operation during a current pulse phase according to an embodiment of the present invention.
圖7是依據本發明的一實施例的在感測器輸入量測期間的系統操作的流程圖。FIG. 7 is a flowchart of system operation during sensor input measurement according to an embodiment of the present invention.
圖8是依據本發明的一實施例的微脈衝的波形圖。FIG. 8 is a waveform diagram of micropulses according to an embodiment of the present invention.
圖9是依據本發明的一實施例的在平衡警示期間的系統操作的流程圖。FIG. 9 is a flowchart of system operation during a balance alert according to an embodiment of the present invention.
國內寄存資訊 (請依寄存機構、日期、號碼順序註記) 無Domestic hosting information (please note in order of hosting institution, date, and number) None
國外寄存資訊 (請依寄存國家、機構、日期、號碼順序註記) 無Information on foreign deposits (please note in order of deposit country, institution, date, and number) None
Claims (20)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/362,280 US9918374B2 (en) | 2012-02-06 | 2016-11-28 | Control system of a balanced micro-pulsed ionizer blower |
US15/362,280 | 2016-11-28 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201834341A true TW201834341A (en) | 2018-09-16 |
TWI737860B TWI737860B (en) | 2021-09-01 |
Family
ID=60574769
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW106141335A TWI737860B (en) | 2016-11-28 | 2017-11-28 | Apparatus, control system, and method for a balanced micro-pulsed ionizer blower |
Country Status (6)
Country | Link |
---|---|
EP (1) | EP3545592B1 (en) |
JP (1) | JP7127025B2 (en) |
KR (1) | KR102525815B1 (en) |
CN (1) | CN109983642B (en) |
TW (1) | TWI737860B (en) |
WO (1) | WO2018098421A1 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
USD1018818S1 (en) | 2021-06-04 | 2024-03-19 | Illinois Tool Works Inc. | Ionizing bar |
US11843225B2 (en) * | 2021-06-04 | 2023-12-12 | Illinois Tool Works Inc. | Methods and apparatus for adaptive charge neutralization |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6252233B1 (en) * | 1998-09-18 | 2001-06-26 | Illinois Tool Works Inc. | Instantaneous balance control scheme for ionizer |
EP1508948B1 (en) * | 1998-09-18 | 2014-03-05 | Illinois Tool Works Inc. | Low voltage modular room ionization system |
US6146447A (en) * | 1998-11-25 | 2000-11-14 | Air Products And Chemicals, Inc. | Oxygen generation process and system using single adsorber and single blower |
JP2002186054A (en) * | 2000-12-18 | 2002-06-28 | Matsushita Electric Ind Co Ltd | Device controller |
US8009405B2 (en) | 2007-03-17 | 2011-08-30 | Ion Systems, Inc. | Low maintenance AC gas flow driven static neutralizer and method |
US9125284B2 (en) * | 2012-02-06 | 2015-09-01 | Illinois Tool Works Inc. | Automatically balanced micro-pulsed ionizing blower |
TWI652869B (en) | 2014-03-19 | 2019-03-01 | 美商伊利諾工具工程公司 | Automatically balanced micropulse ionization blower |
-
2017
- 2017-11-27 WO PCT/US2017/063252 patent/WO2018098421A1/en unknown
- 2017-11-27 JP JP2019528715A patent/JP7127025B2/en active Active
- 2017-11-27 EP EP17809153.4A patent/EP3545592B1/en active Active
- 2017-11-27 KR KR1020197018887A patent/KR102525815B1/en active Active
- 2017-11-27 CN CN201780071638.6A patent/CN109983642B/en active Active
- 2017-11-28 TW TW106141335A patent/TWI737860B/en active
Also Published As
Publication number | Publication date |
---|---|
WO2018098421A1 (en) | 2018-05-31 |
CN109983642A (en) | 2019-07-05 |
EP3545592B1 (en) | 2021-08-25 |
EP3545592A1 (en) | 2019-10-02 |
KR102525815B1 (en) | 2023-04-25 |
TWI737860B (en) | 2021-09-01 |
KR20190086556A (en) | 2019-07-22 |
JP7127025B2 (en) | 2022-08-29 |
JP2020501308A (en) | 2020-01-16 |
CN109983642B (en) | 2021-11-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9125284B2 (en) | Automatically balanced micro-pulsed ionizing blower | |
US9918374B2 (en) | Control system of a balanced micro-pulsed ionizer blower | |
EP1067828B1 (en) | Instantaneous balance control scheme for ionizer | |
JP6018088B2 (en) | Corona discharge type micro pulse bipolar ionizer and method | |
US7177133B2 (en) | Method and apparatus for bipolar ion generation | |
KR101807509B1 (en) | Self-balancing ionized gas streams | |
JPH0744079B2 (en) | Air ionization adjusting method and device | |
EP1401247A2 (en) | Method and apparatus for offset voltage control in bipolar ionization systems | |
EP3120429B1 (en) | An automatically balanced micro-pulsed ionizing blower | |
TWI737860B (en) | Apparatus, control system, and method for a balanced micro-pulsed ionizer blower | |
JP2005100870A (en) | Method of controlling amount of ion generation, and ionizer | |
JPH077717B2 (en) | Air ionization adjusting method and device | |
US9356434B2 (en) | Active ionization control with closed loop feedback and interleaved sampling |