TW201810713A - Light-emitting device - Google Patents
Light-emitting device Download PDFInfo
- Publication number
- TW201810713A TW201810713A TW106144304A TW106144304A TW201810713A TW 201810713 A TW201810713 A TW 201810713A TW 106144304 A TW106144304 A TW 106144304A TW 106144304 A TW106144304 A TW 106144304A TW 201810713 A TW201810713 A TW 201810713A
- Authority
- TW
- Taiwan
- Prior art keywords
- light
- layer
- emitting
- substrate
- electrode
- Prior art date
Links
- 239000000758 substrate Substances 0.000 claims abstract description 39
- 239000000463 material Substances 0.000 claims abstract description 7
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 claims description 10
- 229910001218 Gallium arsenide Inorganic materials 0.000 claims 3
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims 1
- 239000010931 gold Substances 0.000 claims 1
- 229910052737 gold Inorganic materials 0.000 claims 1
- 239000010410 layer Substances 0.000 description 131
- 239000004065 semiconductor Substances 0.000 description 46
- 230000004888 barrier function Effects 0.000 description 25
- 238000000605 extraction Methods 0.000 description 11
- 238000000034 method Methods 0.000 description 7
- 230000008569 process Effects 0.000 description 7
- FTWRSWRBSVXQPI-UHFFFAOYSA-N alumanylidynearsane;gallanylidynearsane Chemical compound [As]#[Al].[As]#[Ga] FTWRSWRBSVXQPI-UHFFFAOYSA-N 0.000 description 6
- 229910052751 metal Inorganic materials 0.000 description 6
- 239000002184 metal Substances 0.000 description 6
- JBQYATWDVHIOAR-UHFFFAOYSA-N tellanylidenegermanium Chemical compound [Te]=[Ge] JBQYATWDVHIOAR-UHFFFAOYSA-N 0.000 description 5
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 4
- 229910052732 germanium Inorganic materials 0.000 description 4
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 4
- 229910052698 phosphorus Inorganic materials 0.000 description 4
- 239000011574 phosphorus Substances 0.000 description 4
- 239000011669 selenium Substances 0.000 description 4
- 239000002356 single layer Substances 0.000 description 4
- 229910000530 Gallium indium arsenide Inorganic materials 0.000 description 2
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical compound [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 description 2
- KXNLCSXBJCPWGL-UHFFFAOYSA-N [Ga].[As].[In] Chemical compound [Ga].[As].[In] KXNLCSXBJCPWGL-UHFFFAOYSA-N 0.000 description 2
- 229910052738 indium Inorganic materials 0.000 description 2
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 2
- 229910052711 selenium Inorganic materials 0.000 description 2
- RNQKDQAVIXDKAG-UHFFFAOYSA-N aluminum gallium Chemical compound [Al].[Ga] RNQKDQAVIXDKAG-UHFFFAOYSA-N 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 239000002019 doping agent Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000005693 optoelectronics Effects 0.000 description 1
- 238000002310 reflectometry Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000007788 roughening Methods 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
- 229910052714 tellurium Inorganic materials 0.000 description 1
- PORWMNRCUJJQNO-UHFFFAOYSA-N tellurium atom Chemical compound [Te] PORWMNRCUJJQNO-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Led Devices (AREA)
Abstract
Description
本發明係關於發光元件,尤其是關於紅外線發光元件。The present invention relates to light-emitting elements, and more particularly to infrared light-emitting elements.
發光二極體(Light-Emitting Diode;LED)具有低耗能、低發熱、操作壽命長、防震、體積小、反應速度快以及輸出的光波長穩定等良好光電特性,因此適用於各種用途。Light-Emitting Diode (LED) has good optoelectronic properties such as low energy consumption, low heat generation, long operating life, shock resistance, small volume, fast response speed, and stable wavelength of output light, so it is suitable for various applications.
其中紅外線發光二極體(Infrared LED;IR LED)的應用越來越廣,從傳統應用於遙控器和監視器,最近更發展到應用於智慧型手機以及觸控面板。其中因為每一個觸控面板相對使用較大量之紅外線發光二極體,所以相對於其他應用在價格上也要求更低,降低紅外線發光二極體之成本因此有其必要性。Infrared LEDs (IR LEDs) are used more and more widely, from traditional applications to remote controls and monitors, and more recently to smart phones and touch panels. Because each touch panel uses a relatively large amount of infrared light-emitting diodes, it is required to be lower in price than other applications, and it is necessary to reduce the cost of the infrared light-emitting diodes.
圖1係一習知之紅外線發光元件之剖面圖,如圖1所示,此發光元件包含一永久基板101,於其上方由上往下依序有一發光疊層102,一金屬反射層103,一阻障層104,及一接合(bonding)結構105。此外,一第一電極106E1及其延伸電極106E1’設置於發光疊層102上,及一第二電極106E2設置於永久基板101上。第一電極106E1及其延伸電極106E1’ 以及第二電極106E2用以傳遞電流。發光疊層102可發出一紅外線波段之光線。在製程上,此種習知之紅外線發光元件其發光疊層102原本係成長於成長基板上(圖未示),再利用接合結構105接合原本分離之發光疊層102與永久基板101,故可於兩者接合前先形成金屬反射層103於發光疊層102後再接合。但如上述,在特定應用,例如觸控面板的應用要求低成本時,上述接合製程及金屬反射層103等,都是造成高成本之主因。另外,在觸控面板應用上,也要求較佳之側面出光以達到較大之出光角度,在實際應用上已發現上述習知之紅外線發光元件難以符合此方面之要求。1 is a cross-sectional view of a conventional infrared light-emitting device. As shown in FIG. 1, the light-emitting element includes a permanent substrate 101, and a light-emitting layer 102, a metal reflective layer 103, The barrier layer 104, and a bonding structure 105. In addition, a first electrode 106E1 and its extension electrode 106E1' are disposed on the light emitting layer 102, and a second electrode 106E2 is disposed on the permanent substrate 101. The first electrode 106E1 and its extension electrode 106E1' and the second electrode 106E2 are used to transfer current. The light-emitting layer 102 emits light in an infrared band. In the process of the conventional infrared light-emitting device, the light-emitting laminate 102 is originally grown on a growth substrate (not shown), and the bonded structure 105 is used to bond the originally separated light-emitting laminate 102 and the permanent substrate 101. Before the two are joined, the metal reflective layer 103 is formed on the light-emitting layer 102 and then bonded. However, as described above, in a specific application, for example, when the application of the touch panel requires low cost, the bonding process and the metal reflective layer 103 are the main causes of high cost. In addition, in the application of the touch panel, the preferred side light is also required to achieve a large light exit angle. It has been found in practical applications that the above-mentioned conventional infrared light-emitting elements are difficult to meet the requirements of this aspect.
本發明係揭露一種發光元件,包含:一基板;一發光疊層位於該基板之上方,以發出一紅外線波長之光,該紅外線波長大於900 nm;一窗戶層,由AlGaInP系列之材料組成,位於該基板與該發光疊層之間;以及一電極位於該發光疊層上,且由該發光元件的上視觀之,該電極之圖案包含圓形或網格狀。The invention discloses a light-emitting element comprising: a substrate; a light-emitting layer is arranged above the substrate to emit an infrared wavelength light having a wavelength of more than 900 nm; and a window layer composed of a material of the AlGaInP series. Between the substrate and the light-emitting layer; and an electrode on the light-emitting layer, and the pattern of the electrode comprises a circular or grid shape from the upper side of the light-emitting element.
本發明係揭露一種發光元件,包含:一基板;以及一窗戶層及一發光疊層以一堆疊方向設於該基板上,使該窗戶層位於該基板與該發光疊層之間,其中該窗戶層由AlGaInP系列之材料組成;其中,該發光疊層具有一表面遠離該基板且垂直於該堆疊方向,該發光元件由該表面向外發出一光線。The invention discloses a light-emitting element comprising: a substrate; and a window layer and a light-emitting layer are disposed on the substrate in a stacking direction, the window layer is located between the substrate and the light-emitting layer, wherein the window The layer is composed of a material of the AlGaInP series; wherein the light-emitting layer has a surface away from the substrate and perpendicular to the stacking direction, and the light-emitting element emits a light outward from the surface.
圖2為本發明第一實施例之發光元件。如圖2所示,此發光元件包含:一基板20;一發光疊層23位於基板20之上方,可發出一紅外線(IR)波長之光;以及一半導體窗戶層22,由AlGaInP系列之材料組成,位於基板20與發光疊層23之間。其中,基板20例如包含砷化鎵(GaAs)基板。上述紅外線(IR)波長介於約750nm至1100nm之間,在一實施例中,紅外線(IR)波長大於900nm,例如是940nm。半導體窗戶層22為一單一層結構並與發光疊層23直接接觸。在製程上可於形成半導體窗戶層22後,即於相同機台上調整通入之氣體種類或比例,以接著形成發光疊層23。在一實施例中,半導體窗戶層22包含(Alx Ga1-x )0.5 In0.5 P ,其中x為0.1~1。值得注意的是,發光疊層23具有一第一折射率n1 ,半導體窗戶層22具有一第二折射率n2 ,第一折射率n1 大於第二折射率n2 至少0.2以上。因此,對於上述發光疊層23所發出之紅外線波長之光,在發光疊層23與半導體窗戶層22間係由高折射率向低折射率行進,加上發光疊層23之第一折射率n1 與半導體窗戶層22之第二折射率n2 間之差異,使發光疊層23所發出之紅外線波長之光在半導體窗戶層22容易發生全反射,即半導體窗戶層22提供一單一層結構之反射鏡功能,且相對於一般分散式布拉格反射結構(DBR),其提供較佳之側向之反射功能。一般分散式布拉格反射結構(DBR)需要數十層才能達到一定程度的反射率,且其反射功能僅限於正向一定範圍之角度,一般是與反射結構之法線夾0度~17度的光;而本實施例僅藉由單一層結構之半導體窗戶層22即可反射與半導體窗戶層22之法線夾50度~90度的光,提供較佳之側面出光以形成較大之出光角度,並且因為光取出改善,整體發光功率因而提昇。在實際之測試上,分別測試發出850nm及940nm之發光元件,本發明實施例之發光疊層23在第一電性半導體層231採用砷化鋁鎵(AlGaAs),具有第一折射率n1 約3.4,半導體窗戶層22採用(Al0.6 Ga0.4 )0.5 In0.5 P,具有第二折射率n2 約2.98,兩折射率值差約0.42,其與其他條件相同但僅半導體窗戶層22改用砷化鋁鎵(AlGaAs)(折射率約3.4)之發光元件相較,本發明實施例850nm發光元件之發光功率相較由4.21mW因而提昇至4.91mW,增加約17%;本發明實施例940nm發光元件之發光功率相較由5.06mW因而提昇至5.27mW,增加約4%。另外,在製程上或成本上,半導體窗戶層22與發光疊層23直接接觸,且為一單一層結構,故相對於一般分散式布拉格反射結構,製程更為簡化且成本更低。在厚度上,在一實施例中,半導體窗戶層22之厚度小於1μm即可有良好之反射效果。Fig. 2 is a view showing a light-emitting element of a first embodiment of the present invention. As shown in FIG. 2, the light-emitting element comprises: a substrate 20; a light-emitting layer 23 is disposed above the substrate 20 to emit an infrared (IR) wavelength; and a semiconductor window layer 22 is composed of a material of the AlGaInP series. Located between the substrate 20 and the light emitting laminate 23. Among them, the substrate 20 includes, for example, a gallium arsenide (GaAs) substrate. The infrared (IR) wavelength described above is between about 750 nm and 1100 nm. In one embodiment, the infrared (IR) wavelength is greater than 900 nm, such as 940 nm. The semiconductor window layer 22 is a single layer structure and is in direct contact with the light emitting laminate 23. After the semiconductor window layer 22 is formed in the process, the type or ratio of the gas to be introduced can be adjusted on the same machine to form the light-emitting laminate 23. In one embodiment, the semiconductor window layer 22 comprises (Al x Ga 1-x ) 0.5 In 0.5 P , where x is 0.1 to 1. It should be noted that the light emitting laminate 23 has a first refractive index n 1 , and the semiconductor window layer 22 has a second refractive index n 2 , and the first refractive index n 1 is greater than the second refractive index n 2 by at least 0.2 or more. Therefore, the light of the infrared wavelength emitted by the light-emitting layer 23 travels between the light-emitting layer 23 and the semiconductor window layer 22 from a high refractive index to a low refractive index, and the first refractive index n of the light-emitting layer 23 is added. 1 is different from the second refractive index n 2 of the semiconductor window layer 22, so that the infrared wavelength light emitted by the light-emitting layer 23 is easily totally reflected in the semiconductor window layer 22, that is, the semiconductor window layer 22 provides a single layer structure. The mirror function, and provides a better lateral reflection function relative to a generally distributed Bragg reflection structure (DBR). Generally, the distributed Bragg reflection structure (DBR) requires dozens of layers to achieve a certain degree of reflectivity, and its reflection function is limited to a certain range of forward direction, generally 0 to 17 degrees of light with the normal of the reflection structure. In this embodiment, only the semiconductor window layer 22 of a single layer structure can reflect light of 50 degrees to 90 degrees with the normal line of the semiconductor window layer 22, thereby providing better side light to form a larger light exit angle, and As the light extraction is improved, the overall luminous power is thus increased. In the actual test, the light-emitting elements emitting 850 nm and 940 nm are respectively tested. The light-emitting layer 23 of the embodiment of the present invention uses aluminum gallium arsenide (AlGaAs) in the first electrical semiconductor layer 231, and has a first refractive index n 1 . 3.4, the semiconductor window layer 22 adopts (Al 0.6 Ga 0.4 ) 0.5 In 0.5 P, has a second refractive index n 2 of about 2.98, and the difference in refractive index value is about 0.42, which is the same as other conditions but only the semiconductor window layer 22 is changed to arsenic. Compared with the light-emitting element of aluminum gallium (AlGaAs) (refractive index of about 3.4), the light-emitting power of the 850 nm light-emitting element of the embodiment of the present invention is increased from 4.21 mW to 4.91 mW, which is increased by about 17%; The luminous power of the component is increased from 5.06 mW to 5.27 mW, an increase of about 4%. In addition, the semiconductor window layer 22 is in direct contact with the light-emitting layer 23 in a process or cost, and has a single layer structure, so that the process is more simplified and the cost is lower than that of the general distributed Bragg reflection structure. In terms of thickness, in one embodiment, the thickness of the semiconductor window layer 22 is less than 1 μm for good reflection.
發光疊層23包含一第一電性半導體層231位於半導體窗戶層22之上;一活性層232位於第一電性半導體層231之上;以及一第二電性半導體層233位於活性層232之上,其中第一電性半導體層231與半導體窗戶層22直接接觸。第一電性半導體層231、活性層232、及第二電性半導體層233為III-V族材料所形成。第一電性半導體層231和第二電性半導體層233電性相異,例如第一電性半導體層231是n型半導體層,而第二電性半導體層233是p型半導體層,在施加外部電源時,第一電性半導體層231及第二電性半導體層233分別產生載子(電子/電洞)並於活性層232複合而產生光。在一實施例中,第一電性半導體層231摻雜碲(Te)或硒(Se)。在一實施例中,活性層232包含一多重量子井結構(MQW),此多重量子井結構包含複數之阻障層,例如阻障層232b1 , 232b2 ,…232bn ,及一個或多個井層,例如井層232w1 , 232w2 ,…232wn-1 ,兩相鄰之阻障層間有一個井層,例如兩相鄰之阻障層232b1 及232b2 間有一個井層232w1 。其中複數之阻障層232b1 , 232b2 ,…232bn 中最臨近第一電性半導體層231之阻障層(即阻障層232b1 )及最臨近第二電性半導體層233之阻障層(即阻障層232bn )不含磷(P),其餘之阻障層(阻障層232b2 ,…232bn-1 )則含磷(P)。在一實施例中,井層232w1 , 232w2 ,…232wn-1 包括砷化銦鎵(InGaAs),其中銦含量約2%~30%並隨發光疊層23所欲發出之光波長而調整,以達前述紅外線之波段範圍。而由於井層232w1 , 232w2 ,…232wn-1 包含銦(In)會使晶格常數變大,上述之阻障層(阻障層232b2 ,…232bn-1 )中含磷(P)可使晶格常數變小而將整體晶格常數調整回適當範圍。在一實施例中,阻障層232b2 ,…232bn-1 例如包括磷化鋁鎵砷(AlGaAsP)。而如上述,最臨近第一電性半導體層231之阻障層(阻障層232b1 )及最臨近第二電性半導體層233之阻障層(阻障層232bn )不含磷(P),可使其厚度較厚時晶格常數不至於過小;而較厚之阻障層232b1 及阻障層232bn 可對臨近之第一電性半導體層231及第二電性半導體層233中之摻雜物有較佳之擴散阻隔效果。在一實施例中,阻障層232b1 及阻障層232bn 例如包括砷化鋁鎵(AlGaAs)。The light emitting layer 23 includes a first electrical semiconductor layer 231 on the semiconductor window layer 22; an active layer 232 on the first electrical semiconductor layer 231; and a second electrical semiconductor layer 233 on the active layer 232. The first electrical semiconductor layer 231 is in direct contact with the semiconductor window layer 22. The first electrical semiconductor layer 231, the active layer 232, and the second electrical semiconductor layer 233 are formed of a III-V material. The first electrical semiconductor layer 231 and the second electrical semiconductor layer 233 are electrically different, for example, the first electrical semiconductor layer 231 is an n-type semiconductor layer, and the second electrical semiconductor layer 233 is a p-type semiconductor layer, which is applied. In the external power supply, the first electrical semiconductor layer 231 and the second electrical semiconductor layer 233 respectively generate carriers (electrons/holes) and recombine in the active layer 232 to generate light. In an embodiment, the first electrical semiconductor layer 231 is doped with tellurium (Te) or selenium (Se). In one embodiment, the active layer 232 comprises a multiple quantum well structure (MQW) comprising a plurality of barrier layers, such as barrier layers 232b 1 , 232b 2 , . . . 232b n , and one or more a well layer, such as well layer 232w 1 , 232w 2 , ... 232w n-1 , there is a well layer between two adjacent barrier layers, for example, a well layer 232w between two adjacent barrier layers 232b 1 and 232b 2 1 . The barrier layer closest to the first electrical semiconductor layer 231 (ie, the barrier layer 232b 1 ) and the barrier closest to the second electrical semiconductor layer 233 of the plurality of barrier layers 232b 1 , 232b 2 , . . . 232b n The layer (i.e., barrier layer 232b n ) does not contain phosphorus (P), and the remaining barrier layers (barrier layers 232b 2 , ... 232b n-1 ) contain phosphorus (P). In one embodiment, the well layers 232w 1 , 232w 2 , . . . 232w n-1 comprise indium gallium arsenide (InGaAs), wherein the indium content is between about 2% and 30% and is dependent on the wavelength of light that the light-emitting stack 23 is intended to emit. Adjust to reach the aforementioned range of infrared rays. Since the well layers 232w 1 , 232w 2 , ... 232w n-1 contain indium (In), the lattice constant becomes large, and the above barrier layers (barrier layers 232b 2 , ... 232b n-1 ) contain phosphorus ( P) The lattice constant can be made smaller to adjust the overall lattice constant back to the appropriate range. In an embodiment, the barrier layers 232b 2 , . . . 232b n-1 include, for example, aluminum gallium arsenide (AlGaAsP). As described above, the barrier layer (barrier layer 232b 1 ) closest to the first electrical semiconductor layer 231 and the barrier layer (block layer 232 b n ) closest to the second electrical semiconductor layer 233 do not contain phosphorus (P). The thicker barrier layer 232b 1 and the barrier layer 232b n may be adjacent to the adjacent first electrical semiconductor layer 231 and second electrical semiconductor layer 233. The dopant in the middle has a better diffusion barrier effect. In an embodiment, the barrier layer 232b 1 and the barrier layer 232b n include, for example, aluminum gallium arsenide (AlGaAs).
本發明第一實施例之發光元件更包含一緩衝層21位於基板20與半導體窗戶層22之間,緩衝層21摻雜矽(Si),例如摻雜矽(Si)之砷化鎵(GaAs)。如前所述,第一電性半導體層231摻雜碲(Te)或硒(Se),而緩衝層21摻雜矽(Si),如此之配置使得發光元件在製程上有更多之調整彈性,例如是晶格常數之調整。另外,本發明第一實施例之發光元件更包含一側向光取出層24位於發光疊層23之上,一接觸層25位於側向光取出層24之上,及一第一電極26係設置於接觸層25上,而一第二電極27設置於基板20上。側向光取出層24有助於光取出,特別是因為厚度增加而使側面出光增加,故其厚度可以相對地較厚,例如約5μm至30μm,在一實施例中,側向光取出層24包含摻雜鋅(Zn)之砷化鎵(GaAs),厚度約10μm。接觸層25用以與其上之第一電極26形成歐姆接觸,以降低電阻值,在一實施例中,接觸層25包含摻雜鋅(Zn)之砷化鎵(GaAs)。側向光取出層24與接觸層25同樣為包含摻雜鋅(Zn)之砷化鎵(GaAs)可簡化製程上機台之配置,但須注意的是,側向光取出層24與接觸層25之功能不同,為形成歐姆接觸,接觸層25中的鋅(Zn)含量比側向光取出層24的鋅(Zn)含量多很多,才能形成歐姆接觸。第一電極26可設置有延伸電極26a,以助於電流擴散。值得注意的是,發光疊層23所發出之紅外線波長之光向基板20行進時,可能仍有部份在半導體窗戶層22未發生全反射。如前所述,配合在特定應用時,可能要求較大之出光角度,故如圖所示,在本實施例中,第二電極27是一圖案化之電極,較詳細之說明請參圖3及圖4,由上視觀看(top view)時,第二電極27之圖案可以例如是如圖3之網格狀(mesh),圖3顯示一砷化鎵(GaAs)之基板20上形成有網格狀之鍺金(GeAu)第二電極27;或如圖4所示,第二電極27之圖案可以是多個圓形,圖4顯示一砷化鎵(GaAs)之基板20上形成有多個圓形狀之鍺金(GeAu)第二電極27;如此圖案化之第二電極27對於在半導體窗戶層22未發生全反射之光而言,形成散射中心,可增加散射而使出光角度較大。此外,亦可選擇性地在基板20的下表面S1未設置第二電極27處形成粗化(圖未繪示),同樣可增加光的散射,使光容易從基板20之側面出光,甚至基板20之側面S2及發光元件上表面S3未設置第一電極26處亦可予以粗化(圖未繪示)。The light emitting device of the first embodiment of the present invention further includes a buffer layer 21 between the substrate 20 and the semiconductor window layer 22, and the buffer layer 21 is doped with germanium (Si), such as gallium arsenide (GaAs) doped with germanium (Si). . As described above, the first electrical semiconductor layer 231 is doped with germanium (Te) or selenium (Se), and the buffer layer 21 is doped with germanium (Si), so that the light-emitting element has more adjustment flexibility in the process. For example, the adjustment of the lattice constant. In addition, the light-emitting element of the first embodiment of the present invention further includes a side light extraction layer 24 on the light-emitting layer 23, a contact layer 25 on the lateral light extraction layer 24, and a first electrode 26. On the contact layer 25, a second electrode 27 is disposed on the substrate 20. The lateral light extraction layer 24 facilitates light extraction, particularly because the thickness of the side increases the side light, so the thickness can be relatively thick, for example, from about 5 μm to 30 μm. In one embodiment, the lateral light extraction layer 24 It contains gallium arsenide (GaAs) doped with zinc (Zn) and has a thickness of about 10 μm. Contact layer 25 is used to form an ohmic contact with first electrode 26 thereon to reduce the resistance value. In one embodiment, contact layer 25 comprises zinc (Zn) doped gallium arsenide (GaAs). The lateral light extraction layer 24 and the contact layer 25 are similarly doped with zinc (Zn) doped gallium arsenide (GaAs), which simplifies the configuration of the machine on the process, but it should be noted that the lateral light extraction layer 24 and the contact layer The function of 25 is different. To form an ohmic contact, the zinc (Zn) content in the contact layer 25 is much larger than the zinc (Zn) content of the lateral light extraction layer 24 to form an ohmic contact. The first electrode 26 may be provided with an extension electrode 26a to facilitate current spreading. It should be noted that when the infrared wavelength light emitted by the light-emitting layer 23 travels toward the substrate 20, there may still be some total reflection in the semiconductor window layer 22. As described above, in a specific application, a larger angle of light extraction may be required. Therefore, as shown in the figure, in the embodiment, the second electrode 27 is a patterned electrode. For a detailed description, please refer to FIG. 3 . 4, when viewed from a top view, the pattern of the second electrode 27 may be, for example, a mesh as shown in FIG. 3, and FIG. 3 shows that a substrate 20 of gallium arsenide (GaAs) is formed. a grid-like metal (GeAu) second electrode 27; or as shown in FIG. 4, the pattern of the second electrode 27 may be a plurality of circles, and FIG. 4 shows that a gallium arsenide (GaAs) substrate 20 is formed thereon. a plurality of circular-shaped sheet metal (GeAu) second electrodes 27; the second electrode 27 thus patterned forms a scattering center for light that does not totally reflect at the semiconductor window layer 22, thereby increasing scattering and making the light-emitting angle Big. In addition, it is also possible to selectively form a roughening (not shown) at the lower surface S1 of the substrate 20 without providing the second electrode 27, which also increases the scattering of light, so that the light is easily emitted from the side of the substrate 20, even the substrate. The side surface S2 of the 20 and the first surface 26 of the upper surface S3 of the light-emitting element may be roughened (not shown).
上述實施例僅為例示性說明本發明之原理及其功效,而非用於限制本發明。任何本發明所屬技術領域中具有通常知識者均可在不違背本發明之技術原理及精神的情況下,對上述實施例進行修改及變化。因此本發明之權利保護範圍如後述之申請專利範圍所列。The above embodiments are merely illustrative of the principles of the invention and its advantages, and are not intended to limit the invention. Modifications and variations of the above-described embodiments can be made without departing from the spirit and scope of the invention. Therefore, the scope of the invention is as set forth in the appended claims.
101‧‧‧永久基板
102‧‧‧發光疊層
103‧‧‧金屬反射層
104‧‧‧阻障層
105‧‧‧接合結構
106E1‧‧‧第一電極
106E1’‧‧‧(第一電極之)延伸電極
106E2‧‧‧第二電極
20‧‧‧基板
21‧‧‧緩衝層
22‧‧‧半導體窗戶層
23‧‧‧發光疊層
231‧‧‧第一電性半導體層
232‧‧‧發光層
232b1,232b2,…232bn‧‧‧阻障層
232w1,232w2,…232wn-1‧‧‧井層
233‧‧‧第二電性半導體層
24‧‧‧側向光取出層
25‧‧‧接觸層
26‧‧‧第一電極
26a‧‧‧(第一電極之)延伸電極
27‧‧‧第二電極
S1‧‧‧基板下表面
S2‧‧‧基板側面
S3‧‧‧發光元件上表面101‧‧‧Permanent substrate
102‧‧‧Lighting laminate
103‧‧‧Metal reflector
104‧‧‧Barrier layer
105‧‧‧ joint structure
106E1‧‧‧First electrode
106E1'‧‧‧ (first electrode) extended electrode
106E2‧‧‧Second electrode
20‧‧‧Substrate
21‧‧‧ Buffer layer
22‧‧‧Semiconductor window layer
23‧‧‧Lighting laminate
231‧‧‧First electrical semiconductor layer
232‧‧‧Lighting layer
232b 1 , 232b 2 ,...232b n ‧‧‧Barrier layer
232w 1 , 232w 2 ,...232w n-1 ‧‧‧ Well
233‧‧‧Second electrical semiconductor layer
24‧‧‧ lateral light extraction layer
25‧‧‧Contact layer
26‧‧‧First electrode
26a‧‧‧ (first electrode) extension electrode
27‧‧‧second electrode
S1‧‧‧substrate lower surface
S2‧‧‧Side side
S3‧‧‧Lighting element upper surface
圖1所示為一習知之發光元件。Figure 1 shows a conventional light-emitting element.
圖2所示為本發明第一實施例之發光元件。Fig. 2 shows a light-emitting element of a first embodiment of the invention.
圖3所示為本發明第一實施例之發光元件中之第二電極圖案。Fig. 3 shows a second electrode pattern in the light-emitting element of the first embodiment of the present invention.
圖4所示為本發明第一實施例之發光元件中之第二電極另一圖案。Fig. 4 is a view showing another pattern of the second electrode in the light-emitting element of the first embodiment of the present invention.
(無)(no)
(無)(no)
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW106144304A TWI639249B (en) | 2014-03-06 | 2014-03-06 | Light-emitting device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW106144304A TWI639249B (en) | 2014-03-06 | 2014-03-06 | Light-emitting device |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201810713A true TW201810713A (en) | 2018-03-16 |
TWI639249B TWI639249B (en) | 2018-10-21 |
Family
ID=62189768
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW106144304A TWI639249B (en) | 2014-03-06 | 2014-03-06 | Light-emitting device |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI639249B (en) |
-
2014
- 2014-03-06 TW TW106144304A patent/TWI639249B/en active
Also Published As
Publication number | Publication date |
---|---|
TWI639249B (en) | 2018-10-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104733588B (en) | Luminescence chip | |
JP4899825B2 (en) | Semiconductor light emitting device, light emitting device | |
CN101308899B (en) | Semiconductor light emitting element | |
KR100843426B1 (en) | Semiconductor light emitting device | |
CN101517761B (en) | Optoelectronic component | |
US8003974B2 (en) | LED semiconductor element having increased luminance | |
CN105308763B (en) | Light-emitting diode component | |
US20080169479A1 (en) | Light-emitting diode | |
CN101809764B (en) | Radiation-emitting semiconductor body | |
JP2009522755A (en) | LED semiconductor body and use of LED semiconductor body | |
US20240234646A1 (en) | Solid-state transducer devices with selective wavelength reflectors and associated systems and methods | |
KR20090015966A (en) | Modified LED devices with re-emitting semiconductor construction | |
US8115219B2 (en) | LED semiconductor body and use of an LED semiconductor body | |
CN101859854A (en) | Light emitting element | |
JP2022153366A (en) | Semiconductor element and semiconductor element package including the same | |
KR20120002130A (en) | Flip chip type light emitting device and manufacturing method thereof | |
US20170104134A1 (en) | Light emitting diode | |
US11876154B2 (en) | Light emitting diode device and method for manufacturing the same | |
TWI613838B (en) | Light-emitting element | |
KR20140036717A (en) | Light emitting device | |
Harle et al. | Advanced technologies for high-efficiency GaInN LEDs for solid state lighting | |
TWI639249B (en) | Light-emitting device | |
JP2019522373A (en) | Semiconductor element | |
CN104916747B (en) | Light emitting element | |
CN211455717U (en) | Light emitting diode with ternary compound reflection structure |