[go: up one dir, main page]

TW201833323A - Recombinant listeria vaccine strains and methods of using the same in cancer immunotherapy - Google Patents

Recombinant listeria vaccine strains and methods of using the same in cancer immunotherapy Download PDF

Info

Publication number
TW201833323A
TW201833323A TW107100492A TW107100492A TW201833323A TW 201833323 A TW201833323 A TW 201833323A TW 107100492 A TW107100492 A TW 107100492A TW 107100492 A TW107100492 A TW 107100492A TW 201833323 A TW201833323 A TW 201833323A
Authority
TW
Taiwan
Prior art keywords
listeria strain
recombinant listeria
antigen peptide
peptide
seq
Prior art date
Application number
TW107100492A
Other languages
Chinese (zh)
Inventor
羅伯特 佩提
Original Assignee
美商艾法西斯公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商艾法西斯公司 filed Critical 美商艾法西斯公司
Publication of TW201833323A publication Critical patent/TW201833323A/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/12Viral antigens
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/51Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
    • A61K2039/52Bacterial cells; Fungal cells; Protozoal cells
    • A61K2039/522Bacterial cells; Fungal cells; Protozoal cells avirulent or attenuated
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/51Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
    • A61K2039/52Bacterial cells; Fungal cells; Protozoal cells
    • A61K2039/523Bacterial cells; Fungal cells; Protozoal cells expressing foreign proteins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/58Medicinal preparations containing antigens or antibodies raising an immune response against a target which is not the antigen used for immunisation
    • A61K2039/585Medicinal preparations containing antigens or antibodies raising an immune response against a target which is not the antigen used for immunisation wherein the target is cancer
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/60Medicinal preparations containing antigens or antibodies characteristics by the carrier linked to the antigen
    • A61K2039/6031Proteins
    • A61K2039/6068Other bacterial proteins, e.g. OMP
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/80Vaccine for a specifically defined cancer
    • A61K2039/86Lung
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2710/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
    • C12N2710/00011Details
    • C12N2710/20011Papillomaviridae
    • C12N2710/20034Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Immunology (AREA)
  • Biochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Virology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Microbiology (AREA)
  • Mycology (AREA)
  • Epidemiology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biophysics (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Peptides Or Proteins (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)

Abstract

Provided herein are recombinant fusion polypeptides comprising an HPV16 antigenic peptide and an HPV18 antigenic peptide, wherein the HPV16 antigenic peptide and the HPV18 antigenic peptide are operably linked in tandem (e.g., fused to a PEST-containing peptide). Also provided are nucleic acids encoding such fusion polypeptides, recombinant bacteria or Listeria strains comprising such fusion polypeptides or such nucleic acids, and cell banks comprising such recombinant bacteria or Listeria strains. Also provided herein are methods of generating such fusion polypeptides, such nucleic acids, and such recombinant bacteria or Listeria strains. Also provided are immunogenic compositions, pharmaceutical compositions, and vaccines comprising such fusion polypeptides, such nucleic acids, or such recombinant bacteria or Listeria strains. Also provided are methods of inducing an anti-tumor-associated-antigen immune response in a subject, methods of inducing an anti-tumor or anti-cancer immune response in a subject, methods of treating a tumor or cancer in a subject, methods of preventing a tumor or cancer in a subject, and methods of protecting a subject against a tumor or cancer using such recombinant fusion polypeptides, nucleic acids, recombinant bacteria or Listeria strains, immunogenic compositions, pharmaceutical compositions, or vaccines.

Description

重組李斯特菌屬疫苗菌株及在癌症免疫治療中使用該菌株之方法Recombinant Listeria vaccine strain and method for using the same in cancer immunotherapy

本發明為重組李斯特菌屬疫苗菌株及在癌症免疫治療中使用該菌株之方法。The present invention is a recombinant Listeria vaccine strain and a method of using the same in cancer immunotherapy.

[0001] 根據CDC,基於2008年至2012年之資料,在美國每年有約38,793例人類乳突狀瘤病毒(HPV)相關癌症發生:在女性當中約23,000例,而在男性當中約15,793例。HPV相關癌症包括子宮頸癌、肛門癌、頭頸癌或口咽癌。   [0002] 子宮頸癌為女性當中最常見之HPV相關癌症,而口咽癌(咽喉後部,包括舌根及扁桃體之癌症)為男性當中最常見之HPV相關癌症。   [0003] 來自高風險型HPV 16及HPV 18之E6及E7蛋白質為藉由刺激許多宿主細胞關鍵性調節蛋白質之破壞而起作用的腫瘤蛋白。舉例來說,HPV16 E6與宿主E6-AP泛素-蛋白質連接酶締合,且藉由將腫瘤抑制因子TP53及TP73靶向至用於降解之26S蛋白酶體來使其失活,且此失活增加DNA損傷及染色體不穩定性,且導致細胞增殖及癌症發展。   [0004] 在晚期癌症中常用之標準化學輻射方案可能伴隨有顯著毒性。需要在患有HPV相關癌症之患者中改進的治療模態,且免疫治療具有經由化學輻射方案遞減而降低毒性且潛在地增強長期疾病控制的可能性。[0001] According to the CDC, based on data from 2008 to 2012, there are approximately 38,793 human papillomavirus (HPV)-related cancers occurring each year in the United States: approximately 23,000 in women and approximately 15,793 in men. HPV-related cancers include cervical cancer, anal cancer, head and neck cancer, or oropharyngeal cancer. [0002] Cervical cancer is the most common HPV-related cancer among women, while oropharyngeal cancer (the posterior of the throat, including the tongue and tonsils) is the most common HPV-related cancer among men. [0003] The E6 and E7 proteins from high-risk HPV 16 and HPV 18 are tumor proteins that act by stimulating the disruption of proteins that are critically regulated by many host cells. For example, HPV16 E6 associates with the host E6-AP ubiquitin-protein ligase and inactivates it by targeting the tumor suppressor TP53 and TP73 to the 26S proteasome for degradation, and this inactivation Increase DNA damage and chromosomal instability, and lead to cell proliferation and cancer development. [0004] Standard chemoradiation protocols commonly used in advanced cancer may be accompanied by significant toxicity. There is a need for improved therapeutic modalities in patients with HPV-associated cancers, and immunotherapy has the potential to reduce toxicity via a chemoradiation protocol and potentially enhance long-term disease control.

[0005] 提供用於癌症免疫治療之方法及組成物。在一個態樣中,本文提供重組李斯特菌屬菌株,其包含有包含編碼融合多肽之第一開讀框的核酸,其中該融合多肽包含與HPV16抗原肽及HPV18抗原肽融合的含PEST之肽,其中該HPV16抗原肽及該HPV18抗原肽可操作地以串聯方式連接。視情況,HPV16抗原肽為HPV16 E6抗原肽或HPV16 E7抗原肽,且HPV18抗原肽為HPV18 E6抗原肽或HPV18 E7抗原肽。視情況,HPV16抗原肽為HPV16 E7抗原肽,且HPV18抗原肽為HPV18 E7抗原肽。亦提供此類融合多肽及編碼此類融合多肽之核酸。   [0006] 在另一態樣中,本文提供包含重組李斯特菌屬菌株之免疫原性組成物、醫藥組成物或疫苗,該重組李斯特菌屬菌株包含有包含編碼融合多肽之第一開讀框的核酸,其中該融合多肽包含與HPV16抗原肽及HPV18抗原肽融合的含PEST之肽,其中該HPV16抗原肽及該HPV18抗原肽可操作地以串聯方式連接。視情況,HPV16抗原肽為HPV16 E6抗原肽或HPV16 E7抗原肽,且HPV18抗原肽為HPV18 E6抗原肽或HPV18 E7抗原肽。視情況,HPV16抗原肽為HPV16 E7抗原肽,且HPV18抗原肽為HPV18 E7抗原肽。亦提供包含該融合多肽或編碼該融合多肽之核酸的免疫原性組成物、醫藥組成物或疫苗。   [0007] 在另一態樣中,本文提供在個體中誘導針對腫瘤或癌症之免疫反應的方法,其包含向該個體投與重組李斯特菌屬菌株,該重組李斯特菌屬菌株包含有包含編碼融合多肽之第一開讀框的核酸,其中該融合多肽包含與HPV16抗原肽及HPV18抗原肽融合的含PEST之肽,其中該HPV16抗原肽及該HPV18抗原肽可操作地以串聯方式連接。視情況,HPV16抗原肽為HPV16 E6抗原肽或HPV16 E7抗原肽,且HPV18抗原肽為HPV18 E6抗原肽或HPV18 E7抗原肽。視情況,HPV16抗原肽為HPV16 E7抗原肽,且HPV18抗原肽為HPV18 E7抗原肽。亦提供在個體中誘導針對腫瘤或癌症之免疫反應的方法,其包含向該個體投與包含此類重組李斯特菌屬菌株之免疫原性組成物、醫藥組成物或疫苗。亦提供在個體中誘導針對腫瘤或癌症之免疫反應的方法,其包含向該個體投與該融合多肽或編碼該融合多肽之核酸、包含該融合多肽或該編碼該融合多肽之核酸的免疫原性組成物、包含該融合多肽或該編碼該融合多肽之核酸的醫藥組成物或包含該融合多肽或該編碼該融合多肽之核酸的疫苗。   [0008] 在另一態樣中,本文提供在個體中預防或治療腫瘤或癌症之方法,其包含向該個體投與重組李斯特菌屬菌株,該重組李斯特菌屬菌株包含有包含編碼融合多肽之第一開讀框的核酸,其中該融合多肽包含與HPV16抗原肽及HPV18抗原肽融合的含PEST之肽,其中該HPV16抗原肽及該HPV18抗原肽可操作地以串聯方式連接。視情況,HPV16抗原肽為HPV16 E6抗原肽或HPV16 E7抗原肽,且HPV18抗原肽為HPV18 E6抗原肽或HPV18 E7抗原肽。視情況,HPV16抗原肽為HPV16 E7抗原肽,且HPV18抗原肽為HPV18 E7抗原肽。亦提供在個體中預防或治療腫瘤或癌症之方法,其包含向該個體投與包含此類重組李斯特菌屬菌株之免疫原性組成物、醫藥組成物或疫苗。亦提供在個體中預防或治療腫瘤或癌症之方法,其包含向該個體投與該融合多肽、編碼該融合多肽之核酸、包含該融合多肽或該編碼該融合多肽之核酸的免疫原性組成物、包含該融合多肽或該編碼該融合多肽之核酸的醫藥組成物或包含該融合多肽或該編碼該融合多肽之核酸的疫苗。   [0009] 在另一態樣中,本文提供包含一或多種重組李斯特菌屬菌株之細胞庫,該等重組李斯特菌屬菌株包含有包含編碼融合多肽之第一開讀框的核酸,其中該融合多肽包含與HPV16抗原肽及HPV18抗原肽融合的含PEST之肽,其中該HPV16抗原肽及該HPV18抗原肽可操作地以串聯方式連接。視情況,HPV16抗原肽為HPV16 E6抗原肽或HPV16 E7抗原肽,且HPV18抗原肽為HPV18 E6抗原肽或HPV18 E7抗原肽。視情況,HPV16抗原肽為HPV16 E7抗原肽,且HPV18抗原肽為HPV18 E7抗原肽。Methods and compositions for cancer immunotherapy are provided. In one aspect, provided herein is a recombinant Listeria strain comprising a nucleic acid comprising a first open reading frame encoding a fusion polypeptide, wherein the fusion polypeptide comprises a PEST-containing peptide fused to an HPV 16 antigen peptide and an HPV 18 antigen peptide Wherein the HPV 16 antigen peptide and the HPV 18 antigen peptide are operably linked in series. The HPV16 antigen peptide is HPV16 E6 antigen peptide or HPV16 E7 antigen peptide, and the HPV18 antigen peptide is HPV18 E6 antigen peptide or HPV18 E7 antigen peptide, as the case may be. The HPV16 antigen peptide is an HPV16 E7 antigen peptide, and the HPV18 antigen peptide is an HPV18 E7 antigen peptide, as the case may be. Such fusion polypeptides and nucleic acids encoding such fusion polypeptides are also provided. [0006] In another aspect, provided herein is an immunogenic composition, pharmaceutical composition or vaccine comprising a recombinant Listeria strain comprising a first reading comprising a fusion polypeptide encoding The nucleic acid of the frame, wherein the fusion polypeptide comprises a PEST-containing peptide fused to an HPV16 antigen peptide and an HPV18 antigen peptide, wherein the HPV 16 antigen peptide and the HPV 18 antigen peptide are operably linked in series. The HPV16 antigen peptide is HPV16 E6 antigen peptide or HPV16 E7 antigen peptide, and the HPV18 antigen peptide is HPV18 E6 antigen peptide or HPV18 E7 antigen peptide, as the case may be. The HPV16 antigen peptide is an HPV16 E7 antigen peptide, and the HPV18 antigen peptide is an HPV18 E7 antigen peptide, as the case may be. An immunogenic composition, pharmaceutical composition or vaccine comprising the fusion polypeptide or a nucleic acid encoding the fusion polypeptide is also provided. [0007] In another aspect, provided herein is a method of inducing an immune response against a tumor or cancer in an individual comprising administering to the individual a recombinant Listeria strain, the recombinant Listeria strain comprising the inclusion A nucleic acid encoding a first reading frame of a fusion polypeptide, wherein the fusion polypeptide comprises a PEST-containing peptide fused to an HPV 16 antigen peptide and an HPV 18 antigen peptide, wherein the HPV 16 antigen peptide and the HPV 18 antigen peptide are operably linked in series. The HPV16 antigen peptide is HPV16 E6 antigen peptide or HPV16 E7 antigen peptide, and the HPV18 antigen peptide is HPV18 E6 antigen peptide or HPV18 E7 antigen peptide, as the case may be. The HPV16 antigen peptide is an HPV16 E7 antigen peptide, and the HPV18 antigen peptide is an HPV18 E7 antigen peptide, as the case may be. Also provided is a method of inducing an immune response against a tumor or cancer in an individual comprising administering to the individual an immunogenic composition, pharmaceutical composition or vaccine comprising such a recombinant Listeria strain. Also provided is a method of inducing an immune response against a tumor or cancer in an individual comprising administering to the individual the fusion polypeptide or a nucleic acid encoding the fusion polypeptide, the immunogenicity comprising the fusion polypeptide or the nucleic acid encoding the fusion polypeptide A composition, a pharmaceutical composition comprising the fusion polypeptide or the nucleic acid encoding the fusion polypeptide, or a vaccine comprising the fusion polypeptide or the nucleic acid encoding the fusion polypeptide. [0008] In another aspect, provided herein is a method of preventing or treating a tumor or cancer in an individual comprising administering to the individual a recombinant Listeria strain comprising a coding fusion The nucleic acid of the first open reading frame of the polypeptide, wherein the fusion polypeptide comprises a PEST-containing peptide fused to the HPV16 antigen peptide and the HPV18 antigen peptide, wherein the HPV16 antigen peptide and the HPV18 antigen peptide are operably linked in series. The HPV16 antigen peptide is HPV16 E6 antigen peptide or HPV16 E7 antigen peptide, and the HPV18 antigen peptide is HPV18 E6 antigen peptide or HPV18 E7 antigen peptide, as the case may be. The HPV16 antigen peptide is an HPV16 E7 antigen peptide, and the HPV18 antigen peptide is an HPV18 E7 antigen peptide, as the case may be. Also provided is a method of preventing or treating a tumor or cancer in an individual comprising administering to the individual an immunogenic composition, pharmaceutical composition or vaccine comprising such a recombinant Listeria strain. Also provided is a method of preventing or treating a tumor or cancer in an individual comprising administering to the individual the fusion polypeptide, a nucleic acid encoding the fusion polypeptide, an immunogenic composition comprising the fusion polypeptide or the nucleic acid encoding the fusion polypeptide A pharmaceutical composition comprising the fusion polypeptide or the nucleic acid encoding the fusion polypeptide or a vaccine comprising the fusion polypeptide or the nucleic acid encoding the fusion polypeptide. [0009] In another aspect, provided herein is a cell bank comprising one or more recombinant Listeria strains, the recombinant Listeria strain comprising a nucleic acid comprising a first open reading frame encoding a fusion polypeptide, wherein The fusion polypeptide comprises a PEST-containing peptide fused to an HPV16 antigen peptide and an HPV18 antigen peptide, wherein the HPV 16 antigen peptide and the HPV 18 antigen peptide are operably linked in series. The HPV16 antigen peptide is HPV16 E6 antigen peptide or HPV16 E7 antigen peptide, and the HPV18 antigen peptide is HPV18 E6 antigen peptide or HPV18 E7 antigen peptide, as the case may be. The HPV16 antigen peptide is an HPV16 E7 antigen peptide, and the HPV18 antigen peptide is an HPV18 E7 antigen peptide, as the case may be.

定義   [0015] 在本文中可互換地使用之術語「蛋白質」、「多肽」及「肽」係指具有任何長度的聚合形式之胺基酸,包括編碼及非編碼胺基酸以及以化學方式或生物化學方式經修飾或衍生的胺基酸。術語包括已經修飾之聚合物,諸如具有經修飾之肽主鏈的多肽。   [0016] 蛋白質據稱具有「N端」及「C端」。術語「N端」係關於由具有自由胺基(-NH2)之胺基酸封端的蛋白質或多肽之起點。術語「C端」係關於由自由羧基 (-COOH)封端的胺基酸鏈(蛋白質或多肽)之終點。   [0017] 術語「融合蛋白質」係指包含兩個或超過兩個藉由肽鍵或其他化學鍵連接在一起之肽的蛋白質。肽可以藉由肽鍵或其他化學鍵直接連接在一起。舉例而言,嵌合分子可以單鏈融合蛋白質形式重組表現。替代地,肽可藉由「連接子」連接在一起,諸如兩個或超過兩個肽之間的一或多個胺基酸或另一種適合之連接子。   [0018] 在本文中可互換地使用之術語「核酸」及「多核苷酸」係指具有任何長度的聚合形式之核苷酸,包括核糖核苷酸、脫氧核糖核苷酸或其類似物或經修飾之型式。其包括單股、雙股或多股DNA或RNA、基因組DNA、cDNA、DNA-RNA雜合體及包含嘌呤鹼基、嘧啶鹼基或其他天然、經化學修飾、經生物化學修飾、非天然或衍生之核苷酸鹼基的聚合物。   [0019] 核酸據稱具有「5'端」及「3'端」,此係因為使單核苷酸反應以製造寡核苷酸的方式為使得一個單核苷酸戊醣環之5'磷酸酯沿一個方向經由磷酸二酯鍵附接至其相鄰單核苷酸戊醣環之3'氧上。若寡核苷酸之5'磷酸酯不連接於單核苷酸戊醣環之3'氧,則該寡核苷酸之末端被稱為「5'端」。若寡核苷酸之3'氧不連接於另一個單核苷酸戊醣環之5'磷酸酯,則該寡核苷酸之末端被稱為「3'端」。即使處於較大寡核苷酸內部,核酸序列亦可據稱具有5'端及3'端。在線性或環形DNA分子中,不連續的元件被稱為處於「下游」或3'元件之「上游」或5'。   [0020] 「密碼子最佳化」係指一種修飾核酸序列以在特定宿主細胞中得到增強表現之方法,其藉由用在該宿主細胞之基因中更常或最常使用的密碼子替代原生序列之至少一個密碼子,同時維持該原生胺基酸序列來進行。舉例而言,編碼融合多肽之多核苷酸可經修飾以取代在給定李斯特菌細胞或任何其他宿主細胞中比在天然存在之核酸序列中使用頻率更高的密碼子。密碼子使用表為容易地可獲得的,例如在「密碼子使用資料庫」可獲得。由單核球增多性李斯特菌對於每一胺基酸所用的最佳密碼子展示於US 2007/0207170,該案以全文引用的方式併入本文中以達成所有目的。此等表可以多種方式進行修改。參見Nakamura等人(2000)Nucleic Acids Research 28:292,該文獻以全文引用的方式併入本文中以達成所有目的。用於對特定序列進行密碼子最佳化以在特定宿主中表現的計算機演算法亦為可獲得的(參見例如,基因仿造(Gene Forge))。   [0021] 術語「質體」或「載體」包括任何已知之遞送載體,包括細菌性遞送載體、病毒載體遞送載體、肽免疫治療遞送載體、DNA免疫治療遞送載體、附加型質體、整合型質體或噬菌體載體。術語「載體」係指能夠在宿主細胞中遞送及視情況表現一或多種融合多肽之構築體。   [0022] 術語「附加型質體」或「染色體外質體」係指物理上與染色體DNA分開(亦即,呈附加型或處於染色體外且不整合至宿主細胞基因組中)且獨立於染色體DNA複製的核酸載體。質體可為線性或環形,且其可為單股或雙股。附加型質體可視需要存留在宿主細胞細胞質(例如李斯特菌)中之多個複本中,從而引起所關注之任何基因在附加型質體內擴增。   [0023] 術語「經基因組整合」係指核酸已被引入至細胞中以使得核苷酸序列整合至該細胞之基因組中且能夠由其子代遺傳。任何方案均可用於將核酸穩定併入至細胞基因組中。   [0024] 術語「穩定維持」係指在缺乏選擇(例如抗生素選擇)持續至少10代的情況下維持核酸分子或質體,而無可偵測之損耗。舉例而言,時段可為至少15代、20代、至少25代、至少30代、至少40代、至少50代、至少60代、至少80代、至少100代、至少150代、至少200代、至少300代或至少500代。穩定維持可指核酸分子或質體在細胞中活體外 (例如,在培養物中)維持穩定,活體內維持穩定或兩者。   [0025] 「開讀框」或「ORF」為含有可潛在地編碼蛋白質之鹼基序列的DNA之部分。作為一個實例,ORF可位於基因之開始編碼序列(起始密碼子)與停止密碼子序列(終止密碼子)之間。   [0026] 「啟動子」為DNA之調節區,其通常包含能夠引導RNA聚合酶II在特定多核苷酸序列之適當轉錄起始位點處起始RNA合成的TATA匣。啟動子可另外包含影響轉錄起始速率之其他區。本文所揭示之啟動子序列調節可操作地連接之多核苷酸的轉錄。啟動子可在一或多種本文所揭示之細胞類型(例如,真核細胞、非人類哺乳動物細胞、人類細胞、嚙齒動物細胞、多能性細胞、單細胞階段胚胎、分化細胞或其組合)中具有活性。啟動子可為例如,構成性活性啟動子、條件性啟動子、誘導性啟動子、時間限制性啟動子(例如發育調節性啟動子)或空間限制性啟動子(例如細胞特異性或組織特異性啟動子)。啟動子之實例可見於例如WO 2013/176772中,其以全文引用的方式併入本文中。   [0027] 「可操作連接」或「可操作地連接」係指兩個或超過兩個組件(例如,啟動子及另一個序列元件)併接以使得兩個組件均正常起作用且允許該等組件中之至少一者可能可介導對其他組件中之至少一者所施加的功能。舉例而言,若啟動子響應於一或多種轉錄調節因子之存在或不存在而控制編碼序列之轉錄水準,則該啟動子可被可操作地連接於編碼序列。可操作連接可包括彼此相鄰之此類序列或異側(in trans)作用之此類序列(例如,調節序列可隔一段距離起作用以控制編碼序列之轉錄)。   [0028] 在兩個多核苷酸或多肽序列之情形下的「序列一致性」或「一致性」參考當在指定比較窗內比對達到最大對應性時,該兩個序列中相同之殘基。當參考蛋白質加以使用序列一致性百分比時,確認不一致之殘基位置的不同之處常常在於保守胺基酸取代,其中胺基酸殘基取代為具有類似化學特性(例如電荷或疏水性)之其他胺基酸殘基且因此不改變分子之功能特性。當序列的不同之處在於保守取代時,序列一致性百分比可向上調節以校正取代之保守性質。不同之處在於此類保守取代的序列據稱具有「序列相似性」或「相似性」。用於進行此調節之方式為熟悉本技藝者所熟知。此通常涉及將保守取代作為部分而非全部失配來進行評分,藉此增加序列一致性百分比。因此,舉例而言,在對一致胺基酸給出1分,且對非保守取代給出0分時,對保守取代給出0與1之間的分數。保守取代之評分例如,如在程序PC/GENE(Intelligenetics, Mountain View, California)中所實施來加以計算。   [0029] 「序列一致性百分比」係指藉由在比較窗內比較兩個最佳比對序列來測定的值(完全匹配之殘基的最大數目),其中比較窗中之多核苷酸序列部分相比於用於最佳比對兩個序列之參考序列(其不包含添加或缺失)可包含添加或缺失(亦即,間隙)。百分比藉由如下步驟來計算:測定在兩個序列中存在一致核酸鹼基或胺基酸殘基之位置數,得到匹配位置數,將匹配位置數除以比較窗中之總位置數且將結果乘以100,得到序列一致性百分比。除非另外說明(例如,較短序列包括連接之異源序列),否則比較窗為所比較兩個序列中之較短序列的全長。   [0030] 除非另外陳述,否則序列一致性/相似性值係指使用GAP Version 10使用以下參數獲得之值:核苷酸序列之一致性%及相似性%使用間隙權重50及長度權重3,以及nwsgapdna.cmp評分矩陣;胺基酸序列之一致性%及相似性%使用間隙權重8及長度權重2,以及BLOSUM62評分矩陣;或其任何等效程序。「等效程序」包括對於所討論之任何兩個序列,產生具有一致核苷酸或胺基酸殘基匹配之比對及當與由GAP Version 10產生之相對應比對相比時之序列一致性一致百分比的任何序列比較程序。   [0031] 術語「保守胺基酸取代」係指用具有類似大小、電荷或極性之不同胺基酸取代通常存在於序列中之胺基酸。保守取代之實例包括將諸如異白胺酸、纈胺酸或白胺酸之非極性(疏水性)殘基取代為另一種非極性殘基。同樣,保守取代之實例包括將一種極性(親水性)殘基取代為另一種,諸如在精胺酸與離胺酸之間、在麩醯胺與天冬醯胺之間或在甘胺酸與絲胺酸之間。另外,將諸如離胺酸、精胺酸或組胺酸之鹼性殘基取代為另一種,或將一種諸如天冬胺酸或麩胺酸之酸性殘基取代為另一種酸性殘基為保守取代之額外實例。非保守取代之實例包括將諸如異白胺酸、纈胺酸、白胺酸、丙胺酸或甲硫胺酸之非極性(疏水性)胺基酸殘基取代為諸如半胱胺酸、麩醯胺、麩胺酸或離胺酸之極性(親水性)殘基及/或將極性殘基取代為非極性殘基。典型胺基酸分類概述於下文。[0032] 「同源」序列(例如核酸序列)係指與已知參考序列一致或實質上類似之序列,以使得其與已知參考序列例如至少50%、至少55%、至少60%、至少65%、至少70%、至少75%、至少80%、至少85%、至少90%、至少95%、至少96%、至少97%、至少98%、至少99%或100%一致。   [0033] 術語「野生型」係指具有如在正常(相對於突變、生病、改變或等等)狀態或情形下所見之結構及/或活性的實體。野生型基因及多肽常常以多種不同形式(例如對偶基因)存在。   [0034] 關於蛋白質及核酸之術語「經分離」係指蛋白質及核酸關於通常可能原位存在之其他細菌、病毒或細胞組分為相對純化的,直至(且包括)該蛋白質及該多核苷酸的實質上純之製劑。術語「經分離」亦包括不具有天然存在之對應體,已以化學方式合成且因此實質上未經其他蛋白質或核酸污染,或已與大部分其天然伴隨之其他細胞組分(例如,其他細胞蛋白質、多核苷酸或細胞組分)分離或純化的蛋白質及核酸。   [0035] 「外源性」或「異源」分子或序列為通常不在細胞中表現或通常不以該形式存在於細胞中的分子或序列。通常存在包括關於細胞之特定發育階段及環境條件存在。舉例而言,外源性或異源分子或序列可包括細胞內相對應之內源性序列的經突變型式,或可包括對應於細胞內之內源性序列但呈不同形式的序列(亦即,不在染色體內)。特定細胞中之外源性或異源分子或序列亦可為來源於與該細胞之參考物種不同的物種或來源於相同物種內之不同生物體的分子或序列。舉例而言,在表現異源多肽之李斯特菌屬菌株的情況下,異源多肽可為並非該李斯特菌屬菌株原生或內源性的多肽,通常不由該李斯特菌屬菌株表現之多肽,來自除該李斯特菌屬菌株以外之來源的多肽,來源於相同物種內不同生物體之多肽。   [0036] 相比之下,「內源性」分子或序列或「原生」分子或序列為通常在特定環境條件下在特定發育階段以該形式存在於特定細胞中的分子或序列。   [0037] 術語「變異體」係指與大部分群體不同但仍充分類似於被視為其中之一的常見模式的胺基酸或核酸序列(或生物體或組織)(例如剪接變異體)。   [0038] 術語「同功異型物」係指分子(例如蛋白質)之與(例如相同蛋白質之)另一同功異型物或型式相比僅具有微小差異的型式。舉例而言,蛋白質同功異型物可由不同但相關之基因產生,其可藉由替代性剪接由相同基因產生,或其可由單核苷酸多態性產生。   [0039] 當參考蛋白質時,術語「片段」意謂比全長蛋白質短或具有較少胺基酸之蛋白質。當參考核酸時,術語「片段」意謂比全長核酸短或具有較少核苷酸之核酸。片段可為例如N端片段(亦即,去除蛋白質C端之一部分)、C端片段(亦即,去除蛋白質N端之一部分)或內部片段。片段亦可為例如功能性片段或免疫原性片段。   [0040] 當參考蛋白質時,術語「類似物」意謂與天然存在之蛋白質的不同之處在於保守胺基酸差異、不影響胺基酸序列之修飾或兩者的蛋白質。   [0041] 術語「功能性」係指蛋白質或核酸(或其片段、同功異型物或變異體)展現生物活性或功能之先天性能力。此類生物活性或功能可包括例如當向個體投與時引起免疫反應之能力。此類生物活性或功能亦可包括例如與相互作用搭配物結合。在功能性片段、同功異型物或變異體的情況下,此等生物功能可實際上變化(例如,關於其特異性或選擇性),但保持基本生物功能。   [0042] 術語「免疫原性(immunogenicity)」或「免疫原性的」係指分子(例如蛋白質、核酸、抗原或生物體)當向個體投與時在該個體中引起免疫反應的先天性能力。免疫原性可例如藉由以下來加以度量:抗體相對於分子之數目更大,抗體相對於分子之多樣性更大,對分子具有特異性之T細胞的數目更大,對分子之細胞毒性或輔助T細胞反應更大及其類似度量方式。   [0043] 術語「抗原」在本文中用以指當與個體或生物體接觸放置時(例如,當存在於個體或生物體中時或當由個體或生物體偵測到時),引起個體或生物體之可偵測免疫反應的物質。抗原可為例如脂質、蛋白質、碳水化合物、核酸或其組合及變化形式。舉例而言,「抗原肽」係指當存在於個體或生物體中或由個體或生物體偵測到時,在該個體或生物體中引起建立免疫反應之肽。舉例而言,此類「抗原肽」可涵蓋以下蛋白質,其被負載至宿主細胞之表面上的MHC I類及/或II類分子上且在該等分子上呈現,且可由該宿主之免疫細胞識別或偵測,藉此引起建立針對該蛋白質之免疫反應。此類免疫反應亦可擴延至宿主內其他細胞,諸如表現相同蛋白質之生病細胞(例如腫瘤或癌症細胞)。   [0044] 術語「抗原決定基」係指抗原上由免疫系統識別(例如,與抗體結合)之位點。抗原決定基可由藉由一或多個蛋白質之三級摺疊併接的相鄰胺基酸或非相鄰胺基酸形成。由相鄰胺基酸形成之抗原決定基(亦稱為線性抗原決定基)通常在暴露於變性溶劑時保留,而由三級摺疊形成之抗原決定基(亦稱為構形抗原決定基)通常在用變性溶劑處理時損失。抗原決定基在獨特空間構形中通常包括至少3個,且更通常至少5個或8-10個胺基酸。測定抗原決定基之空間構形的方法包括例如x射線晶體學及2維核磁共振。參見例如,Epitope Mapping Protocols, Methods in Molecular Biology, 第 66卷, Glenn E. Morris編, (1996),該文獻以全文引用的方式併入本文中以達成所有目的。   [0045] 術語「突變」係指基因或蛋白質結構之任何變化。舉例而言,突變可由染色體或蛋白質之缺失、插入、取代或重排產生。「插入」藉由添加一或多個額外核苷酸或胺基酸而改變基因中之核苷酸數目或蛋白質中之胺基酸數目。「缺失」藉由減少一或多個額外核苷酸或胺基酸而改變基因中之核苷酸數目或蛋白質中之胺基酸數目。   [0046] DNA中之「讀框轉移」突變在核苷酸之添加或失去改變基因之讀框時發生。讀框由各自編碼一個胺基酸的3鹼基之群組組成。讀框轉移突變使此等鹼基之分組移位,且改變胺基酸之編碼。所得蛋白質通常為非功能性的。插入及缺失可各自為讀框轉移突變。   [0047] 「錯義」突變或取代係指蛋白質之一個胺基酸的變化或單核苷酸中引起所編碼胺基酸變化之點突變。單核苷酸中引起一個胺基酸變化之點突變為DNA序列中之「非同義」取代。非同義取代亦可引起「無義」突變,其中密碼子改變為引起所得蛋白質截短之提前停止密碼子。相比之下,DNA中之「同義」突變為不改變蛋白質之胺基酸序列(由於密碼簡併)的突變。   [0048] 術語「體細胞突變」包括由除生殖細胞(例如精子或卵子)以外之細胞獲得的遺傳改變。此類突變可在細胞分裂過程中被傳遞給經突變細胞之子代,但不為可遺傳的。相比之下,生殖突變在生殖細胞系中發生,且可傳遞給後代之下一代。   [0049] 術語「活體外」係指人工環境及在人工環境(例如試管)內發生之過程或反應。   [0050] 術語「活體內」係指天然環境(例如細胞或生物體或身體)及在天然環境內發生之過程或反應。   [0051] 「包含」或「包括」一或多個所敍述要素之組成物或方法可包括未具體敍述之其他要素。舉例而言,「包含」或「包括」蛋白質之組成物可含有單獨或與其他成分組合之該蛋白質。   [0052] 指定值範圍包括該範圍內或界定該範圍之所有整數,以及由該範圍內之整數界定的子範圍。   [0053] 除非另外自上下文顯而易見,否則術語「約」涵蓋所陳述之值之標準量測誤差裕度(例如SEM)內的值或相對於指定值± 0.5%、1%、5%或10%之變化。   [0054] 除非上下文另外明確規定,否則單數形式之冠詞「一(a、an)」及「該(the)」包括複數個參考物。舉例而言,術語「一種抗原」或「至少一種抗原」可包括複數種抗原,包括其混合物。   [0055] 統計學上顯著意謂p ≤0.05。 I. 概述   [0056] 本文提供包含HPV16抗原肽及HPV18抗原肽之重組融合多肽,其中該HPV16抗原肽及該HPV18抗原肽可操作地以串聯方式連接(例如,與含PEST之肽融合)。視情況,HPV16抗原肽為HPV16 E6抗原肽或HPV16 E7抗原肽,且HPV18抗原肽為HPV18 E6抗原肽或HPV18 E7抗原肽。視情況,HPV16抗原肽為HPV16 E7抗原肽,且HPV18抗原肽為HPV18 E7抗原肽。本文亦提供編碼此類融合多肽之核酸;包含此類融合多肽或此類核酸之重組細菌或李斯特菌屬菌株;包含此類重組細菌或李斯特菌屬菌株之細胞庫;包含此類融合多肽、此類核酸或此類重組細菌或李斯特菌屬菌株之免疫原性組成物、醫藥組成物及疫苗;以及產生此類融合多肽、此類核酸及此類重組細菌或李斯特菌屬菌株之方法。亦提供在個體中誘導抗腫瘤相關抗原免疫反應之方法、在個體中誘導抗腫瘤或抗癌免疫反應之方法、在個體中治療腫瘤或癌症之方法、在個體中預防腫瘤或癌症之方法以及保護個體免於腫瘤或癌症之方法,該等方法使用此類重組融合多肽、核酸、重組細菌或李斯特菌屬菌株、免疫原性組成物、醫藥組成物或疫苗來進行。   [0057] 大部分HPV相關癌症可歸因於16型及18型HPV。然而,HPV相關癌症通常對16型HPV及18型HPV兩者不呈陽性。因為罕有HPV16陽性且HPV18二者皆陽性之患者,所以缺少產生同時靶向HPV16特異性及HPV18特異性抗原兩者之免疫治療的動機。此對於基於李斯特菌之免疫治療平台而言尤其正確,該等平台對編碼可插入抗原肽之核酸序列之數目及大小的容量可能受限。然而,提供於本文實施例中之證據展示,經生物工程改造以分泌來自一種HPV類型之抗原肽的基於李斯特菌之免疫治療(例如Lm 技術)可出乎意料地在患有與不同類型之HPV相關之癌症或腫瘤的患者中增加十二個月總存活率。   [0058]Lm 技術具有以下作用機制:其併有強效先天性免疫刺激,將目標肽直接遞送至樹突狀細胞及抗原呈遞細胞之胞溶質中,產生目標T細胞反應,及藉由腫瘤微環境中之調節性T細胞及骨髓衍生性抑制細胞來減少免疫抑制。可在無中和抗體的情況下給出及/或組合多個治療。Lm 技術可使用例如活體、減毒、經生物工程改造之Lm 細菌以刺激免疫系統將腫瘤細胞視為潛在地經細菌感染之細胞且靶向其以達成清除。技術方法可以活減毒之李斯特菌屬菌株開始,且可添加例如編碼融合蛋白質序列之質體的多個複本,該序列包括接合於所關注抗原的例如李斯特菌溶胞素O (LLO,listeriolysin O)分子之片段。此融合蛋白質由抗原呈遞細胞內部之李斯特菌 分泌。此引起先天性及適應性免疫系統分支之刺激,其降低腫瘤防衛機制且使免疫系統更容易攻擊及破壞癌細胞。 II. 重組融合多肽   [0059] 本文揭示重組融合多肽,其包含與HPV16抗原肽及HPV18抗原肽融合的含PEST之肽,其中該HPV16抗原肽及該HPV18抗原肽可操作地以串聯方式連接。   [0060] 本文亦揭示包含HPV16抗原肽及HPV18抗原肽之重組融合多肽,其中該HPV16抗原肽及該HPV18抗原肽可操作地以串聯方式連接,且其中該融合多肽不包含有含PEST之肽。   [0061] 本文亦提供重組融合多肽,其自N端至C端包含細菌分泌序列,泛素(Ub)蛋白質及兩個或超過兩個抗原肽(亦即,以串聯方式,諸如Ub-肽1-肽2),其中HPV16抗原肽及HPV18抗原肽,其中該HPV16抗原肽及該HPV18抗原肽可操作地以串聯方式連接。替代地,可使用單獨融合多肽之組合,其中各抗原肽與其自身分泌序列及Ub蛋白融合(例如,Ub1-肽1;Ub2-肽2)。   [0062] 亦揭示編碼此類重組融合多肽之核酸(被稱為袖珍基因構築體)。此類袖珍基因核酸構築體可進一步包含兩個或超過兩個開讀框,該等開讀框藉由各開讀框之間的夏因-達爾加諾核糖體結合位點(Shine-Dalgarno ribosome binding site)核酸序列連接。舉例而言,袖珍基因核酸構築體可進一步包含兩個至四個開讀框,該等開讀框藉由各開讀框之間的夏因-達爾加諾核糖體結合位點核酸序列連接。各開讀框可編碼不同多肽。在一些核酸構築體中,編碼融合多肽之羧基端的密碼子後接兩個停止密碼子以確保蛋白質合成終止。   [0063] 細菌信號序列可為李斯特菌信號序列,諸如Hly或ActA信號序列,或任何其他已知信號序列。在其他情況下,信號序列可為LLO信號序列。信號序列可為細菌的,可為宿主細菌原生的(例如,單核球增多性李斯特菌(Listeria monocytogenes ),secA1信號肽),或可為宿主細菌外源的。信號肽之具體實例包括來自乳酸乳球菌(Lactococcus lactis )之Usp45信號肽;來自炭疽芽孢桿菌(Bacillus anthracis )之保護性抗原信號肽;來自單核球增多性李斯特菌之secA2信號肽,諸如p60信號肽;及Tat信號肽,諸如枯草桿菌(B. subtilis ) Tat信號肽(例如PhoD)。在具體實例中,分泌信號序列來自李斯特菌蛋白質,諸如ActA300 分泌信號或ActA100 分泌信號。   [0064] 泛素可為例如全長蛋白質。自本文所提供之核酸構築體表現的泛素可在進入宿主細胞細胞溶質之胞溶質時經由水解酶作用,在羧基端處由來自核酸構築體表現之重組融合多肽的其餘部分裂解。此釋放融合多肽之胺基端,從而在宿主細胞胞溶質中產生肽。   [0065] 在本文中其他地方詳細論述融合多肽內抗原肽之選擇、變化及排列,且在本文中其他地方更詳細論述HPV16及HPV18抗原肽。   [0066] 重組融合多肽可包含一或多個標籤。舉例而言,重組融合多肽可包含處於HPV16抗原肽及HPV18抗原肽可操作地以串聯方式連接之組合的N端及/或C端的一或多個肽標籤。標籤可與抗原肽直接融合,或經由連接子(其實例揭示於本文其他地方)連接於抗原肽。標籤之實例包括以下:FLAG標籤、3×FLAG標籤;His標籤、6×His標籤;以及SIINFEKL標籤。例示性SIINFEKL標籤闡述於SEQ ID NO:16中(由SEQ ID NO:1-15中所闡述之核酸中的任一者編碼)。例示性3×FLAG標籤闡述於SEQ ID NO:32中(由SEQ ID NO:17-31中所闡述之核酸中的任一者編碼)。其他標籤包括甲殼質結合蛋白(chitin binding protein;CBP)、麥芽糖結合蛋白(maltose binding protein;MBP)、谷胱甘肽-S-轉移酶(glutathione-S-transferase;GST)、硫氧還蛋白(thioredoxin;TRX)及聚(NANP)。特定重組融合多肽包含C端SIINFEKL標籤。此類標籤可允許容易偵測重組融合蛋白質,確認重組融合蛋白質之分泌,或允許藉由跟蹤針對此等「標籤」序列肽之免疫反應來跟蹤所分泌融合多肽之免疫原性。此類免疫反應可使用許多試劑來監測,包括例如對此等標籤具有特異性之單株抗體及DNA或RNA探針。   [0067] 本文所揭示之重組融合多肽可由重組李斯特菌屬菌株表現,或可經表現且與用於蛋白質表現及分離之其他載體及細胞系統分離。包含表現此類抗原肽之重組李斯特菌屬菌株可用於例如包含此類重組李斯特菌之免疫原性組成物中及包含重組李斯特菌屬菌株及佐劑之疫苗中。在李斯特菌屬菌株中之宿主細胞系統及除李斯特菌以外之宿主細胞系統中,用截短形式之非溶血性LLO、ActA或PEST樣序列將一或多個抗原肽表現為融合多肽可引起抗原肽之免疫原性增強。   [0068] 亦揭示編碼此類重組融合多肽之核酸。核酸可呈任何形式。核酸可包含DNA或RNA或由DNA或RNA組成,且可為單股或雙股的。核酸可呈質體,諸如附加型質體、多複本附加型質體或整合型質體形式。替代地,核酸可呈病毒載體、噬菌體載體形式,或處於細菌人工染色體中。此類核酸可具有一個開讀框或可具有兩個或超過兩個開讀框(例如,編碼重組融合多肽之開讀框及編碼代謝酶之第二開讀框)。在一個實例中,此類核酸可包含兩個或超過兩個開讀框,該等開讀框藉由各開讀框之間的夏因-達爾加諾核糖體結合位點核酸序列連接。舉例而言,核酸可包含兩個至四個開讀框,該等開讀框藉由各開讀框之間的夏因-達爾加諾核糖體結合位點核酸序列連接。各開讀框可編碼不同多肽。在一些核酸中,編碼融合多肽之羧基端的密碼子後接兩個停止密碼子以確保蛋白質合成終止。 A. 抗原肽   [0069] 本文所用之抗原肽可包括任何HPV16特異性肽及任何HPV18特異性肽之組合。此類肽可為HPV16特異性及HPV18特異性全長蛋白質或其片段。例示性HPV16特異性及HPV18特異性蛋白質包括來自HPV16及HPV18之E6及E7蛋白質。E6及E7蛋白質為藉由刺激許多宿主細胞關鍵性調節蛋白質之破壞而起作用的腫瘤蛋白。HPV16及HPV18 E6及E7蛋白質之實例包括HPV16 E7 (GenBank寄存編號AHK23257及AAD33253;98個胺基酸之蛋白質)、HPV16 E6 (GenBank寄存編號AHK23256及AAD33252;158個胺基酸之蛋白質)、HPV18 E7 (GenBank寄存編號AGM34461及P06788;105個胺基酸之蛋白質)及HPV18 E6 (GenBank寄存編號P06463;158個胺基酸之蛋白質)。例示性HPV16 E7蛋白質闡述於SEQ ID NO:96中(由SEQ ID NO:95中所闡述之DNA序列編碼),且例示性HPV18 E7蛋白質闡述於SEQ ID NO:98中(由SEQ ID NO:97中所闡述之DNA序列編碼)。適合之HPV16 E7肽可為例如與SEQ ID NO:96中所闡述之序列或其片段至少90%、95%、96%、97%、98%、99%或100%一致的蛋白質。適合之HPV18 E7肽可為例如與SEQ ID NO:98中所闡述之序列或其片段至少90%、95%、96%、97%、98%、99%或100%一致的蛋白質。   [0070] 融合多肽可包括至少兩個抗原肽。舉例而言,融合多肽可包括2、3、4、5、6、7、8、9或10個抗原肽。各抗原肽可具有足以誘導免疫反應之任何長度,且各抗原肽可為相同長度或該等抗原肽可具有不同長度。舉例而言,本文所揭示之抗原肽的長度可為約10-20、20-30、30-40、40-50、50-60、60-70、70-80、80-90、90-100、100-110、110-120、120-130、130-140、140-150、150-160或95至160個胺基酸。   [0071] 各抗原肽亦可為親水性的,或可評分達到或低於某一親水性閾值,其可預測在單核球增多性李斯特菌或另一種所關注細菌中之可分泌性。舉例而言,可藉由Kyte及Doolittle親水性指數21胺基酸窗口來對抗原肽進行評分,且可排除高於截止值(大約1.6)之所有評分,因為其不大可能由單核球增多性李斯特菌分泌。同樣,抗原肽或融合多肽之組合可為親水性的,或可評分達到或低於某一親水性閾值,其可預測在單核球增多性李斯特菌或另一種所關注細菌中之可分泌性。   [0072] 抗原肽可以任何方式連接在一起。舉例而言,抗原肽可彼此直接融合而無介入序列。替代地,抗原肽可經由一或多個連接子,諸如肽連接子彼此間接連接。在一些情況下,數對相鄰抗原肽可彼此直接融合,且其他對之抗原肽可經由一或多個連接子彼此間接連接。相同連接子可用於各對相鄰抗原肽之間,或任何數目之不同連接子可用於不同對之相鄰抗原肽之間。另外,一個連接子可用於一對相鄰抗原肽之間,或多個連接子可用於一對相鄰抗原肽之間。   [0073] 任何適合之序列可用於肽連接子。作為一個實例,連接子序列之長度可為例如1至約50個胺基酸。一些連接子可為親水性的。連接子可供不同目的使用。舉例而言,連接子可用以增加細菌分泌,促進抗原加工,提高融合多肽可撓性,提高融合多肽剛性或供任何其他目的使用。在一些情況下,不同胺基酸連接子序列分佈在抗原肽之間,或編碼相同胺基酸連接子序列之不同核酸分佈在抗原肽(例如,SEQ ID NO:84-94)之間,以便使重複減到最少。此亦可用以減少二級結構,藉此允許在Lm 重組載體菌株群體內對編碼融合多肽之核酸(例如質體)的高效轉錄、轉譯、分泌、維持或穩定化其他適合之肽連接子序列可例如基於以下因素中之一或多者來加以選擇:(1)其能夠採用可撓性延伸構形;(2)其不能採用可與抗原肽上之功能性抗原決定基相互作用的二級結構;及(3)缺少可能與功能性抗原決定基反應之疏水性或帶電殘基。舉例而言,肽連接子序列可含有Gly、Asn及Ser殘基。其他接近中性之胺基酸,諸如Thr及Ala亦可用於連接子序列中。可有用地用作連接子之胺基酸序列包括以下中所揭示之彼等胺基酸序列:Maratea等人(1985)Gene 40:39-46;Murphy等人(1986)Proc Natl Acad Sci USA 83:8258-8262;US 4,935,233;及US 4,751,180,其中之每一者均以全文引用的方式併入本文中以達成所有目的。連接子之具體實例包括下表中之彼等連接子(其中之每一者均可單獨用作連接子,用於包含序列重複之連接子中,或用於進一步包含表中之一或多種其他序列的連接子中),儘管亦可預見其他連接子(參見例如,Reddy Chichili等人(2013)Protein Science 22:153-167,該文獻以全文引用的方式併入本文中以達成所有目的)。除非指定,否則「n」表示所列連接子中未確定之重複數。B. 含PEST之肽   [0074] 本文所揭示之重組融合蛋白質包含有含PEST之肽。含PEST之肽可處於融合多肽之胺基端(N端) (亦即處於抗原肽之N端),可處於融合多肽之羧基端(C端) (亦即處於抗原肽之C端),或可嵌入在抗原肽內。在一些重組李斯特菌屬菌株及方法中,含PEST之肽不為融合多肽之一部分且與融合多肽分開。抗原肽與PEST樣序列(諸如LLO肽)之融合物可增強該抗原肽之免疫原性,且可增加細胞介導及抗腫瘤免疫反應(亦即,增加細胞介導及抗腫瘤免疫性)。參見例如,Singh等人(2005)J Immunol 175(6):3663-3673,該文獻以全文引用的方式併入本文中以達成所有目的。   [0075] 含PEST之肽為包含PEST序列或PEST樣序列之肽。真核蛋白質中之PEST序列早已得到鑑別。舉例而言,一般但未必總由含有若干帶正電胺基酸之群集側接的含有富含脯胺酸(P)、麩胺酸(E)、絲胺酸(S)及蘇胺酸(T)之胺基酸序列(PEST)的蛋白質具有快速細胞內半衰期(Rogers等人(1986)Science 234:364-369,該文獻以全文引用的方式併入本文中以達成所有目的)。另外,已報導此等序列將蛋白質靶向至用於降解之泛素-蛋白酶體路徑(Rechsteiner及Rogers (1996)Trends Biochem. Sci . 21:267-271,該文獻以全文引用的方式併入本文中以達成所有目的)。此路徑亦由真核細胞使用以產生結合於MHC I類之免疫原性肽,且已假設PEST序列在產生免疫原性肽之真核蛋白質當中豐富(Realini等人(1994)FEBS Lett. 348:109-113,該文獻以全文引用的方式併入本文中以達成所有目的)。原核蛋白質通常不含有PEST序列,此係因為其不具有此酶路徑。然而,富含胺基酸脯胺酸(P)、麩胺酸(E)、絲胺酸(S)及蘇胺酸(T)之PEST樣序列已在LLO之胺基端處報導,且已據報導對單核球增多性李斯特菌病原性為必需的(Decatur及Portnoy (2000)Science 290:992-995,該文獻以全文引用的方式併入本文中以達成所有目的)。此PEST樣序列在LLO中之存在藉由宿主細胞之蛋白分解機制來靶向用於破壞之蛋白質,以使得一旦LLO已發揮其功能且促進單核球增多性李斯特菌自吞噬體或吞噬溶菌體液泡逃脫,該LLO在其可能損傷細胞之前受破壞。   [0076] PEST及PEST樣序列之鑑別為此項技術中熟知的,且描述於例如Rogers等人(1986)Science 234(4774):364-378中,及Rechsteiner及Rogers (1996)Trends Biochem. Sci . 21:267-271中,其中之每一者均以全文引用的方式併入本文中以達成所有目的。PEST或PEST樣序列可使用PEST尋找程序來加以鑑別。舉例而言,PEST樣序列可為富含脯胺酸(P)、麩胺酸(E)、絲胺酸(S)及蘇胺酸(T)殘基之區。視情況,PEST樣序列可由一或多個含有若干帶正電胺基酸之簇側接。舉例而言,PEST樣序列可定義為具有較高脯胺酸(P)、天冬胺酸酯(D)、麩胺酸酯(E)、絲胺酸(S)及/或蘇胺酸(T)殘基局部濃度的長度為至少12個胺基酸之親水性延伸部。在一些情況下,PEST樣序列不含有帶正電胺基酸,即精胺酸(R)、組胺酸(H)及離胺酸(K)。一些PEST樣序列可含有一或多個內部磷酸化位點,且在此等位點處之磷酸化先於蛋白質降解進行。   [0077] 在一個實例中,PEST樣序列擬合Rogers等人中所揭示之演算法。在另一實例中,PEST樣序列擬合Rechsteiner及Rogers中所揭示之演算法。PEST樣序列亦可藉由在指定蛋白質序列內初始掃描帶正電之胺基酸R、H及K來加以鑑別。對帶正電之側接序列之間的全部胺基酸計數,且進一步僅考慮含有多個等於或高於窗口大小參數之胺基酸的彼等基元。視情況,PEST樣序列必須含有至少一個P、至少一個D或E及至少一個S或T。   [0078] PEST基元之品質藉助於基於關鍵胺基酸之局部增濃以及基元疏水性的評分參數優化。D、E、P、S及T之增濃以質量百分比(w/w)為單位表示,且針對1當量D或E、1當量P及1當量S或T校正。疏水性之計算亦可原則上遵循Kyte及Doolittle (1982)J. Mol. Biol. 157:105之方法,該文獻以全文引用的方式併入本文中以達成所有目的。為了簡化計算,將最初介於精胺酸-4.5至異白胺酸+4.5之Kyte-Doolittle親水性指數使用以下線性轉化而轉換成正整數,此得到精胺酸0至異白胺酸90之值:親水性指數 = 10 × Kyte-Doolittle親水性指數 + 45。   [0079] 潛在PEST基元之疏水性亦可經計算為各胺基酸種類之莫耳百分比與疏水性指數的乘積之總和。所要PEST分數以局部增濃項與疏水性項的如由以下方程式表示之組合之形式獲得:PEST分數 = 0.55 × DEPST - 0.5 × 疏水性指數。   [0080] 因此,含PEST之肽可指使用上文演算法之評分為至少+5的肽。替代地,其可指分數為至少6、至少7、至少8、至少9、至少10、至少11、至少12、至少13、至少14、至少15、至少16、至少17、至少18、至少19、至少20、至少21、至少22、至少23、至少24、至少25、至少26、至少27、至少28、至少29、至少30、至少32、至少35、至少38、至少40或至少45之肽。   [0081] 此項技術中已知的任何其他可獲得之方法或演算法亦可用於鑑別PEST樣序列。參見例如,CaSPredictor (Garay-Malpartida等人(2005)Bioinformatics 21增刊1:i169-76,該文獻以全文引用的方式併入本文中以達成所有目的)。可使用之另一種方法為以下:藉由將值1指定給胺基酸Ser、Thr、Pro、Glu、Asp、Asn或Gln計算適當長度之各延伸部(例如30-35個胺基酸之延伸部)之PEST指數。PEST殘基中之每一者的係數值(CV)為1,且其他AA (非PEST)中之每一者的CV為0。   [0082] PEST樣胺基酸序列之實例為SEQ ID NO:43-51中所闡述之彼等。PEST樣序列之一個實例為KENSISSMAPPASPPASPKTPIEKKHADEIDK (SEQ ID NO:43)。PEST樣序列之另一實例為KENSISSMAPPASPPASPK (SEQ ID NO:44)。然而,可使用任何PEST或PEST樣胺基酸序列。PEST序列肽為已知的且描述於例如US 7,635,479;US 7,665,238;及US 2014/0186387中,其中之每一者均以全文引用的方式併入本文中以達成所有目的。   [0083] PEST樣序列可來自李斯特菌物種,諸如來自單核球增多性李斯特菌。舉例而言,單核球增多性李斯特菌ActA蛋白含有至少四個此類序列(SEQ ID NO:45-48),其中任一者均適合用於本文所揭示之組成物及方法中。其他類似PEST樣序列包括SEQ ID NO:52-54。來自鏈球菌屬(Streptococcus sp.)之鏈球菌溶血素O亦含有PEST序列。舉例而言,化膿性鏈球菌(Streptococcus pyogenes )鏈球菌溶血素O在胺基酸35-51處包含PEST序列KQNTASTETTTTNEQPK (SEQ ID NO:49),且馬鏈球菌(Streptococcus equisimilis )鏈球菌溶血素O在胺基酸38-54處包含PEST樣序列KQNTANTETTTTNEQPK (SEQ ID NO:50)。PEST樣序列之另一實例來自由lso 基因編碼之斯氏李斯特菌(Listeria seeligeri )細胞溶素:RSEVTISPAETPESPPATP (例如SEQ ID NO:51)。   [0084] 替代地,PEST樣序列可來源於其他原核生物體。其中將預期PEST樣胺基酸序列之其他原核生物體包括例如其他李斯特菌物種。 (1) 李斯特菌溶胞素O (LLO)   [0085] 可用於本文所揭示之組成物及方法中的含PEST之肽的一個實例為李斯特菌溶胞素O (LLO)肽。LLO蛋白之一個實例為指定GenBank寄存編號P13128 (SEQ ID NO:55;核酸序列闡述於GenBank寄存編號X15127)中之蛋白質。SEQ ID NO:55為包括信號序列之前蛋白。前蛋白之前25個胺基酸為信號序列且當由細菌分泌時自LLO裂解,藉此產生不具有信號序列的504個胺基酸之全長活性LLO蛋白。本文所揭示之LLO肽可包含信號序列或可包含不包括信號序列之肽。可使用之例示性LLO蛋白包含以下、基本上由以下組成或由以下組成:SEQ ID NO:55中所闡述之序列,或SEQ ID NO:55之同源物、變異體、同功異型物、類似物、片段、同源物片段、變異體片段、類似物片段及同功異型物片段。可使用編碼LLO蛋白片段或LLO蛋白之同源物、變異體、同功異型物、類似物、同源物片段、變異體片段或類似物片段的任何序列。同源LLO蛋與參考LLO蛋白之序列一致性可例如大於70%、72%、75%、78%、80%、82%、83%、85%、87%、88%、90%、92%、93%、95%、96%、97%、98%或99%。   [0086] LLO蛋白之另一實例闡述於SEQ ID NO:56中。可使用之LLO蛋白可包含以下、基本上由以下組成或由以下組成:SEQ ID NO:56中所闡述之序列,或SEQ ID NO:56之同源物、變異體、同功異型物、類似物、片段、同源物片段、變異體片段、類似物片段及同功異型物片段。   [0087] LLO蛋白之另一實例為來自如以下GenBank寄存編號中所闡述之單核球增多性李斯特菌10403S菌株的LLO蛋白:ZP_01942330或EBA21833,由如以下GenBank寄存編號中所闡述之核酸序列編碼:NZ_AARZ01000015或AARZ01000015.1。LLO蛋白之另一實例為來自以下之LLO蛋白:單核球增多性李斯特菌4b F2365菌株(參見例如 ,GenBank寄存編號:YP_012823)、EGD-e菌株(參見例如 ,GenBank寄存編號NP_463733)或單核球增多性李斯特菌之任何其他菌株。LLO蛋白之又另一實例為來自黃桿菌目細菌HTCC2170(參見例如,GenBank寄存編號:ZP_01106747或EAR01433,或由GenBank寄存編號:NZ_AAOC01000003編碼)之LLO蛋白。可使用之LLO蛋白可包含以下、基本上由以下組成或由以下組成:上文LLO蛋白或上文LLO蛋白之同源物、變異體、同功異型物、類似物、片段、同源物片段、變異體片段、類似物片段及同功異型物片段中的任一者。   [0088] 亦可使用與LLO同源之蛋白質或其同源物、變異體、同功異型物、類似物、片段、同源物片段、變異體片段、類似物片段及同功異型物片段。一個此類實例為蜂房桿菌溶素(alveolysin),其可見於例如蜂房類芽孢桿菌(參見例如,GenBank寄存編號:P23564或AAA22224,或由GenBank寄存編號:M62709編碼)中。其他此類同源蛋白質為已知的。   [0089] LLO肽可為全長LLO蛋白或截短LLO蛋白或LLO片段。同樣,LLO肽可為保留原生LLO蛋白之一或多種功能性或缺乏原生LLO蛋白之一或多種功能性的LLO肽。舉例而言,所保留之LLO功能性可為允許細菌(例如,李斯特菌)自吞噬體或吞噬溶菌體逃脫,或增強與其融合之肽的免疫原性。所保留之功能性亦可為溶血功能或抗原功能。替代地,LLO肽可為非溶血性LLO。LLO之其他功能為已知的,評估LLO功能性之方法及分析法亦為已知的。   [0090] LLO片段可為PEST樣序列或可包含PEST樣序列。LLO片段可包含內部缺失、自C端截短及自N端截短中之一或多者。在一些情況下,LLO片段可包含超過一個內部缺失。其他LLO肽可為具有一或多個突變之全長LLO蛋白。   [0091] 一些LLO蛋白或片段之溶血活性相對於野生型LLO降低,或為非溶血性片段。舉例而言,LLO蛋白可藉由羧基端處活化結構域之缺失或突變、藉由半胱胺酸484之缺失或突變或藉由另一位置處之缺失或突變而被賦予非溶血性。   [0092] 其他LLO蛋白藉由膽固醇結合域(cholesterol binding domain;CBD)之缺失或突變而被賦予非溶血性,如以全文引用的方式併入本文中以達成所有目的的US 8,771,702中所詳述。突變可包含例如取代或缺失。整個CBD可經突變,CBD之部分可經突變,或CBD內之特定殘基可經突變。舉例而言,LLO蛋白可包含SEQ ID NO:55序列之殘基C484、W491及W492中之一或多者(例如,C484、W491、W492、C484及W491、C484及W492、W491及W492、或所有三個殘基)的突變,或當與SEQ ID NO:55最佳比對時的相對應殘基(例如相對應之半胱胺酸或色胺酸殘基)的突變。作為一個實例,可產生突變型LLO蛋白,其中LLO之殘基C484、W491及W492經丙胺酸殘基取代,其將使溶血活性相對於野生型LLO顯著降低。具有C484A、W491A及W492A突變之突變型LLO蛋白被稱為「mutLLO」。   [0093] 作為另一實例,可產生具有包含膽固醇結合域之內部缺失的突變型LLO蛋白。SEQ ID NO:55之膽固醇結合域之序列闡述於SEQ ID NO:74中。舉例而言,內部缺失可為1-11個胺基酸之缺失、11-50個胺基酸之缺失或更長。同樣,突變區可為1-11個胺基酸、11-50個胺基酸或更長(例如,1-50、1-11、2-11、3-11、4-11、5-11、6-11、7-11、8-11、9-11、10-11、1-2、1-3、1-4、1-5、1-6、1-7、1-8、1-9、1-10、2-3、2-4、2-5、2-6、2-7、2-8、2-9、2-10、3-4、3-5、3-6、3-7、3-8、3-9、3-10、12-50、11-15、11-20、11-25、11-30、11-35、11-40、11-50、11-60、11-70、11-80、11-90、11-100、11-150、15-20、15-25、15-30、15-35、15-40、15-50、15-60、15-70、15-80、15-90、15-100、15-150、20-25、20-30、20-35、20-40、20-50、20-60、20-70、20-80、20-90、20-100、20-150、30-35、30-40、30-60、30-70、30-80、30-90、30-100或30-150個胺基酸)。舉例而言,由SEQ ID NO:55之殘基470-500、470-510或480-500組成之突變區 將產生包含CBD之缺失序列(SEQ ID NO:55之殘基483-493)。然而,突變區亦可為CBD之片段,或可與CBD之一部分重疊。舉例而言,突變區可由SEQ ID NO:55之殘基470-490、480-488、485-490、486-488、490-500或486-510組成。舉例而言,CBD之片段(殘基484-492)可經異源序列替代,其將使溶血活性相對於野生型LLO顯著降低。舉例而言,CBD (ECTGLAWEWWR;SEQ ID NO:74)可經來自抗原NY-ESO-1之CTL抗原決定基(ESLLMWITQCR;SEQ ID NO:75)替代,其含有來自NY-ESO-1之HLA-A2限制性抗原決定基157-165。所得LLO被稱為「ctLLO」。   [0094] 在一些經突變LLO蛋白中,突變區可經異源序列替代。舉例而言,突變區可經相等數目之異源胺基酸、較小數目之異源胺基酸或更大數目之胺基酸(例如, 1-50、1-11、2-11、3-11、4-11、5-11、6-11、7-11、8-11、9-11、10-11、1-2、1-3、1-4、1-5、1-6、1-7、1-8、1-9、1-10、2-3、2-4、2-5、2-6、2-7、2-8、2-9、2-10、3-4、3-5、3-6、3-7、3-8、3-9、3-10、12-50、11-15、11-20、11-25、11-30、11-35、11-40、11-50、11-60、11-70、11-80、11-90、11-100、11-150、15-20、15-25、15-30、15-35、15-40、15-50、15-60、15-70、15-80、15-90、15-100、15-150、20-25、20-30、20-35、20-40、20-50、20-60、20-70、20-80、20-90、20-100、20-150、30-35、30-40、30-60、30-70、30-80、30-90、30-100或30-150個胺基酸)替代。其他經突變LLO蛋白具有一或多個點突變(例如,1個殘基、2個殘基、3個殘基或超過3個之點突變)。經突變殘基可為相鄰或不相鄰的。   [0095] 在一個實例具體例中,LLO肽可具有信號序列中之缺失及CBD中之突變或取代。   [0096] 一些LLO肽為N端LLO片段(亦即,具有C端缺失之LLO蛋白)。一些LLO肽之長度為至少494、489、492、493、500、505、510、515、520或525個胺基酸或其長度為492-528個胺基酸。舉例而言,LLO片段可由LLO蛋白之前約440或441個胺基酸(例如,SEQ ID NO:55或56之前441個胺基酸,或當與SEQ ID NO:55或56最佳比對時的另一個LLO蛋白之相對應片段)組成。其他N端LLO片段可由LLO蛋白之前420個胺基酸(例如,SEQ ID NO:55或56之前420個胺基酸,或當與SEQ ID NO:55或56最佳比對時的另一個LLO蛋白之相對應片段)組成。其他N端LLO片段可由LLO蛋白之約胺基酸20-442(例如,SEQ ID NO:55或56之胺基酸20-442,或當與SEQ ID NO:55或56最佳比對時的另一個LLO蛋白之相對應片段)組成。其他N端LLO片段包含不具有包含半胱胺酸484之活化結構域,且尤其不具有半胱胺酸484的任何ΔLLO。舉例而言,N端LLO片段可對應於LLO蛋白之前425、400、375、350、325、300、275、250、225、200、175、150、125、100、75、50或25個胺基酸(例如,SEQ ID NO:55或56之前425、400、375、350、325、300、275、250、225、200、175、150、125、100、75、50或25個胺基酸,或當與SEQ ID NO:55或56最佳比對時的另一個LLO蛋白之相對應片段)。較佳地,片段包含一或多個PEST樣序列。LLO片段及截短LLO蛋白可含有對應於上文特定胺基酸範圍中之任一者的同源LLO蛋白殘基。殘基數目無需與上文列舉之殘基數目精確對應(例如,若同源LLO蛋白相對於本文所揭示之具體LLO蛋白具有插入或缺失)。N端LLO片段之實例包括SEQ ID NO:57、58及59。可使用之LLO蛋白使用包含以下、基本上由以下組成或由以下組成:SEQ ID NO:57、58或59中所闡述之序列,或SEQ ID NO:57、58或59之同源物、變異體、同功異型物、類似物、片段、同源物片段、變異體片段、類似物片段及同功異型物片段。在一些組成物及方法中,使用SEQ ID NO:59中所闡述之N端LLO片段。編碼SEQ ID NO:59中所闡述之N端LLO片段的核酸之實例為SEQ ID NO:60。 (2) ActA   [0097] 可用於本文所揭示之組成物及方法中的含PEST之肽的另一實例為ActA肽。ActA為表面相關蛋白質,且在經感染之宿主細胞中充當架構以促進宿主肌動蛋白聚合物之聚合、組裝及活化,以便推動單核球增多性李斯特菌穿過細胞質。在進入哺乳動物細胞胞溶質之後不久,單核球增多性李斯特菌誘導宿主肌動蛋白絲之聚合,且使用由肌動蛋白聚合產生之力來首先在細胞內移動,且隨後在細胞間移動。ActA負責介導肌動蛋白成核及基於肌動蛋白之活動性。ActA蛋白為宿主細胞骨架組件提供多個結合位點,藉此充當架構以組裝細胞肌動蛋白聚合機制。ActA之N端結合於單體肌動蛋白且藉由刺激固有肌動蛋白成核活性來充當構成性活性成核促進因子。actAhly 基因兩者均為由轉錄激活子PrfA調節之10 kb基因群集的成員,且actA 在哺乳動物胞溶質中上調大致226倍。可使用編碼ActA蛋白或ActA蛋白之同源物、變異體、同功異型物、類似物、同源物片段、變異體片段或類似物片段的任何序列。同源ActA蛋白與參考ActA蛋白之序列一致性可例如大於70%、72%、75%、78%、80%、82%、83%、85%、87%、88%、90%、92%、93%、95%、96%、97%、98%或99%。   [0098] ActA蛋白之一個實例包含以下、基本上由以下組成或由以下組成:SEQ ID NO:61中所闡述之序列。ActA蛋白之另一實例包含以下、基本上由以下組成或由以下組成:SEQ ID NO:62中所闡述之序列。對應於此等序列中之任一者的前蛋白之前29個胺基酸為信號序列且當由細菌分泌時自ActA蛋白裂解。ActA肽可包含信號序列(例如,SEQ ID NO:61或62之胺基酸1-29),或可包含不包括信號序列之肽。ActA蛋白之其他實例包含以下、基本上由以下組成或由以下組成:SEQ ID NO:61或62之同源物、變異體、同功異型物、類似物、片段、同源物片段、同功異型物片段或類似物片段。   [0099] ActA蛋白之另一實例為來自以下之ActA蛋白:單核球增多性李斯特菌10403S菌株(GenBank寄存編號:DQ054585)、NICPBP 54002菌株(GenBank寄存編號:EU394959)、S3菌株(GenBank寄存編號:EU394960)、NCTC 5348菌株(GenBank寄存編號:EU394961)、NICPBP 54006菌株(GenBank寄存編號:EU394962)、M7菌株(GenBank寄存編號:EU394963)、S19菌株(GenBank寄存編號:EU394964)或任何其他單核球增多性李斯特菌菌株。可使用之LLO蛋白可包含以下、基本上由以下組成或由以下組成:上文LLO蛋白或上文LLO蛋白之同源物、變異體、同功異型物、類似物、片段、同源物片段、變異體片段、類似物片段及同功異型物片段中的任一者。   [0100] ActA肽可為全長ActA蛋白或截短ActA蛋白或ActA片段(例如,其中C端部分被去除之N端ActA片段)。較佳地,截短ActA蛋白包含至少一個PEST序列(例如,超過一個PEST序列)。另外,截短ActA蛋白可視情況包含ActA信號肽。截短ActA蛋白中所含有的PEST樣序列之實例包括SEQ ID NO:45-48。一些此類截短ActA蛋白包含SEQ ID NO:45-48中所闡述之PEST樣序列中的至少兩者或其同系物、SEQ ID NO:45-48中所闡述之PEST樣序列中的至少三者或其同系物、或SEQ ID NO:45-48中所闡述之PEST樣序列的所有四者或其同系物。截短ActA蛋白之實例包括包含以下、基本上由以下組成或由以下組成之彼等:全長ActA蛋白序列(例如SEQ ID NO:62)之約殘基30-122、約殘基30-229、約殘基30-332、約殘基30-200或約殘基30-399。截短ActA蛋白之其他實例包括包含以下、基本上由以下組成或由以下組成之彼等:全長ActA蛋白序列(例如SEQ ID NO:62)之前約50、100、150、200、233、250、300、390、400或418個殘基。截短ActA蛋白之其他實例包括包含以下、基本上由以下組成或由以下組成之彼等:全長ActA蛋白序列(例如SEQ ID NO:62)之約殘基200-300或殘基300-400。舉例而言,截短ActA由如US 7,655,238中所描述的野生型ActA蛋白之前390個胺基酸組成,該案以全文引用的方式併入本文中以達成所有目的。作為另一實例,截短ActA可為ActA-N100或其經修飾型式(稱為ActA-N100*),其中PEST基元已缺失且含有非保守性QDNKR (SEQ ID NO:73)取代,如US 2014/0186387中所描述,該案以全文引用的方式併入本文中以達成所有目的。替代地,截短ActA蛋白可含有對應於上文胺基酸範圍中之一者或本文所揭示之ActA肽中任一者之胺基酸範圍的同源ActA蛋白之殘基。殘基數目無需與本文列舉之殘基數目精確對應(例如,若同源ActA蛋白相對於本文所用之ActA蛋白具有插入或缺失,則殘基數目可據此調節)。   [0101] 截短ActA蛋白之實例包括例如包含以下、基本上由以下組成或由以下組成之蛋白質:SEQ ID NO:63、64、65或66中所闡述之序列或SEQ ID NO:63、64、65或66之同源物、變異體、同功異型物、類似物、變異體片段、同功異型物片段或類似物片段。SEQ ID NO:63被稱為ActA/PEST1且由SEQ ID NO:62中所闡述之全長ActA序列的胺基酸30-122組成。SEQ ID NO:64被稱為ActA/PEST2或LA229且由SEQ ID NO:62中所闡述之全長ActA序列中所闡述之全長ActA序列的胺基酸30-229組成。SEQ ID NO:65被稱為ActA/PEST3且由SEQ ID NO:62中所闡述之全長ActA序列的胺基酸30-332組成。SEQ ID NO:66被稱為ActA/PEST4且由SEQ ID NO:62中所闡述之全長ActA序列的胺基酸30-399組成。作為一個具體實例,可使用由SEQ ID NO:64中所闡述之序列組成的截短ActA蛋白。   [0102] 截短ActA蛋白之實例包括例如包含以下、基本上由以下組成或由以下組成之蛋白質:SEQ ID NO:67、69、70或72中所闡述之序列 或SEQ ID NO:67、69、70或72之同源物、變異體、同功異型物、類似物、變異體片段、同功異型物片段或類似物片段。作為一個具體實例,可使用由SEQ ID NO:67中所闡述之序列(由SEQ ID NO:68中所闡述之核酸編碼)組成的截短ActA蛋白。作為另一具體實例,可使用由SEQ ID NO:70中所闡述之序列(由SEQ ID NO:71中所闡述之核酸編碼)組成的截短ActA蛋白。SEQ ID NO:71為編碼單核球增多性李斯特菌 10403S菌株中之ActA的前1170個核苷酸。在一些情況下,ActA片段可與異源信號肽融合。舉例而言,SEQ ID NO:72闡述與Hly信號肽融合之ActA片段。 C. 產生編碼重組融合多肽之免疫治療構築體   [0103] 本文亦提供用於產生編碼本文所揭示之重組融合多肽之免疫治療構築體的方法或包含本文所揭示之重組融合多肽的組成物。舉例而言,此類方法可包含選擇及設計抗原肽以包括在免疫治療構築體中(及例如,測試各抗原肽之親水性,且在其分數高於所選親水性指數閾值的情況下修飾或不選擇抗原肽),設計一或多種包含所選抗原肽中之每一者的融合多肽,及產生編碼該融合多肽之核酸構築體。   [0104] 抗原肽可針對疏水性或親水性加以篩選。可選擇抗原肽是否為親水性的或其分數是否達到或低於某一親水性閾值,其可預測所關注之特定細菌(例如單核球增多性李斯特菌)中的可分泌性。舉例而言,可藉由具有21胺基酸窗口之Kyte及Doolittle親水性指數來對抗原肽進行評分,且可排除高於截止值(大約1.6)之所有評分,因為其不大可能由單核球增多性李斯特菌分泌。參見例如 ,Kyte-Doolittle (1982)J Mol Biol 157(1):105--132;該案以全文引用的方式併入本文中以達成所有目的。替代地,可改變關於所選截止值評分之抗原肽(例如,改變抗原肽之長度)。可使用之其他滑動窗大小包括例如9、11、13、15、17、19、21、23、25、27或超過27個胺基酸。舉例而言,滑動窗大小可為9-11個胺基酸、11-13個胺基酸、13-15個胺基酸、15-17個胺基酸、17-19個胺基酸、19-21個胺基酸、21-23個胺基酸、23-25個胺基酸或25-27個胺基酸。可使用之其他截止值包括例如以下範圍1.2-1.4、1.4-1.6、1.6-1.8、1.8-2.0、2.0-2.2 2.2-2.5、2.5-3.0、3.0-3.5、3.5-4.0或4.0-4.5,或該截止值可為1.4、1.5、1.7、1.8、1.9、2.0、2.1、2.2、2.3、2.3、2.5、2.6、2.7、2.8、2.9、3.0、3.1、3.2、3.3、3.4、3.5、3.6、3.7、3.8、3.9、4.0、4.1、4.2、4.3、4.4或4.5。截止值可例如取決於正用以遞送融合多肽之細菌的屬或物種而變化。   [0105] 其他適合之親水性曲線或其他適當量表包括例如以下中所報導之彼等:Rose等人(1993)Annu Rev Biomol Struct 22:381-415;Biswas等人(2003)Journal of Chromatography A 1000:637-655;Eisenberg (1984)Ann Rev Biochem 53:595-623;Abraham及Leo (1987)Proteins Structure, Function and Genetics 2:130-152;Sweet及Eisenberg (1983)Mol Biol 171:479-488;Bull及Breese (1974)Arch Biochem Biophys 161:665-670;Guy (1985)Biophys J 47:61-70;Miyazawa等人(1985)Macromolecules 18:534-552;Roseman (1988)J Mol Biol 200:513-522;Wolfenden等人(1981)Biochemistry 20:849-855;Wilson (1981)Biochem J 199:31-41;Cowan及Whittaker (1990)Peptide Research 3:75-80;Aboderin (1971)Int J Biochem 2:537-544;Eisenberg等人(1984)J Mol Biol 179:125-142;Hopp及Woods (1981)Proc Natl Acad Sci USA 78:3824-3828;Manavalan及Ponnuswamy (1978)Nature 275:673-674;Black及Mould (1991)Anal Biochem 193:72-82;Fauchere及Pliska (1983)Eur J Med Chem 18:369-375;Janin (1979)Nature 277:491-492;Rao及Argos (1986)Biochim Biophys Acta 869:197-214;Tanford (1962)Am Chem Soc 84:4240-4274;Welling等人(1985)FEBS Lett 188:215-218;Parker等人(1986)Biochemistry 25:5425-5431;以及Cowan及Whittaker (1990)Peptide Research 3:75-80,其中之每一者均以全文引用的方式併入本文中以達成所有目的。   [0106] 視情況,可對抗原肽與標的人類白細胞抗原(human leukocyte antigen;HLA)類型之能力進行評分(例如,藉由使用可在www.iedb.org獲得之免疫抗原決定基資料庫(Immune Epitope Database;IED),其包括netMHCpan、ANN、SMMPMBEC、SMM、CombLib_Sidney2008、PickPocket及netMHCcons)且藉由各抗原肽之最佳MHC結合來進行評級。其他來源包括TEpredict (tepredict.sourceforge.net/help.html)或其他可獲得之MHC結合量測量表。諸如沙門氏菌(Salmonella )之不同表現載體之截止值可不同。   [0107] 視情況,抗原肽可針對免疫抑制抗原決定基(例如,T-reg抗原決定基、IL-10誘導T輔助抗原決定基等等)加以篩選以不選擇抗原肽或避免免疫抑制影響。   [0108] 視情況,針對抗原決定基免疫原性之預測演算法可用於篩選抗原肽。然而,此等演算法預測哪個肽將產生T細胞反應準確率最多為20%。替代地,不使用篩選/預測演算法。替代地,抗原肽可針對免疫原性加以篩選。舉例而言,此可包含使一或多個T細胞與抗原肽接觸,及分析免疫原性T細胞反應,其中免疫原性T細胞反應將肽鑑別為免疫原性肽。此亦可包含在使一或多個T細胞與肽接觸後,使用免疫原性分析以量測CD25、CD44或CD69中之至少一者的分泌或量測選自包含IFN-γ、TNF-α、IL-1及IL-2之群之細胞因子的分泌,其中分泌增加將肽鑑別為包含一或多個T細胞抗原決定基。   [0109] 所選抗原肽可被排列成一或多個候選次序以用於潛在融合多肽。若存在比可放入單一質體中更可用之抗原肽,則可按需要/所要指定不同抗原肽之優先順序等級及/或將其分成不同融合多肽(例如,用於包括於不同重組李斯特菌屬菌株中)。優先等級可由以下因素決定,諸如相對大小、轉錄優先順序及/或經轉譯多肽之整體疏水性。抗原肽可被排列成使得其在任何數目的抗原肽對之間不用連接子或任何連接子組合而直接接合在一起,如本文其他地方更詳細地揭示。待包括之線性抗原肽的數目可基於以下考慮因素來決定:所需構築體之數目對比突變負荷、來自單一質體之多個抗原決定基的轉譯及分泌效率、及包含質體之各細菌或Lm 所需的MOI。   [0110] 亦對抗原肽之組合或整個融合多肽(亦即,包含抗原肽及含PEST之肽及任何標籤)的疏水性進行評分。舉例而言,可藉由具有21胺基酸滑動窗之Kyte及Doolittle親水性指數對全部融合抗原肽或整個融合多肽的親水性進行評分。若任何區評分高於截止值(例如大約1.6),則抗原肽可在融合多肽內重排序或改組,直至發現可接受之抗原肽次序(亦即,其中無區評分高於截止值的次序)為止。替代地,可去除任何有問題之抗原肽或將其重新設計為不同大小。替代地或另外,如本文其他地方所揭示的抗原肽之間的一或多個連接子可經添加或經修飾以改變疏水性。如同用於個別抗原肽之親水性測試,可使用其他窗口大小,或可使用其他截止值(例如,取決於正用以遞送融合多肽之細菌的屬或物種而定)。另外,可使用其他適合之親水性曲線或其他適當量表。   [0111] 視情況,抗原肽之組合或整個融合多肽可進一步針對免疫抑制抗原決定基(例如,T-reg抗原決定基、IL-10誘導T輔助抗原決定基等等)加以篩選以不選擇抗原肽或避免免疫抑制影響。   [0112] 編碼候選抗原肽組合或融合多肽之核酸可隨後經設計及最佳化。舉例而言,序列可經最佳化以達成轉譯水平、表現持續時間、分泌水平、轉錄水平以及其任何組合增加。舉例而言,該增加可為相對於對照組非最佳化序列2倍至1000倍、2倍至500倍、2倍至100倍、2倍至50倍、2倍至20倍、2倍至10倍或3倍至5倍   [0113] 舉例而言,融合多肽或編碼該融合多肽之核酸可經最佳化以達成可能形成於寡核苷酸序列中之二級結構水平降低,或替代地經最佳化以防止任何可修飾序列之酶附接。舉例而言,在細菌細胞中之表現可藉由轉錄靜默、低mRNA半衰期、二級結構形成、諸如壓製子及抑制子之寡核苷酸結合分子之附接位點及可利用稀少tRNA池而受阻。細菌表現中許多問題之來源在原始序列內發現。RNA之最佳化可包括順式作用元件之修飾、其GC含量之修改、關於細菌細胞之非限制性tRNA池改變密碼子偏差及避免內部同源區。因此,使序列最佳化可必然伴有例如調節具有極高(> 80%)或極低(< 30%) GC含量之區。使序列最佳化可必然伴有例如避免以下順式作用之序列基元中的一或多者:內部TATA匣、χ位點及核糖體進入位點;富含AT或富含GC之序列延伸部;重複序列及RNA二級結構;(隱藏的)剪接供體及受體位點;分支點;或其組合。使表現最佳化亦可必然伴有向基因之側接區及/或質體中之其他地方添加序列元件。   [0114] 使序列最佳化亦可必然伴有例如針對宿主基因(例如單核球增多性李斯特菌基因)之密碼子偏差修改密碼子使用。舉例而言,以下密碼子可用於單核球增多性李斯特菌。[0115] 可產生編碼融合多肽之核酸,且將其引入至諸如細菌菌株或李斯特菌屬菌株之遞送媒劑中。其他遞送媒劑可適合於DNA免疫治療或肽免疫治療,諸如痘瘡病毒或病毒樣顆粒。一旦產生編碼融合多肽之質體且將其引入至細菌菌株或李斯特菌屬菌株中,該細菌或李斯特菌屬菌株可經培養及表徵以確認包含抗原肽之融合多肽的表現及分泌。 III. 重組細菌或李斯特菌屬菌株   [0116] 本文亦提供重組細菌菌株,諸如李斯特菌屬菌株,其包含本文所揭示之重組融合多肽或如本文其他地方所揭示的編碼該重組融合多肽之核酸。較佳地,細菌菌株為李斯特菌屬菌株,諸如單核球增多性李斯特菌(Lm )菌株。Lm 作為疫苗載體具有多種固有優點。細菌在活體外極高效地生長而無特殊要求,且其缺乏LPS,LPS為革蘭氏陰性細菌,諸如沙門氏菌中之主要毒性因子。由於基因減毒Lm載體在嚴重不良作用之情況下可容易地用抗生素清除,且不同於一些病毒載體,不發生遺傳物質向宿主基因組中之整合,故基因減毒Lm載體亦提供額外安全性。   [0117] 重組李斯特菌屬菌株可為任何李斯特菌屬菌株。適合之李斯特菌屬菌株的實例包括斯氏李斯特菌、格氏李斯特菌(Listeria grayi )、伊氏李斯特菌(Listeria ivanovii )、默氏李斯特菌(Listeria murrayi )、威氏李斯特菌(Listeria welshimeri )、單核球增多性李斯特菌(Lm )或此項技術中已知之任何其他李斯特菌物種。較佳地,重組李斯特菌屬菌株為物種單核球增多性李斯特菌之菌株。單核球增多性李斯特菌菌株之實例包括以下:10403S 野生型單核球增多性李斯特菌(參見例如,Bishop及Hinrichs (1987)J Immunol 139:2005-2009;Lauer等人(2002)J Bact 184:4177-4186);單核球增多性李斯特菌 DP-L4056,其經噬菌體復癒(參見例如,Lauer等人(2002)J Bact 184:4177-4186);單核球增多性李斯特菌DP-L4027,其經噬菌體復癒且具有hly 基因缺失(參見例如,Lauer等人(2002)J Bact 184:4177- 4186;Jones及Portnoy (1994)Infect Immunity 65:5608-5613);單核球增多性李斯特菌DP-L4029,其經噬菌體復癒且具有actA 基因缺失(參見例如,Lauer等人(2002)J Bact 184:4177-4186;Skoble等人(2000)J Cell Biol 150:527- 538);單核球增多性李斯特菌DP-L4042 (ΔPEST) (參見例如,Brockstedt等人(2004)Proc Natl Acad Sci. USA 101:13832-13837及支持資訊);單核球增多性李斯特菌DP-L4097 (LLO-S44A) (參見例如,Brockstedt等人(2004)Proc Natl Acad Sci USA 101:13832-13837及支持資訊);單核球增多性李斯特菌DP-L4364 (ΔlplA ;硫辛酸蛋白質連接酶) (參見例如,Brockstedt等人(2004)Proc Natl Acad Sci USA 101:13832-13837及支持資訊);單核球增多性李斯特菌DP-L4405 (ΔinlA ) (參見例如,Brockstedt等人(2004)Proc Natl Acad Sci USA 101:13832-13837及支持資訊);單核球增多性李斯特菌DP-L4406 (ΔinlB ) (參見例如,Brockstedt等人(2004)Proc Natl Acad Sci USA 101:13832-13837及支持資訊);單核球增多性李斯特菌CS-LOOOl (ΔactA ;ΔinlB ) (參見例如,Brockstedt等人(2004)Proc Natl Acad Sci USA 101:13832-13837及支持資訊);單核球增多性李斯特菌CS-L0002 (ΔactA ;ΔlplA ) (參見例如,Brockstedt等人(2004)Proc Natl Acad Sci USA 101:13832-13837及支持資訊);單核球增多性李斯特菌CS-L0003 (LLO L461T;ΔlplA ) (參見例如,Brockstedt等人(2004)Proc Natl Acad Sci USA 101:13832-13837及支持資訊);單核球增多性李斯特菌DP-L4038 (ΔactA ;LLO L461T) (參見例如,Brockstedt等人(2004)Proc Natl Acad Sci USA 101:13832-13837及支持資訊);單核球增多性李斯特菌DP-L4384 (LLO S44A;LLO L461T) (參見例如,Brockstedt等人(2004)Proc Natl Acad Sci USA 101:13832-13837及支持資訊);具有lplA1 缺失之單核球增多性李斯特菌菌株(編碼硫辛酸蛋白質連接酶LplA1) (參見例如,O'Riordan等人(2003)Science 302:462-464);單核球增多性李斯特菌DP-L4017 (具有LLO L461T之10403S) (參見例如,US 7,691,393);單核球增多性李斯特菌EGD (參見例如,GenBank寄存編號AL591824)。在另一具體例中,李斯特菌屬菌株為單核球增多性李斯特菌EGD-e (see GenBank寄存編號NC_003210;ATCC寄存編號BAA-679);單核球增多性李斯特菌DP-L4029 (actA 缺失,視情況與uvrAB 缺失組合(DP-L4029uvrAB) (參見例如,US 7,691,393);單核球增多性李斯特菌actA -/inlB -雙重突變體(參見例如,ATCC寄存編號PTA-5562);單核球增多性李斯特菌lplA 突變體或hly 突變體(參見例如,US 2004/0013690);單核球增多性李斯特菌dal /dat 雙重突變體(參見例如,US 2005/0048081)。其他單核球增多性李斯特菌菌株包括經修飾(例如,藉由質體及/或藉由基因組整合)以含有編碼以下基因中之一者或任何組合之核酸的彼等菌株:hly (LLO;李斯特菌溶胞素);iap (p60);inlAinlBinlCdal (丙胺酸消旋酶);dat (D-胺基酸轉胺酶);plcAplcBactA ;或介導單壁囊泡之生長、鋪展、斷裂,雙壁囊泡之斷裂,與宿主細胞之結合或由宿主細胞之吸收的任何核酸。上文參考文獻中之每一者均以全文引用的方式併入本文中以達成所有目的。   [0118] 重組細菌或李斯特菌可具有野生型致病性,可具有減弱之致病性或可為無致病性。舉例而言,重組李斯特菌可具有充分毒性以逃脫吞噬體或吞噬溶菌體且進入胞溶質。此類李斯特菌屬菌株亦可為活減毒之李斯特菌屬菌株,其包含至少一個如本文其他地方所揭示之減毒突變、缺失或失活。較佳地,重組李斯特菌為減毒之營養缺陷型菌株。營養缺陷型菌株為不能合成其生長所需之特定有機化合物的菌株。此類菌株之實例描述於US 8,114,414中,該案以全文引用的方式併入本文中以達成所有目的。   [0119] 較佳地,重組李斯特菌屬菌株缺乏抗生素抗性基因。舉例而言,此類重組李斯特菌屬菌株可包含不編碼抗生素抗性基因之質體。然而,本文所提供之一些重組李斯特菌屬菌株包含有包含編碼抗生素抗性基因之核酸的質體。抗生素抗性基因可用於在分子生物學及疫苗製備中常見採用之習知選擇及選殖方法。例示性抗生素抗性基因包括賦予針對以下之抗性的基因產物:安比西林、青黴素、二甲氧苯青黴素、鏈黴素、紅黴素、卡那黴素、四環素、氯黴素(CAT)、新黴素、濕黴素及慶大黴素。 A. 包含重組融合多肽或編碼重組融合多肽之核酸的細菌或李斯特菌屬菌株   [0120] 本文所揭示之重組細菌菌株(例如,李斯特菌屬菌株)包含本文所揭示之重組融合多肽或如本文其他地方所揭示的編碼該重組融合多肽之核酸。   [0121] 在包含編碼重組融合蛋白質之核酸的細菌或李斯特菌屬菌株中,該核酸可經密碼子最佳化。由單核球增多性李斯特菌對於各胺基酸所用的最佳密碼子之實例展示於US 2007/0207170,該案以全文引用的方式併入本文中以達成所有目的。若核酸中之至少一個密碼子經單核球增多性李斯特菌對於該胺基酸比在原始序列中之密碼子更為頻繁使用的密碼子替代,則該核酸係經密碼子最佳化。   [0122] 核酸可存在於細菌或李斯特菌屬菌株內之附加型質體中,及/或核酸可經基因組整合於細菌或李斯特菌屬菌株中。一些重組細菌或李斯特菌屬菌株包含編碼兩個如本文所揭示之重組融合多肽的兩個單獨核酸:一個核酸處於附加型質體中,且一個核酸經基因組整合於細菌或李斯特菌屬菌株中。   [0123] 附加型質體可為在活體外(在細胞培養物中)、在活體內(在宿主中)或在活體外及活體內穩定維持之質體。若在附加型質體中,則編碼重組融合多肽之開讀框可被可操作地連接於質體中之啟動子/調節序列。若經基因組整合於細菌或李斯特菌屬菌株中,則編碼重組融合多肽之開讀框可被可操作地連接於外源性啟動子/調節序列或可操作地連接於內源性啟動子/調節序列。適用於驅動基因之構成表現的啟動子/調節序列之實例為熟知的,且包括例如李斯特菌之hlyhlyAactAprfA ,及p60 啟動子,鏈球菌bac 啟動子,灰色鏈黴菌(Streptomyces griseus )sgiA 啟動子及蘇雲金芽孢桿菌(B. thuringiensis )phaZ 啟動子。在一些情況下,所關注之插入基因不中斷或受到常常在整合至基因組DNA中時發生之調節約束,且在一些情況下,插入異源基因之存在不引起細胞自身重要區之重排或中斷。   [0124] 此類重組細菌或李斯特菌屬菌株可藉由用包含編碼重組融合多肽之核酸的質體或載體對本文其他地方所描述的細菌或李斯特菌屬菌株或減毒之細菌或李斯特菌屬菌株進行轉型來製造。質體可為不整合至宿主染色體中之附加型質體。替代地,質體可為整合至細菌或李斯特菌屬菌株之染色體中的整合型質體。本文所用之質體亦可為多複本質體。用於對細菌進行轉型之方法為熟知的,且包括基於氯化鈣勝任細胞之方法、電穿孔方法、噬菌體介導之轉導、化學轉型技術及物理轉型技術。參見例如,de Boer等人(1989)Cell 56:641-649;Miller等人(1995)FASEB J. 9:190-199;Sambrook等人(1989) Molecular Cloning:A Laboratory Manual, Cold Spring Harbor Laboratory, New York;Ausubel等人(1997) Current Protocols in Molecular Biology, John Wiley & Sons, New York;Gerhardt等人編, 1994, Methods for General and Molecular Bacteriology, American Society for Microbiology, Washington, D.C.;以及Miller, 1992, A Short Course in Bacterial Genetics, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.,其中之每一者均以全文引用的方式併入本文中以達成所有目的。   [0125] 具有經基因組整合之異源核酸的細菌或李斯特菌屬菌株可例如藉由使用位點特異性整合載體來製造,其中使用同源重組產生包含整合之基因的細菌或李斯特菌。整合載體可為能夠感染細菌或李斯特菌屬菌株之任何位點特異性整合載體。此類整合載體可包含例如PSA attPP'位點、編碼PSA整合酶之基因、U153 attPP'位點、編碼U153整合酶之基因、A118 attPP' 位點、編碼A118整合酶之基因或任何其他已知attPP'位點或任何其他噬菌體整合酶。   [0126] 包含整合之基因的此類細菌或李斯特菌屬菌株亦可使用用於將異源核酸整合至細菌或李斯特菌 染色體中之任何其他已知方法來產生。用於同源重組之技術為熟知的,且描述於例如Baloglu等人(2005)Vet Microbiol 109(1-2):11-17);Jiang等人 2005)Acta Biochim Biophys Sin (Shanghai) 37(1):19-24)及US 6,855,320中,其中之每一者均以全文引用的方式併入本文中以達成所有目的。   [0127] 整合至細菌或李斯特菌染色體中亦可使用轉座子插入來達成。用於轉座子插入之技術為熟知的,且例如DP-L967之構築由Sun等人(1990)Infection and Immunity 58:3770-3778描述,該文獻以全文引用的方式併入本文中以達成所有目的。轉座子突變誘發可達成穩定基因組插入,但基因組中已插入異源核酸之位置為未知的。   [0128] 整合至細菌或李斯特菌染色體中亦可使用噬菌體整合位點來達成(參見例如,Lauer等人(2002)J Bacteriol 184(15):4177-4186,該文獻以全文引用的方式併入本文中以達成所有目的。)。舉例而言,噬菌體(例如U153或PSA李斯特菌噬菌體)之整合酶基因及附接位點可用於將異源基因插入至相對應附接位點中,該位點可為基因組中之任何適當位點(例如arg tRNA基因之comK 或3'端)。內源性原噬菌體可在異源核酸整合之前自所利用之附接位點復癒。此類方法可產生例如單複本整合體。為了避免「噬菌體復癒步驟(phage curing step)」,可使用基於噬菌體整合系統之PSA噬菌體(參見例如,Lauer等人(2002)J Bacteriol 184:4177-4186,該文獻以全文引用的方式併入本文中以達成所有目的)。維持整合之基因可能需要例如藉由抗生素連續選擇。替代地,可確立不需要用抗生素選擇的基於噬菌體之染色體整合系統。實際上,可補充營養缺陷型宿主菌株。舉例而言,可使用用於臨床應用的基於噬菌體之染色體整合系統,其中使用對於必需酶(包括例如D-丙胺酸消旋酶)而言為營養缺陷型之宿主菌株(例如,Lm dal (-)dat (-))。   [0129] 結合亦可用於將遺傳物質及/或質體引入至細菌中。用於結合之方法為熟知的,且描述於例如Nikodinovic等人(2006)Plasmid 56(3):223-227及Auchtung等人(2005)Proc Natl Acad Sci USA 102(35):12554-12559中,其中之每一者均以全文引用的方式併入本文中以達成所有目的。   [0130] 在一個具體實例中,重組細菌或李斯特菌屬菌株可包含編碼重組融合多肽之核酸,該核酸經基因組整合至細菌或李斯特菌屬基因組中作為具有內源性actA 序列(編碼ActA蛋白)或內源性hly 序列(編碼LLO蛋白)之開讀框。舉例而言,融合多肽之表現及分泌可處於內源性actA 啟動子及ActA信號序列之控制下或可處於內源性hly 啟動子及LLO信號序列之控制下。作為另一實例,編碼重組融合多肽之核酸可替代編碼ActA蛋白之actA 序列或編碼LLO蛋白之hly 序列。   [0131] 重組細菌或李斯特菌屬菌株之選擇可藉由任何手段來達成。舉例而言,可使用抗生素選擇。抗生素抗性基因可用於在分子生物學及疫苗製備中常見採用之習知選擇及選殖方法。例示性抗生素抗性基因包括賦予針對以下之抗性的基因產物:安比西林、青黴素、二甲氧苯青黴素、鏈黴素、紅黴素、卡那黴素、四環素、氯黴素(CAT)、新黴素、濕黴素及慶大黴素。替代地,可使用營養缺陷型菌株,且代替抗生素抗性基因或除抗生素抗性基因以外,外源性代謝基因可用於選擇。作為一個實例,為了對包含編碼本文所提供代謝酶或補充基因之質體的營養缺陷型細菌進行選擇,可使經轉型之營養缺陷型細菌在將針對編碼代謝酶之基因(例如胺基酸代謝基因)或補充基因之表現進行選擇的培養基中生長。替代地,熱敏質體可用於選擇重組體,或任何其他已知用於選擇重組體的構件。 B. 細菌或李斯特菌屬菌株之減毒   [0132] 本文所揭示之重組細菌菌株(例如重組李斯特菌屬菌株)可經減毒。術語「減毒」涵蓋細菌在宿主動物中引起疾病之能力的減弱。舉例而言,減毒之李斯特菌屬菌株的病原性特徵可相較於野生型李斯特菌減少,不過減毒之李斯特菌能夠在培養物中生長及維持。舉例而言,用減毒之李斯特菌靜脈內接種BALB/c小鼠,50%接種動物存活的致死劑量(LD50 )較佳比野生型李斯特菌的LD50 高至少約10倍,更佳至少約100倍,更佳至少約1,000倍,甚至更佳至少約10,000倍且最佳至少約100,000倍。減毒之李斯特菌屬菌株因此為不會殺死投與其之動物的菌株,或為僅當所投與細菌之數目極大地大於殺死同一動物所需的野生型非減毒細菌之數目時殺死動物的菌株。減毒細菌亦應理解為意謂在通用環境中不能複製之細菌,因為該環境中不存在其生長所需的營養。因此,細菌限於在提供所需營養之受控環境中複製。減毒菌株具有環境安全性,因為其不能不受控複製。 (1) 使細菌及李斯特菌屬菌株減毒之方法   [0133] 減毒可藉由任何已知手段來實現。舉例而言,此類減毒菌株可能缺乏一或多種內源性致病性基因或一或多種內源性代謝基因。此類基因之實例揭示於本文中,且減毒可藉由使本文所揭示之基因中的任一者或任何組合失活來達成。失活可例如經由缺失或經由突變(例如失活突變)來達成。術語「突變」包括對序列(核酸或胺基酸序列)的任何類型之突變或修飾,且可涵蓋缺失、截短、插入、取代、破壞或移位。舉例而言,突變可包括讀框轉移突變、造成蛋白質過早終止之突變或影響基因表現之調節序列突變。突變誘發可使用重組DNA技術或使用利用突變化學物質或輻射且隨後選擇突變體之傳統突變誘發技術來實現。缺失突變體可為較佳的,因為伴隨逆轉機率低。術語「代謝基因」係指編碼合成由宿主細菌利用或需要之營養所涉及或需要之酶的基因。舉例而言,酶可為合成宿主細菌持續生長需要之營養所涉及或需要的。術語「致病性」基因包括其在生物體之基因組中的存在或活性有助於生物體之病原性(例如,使得該生物體能夠達成宿主中生態棲位之定殖(包括與細胞附接)、免疫逃避(逃避宿主之免疫反應)、免疫抑制(抑制宿主之免疫反應)、進入及離開細胞或自宿主獲得營養)的基因。   [0134] 此類減毒菌株之具體實例為單核球增多性李斯特菌(Lm )dal (-)dat (-) (Lmdd ) 此類減毒菌株之另一實例為Lm dal (-)dat (-)ΔactA (LmddA ) 參見例如 US 2011/0142791,該案以全文引用的方式併入本文中以達成所有目的。LmddA 係基於由於缺失內源性致病性基因actA 而減毒之李斯特菌屬菌株。此類菌株可藉由補充dal 基因而保留用於活體內及活體外抗原表現之質體。替代地,LmddA 可為在內源性dal dat ,及actA 基因中具有突變之dal/dat/actA 李斯特菌。此類突變可為例如缺失或其他失活突變。   [0135] 減毒菌株之另一具體實例為Lm prfA (-)或在prfA 基因中具有部分缺失或失活突變之菌株。PrfA蛋白控制包含Lm 定殖其脊椎動物宿主所需之必需致病性基因的調節子的表現;因此prfA突變強烈損害PrfA使PrfA依賴性毒性基因之表現活化的能力。   [0136] 減毒菌株之又另一具體實例為Lm inlB (-)actA (-),其中細菌天然致病性的兩個關鍵性基因,內化蛋白Bact A ,係經去除。   [0137] 減毒之細菌或李斯特菌屬菌株的其他實例包括缺乏一或多種內源性致病性基因之細菌或李斯特菌屬菌株。此類基因之實例包括李斯特菌 中之actAprfAplcBplcAinlAinlBinlCinlJbsh 。減毒之李斯特菌屬菌株亦可為上文所提及之菌株中的任一者之雙重突變體或三重突變體。減毒之李斯特菌屬菌株可包含本文所提供之每一基因的突變或缺失,或包含例如至多十個本文所提供之任一基因(例如,包括actAprfAdal/dat 基因)的突變或缺失。舉例而言,減毒之李斯特菌屬菌株可包含內源性內化蛋白C (inlC )基因之突變或缺失及/或內源性actA 基因之突變或缺失。替代地,減毒之李斯特菌屬菌株可包含內源性內化蛋白B (inlB )基因之突變或缺失及/或內源性actA 基因之突變或缺失。替代地,減毒之李斯特菌屬菌株可包含內源性inlBinlCactA 基因之突變或缺失。藉由過程中涉及的缺失內源性actA 基因及/或內源性inlC 基因或內源性inlB 基因抑制李斯特菌 向相鄰細胞之移位,藉此引起出乎意料高量之減毒,提高免疫原性且用作菌株主鏈。減毒之李斯特菌屬菌株亦可為包含plcAplcB 兩者之突變或缺失的雙重突變體。在一些情況下,菌株可由EGD李斯特菌 主鏈構築。   [0138] 細菌或李斯特菌屬菌株亦可為在代謝基因中具有突變之營養缺陷型菌株。作為一個實例,菌株可缺乏一或多種內源性胺基酸代謝基因。舉例而言,可以熟知之多種方式實現產生例如缺乏D-丙胺酸之李斯特菌屬營養缺陷型菌株,該等方式包括缺失突變、插入突變、讀框轉移突變、引起蛋白質過早終止之突變或影響基因表現之調節序列突變。缺失突變體可為較佳的,因為伴隨營養缺陷型表型逆轉機率低。作為一個實例,可在簡單實驗室培養分析法中測試根據本文所呈現之方案產生的D-丙胺酸之突變體在無D-丙胺酸存在下生長的能力。可選擇不能在此化合物無存在下生長的彼等突變體。   [0139] 內源性胺基酸代謝基因之實例包括維生素合成基因、編碼泛酸合成酶之基因、D-麩胺酸合成酶基因、D-丙胺酸轉胺酶(dat )基因、D-丙胺酸消旋酶(dal )基因、dga 、參與二胺基庚二酸(DAP)合成之基因、參與半胱胺酸合成酶A(cysK )合成之基因、維生素B12非依賴性甲硫胺酸合成酶、trpAtrpBtrpEasnBgltDgltBleuAargGthrC 。李斯特菌屬菌株可缺乏兩種或超過兩種此類基因(例如datdal )。D-麩胺酸合成部分地受dal 基因控制,該基因參與D-glu + pyr向α-酮戊二酸酯 + D-ala之轉化及逆反應。   [0140] 作為另一實例,減毒之李斯特菌屬菌株可缺乏內源性合成酶基因,諸如胺基酸合成基因。此類基因之實例包括folP 、編碼二氫尿苷合成酶家族蛋白質之基因、ispDispF 、編碼磷酸烯醇丙酮酸合成酶之基因、hisFhisHfliI 、編碼核糖體較大子單元假尿苷合成酶之基因、ispD 、編碼雙官能性GMP合成酶/麩醯胺轉胺酶蛋白質之基因、cobScobBcbiD 、編碼尿卟啉-III C-甲基轉移酶/尿卟啉原-III合成酶之基因、cobQuppStruBdxsmvaSdapAispGfolC 、編碼檸檬酸合成酶之基因、argJ 、編碼3-脫氧-7-磷酸庚酮糖酸合成酶之基因、編碼吲哚-3-甘油-磷酸合成酶之基因、編碼鄰胺基苯甲酸合成酶/麩醯胺轉胺酶組件之基因、menB 、編碼甲萘醌特異性異分支酸合成酶之基因、編碼磷酸核糖甲醯基甘胺脒合成酶I或II之基因、編碼磷酸核糖胺基咪唑-琥珀醯甲醯胺合成酶之基因、carBcarAthyAmgsAaroBhepBrluBilvBilvNalsSfabFfabH 、編碼假尿苷合成酶之基因、pyrGtruApabB 及atp合成酶基因(例如,atpC atpD-2 aptG atpA-2 等等)。   [0141] 減毒之李斯特菌屬菌株可缺乏內源性phoParoAaroCaroDplcB 。作為又另一實例,減毒之李斯特菌屬菌株可缺乏內源性肽轉運子。實例包括編碼以下之基因:ABC轉運子/ATP結合/透過酶蛋白質、寡肽ABC轉運子/寡肽結合蛋白質、寡肽ABC轉運子/透過酶蛋白質、鋅ABC轉運子/鋅結合蛋白質、糖ABC轉運子、磷酸鹽轉運子、ZIP鋅轉運子、EmrB /QacA 家族之耐藥性轉運子、硫酸鹽轉運子、質子依賴性寡肽轉運子、鎂轉運子、甲酸鹽/亞硝酸鹽轉運子、亞精胺/腐胺ABC轉運子、a Na/Pi共轉運子、磷酸糖轉運子、麩醯胺ABC轉運子、主要易化子家族轉運子、甘胺酸甜菜鹼/L-脯胺酸ABC轉運子、鉬ABC轉運子、磷壁酸ABC轉運子、鈷ABC轉運子、銨轉運子、胺基酸ABC轉運子、細胞分裂ABC轉運子、錳ABC轉運子、鐵化合物ABC轉運子、麥芽糖/麥芽糊精ABC轉運子、Bcr /CflA 家族之耐藥性轉運子及上文蛋白質中之一者的子單元。   [0142] 其他減毒之細菌及李斯特菌屬菌株可為缺內源性代謝酶,該內源性代謝酶代謝用於細菌生長過程、複製過程、細胞壁合成、蛋白質合成、脂肪酸代謝、或用於任何其他生長或複製過程的胺基酸。同樣,減毒菌株可缺乏內源性代謝酶,該內源性代謝酶可催化形成細胞壁合成中所用之胺基酸,可催化合成細胞壁合成中所用之胺基酸,或可參與合成細胞壁合成中所用之胺基酸。替代地,胺基酸可用於細胞壁生物發生。替代地,代謝酶為用於D-麩胺酸(一種細胞壁組分)之合成酶。   [0143] 其他減毒之李斯特菌屬菌株可缺乏由D-麩胺酸合成基因、dga 、alr (丙胺酸消旋酶)基因編碼之代謝酶或任何其他參與丙胺酸合成之酶。李斯特菌屬菌株可缺乏之代謝酶的又其他實例包括由以下編碼之酶:serC (一種磷酸絲胺酸轉胺酶)、asd (天冬胺酸β半醛脫氫酶;參與合成細胞壁成分二胺基庚二酸)、編碼gsaB-麩胺酸-1-半醛轉胺酶(催化由(S)-4-胺基-5-側氧基戊酸酯形成5-胺基乙醯丙酸酯)之基因、hemL (催化由(S)-4-胺基-5-側氧基戊酸酯形成5-胺基乙醯丙酸酯)、aspB (催化由L-天冬胺酸酯及2-側氧基戊二酸酯形成草醯乙酸酯及L-麩胺酸酯之天冬胺酸轉胺酶)、argF-1 (參與精胺酸生物合成)、aroE (參與胺基酸生物合成)、aroB (參與3-脫氫奎尼酸酯生物合成)、aroD (參與胺基酸生物合成)、aroC (參與胺基酸生物合成)、hisB (參與組胺酸生物合成)、hisD (參與組胺酸生物合成)、hisG (參與組胺酸生物合成)、metX (參與甲硫胺酸生物合成)、proB (參與脯胺酸生物合成)、argR (參與精胺酸生物合成)、argJ (參與精胺酸生物合成)、thil (參與硫胺素生物合成)、LMOf2365_1652 (參與色胺酸生物合成)、aroA (參與色胺酸生物合成)、ilvD (參與纈胺酸及異白胺酸生物合成)、ilvC (參與纈胺酸及異白胺酸生物合成)、leuA (參與白胺酸生物合成)、dapF (參與離胺酸生物合成)、及thrB (參與蘇胺酸生物合成) (全部為GenBank寄存編號NC_002973)。   [0144] 減毒之李斯特菌屬菌株可藉由其他代謝酶,諸如tRNA合成酶之突變產生。舉例而言,代謝酶可由trpS 基因編碼,該基因編碼色胺醯基tRNA合成酶。舉例而言,宿主菌株細菌可為Δ(trpS aroA ),且兩種標記物可含於整合載體中。   [0145] 可經突變以產生減毒之李斯特菌屬菌株的代謝酶之其他實例包括由以下編碼之酶:murE (參與合成二胺基庚二酸;GenBank寄存編號:NC_003485)、LMOf2365_2494 (參與磷壁酸生物合成)、WecE (脂多醣生物合成蛋白質rffA;GenBank寄存編號:AE014075.1)或amiA (一種N-乙醯胞壁醯-L-丙胺酸醯胺酶)。代謝酶之又其他實例包括天冬胺酸轉胺酶、組胺醇-磷酸酯轉胺酶(GenBank寄存編號NP_466347)或細胞壁磷壁酸糖基化蛋白質GtcA。   [0146] 可經突變以產生減毒之李斯特菌屬菌株的代謝酶之其他實例包括用於肽聚糖組分或前驅物之合成酶。組分可為例如UDP-N-乙醯胞壁醯五肽、UDP-N-乙醯葡糖胺、MurNAc-(五肽)-焦磷醯-十一萜醇、GlcNAc-p-(1,4)-MurNAc-(五肽)-焦磷醯十一萜醇或任何其他肽聚糖組分或前驅物。   [0147] 可經突變以產生減毒之李斯特菌屬菌株的代謝酶之又其他實例包括由以下編碼之代謝酶:murGmurDmurA-1murA-2 (全部闡述於GenBank寄存編號NC_002973中)。替代地,代謝酶可為用於肽聚糖組分或前驅物之任何其他合成酶。代謝酶亦可為轉醣苷酶、轉肽酶、羧肽酶、任何其他類別之代謝酶或任何其他代謝酶。舉例而言,代謝酶可為任何其他李斯特菌屬代謝酶或任何其他單核球增多性李斯特菌代謝酶。   [0148] 其他細菌菌株可如上文對李斯特菌所描述,藉由使該等其他細菌菌株中之相對應直系同源基因突變來減毒。 (2) 補充減毒之細菌及李斯特菌屬菌株的方法   [0149] 本文所揭示的減毒之細菌或李斯特菌屬菌株可進一步包含有包含補充基因或編碼補充減毒突變(例如,補充營養缺陷型李斯特菌屬菌株之營養缺陷性)之代謝酶的核酸。舉例而言,如本文所揭示之具有編碼融合多肽之第一開讀框的核酸可進一步包含有包含補充基因或編碼補充代謝酶之第二開讀框。替代地,第一核酸可編碼融合多肽且單獨之第二核酸可包含補充基因或編碼補充代謝酶。   [0150] 補充基因可處於染色體外或可整合至細菌或李斯特菌屬基因組中。舉例而言,營養缺陷型李斯特菌屬菌株可包含有包含編碼代謝酶之核酸的附加型質體。此類質體將以游離或染色體外方式含於李斯特菌中。替代地,營養缺陷型李斯特菌屬菌株可包含有包含編碼代謝酶之核酸的整合型質體(亦即,整合載體)。此類整合型質體可用於整合至李斯特菌染色體中。較佳地,附加型質體或整合型質體缺乏抗生素抗性標記物。   [0151] 代替抗生素抗性基因或除抗生素抗性基因以外,代謝基因可用於選擇。作為一個實例,為了對包含編碼本文所提供代謝酶或補充基因之質體的營養缺陷型細菌進行選擇,可使經轉型之營養缺陷型細菌在將針對編碼代謝酶之基因(例如胺基酸代謝基因)或補充基因之表現進行選擇的培養基中生長。舉例而言,對於D-麩胺酸合成而言為營養缺陷型之細菌可用包含用於D-麩胺酸合成之基因的質體轉型,且營養缺陷型細菌將在無D-麩胺酸存在下生長,而未使用質體轉型或不表現編碼用於D-麩胺酸合成之蛋白質的質體之營養缺陷型細菌將不生長。類似地,當經轉型且表現包含編碼用於D-丙胺酸合成之胺基酸代謝酶之核酸的質體時,對於D-丙胺酸合成而言為營養缺陷型之細菌將在無D-丙胺酸存在下生長。此類用於製造包含或缺乏必要生長因子、補充劑、胺基酸、維生素、抗生素及其類似物的適當培養基之方法為熟知的,且可商購。   [0152] 一旦已在適當培養基中選擇包含編碼本文所提供代謝酶或補充基因之質體的營養缺陷型細菌,細菌可在選擇壓力存在下繁殖。此類繁殖可包含在無營養缺陷型因子之培養基中生長細菌。營養缺陷型細菌中表現代謝酶或補充基因之質體的存在確保該質體將與細菌一起複製,因此持續選擇含有該質體之細菌。細菌或李斯特菌屬菌株之產生可藉由調節其中生長包含質體之營養缺陷型細菌之培養基的體積而容易地按比例擴大。   [0153] 在一個具體實例中,減毒菌株為具有daldat 之缺失或dal及dat中之失活突變的菌株(例如,單核球增多性李斯特菌(Lm )dal (-)dat (-) (Lmdd )或Lm dal (-)dat (-)ΔactA (LmddA )),且補充基因編碼丙胺酸消旋酶(例如,由dal 基因編碼)或D-胺基酸轉胺酶(例如,由dat 基因編碼) 例示性丙胺酸消旋酶蛋白質可具有SEQ ID NO:76中所闡述之序列(由SEQ ID NO:78編碼;GenBank寄存編號:AF038438)或可為SEQ ID NO:76之同源物、變異體、同功異型物、類似物、片段、同源物片段、變異體片段、類似物片段或同功異型物片段。丙胺酸消旋酶蛋白質亦可為任何其他李斯特菌丙胺酸消旋酶蛋白質。替代地,丙胺酸消旋酶蛋白質可為任何其他革蘭氏陽性丙胺酸消旋酶蛋白質或任何其他丙胺酸消旋酶蛋白質。例示性D-胺基酸轉胺酶蛋白質可具有SEQ ID NO:77中所闡述之序列(由SEQ ID NO:79編碼;GenBank寄存編號:AF038439)或可為SEQ ID NO:77之同源物、變異體、同功異型物、類似物、片段、同源物片段、變異體片段、類似物片段或同功異型物片段。D-胺基酸轉胺酶蛋白質亦可為任何其他李斯特菌 D-胺基酸轉胺酶蛋白質。替代地,D-胺基酸轉胺酶蛋白質可為任何其他革蘭氏陽性D-胺基酸轉胺酶蛋白質或任何其他D-胺基酸轉胺酶蛋白質。   [0154] 在另一個具體實例中,減毒菌株為具有prfA 之缺失或prfA中之失活突變的菌株(例如Lm prfA (-)),且補充基因編碼PrfA蛋白。舉例而言,補充基因可編碼恢復部分PrfA功能之突變型PrfA (D133V)蛋白。野生型PrfA蛋白之實例闡述於SEQ ID NO:80中(由SEQ ID NO:81中所闡述之核酸編碼),且D133V突變型PrfA蛋白之實例闡述於SEQ ID NO:82中(由SEQ ID NO:83中所闡述之核酸編碼)。補充PrfA蛋白可為SEQ ID NO:80或82之同源物、變異體、同功異型物、類似物、片段、同源物片段、變異體片段、類似物片段或同功異型物片段。PrfA蛋白亦可為任何其他李斯特菌 PrfA蛋白。替代地,PrfA蛋白可為任何其他革蘭氏陽性PrfA蛋白或任何其他PrfA蛋白。   [0155] 在另一實例中,細菌菌株或李斯特菌屬菌株可包含actA 基因之缺失或actA 基因中之失活突變,且補充基因可包含actA基因以補充該突變且恢復李斯特菌屬菌株之功能。   [0156] 其他營養缺陷型菌株及補充系統亦可用於與本文所提供之方法及組成物一起使用。 C. 細菌或李斯特菌屬菌株之製備及儲存   [0157] 重組細菌菌株(例如李斯特菌屬菌株)視情況已經動物宿主繼代。此類繼代可使李斯特菌屬菌株作為疫苗載體之功效最大化,可使李斯特菌屬菌株之免疫原性穩定,可使李斯特菌屬菌株之致病性穩定,可增加李斯特菌屬菌株之免疫原性,可增加李斯特菌屬菌株之致病性,可去除李斯特菌屬菌株之不穩定子菌株或可減少李斯特菌屬菌株之不穩定子菌株的佔有率。用於使重組李斯特菌屬菌株經動物宿主繼代之方法為此項技術中熟知的,且描述於例如US 2006/0233835中,該案以全文引用的方式併入本文中以達成所有目的。   [0158] 重組細菌菌株(例如李斯特菌屬菌株)可儲存在冷凍細胞庫中或儲存在凍乾細胞庫中。此類細胞庫可為例如主細胞庫、工作細胞庫或優良製造規範(Good Manufacturing Practice;GMP)細胞庫。「優良製造規範」之實例包括由美國聯邦法規法典(United States Code of Federal Regulations)之21 CFR 210-211定義的彼等。然而,「優良製造規範」亦可由用於製造臨床級材料或用於人類消費之其他標準定義,諸如除美國以外的國家之標準。此類細胞庫可意欲用於製造臨床級材料或可符合用於人類使用之管理規範。   [0159] 重組細菌菌株(例如李斯特菌屬菌株)亦可來自疫苗劑批料,來自冷凍原料或來自凍乾原料。   [0160] 此類細胞庫、冷凍原料或疫苗劑批料可例如在解凍後展現大於90%之存活力。解凍可在低溫保存儲存或冷凍儲存24小時之後進行。替代地,儲存可持續例如2天、3天、4天、1週、2週、3週、1個月、2個月、3個月、5個月、6個月、9個月或1年。   [0161] 細胞庫、冷凍原料或疫苗劑批料可例如藉由以下方法低溫保存,該方法包含在營養培養基中生長細菌菌株(例如李斯特菌屬菌株)培養物,在包含甘油之溶液中冷凍該培養物,及在低於-20℃下儲存該李斯特菌屬菌株。溫度可為例如約-70℃或在約-70℃至約-80℃之間。替代地,細胞庫、冷凍原料或疫苗劑批料可例如藉由以下方法低溫保存,該方法包含在成分確定培養基中生長李斯特菌屬菌株培養物,在包含甘油之溶液中冷凍該培養物,及在低於-20℃下儲存該李斯特菌屬菌株。溫度可為例如約 -70℃或在約-70℃至約-80℃之間。任何成分確定之微生物培養基均可用於此方法中。   [0162] 培養物(例如,用於產生李斯特菌疫苗劑批料的李斯特菌屬疫苗菌株之培養物)可自例如細胞庫、自冷凍原料、自起子培養物(starter culture)或自群落接種。培養物可例如在對數生長中期、大致對數生長中期或另一生長期接種。   [0163] 代替甘油或除甘油以外,用於冷凍之溶液視情況含有另一種依數添加劑或具有抗冷凍特性之添加劑。此類添加劑之實例包括例如甘露糖醇、DMSO、蔗糖或任何其他依數添加劑或具有抗冷凍特性之添加劑。   [0164] 用於生長細菌菌株(例如李斯特菌屬菌株)之培養物的營養培養基可為任何適合之營養培養基。適合之培養基的實例包括例如LB;TB;經改質之無動物產品極品培養液(Terrific Broth);或成分確定培養基。   [0165] 生長步驟可藉由任何已知的生長細菌之手段來進行。舉例而言,生長步驟可執用搖瓶(諸如具有檔板之搖瓶)、分批醱酵器、攪拌槽或燒瓶、氣升醱酵器、分批補料、連續細胞反應器、固定化細胞反應器或任何其他生長細菌之手段來進行。   [0166] 視情況,在培養物生長期間(例如在分批醱酵器中)維持恆定pH。舉例而言,pH可維持在約6.0、約6.5、約7.0、約7.5或約8.0。同樣,pH可為例如約6.5至約7.5、約6.0至約8.0、約6.0至約7.0、約6.0至約7.0或約6.5至約7.5。   [0167] 視情況,可在培養物生長期間維持恆定溫度。舉例而言,溫度可維持在約37℃下或在37℃下。替代地,溫度可維持在25℃、27℃、28℃、30℃、32℃、34℃、35℃、36℃、38℃或39℃下。   [0168] 視情況,可在培養物生長期間維持恆定溶解氧濃度。舉例而言,溶解氧濃度可維持在20%飽和、15%飽和、16%飽和、18%飽和、22%飽和、25%飽和、30%飽和、35%飽和、40%飽和、45%飽和、50%飽和、55%飽和、60%飽和、65%飽和、70%飽和、75%飽和、80%飽和、85%飽和、90%飽和、95%飽和、100%飽和或接近100%飽和。   [0169] 用於凍乾及低溫保存重組細菌菌株(例如李斯特菌屬菌株的方法為已知的。舉例而言,李斯特菌培養物可在液氮中急驟冷凍,後接在最終冷凍溫度下儲存。替代地,培養物可以更漸進方式冷凍(例如,藉由在培養物小瓶中放置在最終儲存溫度下)。培養物亦可藉由任何其他已知用於冷凍細菌培養物之方法來冷凍。   [0170] 培養物之儲存溫度可例如在-20℃與-80℃之間。舉例而言,溫度可顯著低於-20℃或不高於-70℃。替代地,溫度可為約-70℃、-20℃、-30℃、-40℃、-50℃、-60℃、-80℃、-30℃至-70℃、-40℃至-70℃、-50℃至-70℃、-60℃至-70℃、-30℃至-80℃、-40℃至-80℃、-50℃至-80℃、-60℃至-80℃或-70℃至-80℃。替代地,溫度可低於-70℃或低於-80℃。 IV. 免疫原性組成物、醫藥組成物及疫苗   [0171] 亦提供免疫原性組成物、醫藥組成物或疫苗,其包含如本文所揭示之重組融合多肽、如本文所揭示的編碼重組融合多肽之核酸或如本文所揭示之重組細菌或李斯特菌屬菌株 包含李斯特菌屬菌株之免疫原性組成物可憑藉其包含李斯特菌屬菌株而具有固有免疫原性且/或組成物亦可進一步包含佐劑。其他免疫原性組成物包含DNA免疫治療或肽免疫治療組成物。   [0172] 術語「免疫原性組成物」係指含有以下抗原之任何組成物,該抗原在暴露於該組成物中後在個體中引起針對該抗原之免疫反應。由免疫原性組成物引起之免疫反應可針對特定抗原或針對該抗原上之特定抗原決定基。   [0173] 免疫原性組成物可包含如本文所揭示之單一重組融合多肽、如本文所揭示的編碼重組融合多肽之核酸或如本文所揭示之重組細菌或李斯特菌屬菌株,或其可包含多個不同的如本文所揭示之重組融合多肽、如本文所揭示的編碼重組融合多肽之核酸或如本文所揭示之重組細菌或李斯特菌屬菌株。舉例而言,若第一重組融合多肽包括第二重組融合多肽不包括之一個抗原肽,則第一重組融合多肽與第二重組融合多肽不同。兩個重組融合多肽可包括一些相同抗原肽,而仍被視為不同的。此類不同重組融合多肽、編碼重組融合多肽之核酸或重組細菌或李斯特菌屬菌株可同時向個體或依序向個體投與。當包含本文所揭示之重組李斯特菌屬菌株(或重組融合多肽或核酸)的原料藥處於不同劑型中(例如,一種藥劑為錠劑或膠囊且另一種藥劑為無菌液體)及/或以不同給藥時程投與(例如,來自混合物之一種組成物至少每日投與且另一種不太頻繁投與,諸如每週一次、每兩週一次或每三週一次)時,依序投與可尤其適用。多個重組融合多肽\編碼重組融合多肽之核酸或重組細菌或李斯特菌屬菌株可各自包含不同抗原肽組。替代地,重組融合多肽\編碼重組融合多肽之核酸或重組細菌或李斯特菌屬菌株中之兩者或超過兩者可包含相同抗原肽組(例如,以不同次序包含相同抗原肽組)。   [0174] 免疫原性組成物可另外包含佐劑(例如,兩種或超過兩種佐劑)、細胞因子、趨化因子或其組合。視情況,免疫原性組成物可另外包含抗原呈遞細胞(antigen presenting cell;APC ),其對個體可為自體或可為同種異體。   [0175] 術語佐劑包括增強針對抗原之免疫反應的化合物或混合物。舉例而言,佐劑可為免疫反應之非特異性刺激劑或允許在個體中產生儲存物之物質,該佐劑當與本文所揭示之免疫原性組成物組合時提供甚至更增強及/或長期之免疫反應。佐劑可促進例如主要Th1介導之免疫反應、Th1型免疫反應或Th1介導之免疫反應。同樣,相對於抗體介導之反應,佐劑可有利於細胞介導之免疫反應。替代地,佐劑可有利於抗體介導之反應。一些佐劑可藉由緩慢釋放抗原而增強免疫反應,而其他佐劑可藉由以下機制中之任一者介導其作用:增加細胞浸潤、炎症及遷移至注射位點,特定言之對於抗原呈遞細胞(APC);藉由上調共刺激性信號或主要組織相容性複合體(MHC)表現來促進APC之活化狀態;增強抗原呈遞;或誘導細胞因子釋放以用於間接作用。   [0176] 佐劑之實例包括皂素QS21、CpG寡核苷酸、含未甲基化CpG之寡核苷酸、MPL、TLR促效劑、TLR4促效劑、TLR9促效劑、Resiquimod® 、咪喹莫特(imiquimod)、細胞因子或編碼該等細胞因子之核酸、趨化因子或編碼該等趨化因子之核酸、IL-12或編碼IL-12之核酸、IL-6或編碼IL-6之核酸以及脂多醣。適合之佐劑的另一實例為Montanide ISA 51。Montanide ISA 51含有天然可代謝之油及精製乳化劑。適合之佐劑的又另一實例為解毒化李斯特菌溶胞素O (dtLLO)蛋白。適合用作佐劑之dtLLO的一個實例由SEQ ID NO:115編碼。由與SEQ ID NO:115至少90%、95%、96%、97%、98%或99%一致之序列編碼的dtLLO 亦適合用作佐劑。適合之佐劑的其他實例包括顆粒球/巨噬細胞群落刺激因子(granulocyte/macrophage colony-stimulating factor;GM-CSF)或編碼GM-CSF之核酸及匙孔螺血氰蛋白(keyhole limpet hemocyanin;KLH)蛋白質或編碼該等蛋白質之核酸。GM-CSF可為例如在酵母(釀酒酵母(S. cerevisiae ))載體中生長之人類蛋白質。GM-CSF促進造血祖細胞、抗原呈遞細胞(APC)、樹突狀細胞及T細胞之無性擴增及分化。佐劑之又其他實例包括生長因子或編碼該等生長因子之核酸、細胞群體、弗氏不完全佐劑、磷酸鋁、氫氧化鋁、卡介苗(bacille Calmette-Guerin;BCG)、明礬、介白素或編碼該等介白素之核酸、羽糖苷(quill glycoside)、單磷醯基脂質A、脂質體、細菌有絲分裂原、細菌毒素或任何其他類型之已知佐劑(參見例如,Fundamental Immunology, 第5版 (2003年8月):William E. Paul (編者); Lippincott Williams & Wilkins Publishers; 第43章:疫苗, GJV Nossal,該文獻以全文引用的方式併入本文中以達成所有目的)。   [0177] 免疫原性組成物可進一步包含一或多種免疫調節分子。實例包括干擾素γ、細胞因子、趨化因子及T細胞刺激劑。   [0178] 免疫原性組成物可呈疫苗或醫藥組成物形式。術語「疫苗」及「醫藥組成物」為可互換的且係指用於向個體活體內投與的含有免疫原性組成物的醫藥學上可接受之載劑。疫苗可為例如肽疫苗(例如,包含如本文所揭示之重組融合多肽)、DNA疫苗(例如,包含如本文所揭示的編碼重組融合多肽之核酸)或含於細胞內且由細胞遞送之疫苗(例如,如本文所揭示之重組李斯特菌 )。疫苗可防止個體感染或患上疾病或病況,且/或疫苗對於患有疾病或病況之個體可為治療性的。用於製備肽疫苗之方法為熟知的,且描述於例如EP 1408048、US 2007/0154953及Ogasawara等人(1992)Proc. Natl Acad Sci USA 89:8995-8999中,其中之每一者均以全文引用的方式併入本文中以達成所有目的。視情況,肽演化技術可用於產生具有較高免疫原性之抗原。用於肽演化之技術為熟知的,且描述於例如US 6,773,900中,該案以全文引用的方式併入本文中以達成所有目的。   [0179] 「醫藥學上可接受之載劑」係指以下用於含有免疫原性組成物之媒劑,其可引入至個體中而無顯著不良作用且對該免疫原性組成物無不利作用。亦即,「醫藥學上可接受」係指任何調配物為安全的,且向所要投藥途徑適當遞送有效量的至少一種用於本文所揭示之方法中的免疫原性組成物。醫藥學上可接受之載劑或媒劑或賦形劑為熟知的。適合的醫藥學上可接受之載劑的描述及涉及其選擇之因素見於多種容易獲得之來源中,諸如Remington's Pharmaceutical Sciences, 第18版, 1990,其以全文引用的方式併入本文中以達成所有目的。此類載劑可適合於任何投藥途徑(例如,非經腸、經腸(例如經口)或局部施用)。此類醫藥組成物可經緩衝,舉例而言,其中根據免疫原性組成物之穩定性及投藥途徑,pH維持在範圍介於pH 4.0至pH 9.0之所要特定值。   [0180] 適合的醫藥學上可接受之載劑包括例如無菌水;鹽溶液,諸如生理食鹽水;葡萄糖;緩衝溶液,諸如磷酸鹽緩衝溶液或碳酸氫鹽緩衝溶液;醇;阿拉伯膠;植物油;苯甲醇;聚乙二醇;明膠;碳水化合物(例如乳糖、直鏈澱粉或澱粉);硬脂酸鎂;滑石;矽酸;黏性石蠟;白色石蠟;甘油;海藻酸鹽;玻尿酸;膠原蛋白;香料油;脂肪酸單酸甘油酯及二酸甘油酯;季戊四醇脂肪酸酯;羥基甲基纖維素;聚乙烯吡咯啶酮及其類似物。醫藥組成物或疫苗亦可包括不與免疫原性組成物有害地反應之助劑,包括例如稀釋劑、穩定劑(例如糖及胺基酸)、防腐劑、潤濕劑、乳化劑、pH緩衝劑、黏度增強添加劑、潤滑劑、影響滲透壓之鹽、緩衝劑、維生素、著色劑、調味劑、芳香族物質及其類似物。   [0181] 舉例而言,對於液體調配物,醫藥學上可接受之載劑可為水性或非水性溶液、懸浮液、乳液或油。非水性溶劑包括例如丙二醇、聚乙二醇及可注射有機酯(諸如油酸乙酯)。水性載劑包括例如水、醇/水性溶液、乳液或懸浮液,包括生理食鹽水及緩衝介質。油之實例包括石油、動物、植物或合成來源之油,諸如花生油、大豆油、礦物油、橄欖油、葵花油及魚肝油。固體載劑/稀釋劑包括例如膠、澱粉(例如,玉米澱粉、預膠凝化澱粉)、糖(例如,乳糖、甘露糖醇、蔗糖、右旋糖)、纖維素材料(例如,微晶纖維素)、丙烯酸酯(例如,聚甲基丙烯酸酯)、碳酸鈣、氧化鎂、滑石或其混合物。   [0182] 視情況,可調配持續或定向釋放之醫藥組成物或疫苗。此可例如經由使用脂質體或其中活性化合物受不同可分解包衣保護(例如,藉由微囊封、多層包衣等等)的組成物來實現。此類組成物可經調配用於即刻或緩慢釋放。亦有可能冷凍乾燥組成物且使用所獲得之凍乾物(例如,用於製備注射用產品)。   [0183] 本文所揭示之免疫原性組成物、醫藥組成物或疫苗亦可包含一或多種有效預防或治療癌症之額外化合物。舉例而言,額外化合物可包含適用於化學療法之化合物,諸如安吖啶(amsacrine)、博萊黴素(bleomycin)、白消安(busulfan)、卡培他濱(capecitabine)、卡鉑(carboplatin)、卡莫司汀(carmustine)、氯芥苯丁酸(chlorambucil)、順鉑(cisplatin)、克拉屈濱(cladribine)、氯法拉濱(clofarabine)、克里沙納塔斯蛋白酶(crisantaspase)、環磷醯胺、阿糖胞苷(cytarabine)、達卡巴嗪(dacarbazine)、放線菌素d (dactinomycin)、道諾黴素(daunorubicin)、多烯紫杉醇(docetaxel)、小紅莓(doxorubicin)、表柔比星(epirubicin)、依託泊苷(etoposide)、氟達拉濱(fludarabine)、氟尿嘧啶(5-FU)、吉西他濱(gemcitabine)、gliadel植入物、羥基脲、艾達黴素(idarubicin)、異環磷醯胺、伊立替康(irinotecan)、甲醯四氫葉酸(leucovorin)、脂質體小紅莓、脂質體道諾黴素、洛莫司汀(lomustine)、美法侖(melphalan)、巰基嘌呤、美司鈉(mesna)、甲胺喋呤(methotrexate)、絲裂黴素(mitomycin)、米托蒽醌(mitoxantrone)、奧沙利鉑(oxaliplatin)、太平洋紫杉醇(paclitaxel) (Taxol)、培美曲唑(pemetrexed)、噴司他汀(pentostatin)、丙卡巴肼(procarbazine)、雷替曲塞(raltitrexed)、沙鉑(satraplatin)、鏈佐星(streptozocin)、替加氟(tegafur)-尿嘧啶、替莫唑胺(temozolomide)、替尼泊苷(teniposide)、噻替派(thiotepa)、硫鳥嘌呤、拓樸替康(topotecan)、曲奧舒凡(treosulfan)、長春鹼(vinblastine)、長春新鹼(vincristine)、長春地辛(vindesine)、長春瑞濱(vinorelbine)或其組合。額外化合物亦可包含其他生物製劑,包括針對HER2抗原之Herceptin® (曲妥珠單抗(trastuzumab))、針對VEGF之Avastin® (貝伐單抗(bevacizumab))或針對EGF受體之抗體,諸如Erbitux® (西妥昔單抗(cetuximab))、德瓦魯單抗(durvalumab) (Medi4736)及Vectibix® (帕尼單抗(panitumumab))。額外化合物亦可包含例如額外免疫治療。   [0184] 額外化合物亦可包含免疫檢查點抑制劑拮抗劑,諸如PD-1信號傳導路徑抑制劑、CD-80/86及CTLA-4信號傳導路徑抑制劑、T細胞膜蛋白質3(TIM3)信號傳導路徑抑制劑、腺苷A2A受體(A2aR)信號傳導路徑抑制劑、淋巴細胞活化基因3(LAG3)信號傳導路徑抑制劑、殺手免疫球蛋白受體(KIR)信號傳導路徑抑制劑、CD40信號傳導路徑抑制劑或任何其他抗原呈遞細胞/T細胞信號傳導路徑抑制劑。免疫檢查點抑制劑拮抗劑之實例包括抗PD-L1/PD-L2抗體或其片段、抗PD-1抗體或其片段、抗CTLA-4抗體或其片段或抗B7-H4抗體或其片段。   [0185] 抗PD-1抗體之實例為Opdivo (納武單抗(nivolumab)),一種抗PD-1單株抗體。在一個具體例中,包含重組李斯特菌屬菌株及Opdivo (納武單抗)之組合療法用於治療患有轉移性子宮頸癌之個體,該重組李斯特菌屬菌株包含有包含編碼融合多肽之第一開讀框的核酸,其中該融合多肽包含與HPV16抗原肽及HPV18抗原肽融合的含PEST之肽,其中該HPV16抗原肽及該HPV18抗原肽可操作地以串聯方式連接,其中HPV16抗原肽為HPV16 E6抗原肽或HPV16 E7抗原肽,且其中該HPV18抗原肽為HPV18 E6抗原肽或HPV18 E7抗原肽。使用納武單抗治療復發性或轉移性子宮頸癌之Advaxis免疫治療(ADVANCE)研究為開發用於患有復發性或轉移性子宮頸癌之女性中一線治療失效者之子宮頸癌的二線治療。ADVANCE研究為隨機階段全球研究,其中超過500名患者經隨機分組以在一線療法失效或無資格接受一線療法的患有復發性或轉移性子宮頸癌之患者中,相較於研究者所選單藥劑化學療法評估ADXS-602 (ADXS-DUAL)與納武單抗組合之安全性及功效。   [0186] 額外化合物亦可包含T細胞刺激劑,諸如與T細胞受體共刺激性分子、結合共刺激性分子之抗原呈遞細胞受體或TNF受體超家族之成員結合的抗體或其功能性片段。T細胞受體共刺激性分子可包含例如CD28或ICOS。結合共刺激性分子之抗原呈遞細胞受體可包含例如CD80受體、CD86受體或CD46受體。TNF受體超家族成員可包含例如糖皮質激素誘導之TNF受體(GITR)、OX40 (CD134受體)、4-1BB (CD137受體)或TNFR25。參見例如 ,WO2016100929、WO2016011362及WO2016011357,其中之每一者均以全文引用的方式併入以達成所有目的。 V. 治療方法   [0187] 本文所揭示的重組融合多肽、編碼重組融合多肽之核酸、重組細菌或李斯特菌屬菌株、免疫原性組成物、醫藥組成物及疫苗可用於各種方法中。舉例而言,其可用於在個體中誘導抗腫瘤相關抗原免疫反應之方法中、在個體中誘導抗腫瘤或抗癌免疫反應之方法中、在個體中治療腫瘤或癌症之方法中、在個體中預防腫瘤或癌症之方法中或保護個體免於腫瘤或癌症之方法中。其亦可用於提高個體脾臟及腫瘤中T效應細胞與調節性T細胞之比率(Tregs)的方法中,其中T效應細胞靶向腫瘤相關抗原。其亦可用於增加個體中之腫瘤相關抗原T細胞、增加患有腫瘤或癌症之個體的存活時間、延遲個體中之癌症發作或減小個體中之腫瘤或癌轉移大小的方法。以上方法中之任一者中的腫瘤或癌症可為例如HPV相關癌症,諸如子宮頸腫瘤或癌症、肛門腫瘤或癌症、頭頸部腫瘤或癌症或口咽腫瘤或癌症。本文所描述之方法中之任一者中的癌症可為轉移性子宮頸癌。   [0188] 一種在個體中誘導抗HPV16及/或抗HPV18免疫反應之方法可包含例如向該個體投與本文所揭示的重組融合多肽、編碼重組融合多肽之核酸、重組細菌或李斯特菌屬菌株、免疫原性組成物、醫藥組成物或疫苗(例如,包含有包含HPV16及HPV18抗原肽之重組融合多肽或編碼該重組融合多肽之核酸)。可藉此在個體中誘導抗HPV16及/或抗HPV18免疫反應。舉例而言,在重組李斯特菌屬菌株的情況下,該李斯特菌屬菌株可表現融合多肽,藉此在個體中引起免疫反應。免疫反應可包含例如T細胞反應,諸如CD4+FoxP3- T細胞反應、CD8+ T細胞反應或CD4+FoxP3-及CD8+ T細胞反應。此類方法亦可提高個體脾臟及腫瘤微環境中T效應細胞與調節性T細胞之比率(Tregs),從而允許個體中更深入之抗腫瘤反應。   [0189] 一種在個體中誘導抗腫瘤或抗癌免疫反應之方法可包含例如向該個體投與本文所揭示的重組融合多肽、編碼重組融合多肽之核酸、重組細菌或李斯特菌屬菌株、免疫原性組成物、醫藥組成物或疫苗。可藉此在個體中誘導抗腫瘤或抗癌免疫反應。舉例而言,在重組李斯特菌屬菌株的情況下,該李斯特菌屬菌株可表現融合多肽,藉此在個體中引起抗腫瘤或抗癌反應。   [0190] 一種在個體中治療腫瘤或癌症(例如,其中該腫瘤或癌症表達HPV16及/或HPV18)之方法可包含例如向該個體投與本文所揭示的重組融合多肽、編碼重組融合多肽之核酸、重組細菌或李斯特菌屬菌株、免疫原性組成物、醫藥組成物或疫苗。個體可隨後建立針對表現HPV16及/或HPV18抗原肽之腫瘤或癌症的免疫反應,藉此在該個體中治療腫瘤或癌症。   [0191] 一種在個體中預防腫瘤或癌症或保護個體免於患上腫瘤或癌症(例如,其中該腫瘤或癌症與HPV16及/或HPV18之表現相關)的方法可包含例如向該個體投與本文所揭示的重組融合多肽、編碼重組融合多肽之核酸、重組細菌或李斯特菌屬菌株、免疫原性組成物、醫藥組成物或疫苗。個體可隨後建立針對HPV16及/或HPV18抗原肽之免疫反應,藉此預防腫瘤或癌症或保護個體免於患上腫瘤或癌症。   [0192] 在以上方法中之一些中,投與兩種或超過兩種重組融合多肽、編碼重組融合多肽之核酸、重組細菌或李斯特菌屬菌株、免疫原性組成物、醫藥組成物或疫苗。可以任何次序或組合依序投與或可以任何組合同時投與多種重組融合多肽、編碼重組融合多肽之核酸、重組細菌或李斯特菌屬菌株、免疫原性組成物、醫藥組成物或疫苗。作為一個實例,若投與四種不同李斯特菌屬菌株,則其可依序投與,其可同時投與,或其可以任何組合投與(例如,同時投與第一及第二菌株且隨後同時投與第三及第四菌株)。視情況,在依序投藥的情況下,組成物可在同一免疫反應期間,較佳地在彼此0-10天或3-7天內投與。多種重組融合多肽、編碼重組融合多肽之核酸、重組細菌或李斯特菌屬菌株、免疫原性組成物、醫藥組成物或疫苗可各自包含不同抗原肽組。替代地,兩種或超過兩種可包含相同抗原肽組(例如,以不同次序包含相同抗原肽組)。   [0193] 癌症為特徵通常在於不受調控之細胞生長及增殖的哺乳動物中之生理學病況。HPV相關癌症(例如,由HPV引起之癌症)包括例如陰道、外陰陰莖、肛門、直腸及其他之癌症。舉例而言,HPV相關癌症包括(但不限於)子宮頸癌、肛門癌、頭頸癌及口咽癌。一般而言,認為HPV造成超過90%之肛門癌及子宮頸癌以及超過50%之陰道癌、外陰癌及陰莖癌。頭頸部癌症大多由菸草及酒精引起,但近期研究展示約60%至70%之口咽癌症可能與HPV相關。   [0194] 術語「治療(treat/treating)」係指治療性治療及預防性或防治性措施,其中目標為預防或減輕目標腫瘤或癌症。目標腫瘤或癌症之實例包括(但不限於)子宮頸腫瘤或癌症、肛門腫瘤或癌症、頭頸部腫瘤或癌症或口咽腫瘤或癌症。治療可包括以下中之一或多者:直接影響或治癒、遏制、抑制、預防腫瘤或癌症,降低其嚴重程度、延遲其發作、減緩其進展、使其進展穩定、誘導其緩解、預防或延遲其癌轉移、降低/改善與其相關之症狀或其組合。舉例而言,治療可包括增加預期存活時間或減小腫瘤或癌轉移大小。作用(例如,遏制、抑制、預防、降低嚴重程度、延遲發作、減緩進展、使進展穩定、誘導緩解、預防或延遲癌轉移、降低/改善症狀等等可為相對於未接受治療或接受安慰劑治療之對照個體。術語「治療(treat/treating)」亦可指增加患有腫瘤或癌症之個體的存活機率百分比或增加其預期存活時間(例如,相對於未接受治療或接受安慰劑治療之對照個體)。在一個實例中,「治療」係指延遲進展、加速緩解、誘導緩解、加強緩解、加快恢復、增加替代性治療劑之功效、降低對替代性治療劑之抗性或其組合(例如,相對於未接受治療或接受安慰劑治療之對照個體)。術語「預防」或「防止」可指例如延遲症狀發作、預防腫瘤或癌症復發、減低復發事件之數目或頻率、增加症狀事件之間的潛伏時間、預防腫瘤或癌症之癌轉移或其組合。術語「遏制」或「抑制」可指例如降低症狀嚴重程度、降低急性事件嚴重程度、減少症狀數目、降低疾病相關症狀之發生率、降低症狀潛伏性、改善症狀、減少繼發症狀、減少繼發感染、延長患者存活期或其組合。   [0195] 術語「個體」係指需要用於腫瘤或癌症之療法或易於患上腫瘤或癌症的哺乳動物(例如人類)。術語個體亦係指接受預防性或治療性治療之哺乳動物(例如人類)。個體可包括犬、貓、豬、牛、綿羊、山羊、馬、大鼠、小鼠、非人類哺乳動物及人類。術語「個體」不一定排除在所有方面均健康且不具有或展示癌症跡象或腫瘤的個體。   [0196] 若個體具有至少一種已知風險因子(例如,遺傳、生化、家族史及情境暴露),從而使具有該風險因子之個體患上腫瘤或癌症之風險在統計學上比不具有該風險因子之個體顯著更大,則該個體患上腫瘤或癌症之風險增加。   [0197] 「症狀」或「跡象」係指如由醫師觀測到之疾病客觀證據或如由個體所感知之疾病主觀證據,諸如步態改變。症狀或跡象可為疾病之任何表現。症狀可為原發或繼發。術語「原發」係指症狀為特定疾病或病症(例如腫瘤或癌症)之直接結果,而術語「繼發」係指來源於或由原發原因所致之症狀。本文所揭示的重組融合多肽、編碼該等重組融合多肽之核酸、免疫原性組成物、醫藥組成物及疫苗可治療原發或繼發症狀或繼發併發症。   [0198] 在有效方案中投與重組融合多肽、編碼重組融合多肽之核酸、重組細菌或李斯特菌屬菌株、免疫原性組成物、醫藥組成物或疫苗,該有效方案意謂以下劑量、投藥途徑及投藥頻率,其延遲腫瘤或癌症發作、降低其嚴重程度、抑制其進一步惡化及/或改善其至少一種跡象或症狀。替代地,在有效方案中投與重組融合多肽、編碼重組融合多肽之核酸、重組細菌或李斯特菌屬菌株、免疫原性組成物、醫藥組成物或疫苗,該有效方案意謂以下劑量、投藥途徑及投藥頻率,其誘導針對重組融合多肽(或由核酸編碼)、重組細菌或李斯特菌屬菌株、免疫原性組成物、醫藥組成物或疫苗中之異源抗原的免疫反應,或在重組細菌或李斯特菌屬菌株的情況下,誘導針對細菌或李斯特菌屬菌株自身之免疫反應。若個體已罹患腫瘤或癌症,則方案可稱作治療有效方案。若個體患上腫瘤或癌症之風險相對於一般群體而言升高,但是尚未經歷症狀,則方案可稱作預防性有效方案。在一些情況下,可以在個別患者中相對於同一患者之歷史對照或過去經歷觀測到治療性或預防性功效。在其他情況下,可在臨床前或臨床試驗中在經治療患者群體中相對於未經治療患者之對照群體證明治療性或預防性功效。舉例而言,若個別治療之患者所達成的結果比未藉由本文所描述方法治療之類似患者之對照群體中的平均結果更有利,或若在受控臨床試驗(例如,II期、II/III期或III期試驗)中在經治療患者對比對照患者中以p < 0.05或0.01或甚至0.001水準證明更有利結果,則方案可視為治療性或預防性有效。   [0199] 重組李斯特菌屬菌株之例示性劑量為例如1 × 106 - 1 × 107 CFU、1 × 107 - 1 × 108 CFU、1 × 108 - 3.31 × 1010 CFU、1 × 109 - 3.31 × 1010 CFU、5-500 × 108 CFU、7-500 × 108 CFU、10-500 × 108 CFU、20-500 × 108 CFU、30-500 × 108 CFU、50-500 × 108 CFU、70-500 × 108 CFU、100-500 × 108 CFU、150-500 × 108 CFU、5-300 × 108 CFU、5-200 × 108 CFU、5-15 × 108 CFU、5-100 × 108 CFU、5-70 × 108 CFU、5-50 × 108 CFU、5-30 × 108 CFU、5-20 × 108 CFU、1-30 × 109 CFU、1-20 × 109 CFU、2-30 × 109 CFU、1-10 × 109 CFU、2-10 × 109 CFU、3-10 × 109 CFU、2-7 × 109 CFU、2-5 × 109 CFU及3-5 × 109 CFU。重組李斯特菌屬菌株之其他例示性劑量為例如1 × 107 個生物體、1.5 × 107 個生物體、2 × 108 個生物體、3 × 107 個生物體、4 × 107 個生物體、5 × 107 個生物體、6 × 107 個生物體、7 × 107 個生物體、8 × 107 個生物體、10 × 107 個生物體、1.5 × 108 個生物體、2 × 108 個生物體、2.5 × 108 個生物體、3 × 108 個生物體、3.3 × 108 個生物體、4 × 108 個生物體、5 × 108 個生物體、1 × 109 個生物體、1.5 × 109 個生物體、2 × 109 個生物體、3 × 109 個生物體、4 × 109 個生物體、5 × 109 個生物體、6 × 109 個生物體、7 × 109 個生物體、8 × 109 個生物體、10 × 109 個生物體、1.5 × 1010 個生物體、2 × 1010 個生物體、2.5 × 1010 個生物體、3 × 1010 個生物體、3.3 × 1010 個生物體、4 × 1010 個生物體及5 × 1010 個生物體。劑量可取決於患者之條件及對先前治療(若存在,不論該治療是預防性還是治療性)及其他因素之反應。   [0200] 投藥可藉由任何適合之手段。舉例而言,投藥可為非經腸、靜脈內、經口、皮下、動脈內、顱內、鞘內、腦室內、腹膜內、局部、鼻內、肌肉內、眼內、直腸內、結膜、經皮、皮內、經陰道、經直腸、瘤內、癌旁、經黏膜、血管內、心室內、吸入(氣霧劑)、經鼻抽吸(噴霧)、舌下、氣霧劑、栓劑或其組合。對於鼻內投藥或藉由吸入施用,在適當載劑存在下混合且氣霧化或霧化的重組融合多肽、編碼重組融合多肽之核酸、重組細菌或李斯特菌屬菌株、免疫原性組成物、醫藥組成物或疫苗之溶液或懸浮液為適合的。此類氣霧劑可包含本文所描述的任何重組融合多肽、編碼重組融合多肽之核酸、重組細菌或李斯特菌屬菌株、免疫原性組成物、醫藥組成物或疫苗。投藥亦可呈栓劑(例如經直腸栓劑或尿道栓劑)形式、呈用於皮下植入之丸粒(例如,經一段時間提供控制釋放)形式或呈膠囊形式。投藥亦可經由注射至腫瘤位點中或注射至腫瘤中。投藥方案可容易地基於以下因素來決定,諸如待治療之腫瘤或癌症的精確性質及類型、腫瘤或癌症之嚴重程度、個體之年齡及一般生理條件、個體之體重、個別個體之反應及其類似因素。   [0201] 投藥頻率可取決於重組融合多肽、編碼重組融合多肽之核酸、重組細菌或李斯特菌屬菌株、免疫原性組成物、醫藥組成物或疫苗在個體中的半衰期,個體條件及投藥途徑,以及其他因素。頻率可為例如每日、每週、每月、每季度或響應於個體條件之變化或待治療腫瘤或癌症之進展的不規則時間間隔。治療時程可取決於個體條件及其他因素。舉例而言,治療時程可為若干週、若干個月或若干年(例如高達2年)。舉例而言,重複投藥(給藥)可緊隨第一治療時程進行或在數天、數週或數月之時間間隔之後進行以達成腫瘤消退或腫瘤生長抑制。評定可藉由任何已知技術測定,包括診斷方法,諸如成像技術、血清腫瘤標記分析、生檢,或腫瘤相關症狀之存在、不存在或改善。作為一個具體實例,重組融合多肽、編碼重組融合多肽之核酸、重組細菌或李斯特菌屬菌株、免疫原性組成物、醫藥組成物或疫苗可每3週投與一次持續高達2年。在一個實例中,本文所揭示的重組融合多肽、編碼重組融合多肽之核酸、重組細菌或李斯特菌屬菌株、免疫原性組成物、醫藥組成物或疫苗以逐漸增加之劑量投與以便增加T效應細胞與調節性T細胞比率及產生更強效抗腫瘤免疫反應。抗腫瘤免疫反應可藉由向個體提供細胞因子,包括例如IFN-γ、TNF-α及已知增強細胞免疫反應之其他細胞因子來進一步加強。參見例如 US 6,991,785,該案以全文引用的方式併入本文中以達成所有目的。   [0202] 一些方法可進一步包含對個體「追加」額外重組融合多肽、編碼重組融合多肽之核酸、重組細菌或李斯特菌屬菌株、免疫原性組成物、醫藥組成物或疫苗,或多次投與該等重組融合多肽、編碼重組融合多肽之核酸、重組細菌或李斯特菌屬菌株、免疫原性組成物、醫藥組成物或疫苗。「追加」係指向個體投與額外劑量。舉例而言,在一些方法中,投與2次追加(或總計3次接種),投與3次追加,投與4次追加,投與5次追加,或投與6次或超過6次追加。所投與之給藥次數可取決於例如腫瘤或癌症對治療之反應。   [0203] 視情況,在追加劑接種中所用的重組融合多肽、編碼重組融合多肽之核酸、重組細菌或李斯特菌屬菌株、免疫原性組成物、醫藥組成物或疫苗與在最初「初始(priming)」接種中所用的重組融合多肽、重組細菌或李斯特菌屬菌株、免疫原性組成物、醫藥組成物或疫苗相同。替代地,追加劑重組融合多肽、重組細菌或李斯特菌屬菌株、免疫原性組成物、醫藥組成物或疫苗與初始重組融合多肽、重組細菌或李斯特菌屬菌株、免疫原性組成物、醫藥組成物或疫苗不同。視情況,在初始及追加接種中使用相同劑量。替代地,在追加劑中使用較大劑量,或在追加劑中使用較小劑量。在初始與追加接種之間的時段可以實驗方式確定。舉例而言,在初始與追加接種之間的時段可為1週、2週、3週、4週、5週、6-8週或8-10週。   [0204] 異源初始追加策略已有效增強免疫反應及針對許多病原體提供保護。參見例如,Schneider等人(1999)Immunol. Rev. 170:29-38;Robinson (2002)Nat. Rev. Immunol . 2:239-250;Gonzalo等人(2002)Vaccine 20:1226-1231;及Tanghe (2001)Infect. Immun . 69:3041-3047,其中之每一者均以全文引用的方式併入本文中以達成所有目的。在初始及追加注射中以不同形式提供抗原可使針對抗原之免疫反應最大化。DNA疫苗初始後接用含蛋白質之佐劑追加或藉由病毒載體遞送編碼抗原之DNA追加為一種提昇抗原特異性抗體及CD4+ T細胞反應或CD8+ T細胞反應的有效方式。參見例如,Shiver等人(2002)Nature 415:331-335;Gilbert等人(2002)Vaccine 20:1039-1045;Billaut-Mulot等人(2000)Vaccine 19:95-102;及Sin等人(1999)DNA Cell Biol. 18:771-779,其中之每一者均以全文引用的方式併入本文中以達成所有目的。作為一個實例,當對個體用DNA初始疫苗接種後接追加表現抗原之腺病毒載體時,向編碼該抗原之DNA中添加CRL1005泊洛沙姆(poloxamer) (12 kDa,5% POE)可增強T細胞反應。參見例如 ,Shiver等人(2002)Nature 415:331-335,該文獻以全文引用的方式併入本文中以達成所有目的。作為另一實例,可投與編碼抗原之免疫原性部分的載體構築體及包含抗原之免疫原性部分的蛋白質。參見例如, US 2002/0165172,該案以全文引用的方式併入本文中以達成所有目的。類似地,可藉由同時(例如,在同一免疫反應期間,較佳地在彼此0-10天或3-7天內)投與所關注之多核苷酸及多肽來增強核酸疫苗接種之免疫反應。參見例如 ,US 6,500,432,該案以全文引用的方式併入本文中以達成所有目的。   [0205] 本文所揭示之治療方法亦可包含投與一或多種有效預防或治療癌症之額外化合物。舉例而言,額外化合物可包含適用於化學療法之化合物,諸如安吖啶(amsacrine)、博萊黴素(bleomycin)、白消安(busulfan)、卡培他濱(capecitabine)、卡鉑(carboplatin)、卡莫司汀(carmustine)、氯芥苯丁酸(chlorambucil)、順鉑(cisplatin)、克拉屈濱(cladribine)、氯法拉濱(clofarabine)、克里沙納塔斯蛋白酶(crisantaspase)、環磷醯胺、阿糖胞苷(cytarabine)、達卡巴嗪(dacarbazine)、放線菌素d (dactinomycin)、道諾黴素(daunorubicin)、多烯紫杉醇(docetaxel)、小紅莓(doxorubicin)、表柔比星(epirubicin)、依託泊苷(etoposide)、氟達拉濱(fludarabine)、氟尿嘧啶(5-FU)、吉西他濱(gemcitabine)、gliadel植入物、羥基脲、艾達黴素(idarubicin)、異環磷醯胺、伊立替康(irinotecan)、甲醯四氫葉酸(leucovorin)、脂質體小紅莓、脂質體道諾黴素、洛莫司汀(lomustine)、美法侖(melphalan)、巰基嘌呤、美司鈉(mesna)、甲胺喋呤(methotrexate)、絲裂黴素(mitomycin)、米托蒽醌(mitoxantrone)、奧沙利鉑(oxaliplatin)、太平洋紫杉醇(paclitaxel) (Taxol)、培美曲唑(pemetrexed)、噴司他汀(pentostatin)、丙卡巴肼(procarbazine)、雷替曲塞(raltitrexed)、沙鉑(satraplatin)、鏈佐星(streptozocin)、替加氟(tegafur)-尿嘧啶、替莫唑胺(temozolomide)、替尼泊苷(teniposide)、噻替派(thiotepa)、硫鳥嘌呤、拓樸替康(topotecan)、曲奧舒凡(treosulfan)、長春鹼(vinblastine)、長春新鹼(vincristine)、長春地辛(vindesine)、長春瑞濱(vinorelbine)或其組合。替代地,額外化合物亦可包含其他生物製劑,包括針對HER2抗原之Herceptin® (曲妥珠單抗(trastuzumab))、針對VEGF之Avastin® (貝伐單抗(bevacizumab))或針對EGF受體之抗體,諸如Erbitux® (西妥昔單抗(cetuximab))及Vectibix® (帕尼單抗(panitumumab))。替代地,額外化合物可包含其他免疫治療。替代地,額外化合物可為吲哚胺2,3-二加氧酶(IDO)路徑抑制劑,諸如1-甲基色胺酸(1MT)、1-甲基色胺酸(1MT)、壞死抑素-1、吡哆醛異菸鹼醯基腙、依布硒啉(Ebselen)、5-甲基吲哚-3-甲醛、CAY10581 (一種抗IDO抗體)或小分子IDO抑制劑。IDO抑制可增強化學治療劑之功效。本文所揭示之治療方法亦可與輻射(例如,強度調變放射療法(IMRT))、幹細胞治療、外科手術或任何其他治療組合。   [0206] 此類額外化合物或治療可先於投與本文所揭示的重組融合多肽、編碼重組融合多肽之核酸、重組細菌或李斯特菌屬菌株、免疫原性組成物、醫藥組成物或疫苗,跟隨投與本文所揭示的重組融合多肽、編碼重組融合多肽之核酸、重組細菌或李斯特菌屬菌株、免疫原性組成物、醫藥組成物或疫苗,或與投與本文所揭示的重組融合多肽、編碼重組融合多肽之核酸、重組細菌或李斯特菌屬菌株、免疫原性組成物、醫藥組成物或疫苗同時。   [0207] 靶向免疫調節療法主要致力於共刺激性受體之活化,例如藉由使用靶向腫瘤壞死因子受體超家族之成員(包括4-1BB、OX40及GITR(糖皮質激素誘導之TNF受體相關))的促效劑抗體來進行。已證實在抗腫瘤及疫苗環境中調節GITR的可能性。促效劑抗體之另一目標為用於T細胞活化之共刺激性信號分子。靶向共刺激性信號分子可導致增強T細胞活化及促進更強效免疫反應。共刺激亦可幫助防止檢查點抑制產生的抑制影響及提高抗原特異性T細胞增殖。   [0208] 基於李斯特菌屬之免疫治療藉由誘導從頭產生浸潤及破壞腫瘤之腫瘤抗原特異性T細胞且藉由減低腫瘤微環境中免疫抑制調節性T細胞(Tregs)及骨髓衍生之抑制細胞(MDSC)的數目及活性來起作用。用於T細胞共抑制性或共刺激性受體(例如,檢查點抑制劑CTLA-4、PD-1、TIM-3、LAG3及共刺激劑CD137、OX40、GITR及CD40)的抗體(或其功能性片段)可具有與基於李斯特菌屬之免疫治療的協同作用。   [0209] 因此,一些方法可包含進一步投與包含免疫檢查點抑制劑拮抗劑之組成物,該免疫檢查點抑制劑拮抗劑諸如PD-1信號傳導路徑抑制劑、CD-80/86及CTLA-4信號傳導路徑抑制劑、T細胞膜蛋白質3 (TIM3)信號傳導路徑抑制劑、腺苷A2A受體(A2aR)信號傳導路徑抑制劑、淋巴細胞活化基因3 (LAG3)信號傳導路徑抑制劑、殺手免疫球蛋白受體(KIR)信號傳導路徑抑制劑、CD40信號傳導路徑抑制劑或任何其他抗原呈遞細胞/T細胞信號傳導路徑抑制劑。免疫檢查點抑制劑拮抗劑之實例包括抗PD-L1/PD-L2抗體或其片段、抗PD-1抗體或其片段、抗CTLA-4抗體或其片段或抗B7-H4抗體或其片段。舉例而言,抗PD-1抗體可以每2週5-10 mg/kg、每3週5-10 mg/kg、每3週1-2 mg/kg、每一週1-10 mg/kg、每2週1-10 mg/kg、每3週1-10 mg/kg或每4週1-10 mg/kg向個體投與。   [0210] 同樣,一些方法可進一步包含投與T細胞刺激劑,諸如與T細胞受體共刺激性分子、結合共刺激性分子之抗原呈遞細胞受體或TNF受體超家族之成員結合的抗體或其功能性片段。T細胞受體共刺激性分子可包含例如CD28或ICOS。結合共刺激性分子之抗原呈遞細胞受體可包含例如CD80受體、CD86受體或CD46受體。TNF受體超家族成員可包含例如糖皮質激素誘導之TNF受體(GITR)、OX40 (CD134受體)、4-1BB (CD137受體)或TNFR25。   [0211] 舉例而言,一些方法可進一步包含投與有效量的包含與T細胞受體共刺激性分子結合之抗體或其功能性片段或與結合共刺激性分子之抗原呈遞細胞受體結合之抗體或其功能性片段的組成物。抗體可為例如抗TNF受體抗體或其抗原結合片段(例如,TNF受體超家族成員,糖皮質激素誘導之TNF受體(GITR)、OX40 (CD134受體)、4-1BB (CD137受體)或TNFR25)、抗OX40抗體或其抗原結合片段或抗GITR抗體或其抗原結合片段。替代地,可投與其他促效性分子(例如,GITRL、GITRL之活性片段、含有GITRL之融合蛋白質、含有GITRL之活性片段的融合蛋白質、抗原呈遞細胞(APC)/T細胞促效劑、CD134或其配位體或片段、CD137或其配位體或片段、或誘導性T細胞共刺激物(ICOS)或配位體或其片段、或促效性小分子)。   [0212] 在一個具體實例中,一些方法可進一步包含投與抗CTLA-4抗體或其功能性片段及/或抗CD137抗體或其功能性片段。舉例而言,可在第一次給予重組融合多肽、編碼重組融合多肽之核酸、重組細菌或李斯特菌屬菌株、免疫原性組成物、醫藥組成物或疫苗之後約72小時時或在第一次給予重組融合多肽、編碼重組融合多肽之核酸、重組細菌或李斯特菌屬菌株、免疫原性組成物、醫藥組成物或疫苗之後約48小時時投與抗CTLA-4抗體或其功能性片段或抗CD137抗體或其功能性片段。抗CTLA-4抗體或其功能性片段或抗CD137抗體或其功能性片段可以例如約0.05 mg/kg及約5 mg/kg之劑量投與。重組李斯特菌屬菌株或包含重組李斯特菌屬菌株之免疫原性組成物可以例如約1 × 109 CFU之劑量投與。一些此類方法可進一步包含投與有效量的抗PD-1抗體或其功能性片段。   [0213] 用於評定癌症免疫治療之功效的方法為熟知的,且描述於例如Dzojic等人(2006)Prostate 66(8):831-838;Naruishi等人(2006)Cancer Gene Ther. 13(7):658-663,Sehgal等人(2006)Cancer Cell Int. 6:21)及Heinrich等人(2007)Cancer Immunol Immunother 56(5):725-730中,其中之每一者均以全文引用的方式併入本文中以達成所有目的。作為一個實例,對於前列腺癌,前列腺癌模型可為測試本文所揭示之方法及組成物,諸如TRAMP-C2小鼠模型、178-2 BMA細胞模型、PAIII腺癌細胞模型、PC-3M模型或任何其他前列腺癌模型。   [0214] 替代地或另外,可在人類個體中測試免疫治療,且可使用已知者監測功效。此類方法可包括例如直接量測CD4+及CD8+ T細胞反應,或量測疾病進展(例如,藉由測定腫瘤癌轉移之數目或大小,或監測疾病症狀,諸如咳嗽、胸部疼痛、體重減輕等等)。用於在人類個體中評定癌症免疫治療之功效的方法為熟知的,且描述於例如Uenaka等人(2007)Cancer Immun. 7:9及Thomas-Kaskel等人(2006)Int J Cancer 119(10):2428-2434中,其中之每一者均以全文引用的方式併入本文中以達成所有目的。 VI. 套組   [0215] 亦提供包含用於進行本文所揭示之方法的試劑的套組或包含本文所揭示之組成物、工具或器械的套組。   [0216] 舉例而言,此類套組可包含本文所揭示之重組融合多肽、本文所揭示的編碼重組融合多肽之核酸、本文所揭示之重組細菌或李斯特菌屬菌株、本文所揭示之免疫原性組成物、本文所揭示之醫藥組成物或本文所揭示之疫苗。此類套組可另外包含說明材料,其描述使用重組融合多肽、編碼該重組融合多肽之核酸、重組李斯特菌屬菌株、免疫原性組成物、醫藥組成物或疫苗以進行本文所揭示之方法。此類套組可視情況進一步包含施用器。儘管下文描述模型套組,但鑒於本發明揭示內容,其他適用套組之內容物將變得顯而易見。   [0217] 上文或下文引用之所有專利申請、網站、其他公開案、寄存編號及其類似物以全文引用的方式併入本文中以達成所有目的,其引用程度如同各個別物件特別且個別地指示為以引用的方式併入一般。若在不同時間序列之不同版本與寄存編號相關,則意謂在本申請案之有效申請日時與寄存編號相關之版本。有效申請日意謂若適用,實際申請日或提及寄存編號之優先權申請案之申請日中的較早者。同樣,若在不同時間公開公開案、網站或其類似物之不同版本,則除非另外指明,否則意謂在本申請案之有效申請日時最近公開之版本。除非另外特別指示,否則本發明之任何特徵、步驟、元件、具體例或態樣可與任何其他組合使用。儘管出於清楚及理解之目的已藉助於說明及實施例相當詳細地描述本發明,但顯而易見可在所附申請專利範圍之範疇內實踐某些變化及修改。 具體例之清單   [0218] 本文揭示之標的包括(但不限於)以下具體例:   1. 一種重組李斯特菌屬菌株,其包含有包含編碼融合多肽之第一開讀框的核酸,其中該融合多肽包含與HPV16抗原肽及HPV18抗原肽融合的含PEST之肽,其中該HPV16抗原肽及該HPV18抗原肽可操作地以串聯方式連接。   2. 如具體例1之重組李斯特菌屬菌株,其中,HPV16抗原肽為HPV16-E6抗原肽或HPV16-E7抗原肽,且其中,該HPV18抗原肽為HPV18-E6抗原肽或HPV18-E7抗原肽。   3. 如具體例1之重組李斯特菌屬菌株,其中,該HPV16抗原肽及該HPV18抗原肽彼此直接融合而無介入序列。   4. 如具體例1之重組李斯特菌屬菌株,其中,該HPV-16抗原肽及該HPV-18抗原肽經由肽連接子彼此連接。   5. 如具體例4之重組李斯特菌屬菌株,其中,該肽連接子包含SEQ ID NO:33-42中所闡述之連接子中的一或多者。   6. 如具體例1至5中任一者之重組李斯特菌屬菌株,其中,該HPV16抗原肽為HPV16-E7抗原肽,且該HPV18抗原肽為HPV18-E7抗原肽。   7. 如具體例6之重組李斯特菌屬菌株,其中,該HPV16-E7抗原肽包含與SEQ ID NO:96至少90%、95%、96%、97%、98%、99%或100%一致之序列;且/或其中,該HPV18-E7抗原肽包含與SEQ ID NO:98至少90%、95%、96%、97%、98%、99%或100%一致之序列。   8. 如具體例7之重組李斯特菌屬菌株,其中,編碼該HPV16-E7抗原肽的開讀框之區段包含與SEQ ID NO:95至少90%、95%、96%、97%、98%、99%或100%一致之序列 且編碼SEQ ID NO:96中所闡述之肽序列,且/或其中,編碼該HPV18-E7抗原肽的該開讀框之區段包含與SEQ ID NO:97至少90%、95%、96%、97%、98%、99%或100%一致之序列 且編碼SEQ ID NO:98中所闡述之肽序列。   9. 如具體例6至8中任一者之重組李斯特菌屬菌株,其中,包含該HPV16抗原肽及該HPV18抗原肽的該融合多肽之區段包含與以下序列中之任一者至少90%、95%、96%、97%、98%、99%或100%一致的序列:SEQ ID NO:100、102、104、106、108、110、112及114。   10. 如具體例9之重組李斯特菌屬菌株,其中,編碼包含該HPV16抗原肽及該HPV18抗原肽的該融合多肽之區段的該開讀框之區段包含與以下序列至少90%、95%、96%、97%、98%、99%或100%一致的序列:SEQ ID NO:99、101、103、105、107、109、111或113,且分別編碼以下中所闡述之序列:SEQ ID NO:100、102、104、106、108、110、112或114。   11. 如具體例1至5中任一者之重組李斯特菌屬菌株,其中,該HPV16抗原肽為HPV16-E6抗原肽,且該HPV18抗原肽為HPV18-E6抗原肽。   12. 如具體例1至5中任一者之重組李斯特菌屬菌株,其中,該HPV16抗原肽為HPV16-E6抗原肽,且該HPV18抗原肽為HPV18-E7抗原肽。   13. 如具體例1至5中任一者之重組李斯特菌屬菌株,其中,該HPV16抗原肽為HPV16-E7抗原肽,且該HPV18抗原肽為HPV18-E6抗原肽。   14. 如任一前述具體例之重組李斯特菌屬菌株,其中,該融合多肽進一步包含處於可操作地以串聯方式連接之該HPV16抗原肽及該HPV18抗原肽的N端及/或C端的一或多個肽標籤。   15. 如具體例14之重組李斯特菌屬菌株,其中,該一或多個肽標籤包含以下中之一或多者:3×FLAG標籤;2×FLAG標籤,6×His標籤;以及SIINFEKL標籤。   16. 如具體例15之重組李斯特菌屬菌株,其中,該融合多肽包含處於可操作地以串聯方式連接之該HPV16抗原肽及該HPV18抗原肽的N端的3×FLAG標籤及處於該等抗原肽之C端的SIINFEKL標籤。   17. 如具體例15之重組李斯特菌屬菌株,其中,該融合多肽包含處於可操作地以串聯方式連接之該HPV16抗原肽及該HPV18抗原肽的N端的SIINFEKL標籤及處於該等抗原肽之C端的3×FLAG標籤。   18. 如具體例15之重組李斯特菌屬菌株,其中,該融合多肽包含處於可操作地以串聯方式連接之該HPV16抗原肽及該HPV18抗原肽的C端的3×FLAG標籤及SIINFEKL標籤。   19. 如任一前述具體例之重組李斯特菌屬菌株,其中,該含PEST之肽處於該融合多肽之N端。   20. 如任一前述具體例之重組李斯特菌屬菌株,其中,該含PEST之肽為李斯特菌溶胞素O (LLO)蛋白或其片段或ActA蛋白或其片段。   21. 如具體例20之重組李斯特菌屬菌株,其中,該李斯特菌溶胞素O (LLO)蛋白或其片段為LLO之N端片段。   22. 如具體例21之重組李斯特菌屬菌株,其中,該LLO之N端片段具有SEQ ID NO 57-59中之任一者中所闡述的序列。   23. 如具體例20之重組李斯特菌屬菌株,其中,該含PEST之肽為該LLO蛋白或其片段且包含膽固醇結合域中之突變。   24. 如具體例23之重組李斯特菌屬菌株,其中,該LLO突變包含以下中之一者:(1) SEQ ID NO:55之殘基C484、W491或W492的取代 或當該LLO蛋白與SEQ ID NO:55最佳比對時的相對應取代;或(2)SEQ ID NO:55之殘基483-493內的1-11個胺基酸之缺失 或當該LLO蛋白與SEQ ID NO:55最佳比對時的相對應缺失。   25. 如任一前述具體例之重組李斯特菌屬菌株,其中,該核酸可操作地整合至李斯特菌屬基因組中。   26. 如具體例1至24中任一者之重組李斯特菌屬菌株,其中,該核酸處於附加型質體中。   27. 如任一前述具體例之重組李斯特菌屬菌株,其中,該核酸不賦予該重組李斯特菌屬菌株以抗生素抗性。   28. 如任一前述具體例之重組李斯特菌屬菌株,其中,該重組李斯特菌屬菌株經減毒。   29. 如任一前述具體例之重組李斯特菌屬菌株,其中,該重組李斯特菌屬菌株為營養缺陷型李斯特菌屬菌株。   30. 如具體例28或29之重組李斯特菌屬菌株,其中,該減毒之李斯特菌屬菌株在一或多種內源性基因中包含使該一或多種內源性基因失活之突變。   31. 如具體例30之重組李斯特菌屬菌株,其中,該一或多種內源性基因包含prfA 。   32. 如具體例30之重組李斯特菌屬菌株,其中,該一或多種內源性基因包含actA 。   33. 如具體例30之重組李斯特菌屬菌株,其中,該一或多種內源性基因包含actAinlB 。   34. 如具體例30之重組李斯特菌屬菌株,其中,該一或多種內源性基因包含actAdal ,及dat 。   35. 如任一前述具體例之重組李斯特菌屬菌株,其中,該核酸包含編碼代謝酶之第二開讀框。   36. 如具體例35之重組李斯特菌屬菌株,其中,該代謝酶為丙胺酸消旋酶或D-胺基酸轉胺酶。   37. 如任一前述具體例之重組李斯特菌屬菌株,其中,該融合多肽自hly 啟動子、prfA 啟動子、actA 啟動子或p60 啟動子表現。   38. 如具體例37之重組李斯特菌屬菌株,其中,該融合多肽自hly 啟動子表現。   39. 如任一前述具體例之重組李斯特菌屬菌株,其中,該重組李斯特菌屬菌株為重組單核球增多性李斯特菌菌株。   40. 如具體例1至19中任一者之重組李斯特菌屬菌株,其中,該重組李斯特菌屬菌株為包含prfA 之缺失或prfA中之失活突變的減毒之單核球增多性李斯特菌 菌株,其中該核酸處於附加型質體中且包含編碼D133V PrfA突變體蛋白之第二開讀框。   41. 如具體例1至19中任一者之重組李斯特菌屬菌株,其中,該重組李斯特菌屬菌株為包含actAdaldat 之缺失或actA、dal及dat中之失活突變的減毒之單核球增多性李斯特菌菌株,其中該核酸處於附加型質體中且包含編碼丙胺酸消旋酶或D-胺基酸轉胺酶之第二開讀框,且其中該含PEST之肽為LLO之N端片段。   42. 如具體例1至19中任一者之重組李斯特菌屬菌株,其中,重組李斯特菌屬菌株為包含actAinlB 之缺失或失活突變的減毒之單核球增多性李斯特菌菌株,其中該核酸經基因組整合,且其中該含PEST之肽為ActA蛋白或其片段。   43. 如任一前述具體例之重組李斯特菌屬菌株,其中,該重組李斯特菌屬菌株已經動物宿主繼代。   44. 如任一前述具體例之重組李斯特菌屬菌株,其中,該重組李斯特菌屬菌株能夠逃脫吞噬體。   45. 一種免疫原性組成物,其包含如任一前述具體例之重組李斯特菌屬菌株。   46. 如具體例45之免疫原性組成物,其中,該免疫原性組成物進一步包含佐劑。   47. 如具體例46之免疫原性組成物,其中,該佐劑包含顆粒球/巨噬細胞群落刺激因子(GM-CSF)蛋白、編碼GM-CSF蛋白之核苷酸分子、皂素QS21、單磷醯基脂質A、dtLLO或含未甲基化CpG之寡核苷酸。   48. 一種在個體中誘導針對腫瘤或癌症之免疫反應的方法,其包含向該個體投與具體例1至44中任一者之重組李斯特菌屬菌株或具體例45至47中任一者之免疫原性組成物。   49. 一種在個體中預防或治療腫瘤或癌症之方法,其包含向該個體投與具體例1至44中任一者之重組李斯特菌屬菌株或具體例45至47中任一者之免疫原性組成物。   50. 如具體例48至49中任一者之方法,其中,該方法進一步包含投與免疫檢查點抑制劑拮抗劑。   51. 如具體例50之方法,其中,該免疫檢查點抑制劑包含抗PD-1抗體或其抗原結合片段及/或抗CTLA-4抗體或其抗原結合片段。   52. 如具體例48至51中任一者之方法,其中,該方法進一步包含投與T細胞刺激劑。   53. 如具體例52之方法,其中,該T細胞刺激劑包含抗OX40抗體或其抗原結合片段或抗GITR抗體或其抗原結合片段。   54. 如具體例48至53中任一者之方法,其中,該腫瘤或癌症為子宮頸腫瘤或癌症、肛門腫瘤或癌症、頭頸部腫瘤或癌症或口咽腫瘤或癌症。   55. 如具體例54之方法,其中,該腫瘤或癌症為癌轉移。   56. 如具體例48至55中任一項之方法,其中,該腫瘤或癌症為HPV-16陽性。   57. 如具體例48至55中任一項之方法,其中,該腫瘤或癌症為HPV-18陽性。   58. 一種細胞庫,其包含一或多種具體例1至44中任一者之重組李斯特菌屬菌株。   59. 如具體例58之細胞庫,其中,該細胞庫為冷凍細胞庫或凍乾細胞庫。 序列之簡要說明   [0219] 隨附序列表中列出之核苷酸及胺基酸序列係使用核苷酸鹼基之標準字母縮寫及胺基酸之三字碼展示。核苷酸序列遵循在序列之5'端開始且正向行進(亦即,在各線中自左至右)至3'端之標準公約。僅展示各核苷酸序列之一條股,但互補股理解為藉由對所呈現股之任何參考而包括在內。胺基酸序列遵循在序列之胺基端開始且正向行進(亦即,在各線中自左至右)至羧基端之標準公約。 SIINFEKL標籤 DNA v.1 (SEQ ID NO:1): GCACGTAGTATAATCAACTTTGAAAAACTGTAATAA DNA v.2 (SEQ ID NO:2): GCACGTTCTATTATCAACTTCGAAAAACTATAATAA DNA v.3 (SEQ ID NO:3): GCCCGCAGTATTATCAATTTCGAAAAATTATAATAA DNA v.4 (SEQ ID NO:4): GCGCGCTCTATAATTAACTTCGAAAAACTTTAATAA DNA v.5 (SEQ ID NO:5): GCACGCTCCATTATTAACTTTGAAAAACTTTAATAA DNA v.6 (SEQ ID NO:6): GCTCGCTCTATCATCAATTTCGAAAAACTTTAATAA DNA v.7 (SEQ ID NO:7): GCACGTAGTATTATTAACTTCGAAAAGTTATAATAA DNA v.8 (SEQ ID NO:8): GCACGTTCCATCATTAACTTTGAAAAACTATAATAA DNA v.9 (SEQ ID NO:9): GCTCGCTCAATCATCAACTTTGAAAAGCTATAATAA DNA v.10 (SEQ ID NO:10): GCTCGCTCTATCATCAACTTCGAAAAATTGTAATAA DNA v.11 (SEQ ID NO:11): GCTCGCTCTATTATCAATTTTGAAAAATTATAATAA DNA v.12 (SEQ ID NO:12): GCTCGTAGTATTATTAATTTCGAAAAATTATAATAA DNA v.13 (SEQ ID NO:13): GCTCGTTCGATTATCAACTTCGAAAAACTGTAATAA DNA v.14 (SEQ ID NO:14): GCAAGAAGCATCATCAACTTCGAAAAACTGTAATAA DNA v.15 (SEQ ID NO:15): GCGCGTTCTATTATTAATTTTGAAAAATTATAATAA 蛋白質(SEQ ID NO:16): ARSIINFEKL 3×FLAG標籤 DNA v.1 (SEQ ID NO:17): GATTATAAAGATCATGACGGAGACTATAAAGACCATGACATTGATTACAAAGACGACGATGACAAA DNA v.2 (SEQ ID NO:18): GACTATAAAGACCACGATGGCGATTATAAAGACCATGATATTGACTACAAAGATGATGATGATAAG DNA v.3 (SEQ ID NO:19): GATTATAAAGATCATGATGGCGACTATAAAGATCATGATATCGATTACAAAGATGACGATGACAAA DNA v.4 (SEQ ID NO:20): GACTACAAAGATCACGATGGTGACTACAAAGATCACGACATTGATTATAAAGACGATGATGACAAA DNA v.5 (SEQ ID NO:21): GATTACAAAGATCACGATGGTGATTATAAGGATCACGATATTGATTACAAAGACGACGACGATAAA DNA v.6 (SEQ ID NO:22): GATTACAAAGATCACGATGGCGATTACAAAGATCATGACATTGACTACAAAGACGATGATGATAAA DNA v.7 (SEQ ID NO:23): GATTACAAGGATCATGATGGTGATTACAAAGATCACGATATCGACTACAAAGATGATGACGATAAA DNA v.8 (SEQ ID NO:24): GACTACAAAGATCATGATGGTGATTACAAAGATCATGACATTGATTATAAAGATGATGATGACAAA DNA v.9 (SEQ ID NO:25): GATTATAAAGACCATGATGGTGATTATAAGGATCATGATATCGATTATAAGGATGACGACGATAAA DNA v.10 (SEQ ID NO:26): GATTATAAAGATCACGATGGCGATTATAAAGACCACGATATTGATTATAAAGACGACGATGACAAA DNA v.11 (SEQ ID NO:27): GACTATAAAGACCACGATGGTGATTATAAAGATCACGACATCGACTACAAAGACGATGATGATAAA DNA v.12 (SEQ ID NO:28): GACTACAAAGATCACGACGGCGATTATAAAGATCACGATATTGACTATAAAGATGACGATGATAAA DNA v.13 (SEQ ID NO:29): GATTATAAAGACCATGATGGAGATTACAAAGATCATGATATTGACTATAAAGACGACGACGATAAA DNA v.14 (SEQ ID NO:30): GATTATAAAGATCACGATGGTGACTACAAAGATCACGATATCGATTATAAAGACGATGACGATAAA DNA v.15 (SEQ ID NO:31): GACTACAAAGATCACGATGGTGATTATAAAGACCATGATATTGATTACAAAGATGATGATGACAAA 蛋白質(SEQ ID NO:32): DYKDHDGDYKDHDIDYKDDDDK 肽連接子 肽連接子v.1 (SEQ ID NO:33): (GAS)n 肽連接子v.2 (SEQ ID NO:34): (GSA)n 肽連接子v.3 (SEQ ID NO:35): (G)n ;n = 4-8 肽連接子v.4 (SEQ ID NO:36): (GGGGS)n ;n = 1-3 肽連接子v.5 (SEQ ID NO:37): VGKGGSGG 肽連接子v.6 (SEQ ID NO:38): (PAPAP)n 肽連接子v.7 (SEQ ID NO:39): (EAAAK)n ;n=1-3 肽連接子v.8 (SEQ ID NO:40): (AYL)n 肽連接子v.9 (SEQ ID NO:41): (LRA)n 肽連接子v.10 (SEQ ID NO:42): (RLRA)n PEST樣序列 PEST樣序列v.1 (SEQ ID NO:43): KENSISSMAPPASPPASPKTPIEKKHADEIDK PEST樣序列v.2 (SEQ ID NO:44): KENSISSMAPPASPPASPK PEST樣序列v.3 (SEQ ID NO:45): KTEEQPSEVNTGPR PEST樣序列v.4 (SEQ ID NO:46): KESVVDASESDLDSSMQSADESTPQPLK PEST樣序列v.5 (SEQ ID NO:47): KSEEVNASDFPPPPTDEELR PEST樣序列v.6 (SEQ ID NO:48): RGGRPTSEEFSSLNSGDFTDDENSETTEEEIDR PEST樣序列v.7 (SEQ ID NO:49): KQNTASTETTTTNEQPK PEST樣序列v.8 (SEQ ID NO:50): KQNTANTETTTTNEQPK PEST樣序列v.9 (SEQ ID NO:51): RSEVTISPAETPESPPATP PEST樣序列v.10 (SEQ ID NO:52): KASVTDTSEGDLDSSMQSADESTPQPLK PEST樣序列v.11 (SEQ ID NO:53): KNEEVNASDFPPPPTDEELR PEST樣序列v.12 (SEQ ID NO:54): RGGIPTSEEFSSLNSGDFTDDENSETTEEEIDR LLO蛋白 LLO蛋白v.1 (SEQ ID NO:55):LLO蛋白v.2 (SEQ ID NO:56):N端截短LLO蛋白v,1 (SEQ ID NO:57):N端截短LLO蛋白v.2 (SEQ ID NO:58):N端截短LLO蛋白v.3 (SEQ ID NO:59):編碼N端截短LLO蛋白v.3之核酸(SEQ ID NO:60):ActA蛋白 ActA蛋白v.1 (SEQ ID NO:61)ActA蛋白v.2 (SEQ ID NO:62)ActA片段v.1 (SEQ ID NO:63)ActA片段v.2 (SEQ ID NO:64)ActA片段v.3 (SEQ ID NO:65)ActA片段v.4 (SEQ ID NO:66)ActA片段v.5 (SEQ ID NO:67)編碼ActA片段v.5之核酸(SEQ ID NO:68)ActA片段v.6 (SEQ ID NO:69)ActA片段v.7 (SEQ ID NO:70)編碼ActA片段v.7之核酸(SEQ ID NO:71)與Hly信號肽融合之ActA片段(SEQ ID NO:72)ActA取代(SEQ ID NO:73)LLO突變 LLO之膽固醇結合域(SEQ ID NO:74)來自NY-ESO-1之HLA-A2限制性抗原決定基(SEQ ID NO:75) DalDat Lm 丙胺酸消旋酶(SEQ ID NO:76) Lm D-胺基酸轉胺酶(SEQ ID NO:77)編碼Lm 丙胺酸消旋酶之核酸(SEQ ID NO:78)編碼Lm D-胺基酸轉胺酶之核酸(SEQ ID NO:79) PrfA 野生型PrfA (SEQ ID NO:80)編碼野生型PrfA之核酸(SEQ ID NO:81)D133V PrfA (SEQ ID NO:82)編碼D133V PrfA之核酸(SEQ ID NO:83)4×甘胺酸連接子DNA序列 G1 (SEQ ID NO:84)G2 (SEQ ID NO:85)G3 (SEQ ID NO:86)G4 (SEQ ID NO:87)G5 (SEQ ID NO:88)G6 (SEQ ID NO:89)G7 (SEQ ID NO:90)G8 (SEQ ID NO:91)G9 (SEQ ID NO:92)G10 (SEQ ID NO:93)G11 (SEQ ID NO:94)雙重HPV插入序列 編碼16 E7之核酸(SEQ ID NO:95)16 E7 (SEQ ID NO:96)編碼18 E7之核酸(SEQ ID NO:97)18 E7 (SEQ ID NO:98)編碼HPV16 E7-HPV18E7插入物之核酸(SEQ ID NO:99)HPV16 E7-HPV18E7插入物(SEQ ID NO:100)編碼16 E7-4×Gly-18 E7之核酸(SEQ ID NO:101)16 E7-4×Gly-18 E7 (SEQ ID NO:102)編碼16 E7-18 E7-3×FLAG之核酸(SEQ ID NO:103)16 E7-18 E7-3×FLAG (SEQ ID NO:104)編碼16 E7-4×Gly-18 E7-3×FLAG之核酸(SEQ ID NO:105)16 E7-4×Gly-18 E7-3×FLAG (SEQ ID NO:106)編碼16 E7-18 E7-SIINFEKL之核酸(SEQ ID NO:107)16 E7-18 E7-SIINFEKL (SEQ ID NO:108)編碼16 E7-4×Gly-18 E7-SIINFEKL之核酸(SEQ ID NO:109)16 E7-4×Gly-18 E7-SIINFEKL (SEQ ID NO:110)編碼16 E7-18 E7-3×FLAG-SIINFEKL之核酸(SEQ ID NO:111)16 E7-18 E7-3×FLAG-SIINFEKL (SEQ ID NO:112)編碼16 E7-4×Gly-18 E7-3×FLAG-SIINFEKL之核酸(SEQ ID NO:113)16 E7-4×Gly-18 E7-3×FLAG-SIINFEKL (SEQ ID NO:114)dtLLO輔助序列 解毒化李斯特菌溶胞素O (dtLLO) (SEQ ID NO:115)實施例 實施例1. 在AXAL之2期研究GOG-0265中,十二個月總存活率與基因型之關係   [0220] GOG-0265為單一組別、開放標記之2期多中心研究(NCT01266460),其被設計成在標準西蒙兩期設計(standard Simon two-stage design)中評估axalimogene filolisbac (AXAL)在患有持續或復發轉移性(鱗狀或非鱗狀細胞)子宮頸癌(PRmCC)之患者中的安全性及活性。AXAL為活減毒之單核球增多性李斯特菌(Lm ),其經生物工程改造以分泌與李斯特菌溶胞素O之截短片段(tLLO)融合的HPV16 E7蛋白質。AXAL靶向經HPV轉型之細胞,從而在腫瘤微環境中誘導抗腫瘤T細胞免疫性且破壞免疫耐受性。研究之第一階段包括六名患者之安全性導入(run-in)且有26名患者入選。第二階段有24名患者入選。   [0221] 對入選GOG-0265之50名患者中的36人之樣品進行HPV基因分型。在患者中的4人中,DNA太差而無法進行基因分型,且在1名患者中,DNA量不足。對患者中之9人未能獲得DNA。在患者中之4人中未偵測到HPV。在剩餘32名患者中,14人對α9家族之HPV為陽性(12名患者對HPV16為陽性;2名患者對HPV33為陽性),16名患者對α7家族之HPV為陽性(12名患者對HPV18為陽性;4名患者對HPV45為陽性),且2名患者對α7家族之HPV及α9家族之HPV為陽性(1名患者對HPV16及HPV18兩者陽性,且1名患者對HPV16及HPV45兩者陽性)。   [0222][0223] 總體而言,在所有50名患者中之12個月存活率為38% (19/50),對α9家族之HPV (HPV16或HPV33)測試為陽性之患者的12個月存活率為57% (14名患者中之8人),對α7家族之HPV (HPV18或HPV45)測試為陽性之患者的12個月存活率為38% (16名患者中之6人),且確認為HPV陽性(亦即,去除HPV陰性患者或未能獲得DNA樣品或可獲得較差品質或不足DNA樣品的患者)為44% (36名患者中之15人)。   [0224] 基於入選研究中之患者(n=50)的方案定義預後因子,將預期12個月存活率為25%。將此25%之12個月總存活率與在總研究群體中實際上觀測到的38%之12個月總存活率相比較,用AXAL處理引起預期12個月總存活率增加52%。   [0225] AXAL經生物工程改造以分泌來自HPV16之E7蛋白質。對HPV16呈陽性之患者的12個月總存活率為57%,其顯著地高於預期25%總存活率,與AXAL誘導針對經HPV16轉型之細胞的抗腫瘤免疫反應一致。然而,出乎意料地,儘管事實上HPV16 E7蛋白質與HPV18 E7蛋白質僅42%一致,但對HPV16未測試為陽性而對HPV18或HPV45 (並非HPV16或甚至不與HPV16處於同一HPV家族中之HPV類型)測試為陽性之患者的12個月總存活率為38%,其比25%之預期12個月總存活率增加52%。 實施例2. 構築Lm-LLO-HPV16 E7-HPV18 E7   [0226] 因為HPV16及HPV18僅極少見於同一患者中,所以先前並未意欲將HPV16 E7及HPV18 E7蛋白質兩者一起放在單一免疫治療載體中。然而,鑒於實施例1中所示的出乎意料之結果,將藉由以下來產生表現HPV16 E7及HPV18 E7兩者之李斯特菌屬菌株,將SEQ ID NO:99、101、103、105、107、109、111及113中之任一者接合至處於編碼tLLO蛋白之基因下游且與該基因融合的pGG55或基於pGG55之質體中,該pGG55或基於pGG55之質體的表現由hly啟動子驅動。SEQ ID NO:99、101、103、105、107、109、111及113中所闡述之插入物及其相應編碼之肽提供於表2中。   [0227][0228] 所得質體將電穿孔至適合之李斯特菌屬菌株中。一種適合之李斯特菌屬菌株為缺乏Lm 轉錄激活子PrfA之菌株XFL-7、基於XFL-7之李斯特菌屬菌株或缺乏prfA 之類似李斯特菌屬菌株。HPV18 E7蛋白質之較小尺寸(105個胺基酸;SEQ ID NO:96)及HPV16 E7蛋白質之較小尺寸(97個胺基酸;SEQ ID NO:98)使得有可能產生活減毒之單核球增多性李斯特菌(Lm ),其經生物工程改造以即使在受平台大小限制的情況下,仍分泌以串聯方式與HPV16 E7及HPV18 E7融合之tLLO蛋白。   [0229] 其他適合之李斯特菌屬菌株描述於例如WO-2009/143167、WO-2016/011353、WO-2016/011320、WO-2010/102140、WO-2011/060260、WO-2013/025925、WO-2015/130810、WO-2015/167748、WO-2012/138377、WO-2012/125551、WO-2016/126876、WO-2013/138337、WO-1996-014087、WO-2006-036550、WO-2008/140812、WO-1999/025376、WO-2001/072329、WO-2007/106476、WO-2007/130455、WO-2008/109155、WO-2010/008782、WO-2004-062597、WO-2015/164121、WO-2015/126921、WO-2015/134722、WO-2016/061182、WO-2016/011362、WO-2016/100924、WO-2016/011357、WO-2016/061277、WO-2016/100929、WO-2016/141121、WO-2016/126878、WO-2016/183361、WO-2016/191545、WO-2006/017856、WO-2008/130551、US-2011/0129499、US-2012/0135033、US-2014/0234370、US-2014/0335120、US-2015/0098964、US-2015/0366955、US-2016/0361401、US-6,051,237、US-6,099,848、US-6,767,542、US-6,855,320、US-7,635,479、US-7,662,396、US-7,794,729、US-7,820,180、US-8,114,414、US-8,337,861、US-8,771,702、US-8,778,329、US-8,791,237、US-9,012,141、US-9,017,660、US-9,017,660、US-9,226,958、US-9,463,227以及PCT申請案第PCT/US2016/051748、PCT/US2016/052322及PCT/US2016/057220號,其藉此以引用之方式併入本文中。 實施例3. ADXS-DUAL (ADXS-602)之活體內實驗   [0230] 使用鼠類HPV+ TC-1腫瘤模型來測試ADXS-DUAL (ADXS-602)控制腫瘤生長及延長動物存活期之能力,該ADXS-DUAL (ADXS-602)表現含有來自HPV-16及HPV-18兩者之E7蛋白質的融合蛋白質。TC-1腫瘤細胞來源於C57BL/6肺上皮細胞系,該細胞系經HPV 16之E6及E7不朽化且經活化ras致癌基因轉型。為了確立原發性腫瘤,將1 × 105個TC-1細胞皮下注射在C57BL/6小鼠之側腹後部中,且使其成長5天,隨後開始治療。帶有腫瘤之小鼠以每週時間間隔接受1 × 108 CFU ADXS-602、1 x 108 CFU XFL7 (缺乏腫瘤相關抗原的ADXS-602之親本菌株)或PBS,持續總計3次給藥(參見圖1)。每週兩次量測腫瘤體積[(長度 × 寬度 × 寬度)/ 2]。殺死腫瘤體積接近2000 mm3之小鼠。   [0231] 當與PBS及XFL-7 (空Lm)載體相比時,ADXS-DUAL展示顯著腫瘤控制(圖2)及存活率(圖3)反應。DEFINITIONS [0015] The terms "protein", "polypeptide" and "peptide" as used interchangeably herein are meant to mean polymeric acids of any length, including both coding and non-coding amino acids, and chemically or Amino acid modified or derivatized in a biochemical manner. The term includes polymers that have been modified, such as polypeptides having a modified peptide backbone. [0016] The protein is said to have "N-terminal" and "C-terminal". The term "N-terminus" relates to the origin of a protein or polypeptide capped with an amino acid having a free amine group (-NH2). The term "C-terminus" relates to the end of an amino acid chain (protein or polypeptide) terminated by a free carboxyl group (-COOH). [0017] The term "fusion protein" refers to a protein comprising two or more than two peptides joined together by peptide bonds or other chemical bonds. Peptides can be directly linked together by peptide bonds or other chemical bonds. For example, a chimeric molecule can be recombinantly expressed in the form of a single-stranded fusion protein. Alternatively, the peptides may be joined together by a "linker", such as one or more amino acids between two or more than two peptides or another suitable linker. [0018] The terms "nucleic acid" and "polynucleotide" as used interchangeably herein are meant to refer to nucleotides of polymeric form of any length, including ribonucleotides, deoxyribonucleotides or the like or Modified form. It includes single, double or multiple strands of DNA or RNA, genomic DNA, cDNA, DNA-RNA hybrids and contains purine bases, pyrimidine bases or other natural, chemically modified, biochemically modified, non-natural or derived a polymer of nucleotide bases. [0019] The nucleic acid is said to have a "5' end" and a "3' end" because the single nucleotide is reacted to produce an oligonucleotide such that a single nucleotide pentose ring is 5' phosphate. The ester is attached in one direction via a phosphodiester bond to the 3' oxygen of its adjacent mononucleotide pentose ring. If the 5' phosphate of the oligonucleotide is not linked to the 3' oxygen of the mononucleotide pentose ring, the end of the oligonucleotide is referred to as the "5' end". If the 3' oxygen of the oligonucleotide is not linked to the 5' phosphate of another mononucleotide pentose ring, the end of the oligonucleotide is referred to as the "3' end". Even within the larger oligonucleotide, the nucleic acid sequence can be said to have a 5' end and a 3' end. In a linear or circular DNA molecule, a discontinuous element is said to be "upstream" or 5' of the "downstream" or 3' element. [0020] "Codon optimization" refers to a method of modifying a nucleic acid sequence to confer enhanced expression in a particular host cell by replacing the native with the more frequently or most frequently used codons in the gene of the host cell. At least one codon of the sequence is carried out while maintaining the native amino acid sequence. For example, a polynucleotide encoding a fusion polypeptide can be modified to replace a codon that is more frequently used in a given Listeria cell or any other host cell than in a naturally occurring nucleic acid sequence. The codon usage table is readily available, for example, in the "Cryptography Database". The best codon used by Listeria monocytogenes for each amino acid is shown in US 2007/0207170, which is hereby incorporated by reference in its entirety for all purposes. These tables can be modified in a number of ways. See Nakamura et al. (2000)Nucleic Acids Research 28:292, which is hereby incorporated by reference in its entirety for all purposes. Computer algorithms for codon-optimizing specific sequences for expression in a particular host are also available (see, for example, Gene Forge). [0021] The term "plastid" or "vector" includes any known delivery vehicle, including bacterial delivery vehicles, viral vector delivery vehicles, peptide immunotherapy delivery vehicles, DNA immunotherapy delivery vehicles, episomal plastids, integrative profiles. Body or phage vector. The term "vector" refers to a construct that is capable of delivering in a host cell and, where appropriate, one or more fusion polypeptides. [0022] The term "additional plastid" or "exochromosomal" refers to a physical separation from chromosomal DNA (ie, episomal or extrachromosomal and not integrated into the host cell genome) and independent of chromosomal DNA. A replicating nucleic acid vector. The plastids can be linear or circular and can be single or double stranded. Additional plastids may be retained in multiple copies of the host cell cytoplasm (eg, Listeria), thereby causing any gene of interest to be amplified in the episomal body. [0023] The term "genomic integration" refers to the introduction of a nucleic acid into a cell such that the nucleotide sequence is integrated into the genome of the cell and can be inherited by its progeny. Any protocol can be used to stably incorporate nucleic acids into the genome of a cell. [0024] The term "stable maintenance" refers to the maintenance of a nucleic acid molecule or plastid in the absence of selection (eg, antibiotic selection) for at least 10 generations without detectable loss. For example, the time period can be at least 15, 20, at least 25, at least 30, at least 40, at least 50, at least 60, at least 80, at least 100, at least 150, at least 200, At least 300 generations or at least 500 generations. Stable maintenance can refer to nucleic acid molecules or plastids in cellsIn vitro (for example, in culture) maintain stability, maintain stability in vivo, or both. [0025] An "open reading frame" or "ORF" is a portion of DNA containing a base sequence that can potentially encode a protein. As an example, the ORF can be located between the start coding sequence of the gene (start codon) and the stop codon sequence (stop codon). A "promoter" is a regulatory region of DNA that typically comprises a TATA(R) capable of directing RNA polymerase II to initiate RNA synthesis at the appropriate transcription initiation site of a particular polynucleotide sequence. The promoter may additionally contain additional regions that affect the rate of transcription initiation. The promoter sequences disclosed herein modulate the transcription of operably linked polynucleotides. The promoter may be in one or more of the cell types disclosed herein (eg, eukaryotic cells, non-human mammalian cells, human cells, rodent cells, pluripotent cells, single cell stage embryos, differentiated cells, or a combination thereof) Active. The promoter may be, for example, a constitutively active promoter, a conditional promoter, an inducible promoter, a time-restricted promoter (eg, a developmentally regulated promoter), or a sterically restricted promoter (eg, cell-specific or tissue-specific) Promoter). Examples of promoters can be found, for example, in WO 2013/176772, which is incorporated herein by reference in its entirety. [0027] "Operably linked" or "operably connected" means that two or more components (eg, a promoter and another sequence element) are joined in such a way that both components function properly and allow such At least one of the components may be capable of mediating functions applied to at least one of the other components. For example, a promoter can be operably linked to a coding sequence if the promoter controls the level of transcription of the coding sequence in response to the presence or absence of one or more transcriptional regulators. An operably linked sequence can include such sequences that are adjacent to each other or such sequences that are in trans-acting (eg, regulatory sequences can function at intervals to control transcription of the coding sequence). [0028] A "sequence identity" or "consistency" reference in the context of two polynucleotide or polypeptide sequences, the same residues in the two sequences when the alignment is maximized within the specified comparison window . When reference proteins are used to use percent sequence identity, it is often confirmed that the inconsistent residue positions differ in conservative amino acid substitutions in which the amino acid residues are substituted with other chemical properties (such as charge or hydrophobicity). Amino acid residues and therefore do not alter the functional properties of the molecule. When the sequence differs by conservative substitutions, the percent sequence identity can be adjusted upwards to correct for the conservative nature of the substitution. The difference is that such conservatively substituted sequences are said to have "sequence similarity" or "similarity." The manner in which this adjustment is made is well known to those skilled in the art. This typically involves scoring conservative substitutions as partial but not all mismatches, thereby increasing the percent sequence identity. Thus, for example, when a score of 1 is given for a consensus amino acid and a score of 0 is given for a non-conservative substitution, a score between 0 and 1 is given for a conservative substitution. The score for conservative substitution is calculated, for example, as implemented in the program PC/GENE (Intelligenetics, Mountain View, California). [0029] "Sequence Consistency Percent" refers to a value (the maximum number of perfectly matched residues) determined by comparing two optimal alignment sequences within a comparison window, wherein the polynucleotide sequence portion of the comparison window Additions or deletions (i.e., gaps) may be included as compared to a reference sequence for optimal alignment of two sequences (which does not include additions or deletions). The percentage is calculated by measuring the number of positions of a consensus nucleic acid base or an amino acid residue in two sequences, obtaining the number of matching positions, dividing the number of matching positions by the total number of positions in the comparison window and the result Multiply by 100 to get the percent sequence identity. Unless otherwise stated (eg, a shorter sequence includes a joined heterologous sequence), the comparison window is the full length of the shorter of the two sequences being compared. [0030] Unless otherwise stated, sequence identity/similarity values refer to values obtained using GAP Version 10 using the following parameters: % identity of nucleotide sequences and % similarity using gap weights of 50 and length weights of 3, and Nwsgapdna.cmp scoring matrix; % identity and similarity % of amino acid sequences use gap weight 8 and length weight 2, and BLOSUM62 scoring matrix; or any equivalent procedure thereof. "Equivalent procedure" includes producing an alignment with a uniform nucleotide or amino acid residue match for any two sequences in question and consistent with the sequence when compared to the corresponding alignment generated by GAP Version 10. Any sequence comparison procedure for a consistent percentage of sex. [0031] The term "conservative amino acid substitution" refers to the replacement of an amino acid typically present in a sequence with a different amino acid of similar size, charge or polarity. Examples of conservative substitutions include the substitution of a non-polar (hydrophobic) residue such as isoleucine, valine or leucine to another non-polar residue. Likewise, examples of conservative substitutions include the substitution of one polar (hydrophilic) residue for another, such as between arginine and lysine, between glutamine and aspartame, or between glycine and Between the serines. In addition, substitution of a basic residue such as an amino acid, arginine or histidine for another, or substitution of an acidic residue such as aspartic acid or glutamic acid for another acidic residue is conservative Replace the additional examples. Examples of non-conservative substitutions include the substitution of non-polar (hydrophobic) amino acid residues such as isoleucine, valine, leucine, alanine or methionine to such as cysteine, bran A polar (hydrophilic) residue of an amine, glutamic acid or lysine and/or a polar residue substituted with a non-polar residue. A typical amino acid classification is outlined below.[0032] A "homologous" sequence (eg, a nucleic acid sequence) refers to a sequence that is identical or substantially similar to a known reference sequence such that it is at least 50%, at least 55%, at least 60%, at least with a known reference sequence. 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99% or 100% identical. [0033] The term "wild type" refers to an entity having a structure and/or activity as seen in a normal (relative to a mutated, ill, altered or the like) state or situation. Wild-type genes and polypeptides are often present in a variety of different forms, such as dual genes. [0034] The term "isolated" with respect to proteins and nucleic acids means that the protein and nucleic acid are relatively purified with respect to other bacteria, viruses or cellular components normally present in situ, up to and including the protein and the polynucleotide. A substantially pure preparation. The term "isolated" also includes those that do not have a naturally occurring counterpart, have been chemically synthesized and are therefore substantially free of contamination by other proteins or nucleic acids, or have been associated with most of their other cellular components (eg, other cells) Proteins and nucleic acids isolated or purified by proteins, polynucleotides or cellular components). [0035] An "exogenous" or "heterologous" molecule or sequence is a molecule or sequence that is not normally expressed in a cell or that is not normally present in the cell in that form. It is usually present to include the specific developmental stages of the cell and the presence of environmental conditions. For example, an exogenous or heterologous molecule or sequence may comprise a mutated version of a corresponding endogenous sequence within a cell, or may comprise a sequence corresponding to an endogenous sequence within a cell but in a different form (ie, , not in the chromosome). An exogenous or heterologous molecule or sequence in a particular cell may also be a molecule or sequence derived from a species different from the reference species of the cell or from a different organism within the same species. For example, in the case of a Listeria strain exhibiting a heterologous polypeptide, the heterologous polypeptide may be a polypeptide that is not native or endogenous to the Listeria strain, and is typically not expressed by the Listeria strain. a polypeptide derived from a source other than the Listeria strain, derived from a polypeptide of a different organism within the same species. In contrast, an "endogenous" molecule or sequence or "native" molecule or sequence is a molecule or sequence that is normally present in a particular cell in that form at a particular developmental stage under particular environmental conditions. [0037] The term "variant" refers to an amino acid or nucleic acid sequence (or organism or tissue) (eg, a splice variant) that differs from most populations but is still sufficiently similar to one of the common modes considered to be one of them. [0038] The term "isotope" refers to a form of a molecule (eg, a protein) that differs only slightly from another isoform or pattern (eg, of the same protein). For example, a protein isoform can be produced by a different but related gene, which can be produced by the same gene by alternative splicing, or it can be produced by a single nucleotide polymorphism. [0039] When referring to a protein, the term "fragment" means a protein that is shorter than a full length protein or has fewer amino acids. When referring to a nucleic acid, the term "fragment" means a nucleic acid that is shorter or has fewer nucleotides than the full length nucleic acid. The fragment may be, for example, an N-terminal fragment (i.e., one portion of the C-terminus of the protein is removed), a C-terminal fragment (i.e., one portion of the N-terminus of the protein is removed) or an internal fragment. Fragments can also be, for example, functional fragments or immunogenic fragments. [0040] When referring to a protein, the term "analog" means a protein that differs from a naturally occurring protein by a difference in a conserved amino acid, a modification that does not affect the amino acid sequence, or both. [0041] The term "functional" refers to the innate ability of a protein or nucleic acid (or a fragment, isoform or variant thereof) to exhibit biological activity or function. Such biological activity or function can include, for example, the ability to elicit an immune response when administered to an individual. Such biological activity or function can also include, for example, binding to an interaction partner. In the case of functional fragments, isoforms or variants, such biological functions may actually change (eg, with respect to their specificity or selectivity), but retain substantial biological function. [0042] The term "immunogenicity" or "immunogenic" refers to the innate ability of a molecule (eg, a protein, nucleic acid, antigen, or organism) to elicit an immune response in an individual when administered to an individual. . Immunogenicity can be measured, for example, by the greater number of antibodies relative to the molecule, the greater diversity of antibodies relative to the molecule, the greater number of T cells specific for the molecule, the cytotoxicity to the molecule or The helper T cell response is larger and its similar metrics. [0043] The term "antigen" is used herein to mean when placed in contact with an individual or organism (eg, when present in an individual or organism or when detected by an individual or organism), causing an individual or A substance in an organism that detects an immune response. The antigen can be, for example, a lipid, a protein, a carbohydrate, a nucleic acid, or a combination and variations thereof. For example, "antigenic peptide" refers to a peptide that, when present in or detected by an individual or organism, causes an established immune response in the individual or organism. For example, such "antigenic peptides" may encompass proteins that are loaded onto and present on MHC class I and/or class II molecules on the surface of a host cell, and that are immune cells from the host Identification or detection, thereby creating an immune response against the protein. Such immune responses can also be extended to other cells in the host, such as ill cells (eg, tumors or cancer cells) that exhibit the same protein. The term "antigenic determinant" refers to a site on an antigen that is recognized by the immune system (eg, bound to an antibody). An epitope can be formed by an adjacent amino acid or a non-adjacent amino acid that is ligated by a tertiary folding of one or more proteins. An epitope (also known as a linear epitope) formed by an adjacent amino acid is typically retained upon exposure to a denaturing solvent, while an epitope determined by tertiary folding (also known as a conformational epitope) is typically Loss when treated with a denaturing solvent. An epitope typically comprises at least 3, and more typically at least 5 or 8-10 amino acids in a unique spatial configuration. Methods for determining the spatial configuration of an epitope include, for example, x-ray crystallography and 2-dimensional nuclear magnetic resonance. See, for example, Epitope Mapping Protocols, Methods in Molecular Biology, Vol. 66, edited by Glenn E. Morris, (1996), which is incorporated herein by reference in its entirety for all purposes. [0045] The term "mutation" refers to any change in the structure of a gene or protein. For example, a mutation can result from deletion, insertion, substitution, or rearrangement of a chromosome or protein. "Insert" alters the number of nucleotides in a gene or the number of amino acids in a protein by adding one or more additional nucleotides or amino acids. "Deletion" alters the number of nucleotides in a gene or the number of amino acids in a protein by reducing one or more additional nucleotides or amino acids. [0046] A "frame shift" mutation in DNA occurs when a nucleotide is added or the reading frame of the altered gene is lost. The reading frame consists of a group of 3 bases each encoding an amino acid. The in-frame transfer mutation shifts the grouping of these bases and alters the encoding of the amino acid. The resulting protein is usually non-functional. Insertions and deletions can each be a transfer mutation in the reading frame. [0047] A "missing" mutation or substitution refers to a change in an amino acid of a protein or a point mutation in a single nucleotide that causes a change in the encoded amino acid. A point mutation in a single nucleotide that causes an amino acid change is a "non-synonymous" substitution in the DNA sequence. Non-synonymous substitutions can also cause "nonsense" mutations in which the codon is changed to an early stop codon that causes the resulting protein to be truncated. In contrast, a "synonymous" mutation in DNA is a mutation that does not alter the amino acid sequence of the protein (due to degeneracy of the code). [0048] The term "somatic mutation" includes genetic alterations obtained by cells other than germ cells (eg, sperm or eggs). Such mutations can be transmitted to the progeny of the mutant cell during cell division but are not heritable. In contrast, reproductive mutations occur in germ cell lines and can be passed on to the next generation of offspring. [0049] The term "in vitro" refers to an artificial environment and processes or reactions that occur within an artificial environment (eg, a test tube). [0050] The term "in vivo" refers to a natural environment (eg, a cell or organism or body) and processes or reactions that occur within the natural environment. [0051] The composition or method of "comprising" or "comprising" one or more of the recited elements may include other elements not specifically described. For example, a "contained" or "included" protein composition can contain the protein alone or in combination with other ingredients. [0052] A range of specified values includes all integers within the range or defining the range, as well as sub-ranges defined by integers within the range. [0053] Unless otherwise apparent from the context, the term "about" encompasses a value within the standard measurement error margin (eg, SEM) of the stated value or ± 0.5%, 1%, 5%, or 10% relative to the specified value. Change. The singular articles "a", "an", "the" For example, the term "an antigen" or "at least one antigen" can include a plurality of antigens, including mixtures thereof. [0055] Statistically significant means p ≤ 0.05. I. Overview [0056] Provided herein are recombinant fusion polypeptides comprising an HPV 16 antigen peptide and an HPV 18 antigen peptide, wherein the HPV 16 antigen peptide and the HPV 18 antigen peptide are operably linked in tandem (eg, fused to a PEST-containing peptide). The HPV16 antigen peptide is HPV16 E6 antigen peptide or HPV16 E7 antigen peptide, and the HPV18 antigen peptide is HPV18 E6 antigen peptide or HPV18 E7 antigen peptide, as the case may be. The HPV16 antigen peptide is an HPV16 E7 antigen peptide, and the HPV18 antigen peptide is an HPV18 E7 antigen peptide, as the case may be. Also provided herein are nucleic acids encoding such fusion polypeptides; recombinant bacteria or Listeria strains comprising such fusion polypeptides or such nucleic acids; cell banks comprising such recombinant bacteria or Listeria strains; Such immunogenic compositions, pharmaceutical compositions and vaccines of such recombinant nucleic acids or such recombinant bacteria or Listeria strains; and production of such fusion polypeptides, such nucleic acids and such recombinant bacteria or Listeria strains method. Also provided are methods for inducing an immune response against an anti-tumor antigen in an individual, methods for inducing an anti-tumor or anti-cancer immune response in an individual, methods for treating a tumor or cancer in an individual, methods for preventing tumors or cancer in an individual, and protection The subject is free of tumor or cancer by methods such recombinant recombinant fusion polypeptides, nucleic acids, recombinant bacteria or Listeria strains, immunogenic compositions, pharmaceutical compositions or vaccines. [0057] Most HPV-related cancers are attributable to type 16 and type 18 HPV. However, HPV-associated cancers are generally not positive for both type 16 HPV and type 18 HPV. Because of the rare HPV16-positive and HPV18-positive patients, there is a lack of motivation to produce immunotherapy that targets both HPV16-specific and HPV18-specific antigens. This is especially true for Listeria-based immunotherapeutic platforms, which may have limited capacity for the number and size of nucleic acid sequences encoding insertable antigenic peptides. However, the evidence provided in the Examples herein demonstrates that it is bioengineered to secrete Listeria-based immunotherapy from an HPV-type antigenic peptide (eg,Lm Techniques can unexpectedly increase overall survival by twelve months in patients with cancer or tumors associated with different types of HPV. [0058]Lm The technology has the following mechanism of action: it also has potent innate immune stimulation, delivering the target peptide directly to the cytosol of dendritic cells and antigen presenting cells, producing a target T cell response, and by regulation in the tumor microenvironment Sex T cells and bone marrow-derived suppressor cells reduce immunosuppression. Multiple treatments can be given and/or combined without neutralizing antibodies.Lm Technology can be used, for example, in vivo, attenuated, bioengineeredLm Bacteria stimulate the immune system to treat tumor cells as potentially bacterially infected cells and target them for clearance. The technical method can begin with a live attenuated Listeria strain, and can add, for example, multiple copies of a plastid encoding a fusion protein sequence comprising, for example, Listeria lysin O (LLO, conjugated to the antigen of interest). Listeriolysin O) A fragment of the molecule. The fusion protein is present inside the antigen presenting cellListeria secretion. This causes stimulation of the branch of the innate and adaptive immune system, which reduces the mechanism of tumor defense and makes the immune system easier to attack and destroy cancer cells. II. Recombinant Fusion Polypeptides [0059] Disclosed herein are recombinant fusion polypeptides comprising a PEST-containing peptide fused to an HPV 16 antigen peptide and an HPV 18 antigen peptide, wherein the HPV 16 antigen peptide and the HPV 18 antigen peptide are operably linked in series. Also disclosed herein are recombinant fusion polypeptides comprising an HPV 16 antigen peptide and an HPV 18 antigen peptide, wherein the HPV 16 antigen peptide and the HPV 18 antigen peptide are operably linked in tandem, and wherein the fusion polypeptide does not comprise a PEST-containing peptide. Also provided herein are recombinant fusion polypeptides comprising a bacterial secretion sequence, a ubiquitin (Ub) protein and two or more than two antigenic peptides from the N-terminus to the C-terminus (ie, in tandem, such as Ub-peptide 1 Peptide 2), wherein the HPV 16 antigen peptide and the HPV 18 antigen peptide, wherein the HPV 16 antigen peptide and the HPV 18 antigen peptide are operably linked in series. Alternatively, a combination of separate fusion polypeptides can be used in which each antigen peptide is fused to its own secretory sequence and Ub protein (eg, Ub1-peptide 1; Ub2-peptide 2). Nucleic acids encoding such recombinant fusion polypeptides (referred to as pocket gene constructs) are also disclosed. Such pocket gene nucleic acid constructs may further comprise two or more open reading frames by the Xiain-Dalgano ribosome binding site (Shine-Dalgarno ribosome) between the open reading frames. Binding site) Nucleic acid sequence linkage. For example, the pocket gene nucleic acid construct can further comprise two to four open reading frames joined by a Xiain-Dalgano ribosome binding site nucleic acid sequence between each open reading frame. Each open reading frame can encode a different polypeptide. In some nucleic acid constructs, the codon encoding the carboxy terminus of the fusion polypeptide is followed by two stop codons to ensure termination of protein synthesis. [0063] The bacterial signal sequence can be a Listeria signal sequence, such as a Hly or ActA signal sequence, or any other known signal sequence. In other cases, the signal sequence can be a sequence of LLO signals. The signal sequence can be bacterial and can be native to the host bacterium (eg, Listeria monocytogenes)Listeria monocytogenes ), the secA1 signal peptide), or may be foreign to the host bacteria. Specific examples of signal peptides include Lactococcus lactis (Lactococcus lactis Usp45 signal peptide; from Bacillus anthracis (Bacillus anthracis a protective antigen signal peptide; a secA2 signal peptide from Listeria monocytogenes, such as a p60 signal peptide; and a Tat signal peptide, such as Bacillus subtilis (B. subtilis A Tat signal peptide (eg, PhoD). In a specific example, the secretion signal sequence is from a Listeria protein, such as ActA300 Secretory signal or ActA100 Secretory signal. [0064] Ubiquitin can be, for example, a full length protein. The ubiquitin expressed from the nucleic acid constructs provided herein can be cleaved by a hydrolase upon entry into the cytosol of the host cell cytosol and cleavage at the carboxy terminus by the remainder of the recombinant fusion polypeptide expressed from the nucleic acid construct. This releases the amino terminus of the fusion polypeptide to produce a peptide in the host cell cytosol. [0065] The selection, variation, and alignment of antigenic peptides within a fusion polypeptide are discussed in detail elsewhere herein, and HPV 16 and HPV 18 antigen peptides are discussed in more detail elsewhere herein. [0066] A recombinant fusion polypeptide can comprise one or more tags. For example, a recombinant fusion polypeptide can comprise one or more peptide tags at the N-terminus and/or C-terminus of a combination of HPV 16 antigen peptides and HPV 18 antigen peptides operably linked in tandem. The tag can be fused directly to the antigenic peptide or linked to the antigenic peptide via a linker (examples of which are disclosed elsewhere herein). Examples of tags include the following: FLAG tags, 3 x FLAG tags; His tags, 6 x His tags; and SIINFEKL tags. An exemplary SIINFEKL tag is set forth in SEQ ID NO: 16 (encoded by any of the nucleic acids set forth in SEQ ID NOs: 1-15). An exemplary 3xFLAG tag is set forth in SEQ ID NO: 32 (encoded by any of the nucleic acids set forth in SEQ ID NOs: 17-31). Other labels include chitin binding protein (CBP), maltose binding protein (MBP), glutathione-S-transferase (GST), thioredoxin ( Thioredoxin; TRX) and poly(NANP). A particular recombinant fusion polypeptide comprises a C-terminal SIINFEKL tag. Such tags may allow for easy detection of recombinant fusion proteins, confirmation of secretion of recombinant fusion proteins, or for tracking the immunogenicity of secreted fusion polypeptides by tracking immune responses to such "tag" sequence peptides. Such immune responses can be monitored using a number of reagents, including, for example, monoclonal antibodies and DNA or RNA probes that are specific for such tags. The recombinant fusion polypeptides disclosed herein can be expressed by recombinant Listeria strains, or can be expressed and isolated from other vectors and cellular systems for protein expression and isolation. A recombinant Listeria strain comprising a peptide exhibiting such an antigen can be used, for example, in an immunogenic composition comprising such recombinant Listeria and in a vaccine comprising a recombinant Listeria strain and an adjuvant. In a host cell system of a Listeria strain and a host cell system other than Listeria, one or more antigenic peptides are expressed as a fusion polypeptide using a truncated form of a non-hemolytic LLO, ActA or PEST-like sequence. It causes an increase in the immunogenicity of the antigenic peptide. Nucleic acids encoding such recombinant fusion polypeptides are also disclosed. The nucleic acid can be in any form. The nucleic acid may comprise or consist of DNA or RNA and may be single or double stranded. Nucleic acids can be in the form of plastids, such as episomal, multi-replicative plastids or integrative plastids. Alternatively, the nucleic acid can be in the form of a viral vector, a phage vector, or in a bacterial artificial chromosome. Such nucleic acids can have an open reading frame or can have two or more open reading frames (eg, an open reading frame encoding a recombinant fusion polypeptide and a second open reading frame encoding a metabolic enzyme). In one example, such nucleic acids can comprise two or more than one open reading frames joined by a Xiain-Dalkano ribosome binding site nucleic acid sequence between each open reading frame. For example, a nucleic acid can comprise two to four open reading frames joined by a Xiain-Dalkano ribosome binding site nucleic acid sequence between each open reading frame. Each open reading frame can encode a different polypeptide. In some nucleic acids, the codon encoding the carboxy terminus of the fusion polypeptide is followed by two stop codons to ensure termination of protein synthesis. A. Antigen Peptides [0069] Antigenic peptides as used herein may include any HPV16-specific peptide and any combination of HPV18-specific peptides. Such peptides can be HPV16 specific and HPV 18 specific full length proteins or fragments thereof. Exemplary HPV 16 specific and HPV 18 specific proteins include E6 and E7 proteins from HPV 16 and HPV 18 . E6 and E7 proteins are tumor proteins that act by stimulating the destruction of proteins that are critically regulated by many host cells. Examples of HPV16 and HPV18 E6 and E7 proteins include HPV16 E7 (GenBank accession numbers AHK23257 and AAD33253; 98 amino acid proteins), HPV16 E6 (GenBank accession numbers AHK23256 and AAD33252; 158 amino acid proteins), HPV18 E7 (GenBank accession numbers AGM34461 and P06788; 105 amino acid proteins) and HPV18 E6 (GenBank accession number P06463; 158 amino acid proteins). An exemplary HPV16 E7 protein is set forth in SEQ ID NO: 96 (encoded by the DNA sequence set forth in SEQ ID NO: 95) and the exemplary HPV18 E7 protein is set forth in SEQ ID NO: 98 (by SEQ ID NO: 97 The DNA sequence code described in the above). A suitable HPV16 E7 peptide can be, for example, a protein that is at least 90%, 95%, 96%, 97%, 98%, 99% or 100% identical to the sequence set forth in SEQ ID NO: 96 or a fragment thereof. A suitable HPV18 E7 peptide can be, for example, a protein that is at least 90%, 95%, 96%, 97%, 98%, 99% or 100% identical to the sequence set forth in SEQ ID NO: 98 or a fragment thereof. [0070] A fusion polypeptide can include at least two antigenic peptides. For example, a fusion polypeptide can include 2, 3, 4, 5, 6, 7, 8, 9, or 10 antigenic peptides. Each antigenic peptide may have any length sufficient to induce an immune response, and each antigenic peptide may be of the same length or the antigenic peptides may have different lengths. For example, the antigenic peptides disclosed herein can be about 10-20, 20-30, 30-40, 40-50, 50-60, 60-70, 70-80, 80-90, 90-100. , 100-110, 110-120, 120-130, 130-140, 140-150, 150-160 or 95-160 amino acids. [0071] Each antigenic peptide may also be hydrophilic, or may be scored at or below a certain hydrophilicity threshold, which predicts sequestability in Listeria monocytogenes or another bacterial of interest. For example, the antigenic peptide can be scored by the Kyte and Doolittle Hydrophilicity Index 21 amino acid window, and all scores above the cutoff (approximately 1.6) can be excluded because it is unlikely to be increased by mononuclear spheres. Listeria monocytogenes secretion. Likewise, the combination of antigenic peptides or fusion polypeptides can be hydrophilic or can be scored at or below a certain hydrophilicity threshold, which can be predicted to be secreted in Listeria monocytogenes or another bacterial of interest. Sex. The antigenic peptides can be linked together in any manner. For example, antigenic peptides can be fused directly to each other without an intervening sequence. Alternatively, the antigenic peptides may be indirectly linked to one another via one or more linkers, such as peptide linkers. In some cases, pairs of adjacent antigenic peptides can be directly fused to each other, and other antigenic peptides can be indirectly linked to one another via one or more linkers. The same linker can be used between pairs of adjacent antigenic peptides, or any number of different linkers can be used between different pairs of adjacent antigenic peptides. Alternatively, one linker can be used between a pair of adjacent antigenic peptides, or multiple linkers can be used between a pair of adjacent antigenic peptides. Any suitable sequence can be used for the peptide linker. As an example, the length of the linker sequence can be, for example, from 1 to about 50 amino acids. Some linkers can be hydrophilic. The linker can be used for different purposes. For example, linkers can be used to increase bacterial secretion, promote antigen processing, increase the flexibility of the fusion polypeptide, increase the rigidity of the fusion polypeptide, or be used for any other purpose. In some cases, different amino acid linker sequences are distributed between antigenic peptides, or different nucleic acids encoding the same amino acid linker sequence are distributed between antigenic peptides (eg, SEQ ID NOS: 84-94) such that Minimize duplication. This can also be used to reduce the secondary structure, thereby allowingLm Efficient transcription, translation, secretion, maintenance or stabilization of other suitable peptide linker sequences for a nucleic acid encoding a fusion polypeptide (eg, a plastid) within a population of recombinant vector strains can be selected, for example, based on one or more of the following factors: (1) it can adopt a flexible extended configuration; (2) it cannot adopt a secondary structure that can interact with a functional epitope on an antigen peptide; and (3) lacks a possible reaction with a functional epitope Hydrophobic or charged residue. For example, a peptide linker sequence can contain Gly, Asn, and Ser residues. Other near neutral amino acids such as Thr and Ala can also be used in the linker sequence. Amino acid sequences useful as linkers include the amino acid sequences disclosed below: Maratea et al. (1985)Gene 40:39-46; Murphy et al. (1986)Proc Natl Acad Sci USA 83:8258-8262; US 4,935,233; and US 4,751,180, each of which is incorporated herein by reference in its entirety for all purposes. Specific examples of linkers include the linkers in the table below (each of which can be used alone as a linker, in a linker comprising a sequence repeat, or for further inclusion of one or more other Sequence linkers), although other linkers are also foreseen (see, for example, Reddy Chichili et al. (2013)Protein Science 22: 153-167, which is hereby incorporated by reference in its entirety for all purposes. Unless specified, "n" indicates the number of undetermined repetitions in the listed linkers.B. PEST-Containing Peptides [0074] The recombinant fusion proteins disclosed herein comprise a PEST-containing peptide. The PEST-containing peptide may be at the amino terminus (N-terminus) of the fusion polypeptide (ie, at the N-terminus of the antigenic peptide) and may be at the carboxy terminus (C-terminus) of the fusion polypeptide (ie, at the C-terminus of the antigenic peptide), or It can be embedded in an antigen peptide. In some recombinant Listeria strains and methods, the PEST-containing peptide is not part of the fusion polypeptide and is separate from the fusion polypeptide. Fusions of antigenic peptides to PEST-like sequences, such as LLO peptides, enhance the immunogenicity of the antigenic peptide and increase cell-mediated and anti-tumor immune responses (i.e., increase cell-mediated and anti-tumor immunity). See, for example, Singh et al. (2005)J Immunol 175(6): 3663-3673, which is hereby incorporated by reference in its entirety for all purposes. PEST-containing peptides are peptides comprising a PEST sequence or a PEST-like sequence. The PEST sequence in eukaryotic proteins has long been identified. For example, it is generally, but not necessarily, always flanked by a cluster containing a number of positively charged amino acids rich in proline (P), glutamic acid (E), serine (S) and threonine ( The protein of the amino acid sequence (PEST) of T) has a rapid intracellular half-life (Rogers et al. (1986)Science 234: 364-369, which is incorporated herein by reference in its entirety for all purposes. In addition, these sequences have been reported to target proteins to the ubiquitin-proteasome pathway for degradation (Rechsteiner and Rogers (1996)Trends Biochem. Sci 21:267-271, which is incorporated herein by reference in its entirety for all purposes. This pathway is also used by eukaryotic cells to produce immunogenic peptides that bind to MHC class I, and it has been hypothesized that PEST sequences are abundant in eukaryotic proteins that produce immunogenic peptides (Realini et al. (1994)FEBS Lett. 348: 109-113, which is hereby incorporated by reference in its entirety for all purposes. Prokaryotic proteins usually do not contain a PEST sequence because they do not have this enzymatic pathway. However, PEST-like sequences rich in amino acid glutamic acid (P), glutamic acid (E), serine (S) and threonine (T) have been reported at the amine end of LLO and have been reported. It is reported to be essential for the pathogenicity of Listeria monocytogenes (Decatur and Portnoy (2000)Science 290: 992-995, the entire disclosure of which is hereby incorporated by reference in its entirety in its entirety. The presence of this PEST-like sequence in the LLO is targeted by the proteolytic mechanism of the host cell to target the protein for destruction, such that once the LLO has functioned and promotes the monocytogenes, Listeria monocytogenes or phagocytosis The body vacuole escapes and the LLO is destroyed before it can damage the cells. Identification of PEST and PEST-like sequences is well known in the art and is described, for example, in Rogers et al. (1986).Science 234 (4774): 364-378, and Rechsteiner and Rogers (1996)Trends Biochem. Sci 21:267-271, each of which is incorporated herein by reference in its entirety for all purposes. PEST or PEST-like sequences can be identified using the PEST search program. For example, the PEST-like sequence can be a region rich in proline (P), glutamic acid (E), serine (S), and threonine (T) residues. Optionally, the PEST-like sequence can be flanked by one or more clusters containing several positively charged amino acids. For example, a PEST-like sequence can be defined as having a higher proline (P), aspartate (D), glutamate (E), serine (S), and/or threonine ( The length of the T) local concentration is a hydrophilic extension of at least 12 amino acids. In some cases, the PEST-like sequence does not contain a positively charged amino acid, namely arginine (R), histidine (H), and lysine (K). Some PEST-like sequences may contain one or more internal phosphorylation sites, and phosphorylation at these sites precedes protein degradation. [0077] In one example, the PEST-like sequence fits the algorithm disclosed in Rogers et al. In another example, the PEST-like sequence fits the algorithm disclosed in Rechsteiner and Rogers. PEST-like sequences can also be identified by initially scanning positively charged amino acids R, H, and K within a given protein sequence. The total amino acid count between the positively charged side-linking sequences is counted, and further only those motifs containing a plurality of amino acids equal to or higher than the window size parameter are considered. Optionally, the PEST-like sequence must contain at least one P, at least one D or E, and at least one S or T. [0078] The quality of the PEST motif is optimized by means of a scoring parameter based on local enrichment of the key amino acids and hydrophobicity of the motif. The enrichment of D, E, P, S, and T is expressed in mass percent (w/w) and is corrected for 1 equivalent of D or E, 1 equivalent of P, and 1 equivalent of S or T. The calculation of hydrophobicity can also be followed in principle by Kyte and Doolittle (1982)J. Mol. Biol. The method of 157:105 is hereby incorporated by reference in its entirety for all purposes. To simplify the calculation, the Kyte-Doolittle hydrophilicity index, initially between arginine-4.5 to isoleucine + 4.5, was converted to a positive integer using the following linear transformation, which gave the value of arginine 0 to isoleucine 90. : Hydrophilic index = 10 × Kyte-Doolittle hydrophilicity index + 45. The hydrophobicity of the latent PEST motif can also be calculated as the sum of the product of the percentage of moles of each amino acid species and the hydrophobicity index. The desired PEST score is obtained as a combination of the local enrichment term and the hydrophobicity term as indicated by the following equation: PEST score = 0.55 × DEPST - 0.5 × hydrophobicity index. Thus, a PEST-containing peptide can refer to a peptide having a score of at least +5 using the algorithm above. Alternatively, it may mean a score of at least 6, at least 7, at least 8, at least 9, at least 10, at least 11, at least 12, at least 13, at least 14, at least 15, at least 16, at least 17, at least 18, at least 19, Peptides of at least 20, at least 21, at least 22, at least 23, at least 24, at least 25, at least 26, at least 27, at least 28, at least 29, at least 30, at least 32, at least 35, at least 38, at least 40 or at least 45. Any other available methods or algorithms known in the art can also be used to identify PEST-like sequences. See, for example, CaS Predictor (Garay-Malpartida et al. (2005)Bioinformatics 21 Supplement 1: i169-76, which is hereby incorporated by reference in its entirety for all purposes. Another method that can be used is as follows: each extension of the appropriate length is calculated by assigning a value of 1 to the amino acid Ser, Thr, Pro, Glu, Asp, Asn or Gln (eg an extension of 30-35 amino acids) Department) PEST index. The coefficient value (CV) of each of the PEST residues is 1, and the CV of each of the other AA (non-PEST) is zero. Examples of PEST-like amino acid sequences are those set forth in SEQ ID NOs: 43-51. An example of a PEST-like sequence is KENSISSMAPPASPPASPKTPIEKKHADEIDK (SEQ ID NO: 43). Another example of a PEST-like sequence is KENSISSMAPPASPPASPK (SEQ ID NO: 44). However, any PEST or PEST-like amino acid sequence can be used. PEST sequence peptides are known and are described, for example, in US 7,635,479; US 7,665,238; and US 2014/0186387, each of which is hereby incorporated by reference in its entirety for all purposes. [0083] The PEST-like sequence may be from a Listeria species, such as from Listeria monocytogenes. For example, the Listeria monocytogenes ActA protein contains at least four such sequences (SEQ ID NOS: 45-48), any of which are suitable for use in the compositions and methods disclosed herein. Other PEST-like sequences include SEQ ID NOS: 52-54. From Streptococcus (Streptococcus Sp. streptolysin O also contains a PEST sequence. For example, Streptococcus pyogenes (Streptococcus pyogenes Streptococcal O contains the PEST sequence KQNTASTETTTTNEQPK (SEQ ID NO: 49) at amino acid 35-51, and S. equi.Streptococcus equisimilis Streptococcal O contains the PEST-like sequence KQNTANTETTTTNEQPK (SEQ ID NO: 50) at amino acid 38-54. Another example of a PEST-like sequence is derived fromLso Genetically encoded Listeria monocytogenesListeria seeligeri ) lysin: RSEVTISPAETPESPPATP (e.g., SEQ ID NO: 51). Alternatively, the PEST-like sequence may be derived from other prokaryotic organisms. Other prokaryotic organisms in which the PEST-like amino acid sequence will be contemplated include, for example, other Listeria species. (1) Listeria lysin O (LLO) An example of a PEST-containing peptide useful in the compositions and methods disclosed herein is a Listeria lysin O (LLO) peptide. An example of an LLO protein is a protein designated GenBank Accession No. P13128 (SEQ ID NO: 55; nucleic acid sequence set forth in GenBank Accession No. X15127). SEQ ID NO: 55 is the protein prior to inclusion of the signal sequence. The first 25 amino acids of the proprotein are signal sequences and are cleaved from LLO when secreted by the bacteria, thereby producing a full length active LLO protein of 504 amino acids without a signal sequence. The LLO peptides disclosed herein may comprise a signal sequence or may comprise a peptide that does not comprise a signal sequence. An exemplary LLO protein that can be used comprises, consists essentially of, or consists of the sequence set forth in SEQ ID NO: 55, or a homolog, variant, isoform of SEQ ID NO: 55, Analogs, fragments, homolog fragments, variant fragments, analog fragments, and isoform fragments. Any sequence encoding a homologue, variant, isoform, analog, homolog fragment, variant fragment or analog fragment of an LLO protein fragment or LLO protein can be used. The sequence identity of the homologous LLO egg to the reference LLO protein can be, for example, greater than 70%, 72%, 75%, 78%, 80%, 82%, 83%, 85%, 87%, 88%, 90%, 92%. , 93%, 95%, 96%, 97%, 98% or 99%. Another example of an LLO protein is set forth in SEQ ID NO:56. A LLO protein that can be used can comprise, consist essentially of, or consist of the sequence set forth in SEQ ID NO: 56, or a homologue, variant, isoform, or similar of SEQ ID NO: 56. Substances, fragments, homolog fragments, variant fragments, analog fragments and isoform fragments. Another example of a LLO protein is the LLO protein from the Listeria monocytogenes 10403S strain as set forth in the GenBank Accession Number: ZP_01942330 or EBA21833, as described in the GenBank Accession Numbers below. Code: NZ_AARZ01000015 or AARZ01000015.1. Another example of an LLO protein is the LLO protein from the Listeria monocytogenes 4b F2365 strain (See for example , GenBank deposit number: YP_012823), EGD-e strain (See for example , GenBank accession number NP_463733) or any other strain of Listeria monocytogenes. Yet another example of an LLO protein is the LLO protein from the Flavobacterium bacterium HTCC2170 (see, for example, GenBank Accession No.: ZP_01106747 or EAR01433, or encoded by GenBank Accession Number: NZ_AAOC01000003). The LLO protein that can be used may comprise, consist essentially of, or consist of: a homologue, a variant, an isoform, an analog, a fragment, a homologue fragment of the above LLO protein or the above LLO protein. Any of a variant fragment, an analog fragment, and an isoform fragment. [0088] Proteins homologous to LLO or homologs, variants, isoforms, analogs, fragments, homolog fragments, variant fragments, analog fragments and isoform fragments can also be used. One such example is alveolysin, which can be found, for example, in Bacillus hominis (see, eg, GenBank Accession Number: P23564 or AAA22224, or by GenBank Accession Number: M62709). Other such homologous proteins are known. [0089] The LLO peptide can be a full length LLO protein or a truncated LLO protein or LLO fragment. Likewise, the LLO peptide can be an LLO peptide that retains one or more of the native LLO proteins or lacks one or more of the functionality of the native LLO protein. For example, the retained LLO functionality may be to allow bacteria (eg, Listeria) to escape from phagosomes or phagocytic lysosomes, or to enhance the immunogenicity of peptides fused thereto. The functionality retained may also be hemolysis or antigenic. Alternatively, the LLO peptide can be a non-hemolytic LLO. Other functions of LLO are known, and methods and assays for assessing LLO functionality are also known. [0090] The LLO fragment can be a PEST-like sequence or can comprise a PEST-like sequence. The LLO fragment can include one or more of an internal deletion, a C-terminal truncation, and a N-terminal truncation. In some cases, an LLO fragment can contain more than one internal deletion. Other LLO peptides can be full length LLO proteins with one or more mutations. [0091] The hemolytic activity of some LLO proteins or fragments is reduced relative to wild-type LLO, or is a non-hemolytic fragment. For example, an LLO protein can be rendered non-hemolytic by deletion or mutation of the activation domain at the carboxy terminus, by deletion or mutation of cysteine 484, or by deletion or mutation at another position. [0092] Other LLO proteins are rendered non-hemolytic by deletion or mutation of a cholesterol binding domain (CBD), as described in detail in US Pat. . Mutations can include, for example, substitutions or deletions. The entire CBD can be mutated, parts of the CBD can be mutated, or specific residues within the CBD can be mutated. For example, the LLO protein can comprise one or more of residues C484, W491 and W492 of the sequence of SEQ ID NO: 55 (eg, C484, W491, W492, C484 and W491, C484 and W492, W491 and W492, or Mutations of all three residues), or mutations of corresponding residues (eg, corresponding cysteine or tryptophan residues) when optimally aligned with SEQ ID NO:55. As an example, a mutant LLO protein can be produced in which residues C484, W491 and W492 of LLO are substituted with alanine residues which will significantly reduce hemolytic activity relative to wild-type LLO. The mutant LLO protein having the C484A, W491A and W492A mutations is referred to as "mutLLO". As another example, a mutant LLO protein having an internal deletion comprising a cholesterol binding domain can be produced. The sequence of the cholesterol binding domain of SEQ ID NO: 55 is set forth in SEQ ID NO:74. For example, the internal deletion can be a deletion of 1-11 amino acids, a deletion of 11-50 amino acids, or longer. Likewise, the mutated region can be 1-11 amino acids, 11-50 amino acids or longer (eg, 1-50, 1-11, 2-11, 3-11, 4-11, 5-11) , 6-11, 7-11, 8-11, 9-11, 10-11, 1-2, 1-3, 1-4, 1-5, 1-6, 1-7, 1-8, 1 -9, 1-10, 2-3, 2-4, 2-5, 2-6, 2-7, 2-8, 2-9, 2-10, 3-4, 3-5, 3-6 , 3-7, 3-8, 3-9, 3-10, 12-50, 11-15, 11-20, 11-25, 11-30, 11-35, 11-40, 11-50, 11 -60, 11-70, 11-80, 11-90, 11-100, 11-150, 15-20, 15-25, 15-30, 15-35, 15-40, 15-50, 15-60 , 15-70, 15-80, 15-90, 15-100, 15-150, 20-25, 20-30, 20-35, 20-40, 20-50, 20-60, 20-70, 20 -80, 20-90, 20-100, 20-150, 30-35, 30-40, 30-60, 30-70, 30-80, 30-90, 30-100 or 30-150 amino acids ). For example, a mutated region consisting of residues 470-500, 470-510 or 480-500 of SEQ ID NO: 55 will result in a deletion sequence comprising the CBD (residues 483-493 of SEQ ID NO: 55). However, the mutated region may also be a fragment of the CBD or may partially overlap with one of the CBDs. For example, the mutated region can consist of residues 470-490, 480-488, 485-490, 486-488, 490-500, or 486-510 of SEQ ID NO:55. For example, a fragment of CBD (residues 484-492) can be replaced by a heterologous sequence that will significantly reduce hemolytic activity relative to wild-type LLO. For example, CBD (ECTGLAWEWWR; SEQ ID NO: 74) can be replaced by a CTL epitope (ESLLMWITQCR; SEQ ID NO: 75) from the antigen NY-ESO-1, which contains HLA from NY-ESO-1 A2 restricted epitope 157-165. The resulting LLO is called "ctLLO". In some mutated LLO proteins, the mutated region can be replaced by a heterologous sequence. For example, the mutated region can be passed through an equal number of heterologous amino acids, a smaller number of heterologous amino acids, or a greater number of amino acids (eg, 1-50, 1-11, 2-11, 3) -11, 4-11, 5-111, 6-111, 7-11, 8-11, 9-11, 10-11, 1-2, 1-3, 1-4, 1-5, 1-6 , 1-7, 1-8, 1-9, 1-10, 2-3, 2-4, 2-5, 2-6, 2-7, 2-8, 2-9, 2-10, 3 -4, 3-5, 3-6, 3-7, 3-8, 3-9, 3-10, 12-50, 11-15, 11-20, 11-25, 11-30, 11-35 , 11-40, 11-50, 11-60, 11-70, 11-80, 11-90, 11-100, 11-150, 15-20, 15-25, 15-30, 15-35, 15 -40, 15-50, 15-60, 15-70, 15-80, 15-90, 15-100, 15-150, 20-25, 20-30, 20-35, 20-40, 20-50 20-60, 20-70, 20-80, 20-90, 20-100, 20-150, 30-35, 30-40, 30-60, 30-70, 30-80, 30-90, 30 -100 or 30-150 amino acids) instead. Other mutated LLO proteins have one or more point mutations (eg, 1 residue, 2 residues, 3 residues, or more than 3 point mutations). The mutated residues can be contiguous or non-adjacent. [0095] In an exemplary embodiment, the LLO peptide can have a deletion in the signal sequence and a mutation or substitution in the CBD. [0096] Some LLO peptides are N-terminal LLO fragments (ie, LLO proteins with C-terminal deletions). Some LLO peptides are at least 494, 489, 492, 493, 500, 505, 510, 515, 520 or 525 amino acids or have a length of 492-528 amino acids. For example, an LLO fragment can be preceded by about 440 or 441 amino acids of the LLO protein (eg, 441 amino acids prior to SEQ ID NO: 55 or 56, or when optimally aligned with SEQ ID NO: 55 or 56) The corresponding fragment of another LLO protein consists of. Other N-terminal LLO fragments may be preceded by 420 amino acids of the LLO protein (eg, 420 amino acids prior to SEQ ID NO: 55 or 56, or another LLO when optimally aligned with SEQ ID NO: 55 or 56) Composition of the corresponding fragment of the protein). Other N-terminal LLO fragments may be from the amino acid 20-442 of the LLO protein (eg, the amino acid 20-442 of SEQ ID NO: 55 or 56, or when optimally aligned with SEQ ID NO: 55 or 56) Another corresponding fragment of the LLO protein). The other N-terminal LLO fragment comprises any ΔLLO that does not have an activation domain comprising cysteine 484, and in particular does not have cysteine 484. For example, an N-terminal LLO fragment can correspond to 425, 400, 375, 350, 325, 300, 275, 250, 225, 200, 175, 150, 125, 100, 75, 50 or 25 amine groups before the LLO protein. An acid (eg, 425, 400, 375, 350, 325, 300, 275, 250, 225, 200, 175, 150, 125, 100, 75, 50 or 25 amino acids before SEQ ID NO: 55 or 56, Or a corresponding fragment of another LLO protein when optimally aligned with SEQ ID NO: 55 or 56). Preferably, the fragment comprises one or more PEST-like sequences. The LLO fragment and the truncated LLO protein may contain homologous LLO protein residues corresponding to any of the specific amino acid ranges above. The number of residues need not correspond exactly to the number of residues listed above (eg, if the homologous LLO protein has an insertion or deletion relative to the particular LLO protein disclosed herein). Examples of N-terminal LLO fragments include SEQ ID NOS: 57, 58, and 59. The LLO protein that can be used comprises a sequence consisting of, consisting essentially of, or consisting of the sequence set forth in SEQ ID NO: 57, 58 or 59, or a homologue, variation of SEQ ID NO: 57, 58 or 59 Body, isoforms, analogs, fragments, homolog fragments, variant fragments, analog fragments and isoform fragments. In some compositions and methods, the N-terminal LLO fragment set forth in SEQ ID NO: 59 is used. An example of a nucleic acid encoding an N-terminal LLO fragment set forth in SEQ ID NO: 59 is SEQ ID NO:60. (2) ActA Another example of a PEST-containing peptide useful in the compositions and methods disclosed herein is the ActA peptide. ActA is a surface-related protein and acts as a framework in infected host cells to promote the polymerization, assembly and activation of host actin polymers to facilitate the passage of Listeria monocytogenes across the cytoplasm. Shortly after entering the mammalian cell cytosol, Listeria monocytogenes induces aggregation of host actin filaments and uses the forces generated by actin polymerization to first move within the cell and then move between cells . ActA is responsible for mediating actin nucleation and actin-based activity. The ActA protein provides multiple binding sites for the host cytoskeleton assembly, thereby acting as a framework to assemble cellular actin polymerization mechanisms. The N-terminus of ActA binds to monomeric actin and acts as a constitutively active nucleation promoting factor by stimulating the intrinsic actin nucleating activity.actA andHly Both genes are members of a 10 kb gene cluster regulated by the transcriptional activator PrfA, andactA It is up-regulated approximately 226 times in mammalian cytosol. Any sequence encoding a homologue, variant, isoform, analog, homolog fragment, variant fragment or analog fragment of the ActA protein or ActA protein can be used. The sequence identity of the homologous ActA protein to the reference ActA protein can be, for example, greater than 70%, 72%, 75%, 78%, 80%, 82%, 83%, 85%, 87%, 88%, 90%, 92%. , 93%, 95%, 96%, 97%, 98% or 99%. An example of an ActA protein comprises, consists essentially of, or consists of the sequence set forth in SEQ ID NO:61. Another example of an ActA protein comprises, consists essentially of, or consists of the sequence set forth in SEQ ID NO:62. The 29 amino acids preceding the proprotein corresponding to any of these sequences are signal sequences and are cleaved from the ActA protein when secreted by the bacteria. The ActA peptide may comprise a signal sequence (eg, amino acid 1-29 of SEQ ID NO: 61 or 62), or may comprise a peptide that does not include a signal sequence. Other examples of ActA proteins comprise, consist essentially of, or consist of: homologs, variants, isoforms, analogs, fragments, homolog fragments, isoforms of SEQ ID NO: 61 or 62 A fragment of an isoform or an analog fragment. [0099] Another example of ActA protein is ActA protein from: Listeria monocytogenes 10403S strain (GenBank accession number: DQ054585), NICPBP 54002 strain (GenBank accession number: EU394959), S3 strain (GenBank deposit) No.: EU394960), NCTC 5348 strain (GenBank accession number: EU394961), NICPBP 54006 strain (GenBank accession number: EU394962), M7 strain (GenBank accession number: EU394963), S19 strain (GenBank accession number: EU394964) or any other single Listeria monocytogenes strain. The LLO protein that can be used may comprise, consist essentially of, or consist of: a homologue, a variant, an isoform, an analog, a fragment, a homologue fragment of the above LLO protein or the above LLO protein. Any of a variant fragment, an analog fragment, and an isoform fragment. The ActA peptide may be a full-length ActA protein or a truncated ActA protein or an ActA fragment (eg, an N-terminal ActA fragment in which the C-terminal portion is removed). Preferably, the truncated ActA protein comprises at least one PEST sequence (eg, more than one PEST sequence). In addition, the truncated ActA protein may optionally comprise an ActA signal peptide. Examples of the PEST-like sequence contained in the truncated ActA protein include SEQ ID NOS: 45-48. Some such truncated ActA proteins comprise at least two of the PEST-like sequences set forth in SEQ ID NOs: 45-48, or a homolog thereof, at least three of the PEST-like sequences set forth in SEQ ID NOs: 45-48 Or a homolog thereof, or all four of the PEST-like sequences set forth in SEQ ID NOS: 45-48 or homologs thereof. Examples of truncated ActA proteins include those comprising, consisting essentially of, or consisting of: about residues 30-122, about residues 30-229 of the full length ActA protein sequence (eg, SEQ ID NO: 62), About 30-332 residues, about 30-200 residues or about 30-399 residues. Other examples of truncated ActA proteins include those comprising, consisting essentially of, or consisting of: about 50, 100, 150, 200, 233, 250 before the full length ActA protein sequence (eg, SEQ ID NO: 62), 300, 390, 400 or 418 residues. Other examples of truncated ActA proteins include those comprising, consisting essentially of, or consisting of: about residues 200-300 or residues 300-400 of the full length ActA protein sequence (e.g., SEQ ID NO: 62). For example, truncated ActA consists of 390 amino acids prior to the wild-type ActA protein as described in US 7,655,238, which is incorporated herein by reference in its entirety for all purposes. As another example, the truncated ActA can be ActA-N100 or a modified version thereof (referred to as ActA-N100*) in which the PEST motif has been deleted and contains a non-conservative QDNKR (SEQ ID NO: 73) substitution, such as US As described in 2014/0186387, the entire contents of this application are hereby incorporated by reference in its entirety for all purposes. Alternatively, the truncated ActA protein may contain residues corresponding to the homologous ActA protein of the amino acid range of one of the above amino acid ranges or any of the ActA peptides disclosed herein. The number of residues need not correspond exactly to the number of residues listed herein (eg, if the homologous ActA protein has an insertion or deletion relative to the ActA protein used herein, the number of residues can be adjusted accordingly). Examples of truncated ActA proteins include, for example, proteins comprising, consisting essentially of, or consisting of the sequence set forth in SEQ ID NO: 63, 64, 65 or 66 or SEQ ID NO: 63, 64 , 65 or 66 homologs, variants, isoforms, analogs, variant fragments, isoform fragments or analog fragments. SEQ ID NO: 63 is referred to as ActA/PEST1 and consists of the amino acid 30-122 of the full length ActA sequence set forth in SEQ ID NO:62. SEQ ID NO: 64 consists of amino acid 30-229, referred to as ActA/PEST2 or LA229, and consists of the full length ActA sequence set forth in the full length ActA sequence set forth in SEQ ID NO:62. SEQ ID NO: 65 is referred to as ActA/PEST3 and consists of the amino acid 30-332 of the full length ActA sequence set forth in SEQ ID NO:62. SEQ ID NO: 66 is referred to as ActA/PEST4 and consists of the amino acid 30-399 of the full length ActA sequence set forth in SEQ ID NO:62. As a specific example, a truncated ActA protein consisting of the sequence set forth in SEQ ID NO: 64 can be used. Examples of truncated ActA proteins include, for example, proteins comprising, consisting essentially of, or consisting of the sequence set forth in SEQ ID NO: 67, 69, 70 or 72 or SEQ ID NO: 67, 69 , 70 or 72 homologs, variants, isoforms, analogs, variant fragments, isoform fragments or analog fragments. As a specific example, a truncated ActA protein consisting of the sequence set forth in SEQ ID NO: 67 (encoded by the nucleic acid set forth in SEQ ID NO: 68) can be used. As another specific example, a truncated ActA protein consisting of the sequence set forth in SEQ ID NO: 70 (encoded by the nucleic acid set forth in SEQ ID NO: 71) can be used. SEQ ID NO: 71 is the codeListeria monocytogenes The first 1170 nucleotides of ActA in the 10403S strain. In some cases, an ActA fragment can be fused to a heterologous signal peptide. For example, SEQ ID NO: 72 sets forth an ActA fragment fused to a Hly signal peptide. C. Generation of Immunotherapeutic Constructs Encoding Recombinant Fusion Polypeptides [0103] Also provided herein are methods for producing immunotherapeutic constructs encoding the recombinant fusion polypeptides disclosed herein or compositions comprising the recombinant fusion polypeptides disclosed herein. For example, such methods can include selecting and designing an antigenic peptide for inclusion in an immunotherapeutic construct (and, for example, testing the hydrophilicity of each antigenic peptide and modifying it if its fraction is above a selected hydrophilicity index threshold) Alternatively or not, the antigenic peptide is designed, one or more fusion polypeptides comprising each of the selected antigenic peptides are designed, and a nucleic acid construct encoding the fusion polypeptide is produced. Antigenic peptides can be screened for hydrophobicity or hydrophilicity. Whether the antigenic peptide is hydrophilic or whether its fraction meets or falls below a certain hydrophilicity threshold can be selected, which predicts the secretagability in a particular bacterium of interest, such as Listeria monocytogenes. For example, the antigenic peptide can be scored by the Kyte and Doolittle hydrophilicity index with a 21 amino acid window, and all scores above the cutoff (approximately 1.6) can be excluded because it is unlikely to be mononuclear Balloon-expressing Listeria secretion.See for example , Kyte-Doolittle (1982)J Mol Biol 157(1): 105--132; the subject is hereby incorporated by reference in its entirety for all purposes. Alternatively, the antigenic peptide scored for the selected cutoff value can be altered (eg, changing the length of the antigenic peptide). Other sliding window sizes that may be used include, for example, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27 or more than 27 amino acids. For example, the sliding window size can be 9-11 amino acids, 11-13 amino acids, 13-15 amino acids, 15-17 amino acids, 17-19 amino acids, 19 - 21 amino acids, 21-23 amino acids, 23-25 amino acids or 25-27 amino acids. Other cutoff values that may be used include, for example, the following ranges 1.2-1.4, 1.4-1.6, 1.6-1.8, 1.8-2.0, 2.0-2.2 2.2-2.5, 2.5-3.0, 3.0-3.5, 3.5-4.0, or 4.0-4.5, or The cutoff value can be 1.4, 1.5, 1.7, 1.8, 1.9, 2.0, 2.1, 2.2, 2.3, 2.3, 2.5, 2.6, 2.7, 2.8, 2.9, 3.0, 3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7. , 3.8, 3.9, 4.0, 4.1, 4.2, 4.3, 4.4 or 4.5. The cutoff value can vary, for example, depending on the genus or species of the bacteria that are being used to deliver the fusion polypeptide. [0105] Other suitable hydrophilicity curves or other suitable scales include, for example, those reported below: Rose et al. (1993)Annu Rev Biomol Struct 22:381-415; Biswas et al. (2003)Journal of Chromatography A 1000: 637-655; Eisenberg (1984)Ann Rev Biochem 53:595-623; Abraham and Leo (1987)Proteins : Structure, Function and Genetics 2:130-152; Sweet and Eisenberg (1983)Mol Biol 171:479-488; Bull and Breese (1974)Arch Biochem Biophys 161:665-670; Guy (1985)Biophys J 47:61-70; Miyazawa et al. (1985)Macromolecules 18:534-552; Roseman (1988)J Mol Biol 200:513-522; Wolfenden et al. (1981)Biochemistry 20: 849-855; Wilson (1981)Biochem J 199:31-41; Cowan and Whittaker (1990)Peptide Research 3:75-80; Aboderin (1971)Int J Biochem 2:537-544; Eisenberg et al. (1984)J Mol Biol 179: 125-142; Hopp and Woods (1981)Proc Natl Acad Sci USA 78:3824-3828; Manavalan and Ponnuswamy (1978)Nature 275: 673-674; Black and Mould (1991)Anal Biochem 193:72-82; Fauchere and Pliska (1983)Eur J Med Chem 18:369-375; Janin (1979)Nature 277:491-492; Rao and Argos (1986)Biochim Biophys Acta 869:197-214; Tanford (1962)Am Chem Soc 84:4240-4274; Welling et al. (1985)FEBS Lett 188:215-218; Parker et al. (1986)Biochemistry 25:5425-5431; and Cowan and Whittaker (1990)Peptide Research 3:75-80, each of which is incorporated herein by reference in its entirety for all purposes. [0106] The ability of the antigenic peptide to be labeled with the human leukocyte antigen (HLA) type can be scored (eg, by using an immunological epitope database available at www.iedb.org (Immune). Epitope Database; IED), which includes netMHCpan, ANN, SMMPMBEC, SMM, CombLib_Sidney2008, PickPocket, and netMHCcons, and is rated by the optimal MHC binding of each antigenic peptide. Other sources include TEpredict (tepredict.sourceforge.net/help.html) or other available MHC binding volume measurement tables. Such as Salmonella (Salmonella The cutoff values of the different performance carriers may vary. Optionally, the antigenic peptide can be screened for an immunosuppressive epitope (eg, a T-reg epitope, an IL-10-induced T helper epitope, etc.) to select no antigenic peptide or to avoid immunosuppressive effects. [0108] Depending on the case, a prediction algorithm for epitope immunogenicity can be used to screen for antigenic peptides. However, these algorithms predict which peptide will produce T cell response with an accuracy of up to 20%. Alternatively, no filtering/prediction algorithms are used. Alternatively, antigenic peptides can be screened for immunogenicity. For example, this can involve contacting one or more T cells with an antigenic peptide, and analyzing the immunogenic T cell response, wherein the immunogenic T cell response identifies the peptide as an immunogenic peptide. This may also comprise, after contacting one or more T cells with the peptide, using an immunogenicity assay to measure secretion or measurement of at least one of CD25, CD44 or CD69 selected from the group consisting of comprising IFN-[gamma], TNF-[alpha]. Secretion of cytokines, a population of IL-1 and IL-2, wherein increased secretion identifies the peptide as comprising one or more T cell epitopes. The selected antigenic peptides can be arranged in one or more candidate sequences for potential fusion polypeptides. If there are more antigenic peptides than can be placed in a single plastid, the priority sequence of the different antigenic peptides can be specified/different and/or divided into different fusion polypeptides (eg, for inclusion in different recombinant Listerias) In the strain of the genus). The priority level can be determined by factors such as relative size, transcriptional priority, and/or overall hydrophobicity of the translated polypeptide. The antigenic peptides can be arranged such that they are directly joined together without any linker or any linker combination between any number of pairs of antigenic peptides, as disclosed in more detail elsewhere herein. The number of linear antigenic peptides to be included can be determined based on the following considerations: the number of desired constructs versus the mutation load, the translation and secretion efficiency of multiple epitopes from a single plastid, and the bacteria containing the plastid orLm The required MOI. The hydrophobicity of the combination of antigenic peptides or the entire fusion polypeptide (ie, comprising the antigenic peptide and PEST-containing peptide and any label) is also scored. For example, the hydrophilicity of all fusion antigen peptides or the entire fusion polypeptide can be scored by the Kyte and Doolittle hydrophilicity index with a 21 amino acid sliding window. If any of the region scores is above the cutoff value (eg, about 1.6), the antigenic peptides can be reordered or shuffled within the fusion polypeptide until an acceptable sequence of antigenic peptides is found (ie, the order in which the no region score is above the cutoff value) until. Alternatively, any problematic antigenic peptides can be removed or redesigned to different sizes. Alternatively or additionally, one or more linkers between antigenic peptides as disclosed elsewhere herein may be added or modified to alter hydrophobicity. As with the hydrophilicity test for individual antigenic peptides, other window sizes can be used, or other cutoff values can be used (eg, depending on the genus or species of the bacteria that are being used to deliver the fusion polypeptide). In addition, other suitable hydrophilicity curves or other suitable scales can be used. Optionally, the combination of antigenic peptides or the entire fusion polypeptide can be further screened for immunosuppressive epitopes (eg, T-reg epitopes, IL-10 induced T helper epitopes, etc.) to select no antigen Peptides or avoid immunosuppressive effects. Nucleic acids encoding candidate antigenic peptide combinations or fusion polypeptides can then be designed and optimized. For example, the sequences can be optimized to achieve a level of translation, duration of expression, level of secretion, level of transcription, and any combination thereof. For example, the increase can be from 2 to 1000 times, from 2 to 500 times, from 2 to 100 times, from 2 to 50 times, from 2 to 20 times, 2 times to the non-optimized sequence of the control group. 10 fold or 3 fold to 5 fold [0113] For example, a fusion polypeptide or a nucleic acid encoding the fusion polypeptide can be optimized to achieve a reduction in the level of secondary structure that may be formed in the oligonucleotide sequence, or alternatively Optimized to prevent enzyme attachment of any modifiable sequence. For example, expression in bacterial cells can be achieved by transcriptional silence, low mRNA half-life, secondary structure formation, attachment sites for oligonucleotide binding molecules such as suppressors and repressors, and the use of rare tRNA pools. Blocked. The source of many problems in bacterial expression is found within the original sequence. Optimization of RNA may include modification of the cis-acting element, modification of its GC content, alteration of codon bias with respect to non-limiting tRNA pools of bacterial cells, and avoidance of internal homologous regions. Therefore, optimizing the sequence may be accompanied by, for example, adjusting regions having very high (&gt; 80%) or very low (&lt; 30%) GC content. Optimizing the sequence may be accompanied by, for example, one or more of the sequence motifs that avoid the following cis-acting: internal TATA匣, purine and ribosome entry sites; AT-rich or GC-rich sequence extensions Repetitive sequence and RNA secondary structure; (hidden) splice donor and acceptor sites; branching points; or a combination thereof. Optimizing performance may also be accompanied by the addition of sequence elements to the flanking regions of the gene and/or elsewhere in the plastid. Optimizing the sequence may also be accompanied by modification of the codon usage, eg, for codon biases of the host gene (eg, the Listeria monocytogenes gene). For example, the following codons can be used for Listeria monocytogenes.A nucleic acid encoding a fusion polypeptide can be produced and introduced into a delivery vehicle such as a bacterial strain or a Listeria strain. Other delivery vehicles may be suitable for DNA immunotherapy or peptide immunotherapy, such as acne virus or virus like particles. Once the plastid encoding the fusion polypeptide is produced and introduced into a bacterial strain or a Listeria strain, the bacterial or Listeria strain can be cultured and characterized to confirm the expression and secretion of the fusion polypeptide comprising the antigenic peptide. III. Recombinant Bacteria or Listeria Strains [0116] Also provided herein are recombinant bacterial strains, such as Listeria strains, comprising a recombinant fusion polypeptide disclosed herein or encoding the recombinant fusion polypeptide as disclosed elsewhere herein. Nucleic acid. Preferably, the bacterial strain is a Listeria strain, such as Listeria monocytogenes (Lm ) strain.Lm There are a number of inherent advantages as a vaccine carrier. Bacteria grow extremely efficiently in vitro without special requirements, and they lack LPS, which is a major virulence factor in Gram-negative bacteria, such as Salmonella. Since the gene attenuated Lm vector can be easily eliminated by antibiotics in the case of serious adverse effects, and unlike some viral vectors, the integration of genetic material into the host genome does not occur, so the gene attenuated Lm vector also provides additional safety. [0117] The recombinant Listeria strain can be any Listeria strain. Examples of suitable Listeria strains include Listeria monocytogenes and Listeria monocytogenes (Listeria grayi ) Listeria monocytogenesListeria ivanovii ) Listeria monocytogenesListeria murrayi ) Listeria monocytogenesListeria welshimeri L. monocytogenesLm Or any other Listeria species known in the art. Preferably, the recombinant Listeria strain is a strain of the species Listeria monocytogenes. Examples of Listeria monocytogenes strains include the following:10403S Wild type Listeria monocytogenes (see, for example, Bishop and Hinrichs (1987)J Immunol 139:2005-2009; Lauer et al. (2002)J Bact 184:4177-4186);Listeria monocytogenes DP-L4056, which is cured by phage (see, for example, Lauer et al. (2002)J Bact 184:4177-4186); Listeria monocytogenes DP-L4027, which is recovered by phage and hasHly Gene deletion (see, for example, Lauer et al. (2002)J Bact 184:4177- 4186; Jones and Portnoy (1994)Infect Immunity 65:5608-5613); Listeria monocytogenes DP-L4029, which is recovered by phage and hasactA Gene deletion (see, for example, Lauer et al. (2002)J Bact 184:4177-4186; Skoble et al. (2000)J Cell Biol 150: 527- 538); Listeria monocytogenes DP-L4042 (ΔPEST) (see, for example, Brockstedt et al. (2004)Proc Natl Acad Sci. USA 101:13832-13837 and supporting information); Listeria monocytogenes DP-L4097 (LLO-S44A) (see, for example, Brockstedt et al. (2004)Proc Natl Acad Sci USA 101:13832-13837 and support information); Listeria monocytogenes DP-L4364 (ΔlplA Lipoic acid protein ligase) (see, for example, Brockstedt et al. (2004)Proc Natl Acad Sci USA 101:13832-13837 and support information); Listeria monocytogenes DP-L4405 (ΔinlA (See, for example, Brockstedt et al. (2004)Proc Natl Acad Sci USA 101:13832-13837 and support information); Listeria monocytogenes DP-L4406 (ΔinlB (See, for example, Brockstedt et al. (2004)Proc Natl Acad Sci USA 101:13832-13837 and support information); Listeria monocytogenes CS-LOOOl (ΔactAinlB (See, for example, Brockstedt et al. (2004)Proc Natl Acad Sci USA 101:13832-13837 and support information); Listeria monocytogenes CS-L0002 (ΔactAlplA (See, for example, Brockstedt et al. (2004)Proc Natl Acad Sci USA 101:13832-13837 and support information); Listeria monocytogenes CS-L0003 (LLO L461T; ΔlplA (See, for example, Brockstedt et al. (2004)Proc Natl Acad Sci USA 101:13832-13837 and support information); Listeria monocytogenes DP-L4038 (ΔactA ;LLO L461T) (See, for example, Brockstedt et al. (2004)Proc Natl Acad Sci USA 101:13832-13837 and supporting information); Listeria monocytogenes DP-L4384 (LLO S44A; LLO L461T) (see, for example, Brockstedt et al. (2004)Proc Natl Acad Sci USA 101:13832-13837 and support information);lplA1 Missing Listeria monocytogenes strain (encoding lipoic acid protein ligase LplA1) (see, for example, O'Riordan et al. (2003)Science 302: 462-464); Listeria monocytogenes DP-L4017 (with 10403S of LLO L461T) (see for example, US 7,691,393); Listeria monocytogenes EGD (see, for example, GenBank accession number AL591824) ). In another specific example, the Listeria strain is Listeria monocytogenes EGD-e (see GenBank accession number NC_003210; ATCC accession number BAA-679); Listeria monocytogenes DP-L4029 (actA Missing, depending on the situationuvrAB Deletion combination (DP-L4029uvrAB) (see for example, US 7,691,393); Listeria monocytogenesactA -/inlB - double mutant (see, for example, ATCC Accession No. PTA-5562); Listeria monocytogeneslplA Mutant orHly Mutant (see, for example, US 2004/0013690); Listeria monocytogenesDal /Dat Double mutant (see for example, US 2005/0048081). Other Listeria monocytogenes strains include those strains that have been modified (eg, by plastid and/or by genomic integration) to contain nucleic acids encoding one or any combination of the following genes:Hly (LLO; Listeria lysin);Iap (p60);inlA ;inlB ;inlC ;Dal (alanine racemase);Dat (D-amino acid transaminase);plcA ;plcB ;actA Or mediate the growth, spreading, rupture of a single-walled vesicle, cleavage of a bivalve vesicle, binding to a host cell or any nucleic acid that is taken up by the host cell. Each of the above references is hereby incorporated by reference in its entirety for all purposes. The recombinant bacterium or Listeria may have wild-type pathogenicity, may have attenuated pathogenicity or may be non-pathogenic. For example, recombinant Listeria can be sufficiently toxic to escape phagosomes or phagocytose lysosomes and enter cytosol. Such Listeria strains may also be live attenuated Listeria strains comprising at least one attenuating mutation, deletion or inactivation as disclosed elsewhere herein. Preferably, the recombinant Listeria is an attenuated auxotrophic strain. An auxotrophic strain is a strain that is unable to synthesize a specific organic compound required for its growth. Examples of such strains are described in US Pat. No. 8,114,414, the disclosure of which is hereby incorporated by reference in its entirety for all purposes. Preferably, the recombinant Listeria strain lacks an antibiotic resistance gene. For example, such recombinant Listeria strains may comprise plastids that do not encode an antibiotic resistance gene. However, some of the recombinant Listeria strains provided herein comprise a plastid comprising a nucleic acid encoding an antibiotic resistance gene. Antibiotic resistance genes can be used in conventional selection and selection methods commonly used in molecular biology and vaccine preparation. Exemplary antibiotic resistance genes include gene products that confer resistance to: ampicillin, penicillin, methicillin, streptomycin, erythromycin, kanamycin, tetracycline, chloramphenicol (CAT), Neomycin, hygromycin and gentamicin. A. A bacterial or Listeria strain comprising a recombinant fusion polypeptide or a nucleic acid encoding a recombinant fusion polypeptide. The recombinant bacterial strain (e.g., a Listeria strain) disclosed herein comprises a recombinant fusion polypeptide disclosed herein or as A nucleic acid encoding the recombinant fusion polypeptide disclosed elsewhere herein. In a bacterial or Listeria strain comprising a nucleic acid encoding a recombinant fusion protein, the nucleic acid can be codon-optimized. An example of the best codon used by Listeria monocytogenes for each amino acid is shown in US 2007/0207170, which is hereby incorporated by reference in its entirety for all purposes. A nucleic acid is codon-optimized if at least one codon in the nucleic acid is replaced by a codon that is more frequently used by the Listeria monocytogenes than the codon in the original sequence. The nucleic acid may be present in an episomal plastid within the bacterial or Listeria strain, and/or the nucleic acid may be integrated into the bacterial or Listeria strain via the genome. Some recombinant bacteria or Listeria strains comprise two separate nucleic acids encoding two recombinant fusion polypeptides as disclosed herein: one nucleic acid is in an episomal plastid, and one nucleic acid is genomically integrated into a bacterial or Listeria strain in. The additional plastid may be a plastid that is stably maintained in vitro (in cell culture), in vivo (in the host), or in vitro and in vivo. If in an episomal, the open reading frame encoding the recombinant fusion polypeptide can be operably linked to a promoter/regulatory sequence in the plastid. If the genome is integrated into a bacterial or Listeria strain, the open reading frame encoding the recombinant fusion polypeptide can be operably linked to an exogenous promoter/regulatory sequence or operably linked to an endogenous promoter/ Adjust the sequence. Examples of promoter/regulatory sequences suitable for driving the constitutive expression of genes are well known and include, for example, ListeriaHly ,hlyA ,actA ,prfA ,andP60 Promoter, streptococcusBac Promoter, Streptomyces griseusStreptomyces griseus )sgiA Promoter and Bacillus thuringiensis (B. thuringiensis )phaZ Promoter. In some cases, the inserted gene of interest is uninterrupted or subject to regulatory constraints that often occur when integrated into genomic DNA, and in some cases, the presence of the inserted heterologous gene does not cause rearrangement or disruption of important regions of the cell itself. . Such a recombinant bacterium or Listeria strain can be obtained by using a plastid or vector comprising a nucleic acid encoding a recombinant fusion polypeptide for a bacterium or Listeria strain or attenuated bacterium or Liss described elsewhere herein. The strain of the genus of the genus is transformed to manufacture. The plastid may be an additional plastid that does not integrate into the host chromosome. Alternatively, the plastid may be an integrated plastid that is integrated into the chromosome of a bacterial or Listeria strain. The plastids used herein may also be multiple complexes. Methods for transforming bacteria are well known and include methods based on calcium chloride competent cells, electroporation methods, phage-mediated transduction, chemical transformation techniques, and physical transformation techniques. See, for example, de Boer et al. (1989)Cell 56:641-649; Miller et al. (1995)FASEB J. 9: 190-199; Sambrook et al. (1989) Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, New York; Ausubel et al. (1997) Current Protocols in Molecular Biology, John Wiley & Sons, New York; Gerhardt et al. Edited, 1994, Methods for General and Molecular Bacteriology, American Society for Microbiology, Washington, DC; and Miller, 1992, A Short Course in Bacterial Genetics, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, each of which It is incorporated herein by reference in its entirety for all purposes. A bacterial or Listeria strain having a genomically integrated heterologous nucleic acid can be produced, for example, by using a site-specific integration vector in which homologous recombination is used to produce a bacterium or Listeria comprising the integrated gene. The integration vector can be any site-specific integration vector capable of infecting a bacterial or Listeria strain. Such integration vectors may comprise, for example, a PSA attPP' site, a gene encoding a PSA integrase, a U153 attPP' site, a gene encoding U153 integrase, an A118 attPP' site, a gene encoding A118 integrase, or any other known AttPP' site or any other phage integrase. Such bacteria or Listeria strains comprising the integrated gene can also be used to integrate heterologous nucleic acids into bacteria orListeria Any other known method in the chromosome to produce. Techniques for homologous recombination are well known and described, for example, in Baloglu et al. (2005)Vet Microbiol 109(1-2): 11-17); Jiang et al. 2005)Acta Biochim Biophys Sin (Shanghai) 37(1): 19-24) and US 6,855,320, each of which is incorporated herein in its entirety for all purposes. Integration into bacterial or Listeria chromosomes can also be achieved using transposon insertion. Techniques for transposon insertion are well known, and for example the construction of DP-L967 by Sun et al. (1990)Infection and Immunity 58: 3770-3778, which is incorporated herein by reference in its entirety for all purposes. Transposon mutation induction results in stable genomic insertion, but the location of the heterologous nucleic acid inserted into the genome is unknown. Integration into bacterial or Listeria chromosomes can also be achieved using phage integration sites (see, eg, Lauer et al. (2002)J Bacteriol 184(15): 4177-4186, which is hereby incorporated by reference in its entirety for all purposes. ). For example, an integrase gene and attachment site of a bacteriophage (eg, U153 or Listeria phage) can be used to insert a heterologous gene into a corresponding attachment site, which can be any suitable in the genome. Site (for exampleArg tRNA genecomK Or 3' end). Endogenous prophage can be healed from the attachment site utilized prior to integration of the heterologous nucleic acid. Such methods can produce, for example, a single replica integrator. To avoid the "phage curing step", PSA phage based on the phage integration system can be used (see, for example, Lauer et al. (2002)J Bacteriol 184: 4177-4186, the entire disclosure of which is hereby incorporated by reference in its entirety for all purposes. Maintaining the integrated gene may require continuous selection, for example by antibiotics. Alternatively, a phage-based chromosomal integration system that does not require antibiotic selection can be established. In fact, an auxotrophic host strain can be supplemented. For example, a phage-based chromosomal integration system for clinical applications can be used in which a host strain that is auxotrophic for an essential enzyme (including, for example, D-alanine racemase) is used (eg,Lm dal (-)Dat (-)). Binding can also be used to introduce genetic material and/or plastid into bacteria. Methods for binding are well known and described, for example, in Nikodinovic et al. (2006)Plasmid 56(3): 223-227 and Auchtung et al. (2005)Proc Natl Acad Sci USA Each of 102 (35): 12554-12559 is hereby incorporated by reference in its entirety for all purposes. [0130] In one embodiment, the recombinant bacterium or Listeria strain may comprise a nucleic acid encoding a recombinant fusion polypeptide that is endogenously integrated into the genome of the bacterium or Listeria by genomeactA Sequence (encoding ActA protein) or endogenousHly The open reading frame of the sequence (encoding the LLO protein). For example, the expression and secretion of a fusion polypeptide can be endogenousactA Under the control of the promoter and ActA signal sequence or may be endogenousHly Under the control of the promoter and LLO signal sequence. As another example, a nucleic acid encoding a recombinant fusion polypeptide can be substituted for the ActA protein.actA Sequence or encode LLO proteinHly sequence. [0131] The selection of the recombinant bacterium or Listeria strain can be achieved by any means. For example, antibiotic selection can be used. Antibiotic resistance genes can be used in conventional selection and selection methods commonly used in molecular biology and vaccine preparation. Exemplary antibiotic resistance genes include gene products that confer resistance to: ampicillin, penicillin, methicillin, streptomycin, erythromycin, kanamycin, tetracycline, chloramphenicol (CAT), Neomycin, hygromycin and gentamicin. Alternatively, an auxotrophic strain can be used, and in addition to or in addition to the antibiotic resistance gene, an exogenous metabolic gene can be used for selection. As an example, in order to select an auxotrophic bacterium comprising a plastid encoding a metabolic enzyme or a supplemental gene provided herein, the transformed auxotrophic bacterium can be directed to a gene encoding a metabolic enzyme (eg, amino acid metabolism) The gene) or the complement of the gene is expressed in a medium selected for growth. Alternatively, the thermosensitive plastids can be used to select recombinants, or any other member known to be used to select recombinants. B. Attenuation of Bacterial or Listeria Strains [0132] The recombinant bacterial strains disclosed herein (eg, recombinant Listeria strains) can be attenuated. The term "attenuated" encompasses the attenuation of the ability of a bacterium to cause disease in a host animal. For example, the pathogenic character of attenuated Listeria strains can be reduced compared to wild type Listeria, but the attenuated Listeria can be grown and maintained in culture. For example, inoculated BALB/c mice intravenously with attenuated Listeria, the lethal dose of 50% vaccinated animals survived (LD50 ) better than the LD of wild type Listeria50 It is at least about 10 times higher, more preferably at least about 100 times, more preferably at least about 1,000 times, even more preferably at least about 10,000 times and most preferably at least about 100,000 times. The attenuated Listeria strain is therefore a strain that does not kill the animal with which it is administered, or only if the number of bacteria administered is significantly greater than the number of wild-type non-attenuated bacteria required to kill the same animal A strain that kills an animal. Attenuated bacteria are also understood to mean bacteria that cannot be replicated in a general environment because there is no nutrients for their growth in this environment. Therefore, bacteria are limited to replication in a controlled environment that provides the required nutrients. Attenuated strains are environmentally safe because they cannot be uncontrolled for replication. (1) Method for attenuating bacteria and Listeria strains [0133] Attenuation can be achieved by any known means. For example, such attenuated strains may lack one or more endogenous pathogenic genes or one or more endogenous metabolic genes. Examples of such genes are disclosed herein, and attenuation can be achieved by inactivating any or any combination of the genes disclosed herein. Inactivation can be achieved, for example, via deletion or via mutation (eg, inactivating mutation). The term "mutation" includes any type of mutation or modification of a sequence (nucleic acid or amino acid sequence) and may encompass deletions, truncations, insertions, substitutions, disruptions or shifts. For example, mutations can include in-frame transfer mutations, mutations that cause premature termination of the protein, or regulatory sequence mutations that affect gene expression. Mutation induction can be achieved using recombinant DNA techniques or using conventional mutation inducing techniques that utilize mutant chemicals or radiation and subsequently select mutants. Deletion mutants may be preferred because of the low probability of reversal. The term "metabolic gene" refers to a gene encoding an enzyme involved in or required for the nutrition utilized or required by the host bacterium. For example, the enzyme may be involved or required for the nutrition required to synthesize the host bacteria for continued growth. The term "pathogenic" gene, including its presence or activity in the genome of an organism, contributes to the pathogenicity of the organism (eg, enables the organism to achieve colonization of the ecological habitat in the host (including attachment to the cell) Genes for immune evasion (evading the host's immune response), immunosuppression (inhibiting the host's immune response), entering and leaving the cell, or obtaining nutrients from the host). A specific example of such an attenuated strain is Listeria monocytogenes (Lm )Dal (-)Dat (-) (Lmdd ). Another example of such an attenuated strain isLm Dal (-)Dat (-)ΔactA (LmddA ). See for example, US 2011/0142791, the disclosure of which is hereby incorporated by reference in its entirety for all purposes.LmddA Due to deletion of endogenous pathogenic genesactA And attenuated Listeria strains. Such strains can be supplemented byDal The gene retains the plastid for antigen expression in vivo and in vitro. Alternatively,LmddA EndogenousDal , Dat ,andactA Mutation in the geneDal/dat/actA Listeria. Such mutations can be, for example, deletions or other inactivating mutations. Another specific example of an attenuated strain isLm prfA (-) or atprfA A strain with a partial deletion or inactivation mutation in the gene. PrfA protein control containsLm The expression of a regulator of the essential pathogenic gene required for colonization of its vertebrate host; thus the prfA mutation strongly impairs the ability of PrfA to activate the expression of a PrfA-dependent toxic gene. Yet another specific example of an attenuated strain isLm inlB (-)actA (-), two key genes in which bacteria are naturally pathogenic, internalizing proteinsB andAct A , is removed. Other examples of attenuated bacteria or Listeria strains include bacteria or Listeria strains that lack one or more endogenous pathogenic genes. Examples of such genes includeListeria In the middleactA ,prfA ,plcB ,plcA ,inlA ,inlB ,inlC ,inlJ andBsh . The attenuated Listeria strain may also be a double mutant or a triple mutant of any of the above mentioned strains. The attenuated Listeria strain may comprise a mutation or deletion of each of the genes provided herein, or comprise, for example, up to ten of any of the genes provided herein (eg, includingactA ,prfA andDal/dat Mutation or deletion of a gene). For example, an attenuated Listeria strain may comprise an endogenous internalizing proteinC (inlC Gene mutation or deletion and/or endogenousactA Mutation or deletion of a gene. Alternatively, the attenuated Listeria strain may comprise an endogenous internalizing proteinB (inlB Gene mutation or deletion and/or endogenousactA Mutation or deletion of a gene. Alternatively, the attenuated Listeria strain may comprise endogenousinlB ,inlC andactA Mutation or deletion of a gene. Lack of endogenousity involved in the processactA Gene and/or endogenousinlC Gene or endogenousinlB Gene suppressionListeria Displacement to adjacent cells, thereby causing an unexpectedly high amount of attenuation, increasing immunogenicity and acting as a strain backbone. Attenuated Listeria strains may also be includedplcA andplcB A double mutant of a mutant or deletion of both. In some cases, the strain can be EGDListeria The main chain is constructed. [0138] The bacterial or Listeria strain may also be an auxotrophic strain having a mutation in a metabolic gene. As an example, a strain may lack one or more endogenous amino acid metabolism genes. For example, Listeria auxotrophic strains that produce, for example, a lack of D-alanine, can be achieved in a variety of ways, including deletion mutations, insertion mutations, in-frame transfer mutations, mutations that cause premature termination of the protein, or Regulatory sequence mutations that affect gene expression. Deletion mutants may be preferred because of the low probability of reversal with auxotrophic phenotypes. As an example, the ability of D-alanine mutants produced according to the protocols presented herein to be grown in the absence of D-alanine can be tested in a simple laboratory culture assay. Those mutants that cannot grow in the absence of this compound can be selected. Examples of the endogenous amino acid metabolism gene include a vitamin synthesis gene, a gene encoding a pantothenate synthase, a D-glutamic acid synthase gene, and a D-alanine transaminase (Dat Gene, D-alanine racemase (Dal )gene,Dga , involved in the synthesis of diaminopimelic acid (DAP), involved in cysteine synthase A (cysK Synthetic gene, vitamin B12-independent methionine synthase,trpA ,trpB ,trpE ,asnB ,gltD ,gltB ,leuA ,argG andthrC . Listeria strains may lack two or more than two such genes (egDat andDal ). D-glutamic acid synthesis is partially affectedDal Gene control, this gene is involved in the conversion and reverse reaction of D-glu + pyr to α-ketoglutarate + D-ala. [0140] As another example, an attenuated Listeria strain may lack an endogenous synthetase gene, such as an amino acid synthesis gene. Examples of such genes includefolP a gene encoding a dihydrouridine synthase family protein,ispD ,ispF a gene encoding phosphoenolpyruvate synthase,hisF ,hisH ,fliI a gene encoding a ribosome larger subunit pseudouridine synthase,ispD a gene encoding a bifunctional GMP synthetase/glutamate transaminase protein,cobS ,cobB ,cbiD a gene encoding uroporphyrin-III C-methyltransferase/uroporphyrinogen-III synthase,cobQ ,uppS ,truB ,Dxs ,mvaS ,dapA ,ispG ,folC a gene encoding a citrate synthase,argJ a gene encoding 3-deoxy-7-phosphonate synthase, a gene encoding a 吲哚-3-glycerol-phosphate synthase, a gene encoding an ortho-aminobenzoate synthase/glutamate transaminase module ,menB a gene encoding a menaquinone-specific iso-branched acid synthase, a gene encoding a phosphoribosylmethionine-synthesizing enzyme I or II, a gene encoding a phosphoribosyl-imidazole-amber-carbamamine synthase,carB ,carA ,thyA ,mgsA ,aroB ,hepB ,rluB ,ilvB ,ilvN ,alsS ,fabF ,fabH a gene encoding a pseudouridine synthase,pyrG ,truA ,pabB And the atp synthase gene (for example,atpC , atpD-2 , aptG , atpA-2 and many more). [0141] Attenuated Listeria strains may lack endogenousphoP ,aroA ,aroC ,aroD orplcB . As yet another example, an attenuated Listeria strain may lack an endogenous peptide transporter. Examples include genes encoding the following: ABC transporter/ATP binding/permease protein, oligopeptide ABC transporter/oligopeptide binding protein, oligopeptide ABC transporter/permease protein, zinc ABC transporter/zinc binding protein, sugar ABC Transporter, phosphate transporter, ZIP zinc transporter,EmrB /QacA Family-resistant drug transporters, sulfate transporters, proton-dependent oligopeptide transporters, magnesium transporters, formate/nitrite transporters, spermidine/putosine ABC transporters, a Na/Pi Transporter, phospho sugar transporter, glutamine ABC transporter, major facilitator family transporter, glycine betaine/L-proline ABC transporter, molybdenum ABC transporter, teichoic acid ABC transporter, Cobalt ABC transporter, ammonium transporter, amino acid ABC transporter, cell division ABC transporter, manganese ABC transporter, iron compound ABC transporter, maltose/maltodextrin ABC transporter,Bcr /CflA A family of drug-resistant transporters and a subunit of one of the above proteins. [0142] Other attenuated bacteria and Listeria strains may be endogenous metabolic enzymes, which are metabolized for bacterial growth processes, replication processes, cell wall synthesis, protein synthesis, fatty acid metabolism, or Amino acid in any other growth or replication process. Similarly, attenuated strains may lack endogenous metabolic enzymes that catalyze the formation of amino acids used in cell wall synthesis, catalyze the synthesis of amino acids used in cell wall synthesis, or may participate in the synthesis of cell wall synthesis. The amino acid used. Alternatively, amino acids can be used for cell wall biogenesis. Alternatively, the metabolic enzyme is a synthetase for D-glutamic acid, a cell wall component. Other attenuated Listeria strains may lack the gene for synthesis by D-glutamic acid,Dga , a metabolic enzyme encoded by the arr (alanine racemase) gene or any other enzyme involved in the synthesis of alanine. Still other examples of metabolic enzymes that can be deficient in Listeria strains include enzymes encoded by:serC (a phosphoserine transaminase),Asd (aspartate beta-halfaldehyde dehydrogenase; involved in the synthesis of the cell wall component diaminopimelate), encoding gsaB-glutamic acid-1-semialdehyde transaminase (catalyzed by (S)-4-amino- a 5-sided oxyvalerate to form a 5-aminoethyl propyl propionate) gene,hemL (catalyzing the formation of 5-aminoethyl propyl propionate from (S)-4-amino-5-side valerate),aspB (catalyzing the formation of oxaloacetate from L-aspartate and 2-oxoethoxyglutarate and the aspartate transaminase of L-glutamate),argF-1 (involved in arginine biosynthesis),aroE (participating in amino acid biosynthesis),aroB (participating in 3-dehydroquinic acid ester biosynthesis),aroD (participating in amino acid biosynthesis),aroC (participating in amino acid biosynthesis),hisB (involved in histidine biosynthesis),hisD (involved in histidine biosynthesis), hisG (in histidine biosynthesis),metX (participating in methionine biosynthesis),proB (participating in proline biosynthesis),argR (involved in arginine biosynthesis),argJ (involved in arginine biosynthesis),Thil (involved in thiamine biosynthesis),LMOf2365_1652 (participating in tryptophan biosynthesis),aroA (participating in tryptophan biosynthesis),ilvD (participating in proline and isoleucine biosynthesis), ilvC (involved in proline and isoleucine biosynthesis), leuA (involved in leucine biosynthesis),dapF (participating in lysine biosynthesis), andthrB (Participating in threonine biosynthesis) (all GenBank accession number NC_002973). The attenuated Listeria strain can be produced by mutation of other metabolic enzymes, such as tRNA synthetase. For example, metabolic enzymes can betrpS The gene encodes a gene encoding a tryptophanyl tRNA synthetase. For example, the host strain bacteria can be Δ (trpS aroA And two markers can be included in the integration vector. Other examples of metabolic enzymes that can be mutated to produce an attenuated Listeria strain include enzymes encoded by:murE (participating in the synthesis of diaminopimelic acid; GenBank accession number: NC_003485), LMOf2365_2494 (participating in the biosynthesis of teichoic acid),WecE (lipopolysaccharide biosynthesis protein rffA; GenBank accession number: AE014075.1) oramiA (An N-acetyl endosome-L-alanine guanamine). Still other examples of metabolic enzymes include aspartate transaminase, histamine-phosphate transaminase (GenBank Accession No. NP_466347) or the cell wall teic acid glycosylated protein GtcA. Other examples of metabolic enzymes that can be mutated to produce an attenuated Listeria strain include a synthetase for a peptidoglycan component or precursor. The component may be, for example, UDP-N-acetylcholine pentapeptide, UDP-N-acetylglucosamine, MurNAc-(pentapeptide)-pyrophosphonium-undecitol, GlcNAc-p-(1, 4) -MurNAc-(pentapeptide)-pyrophosphonate or any other peptidoglycan component or precursor. Still other examples of metabolic enzymes that can be mutated to produce an attenuated Listeria strain include metabolic enzymes encoded by:murG ,murD ,murA-1 ormurA-2 (All are described in GenBank registration number NC_002973). Alternatively, the metabolic enzyme can be any other synthetic enzyme used in the peptidoglycan component or precursor. The metabolic enzyme may also be a transglycosidase, a transpeptidase, a carboxypeptidase, any other class of metabolic enzymes or any other metabolic enzyme. For example, the metabolic enzyme can be any other Listeria metabolic enzyme or any other Listeria monocytogenes metabolic enzyme. Other bacterial strains can be attenuated by mutating the corresponding orthologous genes in the other bacterial strains as described above for Listeria. (2) Method for supplementing attenuated bacteria and Listeria strains [0149] The attenuated bacteria or Listeria strains disclosed herein may further comprise a supplemental gene or a complementary attenuating mutation (eg, supplementation) A nucleic acid of a metabolic enzyme of an auxotrophic strain of a auxotrophic Listeria strain. For example, a nucleic acid having a first open reading frame encoding a fusion polypeptide as disclosed herein can further comprise a second open reading frame comprising a supplemental gene or encoding a supplemental metabolic enzyme. Alternatively, the first nucleic acid can encode a fusion polypeptide and the second nucleic acid alone can comprise a supplemental gene or encode a supplemental metabolic enzyme. [0150] The complement gene may be extrachromosomal or may be integrated into the genome of the bacterium or Listeria. For example, an auxotrophic Listeria strain can comprise an additional plastid comprising a nucleic acid encoding a metabolic enzyme. Such plastids will be contained in Listeria in a free or extrachromosomal manner. Alternatively, the auxotrophic Listeria strain may comprise an integrated plastid (i.e., an integration vector) comprising a nucleic acid encoding a metabolic enzyme. Such integrated plastids can be used to integrate into the Listeria chromosome. Preferably, the episomal or integrative plastid lacks an antibiotic resistance marker. In addition to or in addition to antibiotic resistance genes, metabolic genes can be used for selection. As an example, in order to select an auxotrophic bacterium comprising a plastid encoding a metabolic enzyme or a supplemental gene provided herein, the transformed auxotrophic bacterium can be directed to a gene encoding a metabolic enzyme (eg, amino acid metabolism) The gene) or the complement of the gene is expressed in a medium selected for growth. For example, bacteria that are auxotrophic for D-glutamic acid synthesis can be transformed with a plastid containing a gene for D-glutamic acid synthesis, and auxotrophic bacteria will be present in the absence of D-glutamic acid. The auxotrophic bacteria that grow under the plastid without using plastid transformation or expressing the protein encoding D-glutamic acid synthesis will not grow. Similarly, when transformed and exhibiting a plastid comprising a nucleic acid encoding an amino acid metabolizing enzyme for D-alanine synthesis, the auxotrophic bacteria for D-alanine synthesis will be in the absence of D-propylamine. Growth in the presence of acid. Such methods for making suitable media containing or lacking the necessary growth factors, extenders, amino acids, vitamins, antibiotics, and the like are well known and commercially available. Once an auxotrophic bacterium comprising a plastid encoding a metabolic enzyme or a supplemental gene provided herein has been selected in a suitable medium, the bacterium can be propagated in the presence of a selection pressure. Such propagation may involve the growth of bacteria in a medium free of auxotrophic factors. The presence of a plastid that exhibits a metabolic enzyme or a supplemental gene in an auxotrophic bacterium ensures that the plastid will replicate with the bacterium, thus continuously selecting the bacterium containing the plastid. The production of a bacterial or Listeria strain can be easily scaled up by adjusting the volume of the medium in which the auxotrophic bacteria containing the plastids are grown. In one embodiment, the attenuated strain hasDal andDat a strain that is deleted or inactivated in dal and dat (eg, Listeria monocytogenes)Lm )Dal (-)Dat (-) (Lmdd )orLm dal (-)Dat (-)ΔactA (LmddA )), and the supplemental gene encodes alanine racemase (for example, byDal Gene encoding) or D-amino acid transaminase (for example, byDat Gene coding). An exemplary alanine racemase protein can have the sequence set forth in SEQ ID NO: 76 (encoded by SEQ ID NO: 78; GenBank Accession Number: AF038438) or can be a homologue, variant of SEQ ID NO: 76 , isoforms, analogs, fragments, homolog fragments, variant fragments, analog fragments or isoform fragments. The alanine racemase protein can also be any other Listeria agglutinase protein. Alternatively, the alanine racemase protein can be any other Gram-positive alanine racemase protein or any other alanine racemase protein. An exemplary D-amino acid transaminase protein can have the sequence set forth in SEQ ID NO: 77 (encoded by SEQ ID NO: 79; GenBank Accession Number: AF038439) or can be a homologue of SEQ ID NO: 77 , variants, isoforms, analogs, fragments, homolog fragments, variant fragments, analog fragments or isoform fragments. D-amino acid transaminase protein can also be any otherListeria D-amino acid transaminase protein. Alternatively, the D-amino acid transaminase protein can be any other Gram-positive D-amino acid transaminase protein or any other D-amino acid transaminase protein. [0154] In another embodiment, the attenuated strain hasprfA a strain that is deleted or inactivated in prfA (egLm prfA (-)), and the supplemental gene encodes the PrfA protein. For example, the complement gene can encode a mutant PrfA (D133V) protein that restores a portion of the PrfA function. An example of a wild-type PrfA protein is set forth in SEQ ID NO: 80 (encoded by the nucleic acid set forth in SEQ ID NO: 81), and an example of a D133V mutant PrfA protein is set forth in SEQ ID NO: 82 (by SEQ ID NO: : Nucleic acid coding as described in 83). The complemented PrfA protein can be a homologue, variant, isoform, analog, fragment, homolog fragment, variant fragment, analog fragment or isoform fragment of SEQ ID NO: 80 or 82. PrfA protein can also be any otherListeria PrfA protein. Alternatively, the PrfA protein can be any other Gram-positive PrfA protein or any other PrfA protein. [0155] In another example, the bacterial strain or the Listeria strain may compriseactA Missing gene oractA An inactivating mutation in the gene, and the complement gene may comprise an actA gene to complement the mutation and restore the function of the Listeria strain. Other auxotrophic strains and supplemental systems can also be used with the methods and compositions provided herein. C. Preparation and Storage of Bacterial or Listeria Strains [0157] Recombinant bacterial strains (eg, Listeria strains) have been subcultured by animal hosts as appropriate. Such a subdivision can maximize the efficacy of the Listeria strain as a vaccine carrier, stabilize the immunogenicity of the Listeria strain, stabilize the pathogenicity of the Listeria strain, and increase the Listeria The immunogenicity of the strain can increase the pathogenicity of the Listeria strain, remove the unstable strain of the Listeria strain or reduce the occupancy rate of the unstable strain of the Listeria strain. Methods for substituting a recombinant Listeria strain in an animal host are well known in the art and are described, for example, in US 2006/0233835, which is hereby incorporated by reference in its entirety for all purposes. [0158] Recombinant bacterial strains (eg, Listeria strains) can be stored in a frozen cell bank or in a lyophilized cell bank. Such a cell bank can be, for example, a master cell bank, a working cell bank, or a Good Manufacturing Practice (GMP) cell bank. Examples of "good manufacturing practices" include those defined by 21 CFR 210-211 of the United States Code of Federal Regulations. However, "good manufacturing practices" may also be defined by other standards used to manufacture clinical grade materials or for human consumption, such as standards in countries other than the United States. Such cell banks may be intended for use in the manufacture of clinical grade materials or may conform to management practices for human use. [0159] Recombinant bacterial strains (eg, Listeria strains) may also be from a vaccine batch, from a frozen feedstock or from a lyophilized feedstock. Such cell banks, frozen stocks or vaccine dosages may exhibit greater than 90% viability, for example, after thawing. Thawing can be performed after cryopreservation storage or frozen storage for 24 hours. Alternatively, the storage may last for example 2 days, 3 days, 4 days, 1 week, 2 weeks, 3 weeks, 1 month, 2 months, 3 months, 5 months, 6 months, 9 months or 1 year. [0161] The cell bank, frozen material or vaccine batch can be cryopreserved, for example, by growing a culture of a bacterial strain (eg, a Listeria strain) in a nutrient medium, and freezing in a solution containing glycerin. The culture, and storing the Listeria strain at below -20 °C. The temperature can be, for example, about -70 ° C or between about -70 ° C to about -80 ° C. Alternatively, the cell bank, frozen material or vaccine batch can be cryopreserved, for example, by growing a Listeria strain culture in a defined medium, and freezing the culture in a solution comprising glycerol, And storing the Listeria strain at below -20 °C. The temperature can be, for example, about -70 ° C or between about -70 ° C and about -80 ° C. Any component-determined microbial culture medium can be used in this method. Cultures (eg, cultures of Listeria vaccine strains used to produce Listeria vaccine dosages) can be derived, for example, from cell banks, self-frozen materials, starter cultures, or self-communities Vaccination. Cultures can be inoculated, for example, in the mid-log phase, mid-logarithmic growth phase, or another growth phase. In place of or in addition to glycerol, the solution for freezing optionally contains another additive or an additive having anti-freezing properties. Examples of such additives include, for example, mannitol, DMSO, sucrose, or any other number of additives or additives having anti-freezing properties. The nutrient medium for growing a culture of a bacterial strain (eg, a Listeria strain) can be any suitable nutrient medium. Examples of suitable media include, for example, LB; TB; a modified animal-free product, Terrific Broth; or a defined medium. [0165] The growth step can be carried out by any known means for growing bacteria. For example, the growth step can be performed with a shake flask (such as a shake flask with a baffle), a batch decimator, a stirred tank or flask, an airlift decimator, a fed-batch, a continuous cell reactor, and an immobilization. A cell reactor or any other means of growing bacteria is performed. [0166] Maintain a constant pH during culture growth (eg, in a batch fermentation), as appropriate. For example, the pH can be maintained at about 6.0, about 6.5, about 7.0, about 7.5, or about 8.0. Likewise, the pH can be, for example, from about 6.5 to about 7.5, from about 6.0 to about 8.0, from about 6.0 to about 7.0, from about 6.0 to about 7.0, or from about 6.5 to about 7.5. [0167] Optionally, a constant temperature can be maintained during growth of the culture. For example, the temperature can be maintained at about 37 ° C or at 37 ° C. Alternatively, the temperature can be maintained at 25 ° C, 27 ° C, 28 ° C, 30 ° C, 32 ° C, 34 ° C, 35 ° C, 36 ° C, 38 ° C or 39 ° C. [0168] Optionally, a constant dissolved oxygen concentration can be maintained during growth of the culture. For example, the dissolved oxygen concentration can be maintained at 20% saturation, 15% saturation, 16% saturation, 18% saturation, 22% saturation, 25% saturation, 30% saturation, 35% saturation, 40% saturation, 45% saturation, 50% saturated, 55% saturated, 60% saturated, 65% saturated, 70% saturated, 75% saturated, 80% saturated, 85% saturated, 90% saturated, 95% saturated, 100% saturated or nearly 100% saturated. [0169] Methods for lyophilizing and cryopreserving recombinant bacterial strains, such as Listeria strains, are known. For example, Listeria cultures can be rapidly frozen in liquid nitrogen followed by final freezing temperatures. Storage. Alternatively, the culture can be frozen in a more gradual manner (eg, by placing it in a culture vial at the final storage temperature). The culture can also be by any other method known to freeze bacterial cultures. [0170] The storage temperature of the culture can be, for example, between -20 ° C and -80 ° C. For example, the temperature can be significantly lower than -20 ° C or not higher than -70 ° C. Alternatively, the temperature can be about -70 ° C, -20 ° C, -30 ° C, -40 ° C, -50 ° C, -60 ° C, -80 ° C, -30 ° C to -70 ° C, -40 ° C to -70 ° C, -50 ° C to -70 °C, -60 ° C to -70 ° C, -30 ° C to -80 ° C, -40 ° C to -80 ° C, -50 ° C to -80 ° C, -60 ° C to -80 ° C or -70 ° C to -80 ° C. Alternatively, the temperature may be lower than -70 ° C or lower than -80 ° C. IV. Immunogenic composition, pharmaceutical composition and vaccine [0171] An immunogenic composition, a pharmaceutical composition or a vaccine is also provided, which comprises A recombinant fusion polypeptide disclosed herein, a nucleic acid encoding a recombinant fusion polypeptide as disclosed herein, or a recombinant bacterium or Listeria strain as disclosed herein comprising an immunogenic composition of a Listeria strain may comprise Liss The strain of the genus is inherently immunogenic and/or the composition may further comprise an adjuvant. Other immunogenic compositions comprise a DNA immunotherapy or a peptide immunotherapeutic composition. [0172] The term "immunogenic composition" Means any composition comprising an antigen that, upon exposure to the composition, elicits an immune response against the antigen in the individual. The immune response elicited by the immunogenic composition can be directed against or against the particular antigen Specific epitopes. The immunogenic composition may comprise a single recombinant fusion polypeptide as disclosed herein, a nucleic acid encoding a recombinant fusion polypeptide as disclosed herein, or a recombinant bacterium or Listeria as disclosed herein. A strain, or it may comprise a plurality of different recombinant fusion polypeptides as disclosed herein, encoding as disclosed herein A nucleic acid comprising a fusion polypeptide or a recombinant bacterial or Listeria strain as disclosed herein. For example, if the first recombinant fusion polypeptide comprises an antigenic peptide not comprising the second recombinant fusion polypeptide, the first recombinant fusion polypeptide is The second recombinant fusion polypeptide is different. The two recombinant fusion polypeptides may comprise some of the same antigenic peptides and are still considered different. Such different recombinant fusion polypeptides, nucleic acids encoding recombinant fusion polypeptides or recombinant bacteria or Listeria strains may be Simultaneous administration to an individual or sequentially to an individual. When a drug substance comprising a recombinant Listeria strain (or recombinant fusion polypeptide or nucleic acid) disclosed herein is in a different dosage form (eg, one agent is a lozenge or capsule and the other One agent is a sterile liquid) and/or administered in different dosing schedules (eg, one composition from the mixture is administered at least daily and the other is administered less frequently, such as once a week, once every two weeks, or Sequential administration can be especially useful whenever it is done every three weeks. Multiple recombinant fusion polypeptides\nucleic acids encoding recombinant fusion polypeptides or recombinant bacteria or Listeria strains may each comprise a different antigenic peptide group. Alternatively, the recombinant fusion polypeptide \ nucleic acid encoding the recombinant fusion polypeptide or both or more than the recombinant bacterial or Listeria strain may comprise the same antigenic peptide group (eg, comprising the same set of antigenic peptides in a different order). The immunogenic composition may additionally comprise an adjuvant (eg, two or more than two adjuvants), a cytokine, a chemokine, or a combination thereof. Optionally, the immunogenic composition may additionally comprise an antigen presenting cell (APC), which may be autologous or may be allogeneic to the individual. The term adjuvant includes a compound or mixture that enhances an immune response against an antigen. For example, an adjuvant can be a non-specific stimulating agent for an immune response or a substance that allows for the production of a stock in an individual, the adjuvant providing even greater enhancement when combined with the immunogenic compositions disclosed herein and/or Long-term immune response. Adjuvants can promote, for example, a major Th1-mediated immune response, a Th1-type immune response, or a Th1-mediated immune response. Likewise, adjuvants may facilitate cell-mediated immune responses relative to antibody-mediated responses. Alternatively, the adjuvant may facilitate antibody mediated reactions. Some adjuvants can enhance the immune response by slowly releasing the antigen, while other adjuvants can mediate their effects by any of the following mechanisms: increasing cell infiltration, inflammation, and migration to the site of injection, specifically for antigens Presenting cells (APC); promoting the activation state of APC by up-regulating co-stimulatory signals or major histocompatibility complex (MHC) expression; enhancing antigen presentation; or inducing cytokine release for indirect effects. Examples of adjuvants include saponin QS21, CpG oligonucleotides, oligonucleotides containing unmethylated CpG, MPL, TLR agonists, TLR4 agonists, TLR9 agonists, Resiquimod® , imiquimod, cytokines or nucleic acids encoding such cytokines, chemokines or nucleic acids encoding such chemokines, IL-12 or nucleic acids encoding IL-12, IL-6 or encoding IL -6 nucleic acids and lipopolysaccharides. Another example of a suitable adjuvant is Montanide ISA 51. Montanide ISA 51 contains natural metabolisable oils and refined emulsifiers. Yet another example of a suitable adjuvant is the detoxified Listeria lysin O (dtLLO) protein. An example of a dtLLO suitable for use as an adjuvant is encoded by SEQ ID NO:115. dtLLO encoded by a sequence that is at least 90%, 95%, 96%, 97%, 98% or 99% identical to SEQ ID NO: 115 is also suitable for use as an adjuvant. Other examples of suitable adjuvants include granulocyte/macrophage colony-stimulating factor (GM-CSF) or nucleic acid encoding GM-CSF and keyhole limpet hemocyanin (KLH) a protein or a nucleic acid encoding the same. GM-CSF can be, for example, in yeast (Saccharomyces cerevisiae (S. cerevisiae )) Human proteins grown in the vector. GM-CSF promotes the asexual expansion and differentiation of hematopoietic progenitor cells, antigen presenting cells (APCs), dendritic cells and T cells. Still other examples of adjuvants include growth factors or nucleic acids encoding such growth factors, cell populations, Freund's incomplete adjuvant, aluminum phosphate, aluminum hydroxide, bacille Calmette-Guerin (BCG), alum, interleukin Or a nucleic acid encoding such interleukins, quill glycoside, monophosphoryl lipid A, liposomes, bacterial mitogens, bacterial toxins or any other type of known adjuvant (see, for example, Fundamental Immunology, 5th Edition ( August 2003): William E. Paul (editor); Lippincott Williams & Wilkins Publishers; Chapter 43: Vaccines, GJV Nossal, which is hereby incorporated by reference in its entirety for all purposes. The immunogenic composition may further comprise one or more immunomodulatory molecules. Examples include interferon gamma, cytokines, chemokines, and T cell stimulators. The immunogenic composition can be in the form of a vaccine or a pharmaceutical composition. The terms "vaccine" and "pharmaceutical composition" are interchangeable and refer to a pharmaceutically acceptable carrier containing an immunogenic composition for administration to an individual in vivo. The vaccine can be, for example, a peptide vaccine (eg, comprising a recombinant fusion polypeptide as disclosed herein), a DNA vaccine (eg, comprising a nucleic acid encoding a recombinant fusion polypeptide as disclosed herein), or a vaccine contained within a cell and delivered by a cell ( For example, recombination as disclosed hereinListeria ). The vaccine may prevent the individual from becoming infected or suffering from a disease or condition, and/or the vaccine may be therapeutic for an individual having the disease or condition. Methods for preparing peptide vaccines are well known and are described, for example, in EP 1408048, US 2007/0154953 and Ogasawara et al. (1992).Proc. Natl Acad Sci USA 89:8995-8999, each of which is incorporated herein by reference in its entirety for all purposes. Peptide evolution techniques can be used to generate antigens with higher immunogenicity, as appropriate. Techniques for the evolution of peptides are well known and are described, for example, in US 6,773,900, which is hereby incorporated by reference in its entirety for all purposes. "Pharmaceutically acceptable carrier" means a vehicle for containing an immunogenic composition which can be introduced into an individual without significant adverse effects and having no adverse effects on the immunogenic composition. . That is, "pharmaceutically acceptable" means that any formulation is safe and suitably delivers an effective amount of at least one immunogenic composition for use in the methods disclosed herein to the desired route of administration. Pharmaceutically acceptable carriers or vehicles or excipients are well known. Descriptions of suitable pharmaceutically acceptable carriers and factors relating to their selection are found in a variety of readily available sources, such asRemington's Pharmaceutical Sciences, 18th edition, 1990, which is incorporated herein by reference in its entirety for all purposes. Such carriers can be adapted for any route of administration (eg, parenteral, enteral (eg, oral) or topical). Such pharmaceutical compositions can be buffered, for example, wherein the pH is maintained at a specific value ranging from pH 4.0 to pH 9.0 depending on the stability of the immunogenic composition and the route of administration. Suitable pharmaceutically acceptable carriers include, for example, sterile water; saline solutions such as physiological saline; dextrose; buffer solutions such as phosphate buffer or bicarbonate buffer solutions; alcohols; gum arabic; vegetable oils; Benzyl alcohol; polyethylene glycol; gelatin; carbohydrates (eg lactose, amylose or starch); magnesium stearate; talc; tannic acid; viscous paraffin; white paraffin; glycerol; alginate; hyaluronic acid; ; fragrance oil; fatty acid monoglyceride and diglyceride; pentaerythritol fatty acid ester; hydroxymethyl cellulose; polyvinylpyrrolidone and the like. Pharmaceutical compositions or vaccines may also include adjuvants that do not deleteriously react with the immunogenic composition, including, for example, diluents, stabilizers (eg, sugars and amino acids), preservatives, wetting agents, emulsifiers, pH buffers. Agents, viscosity enhancing additives, lubricants, salts that affect osmotic pressure, buffers, vitamins, colorants, flavoring agents, aromatic substances, and the like. For example, for liquid formulations, the pharmaceutically acceptable carrier can be an aqueous or non-aqueous solution, suspension, emulsion or oil. Non-aqueous solvents include, for example, propylene glycol, polyethylene glycol, and injectable organic esters such as ethyl oleate. Aqueous carriers include, for example, water, alcoholic/aqueous solutions, emulsions or suspensions, including physiological saline and buffering media. Examples of oils include oils of petroleum, animal, vegetable or synthetic origin, such as peanut oil, soybean oil, mineral oil, olive oil, sunflower oil and cod liver oil. Solid carriers/diluents include, for example, gums, starches (eg, corn starch, pregelatinized starch), sugars (eg, lactose, mannitol, sucrose, dextrose), cellulosic materials (eg, microcrystalline fibers) An acrylate (for example, polymethacrylate), calcium carbonate, magnesium oxide, talc or a mixture thereof. [0182] A pharmaceutical composition or vaccine that is continuously or directionally released may be provided as appropriate. This can be achieved, for example, via the use of liposomes or compositions in which the active compounds are protected by different decomposable coatings (e.g., by microencapsulation, multi-layer coating, etc.). Such compositions can be formulated for immediate or slow release. It is also possible to freeze-dry the composition and use the obtained lyophilizate (for example, for preparing an injectable product). The immunogenic compositions, pharmaceutical compositions or vaccines disclosed herein may also comprise one or more additional compounds effective to prevent or treat cancer. For example, additional compounds may comprise compounds suitable for use in chemotherapy, such as amsacrine, bleomycin, busulfan, capecitabine, carboplatin ), carmustine, chlorambucil, cisplatin, cladribine, clofarabine, cristantaspase, ring Phosphonamine, cytarabine, dacarbazine, dactinomycin, daunorubicin, docetaxel, doxorubicin, table Epirubicin, etoposide, fludarabine, fluorouracil (5-FU), gemcitabine, gliadel implant, hydroxyurea, idarubicin, Isocyclophosphamide, irinotecan, leucovorin, liposomal cranberry, liposomal daunorubicin, lomustine, melphalan,巯基嘌呤, mesna, methotrexate, mitogen (mitomycin), mitoxantrone, oxaliplatin, paclitaxel (Taxol), pemetrexed, pentostatin, procarbazine , raltitrexed, satraplatin, streptozocin, tegafur-uracil, temozolomide, teniposide, thiotepa ), thioguanine, topotecan, treosulfan, vinblastine, vincristine, vindesine, vinorelbine or combination. Additional compounds may also contain other biological agents, including Herceptin for the HER2 antigen.® (trastuzumab), Avastin for VEGF® (bevacizumab) or an antibody against the EGF receptor, such as Erbitux® (cetuximab), duvalumumab (Medi4736) and Vectibix® (panitumumab). Additional compounds may also include, for example, additional immunotherapy. Additional compounds may also comprise immunological checkpoint inhibitor antagonists, such as PD-1 signaling pathway inhibitors, CD-80/86 and CTLA-4 signaling pathway inhibitors, T cell membrane protein 3 (TIM3) signaling Pathway inhibitor, adenosine A2A receptor (A2aR) signaling pathway inhibitor, lymphocyte activation gene 3 (LAG3) signaling pathway inhibitor, killer immunoglobulin receptor (KIR) signaling pathway inhibitor, CD40 signaling Pathway inhibitor or any other antigen presenting cell/T cell signaling pathway inhibitor. Examples of immunological checkpoint inhibitor antagonists include anti-PD-L1/PD-L2 antibodies or fragments thereof, anti-PD-1 antibodies or fragments thereof, anti-CTLA-4 antibodies or fragments thereof or anti-B7-H4 antibodies or fragments thereof. An example of an anti-PD-1 antibody is Opdivo (nivolumab), an anti-PD-1 monoclonal antibody. In a specific embodiment, a combination therapy comprising a recombinant Listeria strain and Opdivo (Navuximab) is used to treat an individual having metastatic cervical cancer, the recombinant Listeria strain comprising a coding fusion polypeptide comprising The first open reading frame nucleic acid, wherein the fusion polypeptide comprises a PEST-containing peptide fused to an HPV16 antigen peptide and an HPV18 antigen peptide, wherein the HPV16 antigen peptide and the HPV18 antigen peptide are operably linked in series, wherein the HPV16 antigen peptide It is an HPV16 E6 antigen peptide or an HPV16 E7 antigen peptide, and wherein the HPV18 antigen peptide is an HPV18 E6 antigen peptide or an HPV18 E7 antigen peptide. Advaxis immunotherapy (ADVANCE) study using navumab to treat recurrent or metastatic cervical cancer is the development of second-line treatment for cervical cancer in first-line treatment failure in women with recurrent or metastatic cervical cancer. The ADVANCE study was a randomized phase global study in which more than 500 patients were randomized to patients with recurrent or metastatic cervical cancer who failed first-line therapy or were eligible for first-line therapy, compared to the single-agent chemistry selected by the investigator. Therapy evaluates the safety and efficacy of ADXS-602 (ADXS-DUAL) in combination with Navumab. Additional compounds may also comprise T cell stimulating agents, such as antibodies that bind to T cell receptor costimulatory molecules, antigen presenting cell receptors that bind to costimulatory molecules, or members of the TNF receptor superfamily, or their functionality. Fragment. The T cell receptor costimulatory molecule can comprise, for example, CD28 or ICOS. An antigen presenting cell receptor that binds to a costimulatory molecule can comprise, for example, a CD80 receptor, a CD86 receptor, or a CD46 receptor. Members of the TNF receptor superfamily may comprise, for example, a glucocorticoid-induced TNF receptor (GITR), OX40 (CD134 receptor), 4-1BB (CD137 receptor) or TNFR25.See for example WO2016100929, WO2016011362 and WO2016011357, each of which is incorporated by reference in its entirety for all purposes. V. Methods of Treatment [0187] The recombinant fusion polypeptides disclosed herein, nucleic acids encoding recombinant fusion polypeptides, recombinant bacterial or Listeria strains, immunogenic compositions, pharmaceutical compositions, and vaccines can be used in a variety of methods. For example, it can be used in a method of inducing an immune response against a tumor-associated antigen in an individual, in a method of inducing an anti-tumor or anti-cancer immune response in an individual, in a method of treating a tumor or cancer in an individual, in an individual A method of preventing a tumor or cancer or a method of protecting an individual from a tumor or cancer. It can also be used in a method for increasing the ratio of T effector cells to regulatory T cells (Tregs) in an individual's spleen and tumor, wherein the T effector cells target tumor associated antigens. It can also be used to increase tumor-associated antigen T cells in an individual, increase the survival time of an individual having a tumor or cancer, delay the onset of cancer in an individual, or reduce the size of a tumor or cancer metastasis in an individual. The tumor or cancer in any of the above methods may be, for example, an HPV-related cancer, such as a cervical tumor or cancer, an anal tumor or cancer, a head and neck tumor or cancer, or an oropharyngeal tumor or cancer. The cancer in any of the methods described herein can be metastatic cervical cancer. A method of inducing an anti-HPV16 and/or anti-HPV18 immune response in an individual can comprise, for example, administering to the individual a recombinant fusion polypeptide disclosed herein, a nucleic acid encoding a recombinant fusion polypeptide, a recombinant bacterium or a Listeria strain An immunogenic composition, pharmaceutical composition or vaccine (eg, comprising a recombinant fusion polypeptide comprising a HPV16 and HPV18 antigenic peptide or a nucleic acid encoding the recombinant fusion polypeptide). Thereby, an anti-HPV16 and/or anti-HPV18 immune response can be induced in the individual. For example, in the case of a recombinant Listeria strain, the Listeria strain can express a fusion polypeptide thereby eliciting an immune response in the individual. The immune response can comprise, for example, a T cell response, such as a CD4+FoxP3-T cell response, a CD8+ T cell response, or a CD4+FoxP3- and CD8+ T cell response. Such methods can also increase the ratio of T effector cells to regulatory T cells (Tregs) in an individual's spleen and tumor microenvironment, thereby allowing for a deeper anti-tumor response in an individual. A method of inducing an anti-tumor or anti-cancer immune response in an individual can comprise, for example, administering to the individual a recombinant fusion polypeptide disclosed herein, a nucleic acid encoding a recombinant fusion polypeptide, a recombinant bacterium or a Listeria strain, immunizing An original composition, a pharmaceutical composition or a vaccine. Thereby an anti-tumor or anti-cancer immune response can be induced in the individual. For example, in the case of a recombinant Listeria strain, the Listeria strain can express a fusion polypeptide thereby eliciting an anti-tumor or anti-cancer response in the individual. A method of treating a tumor or cancer in an individual (eg, wherein the tumor or cancer expresses HPV 16 and/or HPV 18) can comprise, for example, administering to the individual a recombinant fusion polypeptide disclosed herein, a nucleic acid encoding a recombinant fusion polypeptide. , a recombinant bacterial or Listeria strain, an immunogenic composition, a pharmaceutical composition or a vaccine. The individual can then establish an immune response against a tumor or cancer that exhibits HPV 16 and/or HPV 18 antigenic peptides, thereby treating the tumor or cancer in the individual. A method of preventing a tumor or cancer in an individual or protecting the individual from a tumor or cancer (eg, wherein the tumor or cancer is associated with the performance of HPV 16 and/or HPV 18) can comprise, for example, administering to the individual Recombinant fusion polypeptides disclosed, nucleic acids encoding recombinant fusion polypeptides, recombinant bacterial or Listeria strains, immunogenic compositions, pharmaceutical compositions or vaccines. The individual can then establish an immune response against the HPV 16 and/or HPV 18 antigenic peptide, thereby preventing the tumor or cancer or protecting the individual from tumor or cancer. In some of the above methods, administering two or more recombinant fusion polypeptides, a nucleic acid encoding a recombinant fusion polypeptide, a recombinant bacterial or Listeria strain, an immunogenic composition, a pharmaceutical composition or a vaccine . The plurality of recombinant fusion polypeptides, nucleic acids encoding recombinant fusion polypeptides, recombinant bacterial or Listeria strains, immunogenic compositions, pharmaceutical compositions or vaccines can be administered simultaneously in any order or combination or in any combination. As an example, if four different Listeria strains are administered, they may be administered sequentially, they may be administered simultaneously, or they may be administered in any combination (eg, simultaneously administering the first and second strains and Subsequently, the third and fourth strains were simultaneously administered). Optionally, in the case of sequential administration, the compositions may be administered during the same immune response, preferably within 0-10 days or 3-7 days of each other. A plurality of recombinant fusion polypeptides, nucleic acids encoding recombinant fusion polypeptides, recombinant bacterial or Listeria strains, immunogenic compositions, pharmaceutical compositions or vaccines may each comprise a different antigenic peptide group. Alternatively, two or more than two may comprise the same set of antigenic peptides (eg, comprising the same set of antigenic peptides in a different order). Cancer is a physiological condition in a mammal that is typically characterized by the growth and proliferation of unregulated cells. HPV-related cancers (eg, cancers caused by HPV) include, for example, vaginal, vulvar penis, anus, rectum, and other cancers. For example, HPV-related cancers include, but are not limited to, cervical cancer, anal cancer, head and neck cancer, and oropharyngeal cancer. In general, HPV is thought to cause more than 90% of anal cancer and cervical cancer and more than 50% of vaginal, vulvar and penile cancer. Head and neck cancers are mostly caused by tobacco and alcohol, but recent studies have shown that about 60% to 70% of oropharyngeal cancers may be associated with HPV. The term "treat/treating" refers to both therapeutic and prophylactic or preventative measures, wherein the goal is to prevent or alleviate the target tumor or cancer. Examples of target tumors or cancers include, but are not limited to, cervical tumors or cancers, anal tumors or cancers, head and neck tumors or cancers or oropharyngeal tumors or cancers. Treatment may include one or more of the following: directly affecting or curing, curbing, inhibiting, preventing, or preventing a tumor, cancer, reducing its severity, delaying its onset, slowing its progression, stabilizing its progression, inducing its relief, prevention, or delay It has cancer metastasis, reduces/improves symptoms associated with it, or a combination thereof. For example, treatment can include increasing the expected survival time or reducing the size of the tumor or cancer metastasis. Effects (eg, containment, inhibition, prevention, reduction in severity, delayed onset, slowing progression, stabilizing progression, inducing remission, preventing or delaying cancer metastasis, reducing/ameliorating symptoms, etc. may be relative to untreated or receiving placebo Controlled individual for treatment. The term "treat/treating" can also refer to increasing the percentage of survival in an individual with a tumor or cancer or increasing the expected survival time (eg, relative to a treatment that is not treated or treated with placebo) Individual) In one example, "treatment" refers to delaying progression, accelerating remission, inducing remission, enhancing remission, accelerating recovery, increasing the efficacy of an alternative therapeutic, reducing resistance to an alternative therapeutic, or a combination thereof (eg, Relative to untreated or placebo-treated control individuals. The term "preventing" or "preventing" may refer to, for example, delaying the onset of symptoms, preventing tumor or cancer recurrence, reducing the number or frequency of recurrent events, and increasing symptomatic events. Latent time, cancer metastasis to prevent cancer or cancer, or a combination thereof. The term "containment" or "inhibition" may refer to For example, reducing the severity of symptoms, reducing the severity of acute events, reducing the number of symptoms, reducing the incidence of disease-related symptoms, reducing the latency of symptoms, improving symptoms, reducing secondary symptoms, reducing secondary infections, prolonging patient survival, or a combination thereof. The term "individual" refers to a mammal (eg, a human) that is required for the treatment of a tumor or cancer or that is susceptible to a tumor or cancer. The term individual also refers to a mammal (eg, a human) that is being treated prophylactically or therapeutically. Individuals may include dogs, cats, pigs, cows, sheep, goats, horses, rats, mice, non-human mammals, and humans. The term "individual" does not necessarily exclude health in all respects and does not have or exhibit cancer. Individuals with signs or tumors. [0196] If an individual has at least one known risk factor (eg, genetic, biochemical, family history, and contextual exposure), the risk of developing a tumor or cancer in an individual with the risk factor is statistical. If the individual is significantly larger than the individual who does not have the risk factor, the individual is at increased risk of developing a tumor or cancer. 197] "Symptoms" or "signs" means objective evidence of a disease as observed by a physician or subjective evidence of a disease as perceived by an individual, such as a change in gait. Symptoms or signs may be any manifestation of the disease. Symptoms may be Hair or secondary. The term "primary" refers to the direct result of a symptom or a specific disease (such as a tumor or cancer), and the term "secondary" refers to a symptom that is caused by or caused by the cause of the original. The disclosed recombinant fusion polypeptides, nucleic acids encoding the recombinant fusion polypeptides, immunogenic compositions, pharmaceutical compositions, and vaccines can treat primary or secondary symptoms or secondary complications. [0198] Recombination in an effective regimen A fusion polypeptide, a nucleic acid encoding a recombinant fusion polypeptide, a recombinant bacterium or a Listeria strain, an immunogenic composition, a pharmaceutical composition or a vaccine, the effective scheme means the following dosage, administration route and frequency of administration, which delays tumor or cancer Attack, reduce its severity, inhibit its further deterioration, and/or improve at least one of its signs or symptoms. Alternatively, the recombinant fusion polypeptide, the nucleic acid encoding the recombinant fusion polypeptide, the recombinant bacterial or Listeria strain, the immunogenic composition, the pharmaceutical composition or the vaccine are administered in an effective protocol, and the effective solution means the following dosage and administration Route and frequency of administration that induces an immune response against a recombinant fusion polypeptide (or encoded by a nucleic acid), a recombinant or Listeria strain, an immunogenic composition, a pharmaceutical composition, or a heterologous antigen in a vaccine, or in a recombination In the case of a bacterial or Listeria strain, an immune response against the bacterial or Listeria strain itself is induced. If the individual has developed a tumor or cancer, the regimen can be referred to as a therapeutically effective regimen. If an individual has an increased risk of developing a tumor or cancer relative to the general population, but has not experienced symptoms, the regimen can be referred to as a prophylactically effective regimen. In some cases, therapeutic or prophylactic efficacy may be observed in individual patients relative to historical controls or past experiences of the same patient. In other instances, therapeutic or prophylactic efficacy may be demonstrated in a pre-clinical or clinical trial in a population of treated patients relative to a control population of untreated patients. For example, if the results achieved by an individual treated patient are more favorable than the average result in a control population of a similar patient not treated by the methods described herein, or if in a controlled clinical trial (eg, Phase II, II/) In phase III or phase III trials, a more favorable result is demonstrated in the treated patient versus the control patient at p < 0.05 or 0.01 or even 0.001 level, and the regimen can be considered therapeutically or prophylactically effective. An exemplary dose of a recombinant Listeria strain is, for example, 1 × 106 - 1 × 107 CFU, 1 × 107 - 1 × 108 CFU, 1 × 108 - 3.31 × 1010 CFU, 1 × 109 - 3.31 × 1010 CFU, 5-500 × 108 CFU, 7-500 × 108 CFU, 10-500 × 108 CFU, 20-500 × 108 CFU, 30-500 × 108 CFU, 50-500 × 108 CFU, 70-500 × 108 CFU, 100-500 × 108 CFU, 150-500 × 108 CFU, 5-300 × 108 CFU, 5-200 × 108 CFU, 5-15 × 108 CFU, 5-100 × 108 CFU, 5-70 × 108 CFU, 5-50 × 108 CFU, 5-30 × 108 CFU, 5-20 × 108 CFU, 1-30 × 109 CFU, 1-20 × 109 CFU, 2-30 × 109 CFU, 1-10 × 109 CFU, 2-10 × 109 CFU, 3-10 × 109 CFU, 2-7 × 109 CFU, 2-5 × 109 CFU and 3-5 × 109 CFU. Other exemplary doses of recombinant Listeria strains are, for example, 1 x 107 Organs, 1.5 × 107 Organs, 2 × 108 Organs, 3 × 107 Organs, 4 × 107 Organs, 5 × 107 Organs, 6 × 107 Organs, 7 × 107 Organs, 8 × 107 Organs, 10 × 107 Organs, 1.5 × 108 Organs, 2 × 108 Organs, 2.5 × 108 Organs, 3 × 108 Organs, 3.3 × 108 Organs, 4 × 108 Organs, 5 × 108 Organs, 1 × 109 Organs, 1.5 × 109 Organs, 2 × 109 Organs, 3 × 109 Organs, 4 × 109 Organs, 5 × 109 Organs, 6 × 109 Organs, 7 × 109 Organs, 8 × 109 Organs, 10 × 109 Organs, 1.5 × 1010 Organs, 2 × 1010 Organs, 2.5 × 1010 Organs, 3 × 1010 Organs, 3.3 × 1010 Organs, 4 × 1010 Organs and 5 × 1010 An organism. The dosage may depend on the condition of the patient and the response to prior treatment (if present, whether the treatment is prophylactic or therapeutic) and other factors. [0200] Administration can be by any suitable means. For example, the administration may be parenteral, intravenous, oral, subcutaneous, intraarterial, intracranial, intrathecal, intraventricular, intraperitoneal, topical, intranasal, intramuscular, intraocular, rectal, conjunctiva, Percutaneous, intradermal, transvaginal, transrectal, intratumoral, paracancerous, transmucosal, intravascular, intraventricular, inhalation (aerosol), nasal aspiration (spray), sublingual, aerosol, suppository Or a combination thereof. For intranasal administration or administration by inhalation, a recombinant fusion polypeptide which is mixed and aerosolized or atomized in the presence of a suitable carrier, a nucleic acid encoding a recombinant fusion polypeptide, a recombinant bacterial or Listeria strain, an immunogenic composition A solution or suspension of the pharmaceutical composition or vaccine is suitable. Such aerosols can comprise any of the recombinant fusion polypeptides described herein, a nucleic acid encoding a recombinant fusion polypeptide, a recombinant bacterial or Listeria strain, an immunogenic composition, a pharmaceutical composition, or a vaccine. Administration may also be in the form of a suppository (e.g., a rectal suppository or a urethral suppository), in the form of a pellet for subcutaneous implantation (e.g., controlled release over a period of time) or in the form of a capsule. Administration can also be by injection into a tumor site or injection into a tumor. The dosage regimen can be readily determined based on factors such as the precise nature and type of tumor or cancer to be treated, the severity of the tumor or cancer, the age and general physiological conditions of the individual, the weight of the individual, the response of the individual, and the like. factor. The frequency of administration may depend on the recombinant fusion polypeptide, the nucleic acid encoding the recombinant fusion polypeptide, the recombinant bacterium or the Listeria strain, the immunogenic composition, the pharmaceutical composition, or the half-life of the vaccine in the individual, the individual conditions and the route of administration. And other factors. The frequency can be, for example, daily, weekly, monthly, quarterly, or an irregular time interval in response to changes in individual conditions or progression of the tumor or cancer to be treated. The duration of treatment may depend on individual conditions and other factors. For example, the treatment schedule can be several weeks, several months, or several years (eg, up to 2 years). For example, repeated administration (administration) can be performed immediately following the first treatment schedule or after a time interval of days, weeks, or months to achieve tumor regression or tumor growth inhibition. The assessment can be determined by any known technique, including diagnostic methods such as imaging techniques, serum tumor marker analysis, biopsy, or the presence, absence or improvement of tumor associated symptoms. As a specific example, the recombinant fusion polypeptide, the nucleic acid encoding the recombinant fusion polypeptide, the recombinant bacterial or Listeria strain, the immunogenic composition, the pharmaceutical composition or the vaccine can be administered once every 3 weeks for up to 2 years. In one example, a recombinant fusion polypeptide disclosed herein, a nucleic acid encoding a recombinant fusion polypeptide, a recombinant bacterial or Listeria strain, an immunogenic composition, a pharmaceutical composition, or a vaccine is administered in increasing doses to increase T The ratio of effector cells to regulatory T cells and produces a more potent anti-tumor immune response. Anti-tumor immune responses can be further enhanced by providing the individual with cytokines including, for example, IFN-[gamma], TNF-[alpha], and other cytokines known to enhance cellular immune responses. See for example, US 6,991,785, the disclosure of which is hereby incorporated by reference in its entirety for all purposes. Some methods may further comprise "adding" additional recombinant fusion polypeptides to the individual, nucleic acids encoding the recombinant fusion polypeptide, recombinant bacterial or Listeria strains, immunogenic compositions, pharmaceutical compositions or vaccines, or multiple doses. A recombinant fusion polypeptide, a nucleic acid encoding a recombinant fusion polypeptide, a recombinant bacterial or Listeria strain, an immunogenic composition, a pharmaceutical composition or a vaccine. "Additional" refers to an individual who is administered an additional dose. For example, in some methods, two additions (or a total of three vaccinations) are administered, three additions are made, four additions are made, five additions are made, or six or more additions are made. . The number of administrations administered may depend on, for example, the response of the tumor or cancer to the treatment. Depending on the case, the recombinant fusion polypeptide used in the booster vaccination, the nucleic acid encoding the recombinant fusion polypeptide, the recombinant bacterium or the Listeria strain, the immunogenic composition, the pharmaceutical composition or the vaccine is initially "initial ( Priming) The recombinant fusion polypeptide, recombinant bacteria or Listeria strain, immunogenic composition, pharmaceutical composition or vaccine used in the vaccination are the same. Alternatively, the applicator recombinant fusion polypeptide, recombinant bacterial or Listeria strain, immunogenic composition, pharmaceutical composition or vaccine and initial recombinant fusion polypeptide, recombinant bacterial or Listeria strain, immunogenic composition, The pharmaceutical composition or vaccine is different. The same dose is used in the initial and additional vaccinations, as appropriate. Alternatively, a larger dose is used in the supplement or a smaller dose is used in the supplement. The period between the initial and additional vaccination can be determined experimentally. For example, the period between initial and additional vaccination can be 1 week, 2 weeks, 3 weeks, 4 weeks, 5 weeks, 6-8 weeks, or 8-10 weeks. [0204] A heterologous initial addition strategy has been effective in enhancing the immune response and providing protection against many pathogens. See, for example, Schneider et al. (1999)Immunol. Rev. 170:29-38; Robinson (2002)Nat. Rev. Immunol 2:239-250; Gonzalo et al. (2002)Vaccine 20:1226-1231; and Tanghe (2001)Infect. Immun 69:3041-3047, each of which is incorporated herein by reference in its entirety for all purposes. Providing antigens in different forms during initial and additional injections maximizes the immune response to the antigen. The DNA vaccine is initially added with a protein-containing adjuvant or the DNA encoding the antigen is added by a viral vector to add an antigen-specific antibody and CD4.+ T cell response or CD8+ An effective way of T cell response. See, for example, Shiver et al. (2002)Nature 415:331-335; Gilbert et al. (2002)Vaccine 20:1039-1045; Billaut-Mulot et al. (2000)Vaccine 19:95-102; and Sin et al. (1999)DNA Cell Biol. 18: 771-779, each of which is incorporated herein by reference in its entirety for all purposes. As an example, when an individual is initially vaccinated with DNA and then added with an antigen-expressing adenoviral vector, adding CRL1005 poloxamer (12 kDa, 5% POE) to the DNA encoding the antigen enhances T. Cellular response.See for example , Shiver et al. (2002)Nature 415:331-335, the disclosure of which is hereby incorporated by reference in its entirety for all purposes. As another example, a vector construct encoding an immunogenic portion of an antigen and a protein comprising an immunogenic portion of the antigen can be administered.See for example, US 2002/0165172, which is hereby incorporated by reference in its entirety for all purposes. Similarly, the immune response to nucleic acid vaccination can be enhanced by simultaneously administering (eg, during the same immune response, preferably within 0-10 days or 3-7 days of each other) the polynucleotides and polypeptides of interest. .See for example US 6,500, 432, which is hereby incorporated by reference in its entirety for all purposes. The methods of treatment disclosed herein may also comprise administering one or more additional compounds effective to prevent or treat cancer. For example, additional compounds may comprise compounds suitable for use in chemotherapy, such as amsacrine, bleomycin, busulfan, capecitabine, carboplatin ), carmustine, chlorambucil, cisplatin, cladribine, clofarabine, cristantaspase, ring Phosphonamine, cytarabine, dacarbazine, dactinomycin, daunorubicin, docetaxel, doxorubicin, table Epirubicin, etoposide, fludarabine, fluorouracil (5-FU), gemcitabine, gliadel implant, hydroxyurea, idarubicin, Isocyclophosphamide, irinotecan, leucovorin, liposomal cranberry, liposomal daunorubicin, lomustine, melphalan,巯基嘌呤, mesna, methotrexate, mitogen (mitomycin), mitoxantrone, oxaliplatin, paclitaxel (Taxol), pemetrexed, pentostatin, procarbazine , raltitrexed, satraplatin, streptozocin, tegafur-uracil, temozolomide, teniposide, thiotepa ), thioguanine, topotecan, treosulfan, vinblastine, vincristine, vindesine, vinorelbine or combination. Alternatively, the additional compound may also comprise other biological agents, including Herceptin for the HER2 antigen.® (trastuzumab), Avastin for VEGF® (bevacizumab) or an antibody against the EGF receptor, such as Erbitux® (cetuximab) and Vectibix® (panitumumab). Alternatively, the additional compound may comprise other immunotherapies. Alternatively, the additional compound may be a guanamine 2,3-dioxygenase (IDO) pathway inhibitor such as 1-methyltryptophanic acid (1MT), 1-methyltryptophanic acid (1MT), necrosis Prime-1, pyridoxal isonicotinium guanidine, ebselen (Ebselen), 5-methylindole-3-carbaldehyde, CAY10581 (an anti-IDO antibody) or small molecule IDO inhibitor. IDO inhibition enhances the efficacy of chemotherapeutic agents. The methods of treatment disclosed herein can also be combined with radiation (eg, intensity modulated radiation therapy (IMRT)), stem cell therapy, surgery, or any other treatment. Such additional compounds or treatments may precede the administration of a recombinant fusion polypeptide disclosed herein, a nucleic acid encoding a recombinant fusion polypeptide, a recombinant bacterial or Listeria strain, an immunogenic composition, a pharmaceutical composition, or a vaccine, Following administration of a recombinant fusion polypeptide disclosed herein, a nucleic acid encoding a recombinant fusion polypeptide, a recombinant bacterial or Listeria strain, an immunogenic composition, a pharmaceutical composition or vaccine, or a recombinant fusion polypeptide disclosed herein A nucleic acid encoding a recombinant fusion polypeptide, a recombinant bacterial or Listeria strain, an immunogenic composition, a pharmaceutical composition or a vaccine. Targeted immunomodulatory therapies are primarily directed to the activation of costimulatory receptors, for example by using members of the tumor necrosis factor receptor superfamily (including 4-1BB, OX40, and GITR (glucocorticoid-induced TNF) The agonist antibody of the receptor-related)) is carried out. The possibility of modulating GITR in an anti-tumor and vaccine environment has been demonstrated. Another target of agonist antibodies is a costimulatory signaling molecule for T cell activation. Targeting costimulatory signaling molecules can result in enhanced T cell activation and a more potent immune response. Co-stimulation can also help prevent the inhibitory effects of checkpoint inhibition and increase antigen-specific T cell proliferation. Immunological treatment based on Listeria by inducing de novo inducing and destroying tumor-targeting tumor antigen-specific T cells and by reducing immunosuppressive regulatory T cells (Tregs) and bone marrow-derived suppressor cells in the tumor microenvironment The number and activity of (MDSC) come into play. Antibodies for T cell co-suppressive or costimulatory receptors (eg, checkpoint inhibitors CTLA-4, PD-1, TIM-3, LAG3, and co-stimulants CD137, OX40, GITR, and CD40) (or Functional fragments) may have synergistic effects with Listeria-based immunotherapy. Thus, some methods may comprise further administering a composition comprising an immunological checkpoint inhibitor antagonist, such as a PD-1 signaling pathway inhibitor, CD-80/86 and CTLA- 4 signaling pathway inhibitor, T cell membrane protein 3 (TIM3) signaling pathway inhibitor, adenosine A2A receptor (A2aR) signaling pathway inhibitor, lymphocyte activation gene 3 (LAG3) signaling pathway inhibitor, killer immunization A globin receptor (KIR) signaling pathway inhibitor, a CD40 signaling pathway inhibitor, or any other antigen presenting cell/T cell signaling pathway inhibitor. Examples of immunological checkpoint inhibitor antagonists include anti-PD-L1/PD-L2 antibodies or fragments thereof, anti-PD-1 antibodies or fragments thereof, anti-CTLA-4 antibodies or fragments thereof or anti-B7-H4 antibodies or fragments thereof. For example, anti-PD-1 antibodies can be 5-10 mg/kg every 2 weeks, 5-10 mg/kg every 3 weeks, 1-2 mg/kg every 3 weeks, 1-10 mg/kg per week, per Two weeks 1-10 mg/kg, 1-10 mg/kg every 3 weeks or 1-10 mg/kg every 4 weeks were administered to the individual. [0210] Likewise, some methods may further comprise administering a T cell stimulating agent, such as an antibody that binds to a T cell receptor costimulatory molecule, an antigen presenting cell receptor that binds to a costimulatory molecule, or a member of the TNF receptor superfamily. Or a functional fragment thereof. The T cell receptor costimulatory molecule can comprise, for example, CD28 or ICOS. An antigen presenting cell receptor that binds to a costimulatory molecule can comprise, for example, a CD80 receptor, a CD86 receptor, or a CD46 receptor. Members of the TNF receptor superfamily may comprise, for example, a glucocorticoid-induced TNF receptor (GITR), OX40 (CD134 receptor), 4-1BB (CD137 receptor) or TNFR25. For example, some methods can further comprise administering an effective amount of an antibody comprising a T cell receptor costimulatory molecule or a functional fragment thereof or binding to an antigen presenting cell receptor that binds to a costimulatory molecule. A composition of an antibody or a functional fragment thereof. The antibody may be, for example, an anti-TNF receptor antibody or antigen-binding fragment thereof (eg, a member of the TNF receptor superfamily, a glucocorticoid-induced TNF receptor (GITR), an OX40 (CD134 receptor), a 4-1BB (CD137 receptor) Or TNFR25), an anti-OX40 antibody or antigen-binding fragment thereof or an anti-GITR antibody or antigen-binding fragment thereof. Alternatively, other agonistic molecules can be administered (eg, GITRL, active fragments of GITRL, fusion proteins containing GITRL, fusion proteins containing active fragments of GITRL, antigen presenting cells (APC)/T cell agonists, CD134 Or a ligand or fragment thereof, CD137 or a ligand or fragment thereof, or an inducible T cell costimulator (ICOS) or a ligand or a fragment thereof, or a agonistic small molecule). In one embodiment, some methods can further comprise administering an anti-CTLA-4 antibody or a functional fragment thereof and/or an anti-CD137 antibody or a functional fragment thereof. For example, at about 72 hours or at the first time after the first administration of the recombinant fusion polypeptide, the nucleic acid encoding the recombinant fusion polypeptide, the recombinant bacterium or the Listeria strain, the immunogenic composition, the pharmaceutical composition or the vaccine Administration of anti-CTLA-4 antibody or functional fragment thereof about 48 hours after administration of the recombinant fusion polypeptide, nucleic acid encoding the recombinant fusion polypeptide, recombinant bacterial or Listeria strain, immunogenic composition, pharmaceutical composition or vaccine Or an anti-CD137 antibody or a functional fragment thereof. The anti-CTLA-4 antibody or a functional fragment thereof or an anti-CD137 antibody or a functional fragment thereof can be administered, for example, at a dose of about 0.05 mg/kg and about 5 mg/kg. The recombinant Listeria strain or the immunogenic composition comprising the recombinant Listeria strain may, for example, be about 1 x 109 The dose of CFU is administered. Some such methods can further comprise administering an effective amount of an anti-PD-1 antibody or a functional fragment thereof. Methods for assessing the efficacy of cancer immunotherapy are well known and described, for example, in Dzojic et al. (2006)Prostate 66(8): 831-838; Naruishi et al. (2006)Cancer Gene Ther. 13(7): 658-663, Sehgal et al. (2006)Cancer Cell Int. 6:21) and Heinrich et al. (2007)Cancer Immunol Immunother 56(5): 725-730, each of which is incorporated herein by reference in its entirety for all purposes. As an example, for prostate cancer, a prostate cancer model can be tested for the methods and compositions disclosed herein, such as the TRAMP-C2 mouse model, the 178-2 BMA cell model, the PAIII adenocarcinoma model, the PC-3M model, or any Other prostate cancer models. Alternatively or additionally, immunotherapy can be tested in a human subject and the efficacy can be monitored using known individuals. Such methods can include, for example, direct measurement of CD4+ and CD8+ T cell responses, or measurement of disease progression (eg, by determining the number or size of tumor cancer metastases, or monitoring disease symptoms such as cough, chest pain, weight loss, etc. ). Methods for assessing the efficacy of cancer immunotherapy in human subjects are well known and described, for example, in Uenaka et al. (2007).Cancer Immun. 7:9 and Thomas-Kaskel et al. (2006)Int J Cancer Each of 119(10):2428-2434 is hereby incorporated by reference in its entirety for all purposes. VI. Kits [0215] Kits comprising reagents for performing the methods disclosed herein or kits comprising the compositions, tools or instruments disclosed herein are also provided. For example, such kits can comprise a recombinant fusion polypeptide disclosed herein, a nucleic acid encoding a recombinant fusion polypeptide disclosed herein, a recombinant bacterium or Listeria strain disclosed herein, immunized as disclosed herein. The original composition, the pharmaceutical composition disclosed herein or the vaccine disclosed herein. Such kits may additionally comprise instructional materials describing the use of recombinant fusion polypeptides, nucleic acids encoding the recombinant fusion polypeptides, recombinant Listeria strains, immunogenic compositions, pharmaceutical compositions or vaccines for performing the methods disclosed herein . Such kits may further comprise an applicator as the case may be. Although model sets are described below, the contents of other applicable sets will become apparent in light of the present disclosure. [0217] All patent applications, websites, other publications, registration numbers, and the like, cited above or below, are hereby incorporated by reference in their entirety for all purposes in the extent of Instructions are incorporated by reference in their entirety. If the different versions of the different time series are related to the deposit number, it means the version associated with the deposit number at the effective filing date of this application. A valid filing date means the earlier of the application date of the actual application date or the priority application number referring to the deposit number, if applicable. Similarly, if a different version of the publication, website or the like is disclosed at different times, unless otherwise indicated, it means the most recently published version at the effective filing date of this application. Any feature, step, element, specific example or aspect of the invention may be used in any other combination, unless otherwise specifically indicated. Although the present invention has been described in considerable detail, by the claims List of Specific Examples [0218] The subject matter disclosed herein includes, but is not limited to, the following specific examples: 1. A recombinant Listeria strain comprising a nucleic acid comprising a first open reading frame encoding a fusion polypeptide, wherein the fusion The polypeptide comprises a PEST-containing peptide fused to an HPV 16 antigen peptide and an HPV 18 antigen peptide, wherein the HPV 16 antigen peptide and the HPV 18 antigen peptide are operably linked in series. 2. The recombinant Listeria strain according to the specific example 1, wherein the HPV16 antigen peptide is an HPV16-E6 antigen peptide or an HPV16-E7 antigen peptide, and wherein the HPV18 antigen peptide is an HPV18-E6 antigen peptide or an HPV18-E7 antigen Peptide. 3. The recombinant Listeria strain of Specific Example 1, wherein the HPV 16 antigen peptide and the HPV 18 antigen peptide are directly fused to each other without an intervention sequence. 4. The recombinant Listeria strain of Specific Example 1, wherein the HPV-16 antigen peptide and the HPV-18 antigen peptide are linked to each other via a peptide linker. 5. The recombinant Listeria strain of specific example 4, wherein the peptide linker comprises one or more of the linkers set forth in SEQ ID NOs: 33-42. 6. The recombinant Listeria strain according to any one of the examples 1 to 5, wherein the HPV16 antigen peptide is an HPV16-E7 antigen peptide, and the HPV18 antigen peptide is an HPV18-E7 antigen peptide. 7. The recombinant Listeria strain of specific example 6, wherein the HPV16-E7 antigen peptide comprises at least 90%, 95%, 96%, 97%, 98%, 99% or 100% of SEQ ID NO: A consensus sequence; and/or wherein the HPV 18-E7 antigen peptide comprises a sequence that is at least 90%, 95%, 96%, 97%, 98%, 99% or 100% identical to SEQ ID NO:98. 8. The recombinant Listeria strain of specific example 7, wherein the segment encoding the open reading frame of the HPV 16-E7 antigen peptide comprises at least 90%, 95%, 96%, 97% of SEQ ID NO: 95, 98%, 99% or 100% identical sequence and encoding the peptide sequence set forth in SEQ ID NO: 96, and/or wherein the open reading frame encoding the HPV18-E7 antigenic peptide comprises SEQ ID NO : 97 at least 90%, 95%, 96%, 97%, 98%, 99% or 100% identical sequence and encodes the peptide sequence set forth in SEQ ID NO:98. 9. The recombinant Listeria strain of any one of embodiments 6 to 8, wherein the segment of the fusion polypeptide comprising the HPV 16 antigen peptide and the HPV 18 antigen peptide comprises at least 90 of any of the following sequences %, 95%, 96%, 97%, 98%, 99% or 100% identical sequences: SEQ ID NOs: 100, 102, 104, 106, 108, 110, 112 and 114. 10. The recombinant Listeria strain of the specific example 9, wherein the segment of the open reading frame encoding the segment of the fusion polypeptide comprising the HPV 16 antigen peptide and the HPV 18 antigen peptide comprises at least 90% of the following sequence, 95%, 96%, 97%, 98%, 99% or 100% identical sequence: SEQ ID NO: 99, 101, 103, 105, 107, 109, 111 or 113, and encoding the sequences set forth below, respectively : SEQ ID NO: 100, 102, 104, 106, 108, 110, 112 or 114. 11. The recombinant Listeria strain of any one of the specific examples 1 to 5, wherein the HPV16 antigen peptide is an HPV16-E6 antigen peptide, and the HPV18 antigen peptide is an HPV18-E6 antigen peptide. 12. The recombinant Listeria strain according to any one of the examples 1 to 5, wherein the HPV16 antigen peptide is an HPV16-E6 antigen peptide, and the HPV18 antigen peptide is an HPV18-E7 antigen peptide. 13. The recombinant Listeria strain according to any one of the examples 1 to 5, wherein the HPV16 antigen peptide is an HPV16-E7 antigen peptide, and the HPV18 antigen peptide is an HPV18-E6 antigen peptide. 14. The recombinant Listeria strain according to any of the preceding embodiments, wherein the fusion polypeptide further comprises one of the N-terminal and/or C-terminal of the HPV 16 antigen peptide and the HPV 18 antigen peptide operably linked in series. Or multiple peptide tags. 15. The recombinant Listeria strain of specific example 14, wherein the one or more peptide tags comprise one or more of the following: a 3 x FLAG tag; a 2 x FLAG tag, a 6 x His tag; and a SIINFEKL tag . 16. The recombinant Listeria strain according to the specific example 15, wherein the fusion polypeptide comprises a 3×FLAG tag at the N-terminus of the HPV16 antigen peptide operably linked in series and the HPV18 antigen peptide, and is at the antigen The SIINFEKL tag at the C-terminus of the peptide. 17. The recombinant Listeria strain of the specific example 15, wherein the fusion polypeptide comprises the SIINFEKL tag at the N-terminus of the HPV16 antigen peptide operably linked in series and the HPV18 antigen peptide, and at the antigenic peptide C-side 3 × FLAG tag. 18. The recombinant Listeria strain of specific example 15, wherein the fusion polypeptide comprises a 3xFLAG tag and a SIINFEKL tag at the C-terminus of the HPV16 antigen peptide operably linked in series and the HPV18 antigen peptide. 19. The recombinant Listeria strain of any of the preceding specific examples, wherein the PEST-containing peptide is at the N-terminus of the fusion polypeptide. 20. The recombinant Listeria strain according to any of the preceding specific examples, wherein the PEST-containing peptide is a Listeria lysin O (LLO) protein or a fragment thereof or an ActA protein or a fragment thereof. 21. The recombinant Listeria strain of specific example 20, wherein the Listeria lysin O (LLO) protein or a fragment thereof is an N-terminal fragment of LLO. 22. The recombinant Listeria strain of specific example 21, wherein the N-terminal fragment of the LLO has the sequence set forth in any one of SEQ ID NOs 57-59. 23. The recombinant Listeria strain of specific example 20, wherein the PEST-containing peptide is the LLO protein or a fragment thereof and comprises a mutation in a cholesterol binding domain. 24. The recombinant Listeria strain of specific example 23, wherein the LLO mutation comprises one of: (1) a substitution of residue C484, W491 or W492 of SEQ ID NO: 55 or when the LLO protein is SEQ ID NO: 55 the corresponding substitution at the optimal alignment; or (2) the deletion of 1-11 amino acids in residues 483-493 of SEQ ID NO: 55 or when the LLO protein and SEQ ID NO :55 The corresponding alignment is missing. 25. The recombinant Listeria strain of any of the preceding specific examples, wherein the nucleic acid is operably integrated into the Listeria genome. 26. The recombinant Listeria strain of any one of embodiments 1 to 24, wherein the nucleic acid is in an episomal form. 27. The recombinant Listeria strain of any of the preceding specific examples, wherein the nucleic acid does not confer antibiotic resistance to the recombinant Listeria strain. 28. The recombinant Listeria strain of any of the preceding specific examples, wherein the recombinant Listeria strain is attenuated. 29. The recombinant Listeria strain according to any of the preceding specific examples, wherein the recombinant Listeria strain is an auxotrophic Listeria strain. 30. The recombinant Listeria strain of the specific example 28 or 29, wherein the attenuated Listeria strain comprises a mutation in one or more endogenous genes that inactivates the one or more endogenous genes . 31. The recombinant Listeria strain of specific example 30, wherein the one or more endogenous genes compriseprfA . 32. The recombinant Listeria strain of specific example 30, wherein the one or more endogenous genes compriseactA . 33. The recombinant Listeria strain of specific example 30, wherein the one or more endogenous genes compriseactA andinlB . 34. The recombinant Listeria strain of specific example 30, wherein the one or more endogenous genes compriseactA ,Dal ,andDat . 35. The recombinant Listeria strain of any of the preceding specific examples, wherein the nucleic acid comprises a second open reading frame encoding a metabolic enzyme. 36. The recombinant Listeria strain of specific example 35, wherein the metabolic enzyme is a propylamine racemase or a D-amino acid transaminase. 37. The recombinant Listeria strain of any of the preceding specific examples, wherein the fusion polypeptide is self-Hly Promoter,prfA Promoter,actA Promoter orP60 Promoter performance. 38. The recombinant Listeria strain of the specific example 37, wherein the fusion polypeptide is self-Hly Promoter performance. 39. The recombinant Listeria strain according to any of the preceding specific examples, wherein the recombinant Listeria strain is a recombinant Listeria monocytogenes strain. 40. The recombinant Listeria strain of any one of the specific examples 1 to 19, wherein the recombinant Listeria strain is comprisedprfA Deletion or attenuation of inactivating mutations in prfAListeria monocytogenes A strain, wherein the nucleic acid is in an episomal plastid and comprises a second open reading frame encoding a D133V PrfA mutant protein. 41. The recombinant Listeria strain of any one of embodiments 1 to 19, wherein the recombinant Listeria strain is comprisedactA ,Dal andDat An attenuated Listeria monocytogenes strain having a deletion or an inactivating mutation in actA, dal, and dat, wherein the nucleic acid is in an episomal plastid and comprises a coding for alanine racemase or D-amino acid The second reading frame of the transaminase, and wherein the PEST-containing peptide is an N-terminal fragment of LLO. 42. The recombinant Listeria strain according to any one of embodiments 1 to 19, wherein the recombinant Listeria strain is comprisedactA andinlB The attenuated Listeria monocytogenes strain having a deletion or inactivation mutation, wherein the nucleic acid is genetically integrated, and wherein the PEST-containing peptide is an ActA protein or a fragment thereof. 43. The recombinant Listeria strain of any of the preceding specific examples, wherein the recombinant Listeria strain has been subcultured by an animal host. 44. The recombinant Listeria strain of any of the preceding specific examples, wherein the recombinant Listeria strain is capable of escaping phagosomes. 45. An immunogenic composition comprising a recombinant Listeria strain according to any of the preceding specific examples. 46. The immunogenic composition of embodiment 45, wherein the immunogenic composition further comprises an adjuvant. 47. The immunogenic composition of embodiment 46, wherein the adjuvant comprises a granule globule/macrophage colony stimulating factor (GM-CSF) protein, a nucleotide molecule encoding a GM-CSF protein, saponin QS21, Monophosphoryl lipid A, dtLLO or an oligonucleotide containing unmethylated CpG. 48. A method of inducing an immune response against a tumor or cancer in an individual, comprising administering to the individual a recombinant Listeria strain of any one of Specific Examples 1 to 44 or any one of Specific Examples 45 to 47 An immunogenic composition. 49. A method of preventing or treating a tumor or cancer in an individual comprising immunizing the individual with a recombinant Listeria strain of any one of Examples 1 to 44 or any one of Specific Examples 45 to 47 Original composition. The method of any one of embodiments 48 to 49, wherein the method further comprises administering an immunological checkpoint inhibitor antagonist. 51. The method of embodiment 50, wherein the immunological checkpoint inhibitor comprises an anti-PD-1 antibody or antigen-binding fragment thereof and/or an anti-CTLA-4 antibody or antigen-binding fragment thereof. The method of any one of embodiments 48 to 51, wherein the method further comprises administering a T cell stimulating agent. 53. The method of embodiment 52, wherein the T cell stimulating agent comprises an anti-OX40 antibody or antigen-binding fragment thereof or an anti-GITR antibody or antigen-binding fragment thereof. The method of any one of embodiments 48 to 53, wherein the tumor or cancer is a cervical tumor or cancer, an anal tumor or cancer, a head and neck tumor or a cancer or an oropharyngeal tumor or cancer. 55. The method of embodiment 54, wherein the tumor or cancer is cancer metastasis. The method of any one of embodiments 48 to 55, wherein the tumor or cancer is HPV-16 positive. The method of any one of embodiments 48 to 55, wherein the tumor or cancer is HPV-18 positive. 58. A cell bank comprising a recombinant Listeria strain of one or more of any one of embodiments 1 to 44. 59. The cell bank of embodiment 58, wherein the cell bank is a frozen cell bank or a lyophilized cell bank. BRIEF DESCRIPTION OF THE SEQUENCES [0219] The nucleotide and amino acid sequences listed in the accompanying sequence listing are shown using the standard letter abbreviations for nucleotide bases and the three-word code for amino acids. Nucleotide sequences follow a standard convention that begins at the 5' end of the sequence and proceeds in the forward direction (ie, from left to right in each line) to the 3' end. Only one strand of each nucleotide sequence is shown, but the complementary strand is understood to be included by any reference to the presented strand. The amino acid sequence follows the standard convention that begins at the amino terminus of the sequence and proceeds in the forward direction (i.e., from left to right in each line) to the carboxy terminus. SIINFEKL tag DNA v.1 (SEQ ID NO: 1): GCACGTAGTATAATCAACTTTGAAAAACTGTAATAA DNA v.2 (SEQ ID NO: 2): GCACGTTCTATTATCAACTTCGAAAAACTATAATAA DNA v.3 (SEQ ID NO: 3): GCCCGCAGTATTATCAATTTCGAAAAATTATAATAA DNA v.4 (SEQ ID NO: 4): GCGCGCTCTATAATTAACTTCGAAAAACTTTAATAA DNA v.5 (SEQ ID NO: 5): GCACGCTCCATTATTAACTTTGAAAAACTTTAATAA DNA v.6 (SEQ ID NO: 6): GCTCGCTCTATCATCAATTTCGAAAAACTTTAATAA DNA v.7 (SEQ ID NO: 7): GCACGTAGTATTATTAACTTCGAAAAGTTATAATAA DNA v.8 (SEQ ID NO:8): GCACGTTCCATCATTAACTTTGAAAAACTATAATAA DNA v.9 (SEQ ID NO:9): GCTCGCTCAATCATCAACTTTGAAAAGCTATAATAA DNA v.10 (SEQ ID NO:10): GCTCGCTCTATCATCAACTTCGAAAAATTGTAATAA DNA v.11 (SEQ ID NO:11): GCTCGCTCTATTATCAATTTTGAAAAATTATAATAA DNA v.12 ( SEQ ID NO: 12): GCTCGTAGTATTATTAATTTCGAAAAATTATAATAA DNA v.13 (SEQ ID NO: 13): GCTCGTTCGATTATCAACTTCGAAAAACTGTAATAA DNA v.14 (SEQ ID NO: 14): GCAAGAAGCATCATCAACTTCGAAAAACTGTAATAA DNA v.15 (SEQ ID NO: 15): GCGCGTTCTATTATTAATTTTGAAAAATTATAATAA Protein (SEQ ID NO: 16): ARSIINFEKL 3×FLAG tag DNA v.1 (SEQ ID NO: 17): GATTATAAAGATCATGACGGAGACTATAAAGACCATGACATTGATTACAAAGACGACGATGACAAA DNA v.2 (SEQ ID NO: 18): GACTATAAAGACCACGATGGCGATTATAAAGACCATGATATTGACTACAAAGATGATGATGATAAG DNA v.3 (SEQ ID NO: 19): GATTATAAAGATCATGATGGCGACTATAAAGATCATGATATCGATTACAAAGATGACGATGACAAA DNA v.4 (SEQ ID NO: 20): GACTACAAAGATCACGATGGTGACTACAAAGATCACGACATTGATTATAAAGACGATGATGACAAA DNA v.5 (SEQ ID NO: 21): GATTACAAAGATCACGATGGTGATTATAAGGATCACGATATTGATTACAAAGACGACGACGATAAA DNA v.6 (SEQ ID NO: 22): GATTACAAAGATCACGATGGCGATTACAAAGATCATGACATTGACTACAAAGACGATGATGATAAA DNA v.7 (SEQ ID NO: 23) : GATTACAAGGATCATGATGGTGATTACAAAGATCACGATATCGACTACAAAGATGATGACGATAAA DNA v.8 (SEQ ID NO: 24): GACTACAAAGATCATGATGGTGATTACAAAGATCATGACATTGATTATAAAGATGATGATGACAAA DNA v.9 (SEQ ID NO: 25): GATTATAAAGACCATGATGGTGATTATAAGGATCATGATATCGATTATAAGGATGACGACGATAAA DNA v.10 (SEQ ID NO: 26): GATTATAAAGATCACGATGGCGATTATAAAGACCACGATATTGATTATAAAGACGACGATGACAAA DNA v.11 (SEQ ID NO: 27): GACTATAAAGACCACGATGGTGATTATAAAGATCACGACATCGACTACAAAGACGATGATGATAAA DNA v.12 (SEQ ID NO: 28): GACTACAAAGATCACGACGGCGATTATAAAGATCACGATATTGACTATAAAGATGACGATGATAAA DNA v.13 (SEQ ID NO: 29): GATTATAAAGACCATGATGGAGATTACAAAGATCATGATATTGACTATAAAGACGACGACGATAAA DNA v.14 (SEQ ID NO: 30): GATTATAAAGATCACGATGGTGACTACAAAGATCACGATATCGATTATAAAGACGATGACGATAAA DNA v .15 (SEQ ID NO: 31): GACTACAAAGATCACGATGGTGATTATAAAGACCATGATATTGATTACAAAGATGATGATGACAAA Protein (SEQ ID NO: 32): DYKDHDGDYKDHDIDYKDDDDK Peptide Linker Peptide v.1 (SEQ ID NO: 33): (GAS)n Peptide linker v.2 (SEQ ID NO: 34): (GSA)n Peptide linker v.3 (SEQ ID NO: 35): (G)n ;n = 4-8 peptide linker v.4 (SEQ ID NO: 36): (GGGGS)n ;n = 1-3 peptide linker v.5 (SEQ ID NO:37): VGKGGSGG peptide linker v.6 (SEQ ID NO:38): (PAPAP)n Peptide linker v.7 (SEQ ID NO: 39): (EAAAK)n ;n=1-3 peptide linker v.8 (SEQ ID NO:40): (AYL)n Peptide linker v.9 (SEQ ID NO: 41): (LRA)n Peptide linker v.10 (SEQ ID NO: 42): (RLRA)n PEST-like sequence PEST-like sequence v.1 (SEQ ID NO: 43): KENSISSMAPPASPPASPKTPIEKKHADEIDK PEST-like sequence v.2 (SEQ ID NO: 44): KENSISSMAPPASPPASPK PEST-like sequence v.3 (SEQ ID NO: 45): KTEEQPSEVNTGPR PEST-like Sequence v.4 (SEQ ID NO:46): KESVVDASESDLDSSMQSADESTPQPLK PEST-like sequence v.5 (SEQ ID NO:47): KSEEVNASDFPPPPTDEELR PEST-like sequence v.6 (SEQ ID NO:48): RGGRPTSEEFSSLNSGDFTDDENSETTEEEIDR PEST-like sequence v.7 ( SEQ ID NO:49): KQNTASTETTTTNEQPK PEST-like sequence v.8 (SEQ ID NO:50): KQNTANTETTTTNEQPK PEST-like sequence v.9 (SEQ ID NO:51): RSEVTISPAETPESPPATP PEST-like sequence v.10 (SEQ ID NO:52 ): KASVTDTSEGDLDSSMQSADESTPQPLK PEST-like sequence v.11 (SEQ ID NO: 53): KNEEVNASDFPPPPTDEELR PEST-like sequence v.12 (SEQ ID NO: 54): RGGIPTSEEFSSLNSGDFTDDENSETTEEEIDR LLO protein LLO protein v.1 (SEQ ID NO: 55):LLO protein v.2 (SEQ ID NO: 56):N-terminal truncated LLO protein v, 1 (SEQ ID NO: 57):N-terminal truncated LLO protein v.2 (SEQ ID NO: 58):N-terminal truncated LLO protein v.3 (SEQ ID NO: 59):Nucleic acid encoding the N-terminal truncated LLO protein v.3 (SEQ ID NO: 60):ActA protein ActA protein v.1 (SEQ ID NO: 61)ActA protein v.2 (SEQ ID NO: 62)ActA fragment v.1 (SEQ ID NO: 63)ActA fragment v.2 (SEQ ID NO: 64)ActA fragment v.3 (SEQ ID NO: 65)ActA fragment v.4 (SEQ ID NO: 66)ActA fragment v.5 (SEQ ID NO: 67)Nucleic acid encoding ActA fragment v.5 (SEQ ID NO: 68)ActA fragment v.6 (SEQ ID NO: 69)ActA fragment v.7 (SEQ ID NO: 70)Nucleic acid encoding ActA fragment v.7 (SEQ ID NO: 71)ActA fragment fused to the Hly signal peptide (SEQ ID NO: 72)ActA substitution (SEQ ID NO: 73)LLO mutation LLO cholesterol binding domain (SEQ ID NO: 74)HLA-A2 Restriction epitope from NY-ESO-1 (SEQ ID NO: 75) Dal andDat Lm Alanine racemase (SEQ ID NO: 76) Lm D-amino acid transaminase (SEQ ID NO: 77)codingLm Nucleic acid of alanine racemase (SEQ ID NO: 78)codingLm D-amino acid transaminase nucleic acid (SEQ ID NO: 79) PrfA Wild type PrfA (SEQ ID NO: 80)Nucleic acid encoding wild-type PrfA (SEQ ID NO: 81)D133V PrfA (SEQ ID NO: 82)Nucleic acid encoding D133V PrfA (SEQ ID NO: 83)4×glycine linkage DNA sequence G1 (SEQ ID NO: 84)G2 (SEQ ID NO: 85)G3 (SEQ ID NO: 86)G4 (SEQ ID NO: 87)G5 (SEQ ID NO: 88)G6 (SEQ ID NO: 89)G7 (SEQ ID NO: 90)G8 (SEQ ID NO: 91)G9 (SEQ ID NO: 92)G10 (SEQ ID NO: 93)G11 (SEQ ID NO: 94)Dual HPV insertion sequence nucleic acid encoding 16 E7 (SEQ ID NO: 95)16 E7 (SEQ ID NO: 96)Nucleic acid encoding 18 E7 (SEQ ID NO: 97)18 E7 (SEQ ID NO: 98)Nucleic acid encoding the HPV16 E7-HPV18E7 insert (SEQ ID NO: 99)HPV16 E7-HPV18E7 insert (SEQ ID NO: 100)Nucleic acid encoding 16 E7-4×Gly-18 E7 (SEQ ID NO: 101)16 E7-4×Gly-18 E7 (SEQ ID NO: 102)Nucleic acid encoding 16 E7-18 E7-3×FLAG (SEQ ID NO: 103)16 E7-18 E7-3×FLAG (SEQ ID NO: 104)Nucleic acid encoding 16 E7-4×Gly-18 E7-3×FLAG (SEQ ID NO: 105)16 E7-4×Gly-18 E7-3×FLAG (SEQ ID NO: 106)Nucleic acid encoding 16 E7-18 E7-SIINFEKL (SEQ ID NO: 107)16 E7-18 E7-SIINFEKL (SEQ ID NO: 108)Nucleic acid encoding 16 E7-4×Gly-18 E7-SIINFEKL (SEQ ID NO: 109)16 E7-4×Gly-18 E7-SIINFEKL (SEQ ID NO: 110)Nucleic acid encoding 16 E7-18 E7-3×FLAG-SIINFEKL (SEQ ID NO: 111)16 E7-18 E7-3×FLAG-SIINFEKL (SEQ ID NO: 112)Nucleic acid encoding 16 E7-4×Gly-18 E7-3×FLAG-SIINFEKL (SEQ ID NO: 113)16 E7-4×Gly-18 E7-3×FLAG-SIINFEKL (SEQ ID NO: 114)dtLLO helper sequence detoxification of Listeria lysin O (dtLLO) (SEQ ID NO: 115)EXAMPLES Example 1. Relationship between 12-month total survival and genotype in AXAL Phase 2 study GOG-0265 [0220] GOG-0265 is a single-group, open-label, phase 2 multicenter study (NCT01266460) ), which was designed to evaluate axalimogene filolisbac (AXAL) in patients with persistent or recurrent metastatic (squamous or non-squamous cell) cervical cancer (PRmCC) in a standard Simon two-stage design Safety and activity in patients. AXAL is a live attenuated Listeria monocytogenes (Lm ), which is bioengineered to secrete HPV16 E7 protein fused to a truncated fragment of Listeria lysin O (tLLO). AXAL targets HPV-transformed cells to induce anti-tumor T cell immunity and disrupt immune tolerance in the tumor microenvironment. The first phase of the study included six patients with a run-in and 26 patients enrolled. In the second phase, 24 patients were enrolled. [0221] HPV genotyping was performed on samples of 36 of the 50 patients enrolled in GOG-0265. Among the 4 patients, the DNA was too poor to be genotyped, and in 1 patient, the amount of DNA was insufficient. Nine of the patients failed to obtain DNA. HPV was not detected in 4 of the patients. Of the remaining 32 patients, 14 were positive for HPV in the α9 family (12 patients were positive for HPV16; 2 patients were positive for HPV33), and 16 patients were positive for HPV in the α7 family (12 patients with HPV18) Positive; 4 patients were positive for HPV45), and 2 patients were positive for HPV of the α7 family and HPV of the α9 family (1 patient was positive for both HPV16 and HPV18, and 1 patient had both HPV16 and HPV45 Positive). [0222]Overall, the 12-month survival rate was 38% (19/50) among all 50 patients, and the 12-month survival rate was positive for patients with positive HPV (HPV16 or HPV33) tests of the α9 family. 57% (8 of 14 patients), the 12-month survival rate of patients who tested positive for HPV (HPV18 or HPV45) in the α7 family was 38% (6 of 16 patients) and was confirmed as HPV Positive (i.e., removal of HPV-negative patients or failure to obtain DNA samples or patients with poor quality or insufficient DNA samples) was 44% (15 of 36 patients). [0224] Based on the protocol of the patients enrolled in the study (n=50), the prognostic factor was defined and the expected 12-month survival rate was 25%. Treating this 25% 12-month overall survival rate with a 38% overall 12-month overall survival rate actually observed in the total study population, treatment with AXAL caused a 52% increase in the expected 12-month overall survival. [0225] AXAL is bioengineered to secrete E7 protein from HPV16. The 12-month overall survival rate for HPV16-positive patients was 57%, which was significantly higher than the expected 25% overall survival, consistent with AXAL induction of anti-tumor immune responses against HPV16-transformed cells. Unexpectedly, however, despite the fact that the HPV16 E7 protein is only 42% identical to the HPV18 E7 protein, it is not tested positive for HPV16 and HPV18 or HPV45 (not HPV16 or even HPV in the same HPV family as HPV16) The 12-month overall survival rate of patients who tested positive was 38%, which was 52% higher than the expected 12-month overall survival rate of 25%. Example 2. Construction of Lm-LLO-HPV16 E7-HPV18 E7 Since HPV16 and HPV18 are rarely found in the same patient, it has not previously been intended to place both HPV16 E7 and HPV18 E7 proteins together in a single immunotherapeutic vector. . However, in view of the unexpected results shown in Example 1, Listeria strains expressing both HPV16 E7 and HPV18 E7 will be produced by SEQ ID NOs: 99, 101, 103, 105, Any of 107, 109, 111, and 113 ligated into pGG55 or pGG55-based plastids downstream of the gene encoding the tLLO protein and fused to the gene, the pGG55 or pGG55-based plastid expressed by the hly promoter drive. The inserts set forth in SEQ ID NOS: 99, 101, 103, 105, 107, 109, 111 and 113 and their correspondingly encoded peptides are provided in Table 2. [0227]The resulting plasmid will be electroporated into a suitable Listeria strain. A suitable Listeria strain is lackingLm The transcriptional activator PrfA strain XFL-7, XFL-7 based Listeria strain or lackprfA It is similar to the Listeria strain. The smaller size of HPV18 E7 protein (105 amino acids; SEQ ID NO: 96) and the smaller size of HPV16 E7 protein (97 amino acids; SEQ ID NO: 98) make it possible to generate live attenuated Listeria monocytogenesLm ), which is bioengineered to secrete tLLO protein fused to HPV16 E7 and HPV18 E7 in tandem, even when limited by platform size. [0229] Other suitable Listeria strains are described, for example, in WO-2009/143167, WO-2016/011353, WO-2016/011320, WO-2010/102140, WO-2011/060260, WO-2013/025925, WO-2015/130810, WO-2015/167748, WO-2012/138377, WO-2012/125551, WO-2016/126876, WO-2013/138337, WO-1996-014087, WO-2006-036550, WO- 2008/140812, WO-1999/025376, WO-2001/072329, WO-2007/106476, WO-2007/130455, WO-2008/109155, WO-2010/008782, WO-2004-062597, WO-2015/ 164121, WO-2015/126921, WO-2015/134722, WO-2016/061182, WO-2016/011362, WO-2016/100924, WO-2016/011357, WO-2016/061277, WO-2016/100929, WO-2016/141121, WO-2016/126878, WO-2016/183361, WO-2016/191545, WO-2006/017856, WO-2008/130551, US-2011/0129499, US-2012/0135033, US- 2014/0234370, US-2014/0335120, US-2015/0098964, US-2015/0366955, US-2016/0361401, US-6,051,237, US-6,099,848, US-6,767,542, US-6,855,320, US-7,635,479, US- 7,662,396, US-7,794,729, US-7,820,180, US-8,114,414, US-8,337,861, US-8,771,702, US-8,778,329, U S-8, 791, 237, US-9, 012, 141, US-9, 017, 660, US-9, 017, 660, US-9, 226, 958, US-9, 463, 227, and PCT Application Nos. PCT/US2016/051748, PCT/US2016/052322, and PCT/US2016/057220, This is incorporated herein by reference. Example 3. In vivo experiment of ADXS-DUAL (ADXS-602) [0230] The murine HPV+ TC-1 tumor model was used to test the ability of ADXS-DUAL (ADXS-602) to control tumor growth and prolong the survival of animals. ADXS-DUAL (ADXS-602) represents a fusion protein containing E7 proteins from both HPV-16 and HPV-18. TC-1 tumor cells are derived from the C57BL/6 lung epithelial cell line, which is immortalized by HPV 16 E6 and E7 and transformed by activated ras oncogene. To establish a primary tumor, 1 × 105 TC-1 cells were subcutaneously injected into the flank of the flank of C57BL/6 mice, and allowed to grow for 5 days, after which treatment was started. Tumor-bearing mice received 1 × 108 CFU ADXS-602, 1 x 108 CFU XFL7 (a parent strain of ADXS-602 lacking tumor-associated antigen) or PBS at weekly intervals for a total of 3 doses (see figure 1). Tumor volume [(length × width × width) / 2] was measured twice a week. Kill mice with a tumor volume close to 2000 mm3. ADXS-DUAL exhibited significant tumor control (Figure 2) and survival (Figure 3) responses when compared to PBS and XFL-7 (empty Lm) vectors.

[0010] 以下圖式形成本說明書的一部分且被包含在內以進一步展示本發明之特定態樣,其中本發明可以藉由結合本文中呈現之特定具體例的詳細描述並參考此等圖式中之一或多者而可以更好地理解。本專利或申請案文件含有至少一張彩色繪製之圖式。在請求並且支付必要費用後,專利局將提供具有彩色圖式之本專利或專利申請公開案之複本。   [0011] 圖1展示實施例3之研究設計。   [0012] 圖2展示腫瘤體積之結果。用ADXS-DUAL (ADXS-602)處理之小鼠展示腫瘤體積顯著減小。   [0013] 圖3展示存活率百分比之結果。用ADXS-DUAL (ADXS-602)處理之小鼠展示存活率百分比顯著增加。   [0014] 應瞭解,為說明之簡單及清晰起見,圖式中所示之元件未必按比例繪製。舉例而言,為清楚起見,可相對於其他元件放大一些元件之尺寸。另外,在認為適當時,可在圖中重複參考編號以指示對應或類似元件。[0010] The following drawings form a part of this specification and are included to further illustrate the specific aspects of the invention. One or more can be better understood. This patent or application file contains at least one drawing of a color drawing. Upon request and payment of the necessary fee, the Patent Office will provide a copy of the patent or patent application publication with a color schema. [0011] FIG. 1 shows the study design of Example 3. [0012] Figure 2 shows the results of tumor volume. Mice treated with ADXS-DUAL (ADXS-602) showed a significant reduction in tumor volume. [0013] Figure 3 shows the results of percent survival. Mice treated with ADXS-DUAL (ADXS-602) showed a significant increase in the percentage of survival. [0014] It will be appreciated that the elements shown in the drawings are not necessarily to scale. For example, the dimensions of some of the elements may be exaggerated relative to other elements for clarity. In addition, reference numbers may be repeated among the figures to indicate corresponding or similar elements.

Claims (61)

一種重組李斯特菌屬(Listeria )菌株,其包含有包含編碼融合多肽之第一開讀框的核酸,其中該融合多肽包含與HPV16抗原肽及HPV18抗原肽融合的含PEST之肽,其中該HPV16抗原肽及該HPV18抗原肽可操作地以串聯方式連接。A recombinant Listeria (Listeria) strain which comprises a nucleic acid encoding a fusion polypeptide comprising a first open reading frame, wherein the fusion polypeptide comprises a PEST-containing peptide of an antigen peptide fused with HPV16 and HPV18 antigenic peptide, wherein the HPV16 The antigenic peptide and the HPV 18 antigen peptide are operably linked in series. 如請求項1之重組李斯特菌屬菌株,其中,HPV16抗原肽為HPV16 E6抗原肽或HPV16 E7抗原肽,且其中,該HPV18抗原肽為HPV18 E6抗原肽或HPV18 E7抗原肽。The recombinant Listeria strain of claim 1, wherein the HPV16 antigen peptide is an HPV16 E6 antigen peptide or an HPV16 E7 antigen peptide, and wherein the HPV18 antigen peptide is an HPV18 E6 antigen peptide or an HPV18 E7 antigen peptide. 如請求項1之重組李斯特菌屬菌株,其中,該HPV16抗原肽及該HPV18抗原肽彼此直接融合而無介入序列。The recombinant Listeria strain of claim 1, wherein the HPV 16 antigen peptide and the HPV 18 antigen peptide are directly fused to each other without an intervention sequence. 如請求項1之重組李斯特菌屬菌株,其中,該HPV16抗原肽及該HPV18抗原肽經由肽連接子彼此連接。The recombinant Listeria strain of claim 1, wherein the HPV16 antigen peptide and the HPV18 antigen peptide are linked to each other via a peptide linker. 如請求項4之重組李斯特菌屬菌株,其中,該等肽連接子包含SEQ ID NO:33-42中所闡述之連接子中的一或多者。The recombinant Listeria strain of claim 4, wherein the peptide linkers comprise one or more of the linkers set forth in SEQ ID NOs: 33-42. 如請求項1至5中任一項之重組李斯特菌屬菌株,其中,該HPV16抗原肽為HPV16 E7抗原肽,且該HPV18抗原肽為HPV18 E7抗原肽。The recombinant Listeria strain according to any one of claims 1 to 5, wherein the HPV16 antigen peptide is an HPV16 E7 antigen peptide, and the HPV18 antigen peptide is an HPV18 E7 antigen peptide. 如請求項6之重組李斯特菌屬菌株,其中,該HPV16 E7抗原肽包含與SEQ ID NO:96至少90%、95%、96%、97%、98%、99%或100%一致之序列;且/或其中,該HPV18 E7抗原肽包含與SEQ ID NO:98至少90%、95%、96%、97%、98%、99%或100%一致之序列。The recombinant Listeria strain of claim 6, wherein the HPV16 E7 antigen peptide comprises a sequence that is at least 90%, 95%, 96%, 97%, 98%, 99% or 100% identical to SEQ ID NO:96 And/or wherein the HPV18 E7 antigen peptide comprises a sequence that is at least 90%, 95%, 96%, 97%, 98%, 99% or 100% identical to SEQ ID NO:98. 如請求項7之重組李斯特菌屬菌株,其中,編碼該HPV16 E7抗原肽的開讀框之區段包含與SEQ ID NO:95至少90%、95%、96%、97%、98%、99%或100%一致之序列且編碼SEQ ID NO:96中所闡述之肽序列,且/或其中,編碼該HPV18 E7抗原肽的開讀框之區段包含與SEQ ID NO: 97至少90%、95%、96%、97%、98%、99%或100%一致之序列且編碼SEQ ID NO:98中所闡述之肽序列。The recombinant Listeria strain of claim 7, wherein the segment encoding the open reading frame of the HPV16 E7 antigen peptide comprises at least 90%, 95%, 96%, 97%, 98% of SEQ ID NO: 95, a 99% or 100% consensus sequence and encoding the peptide sequence set forth in SEQ ID NO: 96, and/or wherein the open reading frame encoding the HPV18 E7 antigen peptide comprises at least 90% of SEQ ID NO: 97 a sequence of 95%, 96%, 97%, 98%, 99% or 100% identical and encoding the peptide sequence set forth in SEQ ID NO:98. 如請求項6至8中任一項之重組李斯特菌屬菌株,其中,包含該HPV16抗原肽及該HPV18抗原肽的該融合多肽之區段包含與以下序列中之任一者至少90%、95%、96%、97%、98%、99%或100%一致的序列:SEQ ID NO:100、102、104、106、108、110、112及114。The recombinant Listeria strain according to any one of claims 6 to 8, wherein the segment of the fusion polypeptide comprising the HPV 16 antigen peptide and the HPV 18 antigen peptide comprises at least 90% of the following sequence, Sequences of 95%, 96%, 97%, 98%, 99% or 100% identity: SEQ ID NOs: 100, 102, 104, 106, 108, 110, 112 and 114. 如請求項9之重組李斯特菌屬菌株,其中,編碼包含該HPV16抗原肽及該HPV18抗原肽的該融合多肽之區段的開讀框之區段包含與以下序列至少90%、95%、96%、97%、98%、99%或100%一致的序列:SEQ ID NO:99、101、103、105、107、109、111或113,且分別編碼以下中所闡述之序列:SEQ ID NO:100、102、104、106、108、110、112或114。The recombinant Listeria strain of claim 9, wherein the segment of the open reading frame encoding the segment of the fusion polypeptide comprising the HPV 16 antigen peptide and the HPV 18 antigen peptide comprises at least 90%, 95%, 96%, 97%, 98%, 99% or 100% identical sequence: SEQ ID NO: 99, 101, 103, 105, 107, 109, 111 or 113, and encodes the sequence set forth below: SEQ ID NO: 100, 102, 104, 106, 108, 110, 112 or 114. 如請求項1至5中任一項之重組李斯特菌屬菌株,其中,該HPV16抗原肽為HPV16 E6抗原肽,且該HPV18抗原肽為HPV18 E6抗原肽。The recombinant Listeria strain according to any one of claims 1 to 5, wherein the HPV16 antigen peptide is an HPV16 E6 antigen peptide, and the HPV18 antigen peptide is an HPV18 E6 antigen peptide. 如請求項1至5中任一項之重組李斯特菌屬菌株,其中,該HPV16抗原肽為HPV16 E6抗原肽,且該HPV18抗原肽為HPV18 E7抗原肽。The recombinant Listeria strain according to any one of claims 1 to 5, wherein the HPV16 antigen peptide is an HPV16 E6 antigen peptide, and the HPV18 antigen peptide is an HPV18 E7 antigen peptide. 如請求項1至5中任一項之重組李斯特菌屬菌株,其中,該HPV16抗原肽為HPV16 E7抗原肽,且該HPV18抗原肽為HPV18 E6抗原肽。The recombinant Listeria strain according to any one of claims 1 to 5, wherein the HPV16 antigen peptide is an HPV16 E7 antigen peptide, and the HPV18 antigen peptide is an HPV18 E6 antigen peptide. 如前述請求項中任一項之重組李斯特菌屬菌株,其中,該融合多肽進一步包含處於可操作地以串聯方式連接之該HPV16抗原肽及該HPV18抗原肽的N端及/或C端的一或多個肽標籤。The recombinant Listeria strain according to any one of the preceding claims, wherein the fusion polypeptide further comprises one of the N-terminal and/or C-terminal of the HPV 16 antigen peptide and the HPV 18 antigen peptide operably linked in series Or multiple peptide tags. 如請求項14之重組李斯特菌屬菌株,其中,該一或多個肽標籤包含以下中之一或多者:3×FLAG標籤;2×FLAG標籤,6×His標籤;以及SIINFEKL標籤。The recombinant Listeria strain of claim 14, wherein the one or more peptide tags comprise one or more of the following: a 3 x FLAG tag; a 2 x FLAG tag, a 6 x His tag; and a SIINFEKL tag. 如請求項15之重組李斯特菌屬菌株,其中,該融合多肽包含處於可操作地以串聯方式連接之該HPV16抗原肽及該HPV18抗原肽的N端的3×FLAG標籤及處於該等抗原肽之C端的SIINFEKL標籤。The recombinant Listeria strain of claim 15, wherein the fusion polypeptide comprises a 3×FLAG tag at the N-terminus of the HPV16 antigen peptide operably linked in series and the HPV18 antigen peptide, and at the antigenic peptide SIINFEKL label on the C side. 如請求項15之重組李斯特菌屬菌株,其中,該融合多肽包含處於可操作地以串聯方式連接之該HPV16抗原肽及該HPV18抗原肽的N端的SIINFEKL標籤及處於該等抗原肽之C端的3×FLAG標籤。The recombinant Listeria strain of claim 15, wherein the fusion polypeptide comprises the SIINFEKL tag at the N-terminus of the HPV16 antigen peptide operably linked in series and the C-terminus of the antigen peptide 3 × FLAG tag. 如請求項15之重組李斯特菌屬菌株,其中,該融合多肽包含處於可操作地以串聯方式連接之該HPV16抗原肽及該HPV18抗原肽的C端的3×FLAG標籤及SIINFEKL標籤。The recombinant Listeria strain of claim 15, wherein the fusion polypeptide comprises a 3xFLAG tag and a SIINFEKL tag at the C-terminus of the HPV16 antigen peptide operably linked in series and the HPV18 antigen peptide. 如前述請求項中任一項之重組李斯特菌屬菌株,其中,該含PEST之肽處於該融合多肽之N端。The recombinant Listeria strain of any one of the preceding claims, wherein the PEST-containing peptide is at the N-terminus of the fusion polypeptide. 如前述請求項中任一項之重組李斯特菌屬菌株,其中,該含PEST之肽為李斯特菌溶胞素O (LLO,listeriolysin O)蛋白或其片段或ActA蛋白或其片段。The recombinant Listeria strain according to any one of the preceding claims, wherein the PEST-containing peptide is a Listeria lysin O (LLO, listeriolysin O) protein or a fragment thereof or an ActA protein or a fragment thereof. 如請求項20之重組李斯特菌屬菌株,其中,該李斯特菌溶胞素O (LLO)蛋白或其片段為LLO之N端片段。The recombinant Listeria strain of claim 20, wherein the Listeria lysin O (LLO) protein or a fragment thereof is an N-terminal fragment of LLO. 如請求項21之重組李斯特菌屬菌株,其中,該LLO之N端片段具有SEQ ID NO:57-59中之任一者中所闡述的序列。The recombinant Listeria strain of claim 21, wherein the N-terminal fragment of the LLO has the sequence set forth in any one of SEQ ID NOs: 57-59. 如請求項20之重組李斯特菌屬菌株,其中,該含PEST之肽為該LLO蛋白或其片段且包含膽固醇結合域中之突變。The recombinant Listeria strain of claim 20, wherein the PEST-containing peptide is the LLO protein or a fragment thereof and comprises a mutation in a cholesterol binding domain. 如請求項23之重組李斯特菌屬菌株,其中,該LLO突變包含以下中之一者:(1) SEQ ID NO:55之殘基C484、W491或W492的取代 或當該LLO蛋白與SEQ ID NO:55最佳比對時的相對應取代;或(2) SEQ ID NO:55之殘基483-493內的1-11個胺基酸之缺失 或當該LLO蛋白與SEQ ID NO:55最佳比對時的相對應缺失。The recombinant Listeria strain of claim 23, wherein the LLO mutation comprises one of: (1) a substitution of residue C484, W491 or W492 of SEQ ID NO: 55 or when the LLO protein and SEQ ID NO: 55 is the corresponding substitution at the optimal alignment; or (2) the deletion of 1-11 amino acids in residues 483-493 of SEQ ID NO: 55 or when the LLO protein and SEQ ID NO: 55 The corresponding alignment is missing. 如前述請求項中任一項之重組李斯特菌屬菌株,其中,該核酸可操作地整合至李斯特菌屬基因組中。A recombinant Listeria strain according to any one of the preceding claims, wherein the nucleic acid is operably integrated into the Listeria genome. 如請求項1至24中任一項之重組李斯特菌屬菌株,其中,該核酸處於附加型質體中。The recombinant Listeria strain of any one of claims 1 to 24, wherein the nucleic acid is in an episomal form. 如前述請求項中任一項之重組李斯特菌屬菌株,其中,該核酸不賦予該重組李斯特菌屬菌株以抗生素抗性。A recombinant Listeria strain according to any one of the preceding claims, wherein the nucleic acid does not confer antibiotic resistance to the recombinant Listeria strain. 如前述請求項中任一項之重組李斯特菌屬菌株,其中,該重組李斯特菌屬菌株經減毒。The recombinant Listeria strain of any one of the preceding claims, wherein the recombinant Listeria strain is attenuated. 如前述請求項中任一項之重組李斯特菌屬菌株,其中,該重組李斯特菌屬菌株為營養缺陷型李斯特菌屬菌株。The recombinant Listeria strain according to any one of the preceding claims, wherein the recombinant Listeria strain is an auxotrophic Listeria strain. 如請求項28或29之重組李斯特菌屬菌株,其中,該減毒之李斯特菌屬菌株在一或多種內源性基因中包含使該一或多種內源性基因失活之突變。The recombinant Listeria strain of claim 28 or 29, wherein the attenuated Listeria strain comprises a mutation in one or more endogenous genes that inactivates the one or more endogenous genes. 如請求項30之重組李斯特菌屬菌株,其中,該一或多種內源性基因包含prfAThe recombinant Listeria strain of claim 30, wherein the one or more endogenous genes comprise prfA . 如請求項30之重組李斯特菌屬菌株,其中,該一或多種內源性基因包含actAThe recombinant Listeria strain of claim 30, wherein the one or more endogenous genes comprise actA . 如請求項30之重組李斯特菌屬菌株,其中,該一或多種內源性基因包含actAinlBThe recombinant Listeria strain of claim 30, wherein the one or more endogenous genes comprise actA and inlB . 如請求項30之重組李斯特菌屬菌株,其中,該一或多種內源性基因包含actAdal ,及datThe recombinant Listeria strain of claim 30, wherein the one or more endogenous genes comprise actA , dal , and dat . 如前述請求項中任一項之重組李斯特菌屬菌株,其中,該核酸包含編碼代謝酶之第二開讀框。A recombinant Listeria strain according to any one of the preceding claims, wherein the nucleic acid comprises a second open reading frame encoding a metabolic enzyme. 如請求項35之重組李斯特菌屬菌株,其中,該代謝酶為丙胺酸消旋酶或D-胺基酸轉胺酶。A recombinant Listeria strain according to claim 35, wherein the metabolic enzyme is a leucine racemase or a D-amino acid transaminase. 如前述請求項中任一項之重組李斯特菌屬菌株,其中,該融合多肽自hly 啟動子、prfA 啟動子、actA 啟動子或p60 啟動子表現。A recombinant Listeria strain according to any one of the preceding claims, wherein the fusion polypeptide is expressed from a hly promoter, a prfA promoter, an actA promoter or a p60 promoter. 如請求項37之重組李斯特菌屬菌株,其中,該融合多肽自hly 啟動子表現。The recombinant Listeria strain of claim 37, wherein the fusion polypeptide is expressed from a hly promoter. 如前述請求項中任一項之重組李斯特菌屬菌株,其中,該重組李斯特菌屬菌株為重組單核球增多性李斯特菌(Listeria monocytogenes )菌株。The recombinant Listeria strain according to any one of the preceding claims, wherein the recombinant Listeria strain is a recombinant Listeria monocytogenes strain. 如請求項1至19中任一項之重組李斯特菌屬菌株,其中,該重組李斯特菌屬菌株為包含prfA之缺失或prfA 中之失活突變的減毒之單核球增多性李斯特菌菌株,其中該核酸處於附加型質體中且包含編碼D133V PrfA突變體蛋白之第二開讀框。The recombinant Listeria strain according to any one of claims 1 to 19, wherein the recombinant Listeria strain is an attenuated mononuclear granulating Listeria comprising a deletion of prfA or an inactivating mutation in prfA A bacterial strain, wherein the nucleic acid is in an episomal plastid and comprises a second open reading frame encoding a D133V PrfA mutant protein. 如請求項1至19中任一項之重組李斯特菌屬菌株,其中,該重組李斯特菌屬菌株為包含actAdaldat 之缺失或actA、dal及dat中之失活突變的減毒之單核球增多性李斯特菌菌株,其中,該核酸處於附加型質體中且包含編碼丙胺酸消旋酶或D-胺基酸轉胺酶之第二開讀框,且其中,該含PEST之肽為LLO之N端片段。The requested item 1 to 19 of a recombinant Listeria strain, wherein the strain is a recombinant Listeria comprising the actA, or deletion of the actA dal and the dat, dal and the dat inactivating mutations in attenuated a Listeria monocytogenes strain, wherein the nucleic acid is in an episomal plastid and comprises a second open reading frame encoding an alanine racemase or a D-amino acid transaminase, and wherein the The peptide of PEST is the N-terminal fragment of LLO. 如請求項1至19中任一項之重組李斯特菌屬菌株,其中,重組李斯特菌屬菌株為包含actAinlB 之缺失或失活突變的減毒之單核球增多性李斯特菌菌株,其中,該核酸經基因組整合,且其中,該含PEST之肽為ActA蛋白或其片段。The recombinant Listeria strain of any one of claims 1 to 19, wherein the recombinant Listeria strain is an attenuated strain of Listeria monocytogenes comprising a deletion or inactivating mutation of actA and inlB Wherein the nucleic acid is integrated by genome, and wherein the PEST-containing peptide is an ActA protein or a fragment thereof. 如前述請求項中任一項之重組李斯特菌屬菌株,其中,該重組李斯特菌屬菌株已經動物宿主繼代。The recombinant Listeria strain of any one of the preceding claims, wherein the recombinant Listeria strain has been subcultured by an animal host. 如前述請求項中任一項之重組李斯特菌屬菌株,其中,該重組李斯特菌屬菌株能夠逃脫吞噬體。A recombinant Listeria strain according to any one of the preceding claims, wherein the recombinant Listeria strain is capable of escaping phagosomes. 一種免疫原性組成物,其包含前述請求項中任一項之重組李斯特菌屬菌株。An immunogenic composition comprising the recombinant Listeria strain of any of the preceding claims. 如請求項45之免疫原性組成物,其中,該免疫原性組成物進一步包含佐劑。The immunogenic composition of claim 45, wherein the immunogenic composition further comprises an adjuvant. 如請求項46之免疫原性組成物,其中,該佐劑包含顆粒球/巨噬細胞群落刺激因子(GM-CSF)蛋白、編碼GM-CSF蛋白之核苷酸分子、皂素QS21、單磷醯基脂質A、dtLLO或含未甲基化CpG之寡核苷酸。The immunogenic composition of claim 46, wherein the adjuvant comprises a granule ball/macrophage colony stimulating factor (GM-CSF) protein, a nucleotide molecule encoding a GM-CSF protein, saponin QS21, monophosphorus Mercapto lipid A, dtLLO or an oligonucleotide containing unmethylated CpG. 一種在個體中誘導針對腫瘤或癌症之免疫反應的方法,其包含向該個體投與請求項1至44中任一項之重組李斯特菌屬菌株或請求項45至47中任一項之免疫原性組成物。A method of inducing an immune response against a tumor or cancer in an individual, comprising administering to the individual a recombinant Listeria strain of any one of claims 1 to 44 or immunizing any one of claims 45 to 47 Original composition. 一種在個體中預防或治療腫瘤或癌症之方法,其包含向該個體投與請求項1至44中任一項之重組李斯特菌屬菌株或請求項45至47中任一項之免疫原性組成物。A method of preventing or treating a tumor or cancer in an individual, comprising administering to the individual the immunogenicity of the recombinant Listeria strain of any one of claims 1 to 44 or any one of claims 45 to 47 Composition. 如請求項48至49中任一項之方法,其中,該方法進一步包含投與免疫檢查點抑制劑拮抗劑。The method of any one of claims 48 to 49, wherein the method further comprises administering an immunological checkpoint inhibitor antagonist. 如請求項50之方法,其中,該免疫檢查點抑制劑包含抗PD-1抗體或其抗原結合片段及/或抗CTLA-4抗體或其抗原結合片段。The method of claim 50, wherein the immunological checkpoint inhibitor comprises an anti-PD-1 antibody or antigen-binding fragment thereof and/or an anti-CTLA-4 antibody or antigen-binding fragment thereof. 如請求項48至51中任一項之方法,其中,該方法進一步包含投與T細胞刺激劑。The method of any one of clauses 48 to 51, wherein the method further comprises administering a T cell stimulating agent. 如請求項52之方法,其中,該T細胞刺激劑包含抗OX40抗體或其抗原結合片段或抗GITR抗體或其抗原結合片段。The method of claim 52, wherein the T cell stimulating agent comprises an anti-OX40 antibody or antigen-binding fragment thereof or an anti-GITR antibody or antigen-binding fragment thereof. 如請求項48至53中任一項之方法,其中,該腫瘤或癌症為子宮頸腫瘤或癌症、肛門腫瘤或癌症、頭頸部腫瘤或癌症或口咽腫瘤或癌症。The method of any one of claims 48 to 53, wherein the tumor or cancer is a cervical tumor or cancer, an anal tumor or cancer, a head and neck tumor or a cancer or an oropharyngeal tumor or cancer. 如請求項54之方法,其中,該腫瘤或癌症為癌轉移。The method of claim 54, wherein the tumor or cancer is a cancer metastasis. 如請求項48至55中任一項之方法,其中,該腫瘤或癌症為HPV16陽性。The method of any one of claims 48 to 55, wherein the tumor or cancer is HPV16 positive. 如請求項48至55中任一項之方法,其中,該腫瘤或癌症為HPV18陽性。The method of any one of claims 48 to 55, wherein the tumor or cancer is HPV18 positive. 一種細胞庫,其包含一或多種請求項1至44中任一項之重組李斯特菌屬菌株。A cell bank comprising one or more recombinant Listeria strains of any one of claims 1 to 44. 如請求項58之細胞庫,其中,該細胞庫為冷凍細胞庫或凍乾細胞庫。The cell bank of claim 58, wherein the cell bank is a frozen cell bank or a lyophilized cell bank. 如請求項6至8中任一項之重組李斯特菌屬菌株,其中,包含該HPV16抗原肽及該HPV18抗原肽的該融合多肽之區段包含SEQ ID NO:102。The recombinant Listeria strain of any one of claims 6 to 8, wherein the segment of the fusion polypeptide comprising the HPV 16 antigen peptide and the HPV 18 antigen peptide comprises SEQ ID NO: 102. 如請求項9之重組李斯特菌屬菌株,其中,編碼包含該HPV16抗原肽及該HPV18抗原肽的該融合多肽之區段的該開讀框之區段包含SEQ ID NO:101且相應地編碼SEQ ID NO:102中所闡述之序列。The recombinant Listeria strain of claim 9, wherein the open reading frame segment encoding the segment of the fusion polypeptide comprising the HPV 16 antigen peptide and the HPV 18 antigen peptide comprises SEQ ID NO: 101 and is encoded accordingly The sequence set forth in SEQ ID NO:102.
TW107100492A 2017-01-05 2018-01-05 Recombinant listeria vaccine strains and methods of using the same in cancer immunotherapy TW201833323A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201762442940P 2017-01-05 2017-01-05
US62/442,940 2017-01-05

Publications (1)

Publication Number Publication Date
TW201833323A true TW201833323A (en) 2018-09-16

Family

ID=62790883

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107100492A TW201833323A (en) 2017-01-05 2018-01-05 Recombinant listeria vaccine strains and methods of using the same in cancer immunotherapy

Country Status (3)

Country Link
AR (1) AR110730A1 (en)
TW (1) TW201833323A (en)
WO (1) WO2018129306A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111269868A (en) * 2019-12-10 2020-06-12 浙江农林大学 Construction method and application of attenuated Listeria monocytogenes

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9012141B2 (en) 2000-03-27 2015-04-21 Advaxis, Inc. Compositions and methods comprising KLK3 of FOLH1 antigen
KR102491332B1 (en) 2014-04-24 2023-01-27 어드박시스, 인크. Recombinant listeria vaccine strains and methods of producing the same
MA41644A (en) 2015-03-03 2018-01-09 Advaxis Inc LISTERIA-BASED COMPOSITIONS INCLUDING A MINIGEN EXPRESSION SYSTEM CODING PEPTIDES, AND METHODS OF USE THEREOF
KR20190082850A (en) 2016-11-30 2019-07-10 어드박시스, 인크. Immunogen compositions targeting repeated cancer mutations and methods of using the same
EP3684912B1 (en) 2017-09-19 2025-02-26 Advaxis, Inc. Compositions and methods for lyophilization of bacteria or listeria strains
EP3762719A1 (en) * 2018-03-09 2021-01-13 Advaxis, Inc. Compositions and methods for evaluating attenuation and infectivity of listeria strains

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG11201702857PA (en) * 2014-10-14 2017-05-30 Univ Pennsylvania Recombinant listeria vaccine strains and methods of using the same in cancer immunotherapy
WO2016183361A1 (en) * 2015-05-13 2016-11-17 Advaxis, Inc. Immunogenic listeria-based compositions comprising truncated acta-antigen fusions and methods of use thereof
MA43124A (en) * 2015-10-14 2018-09-05 Advaxis Inc RECOMBINATED VACCINE STRAINS OF LISTERIA AND THEIR METHODS OF USE IN ANTI-CANCER IMMUNOTHERAPY

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111269868A (en) * 2019-12-10 2020-06-12 浙江农林大学 Construction method and application of attenuated Listeria monocytogenes

Also Published As

Publication number Publication date
WO2018129306A1 (en) 2018-07-12
AR110730A1 (en) 2019-04-24

Similar Documents

Publication Publication Date Title
JP7340591B2 (en) Genetically engineered immunostimulatory bacterial strains and their uses
JP7649344B2 (en) Compositions and methods for freeze-drying bacteria or Listeria strains - Patents.com
WO2019157098A1 (en) Compositions comprising a recombinant listeria strain and an anti-ccr8 antibody and methods of use
JP7197481B2 (en) Immunogenic compositions targeting recurrent cancer mutations and methods of their use
TW201833323A (en) Recombinant listeria vaccine strains and methods of using the same in cancer immunotherapy
US20190248856A1 (en) Listeria-Based Immunogenic Compositions Comprising Wilms Tumor Protein Antigens And Methods Of Use Thereof
US20210177955A1 (en) Immunogenic heteroclitic peptides from cancer-associated proteins and methods of use thereof
CN113286615A (en) Combination therapy of microorganisms and immunomodulators for the treatment of cancer
TW201702375A (en) Immunogenic listeria-based compositions comprising truncated ActA-antigen fusions and methods of use thereof
KR20140134695A (en) Suppressor cell function inhibition following listeria vaccine treatment
KR20160130774A (en) Biomarker directed multi-target immunotherapy
WO2019006401A2 (en) Listeria-based immunogenic compositions comprising heteroclitic wilms tumor protein antigens and methods of use thereof
TW201726171A (en) Listeria-based immunotherapy and methods of use thereof
WO2018170313A1 (en) Methods and compositions for increasing efficacy of vaccines